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Abstract 

 This thesis examines the effectiveness of an exponentially tapered piezoelectric plate for use as 

a vibration energy harvester (VEH). Typically piezoelectric energy harvesters have been designed as 

cantilever beams or "cymbal" type structures. For these devices there is a known resonant frequency at 

which displacement is maximized to produce maximum power. While this can produce good results for 

applications in which a device vibrates at a specific frequency, many environmental vibration sources 

are wide-band and random. 

 The exponentially tapered plate investigated in this work was 55.88mm in length and tapered 

exponentially from an initial width of 9.4mm to a final width of 71.12mm. The effectiveness of this type 

of structure was investigated to determine how well this system functioned as a broadband vibration 

energy harvester. Experimental and computational analyses demonstrated the presence of an 

evanescent cut-off frequency of approximately 3800 Hz below which very little energy is transferred 

from the input into the plate. The result of this is very inefficient power conversion at or below this cut-

off frequency. Since this is a critical feature of this type of energy harvester this structure will only be 

effective at higher frequencies above the cut-off. 

The mounting assembly design itself was shown to accurately model an exponentially tapered 

plate using a square PZT plate rather than having to have the PZT custom milled to the desired shape. 

This greatly reduces the cost of the materials used and should be considered for use in future research 

related to exponentially tapered plates. In addition the experimental results showed that as the 

frequency of the input is increased, the amount of energy transmitted around the mounting structure 

and therefore into the plate from the sides increased. This makes the mounting structure more suitable 

for low frequency experimentation, below 3000Hz.
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Chapter 1  

INTRODUCTION, CONTRIBUTIONS AND BACKGROUND 
 

1.1 INTRODUCTION 

The objective of this thesis was to examine the vibration mechanics of an exponentially tapered 

bimorph piezoelectric plate (Figure 6) with the goal of determining if this shape could be used to create 

a piezoelectric energy harvester with improved frequency response for broadband vibration, rather than 

being limited to a single tuned frequency (e.g. [1-4]). Since in many cases piezoelectric vibration energy 

harvesters (VEHs) are tuned to a specific frequency, but environmental vibration is not always narrow 

band, it would beneficial in many  applications to have a device capable of generating a strong response 

at a number of frequencies along its length. This is similar to the frequency response of the mammalian 

cochlea, so inspiration was taken for the structure from the mechanics of the organ [5, 6].  Being able to 

use ambient vibrations to power wireless sensors is an intriguing idea and there is a large market 

potential as the overall wireless sensor market continues to grow. Microcontrollers and RF radio 

components continue to become more affordable as power requirements are reduced which is opening 

doors for new applications of energy harvesting technologies [7]. 

With this in mind there were two goals in conducting this research. The primary goal was to design a 

method to successfully evaluate the energy harvesting potential of an exponentially tapered plate since 

to the author's knowledge no experimental research has been done in this area. Some computational 

work on the development of "An electromechanical finite element model for piezoelectric energy 

harvester plates" was presented by De Marqui Junior, Erturk and Inman in 2009 [8]. The secondary goal 

was to present a comparison of the experimental results to existing finite element models for both a 
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purely structural model and a coupled piezoelectric finite element model. The goal here is to validate 

the modeling approaches for potential future work in structural optimization. Several other shapes have 

been investigated in literature (Table 1) but none were found that researched the use of exponentially 

tapered plates. 

Author Piezoelectric Configuration investigated 

Mateu and Moll, 2005 [9] Rectangular and triangular cantilever 

Roundy et al, 2005 [10] Trapezoidal cantilever 

Baker et a, 2005 [11] Rectangular and trapezoidal cantilever 

Mossi et al, 2005 [12] Unimorph pre-stressed bender 

Danak et al,2003 [13] Initially curved PZT unimorph 

Yoon et al, 2005 [14] Initially curved PZT unimorph 

Ericka  et al, 2005 [15] Unimorph circular membrane 

Kim et al, 2005 [16] Clamped circular plates 

Kim et al, 2004 [17] Piezoelectric ‘cymbal’ 

Adhikari et al, 2009 [18] Stacked piezoelectric 

Erturk et al, 2009 [1] Cantilever bimorph 

Kim et al, 2011 [19] Unimorph and bimorph cantilever beam with 

distributed tip mass 

Table 1 Examples of shapes of piezoelectric energy harvesters from literature 

The first step was to develop a simple numerical model using fundamental plate theory and 

modifying it to account for the exponentially tapered shape of the device, without accounting for 

piezoelectric coupling. These results were found to be well matched to the structural finite element 

model from COMSOL®. The finite element model was then expanded to include piezoelectric coupling, 

again using COMSOL®. It was shown that the piezoelectric coupling has a significant effect on the 

resonant frequencies of the device. 

This was followed by the design and manufacture of the mounting assembly that allowed a 

rectangular piezoelectric plate to be evaluated as an exponentially tapered plate. The structure was 
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fixed on two sides with a base excitation applied to the narrow end, in order to compare the frequency 

response to a similarly shaped cochlea model developed and analyzed by White [20]. The data gathered 

was then compared to the results obtained from the analysis of various cantilever type bimorph devices 

by other authors. 

It was determined that in the configuration that was evaluated there was a severe attenuation of 

the power transferred from the base excitation through the device at low frequencies, limiting the 

usefulness of this device as an energy harvester. The evanescent effect observed prevented the 

observation of cochlear like mechanics in the tapered plate and limited the overall power output of the 

device. Although the power output from the device was lower than desired this was determined to be 

due to a low frequency evanescent cut-off that occurs using this configuration. This effect was not 

considered in early stages of the design. This provides a good lesson for future work with this type of 

device. In order to achieve cochlear like response, a coupling fluid must be added.  

In addition, modeling methods were validated at low frequencies for a stiff support structure and 

the manufacturing methods and experimental techniques for mimicking exponentially tapered PZT 

plates were demonstrated successfully.  Finally, methods for determining optimal load impedances were 

explored and demonstrated successfully. 

1.2 Contributions 

A great deal of research has been done in the field of piezoelectric energy harvesters, however the 

vast majority has been done on cantilever beams in various configurations. The focus of this work was to 

test a new and novel shape to see how it would compare to existing designs. No other work has 

considered the idea that the frequency analyzing characteristics of the cochlear might be used to "filter" 
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input vibrations and allow a single energy harvesting device to generate power consistently over a wide 

range of frequencies. 

The demonstration of a low frequency evanescent cut-off frequency provides a useful result in that 

future researchers will be aware of this phenomenon and can factor it into their designs. This provides a 

starting  point for future research that might consider using more flexible and less brittle piezopolymer 

materials [21]  in a similar type of structure with the same goal of duplicating the frequency response 

characteristics of the mammalian cochlea. These types of materials may have properties that could 

avoid the evanescent wave issues that limited the success of the experiments presented in this work. In 

addition, in order to achieve truly cochlear-like characteristics, it is critical to include a second coupling 

medium analogous to the fluid that fills the cochlear ducts. 

1.3 Background 

1.3.1 Introduction to Piezoelectricity 

Piezoelectric energy harvester technologies are small energy harvesters which can generate power 

in the µW–mW range. The focus of this type of device is not to replace renewable energy sources such 

as wind or solar but rather as an alternative to the conventional small scale chemical battery. They are 

of particular interest in the field of wireless sensors since unlike a conventional battery where power 

comes from a chemical source vibration energy harvesters utilize ambient vibrations to generate power. 

Piezoelectricity itself is a property of certain crystalline materials such as quartz, Rochelle salt and 

tourmaline and more modern materials such as PZT, AIN and ZnO [22].  

Piezoelectricity was first discovered over 130 years ago by the Curie brothers [23] , but it was first 

postulated by Coulomb who theorized that it might be possible to create electricity through applied 

pressure. However it was not until some 75 years after his death that piezoelectricity would be formally 

discovered by Jacques and Pierre Curie in 1881 [22]. Other experiments had been done, but theirs was 
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the first in which the charges produced could not be attributed to friction or contact electricity [24]. The 

first real world application of the piezoelectric effect did not come until Langevin applied piezoelectric 

transducers to the problem of detecting submarines during World War I [23]. The work that he did 

yielded promising results however the technology was never applied in practice during the war [22].  

Further applications were developed by Cady who used the piezoelectric effect to create crystal 

resonators that were used to stabilize oscillators in 1921 [25]. 

 During the remainder of the 20th century the applications of the piezoelectric effect expanded 

greatly. These ranged from something as simple as a phonograph cartridge, to ultrasonic transducers 

that allow measurement of viscosity and elasticity in fluids and solids. During World War II a new class of 

materials known as ferroelectrics was developed which had piezoelectric constants many times greater 

than any natural materials, and directly led to the development of a lead zirconate titanate alloy, better 

known simply as PZT [26]. PZT is now a commonly used piezoceramic and also material used in this 

thesis. Typical modern applications of piezoelectric materials have been in sensor applications, where 

the charge output could be used to detect mechanical strains, for example accelerometers or 

microphones. In the late 1990s shunt damping, where the electrical output is used for damping rather 

than sensing, was developed [27]. This original vibration application was geared towards the reduction 

of vibrations due to the joule heating and therefore energy dissipation that occurs in the materials. This 

idea of shunt damping was further developed to be used for power harvesting, where rather than 

dissipating the energy generated, it is used to power another device.  With the shrinking of integrated 

circuits less and less power is needed to operate electrical devices, and the relatively low power 

available from piezoelectric materials is now usable.  

 Since this early progress, the early and mid 20th century has seen a boom in research and 

development in the field of piezoelectric energy harvester systems. There are many ways in which 
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piezoelectric materials can be configured in order to try to extract the most power possible from the 

device; this includes varying the shape, material and electrode pattern, changing poling and stress 

directions, and tuning of devices to specific resonant [10-12, 16, 18].   

In particular VEHs make use of the so-called "direct effect", in which an applied strain causes an 

electric field to be induced across the crystal. The inverse is also true whereby an applied electric field 

causes the crystals to deform. This is known as the converse effect. This bi-directional relationship is a 

result of the crystalline structure of piezoelectric materials. It is the result of an uneven charge 

distribution within the crystals of a piezoelectric material; thus when a mechanical strain is applied, 

polarization of the internal charge results in the generation of a measureable surface charge. 

1.3.2 Cochlear Mechanics 

 

Since this thesis is motivated by the frequency response characteristics of the mammalian cochlear 

it is useful to have some introductory knowledge on the mechanics of this natural acoustic sensor. The 

cochlea is a single part of a network of bones and membranes that together form the ear and allows us 

to interpret pressure variations in the environment as sound [28]. The cochlea itself serves to 

differentiate the frequencies of this sound. This is facilitated by the basilar membrane found inside of 

the cochlear. The basilar membrane varies in thickness, width and stiffness all along its length as it 

spirals through the cochlea as shown in Figure 1.  
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Figure 1 Simplified picture showing variable width basilar membrane traveling down the cochlear duct (Taken from [20] with         
permission) 

 

The changing impedance of the basilar membrane means that high frequency sounds amplify 

motions near the base of the cochlea, because the basilar membrane is stiffer and has less effective 

mass there. Low frequency sounds have a greater effect near the apex since here it is more flexible and 

has greater effective mass [29]. In addition, the fluid in the ducts performs an important continuous 

coupling along the membrane, and complex mechanics and active cells in the Organ of Corti act to 

modify membrane motion. The wideband fitting is the characteristic that we are interested in, since the 

ability to induce motion in different parts of a device depending on frequency would allow the device to 

generate power at a number of frequencies rather than just a single one as with most existing cantilever 

energy harvesters. This frequency response is shown in Figure 2, which illustrates how as you move 

further from the base of the basilar membrane the resonant peak occurs at lower and lower 

frequencies. In this thesis the exponentially tapered plate provides an analogous situation where we 

have a higher stiffness at the narrow end which gradually decreases as we move away from the input. 
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Figure 2 Frequency response at several distances from the stapes along the basilar membrane 

  

1.3.3 Evanescent Waves 

 

An evanescent wave is a near field standing wave that exhibits exponential decay with distance from 

the boundary at which it is formed. Evanescent waves became a very important factor in this work since 

this phenomenon directly influenced the ability to generate power using the structure under 

investigation. In this case we see an example of a low-frequency cut-off. The 1D artificial example of an 

anchored string shown in Figure 3 does a good job of explaining this phenomenon and can also be 

expanded to apply to waves in plates.  

 

Figure 3 Anchored string in equilibrium position 

 

We assume that the string is perfectly flexible but the springs apply a lateral stiffness to the string by 

virtue of the other end being attached to a parallel rigid anchoring. The springs are assumed to be 
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identical linear, uniformly spaced and close together. The return force added by the springs does not 

require the string to be curved and acts equally at all wavelengths. 

The stiffness added by the springs is defined as  per unit length which applies an additional force 

at each location. Adding this to the standard equation of motion for vibrating string the new equation of 

motion of the string becomes: 

 

 
2 2

2 2

T

t z

       
     

     
 (1.1) 

Where T is the tension in the string and  is the mass per unit length, (z, t) is the vertical 

deflection of the string, t  is time, and z is the coordinate along the string. We also apply the following 

definitions: 

 

c

T
c 




 



 (1.2) 

Where c is the wave speed and c is the cut-off frequency. We can rewrite this equation to the 

standard form known as the Klein-Gordon equation [30]: 

 
2 2

2 2

c2 2
c

t z

    
   

  
 (1.3) 

From here we can find the dispersion relation that relates driving frequency,  , with the wavenumber, 

k : 

 2 2 2 2

cc k    (1.4) 

The resulting dispersion curve is plotted in Figure 4 where we can see the low frequency cut-off at 

c  . 
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Figure 4 Dispersion curve for an anchored string 

 Note that the wave number is, 

 
 2 2

c
k

c

 
  (1.5) 

which will be imaginary if c  . While the full derivation is too involved for inclusion in this work it 

can be shown that when the wavevector becomes imaginary the solution to the wave equation 

becomes: 

 z i te Re De       (1.6) 

where  is the magnitude of the imaginary part of the wavevector k. There are two key observations to 

be made from this solution. 

(1) The phase angle component does not depend on z, meaning that all points on the string vibrate 

in phase with each other. 
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(2) The resulting shape of the string is now exponential and decays as we move along the string 

away from the driven end. 

This is a qualitatively different response than is seen for c  , where there will be travelling 

waves in the string. The resulting shape of the string is shown in Figure 5. And will be seen to be almost 

identical to what is seen in the numerical model, the FEA models and also in the experimental results. 

 

Figure 5 Evanescent wave on an anchored string 

 A similar type of response is observed in the tapered plate, at low frequencies the response is 

evanescent, and we only see travelling waves at higher frequencies above the cut-off frequency. This is 

actually different from the cochlea; in the cochlea the fluid coupling medium plays a strong role in the 

mechanics allowing propagating waves at low frequencies, and waves cut off and become evanescent 

only at higher frequencies on some parts of the basilar membrane.
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Chapter 2 Structural Plate Model 
 

Two methods have been used to develop a solution for the vibration response of the 

exponentially tapered plate shown in Figure 6. The first is the finite difference method which is used to 

obtain a numerical solution to the governing differential equation. The second is a finite element 

analysis using COMSOL® that also incorporates the piezoelectric effect which has been omitted from the 

finite difference solution for simplicity. This will be discussed further in the following FEA modeling 

chapter. 

 

 

Figure 6 Top view of exponentially tapered plate, tapered edges are clamped 

 The symbols used in the equations to follow are defined in Table 2 
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Symbol Parameter Units 

E  Young’s Modulus y-direction 2N m  

0b  Initial width of plate Meters 

fb  Final width of plate Meters 

  Density 3kg m  

  Poisson’s ratio Unitless 

h  Plate thickness Meters 

L  Plate length Meters 

am  Mass per unit area of plate 2kg m  

P  Input Displacement Meters 

  Frequency rad/s 

Table 2 Numerical modeling notation 

2.1 Finite Difference 

 In this case the device being investigated is a thin plate therefore the Kirchoff-Love plate operator [31] is 

used. Before reducing the order of the model the governing equation for bending motion of an 

orthotropic plate neglecting damping effects  is [32]: 

 
2 2 2 2 2 2 2 2 2

xx xy sh xy yy a2 2 2 2 2 2 2

w w w w w w
D D 2 D D D m 0

x x y x y x y y x y t

             
          

               
 (2.1) 

The orthotropic plate bending stiffnesses [33] are defined as: 
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   

 

2 3 3

y xy x y

yy xy2 2

x xy y x xy y

3

x y 3

xx xh xy2

x xy y

E h E E h
D D

12 E E 12 E E

E E h 1
D D G h

612 E E


 

 

 


 

where w is the normal plate displacement, h is the plate thickness, 
yE is the modulus of elasticity in the 

y-direction, xE is the modulus of elasticity in the x-direction, 
xyG is the shear modulus, and 

xy is 

Poisson’s ratio, however since the PZT plate is only mildly orthotropic the derivation will be done 

assuming an isotropic material. For the isotropic case the equation simplifies to:  

 
4 4 4 2

a4 2 2 4 2

d w d w d w w
D 2 m 0

dx dy dx dy t

  
    

 
 (2.2) 

where 
 

3

2

Eh
D

12 1



, and E is the isotropic modulus of elasticity and  is the isotropic Poisson's ratio. 

One way to solve this differential equation is to use separation of variables as well as a reduction of 

order. First we will use separation of variables and assume a solution of the form: 

 w(x,y, t) (y)U(x, t)  (2.3) 

Because the solution is assumed to be time-harmonic, the time dependency of the solution can be 

written as: 

 i t

1U(x, t) C u(x)e   (2.4) 

For low frequencies we can assume that only the first lateral structural mode is excited. In this case 

(y)  will be the shape of the assumed cross-modes for a clamped boundary condition [34].  

 2 y
(y) cos

b(x)

 
   

 
 (2.5) 
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Where b(x) is the function that represents the exponential variation of the width as shown in Figure 6 

and is increasing as we move in the positive x-direction. In this case the factor by which the width 

increases is represented by  . 

 

x

0

f

0

b(x) b e

1 b
ln

L b



  
    

   

 (2.6) 

Plugging into equation (1.1) and evaluating the derivatives of U(x, t) and since the cross modes: 

 
4 2

i t 2 i t

a4 2

d U d U
D 2 U e m Ue 0

dx dx

    
         

 
 (2.7) 

In (2.7) we can see that the i te  factor can be cancelled and we multiply by the orthogonal cross-mode 

shape and then integrate over the varying width b(x) to obtain: 

 
b( x ) b ( x ) b ( x ) b ( x )

2 2 2 2

b( x ) b ( x ) b ( x ) b ( x )

2 2 2 2

4 2
2 2 2

a4 2

d U d U
D dy 2 dy dyU m U dy

dx dx   

 
         

 
     (2.8) 

Evaluating the integrals we obtain: 

 

b(x)

22
b(x)

2

b(x) 2 2

2
b(x) 2

2

b(x) 4 4

2
b(x) 4 3

2

3b(x)
dy

8

d
dy

dx 2b(x)

d 2
dy

dx b(x)







 

 
  

 
 







 (2.9) 

This procedure results in a differential equation in only a single variable. Applying the appropriate 

boundary conditions for a plate with a harmonic input displacement at x 0 , x L is free and the 

exponentially varying sides are fixed: 
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2 3

2 3

at x 0 : u(x) P, u(x) 0
x

at x L : u(x) 0, u(x) 0
x x


  



 
  

 

 (2.10) 

The boundary conditions for the exponentially varying edges are built into the function for the cross-

modes. 

 Now that the governing equation has been simplified sufficiently and we have defined 

appropriate boundary condition the MATLAB® function bvp4c can be used to obtain a numeric solution. 

This function will provide numeric solutions to an ordinary differential equation (ODE) boundary value 

problem (BVP) when provided with a set of first order ordinary differential equations. The first step in 

obtaining a solution is to convert the fourth order ODE into the appropriate first order form. This is done 

by first rearranging the equation and renaming the coefficients that are a function of b(x)  as follows: 

  

 

1

2

2

4

3 3

3b(x)

8

2b(x)

2

b(x)

 


  


 

 (2.11) 

This step only serves to simplify the equation during the conversion process, using these new variables 

and simplifying, we obtain: 

  1 2 3U 2 U U 0         (2.12) 

Where: 

 
2

a 1m

D

 
   (2.13) 
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Now if we let: 

 

1

1 2

2 1 3

3 1 4

U

U

U

U

 

    

       

       

 (2.14) 

And then substituting back into (2.12) and rearranging to solve for the highest order derivative, the 

fourth order in this case, we obtain a set of first order ODEs suitable for use in bvp4c. 

 

 

2

1

3

2

4

3

2 3 3 1

4

1

2


 

 
  
 

      
 



 (2.15) 

Since bvp4c solves the equations numerically the three equations in (2.11) will be evaluated for a new 

value of x for each iteration. The code used is shown in Appendix A.1 and the results are shown in the 

results section of this chapter. 

2.2 Structural FEA Analysis (COMSOL) 

In this section, the motion of the plate will be evaluated using finite element analysis in order to 

verify the validity of the numerical finite difference model the same plate model using COMSOL 

Multiphysics® 4.2. This was done using the Solid Mechanics module and a linear elastic material model 

and running a Frequency Domain analysis. Mesh settings were automatically set by the software using 

the Physics-controlled mesh setting with Courser element size, this corresponds to a maximum element 

size of 0.0177m and a minimum element size of 0.0037m. The centerline symmetry of the plate allows 

the use of a symmetry constraint greatly reducing the solve time of the model. The model consists of 
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34609 elements, using a finer mesh was found to have no impact on the results obtained for the 

structural model. Material properties used for PZT-5H are shown in Table 3. 

Symbol Parameter Value Units 

E  Young’s Modulus y-direction 6.2e10 2N m  

0b  Initial width of plate 9.4e-3 Meters 

fb  Final width of plate 71.12e-3 Meters 

  PZT-5H Density 7800 3kg m  

  PZT-5H Poisson’s ratio 0.33 Unitless 

h  Plate thickness .127e-3 Meters 

L  Plate length 55.88e-3 Meters 

P  Input Displacement at x=0 1e-5 Meters 

Table 3 Parameter values for structural analysis 

 The device was modeled as two plates of thickness h considered to form a union at the 

coincident face this allowed there to be at least two elements through the thickness of the part without 

having to manually modify the automatic physics based mesh settings. The plate was then driven by an 

input displacement at 0b and left free at fb per the boundary conditions specified for the numerical 

solution in eq. (2.10). The exponentially varying edges were given a fixed constraint. The mesh and 

boundary conditions are shown in Figure 7 
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Figure 7 COMSOL® mesh and boundary conditions 

 

2.3 Results 

The solution obtained by the finite difference method can now be evaluated numerically using the 

MATLAB function bvp4c (See Appendix A.1). The results for selected frequencies are shown below as 3D 

plots of displacement. The results for each frequency are shown for both COMSOL® and Matlab®.  

The first set of plots (Figure 8 and Figure 9) show the full plate at 100 Hz, it can clearly be seen that 

by far the largest displacement is caused by the input displacement itself. What is seen here is a result of 

evanescence of the structure. Therefore in the subsequent plots the first 20mm of the plate is omitted. 

This allows the displacement pattern of the rest of the plate to be seen without being overshadowed by 

the much larger input displacement and the FEA and numerical results can still be compared. 
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Figure 8 Full plate at 100 Hz showing evanescence (Matlab®) 

In both Figure 8 and Figure 9 we see that the maximum displacement is at the base and is equal 

to 51 10 m which is to be expected since this is the defined input at x 0 in both cases. 

 

Figure 9 Full plate at 100 Hz showing evanescence (COMSOL®) 

(m) 
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Figure 10 Displacement at 100 Hz (Matlab®) 

 

Figure 11 Displacement at 100 Hz (COMSOL®) 

Figure 10 shows the results of the numerical solution from MATLAB® and the maximum 

displacement at x 20mm  at 100Hz is approximately 72.5 10 m . The same set up run in COMSOL® 

(m) 
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gives a maximum displacement of 71.81 10 , shown in Figure 11, which is very close to the simpler 

numerical MATLAB® solution. 

 

Figure 12 Displacement at 548 Hz (Matlab®) 

 

Figure 13 Displacement at 548 Hz (COMSOL ®) 

 

(m) 
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In Figure 12 and Figure 13 the maximum displacements are approximately 73.0 10 and 71.95 10  

respectively at 548Hz and we continue to see good agreement between the two solutions. 

 

Figure 14 Displacement at 1282 Hz (Matlab®) 

 

Figure 15 Displacement at 1282 Hz (COMSOL®) 

(m) 
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Figure 14 and Figure 15 we see that once again there is good correlation between the numerical and 

simulation results, about 3.5 x 10-7 m and 2.5 x 10-7 m and the displacement shape of the plate is almost 

identical. 

 

Figure 16 Displacement at 3000 Hz (Matlab®) 

 

Figure 17 Displacement at 3000 Hz (COMSOL®) 

In Figure 16 and  

(m) 
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Figure 17 we begin to see a bigger divergence between the results as more complex cross-modes are 

introduced particularly at the wider end of the plate. Here we can also see that the maximum 

displacement locations are also moving, in the Matlab® results the peaks are shifted more towards the 

wide end of the plate. This is expected, since the Matlab® solution assumed a single first structural cross 

mode, but the FEA has full two dimensional freedom. 

 In order to determine the low frequency evanescent cut-off an additional simulation was run for 

the first 6 resonant frequencies (excluding the 1st mode, which showed no visible displacement away 

from the input) as calculated by an Eigenfrequency study. The results are shown in Figure 18. Here we 

see that already at the 3rd resonant mode, or around 1500Hz, the resulting maximum displacements 

along the length of the plate are greater than the input displacement applied. 

 

Figure 18 Displacement at centerline along length of plate near resonant frequencies for structural model 
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2.4 Discussion 

The results show that at low frequencies wave propagation is limited and most of the displacement 

is at x 0 , due to the evanescent nature of the solution. As the frequency is increased, the waves begin 

to propagate further down the plate and we begin to see standing waves that generate greater 

displacements along the beam than at the input. It can also be seen that the cross-mode equation is an 

over-simplification of the problem at high frequencies. This will be seen in the next chapter, but for low 

frequencies the finite difference solution matches quite well with the FEA solution obtained, indicating 

that for a structural analysis the model is adequate. The effects of the piezoelectric effect will be 

discussed further in the next chapter. Already in the structural analysis we see the effects of the wave 

evanescence discussed in the introduction. This effect limits displacements in the structural model at 

low frequencies which will adversely affect the potential for power output in the structure even as the 

piezoelectric effect is introduced to the model. Although at this stage the evanescence is limited to 

frequencies below approximately 1500 Hz, a promising result that indicates that although this would still 

be a high frequency energy harvester there is potential to begin to see good output power at reasonably 

low frequencies.
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Chapter 3 Piezoelectric Plate Model 
 

 Since the finite difference method of Chapter 2 neglected piezoelectric coupling further FEA 

analysis was done using COMSOL® 4.2. The FEA model was run for both the simpler structural case 

which would be expected to provide a good match to the solution obtained using the finite difference 

method, confirmed by the results shown in Chapter 2, and also using the Piezoelectric package available 

in COMSOL® where the structural solution is coupled with the piezoelectric properties of PZT-5H. 

3.1 Voltage and Displacement Coupling in Bimorph Piezoelectric devices 

The plate being analyzed is, as is often the case with energy harvester devices, in a bimorph 

configuration. Generally due to the brittle nature of piezoelectric materials these bimorph devices 

consist of two layers of piezoelectric material with a conducting shim in between. This shim is often 

made from brass. In this case the plate used was custom made and therefore only consisted of the two 

piezoelectric layers with no shim.  

There are two basic configuration available for bimorph devices; series (Figure 19) and parallel 

(Figure 20). The poling is applied during the manufacturing process by applying a DC bias to the material 

at high temperatures. Once the material cools the dipoles are permanently aligned which maximizes the 

response to mechanical input [35]. 

For a series configuration the layers of the piezoelectric are poled in opposite directions. The result 

is that under bending one layer will be in tension and the other in compression. This results in the 

generated voltage field for each layer also being in opposite directions, and therefore the result is 

opposite terminals on either side of the plate. 
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When the bimorph is poled in parallel the layers are poled in the same direction, this means that a 

common terminal must be introduced between the two layers. This would involve electroding the 

interface between the layers which is quite cumbersome making a series configuration far simpler to 

deal with and parallel configuration are rarely seen in literature. 

 

Figure 19 Series poled piezoelectric bimorph 

 

Figure 20 Parallel poled piezoelectric bimorph 
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When operated in series the circuit model for a bimorph device can be approximated as shown in 

Figure 21. The current sources shown in Figure 21 are in the same direction due to the opposite poling 

of the two layers of the bimorph device. The current sources come from the coupling to mechanical 

strain, and will give an output proportional to the surface integral of the total electric displacement over 

the surface of the plate. 

 

Figure 21 Circuit model for series poled bimorph 

The load, Z , is connected across the plate. Power is dissipated in the load. The circuit can be 

evaluated using Kirchoff’s Current Law yielding the expression below which will become useful in power 

output considerations in Chapter 4. The factor of 2 in the denominator is the result of there being two 

current sources. 

 
p

p

C dV V
I

2 dt Z
   (3.1) 
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3.2 Material Properties and Study Setup 

Using the same geometry from the structural analysis a new study was created in COMSOL® using 

the built in Piezoelectric Device physics model. This model couples the mechanical domain to the 

electrical domain allowing the piezoelectric coupling effect to be taken into account. The following 

material properties and parameters were used in the piezoelectric FEA analysis of the device: 

Symbol Parameter Value Units 

0b  Initial width of plate 9.4e-3 Meters 

fb  Final width of plate 71.12e-3 Meters 

  PZT-5H Density 7800 3kg m  

  PZT-5H Poisson’s ratio 0.33 Unitless 

h  Plate thickness .127e-3 Meters 

L  Plate length 55.88e-3 Meters 

P  Input Displacement at x=0 1e-5 Meters 

Table 4 Parameter values for Piezoelectric FEA analysis 

As with the structural model, each of the two plates is of thickness h . In addition to these 

mechanical properties the following piezoelectric material properties were used from the built-in 

material library entry for PZT-5H in COMSOL® assuming the Strain-charge form. 

Compliance matrix (symmetric): 

E

1.65e 11 4.78e 12 8.45e 12 0 0 0

1.65e 11 8.45e 12 0 0 0

2.07e 11 0 0 0 1
s

4.35e 11 0 0 Pa

4.35e 11 0

4.26e 11

     
 

  
 
   

       
 
 

 
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Coupling matrix: 

0 0 0 0 7.41e 10 0
C

d 0 0 0 7.41e 10 0 0
N

2.74e 10 2.74e 10 5.93e 10 0 0 0

 
  

      
      

 

Relative permittivity: 

3130 0 0

0 3130 0

0 0 3400

 
 

 
 
  

 

These three matrices are required to solve the coupled equations which can be formed using: 

 D E   (3.2) 

Where D is the electric charge density displacement,  is the permittivity and E is the electric field 

strength.  

Combined with Hooke’s Law: 

 S sT    (3.3) 

Where S is strain, s is compliance and T is stress. 

We obtain the coupled equations: 

 
     

      

E T

T

S s T d E

D d T E

       

    

 (3.4) 

Or written in expanded matrix form we have: 
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E E E
1 1 3111 12 13

E E E
2 2 3221 22 23

E E E
3 3 3331 32 33

E
4 4 2444

E
5 5 1555

E
6 666

S T 0 0 ds s s 0 0 0

S T 0 0 ds s s 0 0 0

S T 0 0 ds s s 0 0 0

S T 0 d 00 0 0 s 0 0

S T d 0 00 0 0 0 s 0

S T 0 0 00 0 0 0 0 s

      
      
      
      

      
     
     
     

          

1

2

3

1

2

1 15 11 1

3

2 24 22 2

4

3 31 32 33 33 3

5

6

E

E

E

T

T
D 0 0 0 0 d 0 0 0 E

T
D 0 0 0 d 0 0 0 0 E

T
D d d d 0 0 0 0 0 E

T

T

 
 
  
   


 
 
         
        

          
                
 
  

 (3.5) 

             As with the structural analysis the device was modeled using two bodies, one to represent the 

top plate and the other to represent the bottom plate of the bimorph configuration. In addition to 

providing a convenient method to obtain multiple mesh elements through the thickness of the plate, 

this configuration is required to capture the series poled nature of the plate.  When dealing with 

bimorph piezoelectric plates, the poling of the two sandwiched plates is very important and will change 

the response characteristics of the device. The device being tested in this case is poled in series meaning 

that the poling of the two plates is in opposite directions as shown in Figure 19.  

The following two base vectors are then defined in COMSOL and are assigned as the material 

coordinate system for their respective layers. In COMSOL® the default poling for piezoelectric materials 

is in the z direction so only the top layer material coordinate system need be modified: 

3

1

2

x y z

x 1 0 0

x 0 1 0

x 0 0 1

 

Figure 22 Base vector Top layer 
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3

1

2

x y z

x 1 0 0

x 0 1 0

x 0 0 1

 

Figure 23 Base vector Bottom layer 

 

 As with the structural model, the built in physics-controlled mesh settings were sufficient to 

obtain accurate results. However, in the case of the piezoelectric model a finer mesh was required and 

the default Normal element size was used. This gave a maximum element size of 0.0162m and a 

minimum size of 0.0029m. This gives a total of 93112 elements over the entire device. The same 

boundary conditions were used as for the structural analysis to keep the model as consistent as 

possible. However the piezoelectric model requires the definition of a zero charge terminal and a 

ground terminal, these correspond to the + and – voltage terminals shown in Figure 19 respectively.  A 

frequency domain study was then run from 100Hz to 3000Hz in 10Hz increments. Note that the 

electrical boundary conditions are equivalent to an infinite load impedance, that is, an open circuit. 
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3.3 Results 

The first results shown in Figure 24 are displacement plots of the plate at the same frequencies 

plotted in the structural analysis of Chapter 2. As will be seen in Chapter 4 the displacement plots 

obtained from COMSOL® for these frequencies do not correspond to the experimental results. The 

displacement plots are shown for these particular frequencies because these are resonant frequencies 

in the structural model.  

 

 

Figure 24 Displacement plots for COMSOL® piezoelectric analysis. From Top left to Bottom right: 100Hz, 550Hz, 1280Hz and 
3000Hz 

  

(m) (m) 

(m) (m) 
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Figure 25 Plots of resonant frequencies obtain from COMSOL. Top left to Bottom right: 100Hz (not resonant), 395Hz, 1056Hz, 
2807Hz 

 These resonant frequencies were determined by looking at the frequencies vs. voltage plot 

shown in Figure 26. The plots of these frequencies are shown in Figure 25 and it should be noted that at 

these frequencies the response is more pronounced, the strong evanescence of the waves still occurs 

close to x 0  but the excitation of the plate standing modes are quite pronounced at higher 

frequencies. 

 

(m) (m) 

(m) (m) 
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Figure 26 Voltage response/Input Acceleration vs. Frequency from COMSOL® 

  

 A similar plot to the one shown for the structural simulation is shown in Figure 27, here we see 

that the evanescent effect is far more pronounced when the piezoelectric effect is included in the 

model. It is not until around 3000 Hz that the displacement along the plate begin to approach the input 

displacement and it is not surpassed until around 3800 Hz.  
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Figure 27 Displacement at centerline along length of plate near resonant frequencies for piezoelectric model 

 

There are two additional resonances that have not been included in Figure 25, or any of the 

other results. Their exclusion from the general results will be discussed further in Chapter 4. The 

displacement plots for these two frequencies obtained from COMSOL® have been included in Figure 28 

for completeness. 
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Figure 28 Additional resonant frequencies that have been excluded from overall analysis. Left: 1585Hz Right: 1945Hz 

 

3.4 Discussion 

It is clear from the plots shown in Figure 24 and Figure 25 that including the piezoelectric effect in 

the analysis has a noticeable effect on the displacement pattern generated in the plate as well as on the 

low frequency evanescent cut-off. This occurs due to mechanical inputs applied to the plate generating 

a voltage potential across the two surfaces of the piezoelectric plate, this is known as the forward 

piezoelectric effect. This forward piezoelectric effect in turn induces an additional mechanical response 

in the plate. It is this additional mechanical response that changes the frequency response of the plate 

resulting in the difference between the structural and piezoelectric analysis shown in the previous 

chapters.  

Further the results show that the structural analysis alone is not sufficient as a basis for predicting 

resonant frequencies and therefore maximum voltage generation frequencies of the plate. The 

evanescence of the waves can still be seen at low frequencies and continues to be a problem in terms of 

the potential of this design to generate power at low frequencies. We do see a relatively high output 

voltage at the lower end of the frequency spectrum however this is due to the input displacement which 

inherently causes bending of the plate. While this cannot be dismissed as a valid source of output power 

(m) (m) 
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it is not what we are looking for in this case since this same phenomenon would be seen with a 

cantilever beam which would additionally have a much higher output voltage at its first resonant 

frequency. The evanescent cut-off frequency is seen to be around 3800 Hz or the 6th resonant mode of 

the structure.  
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Chapter 4 Experimental Evaluation of 

Exponentially varying Clamped Piezoelectric 

Energy Harvester 
 

 In order to explore the validity of the theoretical models presented it was necessary to devise a 

method by which an exponentially tapered clamped beam could be tested. In order to do this a 

laminated sheet of PZT5H was purchased from a manufacturer, Piezo Systems, Inc. This is a local vendor 

whose piezoelectric devices have been used previously for research at Tufts University yielding good 

results [36]. An exponential clamping structure was then used to produce the exponentially tapered 

plate. Vibration characterization was carried out using a scanning laser vibrometer setup, which uses a 

laser beam to measure velocity on the plate surface, as well as measurements of PZT voltage output. 

4.1 Piezoelectric Sheet 

The piezoelectric sheet purchased was series poled (see Figure 19) and was 2.2” x 2.85” (55.88mm x 

72.39mm). The thickness of each of the two layers was .005” (0.127mm). This was the largest size sheet 

available from this manufacturer and was chosen in order to get the greatest possible variation from the 

small end of the taper to the large end. The two layers of PZT-5H were fully Nickel-electroded allowing 

for charge collection over the entire surface. On the top surface the positive terminal of the PZT was 

wired by soldering #32 AWG wire to the Nickel-plated surface to obtain voltage measurements. This 

process was performed using special flux from a Solder and Flux kit for use with Nickel-electroded PZT 

purchased from the manufacturer. After electroding the sheet it was painted with a reflective spray 

paint in order to facilitate the reflection of the laser used to gather velocity data throughout the surface 

of the plate. This resulted in a very significant improvement in the signal obtained from the laser 

vibrometer. 
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4.2 Mounting Assembly 

To achieve the clamped boundary condition on three of the four sides while simultaneously creating 

the exponentially varying taper a mounting assembly was designed and built that consisted of two 

plates with an exponentially varying cut-out of the desired shape. Further a 0.01” (0.254mm) deep 

pocket was created in the bottom plate to accommodate the piezoelectric sheet so that it would not be 

compressed by the clamping force applied to keep the plates together during testing. Since the corners 

at the large end of the taper needed to be sharp edges the two plates were machined as two parts each. 

This pocket was created to be 1% larger than the PZT sheet but due to excess laminate being present on 

the sheet when it arrived from the manufacturer it was still necessary to manually file the sheet down to 

fit in the pocket. Figure 29 shows a top view of the bottom plate, while Figure 30 shows a section view in 

which the pocket can be seen.  

The dowel pin holes shown are to keep the two plates aligned during manufacturing and the 

remaining ¼-20 holes are for mounting and clamping the two plates together. These holes were 

positioned in 1” increments so as to match the mounting holes on the vibration table used to isolate the 

device from ambient vibrations.  Each plate is made from 0.125” (3.175mm) thick 80/20 Aluminum, the 

material and thickness were specifically chosen to ensure that there would be no bending in the 

mounting assembly during testing by virtue of the plate thickness being significantly greater than the 

thickness of the piezoelectric plate. This design greatly reduced the cost of the PZT plated used since 

custom milling of PZT by the manufacturer is very expensive; this method allowed the standard square 

sheet to be used without having to have it custom milled. 
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Figure 29 Top view of bottom plate 

 

Figure 30 Section view showing plate cavity 
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Figure 31 Exploded mounting assembly view 

 

 

Figure 32 Mounting assembly with fasteners 
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4.3 Data Acquisition Setup 

The voltage and power response of the device were obtained using a frequency sweep program in 

National Instruments LabVIEW 2009. Input vibration velocity data was obtained using a B&K Type 8001 

impedance head attached to the actuator attachment shown in Figure 31. This is a single direction 

contact accelerometer only capable of measuring accelerations in the z-direction (vertical). Signal 

amplification and preconditioning was required in order to be recorded using the data acquisition 

hardware. This was done using a B&K Type 2635 charge amplifier set to a transducer sensitivity of 

2

pC
3.47

m s
, and output units of 

mV
1000

UnitOut
 with the output units set to 0.01m s . This amplified 

signal was then measured using a National Instruments M Series 6251 PCI DAQ which has an input 

impedance of 10 GΩ in parallel with a 100pF capacitance. CH0 was used to record the impedance signal 

while the voltage output from the PZT was recorded on CH1. Both measurements were made in 

differential mode. 
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Figure 33 Voltage and power data acquisition flow chart 

Additional surface vibration velocity data was also obtained from the plate using a Polytec OFV Fiber 

Interferometer connected to a Polytec OFV 3001 Vibrometer Controller. This device uses a focused laser 

to measure velocity or displacement at any point on the plate. The capabilities of this setup were further 

enhanced by mounting the laser to two linear actuators connected to a Newport ESP300 Universal 

Motion Controller which allows the laser to be moved very precisely within a 50 mm2 area. In 

conjunction with a slot scan program written in National Instruments LabVIEW 2009 this setup was used 

to collect velocity data for multiple frequencies and points on the plate. 

Voltage out of PZT Measured velocity of 

vibration input to plate 

Vibration input 

to plate 
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Figure 34 Laser scan data acquisition flow chart 

 

A secondary B&K Type 2635 charge amplifier was set up to take advantage of the impedance head’s 

ability to collect Force data as well. This amplifier was set to a transducer sensitivity of 
2

pC
3.86

m s
. 

However the manual for the impedance head requires that for force data acquisition the transducer 

sensitivity be
pC

386
N

, since the charge amplifier cannot be set to this value the output units were set to 

be 21m s . Because the charge amplifier was designed for acceleration data acquisition the voltage is 

not integrated when the output units are set to 2m s so this can easily be replaced by N and the 

resulting data scaled to account for the factor of 100 discrepancy in the transducer sensitivity. 

 A LabVIEW script was used to run an Agilent 33220A Function Generator in order to generator 

the desired frequency sweep input for the B&K Type 4809 small vibration exciter. However the signal 

Position of laser head 

Vibration of plate 

Vibration input 

to plate 

Measured 

velocity of 

vibration input 

to plate 
Measured force 

of vibration 

input to plate 
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from the function generator was not sufficient to drive the vibration exciter it was therefore first routed 

through a B&K Type 2706 power amplifier in order to generate a large enough signal. Provided that a 

clean output signal was obtained from the impedance head and the PZT there was no need to measure 

or set the amplification parameters on the power amplifier. The impedance head serves as a 

measurement of the input (velocity and force) vibration levels. 

Since the outputs from each of the devices was a voltage, a conversion factor was required in order 

to calculate the correct values in the desired units, this is shown in Table 5. 

 Conversion Factor 

Impedance Head 
(Velocity) 

V
100

m s
 

Impedance Head 
(Force) 

V
10

N
 

Laser m s
0.005

V
 

Table 5 Table of conversion factors 

 

 

4.4 Experimental Setup 

Beyond mounting the piezoelectric plate in a position that allowed for clamping it as an 

exponentially tapered plate, it was also necessary to mount the assembly in a position where the 

actuator attachment could be mounted, and the mounting assembly would be as rigidly fixed as 

possible. A mounting structure was built using aluminum supports as seen in Figure 35. The height of the 

mounting assembly was adjusted to accommodate the shaker, impedance head and actuator 

attachment beneath it. 
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Figure 35 Experimental setup 1 
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Figure 36 Experimental setup 2 

 During initial testing of the experimental setup it was determined that the gap left to 

accommodate the thickness of the plate did not fully clamp the plate within the mounting assembly. To 

resolve this issue, epoxy was used to fix the plate to the main part of the mounting assembly. The wide 

end of the plate was left free so that the experimental setup only clamped the two exponentially 

tapered sides of the plate.   

 The following experimental trials were run and results will be presented in the following section: 

1. Voltage vs. Frequency 

2. Displacement vs. Frequency at points along centerline 
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3. 2D Displacement scan of entire plate with Input vibration 

4. 2D Displacement scan of entire plate with Input Voltage (electrically driving the PZT) 

5. Power Output vs. Frequency for several load resistance values  

4.5 Results 

This section presents the results obtained for a number of different experimental trials each using all 

or a portion of the overall experimental setup apparatus, where applicable further setup details will are 

provided. For the results showing displacement plots it is important to note that while the goal was to 

obtain plots for the resonant frequencies obtained from simulation a problem with the reflective paint 

used to improve the signal quality from the laser was encountered where the paint began to produce 

bubbles on the surface of the plate which scattered the incoming laser and greatly reduced the returned 

signal. This limited the number of scans that could be preformed and we were forced to use data from 

non-resonant frequencies as our comparison to the simulation results for these plots.  

 

4.5.1 Voltage/Input Acceleration vs. Frequency 

 

The first experiment run was to obtain the voltage frequency response of the device. The results are 

shown in Figure 37 This data was normalized by the input acceleration since the displacement on the 

shaker varied significantly with frequency. This can be seen in Figure 38. 

In the voltage output plot we can clearly see areas of increased output, these are the resonant 

frequencies of the plate and although they do not match the simulation results exactly we can see that 

they are reasonably close. At around 1200 Hz we see a very low output. This is likely an error in the data 

since it is several orders of magnitude lower than any of the other data points and can be ignored. 
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Figure 37 Voltage/Input Acceleration vs. Frequency (Experimental) 
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4.5.2 Displacement vs. Frequency at points along centerline 

 

In order to see how the displacement of the device varied along the plate the next experiment was 

set up using the laser vibrometer to measure the displacement of the plate at five points along the plate 

including one at the input allowing for a comparison between the vibrometer and impedance head 

accelerometer. The displacement data along the plate is shown in Figure 39. Close to x 0in we only the 

effect of the input displacement which is to be expected. As we move along the length of the plate there 

are certain frequencies that induce increased displacement at different locations. This is particularly 

visible at x 1.5in and x 1.0in , which is the effect that we are looking for since we are looking for a 

broadband response. 

 

Figure 39 Displacement vs. Frequency at multiple points along center line 
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In Figure 40 a comparison of the laser data and the impedance head data is shown and we can see that 

they match fairly well except at the low end of the frequency range where the laser data seems to show a 

significantly higher velocity.

 

Figure 40 Comparison of velocity data from laser and Impedance head at x = 0 
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Figure 41 Contour plot of vibration displacement vs. frequency and distance from input at centerline 

 

Finally all of the data is combined in a contour plot showing the log of the displacement along the 

plate for all frequencies. Again we can clearly see that at low frequencies maximum displacement is near 

the input. We also see that as the frequency is increased areas of increased displacement can be seen 

further along the length of the plate, although the maximum displacements are always at low frequency 

regardless of distance from the input. 
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4.5.3 2D Displacement Plots with Input Acceleration 

 

The next set of data utilized the laser along with two linear motors to obtain a two dimensional scan 

of the plate surface showing displacement vibration amplitude for the entire plate at several frequencies. 

Only half of the plate is shown since the range of motion of the linear motor was limited to a 50mm x 

50mm square. However, because the plate is symmetrical only one half is needed to fully define the 

response, similar to what was done in COMSOL®.  The area that was scanned by the laser is shown in 

Figure 42 

 

Figure 42 Area scanned by laser 
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In all cases the white dashed line represents the edge of the plate. These results are shown in Figure 

43 

 

Figure 43 Vibration displacement plot at 100 Hz (Experimental) 
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Figure 44 Vibration displacement plot at 100 Hz COMSOL® 

We can see from Figure 43 the evanescent wave effect as the displacement quickly drop off as 

we move away from the input source. This is mirrored in Figure 44 for the simulation results. Although 

the displacement shape is a good match to the simulation results the magnitude is significantly higher in 

the experimental result though still within an order of magnitude. This could be the result of the 

difference in the apparent resonant frequencies of the plate in reality versus what was obtained from 

COMSOL®. As a result the following sets of results will be compared with the COMSOL® plots for resonant 

frequencies rather than with identical frequency plots. 

 

(m) 
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Figure 45 Vibration displacement plot at 548 Hz (Experimental) 

 



60 
 

 

Figure 46 Vibration displacement plot at 400 Hz from COMSOL® 

In this next set of results (Figure 45 and Figure 46) the displacement plots at two different 

frequencies are compared to show that there is a discrepancy in the simulated resonant frequencies 

versus the experimental results. It can be seen that the displacement plots for these two frequencies are 

very similar in both shape and in magnitude with COMSOL® showing a maximum displacement of 1.9 x 

10-6m and the experimental results being approximately 1.5 x 10-6m. It is not surprising that the resonant 

frequencies do not match exactly since not all the material properties are precisely know, and the 

clamping structure is not perfectly rigid. However, the frequency is not far off and the displacement 

pattern and amplitude are well matched. 

(m) 
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Figure 47 Vibration displacement plot at 1282 Hz (Experimental) 
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Figure 48 Vibration displacement plot at 1282 Hz COMSOL® 

 

Figure 48 shows the displacement plot at 1282Hz obtained from COMSOL®. We can see that now 

the displacement plot begins to differ significantly from the experimental results for the same frequency. 

This could be partially due to the shift in resonant frequencies that is indicated by the results shown in 

Figure 46 and Figure 45. However it is likely also the result of energy propagating through the mounting 

assembly itself and therefore being transferred to the plate through the sides rather than strictly at the 

input as assumed by the simulation results. 

(m) 
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Figure 49 Vibration displacement plot at 3000 Hz (Experimental) 
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Figure 50 Vibration displacement plot at 3000 Hz COMSOL® 

Figure 49 and Figure 50 further emphasize the different in the simulation and experimental results, it 

seems that as the frequency increases the similarities between the plots decreases. The next set of plot 

aims to show that this is in fact largely due to issues with directing the energy at the input through only 

the plate rather than the mounting assembly. To do this we took advantage of the converse effect and 

applying a voltage to the plate and plotting the displacement compared to the same setup run in 

simulation. This should be less affected by non-ideal mechanical boundary conditions. 

 

 

 

(m) 
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4.5.4 2D Displacement Plots with Input Voltage 

 

Due to the evanescence issues when the plate was excited by a mechanical input and the 

dissimilarities between the displacement plots obtained at higher frequencies for the experimental and 

simulation results, it was decided to measure the displacement response of the plate to an alternating 

voltage input applied to the PZT. This makes use of the converse effect, to verify that the difference in 

response could be the result of energy propagation through the mounting assembly. To do this, the 

Agilent signal generator was simply connected directly to the plate using the two wires on either side of 

the plate, replacing the shaker and power amplifier, as shown in Figure 51. 

 

Figure 51 Applied Voltage Data Acquisition flow diagram 

These results provide another source of comparison to the COMSOL® model while limiting 

influence from vibrations that may be introduced from the actuator to the mounting assembly. 

Position of laser head 

Vibration of plate 

Voltage input to plate 
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Figure 52 Vibration displacement plot at 100Hz (Experimental) for voltage input 

  

Figure 53 Vibration displacement plot at 100 Hz (COMSOL®) for voltage input 

(m) 
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Figure 52 and Figure 53 compare the low frequency response of the plate. We can see that there 

is some similarity between the simulation and experimental results. The maximum displacement is now 

at the wide end of the beam for low frequencies, as we would expect. 

 

Figure 54 Vibration displacement plot at 548Hz (Experimental) for voltage input 
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Figure 55 Vibration displacement plot at 548Hz (COMSOL®) for voltage input 

 

In Figure 54 and Figure 55 we increase the frequency and again note that the plate is performing 

as we would expect with the maximum displacement moving towards the narrow end of the plate. There 

is still a discrepancy in the exact shape of the response which may be due to simplifications in the 

simulation model or there may still be some transfer of energy to the surrounding mounting assembly. 

(m) 
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Figure 56 Vibration displacement plot at 1282Hz (Experimental) for voltage input 

 

Figure 57 Vibration displacement plot at 1282Hz (COMSOL®) for voltage input 

(m) 
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Interestingly, as the frequency of the applied voltage is increased the response seen in the 

experiment seem to align better with the simulation plots. This is most pronounced in Figure 56 and 

Figure 57. Once again it should be noted that the area of maximum displacement is moving towards the 

narrow end of the plate. 

 

Figure 58 Vibration displacement plot at 3000Hz (Experimental) for voltage input 
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Figure 59 Vibration displacement plot at 3000Hz (COMSOL®) for voltage input  

 

At 3000 Hz 

Figure 58 and Figure 59) we again see very good correlation between the shape of the displacement 

plots and once again the area of maximum displacement has moved further towards the narrow end of 

the plate. This is a good indication that the underlying theory that the exponentially varying shape of the 

plate could be used as predicted provided that the material properties of the plate and/or the mounting 

assembly is altered to prevent the presence of evanescent waves at the input. 

 

(m) 
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4.5.5 Power Output vs. Frequency and load resistance 

 

The results shown in Figure 60 show the power output from the device as it was driven by the 

actuator for a number of different resistance values. Recall from Figure 21 that the load impedance is 

important when considering power output. There will be some optimal impedance which will lead to 

maximum delivered electrical power for a given vibration level. The maximum power obtained for each 

resistor is shown in Table 6. 
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Resistor Value (Ω) Maximum Power (µW) Frequency (Hz) 

2.1 0.002 148 

22.5 0.064 154 

47 0.136 153 

68.1 0.197 153 

99.5 0.289 150 

218 0.631 151 

328 0.946 153 

466 1.332 154 

673 1.883 152 

991 2.472 152 

2160 4.489 142 

4610 6.334 129 

6800 3.432 132 

11800 3.086 125 
Table 6 Table of power outputs for low frequencies 

 The same experiment was also run at higher frequencies and the results can be seen in Figure 63. 

These results are less influenced by the direct actuator input but the power generated is also far less than 

at lower frequencies where the displacement is higher and is mostly due to the direct input displacement 

rather than any resonance in the system. 

 On the next pages the output power is plotted for the three frequencies at which the output 

power was at a maximum besides the very low frequency response. These are included to show that 

although we did not get large displacement of the plate at these frequencies we can still see increases in 

power output corresponding to the resonant frequencies of the plate. 
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Resistor Value (Ω) Maximum Power (µW) Frequency (Hz) 

11 0.0387 3357 

44 0.1737 3357 

99.6 0.2767 3357 

467 0.1857 3357 

990 0.0988 3357 

4600 0.0223 3357 

11600 0.0089 3357 

37100 0.0028 3357 

63000 0.0017 3357 

94000 0.0011 3357 
Table 7 Table of power output for high frequencies 

 Table 7 shows the maximum output power for each of the resistor values tested, the maximum 

value overall is highlighted. The maximum values for power outputs shown in Figure 61 and Figure 62 

have not been put into table form because it can clearly be seen that these are several orders of 

magnitude lower, than that obtained at 3357 Hz. 

 

4.6  Discussion 

 There are a number of points to discuss related to the experimental results compared to the 

predicted results from simulation. The first comparison is between the voltage frequency response 

obtained from COMSOL® and the experimental results.  In the simulation results a number of clear 

resonant peaks are seen in the voltage response plot. In the experimental results we see a reasonable 

match at frequencies below 500Hz in terms of the shape of the curve but the magnitudes of the 

experimental results is significantly lower. This difference could be attributed to losses incurred due to 

damping, which was not included in the simulation, and to vibrations transmitted to the mounting 

assembly and the mounting structure, which were observed to vibrate noticeably at all frequencies. At 

the lower frequencies it is likely that this had a slight effect on the location of the peak voltages 

observed. However, at higher frequencies it seems likely that the vibration modes of the plate mounting 

and structural assemblies interfered with the natural modes of the plate itself, as energy was transmitted 
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around the plate and not just through the actuator as intended. A contributing factor is the epoxy used to 

affix the PZT plate to the mounting assembly. This modified the boundary condition so that a fixed rigid 

condition may not represent an accurate model of the experimental setup. 

 There are still peaks that can be observed in the experimental data, although they are not as 

clear as in the simulation results. These can be seen just before 3000Hz, 2500Hz, 2000Hz, 1500Hz. In 

addition, between about 700Hz and 1100Hz we see a range in which the voltage output remains 

relatively constant. (Figure 37) 

Next we have the single point laser data results which give an indication of how the displacement 

of the plate varies along the center line of the plate as we move further from the input over a range of 

frequencies. When comparing this to the laser scan data we would expect to see a correlation between 

the two along the far right side of the laser scan plots. It is important to keep in mind that laser scan data 

does not include the input location, again this is due to limitations on the range of the linear motors as 

discussed earlier. When comparing the two sets of data the contour plot generated from the single point 

data should be compared at around 5mm. As one would expect the correlation between these results is 

very good. 

The laser scan data should then be compared to the simulation results for the same frequencies. 

Again we see that there is a discrepancy between the displacement pattern obtained from simulation and 

those from the experimental results. This variation can be reasonable expected from the voltage 

frequency response and occurs for the same reasons.  

 Additionally it should be noted that the laser scan results do not, for the most part, correspond to 

the peaks observed in the voltage frequency response graph. The reason for this is a problem that was 

encountered with the reflective spray paint applied to the PZT plate to obtain a better signal from the 

laser. This was done after obtaining poor reflection results using just the plain PZT. However, after 
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several scans were done consisting of several thousands of repetitions, the spray paint layer began to 

separate from the PZT plate, forming small bubbles which tended to scatter the incoming laser resulting 

in very poor results in the later runs. These runs have been omitted because they provided no useable 

data and unfortunately included these optimum frequencies. Therefore the early scans which produced 

the best results have been presented and still serve to show the evanescent properties of the plate at low 

frequencies and also a reasonable approximation of the simulation results at these same frequencies. 

 Laser scan results obtained for the input voltage case appear to provide a closer match to the 

simulation data. This result is not entirely unexpected since this setup eliminates vibrations that are 

entering the plate from the sides after travelling around the mounting assembly as well as the 

evanescence of the plate shape. This again suggests that there are non-ideal conditions, such as 

unintended energy transfer through the mounting assembly and vibration modes that may be introduced 

by the overall structural assembly when excited by an input displacement. 

The results that have been shown are all based on applying an input displacement at the narrow 

end of the device. This was done since the model used is the cochlear and there the input is applied at 

the input. However given the evanescent effect seen when applying an input at the narrow end one 

further simulation was performed showing the displacement pattern at resonant frequencies when the 

device is drive from the wide end. The results are shown in Figure 64. The results show that when driving 

the device from the narrow end we can reduce the low frequency evanescent cut-off to below 1000 Hz. 

Had additional time been available it would have been interesting to further pursue this alternate 

configuration. This would require a new mounting assembly to be created to accommodate the actuator 

attachment at the wide end of the device. 
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Figure 64 Displacement pattern when driven from wide end 

 

 The power output data was obtained for a wider range of frequencies than has been presented in 

the results section. These were split into four separate plots based on the large difference in magnitude 

of the resulting power output. As can be seen from the initial voltage frequency response, the voltage 

output at low frequencies due entirely to the direct input displacement is larger than that at higher 

frequencies. It is however interesting to note that the next best frequency in terms of power output is 

approximately 3357Hz. The power output plots shown can clearly been seen to correspond to the peaks 

in the voltage frequency response graph and confirm that the results obtained are consistent although 

they do not match the predicted simulation results particularly well. It could be that this is nearing the 
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frequencies at which the evanescent effect begins to lessen although the effect of vibrations transmitted 

through the mounting assembly at higher frequencies did not allow for higher frequencies to be 

investigated. 

 The maximum power generated from the plate at the frequencies investigated was 6.34 µW 

which is quite low for a plate of this size although this is not unreasonable as the displacements 

throughout most of the plate were also quite low. Suggesting that using a clamped plate in this 

configuration may not be ideal as a vibration energy harvester device. Table 8 shows a comparison of 

power outputs achieved by others using a variety of device structures. 

Author General shape Volume  Power Normalized Power 

R. Aryanpur and R. 

White [36] 

Two bimorph 

cantilever beams 

0.153 cm3 0.213 mW/g2 

@39kΩ & 20 Hz, 

not rectified 

1.38 mW/g2/cm3 

Kim et al [17] Cymbal 0.661 cm3 0.124 mW/g2 @ 

400kΩ & 100Hz, 

not rectified  

59 mW/g2/cm3 

S. Roundy and P.K 

Wright [3] 

Bimorph cantilever 

beam with tip 

mass 

0.023 cm3 0.06 mW/g2 @ 120 

Hz, rectified 

5.8 mW/g2/cm3 

M. Reske-Nielsen 

and R. White 2012 

Exponentially 

tapered bimorph 

plate 

0.436 cm3  

 

1.09 µW/g2 @ 

4.6kΩ & 129 Hz, 

not rectified 

2.5 µW/g2/cm3 

Table 8 Power output comparison to piezoelectric energy harvesters in literature
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Chapter 5 Conclusions and Future Work 
 

5.1  Conclusions 

In this thesis an exponentially tapered piezoelectric plate was investigated as a potential new design 

for use as a broad spectrum vibration energy harvester. First a structural model was developed for the 

tapered plate and compared with a structural FEA analysis of the device. It was determined that the 

frequencies under investigation produced evanescent waves in the device and the desired frequency 

response was not being generated due to this effect. This cut-off frequency was determined to be around 

1500 Hz in the structural analysis which corresponds to the 3rd resonant mode of the plate. 

Next the FEA analysis was repeated, this time including the piezoelectric effect, it was shown that the 

introduction of the piezoelectric effect has a significant effect on the evanescent cut-off frequency. The 

evanescent cut-off frequency was shown to have shifted to be around 3800 Hz which corresponds to 

the7th resonant mode of the plate. This is a significant difference in the response of the plate and has 

important implications for future work. The piezoelectric effect cannot be omitted during optimization of 

the plate shape and material properties even though this will lead to a significant increase in the time 

required to run FEA analysis or other optimization routines. 

The experimental portion of the thesis describes the mounting system used to test the real response 

of an exponentially tapered piezoelectric plate. This was achieved by machining two exponentially 

tapered clamping plates into which the square PZT sheet could be mounted and clamped to mimic the 

fixed exponentially tapered sides. This setup proved to function well and the experimental results 

provided a good match to the piezoelectric FEA results obtained and showed the evanescence seen in 

simulation. Furthermore, we were able to show that the frequency response of the exponentially tapered 
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plate will produce the desired displacement pattern when a sinusoidal voltage is applied. Therefore, if 

the energy transmitted through the mounting assembly can be limited by using a thinner, less stiff 

piezoelectric material, damping the mounting assembly's connection to the mounting structure or by 

increasing the stiffness of the mounting assembly plates it should be possible to apply an input 

displacement and harvest energy and a number of different frequencies using this type of structure. 

As dictated by the presence of the low-frequency evanescent cut-off the power generated by the 

device was quite low, the peak being 2.5 µW/g2/cm3. However the full potential of the design was not 

seen, primarily due to the evanescent coupling, and it is still reasonable to assume that it might be 

possible to use the exponentially tapered shape to generate a cochlea like frequency response in a 

piezoelectric vibration energy harvester, particularly with the inclusion of a fluid to act as second coupling 

medium analogous to the cochlear fluid. This is absolutely critical in order to avoid the evanescent cut-off 

that was the primary feature of the system investigated here. 

5.2 Remaining Issues and Future Works 

While the results generated did not provide a better alternative to existing piezoelectric energy 

harvesters, this is only the first case of experimentation with exponentially tapered plates for this 

application. It would be useful to develop a mathematical model for predicting the evanescent cut-off 

frequency for an exponentially tapered plate of varying dimension. Then it would be possible to predict 

the exact size and thickness required in order to fully investigate whether a cochlea like frequency 

response is achievable in a vibration energy harvester. Another possibility is to change the input method. 

In this work the application of force to the plate was greatly simplified from what happens in the cochlea. 

There the energy is first transmitted to a fluid filled chamber and the energy is then transferred from the 

fluid to the basilar membrane, again this might achievable using piezopolymer if the device can be made 

significantly thinner and a fluid chamber or analogous structure must be included. 
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In a case where fluid coupling was included it might be possible to use this type of device on a train 

where the vibrations during movement of the train would vary significantly and a narrow band energy 

harvester would largely go unused. One possible configuration of such a device would be an 

exponentially tapered plate fixed inside of a fluid chamber. The housing of the device would be mounted 

on damped supports and a rigid support would be fixed at the input to the device. The damped supports 

would serve to keep the device itself stationary while a rigid input displaced only the input area, 

equivalent to the stapes in the in the cochlear. In this way different frequencies of ambient vibrations 

would cause maximum displacements at different distances along the length of the tapered plate and 

allow for wider band energy harvesting than would be possible using a cantilever device. 

A large area PZT plate such as the one used should be capable of generating a large amount of power 

and if the right design can be found it could provide a method to obtain useful amounts of power from a 

wide range of ambient frequencies rather than simply being tuned to a single frequency as is so often the 

case with vibration energy harvesters. 

The experimental work generally validated the modeling approaches, although some additional work 

on boundary conditions may be needed. Furthermore given the results obtained from simulation when 

the device was driven at the wide end (Figure 64), it would be interesting to recreate the experiments for 

this configuration. 
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Appendix A  MATLAB Code 
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A.I Finite Difference Solution 

Contents 

 Plots frequency response for 4th order lateral beam vibration equation 

 Clear Screens 

 Define constants and global variables 

 Run bvp4c function to numerically solve differential equation 

 Format results for plotting 

 Plot Results 

 Set up differential equation 

 Set Boundary Conditions 

Plots frequency response for 4th order lateral beam vibration equation 

Note: omega has been defined as global in built-in bvp4c function 

function FiniteDifference 

Clear Screens 

clc 

close all 

Define constants and global variables 

global omega rho nu E b0 bf alpha L1 P ma h 

rho = 7800; %Density (kg/m^3) 

nu = .33; %Poisson's ratio 

E = 6.2E10; %Young's Modulus (N/m^2) 

b0 = 9.4e-3; %Initial Width (m) 

bf = 71.12e-3; %Final Width (m) 

h = .254e-3; %Thickness (m) 

L1 = 55.88e-3; %Beam leangth (m) 

alpha = (1/L1)*log(bf/b0); %Variation factor 

ma = rho*h; %Mass per unit area (kg/m^2) 

P = 1e-5; %Displacement (m) 

Freq = 100; %Frequency (Hz) 

omega = 2*pi*Freq; %Frequency (rad/s) 

Run bvp4c function to numerically solve differential equation 

X = linspace(0,L1,500); 

options = bvpset('Stats','off'); 

solinit = bvpinit(X,[1 0 0 0]); 

sol = bvp4c(@ODEFUN,@BCFUN,solinit,options); 

x_i = 1;  
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Format results for plotting 

NumIncrement = size(sol.y(1,:),2); 

newX = linspace(0,L1,NumIncrement); 

b_i = 1; 

for x = newX 

    bx(b_i) = b0*exp(alpha*x); 

    b_i = b_i + 1; 

end 

for x = newX 

    y_i = 1; 

    for y = linspace(-bf/2,bf/2,NumIncrement); 

        if (y < (0 - bx(x_i)/2)) || (y > bx(x_i)/2) 

            psi(y_i,x_i) = 0; 

            a = 0; 

        else 

            psi(y_i,x_i) = cos(pi*y/bx(x_i)); 

            b = 0; 

        end 

        y_i = y_i + 1; 

    end 

    x_i = x_i + 1; 

end 

u_i = 1; 

for u = sol.y(1,:) 

    Mat(:,u_i) = psi(:,u_i)*sol.y(1,u_i); 

    u_i = u_i + 1; 

end 

Plot Results 

newY = linspace(-bf/2,bf/2,NumIncrement); 

figure 

mesh(newX,newY,Mat) 

figure 

plot(linspace(0,L1,size(sol.y(1,:),2)),sol.y(1,:)) 

end 
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Set up differential equation 

Converts fourth order vibration equation to four first order equations 

function dudx = ODEFUN(x,u,omega) 

global omega rho nu E b0 bf alpha L1 P ma h 

% Define exponential variation 

b = b0*exp(alpha*x); 

psi1 = 3*b/8; %2*b/pi; 

psi2 = pi^2/(2*b); %-pi*2/(b); 

psi3 = 2*pi^4/(b^3); %(2*pi^3)/b^3; 

psi4 = psi1; 

D = (h^3*E)/(12*(1 - nu^2)); 

beta = (ma*omega^2*psi4)/D; 

%Convert fourth order differential equation to 4 first order equations 

    dudx = [u(2) 

        u(3) 

        u(4) 

        (2*psi2*u(2) + (psi3 - beta)*u(1))/psi1 

        ]; 

end 

Set Boundary Conditions 

function res = BCFUN(ua,ub) 

%Defines boundary conditions for fourth order vibration equation 

%Fixed-Free 

global omega rho nu E b0 bf alpha L1 P 

%Define boundary conditions 

res = [ua(1)-P 

       ua(2) 

       ub(1) 

       ub(2) 

       ]; 

end 
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A.II Voltage/Input Acceleration vs. Frequency 

Contents 

 Clear Screens 

 Load Data 

 Define constants 

 Define Variables 

 Voltage plot 

 Acceleration, Velocity and Displacement plots 

Clear Screens 

clc 

close all 

Load Data 

load Volt1.txt 

load Volt2.txt 

Define constants 

VelFactor = 100; %(V/m/s) 

Define Variables 

freq = Volt2(:,1); %(Hz) 

Voltage = Volt2(:,4); %(V) 

Velocity = Volt2(:,5)./VelFactor; %Convert voltage signal to velocity (m/s) 

Accel = Velocity.*freq; %Convert velocity to acceleration (m/s^2) 

Disp = Velocity./freq; %Convert velocity to displacement (m) 

Voltage plot 

figure 

plot(freq,20*log(Voltage./Accel),'b','LineWidth',4) 

axis([100 3200 -200 -40]) 

title('Voltage/Input Acceleration vs Frequency (Experimental)') 

xlabel('Frequency (Hz)') 

ylabel('Voltage/Input Acceleration vs Frequency (dB V/m/s^2)') 
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Acceleration, Velocity and Displacement plots 

figure 

subplot(3,1,1) 

plot(freq,Accel,'r','LineWidth',2) 

axis([100 3200 0 3]) 

title('Input Acceleration vs. Frequency (Experimental)') 

xlabel('Frequency (Hz)') 

ylabel('Input Acceleration (m/s^2)') 

 

subplot(3,1,2) 

plot(freq,Velocity,'c','LineWidth',2) 

axis([100 3200 0 0.02]) 

title('Input Velocity vs. Frequency (Experimental)') 

xlabel('Frequency (Hz)') 

ylabel('Input Velocity (m)') 

 

subplot(3,1,3) 

semilogy(freq,Disp,'g','LineWidth',2) 

axis([100 3200 10e-9 10e-4]) 

title('Input Displacement vs. Frequency (Experimental)') 

xlabel('Frequency (Hz)') 

ylabel('Input Displacement (m)') 
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A.III Displacement and Acceleration Plots 

Contents 

 Clear Screens 

 Define constants 

 Load data and define variables 

 Smooth data and remove noise 

 Plot Displacement 

 Create Contour Plot 

% Loads and plots center line displacements at various distances from input 

Clear Screens 

clc 

close all 

Define constants 

numData = 5; 

VelFactor = 100; %(V/m/s) 

LaserFactor = 5e-3; %(m/s/V) 

filename_base = 'L'; 

filename_ext = '.txt'; 

Distance = [0 .25 1 1.5 2]; 

endplot = 2080; 

distconv = 0.0254; %Convert inches (in) to meters (m) 

Load data and define variables 

for cnt = 1:numData 

    L = load([filename_base num2str(cnt) filename_ext]); 

    freq = L(:,1); 

    VelLaser(:,cnt) = L(:,4).*LaserFactor; %Converts laser data to velocity 

(m/s) 

    VelInput(:,cnt) = L(:,5)./VelFactor; %Converts impedance head data to 

velocity (m/s) 

    DispLaser(:,cnt) = VelLaser(:,cnt)./freq; %Converts laser velocity to 

displacement (m) 

    DispInput(:,cnt) = VelInput(:,cnt)./freq; %Converts impedance head 

velocity to displacement (m) 

end 
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Smooth data and remove noise 

windowSize = 100; 

SMD1 = filter(ones(1,windowSize)/windowSize,1,DispLaser(:,1)); 

SMD2 = filter(ones(1,windowSize)/windowSize,1,DispLaser(:,2)); 

SMD3 = filter(ones(1,windowSize)/windowSize,1,DispLaser(:,3)); 

SMD4 = filter(ones(1,windowSize)/windowSize,1,DispLaser(:,4)); 

SMD5 = filter(ones(1,windowSize)/windowSize,1,DispLaser(:,5)); 

Plot Displacement 

Create single plot showing frequency response at each distance 

figure 

semilogy(freq,SMD1,'b') 

title('Displacement vs. Frequency at multiple points') 

xlabel('Frequency (Hz)') 

ylabel('Displacement (m)') 

hold on 

axis([100 3200 0 3e-4]) 

semilogy(freq,SMD2,'r') 

semilogy(freq,SMD3,'c') 

semilogy(freq,SMD4,'m') 

semilogy(freq,SMD5,'g') 

legend('x = 0in','x = 0.25in','x = 1.0in','x = 1.5in','x = 2in') 

Create Contour Plot 

Combine data and create contour plot 

z = 

cat(2,SMD1([1:endplot]),SMD2([1:endplot]),SMD3([1:endplot]),SMD4([1:endplo

t]),SMD5([1:endplot])); 

figure 

[C,h] = contourf(Distance*distconv,freq(1:endplot),log10(z),50); 

axis([(-.1)*distconv 2.1*distconv 100 3200]) 

title('2D Displacement plot as function of Distance from input and 

frequency (log (m))') 

xlabel('Distance from input (in)') 

ylabel('Frequency') 

colorbar 
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A.IV 2D plots of displacement obtained from laser scan for Input Acceleration 

 

Contents 

 Clear Screens 

 Define Constants 

 Load Data 

 Format Data for plotting 

 Make Plots 

 Automatically Save Figures 

% Loads and plots laser scan data 

Clear Screens 

clc 

close all 

Define Constants 

velSF=5e-3;  %Laser scale factor (mm/s/V) 

%micSF= 1;%4.19e-3; %Mic scale factor (V/m/s) 

numXsteps=50;  %Number of positions 

numYsteps=50; %Number of positions across 

thresh=-1; %Throw out data for signal level less than this value (V) 

filename_base='Disp1_'; 

filename_end='.txt'; 

max_position=0;  %This is the position when X=0 (mm) Plotted position is 

max_position-X 

X=zeros(numXsteps+1,numYsteps+1); 

Y=zeros(numXsteps+1,numYsteps+1); 

S=load([filename_base '0_0' filename_end]); 

numfreqs=size(S,1); %Number of frequencies run 

%Define data matrices to improve performance 

f=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

rms0=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

rms1=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

deg=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

siglev=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 
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Load Data 

for cnt=1:numXsteps 

    for cnt2=1:numYsteps 

        S=load([filename_base num2str(cnt-1) '_' num2str(cnt2-1) 

filename_end]); 

        f(:,cnt,cnt2)=S(:,1); 

        rms0(:,cnt,cnt2)=S(:,2);  %Now in m/s 

        rms1(:,cnt,cnt2)=S(:,3)*velSF; %Now in m/s 

        deg(:,cnt,cnt2)=S(:,4)*180/pi; 

        X(cnt,cnt2)=mean(S(:,5)); %max_position-mean(S(:,5)); 

        Y(cnt,cnt2)=mean(S(:,6)); 

        siglev(:,cnt,cnt2)=S(:,7); 

    end 

end 

Format Data for plotting 

%Put in a dummy line of data at the edge so it plots all the data instead 

%of N-1 (Matlab pcolor faceted command) 

cnt=numXsteps+1; 

for cnt2=1:numYsteps 

    X(cnt,cnt2)=2*X(cnt-1,cnt2)-X(cnt-2,cnt2); 

    Y(cnt,cnt2)=2*Y(cnt-1,cnt2)-Y(cnt-2,cnt2); 

end 

cnt2=numYsteps+1; 

for cnt=1:numXsteps 

    X(cnt,cnt2)=2*X(cnt,cnt2-1)-X(cnt,cnt2-2); 

    Y(cnt,cnt2)=2*Y(cnt,cnt2-1)-Y(cnt,cnt2-2); 

end 

cnt=numXsteps+1; 

cnt2=numYsteps+1; 

X(cnt,cnt2)=2*X(cnt-1,cnt2-1)-X(cnt-2,cnt2-2); 

Y(cnt,cnt2)=2*Y(cnt-1,cnt2-1)-Y(cnt-2,cnt2-2); 

%Throw out bad data: 

rms1(siglev<thresh)=NaN; 

%Complex ratios: 

velperPa=((rms1)./(rms0)).*exp(1j*deg*pi/180); %m/s 

for cnt1=1:numfreqs 

    for cnt2=2:numXsteps-1 

        for cnt3=2:numYsteps-1 

            if isnan(rms1(cnt1,cnt2,cnt3)) 

                

velperPa(cnt1,cnt2,cnt3)=mean([squeeze(velperPa(cnt1,[cnt2-1 

cnt2+1],cnt3)) squeeze(velperPa(cnt1,cnt2,[cnt3-1 cnt3+1]))']); 

            end 

        end 

    end 

end 

dispperPa=velperPa./(1j*f*2*pi); %m 
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Make Plots 

%Displacement: 

for cnt=1:numfreqs 

    h(cnt)=figure; 

    set(gca,'Linewidth',2,'fontsize',12,'fontweight','bold') 

    mag=squeeze(abs(dispperPa(cnt,:,:))); 

    pcolor(X,Y,mag) 

    title([num2str(round(f(cnt,1,1))) ' Hz, m']) 

    ylabel('Position (mm)') 

    xlabel('Position (mm)') 

    colorbar 

end 

Automatically Save Figures 

%Save figures if you want: 

for cnt=1:numfreqs 

    figure(h(cnt)) 

    fname=[filename_base 'Mag' num2str(round(f(cnt,1,1))) 'Hz']; 

    saveas(gcf,fname,'png') 

    saveas(gcf,fname,'fig') 

end 
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A.V 2D plots of displacement obtained from laser scan for Input Voltage 

 

Contents 

 Define Constants 

 Load Data 

 Format Data for Plotting 

 Make Plots 

 Automatically Save Figures 

% Loads and plots laser scan data 

clc 

close all 

Define Constants 

velSF=5e-3;  %Laser scale factor (mm/s/V) 

numXsteps=50;  %Number of positions 

numYsteps=50; %Number of positions across 

thresh=-1; %Throw out data for signal level less than this value (V) 

filename_base='Half1_'; 

filename_end='.txt'; 

max_position=0;  %This is the position when X=0 (mm) Plotted position is 

max_position-X 

X=zeros(numXsteps+1,numYsteps+1); 

Y=zeros(numXsteps+1,numYsteps+1); 

S=load([filename_base '0_0' filename_end]); 

numfreqs=size(S,1); %Number of frequencies run 

%Define data matrices to improve performance 

f=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

rms0=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

rms1=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

deg=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 

siglev=zeros(numfreqs,numXsteps+1,numYsteps+1)*NaN; 
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Load Data 

for cnt=1:numXsteps 

    for cnt2=1:numYsteps 

 

        S=load([filename_base num2str(cnt-1) '_' num2str(cnt2-1) 

filename_end]); 

        f(:,cnt,cnt2)=S(:,1); 

        rms0(:,cnt,cnt2)=S(:,2);  %Now in m/s 

        rms1(:,cnt,cnt2)=S(:,3)*velSF; %Now in m/s 

        deg(:,cnt,cnt2)=S(:,4)*180/pi; 

        X(cnt,cnt2)=mean(S(:,5)); %max_position-mean(S(:,5)); 

        Y(cnt,cnt2)=mean(S(:,6)); 

        siglev(:,cnt,cnt2)=S(:,7); 

    end 

end 

Format Data for Plotting 

%Put in a dummy line of data at the edge so it plots all the data instead 

%of N-1 (Matlab pcolor faceted command) 

cnt=numXsteps+1; 

for cnt2=1:numYsteps 

    X(cnt,cnt2)=2*X(cnt-1,cnt2)-X(cnt-2,cnt2); 

    Y(cnt,cnt2)=2*Y(cnt-1,cnt2)-Y(cnt-2,cnt2); 

end 

cnt2=numYsteps+1; 

for cnt=1:numXsteps 

    X(cnt,cnt2)=2*X(cnt,cnt2-1)-X(cnt,cnt2-2); 

    Y(cnt,cnt2)=2*Y(cnt,cnt2-1)-Y(cnt,cnt2-2); 

end 

cnt=numXsteps+1; 

cnt2=numYsteps+1; 

X(cnt,cnt2)=2*X(cnt-1,cnt2-1)-X(cnt-2,cnt2-2); 

Y(cnt,cnt2)=2*Y(cnt-1,cnt2-1)-Y(cnt-2,cnt2-2); 

%Throw out bad data: 

rms1(siglev<thresh)=NaN; 

%Complex ratios: 

velperPa=((rms1)./(rms0)).*exp(1j*deg*pi/180); %m/s 

for cnt1=1:numfreqs 

    for cnt2=2:numXsteps-1 

        for cnt3=2:numYsteps-1 

            if isnan(rms1(cnt1,cnt2,cnt3)) 

                

velperPa(cnt1,cnt2,cnt3)=mean([squeeze(velperPa(cnt1,[cnt2-1 

cnt2+1],cnt3)) squeeze(velperPa(cnt1,cnt2,[cnt3-1 cnt3+1]))']); 

            end 

        end 

    end 

end 

dispperPa=velperPa./(1j*f*2*pi); %m 
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Make Plots 

%Displacement: 

for cnt=1:numfreqs 

    h(cnt)=figure; 

    set(gca,'Linewidth',2,'fontsize',12,'fontweight','bold') 

    mag=squeeze(abs(dispperPa(cnt,:,:))); 

    pcolor(X,Y,mag) 

    title([num2str(round(f(cnt,1,1))) ' Hz, m/V']) 

    ylabel('Position (mm)') 

    xlabel('Position (mm)') 

    colorbar 

end 

Automatically Save Figures 

%Save figures if you want: 

for cnt=1:numfreqs 

    figure(h(cnt)) 

    fname=[filename_base 'Mag' num2str(round(f(cnt,1,1))) 'Hz']; 

    saveas(gcf,fname,'png') 

    saveas(gcf,fname,'fig') 

end  
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A.VI Power Output 

Contents 

 Clear Screens 

 Define Constants 

 Load Data 

 Create Contour Plot 

 Find Parameters at Max 

% Loads data and creates contour plot of maximum output power 

Clear Screens 

clc 

close all 

Define Constants 

numData = 14; 

filename_base = 'Run'; 

filename_ext = '.txt'; 

Resist = [2.1 22.5 47 68.1 99.5 218 328 466 673 991 2160 4610 6800 11800]; 

Load Data 

for cnt = 1:numData 

    L = load([filename_base num2str(cnt) filename_ext]); 

    freq = L(:,1); 

    VoltOut(:,cnt) = L(:,5); %Output Voltage (V) 

    PowerOut(:,cnt) = VoltOut(:,cnt).^2./Resist(cnt); 

end 
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Create Contour Plot 

figure 

[C,h] = contourf(log10(Resist),freq,PowerOut,50); 

title('Power Output (W)') 

xlabel('Log of Resistance') 

ylabel('Frequency (Hz)') 

colormap('default') 

colorbar 

axis([1.5 log10(max(Resist)) 100 280]) 

Find Parameters at Max 

Find Maximum output power and corresponding resister and frequency values 

[Val MaxRow] = max(PowerOut); 

[MaxPower MaxCol] = max(Val); 

MaxResist = Resist(MaxCol) 

MaxFreq = freq(MaxRow(MaxCol),1) 

MaxPower 
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