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ON FINITE ELEMENT DOMAIN IMBEDDING METHODS*

CHRISTOPH B(RGERS AND OLOF B. WIDLUND$

Abstract. Finite element domain imbedding methods for the Helmholtz equation with Neu-
mann and Dirichlet boundary conditions on nonrectangular domains in two space dimensions are
considered. A survey and comparison of known methods are given, and a number of improvements
suggested. Results of numerical experiments are also presented.
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1. Introduction. Domain imbedding methods are solvers of elliptic equations
constructed in the following way. To solve an elliptic boundary value problem on a
general bounded domain f in two or three space dimensions, an auxiliary boundary
value problem is chosen on a larger, but simpler domain. A fast solver for the auxiliary
problem is then used to construct a preconditioner for the original problem.

Methods of this kind are often called capacitance matrix methods in the West and
fictitious domain methods in the Soviet Union. They have been studied extensively;
see, for example, [1], [2], [6], [9], [10], [13]-[19]. A remarkably efficient multigrid-
based domain imbedding method, quite different from the ones considered here, has
also been proposed by Dendy in [8].

In this paper, we shall study imbedding methods for Neumann and Dirichlet
problems for the Helmholtz equation on bounded domains f in the plane, using finite
element discretizations. The region f is imbedded in a sufficiently large rectangle in
such a way that does not intersect the boundary of the rectangle. For simplicity,
we shall always assume that this rectangle is the unit square (0, 1) 2.

The methods considered require triangulations of a special kind. In particular the
vertices of the triangles should lie on a logically rectangular mesh. We outline such a
triangulation algorithm in 3. Details can be found in [3] and [4].

An efficient iterative finite element imbedding method was introduced for the
Neumann problem by Proskurowski and Widlund [17]. In each iteration, an auxiliary
boundary value problem is solved on (0, 1) 2. In 4 of this paper, we study the best
choice of boundary values on 0(0, 1) 2 and the effect of using an inexact solver for the
problem on the rectangle.

In 5, we consider an analogous method for the Dirichlet problem. In contrast
with the method of 4, this method is nonoptimal, i.e., the number of iterations needed
for a prescribed accuracy is not bounded uniformly in the mesh width. However, the
method is simple, and we present some numerical results illustrating its performance.

In 6, we consider a method for Dirichlet problems on [2 which makes use of
an auxiliary problem on (0, 1)2 - with Neumann conditions, on 0[2 and Dirichlet
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964 CHRISTOPH B)RGERS AND OLOF B. WIDLUND

boundary conditions on 0(0, 1) 2. This method was proposed and studied by Dryja
[9] and Widlund [21]. We show that it fails, for the Poisson equation, if the domain
Ft is multiply connected, a fact apparently previously overlooked. We also propose a
simple way of overcoming this difficulty.

This paper is based on the far more extensive technical report [4]. That report,
and the codes used for our numerical experiments, are available from the authors.
Our programs include an implementation of quadratic isoparametric elements.

2. Notation. Let f be a bounded domain in R2 with a Lipschitz continuous
boundary 0Ft. We will consider the Neumann problem

(1) -Au+cu f on

OU
(2) On

g on OFt,

and the Dirichlet problem

(3) -Au+cu f ongt

(4) u g on0t.

O/On denotes the exterior normal derivative, and c a real constant. We assume that
c>O.

We use finite element discretizations based on triangles r, , k and Tk+.,’’’, 7"2N
such that (r)<<eN is a triangulation of (0, 1) e and

U
l<u<k

approximates Ft. In this paper we only use piecewise linear Lagrangian finite elements.
Results for piecewise quadratic isoparametric elements can be found in [4].

The degrees of freedom are the values of the finite element functions at the vertices
of the triangles. We will make use of auxiliary boundary value problems on the entire
square (0, 1) 2, with boundary conditions on 0(0, 1) 2 specified later. The finite element
discretization of these problems results in a system of linear equations

(6) K(c)x r_,

with

(7) K(c) K + cM,

where K is the stiffness matrix and M is the mass matrix. The entries in K and M

(8) riO,l] ET" V____dx

and

(9) f[O, 1]
)dx,

are of the form
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ON FINITE ELEMENT DOMAIN IMBEDDING METHODS 965

respectively, where , are canonical basis functions of the finite element space. We
order the unknowns such that K and M take the following form.

K
Kll 0 K13 /0 K22 K23
KI K273 K33

and

(11) M
Mll 0 M3 )0 M22 M2a
M5 M5

where the subscripts 1, 2, 3 correspond to nodes in the interior of h, the exterior,
and on the boundary, respectively. We split the matrices K33 and M33 as follows.

(12)

(13) M33 M3(3) + M3(32).

Here Ki and M3( are constructed from the contributions of gth to the integrals

defining the elements of Kaa and Maa, and K3( Kaa- K3( and Ma(i Maa- Ma(
are the corresponding contributions from the exterior. If K(c) is invertible, we use
the notation

Gl1(5) al2(C) G13(c) )(14) G(c)- G12(c)T G22(c) G23(c) "--(K(c)) -1
Gi3(c)T G23(c)T G33(c)

and

(15) G := G(0), Gij := Gij(O).

If K(c) is not invertible, G(c) denotes the Moore-Penrose pseudo-inverse of K(c).
We shall use the preconditioned conjugate gradient algorithm. This algorithm

can be written in a number of different ways, which are mathematically equivalent,
but algorithmically different. We therefore state the form of the algorithm which we
shall use: Consider a system of linear equations of the form

(16) Qu_ b,

where Q is a symmetric, positive semidefinite n n matrix. We assume that b lies
in the range of Q. Let Q be the preconditioner, a symmetric, positive definite n n
matrix.

Preconditioned Conjugate Gradient Algorithm. Choose z() E Rn.
g(O) .= _b- QQ-z()

Replace g(O) by its orthogonal projection onto the range of Q.
d(O) := g(O)
(o) := (-g(0)

.=
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966 CHRISTOPH B)RGERS AND OLOF B. WIDLUND

For j 0, 1, 2,

z(j+l) z(J) + a()d(i)

g(+l) .= g() a(J)Q_()

Replace g(+) by its orthogonal projection onto the range of Q.
(+) := O,-g(J+)
[(j) [g__.(j+l)T(j-+-l)]/[g_.(j)T(j)]
d(j+l) g(j+l) + (j)d(j)
_j-+-l) 0(j_.l) + (j).._(j)

The sequence u(J) O-z(J) converges to a solution of Qu b. The projections
onto the range of Q are without any effect in exact arithmetic. However, in floating
point arithmetic, the algorithm may diverge if the kernel of Q is nontrivial and the
projections are omitted.

If Q has a nontrivial kernel, t can have a nontrivial kernel as well, as long as

(17) ker() C_ ker(Q).

The inverse of should then be replaced by its Moore-Penrose pseudo-inverse.
It was pointed out by Proskurowski and Widlund [17] that the form of the pre-

conditioned conjugate gradient algorithm given above is particularly efficient in the
context of iterative imbedding methods, since a large principal minor of the matrix
Q- is an identity matrix; see 4-6. This is only valid for imbedding methods
which use an exact solver on the rectangle (0, 1) 2.

3. Triangulation. In this section, we shall give a very brief discussion of our
triangulation algorithm. A more detailed discussion of this algorithm can be found in
[4] and [3].

For simplicity, we assume in this section that 0 E C1. Modifications needed near
corners of 0gt are discussed in [4]. We first cover (0, 1) 2 by a regular square grid of
N-by-N cells. Nodes in this grid that are near OFt are moved onto the boundary. We
have thus two quadrilateral grids: the regular square grid, and a perturbed logically
rectangular grid, which is in one-to-one correspondence with the regular grid.

Each of the cells of the perturbed grid is divided into two triangles along one of
its diagonals. Away from 09t, the cells are square and they are cut along the diagonal
joining the left upper and right lower corners. (This decision is arbitrary.) Near
OFt, an attempt is made to make the cuts roughly along 0, but with the additional
requirement that degenerate triangles are not allowed. Figures 1 and 2 illustrate the
kind of triangulations generated by our algorithm.

Let denote an affine mapping from the reference triangle

(18) {x_ (x,x2) 0_<xl <_1, 0<_x2_<1-x2}

onto a triangle T. There are several such affine mappings. Let r(0, 0), r(1, 0), and
(0, 1) denote the points in the regular square grid associated with (0, 0), (1, 0),
and (0, 1), which are nodes in the perturbed grid. The mapping is made unique
by requiring that (1, 0) (0, 0), (0, 1) (0, 0) be a positively oriented pair
of orthogonal vectors.
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ON FINITE ELEMENT DOMAIN IMBEDDING METHODS 967

FIG. 1. Triangulation of .

FIG. 2. Triangulation of 12 and its complement.

Let DCr denote the Jacobi matrix of Cr. The spectral condition
number of (Dr)T(Dr) is a measure of "degeneracy" of T: The larger it is, the more
degenerate is T. In the present context, this measure of degeneracy is most natural;
see [3] or [4]. A proof of the following theorem is also given in [3] and [4].
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968 CHRISTOPH B)RGERS AND OLOF B. WIDLUND

THEOREM 3.1. The triangulation algorithm outlined above, and described in
detail in [4], is guaranteed to generate a triangulation of any arbitrary domain with
Ol E C1, such that for all triangles T,

(19) cond((DCr)T(DCr))
_

(3+v/)2 34.

This estimate is sharp.
Our triangulation algorithm is an improvement over that of Proskurowski and

Widlund [17], which can break down if is not convex.

4. Neumann problems. The finite element discretization of the Neumann prob-
lem (1)-(2) leads to the symmetric system

( gl (c) K13(c) x b(20)

which is positive semidefinite if c O, and positive definite if c > O.
As a preconditioner for

(21) KT13(c) K13 (c)

we first consider

(22)
o o o o

0 0 I
0 I

A straightforward computation shows that this matrix equals

Kll (c) K13 (c)
(23) K13(c)T K(ala (c) + S()

where

(24) S(2) :_ K33(c)(2) K23(c)TK22(c)-lK23(c).
THEOREM 4.1. (21) and (22) are spectrally equivalent, i.e., the quotient of the

quadratic forms associated with (21) and (22) is bounded, on the orthogonal comple-
ment of the kernel of (21), from below by A0 > 0 and from above by A, with constants
A0 and A independent of h.

Proof. We shall give an outline of the proof for later reference. For details, we
refer to [22]. The generalized Rayleigh quotient under consideration is

(25)
( X_. K11(c)

X_3 K13(c)T K(313)(c) + S(2)

( X Kll (c)
X__3 K13(c)T

K13(c) )K3)(c) )( x-1
x3

(26) =1 + X_ 3Ts(2) X__ 3
T [, Kll (C)

K13(c)T
K13(c)
K(313)(c) )( xi
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ON FINITE ELEMENT DOMAIN IMBEDDING METHODS 969

(27) 1 -+-

K22(c)-lKe3(c)x3 )x3

K23(c) ) ( K22(c)-IK23(c)x-3 )
( 1 gll (c) g13 (c)
X3 KI3 (c)T K3)(c) x_.3

Clearly, (27) is bounded from below by 1. The second term in (27) can be in-
terpreted as follows. The denominator is the energy (i.e., the Dirichlet integral) of
the finite element function on gth with nodal values (x_1,x_3). The numerator is the
energy of the minimum energy extension of that function to a finite element function
on (0, 1)2-h. We conclude that if any finite element function on gth can be extended
to a finite element function on (0, 1) 2 with an increase in energy by at most a factor
of C, then the condition number of the preconditioned matrix is bounded by C. For
general conforming finite elements, the existence of an h-independent bound C of this
kind has been proved by Widlund [22].

Because of the triangles near 0, K(c) K + cM does not have the same stencil
everywhere, and it cannot be inverted using a fast solver on (0,1)2. In (22), we
therefore replace the (pseudo-) inverse G(c) of K(c) by the (pseudo-) inverse of the
more convenient, spectrally equivalent 5-point difference operator

-1

(28) 1 4 + ch2

-1

The spectral equivalence of K(c) and (28) is a consequence of Theorem 1, and provides
the motivation for the definition of degeneracy of triangles in 3; see [4].

The domain imbedding method for the problem (1), (2) is the conjugate gradient
method for equation (20) using the preconditioner (22), with K(c) replaced by (28).
Thus the inverse of the preconditioner is applied to a given finite element function rh

by extending rh to (0, 1) 2 with zero values in the nodes outside gth, solving a Poisson
problem on (0, 1) 2 with this extension of rh as the right-hand side, and restricting
the solution of this problem from (0, 1) 2 to gth. We note that this is an equivalent
description of the method given in [17].

Next we consider the choice of boundary conditions for the auxiliary problems on

(0,1) 2

THEOREM 4.2. The constant C in the proof of Theorem 4.1 is minimized when
homogeneous Neumann boundary conditions are chosen on 0(0, 1) 2.

Proof. The minimum energy extension to (0, 1) 2 of a finite element function on
h satisfies, in the discrete sense, homogeneous Neumann boundary conditions on

0(0,1) 2

We report on numerical results confirming the conclusion of Theorem 4.2 and
illustrating the performance of the method. We consider the following test domains.

(29) {(Xl,X2) [(Xl 0.5) 2 + (X2 0.5)2] 1/2 < 0.4}

(30) {(Xl,X2) [(Xl 0.5) 2 -" (X2 0.5)2] 1/2 e (0.1, 0.4)}

(31) {(X,X2) [(Xl --0.5) 2 --(X2 --0.5)2] 1/2 < 0.4 Xl < 0.5 or x2 < 0.5}
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970 CHRISTOPH BRGERS AND OLOF B. WIDLUND

(32) (0.2, 0.5)2 [0.475, 0.525] [0.2, 0.5].

The test problem is

(33) -Au sin(x1 +x2) + const, on

u
(34) On

0 on OFt,

where the constant on the right-hand side is chosen such that the discrete compati-
bility condition is satisfied. We have found very similar rates of convergence of the
iterative method for other right-hand sides. We count the number of calls to the fast
solver on 0(0, 1)2 required to reduce the Euclidean norm of the residual by a factor less
than 10-6 We present numerical comparisons of the following boundary conditions
on 0(0, 1)2"

(i) Periodic in xl, with period 1 and homogeneous Dirichlet conditions at x2 0,
X2--1.

(ii) Homogeneous Dirichlet conditions on the entire boundary 0(0, 1) 2.
(iii) Homogeneous Neumann conditions on the entire boundary 0(0, 1) 2.
Table 1 shows our results, which confirm that the Neumann condition on 0(0, 1)2

is the best choice, but they also suggest that the choice of boundary conditions on

0(0, 1) 2 is of no great importance.
TABLE 1

Neumann problems ]or the Poisson equation, exact solver on 0(0, 1).
region h number ofcalls

(i) (ii) (iii)
1/50 16 14 13
1/100 18 16 15
1/1 o
 /:oo
1/250 17 16 15
1/50 i6 15 13
1/100 18 17 16

(30) 1/150 17 15 15
1/200 17 15 15
1/250 18 16 15
1/50 19 18 16
1/100 21 20 17

(31) 1/150 20 19 16
1/200 20 19 16
1/250 21 20 16
1/50 23 24 21
1/100 27 28 25

(32) 1/150 21 21 19
1/200 18 18 17
1/250 23 24 21

We now consider the use of inexact solvers for the auxiliary problems on (0, 1) 2
to increase the efficiency. We use a multigrid V-cycle for (28), with homogeneous
Neumann boundary conditions on 0(0, 1)2; see [20]. The ratio of the mesh widths
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ON FINITE ELEMENT DOMAIN IMBEDDING METHODS 971

of consecutive levels is 1/2. Piecewise bilinear interpolation is used to transfer the
corrections from a given level to the next finer level, and residuals are transferred from
a given level to the next coarser level by using the adjoint of the bilinear interpolation
operator. The relaxation method is red-black Gauss-Seidel iteration. Three half
sweeps (red-black-red) are carried out before and after each coarse grid correction
step.

We find numerically that the spectral radius of the iteration matrix of this cycle
is no larger than p 0.185 on n- 1 by n- 1 grids, where n is a power of 2. By an
elementary argument, it follows that the condition number of the domain imbedding
method can deteriorate by at most the factor

()
1 + 1.1S

1.45;
1 p 0.815

compare [3, 5]. The total amount of work required for the cycle corresponds to five to
six Gauss-Seidel iteration steps. Results with this method are shown in Table 2, using
(ii) homogeneous Dirichlet conditions on 0(0, 1) 2, and (iii) homogeneous Neumann
conditions on 0(0, 1)2.

TABLE 2
Neumann problems for the Poisson equation, MG cycle on 0(0,1)2.

region h number of calls
(ii) (iii)

1/32 15 14
(29) 1/64 17 15

1/128 17 15
1/256 17 16
1/32 19 15

(30) 1/64 18 15
1/128 17 15
1/256 17 15
1/32 19 i6

(31) 1/64 21 18
1/128 21 17
1/256 21 17
1/32 27 23

(32) 1/64 22 19
 /leS

We conclude this section with a discussion of the case c > 0. If 12, h, f, and g are
fixed, the number of iterations required to reduce the residual by a prescribed factor
increases as c 0, and it is significantly larger for c > 0, c 0 than for c 0. This
observation will be useful in 6, where exterior Neumann problems for the Helmholtz
equation will be used as auxiliary problems in a Dirichlet solver.

If c 0, then G(c)l/2K(c)G(c) 1/2 is uniformly well-conditioned in the sense that
the quotient of the largest and the smallest nonzero eigenvalue is bounded uniformly
in h. G(c)I/2K(c)G(c)/2 has a simple zero eigenvalue. If c > 0, c 0, then the
condition number of G(c)l/2K(c)G(c) 1/2 is large, by the continuity of the eigenvalues.
There is only one outlying eigenvalue, near zero. For the conjugate gradient method,
a small outlying eigenvalue is more harmful than a large one; see [12]. We have found
that the method is about 20 percent slower for c 0.1 than for c 10. The speed
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972 CHRISTOPH B)RGERS AND OLOF B. WIDLUND

of convergence for c 10 is very close to that for c 0. For numerical experiments
substantiating these conclusions, see [4].

5. A nonoptimal method for Dirichlet problems. We shall use homoge-
neous Dirichlet boundary conditions on 0(0, 1)2 in 5 and 6. (The argument of 4
suggesting the use of Neumann boundary conditions on 0(0, 1) 2 is no longer valid
here.)

The simplest approach to the Dirichlet problem is to treat it as if it were a
Neumann problem, i.e., to solve a problem of the form

(36) KllX_l b

using the conjugate gradient method with the preconditioner

THEOREM 5.1. The preconditioner (37) is a nonoptimal preconditioner for Kll,
i.e., the condition number of the preconditioned matrix is not bounded as h -- O. It
grows linearly with 1/h.

A proof of this result is outlined in [4].
Nevertheless, our experiments have lead to the conclusion that this method is

more efficient than might be expected. Unlike the method of 6, it requires no mod-
ifications on domains that are not grid-aligned. (A domain is grid-aligned if all its
boundary nodes lie on the regular square grid, i.e., if the perturbed grid is identical
with the regular square grid.) In addition, the auxiliary problems on (0, 1) 2 can be
solved inexactly, while the method of 6 requires the exact solutions.

Table 3 shows some of our numerical results, for the grid-aligned L-shaped domain

(38) 0.8):

as well as the domains (29) and (30), which are not grid-aligned. The test problem is

(39) Au sin(xl -" X2) on

(40) u 0 onO.

We have also conducted tests which suggest that our numerical results are not signif-
icantly influenced by the right-hand side and boundary data.

6. A method which uses exterior Neumann problems. We shall now de-
scribe a method for solving Dirichlet problems that makes use of "exterior Neumann
problems," more precisely problems of the form

(41) Au f on (0, 1)2

(42) 0-- g on

(43) u 0 on 0(0,1) 2

D
ow

nl
oa

de
d 

04
/0

3/
18

 to
 1

30
.6

4.
25

.6
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ON FINITE ELEMENT DOMAIN IMBEDDING METHODS

TABLE 3
Dirichlet problems for the Poisson equation, nonoptimal method.

973

region h number of calls
/o 4
/oo

(29) 1/150 26
1/200 29
1/eo e
/oo
/o
/oo

(30) 1/150 28

1/200 31
/eo
/oo
1/o
/oo

(38) 1/150 20

1/200 24
/eo e
/oo s

The finite element discretization of such a problem leads to a system of linear
equation with the matrix

(44) K(2) /K22 K23 /::

LEMMA 6.1. The discrete exterior Neumann problem is nonsingular, i.e., the
matrix K(2) is invertible if and only if -h i8 simply connected.

Proof. The kernel of K(2) consists of the finite element functions on the comple-
ment of gth, which are zero on 0(0, 1)2, and which are constant on each triangle in the
complement of 2h, i.e., constant on each connected component of the complement of
h. All such functions are zero if and only if the complement of -h is connected, i.e.,
if and only if h is simply connected.

At the expense of solving one problem on the square, our problem may be reduced
to the form

(45) ( Kl10
Consider the exterior Neumann problem

(46) ( K K: ) ( :_x3 K3() b3 )
The solution of this problem is (0, b3)T. We compute the solution of (46) using

the method of 4, exchanging the roles of h and its complement. Thus, we solve
(46) with the preconditioned conjugate gradient method, using the preconditioner

G22 G23 )(47) G2T3 G33

-1
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974 CHRISTOPH BRGERS AND OLOF B. WIDLUND

We then obtain the solution in the form

0

G2T3 G33 z3 )"
Setting

(49) x2 G Z_.2
X3 Z_3

the solution (xl, x 3)T of (45) is obtained. Table 4 contains numerical results obtained
with this method.

TABLE 4
Dirichlet problems for the Poisson equation, method using exterior Poisson Neumann problems.

region

(29)

(31)

(38)

h number of calls
/o o
1/100 10
/o o
/2oo o
1/250 10

1/300 10

1/50 12

/oo 3

1/150 13

1/200 13

1/250 13
1/300 13

1/50 12

1/100 13
1/150 13

1/200 13

1/250 13

1/300 13

The method as described, so far, fails if ’h is multiply connected, a fact that
previously apparently has been overlooked. Convergence occurs and is as rapid as on
simply connected domains, but the limit is usually not the solution of the problem
that we want to solve. The reason is that the system (46) is now singular. (0, b3)T
is still a solution, but there are also others. We shall show that this will necessarily
cause the method to fail for some right-hand sides and initial guesses.

Suppose that we use the initial guess

(50) z(30 K3() b a

This is a most natural choice. It can easily be shown that the conjugate gradient
iteration then converges to a limit

(51) ( z
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ON FINITE ELEMENT DOMAIN IMBEDDING METHODS 975

such that the difference

is orthogonal to the kernel of K(2) with respect to the Euclidean inner product. Now
observe that the initial guess (50) is orthogonal to ker(K(2)), since it lies in the range
of K(2). Therefore

(0)
can only hold if

-1

(54)

is orthogonal to ker(K(2)).
THEOREM 6.2. The vector (54) is orthogonal to ker(K(2)) for every b3 if and

only if h i8 simply connected.
Proof. We first note that

() a c o c

where the order of the square matrix C equals the number of nodes on the boundary
of th. C is invertible if and only if K(2) is invertible.

The vector (54) is orthogonal to ker(K(2)) if and only if there are vectors x_2 x3
with

(56) K(2) ( x-2a) (G G - 0

The use of Lemma 1 completes the proof.
There is a simple way of overcoming the difficulty that we have just described:

Replace the exterior Neumann problem (46) by

() K23b3

where c > 0 and I22,133 are identity matrices. The preconditioned conjugate gradient
method, with the preconditioner (47) can be used.

THEOREM 6.3. The matrix (47) and

(58) (K22+ci22 K2a )K K(a2) + cI3a

are spectrally equivalent.
Proof. The matrix (58) is spectrally equivalent with

(59) (K22(c) K23(c) )K() K)()
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976 CHRISTOPH BRGERS AND OLOF B. WIDLUND

which in turn is spectrally equivalent with

(60) G23(c)T G33(c)

This follows from Theorem 2, with the roles of h and its complement reversed. The
matrix (60) is spectrally equivalent with (47). To prove this, it suffices to show that
G and G(c) are spectrally equivalent. This follows from the spectral equivalence of K
and K(c), which is an immediate consequence of Poincar6’s inequality. [:1

The discussion at the end of 4 shows that c should not be chosen very small.
Experiments suggest that the precise value of c is of little importance. We have always
chosen c 10. Table 5 contains numerical results obtained with this method.

TABLE 5
Dirichlet problems for the Poisson equation, method using exterior Helmholtz Neumann problems.

region

(30)

h
1/50
1/100
1/150
1/200
1/250
1/300

number of calls
14
14
14
14
14
14

7. Summary and discussion. For Neumann problems on relatively simple do-
mains, we have found that the finite element imbedding method is quite efficient. The
variant using a multigrid cycle on the rectangle is most efficient, as far as arithmetic is
concerned. The only methods we know of that would be more efficient are multigrid
methods, applied directly to the problem on the irregular domains; compare, e.g., [7],
[12, p. 94], and [20]. We expect that a well-chosen multigrid algorithm would be at
least two to three times faster than the method of 5. However, imbedding methods
have certain advantages. Their implementation is very much simpler, in particular
for higher-order finite elements. A useful feature is the complete separation of issues
concerning the geometry of the region from those of the solution of the boundary value
problems. In 3, we have outlined a general way of handling the geometry. An addi-
tional attractive feature is the delegation of almost all work to a fast Helmholtz solver
on a rectangle, which makes it possible to use highly efficient, specialized software, or
possibly even special hardware.

As demonstrated in [10] and [15], the imbedding methods can also be implemented
relatively easily using very little memory. The basic idea is to exploit the fact that if
an appropriate version of the conjugate gradient method is chosen, then during the
iteration, the right-hand sides differ from zero only at points within a distance of h
from the boundary, and the solution is only required at the same point set. Special
solvers have been developed ibr such purposes and, as demonstrated in [15], they are
about as fast as conventional fast Poisson solvers. The solution can also be obtained
everywhere, by the end of the iteration, by using a variant of a standard fast Poisson
solver which requires only a fraction of the memory normally allotted. In our own
experirnents we have only used the more conventional approach. We do not know to
what extent similar savings of memory could be accomplished by developing a special
sparse version of a multigrid method.

The method of 4 can, in a straightforward way, be applied to more general
symmetric, positive semidefinite second-order elliptic Neumann problems. Note that
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ON FINITE ELEMENT DOMAIN IMBEDDING METHODS 977

the operator used for the auxiliary problems on (0, 1) 2 need not be an extension of
the operator on

For Dirichlet problems, the methods we have studied are less efficient. They
can also be applied to more general symmetric, positive definite second-order elliptic
Dirichlet problems. Note, however, that the method of 6 requires the operator on

(0, 1) 2 to be an extension of the operator on t. Since the auxiliary problems on (0, 1) 2
must be separable in order to allow the use of a fast direct solver, this requirement
severely restricts the class of operators for which this method can be applied. A two-
stage iterative method has been developed in [10] and it appears to offer real promise
of resolving these difficulties. We have no direct experience with that method.

Acknowledgments. We are grateful to Maksymilian Dryja for reading a first
version of the manuscript and suggesting improvements.
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