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Detectable Singularities from Dynamic Radon Data∗

B. N. Hahn† and E. T. Quinto‡

Abstract. In this paper, we use microlocal analysis to understand what X-ray tomographic data acquisition
does to singularities of an object which changes during the measuring process. Depending on the
motion model, we study which singularities are detected by the measured data. In particular, this
analysis shows that, due to the dynamic behavior, not all singularities might be detected, even if the
radiation source performs a complete turn around the object. Thus, they cannot be expected to be
(stably) visible in any reconstruction. On the other hand, singularities could be added (or masked)
as well. To understand this precisely, we provide a characterization of visible and added singularities
by analyzing the microlocal properties of the forward and reconstruction operators. We illustrate
the characterization using numerical examples.
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1. Introduction. The data collection in X-ray computerized tomography (CT) is time-
dependent due to the time-dependent rotation of the radiation source around the specimen.
A crucial assumption in classical mathematical theory (including modeling, analysis, and
derivation of reconstruction algorithms) is that the investigated object does not change dur-
ing this time period. However, this assumption is violated in many applications, e.g., in
medical imaging due to internal organ motion. In this case, the measured data suffer from
inconsistencies. In particular, the application of standard reconstruction techniques leads to
motion artifacts in the resulting images [42, 43].

Analytic reconstruction methods to compensate for these inconsistencies have been devel-
oped for specific types of motion, e.g., affine deformations; see [4, 39, 6]. An inversion formula
for the dynamic forward operator in the case of affine motion has been stated in [16], which
also serves as a basis for suitable reconstruction methods. A characterization of the null space
and the resolution in the semidiscrete setting has been provided in [17]. For general nonaffine
deformations, no inversion formula is known so far. In addition to iterative methods (e.g.,
[3, 21]), approximate inversion formulas exist that accurately reconstruct singularities for fan
beam and parallel beam data in the plane [25] and for cone beam data in space [27]. They
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are based on the observation that operators of the form

(1) L = Rt
ΓPRΓf,

with forward operator RΓ, specially designed pseudodifferential operator P, and backpro-
jection operator Rt

Γ (which is, typically, related to the formal dual to RΓ), are known to
reconstruct singularities of the object. This problem has been further analyzed in an elegant
way for the cone beam transform in [26]. In addition, methods developed in the general
context of dynamic inverse problems have been successfully applied in CT [41, 18].

Nevertheless, artifacts can still arise in reconstructions, even if the motion is known and
the compensation method is exact, as, e.g., in [16]. On the other hand, the dynamic behavior
of the object can lead to a limited data problem even if the radiation source rotates completely
around the object. This means that some singularities of the object might not be visible in
the reconstruction.

To guarantee reliable diagnostics in practice, it is essential to study these limitations
carefully. Therefore, our aim is to analyze which singularities are detected by the measured
data in the dynamic case and to characterize which of them can be reliably reconstructed or
whether they create additional artifacts in the reconstruction process.

In this research, we understand the motion problem using generalized Radon transforms
and microlocal analysis. The mathematical model of X-ray tomography with stationary speci-
men is integration along straight lines [31]. If the object moves during the data acquisition, the
measured data can be interpreted as data for a (static) reference object where the integration
now takes place along curves rather than straight lines [25, 3, 16]. Microlocal analysis is the
rigorous theory of singularities and the study of how Fourier integral operators (FIOs) trans-
form them. Guillemin [13] was the first to make the connection between microlocal analysis
and Radon transforms (see also [15, 14]) when he showed that many generalized Radon trans-
forms, R, are FIOs. He showed that, under the microlocal Bolker assumption (see Definition
10 below) and an extra smoothness assumption related to our definition of smoothly periodic
(see section 4.1), R∗R is an elliptic pseudodifferential operator. This means that R∗R images
all singularities of functions and does not add artifacts. This theorem was exploited in [2] to
show that a broad range of Radon transforms on surfaces in R

n can be “inverted” modulo
lower order terms. Greenleaf and Uhlmann [12] and others developed the microlocal analysis
of generalized Radon transforms that occur in X-ray CT [36, 29], cone beam CT [7, 23, 27],
seismics [5], sonar [37], radar [34], and other applications in tomography.

Microlocal analysis has begun to be used in motion-compensated CT. In [24], Katsevich
proved that, under certain completeness conditions on the motion model, the reconstruction
operator L in (1) detects all singularities of the object. This is related to theorems of Beylkin
[2] showing that operators like L are elliptic pseudodifferential operators. In [8] uniqueness is
proven for a broad range of Radon transforms on curves. The cone beam CT case is more subtle
since artifacts can be added to backprojection reconstructions, even with stationary objects
[12, 7]. Katsevich characterized the added artifacts for this case and developed reconstruction
algorithms to, at least locally, decrease the effect of those added artifacts. He used this
information to develop motion estimation algorithms when the motion model is not known
[27].
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Motivated by large field of view electron microscopy, [38] presents the microlocal analysis
of general curvilinear Radon transforms in R

3 as well as local reconstruction methods. Ana-
lyzing added artifacts for X-ray tomography without motion has been done in [22, 9, 32], and
generalizations to other types of tomography have been done in [10, 33, 1].

In this article, we consider general motion models with less restrictive completeness as-
sumptions. To develop our characterization of visible and added singularities, we describe in
section 2 the mathematical model for the dynamic case as generalized Radon transform. We
also present the mathematical bases of our work, including microlocal analysis. In section 3,
we assume that the model is exact and study which object singularities are encoded in the
measured data. In section 4 we consider the reconstruction operator in the case of smoothly
periodic motion, so the object is in the same state at the end of the scan as at the start. Based
on these results, in section 5 we analyze the case when limited data arise, and characterize
visible and added singularities in reconstruction methods of filtered backprojection type. Our
theoretical results are evaluated on numerical examples in section 6. The more intricate proofs
are in the appendix, and we show in Appendix A.5 that our theorems are true even if the
weights are arbitrary on the Radon transforms.

2. Mathematical basis. We use the following notation for function spaces. The space of
all smooth (i.e., C∞) functions of compact support is denoted D(Rn). A distribution is an
element of the dual space D′(Rn) with the weak-* topology and pointwise convergence (i.e.,
uk → u in D′(Rn) if, for every f ∈ D(Rn), uk(f) → u(f) in R). Further, E(Rn) will denote
the set of smooth functions on R

n; its dual space, E ′(Rn), is the set of distributions that have
compact support. See [40] for a description of the topologies and properties of these spaces.

A data set in CT can be interpreted as a function (or distribution) with domain [0, 2π]×R.
In the static case, the data are 2π-periodic in the first variable, but this does not necessarily
hold in the dynamic case since the object does not necessarily return to its initial state at the
end of the scanning.

Generally, smooth functions (and hence distributions) are defined on open sets because
derivatives will then be well defined. With this in mind, we make the following definition.

Definition 1. Let g be a function with domain [0, 2π] × R
n for some n ∈ N.

(i) We call g smoothly periodic if g extends to a smooth function on R × R
n that is

2π-periodic in the first variable.
(ii) In the nonperiodic case, we call g smooth if, for some ε > 0, g extends to a smooth

function on (−ε, 2π + ε)× R
n.

If g is smoothly periodic, then g can be viewed as a smooth function on the unit circle
S1 by identifying 0 and 2π. We define D([0, 2π] × R) as the set of all smoothly periodic
compactly supported functions on [0, 2π] × R, and D′([0, 2π] × R) is its dual space with the
weak-* topology. The set of smoothly periodic functions on [0, 2π] × R, E([0, 2π] × R) and
its dual space E ′([0, 2π] × R), are defined in a similar way. Including the condition of 2π-
periodicity in these definitions will simplify the mapping properties of the dynamic forward
operator and its dual (see section 4.1).

In general, the object does not return to its initial state at the end of the scanning; i.e.,
its motion is not 2π-periodic. For this case, we will state our theorems and definitions using
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open domains with ϕ ∈ (−ε, 2π + ε) for some ε > 0. Finally, distributions can be restricted
to open subsets, and microlocal properties that hold on the larger set (e.g., smoothness) hold
on the smaller set. So, our theorems are also true when mapping to distributions on A × R

(i.e., when the data are restricted to A× R) when A ⊂ (−ε, 2π + ε) is open.
In CT with a stationary specimen, the given data correspond to integrals along straight

lines of the distribution f ∈ E ′(R2) describing the X-ray attenuation coefficients of the inves-
tigated object. Hence, the mathematical model in the two-dimensional (2D) parallel scanning
geometry is given by the Radon line transform

(2) Rf(ϕ, s) =
∫
R2

f(x) δ(s − xT θ(ϕ)) dx,

with s ∈ R, ϕ ∈ [0, 2π], θ = θ(ϕ) = (cosϕ, sinϕ)T , and the δ-distribution. For fixed source
and detector position (ϕ, s) ∈ [0, 2π] × R, the integration takes place over the line

(3) l(ϕ, s) = {x ∈ R
2
∣∣ xT θ = s}.

Data acquisition in CT is time-dependent, since the rotation of the radiation source around
the object takes a certain amount of time. The source rotation is the only time-dependent
part of the scanning procedure since, in modern CT scanners, detector panels are used such
that all detector points record simultaneously for each fixed source position. Concerning the
mathematical model, this means that a time instance t can be uniquely identified with a
source position and vice versa. In terms of the Radon transform, the source position is given
by the angle ϕ ∈ [0, 2π], and there is the unique relation to a time instance tϕ ∈ [0, 2π/φ] via

ϕ = tϕφ,

with φ being the rotation angle of the radiation source. Therefore, throughout the paper, we
interpret ϕ also as a time instance and [0, 2π] as a time interval.

2.1. Mathematical model for moving objects in computerized tomography. We now
derive the mathematical model for the case when the investigated object changes during the
measuring process. A dynamic object is described by a time-dependent function h : [0, 2π] ×
R
2 → R

2. In the application of CT, h(ϕ, ·) ∈ E ′(R2) for a fixed time ϕ ∈ [0, 2π] corresponds
to the X-ray attenuation coefficient of the specimen at this particular time instance.

The dynamic behavior of the object is considered to be due to particles which change
position in a fixed coordinate system of R2. This physical interpretation of object movement
is now incorporated into a mathematical model.

Let f(x) := h(0, x) denote the state of the object at the initial time. We call f a reference
function. Please note that f is a distribution since h(0, ·) ∈ E ′(R2). Further, let Γ : [0, 2π] ×
R
2 → R

2 be a motion model describing the dynamic behavior of the specimen, where Γ(0, x) =
x and Γ(ϕ, x) denotes which particle is at position x at the time instance ϕ (in other words,
Γ(ϕ, x) is the location at time ϕ = 0 of the particle that is at x at time ϕ). For fixed ϕ ∈ [0, 2π],
we write

(4) Γϕx := Γ(ϕ, x)
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to simplify the notation. Using this motion model and the reference function f , we find the
state of the object at time instance ϕ to be

(5) h(ϕ, x) = f(Γϕx).

Remark 2. In the model (5), each particle keeps its initial intensity over time. However,
this means that the mass of the object may no longer be conserved. If the density varies due
to the deformation, this can be taken into account by the mathematical model

(6) h(ϕ, x) = |detDΓ−1
ϕ x| f(Γϕx).

In both cases, the respective FIOs describing the dynamic setting have the same phase func-
tion and hence the same canonical relation. Thus, our results provided in this paper hold
equivalently for the mass preserving model (6); see also Appendix A.5.

Throughout the paper, we make the following assumptions on the motion model Γ, which
we justify by the physical properties of moving objects and imaging systems.

Hypothesis 3. Let Γ : [0, 2π] × R
2 → R

2 and let Γϕx = Γ(ϕ, x). Assume Γ0x = x. Then Γ
is called a motion model and Γϕ a motion function if there is an ε > 0 such that the following
hold:

1. Γ extends smoothly to Γ : (−ε, 2π + ε)× R
2 → R

2 (so Γ is smooth by Definition 1).
2. For each ϕ ∈ (−ε, 2π + ε), Γϕ : R2 → R

2 is a diffeomorphism.
A motion model is smoothly periodic if it satisfies these conditions for some ε > 0 and if Γ
is smoothly periodic.

Remark 4.
1. In practical applications in CT, only discrete data are measured. Thus, the object’s

motion is ascertained for finitely discrete time instances only, which justifies this (theoretical)
assumption of smooth trajectories.

2. Hypothesis 3.2 ensures that two particles cannot move into the same position, and
no particle gets lost (or added). The relocation is smooth because Γ is a smooth function.

With the mathematical model of a dynamic object (5), the operator in the dynamic setting
is given by

(7) RΓf(ϕ, s) := R(f ◦ Γϕ)(ϕ, s) =
∫
R2

f(Γϕx) δ(s − xT θ(ϕ))dx.

Using the change of coordinates z := Γϕx, we obtain the representation

RΓf(ϕ, s) =

∫
R2

f(z) |detDΓ−1
ϕ z| δ(s − (Γ−1

ϕ z)T θ(ϕ)) dz.(8)

Thus, RΓ integrates the respective intensity-corrected reference function along the curve

(9) C(ϕ, s) =
{
x ∈ R

2
∣∣ (Γ−1

ϕ x
)T
θ(ϕ) = s

}
.

So, for each (ϕ, s), C(ϕ, s) = Γ−1
ϕ (l(ϕ, s)). Because Γϕ is a diffeomorphism, each C(ϕ, s) is a

smooth simple unbounded curve, and for each ϕ the curves s �→ C(ϕ, s) for s ∈ R cover the
plane and are mutually disjoint (they foliate the plane).
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2.2. Microlocal analysis and Fourier integral operators. In this section we will outline
the basic microlocal principles used in the article. We refer to [19, 44, 45, 20, 28] for more
details.

The key to understanding singularities and wavefront sets is the relation between smooth-
ness and the Fourier transform: a distribution f ∈ E ′(Rn) is smooth if and only if its Fourier
transform is rapidly decreasing at infinity. However, to make the definition invariant on man-
ifolds (such as [0, 2π] × R with 0 and 2π identified), we need to define the wavefront set as a
set in the cotangent bundle [44]. So, we will introduce some notation.

Let x = (x1, . . . , xn) ∈ R
n and ξ = (ξ1, . . . , ξn) ∈ R

n. Now let h be a smooth scalar
function of variables including x ∈ R

2, and let G = (g1, g2) be a function with codomain R
2.

Then we define
ξdx = ξ1dx1 + · · ·+ ξndxn ∈ T ∗

x (R
n),

where T ∗
x (R

n) is the cotangent space at x ∈ R
n,

∂xh =
∂h

∂x1
dx1 +

∂h

∂x2
dx2, Dxh =

(
∂h

∂x1
,
∂h

∂x2

)
, Gdx = g1dx1 + g2dx2,

and the other derivatives (using D) and differentials (using ∂) are defined in a similar way;
for example, ∂sh = ∂h

∂sds.

Definition 5. Let u ∈ D′(Rn), and let (x0, ξ0) ∈ R
n × (Rn \ 0). Then u is smooth at x0 in

direction ξ0 if there is a cutoff function at x0, ψ ∈ D(Rn) (i.e., ψ(x0) �= 0), and an open cone
V containing ξ0 such that F(ψu)(ξ) is rapidly decreasing at infinity for all ξ ∈ V .

On the other hand, if u is not smooth at x0 in direction ξ0, then (x0, ξ0dx) ∈ WF(u), the
C∞ wavefront set of u.

We now define the fundamental class of operators on which our analysis is based: FIOs.
Note that we define them only for the special case that we use. For other applications, one
would use the definition for general spaces in [45, Chapter VI.2] or [19].

Definition 6 (Fourier integral operator (FIO)). Let ε > 0. Now let a(ϕ, s, x, σ) be a smooth
function on (−ε, 2π + ε) × R × R

2 × R; then a is an amplitude of order k if it satisfies the
following condition. For each compact subset K in (−ε, 2π + ε) × R × R

2 and M ∈ N there
exists a positive constant CK,M such that

(10)

∣∣∣∣ ∂
n1

∂ϕn1

∂n2

∂sn2

∂n3

∂xn3
1

∂n4

∂xn4
2

∂m

∂σm
a(ϕ, s, x, σ)

∣∣∣∣ ≤ CK,M(1 + |σ|)k−m

for n1 + n2 + n3 + n4 ≤M , m ≤M , all (ϕ, s, x) ∈ K, and all σ ∈ R.
The real-valued function Φ ∈ C∞ (

(−ε, 2π + ε)× R×R
2 × (R \ 0)

)
is called a phase func-

tion if Φ is positive homogeneous of degree 1 in σ and both (∂(ϕ,s)Φ, ∂σΦ) and (∂xΦ, ∂σΦ) are
nonzero for all (ϕ, s, x, σ) ∈ (−ε, 2π + ε) × R × R

2 × R \ 0. The phase function Φ is called
nondegenerate if on the zero-set

(11) ΣΦ =
{
(ϕ, s, x, σ) ∈ (−ε, 2π + ε)× R× R

2 × R \ 0
∣∣ ∂σΦ = 0

}
one has that ∂ϕ,s,x

(
∂Φ
∂σ

)
�= 0. In this case, the operator T defined for u ∈ E ′(R2) by

(12) T u(ϕ, s) =
∫
eiΦ(ϕ,s,x,σ)a(ϕ, s, x, σ)u(x)dxdσ
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is a Fourier integral operator (FIO) of order k − 1/2. The canonical relation for T is

(13) C :=
{(
ϕ, s, ∂(ϕ,s)Φ(ϕ, s, x, η);x,−∂xΦ(ϕ, s, x, σ)

) ∣∣ (ϕ, s, x, σ) ∈ ΣΦ

}
.

Note that since the phase function Φ is nondegenerate, the sets ΣΦ and C are smooth
manifolds. Because of the conditions on a and Φ, T : D(R2) → E((−ε, 2π + ε) × R) and
T : E ′(R2) → D′((−ε, 2π + ε)× R) are continuous in both cases [45]. If the amplitude a and
phase function Φ are smoothly periodic, then the conditions in this definition are valid on
[0, 2π]×R×R

2×R, where 0 and 2π are identified. In this case, T u is 2π-periodic in ϕ for all
u ∈ E ′(R2).

To state the theorems that form the key to our proofs, we need the following definitions.
Let X and Y be sets, and let B ⊂ X × Y , C ⊂ Y ×X, and D ⊂ X. Then,

(14)

Ct =
{
(x, y)

∣∣ (y, x) ∈ C
}
,

C ◦D =
{
y ∈ Y

∣∣∃x ∈ D, (y, x) ∈ C
}
,

B ◦ C =
{
(x′, x) ∈ X ×X

∣∣∃y ∈ Y, (x′, y) ∈ B, (y, x) ∈ C
}
.

We will use these expressions to describe what FIOs do to wavefront sets.

Theorem 7 (see [19, Theorem 4.2.1]). Let T be an FIO with canonical relation C. Then
the formal dual operator, T ∗ to T , is an FIO with canonical relation Ct.

FIOs transform wavefront sets in precise ways, and our next theorem, a special case of
the Hörmander–Sato lemma, is a key to our analysis.

Theorem 8 (see [19, Theorems 2.5.7 and 2.5.14]). Let T be an FIO with canonical relation
C. Let f ∈ E ′(R2). Then WF(T f) ⊂ C ◦WF(f).

To understand the more subtle properties of an FIO, we investigate the mapping properties
of the canonical relation C. Let ΠL : C → T ∗((−ε, 2π + ε)×R) \ 0 and ΠR : C → T ∗(R2) \ 0
be the natural projections. Then we have the following diagram:

(15)

C
ΠL↙ ↘ΠR

T ∗((−ε, 2π + ε)× R) \ 0 T ∗(R2) \ 0

First, note that if B ⊂ T ∗(R2) and D ⊂ T ∗((−ε, 2π + ε)× R), then

(16) C ◦B = ΠL
(
Π−1
R (B)

)
, Ct ◦D = ΠR

(
Π−1
L (D)

)
.

These statements are proven using the definitions of composition and the projections.
The next definition is helpful in determining which singularities are visible.

Definition 9. The FIO T in (12) is elliptic of order m−1/2 if its amplitude, a, is of order
m and satisfies the following conditions: for each compact set K ⊂ (−ε, 2π + ε) × R × R

2

there are constants CK > 0 and SK > 0 such that for all (ϕ, s, x) ∈ K and |σ| > SK ,
|a(ϕ, s, x, σ)| ≥ CK(1 + |σ|)m.

Ellipticity is defined in a similar way for pseudodifferential operators.
Our next definition is fundamental for our results.
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Definition 10. Let T be an FIO with canonical relation C. Then, T satisfies the microlocal
Bolker assumption if the projection ΠL is an injective immersion.

Note that an immersion is a smooth map with injective differential.
Guillemin [13, 15] called Definition 10 plus some geometric assumptions (including that

T is a Radon transform) the Bolker assumption. His extra assumptions assure that one can
compose T ∗ and T and that the composition is an elliptic pseudodifferential operator. This
is not true in general without extra assumptions.

Now, we apply these ideas to dynamic tomography.

3. Microlocal analysis of the dynamic forward operator. In this section, we study the
microlocal properties of the forward operator RΓ in dynamic CT. We show that it is an FIO
and provide conditions under which it fulfills the microlocal Bolker assumption. Corollary 16
gives the relationship between singularities of f and those of RΓf , which is then analyzed in
more detail, especially with respect to the importance of the Bolker assumption. Our theorems
are true for more general FIO, but the proofs are easier in our special case.

We now introduce some notation and describe its geometric meaning. Here Γ is a motion
model that satisfies Hypothesis 3, and let ε be as in that hypothesis. For x ∈ R

2, ϕ ∈
(−ε, 2π + ε) define

H(ϕ, x) :=
(
Γ−1
ϕ x

)T
θ(ϕ).(17)

Then, the integration curve C(ϕ, s) in (9) can be written

C(ϕ, s) =
{
x ∈ R

2
∣∣H(ϕ, x) = s

}
.

Now, define

(18) N (ϕ, x) := ∂xH(ϕ, x).

Our next lemma gives the geometric meaning of this covector.

Lemma 11. Let (ϕ0, s0) ∈ (−ε, 2π + ε) × R, and let x be a point on the integration curve
C(ϕ0, s0). The vector DxH(ϕ0, x) is normal to the curve C(ϕ0, s0) at x, and therefore the
covector N (ϕ0, x) is conormal to this curve at x.

Proof. The curve C(ϕ0, s0) is defined by the equation g(x) := H(ϕ0, x)−s0 = 0. Therefore
the gradient in x of g at each x ∈ C(ϕ0, s0), which is DxH(ϕ0, x), is normal to this curve at
x. So, its dual covector, which is N (ϕ0, x), is conormal to C(ϕ0, s0) at x (i.e., in the conormal
space of C(ϕ0, s0) above x).

3.1. The canonical relation of RΓ. We first prove that the forward operator (8) for the
dynamic setting is an elliptic FIO.

Theorem 12. Under Hypothesis 3, the operator RΓ is an elliptic FIO of order −1/2 with
phase function

(19) Φ(ϕ, s, x, σ) := σ(s −
(
Γ−1
ϕ x

)T
θ(ϕ))
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and amplitude

(20) a(ϕ, s, x, σ) := (2π)−1 |detDΓ−1
ϕ x|,

which is elliptic of order zero.

The proof is given in Appendix A.1.
Since RΓ is an FIO, we can determine its canonical relation using (13) of Definition 6.

Lemma 13. Under Hypothesis 3, the canonical relation of RΓ is

(21)
CΓ :=

{(
ϕ,H(ϕ, x), σ (ds− ∂ϕH(ϕ, x));x, σN (ϕ, x)

) ∣∣
ϕ ∈ (−ε, 2π + ε), x ∈ R

2, σ ∈ R \ {0}
}
,

where ε is as given in Hypothesis 3.
If the motion model is smoothly periodic in ϕ, then the condition on ϕ in (21) is replaced

by ϕ ∈ [0, 2π], and CΓ is still a smooth manifold without boundary when [0, 2π] is identified
with the unit circle, S1.

Proof. According to (13) in Definition 6, the canonical relation of RΓ is given by

CΓ :=
{
(ϕ, s, ∂(ϕ,s)Φ(ϕ, s, x, σ);x,−∂xΦ(ϕ, s, x, σ))

∣∣ (ϕ, s, x, σ) ∈ ΣΦ

}
,

where ΣΦ :=
{
(ϕ, s, x, σ) ∈ (−ε, 2π + ε)× R× R

2 × R \ 0
∣∣ ∂σ(ϕ, s, x, σ) = 0

}
. Using the rep-

resentation of the phase function (19) along with (17), ∂σΦ = (s−H(ϕ, x)) dσ, and thus
(ϕ, s, x, σ) ∈ ΣΦ if s = H(ϕ, x). The representation of CΓ then follows from the repre-
sentation of the differentials ∂(ϕ,s)Φ(ϕ, s, x, σ) = −σ∂ϕH(ϕ, x) + σds and ∂xΦ(ϕ, s, x, σ) =
−σ∂xH(ϕ, x) = −σN (ϕ, x), as noted in the proof of Theorem 12.

In the following theorem, we find conditions on the motion model under which RΓ satisfies
the microlocal Bolker assumption.

Theorem 14. Assume that the motion model satisfies Hypothesis 3.
1. If, for each ϕ ∈ (−ε, 2π + ε), the map

(22) x �→
(

H(ϕ, x)
DϕH(ϕ, x)

)

is one-to-one, then ΠL is injective.
2. If the motion model fulfills the condition

(23) IC(x, ϕ) := det

(
DxH(ϕ, x)

DxDϕH(ϕ, x)

)
�= 0

for all x ∈ R
2 and ϕ ∈ (−ε, 2π + ε), then the projection ΠL : CΓ → T ∗((−ε, 2π + ε)×R) \ 0 is

an immersion.
Thus, under these two conditions, RΓ satisfies the microlocal Bolker assumption (Definition
10).

If the motion is smoothly periodic, then (−ε, 2π + ε) can be replaced by [0, 2π] in this
theorem.
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To illustrate the geometric meaning of condition (22) for the motion model, we assume that
there exist two points x1 and x2 with H(ϕ, x1) = H(ϕ, x2) and DϕH(ϕ, x1) = DϕH(ϕ, x2) for
some ϕ ∈ [0, 2π]. The first equality implies that the two points are on the same integration
curve; i.e., the data at angle ϕ cannot distinguish between them. The second equality means
that if the angle of view ϕ changes infinitesimally, also the new curve cannot distinguish the
two points because they both stay on the same curve (at least infinitesimally). An example
for a motion model not satisfying (22) is any dynamic behavior in which two particles, which
are on the same integration curve for a time instance ϕ, are rotated with the same speed and
in the same direction as the radiation source

Condition (23), also referred to as an immersion condition, is equivalent to the condition
DϕDxH(ϕ, x) /∈ spanDxH(ϕ, x). The property IC(x,ϕ) = 0 means that, at least infinitesi-
mally at ϕ0, the line normal to the curve C(ϕ0,H(ϕ0, x0)) at x0 is stationary at ϕ0; i.e., the
curves near C(x0,H(ϕ0, x0)) are infinitesimally rigid at x0 (these statements are justified in
a related case in [38, Remarks 2 and 5]).

We should remark that the conditions in Theorem 14 are essentially equivalent to the
conditions of Theorem 2.1 in [24] for the fan beam case. There is an additional assumption
in that theorem that ensures that all singularities are visible in the reconstruction.

Proof of Theorem 14. On the set CΓ, we introduce global coordinates (ϕ, x, σ) by the map

(24)
c :(−ε, 2π + ε)× R

2 × R \ 0 → CΓ,
(ϕ, x, σ) �→ (ϕ,H(ϕ, x), σ(−∂ϕH(ϕ, x) + ds), x, σN (ϕ, x)).

In these coordinates, the projection ΠL is given by

(25) ΠL(ϕ, x, σ) = (ϕ,H(ϕ, x),−σ∂ϕH(ϕ, x) + σds).

Using the representation (25) of ΠL, one sees that ΠL is injective if for each ϕ ∈ (−ε, 2π+ε),
the map in (22) is injective.

The map ΠL is an immersion if its differential has constant rank 4. A calculation shows
that this is equivalent to

det

(
Dx1H(ϕ, x) Dx2H(ϕ, x)

−σDx1DϕH(ϕ, x) −σDx2DϕH(ϕ, x)

)
�= 0,

which is (23).

The importance of this Bolker assumption for the detection of object singularities in
dynamic Radon data is discussed in the next section.

3.2. Visible singularities. Now, we algebraically and geometrically classify singularities
of functions that appear in the data.

Theorem 15. Assume that the motion model, Γ, satisfies Hypothesis 3. Let f ∈ E ′(R2).
Then

(26) WF(RΓf) ⊂ CΓ ◦WF(f).

Now, assume also that RΓ satisfies the microlocal Bolker assumption. Then,

(27) WF(RΓf) = CΓ ◦WF(f).
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We will prove this theorem in Appendix A.2.
The explicit correspondence between object and data singularities is given in the following

corollary.

Corollary 16. Let f ∈ E ′(R2), and let Γ be a motion model satisfying Hypothesis 3. Let
(ϕ0, s0) ∈ (−ε, 2π + ε)× R, σ �= 0, β ∈ R.

If (ϕ0, s0;σ(ds− βdϕ)) ∈ WF(RΓf), then there is an x0 ∈ C(ϕ0, s0) such that

(x0, σN (ϕ0, x0)) ∈ WF(f),

where C(ϕ0, s0) is the integration curve given by (9) and N is given by (18).
Assume in addition that RΓ satisfies the microlocal Bolker assumption. For ϕ0 ∈ (−ε, 2π+

ε),

(28)

(ϕ0, s0;σ(ds− βdϕ)) ∈ WF(RΓf)

if and only if there is an x0 ∈ C(ϕ0, s0) such that

∂ϕH((ϕ0, x0) = β and (x0, σN (ϕ0, x0)) ∈ WF(f).

Furthermore, if such a point x0 exists, then it is unique.

The proof follows immediately from Theorem 15 and the expression (21) for the canonical
relation CΓ. In particular, the first statement follows from (26), and the equivalence (28)
follows from the injectivity assumption in Definition 10 as well as (24), (25), and (27).

For B ⊂ (−ε, 2π + ε)× R define

(29) T ∗
B((−ε, 2π + ε)× R) =

{
(ϕ, s, η)

∣∣ (ϕ, s) ∈ B, η ∈ T ∗
(ϕ,s)((−ε, 2π + ε)× R)

}
.

We now define what we mean for a singularity of f to be visible in the data.

Definition 17. Let A ⊂ (−ε, 2π + ε), and let Γ be a motion model satisfying Hypothesis 3.
Assume that the associated Radon transform, RΓ, satisfies the microlocal Bolker assumption.
Let f ∈ E ′(R2), and let (x0, ξ0) ∈ WF(f). Then we will call (x0, ξ0) a visible singularity from
data above A (or visible in the data) if ξ0 has the representation

(30) ξ0 = σN (ϕ0, x0)

for some σ �= 0 and ϕ0 ∈ A.
We call

(31) VA =
{
(x, σN (ϕ, x)

∣∣ x ∈ R
2, ϕ ∈ A, σ �= 0

}
the set of all potentially visible singularities from data above A. Covectors in

IA =
(
T ∗(R2) \ 0

)
\ Vcl(A)

will be called invisible singularities from A.

Using (16), it follows that

(32) VA = CtΓ ◦ T ∗
A×R((−ε, 2π + ε)× R) = ΠR

(
Π−1
L

(
T ∗
A×R((−ε, 2π + ε)× R)

))
.
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Remark 18. We now use Corollary 16 to justify the definition. If the motion model satisfies
Hypothesis 3, and if RΓ satisfies the microlocal Bolker assumption, then a singularity (x, ξ) ∈
WF(f) causes a singularity from the data RΓf above the open set A (i.e., in T ∗

A×R
((−ε, 2π +

ε) × R)) if and only if (x, ξ) is in VA. The singularities of f that are in IA are smoothed by
RΓ. Note that the singularities of f in Vbd(A) are problematic because they are in directions
that can be detectable or masked.

The geometric meaning of the visible singularities is described in our next result.

Corollary 19. Let the motion model fulfill the microlocal Bolker assumption. The dynamic
operator RΓ detects a singularity of f at a point x0 in direction ξ0 if and only if there is an
integration curve passing through x0 with ξ0 conormal to the curve at x0 (i.e., the curve has
tangent line at this point that is normal to ξ0).

Proof. Let s0 = H(ϕ0, x0). Corollary 16 shows that, under the microlocal Bolker as-
sumption, a singularity of f at (x0, ξ0) is detectable if and only if ξ0 = σN (ϕ0, x0) for some
σ �= 0. Furthermore, Lemma 11 establishes that for each (ϕ, s) ∈ (−ε, 2π + ε) × R and each
x ∈ C(ϕ, s) the covector N (ϕ, x) is conormal to C(ϕ, s) at x. Thus a singularity of f at
(x0, ξ0) is detectable if and only if ξ0 is conormal to C(ϕ0, s0) at x0.

Remark 20. In general, each data singularity at a point in data space, (ϕ0, s0), stems from
an object singularity at a point x0 ∈ C(ϕ0, s0) with direction ξ0, where ξ0 is perpendicular to
the curve C(ϕ0, s0) at x0. However, in case the microlocal Bolker assumption is not fulfilled
by the motion model, two object singularities could cancel in the data and thus not lead to a
corresponding data singularity.

In contrast, under the microlocal Bolker assumption, every singularity in the data comes
from a singularity in the object. Note that Example 22 shows that not all singularities of the
object necessarily show up in the data.

Another way to understand detectable singularities is the following. (x0, ξ0) ∈ VA if there
is some σ �= 0 and ϕ0 ∈ A such that ξ0 ∈ Range(μx0), where μx0 is the map

(33) μx0(σ, ϕ0) = σN (ϕ0, x0)

for (σ, ϕ0) ∈ (R \ 0)×A (see (30)). If this map μx0 is not injective, the object singularity x0
can cause multiple singularities in the data, resulting in redundant data, as illustrated by our
next example.

Example 21. Let the dynamic behavior of f be given by the rotation Γϕx = Aϕx with
rotation matrix

Aϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

This describes an object which rotates in the direction opposite to the motion of the radiation
source, with the same rotational speed. In particular, it holds that Γϕ = Γϕ+2π for ϕ ∈ [0, 2π],
so this is a smoothly periodic motion model. Since Aϕ is a unitary matrix for all ϕ ∈ [0, 2π],
we have

H(ϕ, x) = (A−1
ϕ x)T θ(ϕ) = xTAϕθ(ϕ) = xT θ(2ϕ).
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By a calculation using (23), IC(x, ϕ) = 2 cos2(2ϕ) + 2 sin2(2ϕ) = 2, and the map

x �→
(

xT θ(2ϕ)
2xT θ(2ϕ)⊥

)

is one-to-one since the matrix
(
θ(2ϕ), θ(2ϕ)⊥

)T
is nonsingular. Thus, the dynamic operator

RΓ satisfies the microlocal Bolker assumption, and WF(RΓf) = CΓ ◦WF(f).
Now, let (x0, ξ0dx) ∈ WF(f) with ξ0 := θ(π). Since N (π2 , x0) = N (3π2 , x0) = ξ0, this one

singularity in object space causes two singularities in data space:(π
2
,H

(π
2
, x0

)
, σds− σxT θ⊥(π)dϕ

)
∈ WF(RΓ) and(

3π

2
,H

(
3π

2
, x0

)
, σds− σxT θ⊥(π)dϕ

)
∈ WF(RΓ).

This is according to the fact that the projection ΠR : CΓ → T ∗(R2) \ 0 is not injective due to
the motion-introduced data redundancy.

In [27], a motion estimation procedure based on redundant data singularities was proposed:
if multiple edges are seen twice and the motion model is known incorrectly, the reconstructed
image will appear cluttered, which can then be used to iteratively determine optimal motion
parameters.

If the map μx0 in (33) is surjective for all x0 ∈ R
2 and the motion model satisfies the

microlocal Bolker assumption, then all singularities in all directions are gathered in the mea-
sured data, and we speak of complete data. In the static case, this occurs when the radiation
source rotates around the object in a complete circle (see, e.g., [35]). If μx0 is not surjective,
then the point x0 is only probed by curves from a limited angular range. The following ex-
ample illustrates that the dynamic behavior of the object can lead to incomplete data, even
if the source rotates through a complete circle.

Example 22. We consider the rotational movement Γϕx = Aϕx with

Aϕ =

(
cos(23ϕ) sin(23ϕ)

− sin(23ϕ) cos(23ϕ)

)
.

In this setting, the object rotates in the same direction as the radiation source with half of its
rotation speed. In particular, this is a nonperiodic motion model, and

H(ϕ, x) = xTAϕθ(ϕ) = xT
(
cos(ϕ3 )

sin(ϕ3 )

)
.

One shows that the injectivity condition (22) is fulfilled in the same way as in Example 21.
Computing the derivatives, we obtain IC(x, ϕ) = 1

3 cos
2(ϕ3 )+

1
3 sin

2(ϕ3 ) =
1
3 . So, the microlocal

Bolker assumption holds.
Now, assume (x0, ξ0dx) ∈ WF(f) with ξ0 = θ(5π6 ). According to Theorem 15, a cor-

responding singularity is seen in the data if there exists an angle ϕ0 ∈ [0, 2π] with ξ0 =
Aϕ0θ(ϕ0) = θ(ϕ0

3 ) or ξ0 = −Aϕ0θ(ϕ0) = θ(−ϕ0

3 ). Since ϕ0

3 ∈ [0, 23π] for all ϕ0 ∈ [0, 2π], an
angle ϕ0 with the required property does not exist. Hence, the singularity (x0, ξ0dx) ∈ WF(f)
cannot be seen in the data.
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4. The dynamic reconstruction operator for smoothly periodic motion. In this section,
we prove the main theorem for smoothly periodic motion. Basically, under our assumptions,
the reconstruction operator is well-behaved and reconstructs all singularities of the object
without introducing new artifacts. First, we define the backprojection operator.

4.1. Backprojection for smoothly periodic motion. In general, we denote the backpro-
jection operator by Rt

Γ and define it as

(34) Rt
Γg(x) =

∫
ϕ∈[0,2π]

|detDΓ−1
ϕ x| g(ϕ, (Γ−1

ϕ x)T θ(ϕ)) dϕ.

Note that, for smoothly periodic motion, this backprojection operator is the formal dual, R∗
Γ,

to RΓ for g ∈ E([0, 2π] × R). A generalization to arbitrary weights is explained in Appendix
A.5.

Proposition 23. If the motion model Γϕ is smoothly periodic, then the backprojection oper-
ator, Rt

Γ, can be composed with RΓ for f ∈ E ′(R2) and, if P is a pseudodifferential operator,
then the reconstruction operator L = Rt

ΓPRΓ is defined and continuous on domain E ′(R2).

Proof. The proof will now be outlined. First, we show that when f ∈ D(R2), RΓf ∈
D([0, 2π]×R). By the smoothness assumptions on Γϕ, the integrals over C(ϕ, s) vary smoothly
in each variable, and because Γϕ is 2π-periodic, the curves are 2π-periodic (i.e., C(ϕ+2π, s) =
C(ϕ, s)). Thus, the integrals RΓf(ϕ, s) are smooth and 2π-periodic because each f ∈ D(R2)
has fixed compact support and Γϕ is 2π-periodic. Now, to show that RΓ is continuous, one
considers the seminorms on D([0, 2π]×R) (see [40, Part II, section 6.3]). So, assume fk → f in
D(R2); this means that the sequence (fk) and all derivatives converge uniformly to those of f ,
and the fk and f are all supported in a fixed compact set K ⊂ R

2. By the continuity of Γϕ and
compactness of [0, 2π], there is an R > 0 such that C(ϕ, s) ∩K = ∅ for |s| > R, so RΓfk and
RΓf are supported in [0, 2π] × [−R,R]. Finally, one uses Lebesgue’s dominated convergence
theorem and properties of derivatives of integrals to show that RΓfk and all derivatives in ϕ, s
converge uniformly to those of RΓf and are all supported in a fixed compact set in [0, 2π]×R.
Since Rt

Γ is the formal dual to RΓ in the smoothly periodic case, an analogous proof shows
that Rt

Γ : E([0, 2π] ×R) → E(R2) is continuous.
By duality, if the motion is smoothly periodic, then RΓ : E ′(R2) → E ′([0, 2π] × R) and

Rt
Γ : D′([0, 2π] × R) → D′(R2) are both weakly continuous. Since P : E ′([0, 2π] × R) →

D′([0, 2π] × R) is also continuous, L is weakly continuous.

4.2. The main theorem for smoothly periodic motion. Our main theorem for this case
gives conditions under which our reconstruction operator images all singularities and adds no
artifacts. It is a parallel beam analogue of the fan beam result of Katsevich [24, Theorem
2.1]. However, in that article, the backprojection operator has a different measure; our proof
would still be valid in this case (see Appendix A.5). The same distinctions apply to [2] and
the proof outline in the last section of [29] for generalized Radon transforms. Furthermore,
because of their goals, those authors consider only a few special filters, P.

Theorem 24. Assume that the motion model is smoothly periodic and that RΓ satisfies the
microlocal Bolker assumption. Let L = Rt

ΓPRΓ, where P is an elliptic pseudodifferential
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operator with everywhere positive symbol. Then, L is an elliptic pseudodifferential operator.
Therefore, for any f ∈ E ′(R2),

(35) WF(LF ) = WF(f).

The proof of Theorem 24 will be given in Appendix A.3.

Remark 25. We highlight several implications of the theorem and its proof.
By (35), all singularities are visible in the reconstruction if the motion is smoothly periodic

and satisfies the microlocal Bolker assumption.
Furthermore, in Remark 29, we prove that L is elliptic as long as the pseudodifferential

operator P is positive on ΠL(C). The standard Lambda tomography filter P = −d2/ds2 and
the standard filtered backprojection operator P =

√
−d2/ds2 both satisfy this condition, even

though their symbols are not elliptic on T ∗([0, 2π] × R).
Finally, the positivity condition can be further relaxed, and this will be explained in

Remark 29.

5. Nonperiodic motion and added artifacts. If the motion model is smoothly periodic
and satisfies the microlocal Bolker assumption, then all singularities are visible in the data and
in the reconstruction. That is, L = Rt

ΓPRΓ reconstructs all singularities if P is elliptic with
positive symbol (see Theorem 24 and Remark 25). However, in smoothly periodic motion,
the investigated object is in the same state at the beginning and end of the data acquisition.
Thus, in applications, this condition will in general not be met.

In this section, we therefore study what can be said for nonperiodic motion models under
the microlocal Bolker assumption. We assume that the model satisfies Hypothesis 3, so the
motion model is defined on (−ε, 2π + ε) × R for some ε > 0. However, in practice, the data
are taken only on [0, 2π]×R. Note that the microlocal analysis developed in section 3 is valid
on an open interval and, for nonperiodic motion, data are given on [0, 2π] × R. This creates
problems that we will now analyze.

5.1. The forward and backprojection operators for nonperiodic motion. Since the data
are given on [0, 2π]×R, the forward operator must be restricted, so RΓ must be multiplied by
the characteristic function of [0, 2π] × R to restrict to the data set. Therefore, the restricted
forward operator is

(36) RΓ,[0,2π] := χ[0,2π]×RRΓ.

For convenience in the proof, the backprojection operator will use the formal dual to RΓ

on (−ε, 2π + ε)×R rather than Rt
Γ. One can show for integrable functions g that the formal

dual to RΓ is defined by

(37) R∗
Γg(x) =

∫
(−ε,2π+ε)

|detDΓ−1
ϕ x| g(ϕ, (Γ−1

ϕ x)T θ(ϕ)) dϕ.

Since R∗
Γ does not have domain D′((−ε, 2π + ε) × R), we multiply by a cutoff function. Let

ψ : (−ε, 2π + ε) → R be equal to one on [0, 2π] × R and be supported in (−ε, 2π + ε). We let

(38) Rt
Γ,ψg = R∗

Γ (ψg) .
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Proposition 31 shows that this restricted dual is defined for g ∈ D′((−ε, 2π + ε)× R).
The restricted reconstruction operator is defined as

(39) L[0,2π] = Rt
Γ,ψPRΓ,[0,2π],

where P is a pseudodifferential operator in data space. In the course of the proof of Theorem
26 we will prove that these operators are defined for distributions and can be composed (see
Proposition 31). Furthermore, note that our theorems are trivially valid on any subinterval
of [0, 2π] by scaling.

5.2. Characterization of artifacts for the reconstruction operator with nonperiodic
motion. In the following, we characterize the propagation of singularities under reconstruction
in the case of a nonperiodic motion model.

Let A ⊂ (−ε, 2π + ε); then, for f ∈ E ′(R2), we define

(40) WFA(f) := WF(f) ∩ VA,

where VA is defined in (31). When A is open andRΓ satisfies the microlocal Bolker assumption,
then Remark 18 justifies why WFA(f) is the set of singularities of f that are visible in data
of RΓf over A × R. However, it is more subtle to characterize which singularities of f are
visible in the reconstruction, which we now do.

Theorem 26. Let f ∈ E ′(R2), P be a pseudodifferential operator, and L[0,2π] be given by
(39). Then,

WF(L[0,2π]f) ⊂ WF[0,2π](f) ∪ A(f),

where

A(f) := {(x̃, σN (x̃, ϕ)) : ϕ ∈ {0, 2π}, s ∈ R, x̃ ∈ C(ϕ, s), σ �= 0,(41)

and ∃x ∈ C(ϕ, s), (x, σ(N (ϕ, x))) ∈ WF(f)}

denotes the set of possible added artifacts.

Remark 27. This theorem shows that only singularities (x, ξ) ∈ WF(f) with directions in
the visible angular range can be reconstructed from dynamic data. Singularities of f outside
of V[0,2π] are smoothed.

Additionally, if f has a singularity at a covector (x, σN (ϕ0, x)), where ϕ0 ∈ {0, 2π}, then
that singularity can generate artifacts all along the curve C(ϕ0,H(ϕ0, x)). These covectors
are in the set

C(ϕ0, x, σ) =
{
(x̃, σN (ϕ0, x̃))

∣∣ x̃ ∈ C(ϕ0,H(ϕ0, x))
}
.

Note that the covector N (ϕ0, x̃) is conormal to the curve C(ϕ0,H(ϕ0, x) at x̃ by Lemma 11.
Furthermore, the set A(f) is the union of the C(ϕ0, x, σ) for

ϕ0 ∈ {0, 2π} , (x, σN (ϕ0, x)) ∈ WF(f).

Under an ellipticity condition on P, we will also have a lower bound on the singularities
of f that are visible in the reconstruction L[0,2π]f .
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Theorem 28. Let RΓ be a motion model satisfying the microlocal Bolker assumption. As-
sume that P is an elliptic pseudodifferential operator. Finally, assume the uniqueness condi-
tion

(42)
∀(x, ξ) ∈ T ∗(R2), there is at most one (ϕ, s) ∈ (−ε, 2π + ε)× R with

x ∈ C(ϕ, s) and ξ conormal to C(ϕ, s) at x

holds. Then,

(43) WF(0,2π)(f) = WF(0,2π)(L[0,2π]f),

where WF(0,2π) is defined in (40).

Descriptively, condition (42) means that the motion does not produce redundant integra-
tion curves (i.e., no two curves are ever tangent to each other). Under the assumptions of
this theorem, singularities of f in V(0,2π) will be visible in the reconstruction. In general, this
result does not mean all singularities of f can be recovered; in the limited data case, such as
in Example 22, some singularities will likely be invisible from the data.

Theorem 28 is valid under some weaker assumptions, but the statements are more technical
(similar to the description in Remark 29). The biggest obstacle to weakening the uniqueness
assumption (42) occurs when a singularity at (x, ξ) is conormal to a curve C(ϕ0, s0) for
ϕ0 ∈ (0, 2π) and conormal to curves at ends of the angular range: C(0, s1) or C(2π, s2).
Then, added artifacts along C(0, s1) or C(2π, s2) could cancel a real singularity at (x, ξ).
Ellipticity theorems with more general assumptions than (42) are given for the hyperplane
transform in [11, Theorem 5.4], and similar assumptions could be given here.

5.3. An artifact reduction strategy. For motion that is not smoothly periodic, there is
another way to handle the limited data for ϕ in [0, 2π] rather than multiplying by a sharp
cutoff, χ[0,2π]×R. One can make RΓ and Rt

Γ 2π-periodic by multiplying by a smooth cutoff
function, φ, in ϕ that has compact support in (0, 2π) and is equal to one on most of this
interval. In this case, the smoothed reconstruction operator would be

(44) Lφ(f) =
(
Rt

Γφ
)
P (φRΓf) ,

and, for f ∈ D(R2), φRΓf is smooth and 2π-periodic so it is in D([0, 2π] × R). Then, these
operators can be composed and are continuous on distributions, and the proof is essentially
the same as the proof of Proposition 23.

Under the microlocal Bolker assumption,
(
Rt

Γφ
)
(P (φRΓ)) is a standard pseudodifferential

operator. The proof is essentially the same as in the smoothly periodic case because φRΓ and
its formal adjoint, R∗

Γφ = Rt
Γφ, are FIO, satisfying the microlocal Bolker assumption.

It is important to point out that this reconstruction operator is not necessarily elliptic
everywhere, even though it is a standard pseudodifferential operator. Furthermore, not only
the added artifacts will be smoothed out; visible singularities near A(f) (i.e., for covectors
(x, η(ϕ, x) for ϕ near 0 or 2π) will be attenuated as well, because the cutoff φ is zero near 0
and 2π.

This idea has been used in X-ray tomography without motion in [9, 11], and generalizations
to nonsmooth cutoffs are in [22]. The analogous idea is used in [24] for motion compensated
CT in the fan-beam case.
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Figure 1. Object at time instance ϕ = 0
(reference object).

Figure 2. Reconstruction incorporating the
exact motion functions.

6. Numerical examples. In this section, we use our theoretical results to analyze the
information content in the measured data using numerical examples. First, we consider a
specimen which performs a rotational movement during the data acquisition, in addition to
the rotation of the radiation source, where Γϕx = Aϕx, x ∈ R

2, ϕ ∈ [0, 2π] with the unitary
matrix from Example 22:

Aϕ :=

(
cos(23ϕ) sin(23ϕ)

− sin(23ϕ) cos(23ϕ)

)
, ϕ ∈ [0, 2π].

Note that this rotation is not 2π-periodic.
The initial state, i.e., the reference function f , of our specimen is displayed in Figure 1.

The motion-corrupted Radon data RΓf are computed in the 2D parallel scanning geometry
with 300 uniformly distributed angles in [0, 2π] and 450 detector points.

In Example 22, it is shown that not all singularities of the specimen are ascertained by
the measured data. More precisely, a singularity (x, ξ dx) ∈ WF(f) is detected if there are
ϕ ∈ [0, 2π] and σ ∈ R such that

ξ0 = σDxH(ϕ, x) = σθ
(ϕ
3

)
.

Thus,

{σDxH(ϕ, x)
∣∣ ϕ ∈ [0, 2π], σ ∈ R \ 0} =

{
σθ(ϕ)

∣∣ϕ ∈
[
0,

2π

3

]
∪
[
4π

3
, 2π

]
, σ ∈ R \ 0

}
;

i.e., only singularities with direction

(45) ξ = σθ(ϕξ), ϕξ ∈
[
0,

2

3
π

]
∪
[
4π

3
, 2π

]

are gathered in the data. In other words, singularities with direction ξ = σθ(ϕξ), ϕξ ∈
(23π,

4
3π) cannot be reconstructed from the dynamic data set.

This is clearly seen in the reconstruction (Figure 2). Here, we used the exact motion
functions and the algorithm proposed in [16] as a reconstruction method which compensates
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Figure 3. Nonaffine motion of the phantom during the scanning.

known affine deformations exactly. The algorithm outlined in [16] is of filtered backprojection
type, and hence it fits into our framework of reconstruction operators L[0,2π] = Rt

Γ,ψPRΓ,[0,2π];
see (39).

Further, the singularities gathered at time instances ϕ = 0 and ϕ = 2π create added
artifacts along their integration curves. Since

C(ϕ, s) = {x ∈ R
2
∣∣ (Γ−1

ϕ x)T θ(ϕ) = s} = {x ∈ R
2
∣∣xTAϕθ(ϕ) = s},

these added artifacts arise along straight lines with direction θ
(
4
3π

)⊥
and

(
0−1

)
. Thus, the

reconstructed image, Figure 2, shows the typical limited angle streak artifacts known from
the static case on the angular range (23π,

4
3π).

Next, we illustrate our results for a nonaffine motion model, where the integration curves
C(ϕ, s) no longer correspond to straight lines. As an example, we consider the nonperiodic
motion model

Γϕx = Γscal
ϕ Aϕx

with rotation matrix

Aϕ =

(
cos(23ϕ) sin(23ϕ)

− sin(23ϕ) cos(23ϕ)

)

and

Γϕx =

(
x1 s1(ϕ, x)
x2 s2(ϕ, x)

)

with scaling parameters that depend on the time ϕ as well as on the particle x; see [18]. In
the numerical example,

si(ϕ, x) =

4∑
j=0

( 4
√
5mi xi)

j, i = 1, 2,

with m1 = sin(1.5 · 10−2 ϕ/π), m2 = sin(2.1 · 10−2 ϕ/π). The deformation of the object
during the data acquisition is illustrated in Figure 3. To compare our reconstruction results,
the reference state is shown again in Figure 4.

In [18], a reconstruction method was proposed which compensates for nonaffine motion,
and which belongs to the class of reconstruction operators L[0,2π] = Rt

Γ,ψPRΓ,[0,2π]; see (39).
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Figure 4. Object in Figure 3 at time in-
stance t = 0 (reference object).

Figure 5. Reconstruction incorporating the
exact motion functions of the object in Figure
4.

Figure 6. Figure 5 with integration curves
tangent to the outer ellipses for ϕ = 0 high-
lighted.

Figure 7. Figure 5 with integration curves
tangent to the outer ellipses for ϕ = 2π high-
lighted.

Applying this method to the dynamic data set provides an image showing the visible
singularities, i.e., those ascertained in the data, as well as additional artifacts; see Figure 5.
Figures 6 and 7 display, in addition, the integration curves passing through the singularities
of the two outer ellipses, detected at time instances ϕ = 0 and ϕ = 2π, respectively. The
comparison shows that, in agreement with our theory, the additional artifacts spread along
these integration curves. Since Γ0x = x, the curves for ϕ = 0 are straight lines, whereas at
ϕ = 2π they are indeed curves, not straight lines.

The artifact reduction strategy described in section 5.3 performs in a way similar to the
static case, which has been analyzed in detail, e.g., in [9, 11].

7. Conclusion and outlook. In this article, we showed that the dynamic behavior of
the object in computerized tomography can lead to limited data problems, and this means
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that certain singularities will be invisible in the reconstruction, regardless of the performance
of the motion compensation algorithm. We also provided a characterization of detectable
singularities that depends on the exact dynamics, as well as possible added artifacts which
arise even if the object’s dynamic behavior is exactly known in the reconstruction step. In
applications, this has to be taken into account at the evaluation of the reconstructed images
in order to obtain a reliable diagnosis.

Our results can serve as a basis for developing mathematical criteria to distinguish added
artifacts arising due to the information content in the data from motion artifacts which occur
if the motion is not correctly compensated for. This can have great benefits in applications,
for example in the course of estimating the a priori unknown motion parameters which are
required in order to apply a motion compensation algorithm for the reconstruction. To this
end, one first has to develop a motion model which describes the type of movement performed
by the object, and then the parameters of this model have to be estimated from the measured
data via analytic [30] or iterative [27] methods. However, the estimated parameters will always
be affected by errors, especially in the iterative procedure. Hence, motion artifacts as well as
added artifacts described in this article will appear in the reconstructed images. In this case,
it is essential to understand and evaluate whether any given artifact is related to an inaccurate
motion model and incorrect parameters or whether it is inevitable due to information missing
from the data.

Appendix A.

A.1. The forward operator: Proof of Theorem 12. Let f ∈ D(R2), let F be the Fourier
transform on R

2, and let Fs be the 1D Fourier transform in the s variable with the following
normalizations:

Ff(ξ) = 1

2π

∫
e−ix·ξf(x) dx, Fsg(ϕ, τ) =

1√
2π

∫
e−iτsg(ϕ, s) ds.

Using the Fourier slice theorem for the classical Radon line transform with fixed ϕ,

F(RΓf)(ϕ, σ) = Fs(R(f ◦ Γϕ))(ϕ, σ) =
√
2πF(f ◦ Γϕ)(σθ(ϕ)).

Due to this relation and the substitution z := Γϕx, we obtain the following representation:

RΓf(ϕ, s) = (2π)−1/2

∫
R

eiσs Fs(RΓf)(ϕ, σ) dσ

=

∫
R

eiσsF(f ◦ Γϕ)(σθ(ϕ)) dσ

= (2π)−1

∫
R

eiσs
∫
R2

f(Γϕx) e
−iσxT θ(ϕ) dxdσ

= (2π)−1

∫
R

eiσs
∫
R2

f(x) |detDΓ−1
ϕ x| e−iσ(Γ−1

ϕ x)T θ(ϕ) dxdσ

=

∫
R

∫
R2

eiσ(s−(Γ−1
ϕ x)T θ(ϕ)) f(x)|detDΓ−1

ϕ x| (2π)−1 dxdσ.
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The function

Φ(ϕ, s, x, σ) = σ(s − (Γ−1
ϕ x)T θ(ϕ)) = σ(s −H(ϕ, x))

is homogeneous of degree 1 with respect to σ. A calculation using this definition shows

∂σΦ =
(
s− (Γ−1

ϕ x)T θ(ϕ)
)
dσ = (s−H(ϕ, x)) dσ,

∂sΦ = σds,

∂xΦ = −σ
(
(DxΓ

−1
ϕ x)T

)
θ(ϕ) dx = −σN (ϕ, x)dx,

which we justify using (17) and (18). Since Γϕ is a diffeomorphism, the Jacobian matrix

Dx

(
Γ−1
ϕ x

)
has nowhere-zero determinant, so the product

(
Dx

(
Γ−1
ϕ x

))T
θ(ϕ) is nowhere zero.

Thus, altogether, we obtain that (∂(ϕ,s)Φ, ∂σΦ) and (∂xΦ, ∂σΦ) are nonzero for all (ϕ, s, x, σ).

Hence, Φ is a phase function. Note that Φ is nondegenerate because ∂
∂s

(
∂
∂σΦ

)
= 1 is nonzero.

Since Γϕ and its inverse are smooth in (ϕ, x), the amplitude of RΓ, a =
∣∣Dx

(
Γ−1
ϕ x

)∣∣, and
phase function, Φ, are smooth on their respective domains. Furthermore, a(ϕ, s, x, σ) does
not depend on σ, so it is trivially a symbol of order 0 (see (10)). This means that RΓ is an
FIO with order −1/2. Since Γϕ is a diffeomorphism for each ϕ ∈ (−ε, 2π+ ε), the symbol a is
positive and bounded away from zero on every compact set in (−ε, 2π+ ε)×R

2 (and arbitrary
σ). This shows that the amplitude a is elliptic, and so RΓ is an elliptic FIO.

A.2. The forward operator: Proof of Theorem 15. According to Theorem 12, RΓ is an
FIO. Thus, (26) follows by the Hörmander–Sato lemma (Theorem 8).

Now assume that the motion model in addition fulfills the microlocal Bolker assumption.
As noted in Theorem 12, the symbol of RΓ is elliptic. The proof of the theorem in full
generality follows from the general calculus of FIO in [19], and it will be outlined here.

Let f ∈ E ′(R2), and let (x0, ξ0) ∈ WF(f) ∩ V(−ε,2π+ε). Then the set

CΓ,(x0,ξ0) = Π−1
R {(x0, ξ0)}

is nonempty. By the microlocal Bolker assumption, ΠL is an immersion, and so ΠR is also an
immersion by [19, Proposition 4.1.3]. Therefore, CΓ,(x0,ξ0) is a discrete set in CΓ. To better
understand this set, we will use the diffeomorphism c : (−ε, 2π+ ε)×R

2× (R \ 0) → CΓ, given
in (24). Let

λ0 = c (ϕ0, x0, σ0)

= (ϕ0,H(ϕ0, x0), σ0 (−∂ϕH(ϕ0, x0) + ds) , x0, σ0N (ϕ0, x0)) ∈ CΓ,(x0,ξ0).

Note that ξ0 = σ0N (ϕ0, x0). Without loss of generality, assume σ0 > 0. Let

η0 = σ0 (−∂ϕH(ϕ0, x0) + ds) .

We now prove that there is a neighborhood U of ϕ0 such that λ0 is the only point in
CΓ,(x0,ξ0) with ϕ ∈ U . Assume otherwise; then there must be a sequence (ϕj) that converges
to ϕ0 and another sequence (σj) in R \ 0 such that ΠR (c(ϕj , x0, σj)) = (x0, ξ0). However, a

calculation using the definitions of ΠR and c shows that σj =
‖ξ0‖

‖DxH(ϕj ,x0)‖ . Therefore σj → σ0
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and c(ϕj , x0, σj) → c(ϕ0, x0, σ0) = λ0 in CΓ,(x0,ξ0). This contradicts the fact that CΓ,(x0,ξ0) is
discrete.

Let φ0 be a smooth cutoff function supported in U and equal to one in a smaller neighbor-
hood of ϕ0, and let φ1 be a cutoff function equal to one in a neighborhood of s0 = H(ϕ0, x0).
For (ϕ, s) ∈ (−ε, 2π + ε)× R let φ(ϕ, s) = φ0(ϕ)φ1(s). Now, let

(46) Mφ(g) = φg.

Then, Mφ : D′((−ε, 2π + ε) × R) → E ′((−ε, 2π + ε) × R) is trivially a pseudodifferential
operator that has amplitude φ(ϕ, s) (which is constant in η) and is nonzero and hence elliptic
at (ϕ0, s0, η0).

Let R∗
Γ : E ′((−ε, 2π+ε)×R) → D′(R2) be the formal adjoint of RΓ : D(R2) → E((−ε, 2π+

ε)×R). Note that, in this nonperiodic case, R∗
Γ is not the backprojection defined by (34) but

the dual operator defined by (37). Furthermore, R∗
Γ is an FIO with canonical relation CtΓ.

Because φ has compact support, R∗
Γ, Mφ, and RΓ can be composed. Because ΠL is an

immersion, CΓ and CtΓ are local canonical graphs, so the composition R∗
ΓMφRΓ is an FIO

associated with the canonical relation

CtΓ ◦ CΓ ⊂ Δ :=
{
(x, ξ;x, ξ)

∣∣ (x, ξ) ∈ T ∗(R2) \ 0
}
.

Since CtΓ ◦ CΓ ⊂ Δ, R∗
ΓMφRΓ is a pseudodifferential operator.

The top order symbol of R∗
Γ(MφRΓ) at (x0, ξ0) is essentially

(47) φ(ϕ0,H(ϕ0, x0))
|det(DxΓϕ0x0)|2

2π ‖ξ0‖
,

as can be shown using the symbol calculation in the proof of Theorem 2.1 in [35]. Also, as
ΠR : CΓ → T ∗(R2) \ 0 is a conic immersion, the inverse function theorem shows that ϕ is a
smooth function of (x, ξ), at least for ϕ near ϕ0 and for x near x0. We use that this symbol is
nonzero on only one element of CΓ,(x0,ξ0), λ0, since ϕ0 is the only angle in U associated to an
element of CΓ,(x0,ξ0). This symbol is elliptic near (x0, ξ0) because it is nonzero and homogeneous
in ξ. Therefore, R∗

Γ(MφRΓ) is elliptic near (x0, ξ0dx). So, as (x0, ξ0dx) ∈ WF(f),

(x0, ξ0) ∈ WF(R∗
Γ(MφRΓ)).

Let ΠtL : CtΓ → T ∗((−ε, 2π + ε) × R) and ΠtR : CtΓ → T ∗(R2) be the natural projections.
Since

(x0, ξ0dx) ∈ WF(R∗
Γ [MφRΓ(f)]) ⊂ CtΓ ◦WF(MφRΓf) = ΠtR

((
ΠtL

)−1
(WF(MφRΓf))

)
,

some element of ΠtL(CΓ,(x0,ξ0)) is in WF(MφRΓf). Since λ0 is the only covector in CΓ,(x0,ξ0) on
which the symbol of R∗

ΓMφRΓ is nonzero, ΠL(λ0) = (ϕ0,H(ϕ0, x0), η0) is the only element of
ΠtL(CΓ,(x0,ξ0)) on which Mφ is nonzero. Therefore, (ϕ0,H(ϕ0, x0), η0) ∈ WF(RΓf).
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A.3. The smoothly periodic case: Proof of Theorem 24. The proof of the theorem in
full generality follows from arguments in [13, 15, 35].

Since the motion model is smoothly periodic, we can use Proposition 23 to infer that
RΓ : E ′(R2) → E ′([0, 2π]×R) and Rt

Γ : D′([0, 2π]×R) → D′(R2) (which is the formal adjoint
in this case) are both continuous and can be composed with any pseudodifferential operator
P : E ′([0, 2π] × R) → D′([0, 2π] × R).

We first show

(48) ΠR : CΓ → T ∗(R2) \ 0 is surjective.

This will imply that

ΠR
(
Π−1
L (T ∗([0, 2π] × R) \ 0)

)
= T ∗(R2) \ 0,

so, from the discussion in section 3.2, V[0,2π] = T ∗(R2) \ 0, and every singularity is in V[0,2π]

(i.e., visible in the data according to Definition 17).
By (23), DxH(ϕ, x) is never zero (or the determinant IC(x, ϕ) would be zero). For the same

reason, Dϕ (DxH(ϕ, x)) is never zero, and DxH(ϕ, x) and Dϕ (DxH(ϕ, x)) are not parallel.
Fix x0 ∈ R

2. Consider the function A : [0, 2π] → S1 defined by

A(ϕ) :=
DxH(ϕ, x0)

‖DxH(ϕ, x0)‖
∈ S1.

The map A is periodic of period 2π and continuous since the motion model is smoothly
periodic. Because DxH(ϕ, x0) and Dϕ (DxH(ϕ, x0)) are not parallel, a calculus exercise shows
that A′(ϕ) is never zero. Therefore, the 2π-periodic path

[0, 2π] � ϕ �→ A(ϕ) ∈ S1

starts at A(0) and ends at A(2π) = A(0) and moves in only one direction. This shows that
the range of ϕ �→ A(ϕ) is all of S1.

Let x0 ∈ R
2 and ξ0 ∈ R

2 \ 0. Let ϕ0 ∈ [0, 2π] be an angle so that DxH(ϕ0, x0) is parallel
to ξ0. This can be done because ϕ �→ A(ϕ) has range S1. In the global coordinates on CΓ
given by (24),

(49) ΠR (c(ϕ0, x0, σ)) = (x0, σN (ϕ0, x0)) ,

and for appropriate σ �= 0, σDxH(ϕ0, x0) = ξ0. Therefore ΠR : CΓ → T ∗(R2) \ 0 is surjective.
Furthermore, because A′(ϕ) is never zero and [0, 2π] is compact, there are at most a finite

number of angles ϕ ∈ [0, 2π] with A(ϕ) = ξ0/ ‖ξ0‖. This shows that there are only a finite
number of points in CΓ that map to (x0, ξ0). (Here one can use (49) to show that, for each
(ϕ, x0), σ �→ ΠR (c(ϕ, x0, σ)) is one-to-one.)

Now, we prove the theorem. Because ΠR is surjective and ΠL is injective, CtΓ ◦ CΓ = Δ.
Because CΓ and CtΓ are local canonical graphs and R∗

Γ, P, and RΓ can be composed as FIO,
the composition

L = R∗
ΓPRΓ
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is a pseudodifferential operator.
We now explain why L is elliptic. Let (x0, ξ0) ∈ T ∗(R2) \ 0. By the discussion about the

map A above, there are a finite number of angles {ϕ0, . . . , ϕN} such that ΠR (c(ϕj , x0, σj)) =
(x0, ξ0).

The symbol of RΓ at c(ϕj , x0, σj) is a =
∣∣DxΓϕjx0

∣∣ (see (20)), and the symbol of R∗
Γ is

the same [19]. Let p be the symbol of P. Then, by the calculus of FIO, the top order symbol
of L at (x0, ξ0) is the sum of a2p/ ‖ξ‖ summed at each element of the finite set

(50) S =
{
c(ϕj , x0, σj)

∣∣ j = 0, . . . , N
}
.

The proof of this statement is completely analogous to the proof of Theorem 2.1 and equation
(15) in [35].

Since each term in this finite sum is positive, as the symbol p is everywhere positive and
elliptic, the symbol of L is positive. Therefore, L is an elliptic pseudodifferential operator.
(The complete argument is analogous to the symbol calculation in the proof of Theorem 2.1
in [35].) This proves our theorem.

Remark 29. Looking over the end of the proof of Theorem 24, one sees that the condition
for ellipticity is fulfilled as long as the sum of a2p/ ‖ξ‖ evaluated at each element of the finite
set S given by (50) is an elliptic symbol.

This discussion shows that P needs to be elliptic only on ΠL(CΓ), since S is the only set
at which the symbol is summed, and S is a subset of CΓ, so its symbol p is evaluated only on
points in ΠL(CΓ). Examples of such pseudodifferential operators are the operator of Lambda
tomography, −d2/ds2, and the standard filtered backprojection filter for the linear Radon line
transform,

√
−d2/ds2.

A.4. The nonperiodic case: Proofs of Theorems 26 and 28.

Proof of Theorem 26. We apply a paradigm given in [10] that characterizes the visible and
added singularities in a broad range of incomplete data tomography problems. The paradigm
uses the following result, which is a special case of a result of Hörmander [20].

Lemma 30. Let u ∈ E ′((−ε, 2π + ε)× R), and let B be a closed subset of (−ε, 2π + ε)× R

with nontrivial interior. If the following noncancellation condition holds,

(51) ∀(y, ξ) ∈ WF(u), (y,−ξ) /∈ WF(χB),

then the product χBu can be defined as a distribution. In this case,

WF (χBu) ⊂ Q(B,WF(u)),

where for W ∈ T ∗((−ε, 2π + ε)×R)

(52)
Q(B,W ) :=

{
(y, ξ + η)

∣∣ y ∈ B , [(y, ξ) ∈W or ξ = 0]

and
[
(y, η) ∈ WF(χB) or η = 0

]}
.

To prove Theorem 26, we apply this paradigm to the FIO RΓ with the data set B :=
[0, 2π] × R. We first use this lemma to establish that the operator L[0,2π] is well defined.
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Proposition 31. For f ∈ E ′(R2), χ[0,2π]×R can be multiplied by RΓf as distributions. Let ψ
be a smooth function equal to 1 on [0, 2π] and supported in (−ε, 2π+ ε), and let Rt

Γ,ψ = R∗
Γψ.

Then, for P a pseudodifferential operator, Rt
Γ,ψ, P, and χ[0,2π]×RRΓ can all be composed;

L[0,2π] given in (39) is defined; and L[0,2π] : E ′(R2) → D′(R2).

Proof. First, we show that PRΓ,[0,2π]f is a distribution. The product χ[0,2π]×RRΓf is well
defined for distributions f ∈ E ′(R2), since WF(χ[0,2π]×R) has ds component of zero, whereas
any covector in CΓ◦WF(f) has nonzero ds component by the definition of CΓ, (21). Therefore,
the noncancellation condition in Lemma 30 holds, and χ[0,2π]×RRΓf is a distribution.

We claim that χ[0,2π]×RRΓf has compact support. First, this distribution has support in
[0, 2π] × R because χ[0,2π]×R does. Since, for each ϕ, s �→ C(ϕ, s) is a smooth foliation of
the plane, for each ϕ, the support in s of χ[0,2π]×RRΓf(ϕ, ·) is compact. Since the foliation
depends smoothly on ϕ and because ϕ is in the compact set [0, 2π], there is an M > 0 such
that the support of χ[0,2π]×RRΓf is in [0, 2π]× [−M,M ]. Therefore, PRΓ,[0,2π]f is defined as
a distribution in D′((−ε, 2π + ε)× R).

One proves that ψRΓ is continuous from D(R2) to D((−ε, 2π + ε) × R) using the same
arguments as in the proof of Proposition 23. This implies that (ψRΓ)

∗ = R∗
Γψ = Rt

Γ,ψ is

weakly continuous from D′((−ε, 2π + ε) × R) to D′(R2). Therefore, L[0,2π]f is defined as a
distribution.

We continue the proof of Theorem 26 and now use Theorem 8 to show

(53) WF(RΓf) ⊂ CΓ ◦WF(f).

Next, we use Lemma 30 to get an upper bound for WF(PRΓ,[0,2π]f). Using (52) and (53), we
obtain

WF(PRΓ,[0,2π]f) ⊂ Q ([0, 2π] × R,WF(RΓf)) ⊂ Q ([0, 2π] × R, CΓ ◦WF(f)) ,

where

Q([0, 2π] × R, CΓ ◦WF(f)) =
[
(CΓ ◦WF(f))∩T ∗

[0,2π]×R
((−ε, 2π + ε)× R)

]
∪WF(χ[0,2π]×R) ∪W{0,2π}(f)

and where T ∗
[0,2π]×R

((−ε, 2π + ε)× R) is defined in (29) and

W{0,2π}(f) =
{
(ϕ, s, σds + [μ− σ∂ϕH(ϕ, x)]dϕ)

∣∣
σ, μ �= 0, ϕ ∈ {0, 2π}, s ∈ R,

x ∈ C(ϕ, s), and (x, σN (ϕ, x)) ∈ WF(f)
}
.

Equivalently, this set can be written as

W{0,2π}(f) =
{
(ϕ, s, σds + νdϕ)

∣∣ σ �= 0, ν ∈ R, ϕ ∈ {0, 2π}, s ∈ R,(54)

∃x ∈ C(ϕ, s), (x, σN (ϕ, x)) ∈ WF(f)
}
.
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To accomplish the final step of the paradigm, we determine

CtΓ ◦ Q ([0, 2π] × R, CΓ ◦WF(f)) ,

which corresponds to computing the three components

CtΓ ◦ Q([0, 2π] × R, CΓ ◦WF(f)) = CtΓ◦[(CΓ ◦WF(f)) ∩ T ∗
[0,2π]×R

((−ε, 2π + ε)× R)]

∪ CtΓ ◦WF(χ[0,2π]×R)

∪ CtΓ ◦W{0,2π}(f).

Since CΓ fulfills the microlocal Bolker assumption, CtΓ ◦ CΓ ◦WF(f) ⊂ WF(f). Thus, for the
first component, we obtain

CtΓ ◦
[
(CΓ ◦WF(f)) ∩ T ∗

[0,2π]×R
((−ε, 2π + ε)× R)

]
⊂ WF(f) ∩ V[0,2π],

i.e., the set of visible singularities with data from [0, 2π] × R: WF[0,2π](f).
For the second component, CtΓ◦WF(χ[0,2π]×R) = ∅, since the ds component of any covector

in WF(χ[0,2π]×R) is zero and all covectors in CtΓ have nonzero ds component.
Lastly, we consider CtΓ ◦W{0,2π}(f) and show that this equals the set of additional artifacts

A(f). To this end, we let

ρ = (ϕ, s, νdϕ+ σds) ∈W{0,2π}(f),

and so ϕ ∈ {0, 2π}, s, ν ∈ R, σ �= 0, and there is an x ∈ C(ϕ, s) such that (x, σN (ϕ, x)) ∈
WF(f). Using the definition of composition, one sees

CtΓ ◦ {ρ} =
{
(x̃, σ(N (ϕ, x̃)))

∣∣ (x̃, σN (ϕ, x̃), ρ) ∈ CtΓ
}
.

By the definition of CtΓ, x̃ ∈ C(ϕ, s); i.e., s = H(x̃, ϕ) and −ν/σ = DϕH(x̃, ϕ). Since ν is
arbitrary, for any x̃ in C(ϕ, s) there is a corresponding covector in this composition. Therefore,
for any x̃ ∈ C(ϕ, s), the covector (x̃, σN (ϕ, x̃)) ∈ CtΓ ◦W{0,2π}(f). Thus, this set corresponds
to the set of possible added singularities (41).

Proof of Theorem 28. Let (x0, ξ0) ∈ V(0,2π); then by the uniqueness assumption (42), there
is a unique (ϕ0, s0) ∈ (−ε, 2π + ε)× R such that ξ0 is conormal to C(ϕ0, x0) at x0. Since ϕ0

is unique and (x0, ξ0) ∈ V(0,2π), ϕ0 ∈ (0, 2π). Let σ0 be the unique nonzero number such that
ξ0 = σ0N (ϕ0, x0). Then,

(55) λ0 = c(ϕ0, x0, σ0) ∈ CΓ

is the unique covector in CΓ such that ΠR(λ0) = (x0, ξ0) (where c is given by (24)). Let

(56) ρ0 := ΠL(λ0) = (ϕ0, s0, σ0 (−∂ϕH(ϕ0, x0) + ds)).

We note that

(57) {ρ0} = CΓ ◦ {(x0, ξ0)} , {(x0, ξ0)} = CtΓ ◦ {ρ0} .



1222 B. N. HAHN AND E. T. QUINTO

These equalities are true by (16) and the microlocal Bolker assumption because λ0 is the only
element in Π−1

R {(x0, ξ0)}.
First, we show WF(0,2π)(L[0,2π]f) ⊂ WF(0,2π)(f). Assume the covector

(x0, ξ0) ∈ WF(0,2π)(L[0,2π]f).

Using the result of the last paragraph, let ϕ0 ∈ (0, 2π) and σ0 �= 0 be the unique numbers so
that ξ0 = σ0N (ϕ0, x0). By Theorem 26—in particular, (41)—

(x0, ξ0) ∈ WF[0,2π](f) ∪ A(f).

However, A(f) includes singularities (x, σN (ϕ, x)) only for ϕ = 0 or ϕ = 2π, and by the
uniqueness assumption (42), since ξ0 = σ0N (ϕ0, x0) and ϕ0 /∈ {0, 2π}, (x0, ξ0) /∈ A(f), so
(x0, ξ0) ∈ WF(0,2π)(f).

Now, let (x0, ξ0) ∈ WF(0,2π)(f). Ellipticity and the uniqueness assumption will be used to
show that (x0, ξ0) ∈ WF(0,2π)

(
L[0,2π](f)

)
. Let ϕ0, s0, σ0, λ0, and ρ0 be as in the first paragraph

of this proof for (x0, ξ0). As noted above, ϕ0 ∈ (0, 2π) by the uniqueness assumption. Let
Mφ be the cutoff operator given by (46) in the proof of Theorem 15. The function φ in the
definition of Mφ is the product of two compactly supported cutoff functions, φ0(ϕ) and φ1(s),
and we assume that the cutoff function at ϕ0, φ0, is also supported in (0, 2π). As in the proof
of Theorem 15,

Rt
Γ,ψPMφRΓ,[0,2π] = R∗

Γ

(
ψPMφχ[0,2π]×RRΓ

)
is an elliptic pseudodifferential operator near (x0, ξ0) because its symbol is

(58) φ(ϕ0,H(ϕ0, x0))p(ρ0)
|det(DxΓϕ0x0)|2

2π ‖ξ0‖
,

where p is the top order symbol of P. (Note that Mφχ[0,2π]×R =Mφ since the support of φ is
in (0, 2π) × R. Also, the cutoff ψ has no effect on the top order symbol (58) since φ · ψ = φ,
as ψ is equal to one in [0, 2π].) So

(59) (x0, ξ0) ∈ WF(0,2π)(Rt
Γ,ψPMφRΓ,[0,2π]f).

We now show that

(60) (x0, ξ0) /∈ WF(0,2π)

(
Rt

Γ,ψ

(
PM(1−φ)χ[0,2π]×RRΓf

))
by showing

(61) (x0, ξ0) /∈ CtΓ ◦WF
(
PM(1−φ)χ[0,2π]×RRΓf

)
and then using the Hörmander–Sato lemma, Theorem 8.

Because (1 − φ) is zero near ϕ0, M(1−φ)RΓ,[0,2π]f is microlocally smooth near ρ0. So,
ψPM(1−φ)RΓ,[0,2π]f is microlocally smooth near ρ0. But, by (57), ρ0 is the only covector in
ΠL(CΓ) that could map to (x0, ξ0) under Π

t
R ◦ΠtL. Therefore, (61) holds, and this proves (60).

Putting (59) and (60) together, we see that (x0, ξ0) ∈ WF(L[0,2π]f), and this finishes the
proof.
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A.5. Our theorems for arbitrary smooth weights. Finally, we explain why our theorems
are true even if the weight |detDΓ−1

ϕ x| in the definition of RΓ, (7), and the definition of Rt
Γ,

(34), are replaced by smooth positive weights. Basically, this is true because elliptic FIOs
associated to the same canonical relation have the same microlocal properties, and Radon
transforms that integrate over the same sets (associated to the same double fibration [35,
Definition 1.1]) are FIOs with the same canonical relations.

Let μ be a smooth positive function on (−ε, 2π + ε)× R
2; then

RΓμf(ϕ, s) =

∫
x∈C(ϕ,s)

f(x)μ(ϕ, x)dx

is an elliptic FIO associated to CΓ. This is true by the general theory of Radon transforms as
FIOs [13, 15] (see also [35]) because this transform integrates over the same sets, C(ϕ, s), as
RΓ, and the weight is smooth and nowhere zero.

In the smoothly periodic case, the weight μ for RΓμ must be 2π-periodic. In this case, a
generalized backprojection can be defined as

R†
Γ νg(x) =

∫
ϕ∈[0,2π]

g(ϕ,H(ϕ, x))ν(ϕ, x)dϕ,

where ν is a positive smooth 2π-periodic function. Because the weights are smooth and
positive, RΓμ and R†

Γ ν are elliptic and associated to CΓ and CtΓ, respectively. The proof of

Proposition 23 for R†
Γ νPRΓμ does not change, and the other proofs for the smoothly periodic

case rest on the fact that these transforms are elliptic and associated with the same canonical
relations as RΓ and Rt

Γ.
For the nonperiodic case, the weighted backprojection operator is

RΓ
t
Γ,ψ,ν =

∫
ϕ∈(−ε,2π+ε)

φ(ϕ)ν(ϕ, x)g(ϕ,H(ϕ, x))dϕ,

where φ is a smooth function equal to one on [0, 2π] and supported in (−ε, 2π + ε). In this
case, too, the proofs are the same because the transforms have the same microlocal properties.

Acknowledgments. The first author thanks Tufts University for its hospitality during her
stay as a visiting scholar. The second author thanks Saarland University for its hospitality
during many visits over the years. The second author is indebted to Jan Boman and Jürgen
Frikel for stimulating conversations related to microlocal analysis and tomography, to Alexan-
der Katsevich for insightful comments about this article and the general problem, and to Linh
Nguyen for useful comments. The referees’ insightful comments have improved the article,
and we thank them also for their effort.

REFERENCES

[1] L. L. Barannyk, J. Frikel, and L. V. Nguyen, On artifacts in limited data spherical radon transform:
Curved observation surface, Inverse Problems, 32 (2016), 015012.

[2] G. Beylkin, The inversion problem and applications of the generalized Radon transform, Comm. Pure
Appl. Math., 37 (1984), pp. 579–599.



1224 B. N. HAHN AND E. T. QUINTO

[3] C. Blondel, R. Vaillant, G. Malandain, and N. Ayache, 3d tomographic reconstruction of coronary
arteries using a precomputed 4d motion field, Phys. Med. Biol., 49 (2004), pp. 2197–2208.

[4] C. R. Crawford, K. F. King, C. J. Ritchie, and J. D. Godwin, Respiratory compensation in
projection imaging using a magnification and displacement model, IEEE Trans. Med. Imaging, 15
(1996), pp. 327–332.

[5] M. DeHoop, Microlocal analysis of seismic imaging, in Inside-Out: Inverse Problems and Applications,
G. Uhlmann, ed., Math. Sci. Res. Inst. Publ. 47, Cambridge University Press, Cambridge, UK, 2003,
pp. 219–296.

[6] L. Desbat, S. Roux, and P. Grangeat, Compensation of some time dependent deformations in to-
mography, IEEE Trans. Med. Imaging, 26 (2007), pp. 261–269.

[7] D. V. Finch, I.-R. Lan, and G. Uhlmann, Microlocal analysis of the restricted X-ray transform with
sources on a curve, in Inside Out: Inverse Problems and Applications, G. Uhlmann, ed., Math. Sci.
Res. Inst. Publ. 47, Cambridge University Press, Cambridge, UK, 2003, pp. 193–218.

[8] B. Frigyik, P. Stefanov, and G. Uhlmann, The X-ray transform for a generic family of curves and
weights, J. Geom. Anal., 18 (2008), pp. 81–97.

[9] J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography,
Inverse Problems, 29 (2013), 125007.

[10] J. Frikel and E. T. Quinto, Artifacts in incomplete data tomography with applications to photoacoustic
tomography and sonar, SIAM J. Appl. Math., 75 (2015), pp. 703–725.

[11] J. Frikel and E. T. Quinto, Limited data problems for the generalized Radon transform in R
n, SIAM

J. Math. Anal., 48 (2016), pp. 2301–2318.
[12] A. Greenleaf and G. Uhlmann, Non-local inversion formulas for the X-ray transform, Duke Math.

J., 58 (1989), pp. 205–240.
[13] V. Guillemin, Some Remarks on Integral Geometry, technical report, Department of Mathematics, MIT,

Cambridge, MA, 1975.
[14] V. Guillemin, On some results of Gelfand in integral geometry, Proc. Sympos. Pure Math., 43 (1985),

pp. 149–155.
[15] V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society, Providence,

RI, 1977.
[16] B. Hahn, Reconstruction of dynamic objects with affine deformations in dynamic computerized tomogra-

phy, J. Inverse Ill-Posed Probl., 22 (2014), pp. 323–339.
[17] B. N. Hahn, Null space and resolution in dynamic computerized tomography, Inverse Problems, 32 (2016),

025006.
[18] B. N. Hahn, Efficient algorithms for linear dynamic inverse problems with known motion, Inverse Prob-

lems, 30 (2014), 035008.
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