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Abstract 

Bridge behavior is used as an objective, data-driven indicator of the 

performance of bridges. A framework with which bridge behavior can be identified 

and learned is presented, and a method of long-term damage identification using 

the expected bridge behavior is introduced. At the Powder Mill Bridge (PMB) in 

Barre, Massachusetts, strains at each strain gage location are recorded during 

operational traffic events. Bridge behavior is defined as each sensor location’s 

range of expected peak strain during a traffic event based on all other measured 

strains at the time at which it experiences its peak strain. Artificial neural networks 

(ANNs) are trained with operational data in a bootstrapping scheme to generate a 

probabilistic model of bridge behavior. When tested against new data, the ANN-

learned model of bridge behavior is validated for a variety of traffic events with 

unknown loading conditions. 

Structural damage is one way that bridge behavior, an indicator of performance, 

of a bridge can change. Damage scenarios are simulated in a finite element model 

(FEM) which is calibrated to PMB truck load test data. The effects of damage are 

extracted from FEM truck runs and applied to operational data to assess the 

capability of the proposed damage identification method through a series of trials. 

It is effective at detecting damage, with no Type I and no Type II errors when using 

a Wilcoxon rank-sum test of an appropriate significance level. Damage is 

effectively localized for two out of three damage scenarios. 
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Chapter 1.  Introduction 

1.1 Scope of Research 

The Powder Mill Bridge (PMB) is used as a case study to assess a proposed 

method of structural health monitoring (SHM) using artificial neural networks 

(ANNs) as non-mechanistic modeling tools. The bridge is a three-span steel 

composite concrete stringer highway bridge crossing the Ware River in Barre, 

Massachusetts. The bridge has been fitted with an instrumentation system that 

responds to vehicular loading.  

In this study ANNs provide a mathematical system model linking various 

components of the PMB structural response (strains in steel girders at several 

locations) to each other. A framework with which bridge behavior can be identified 

and learned is developed, and a method of long-term damage identification using 

the expected bridge behavior, which can be passively performed on a weekly basis, 

is introduced. ANNs are trained with operational data in a bootstrapping scheme to 

generate a probabilistic model of bridge behavior. When tested against new data, 

the ANN-learned model of bridge behavior is validated for a variety of traffic 

events with unknown loading conditions. 

Damage scenarios are simulated in a finite element model (FEM) which is 

calibrated to the PMB. The effects of damage are extracted from FEM truck runs 

and applied to operational data. Several trials are generated to assess the damage 

detection and localization capabilities of the developed method. The approach is 

shown to be exceptionally effective at detecting damage, with no Type I errors 

(detecting damage when it is not present) and no Type II errors (failing to detect 
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damage when it is present) when tested with a Wilcoxon rank-sum test of a 

sufficient significance level. Damage is effectively localized for two out of three 

damage scenarios generated. 

1.2 Summary of Chapters 

This chapter introduces the thesis and its structure. Chapter 2 provides a broad 

summary of the overall research approach and results and is intended to be 

submitted as a stand-alone paper to the ASCE Journal of Bridge Engineering. 

Chapter 3 describes the removal of truck events not used in this research; Chapter 

4 provides an overview and justification of the Artificial Neural Network 

classification used in the study; Chapter 5 demonstrates the research approach 

through a simplified example; Chapter 6 provides an analysis of the effects of 

temperature on the study; Chapter 7 gives additional details and justification of 

damage effects to supplement those in Chapter 2; Chapter 8 addresses the 

uncertainties of damage simulation with a sensitivity analysis; and Chapter 9 

concludes the work. 
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Chapter 2.  Bridge Damage Identification Using Artificial Neural Networks 

Proposed Journal for Submittal: ASCE Journal of Bridge Engineering 

2.1 Abstract 

An objective, data-driven approach to evaluate the performance of a bridge for 

developing a structural health monitoring system is introduced as bridge behavior. 

A method of identifying structural damage through evaluation of response data 

from an instrumented bridge is proposed. Strains during operational traffic events 

at the Powder Mill Bridge (PMB) in Barre, Massachusetts are recorded at multiple 

locations along the bridge. Bridge behavior is defined as each and every sensor 

location’s range of expected peak strain during a traffic event based on all other 

measured strains at the time at which it experiences its peak strain. Artificial neural 

networks (ANNs) are trained with operational bridge response data in a 

bootstrapping scheme to generate a probabilistic model of bridge behavior. When 

tested against new data, the ANN-learned model of bridge predicted behavior is 

proven effective and applicable to varying traffic events with unknown loading 

conditions. A method for long-term performance assessment using the expected 

bridge behavior is proposed. Structural damage is one way that bridge behavior, an 

indicator of performance, of a bridge can change. The simulated effects of structural 

damage are extracted from calibrated FEM truck runs and applied to operational 

strain data to assess the damage identification method. When assessed, the damage 

identification method is effective at detecting the presence of damage, with no Type 

I and no Type II errors when using a Wilcoxon rank-sum test of an appropriate 
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significance level. Damage is effectively localized for two out of three types of 

simulated damage. 

Key Words: Structural Health Monitoring, Artificial Neural Networks, Bridge 

Behavior, Damage Identification, Operational Strain Measurements, Response 

Only, Hypothesis Test 

 

Highlights: 

 

• A Framework is defined through which bridge health can be assessed. 

• Artificial Neural Networks are trained using measured operational strains 

to represent bridge behavior. 

• A trained model is used to imitate baseline bridge behavior for new truck 

loadings. 

• Simulated damage is used to examine capability of trained model. 

 

2.2 Introduction 

Bridge maintenance is supported by a program of inspection. In the United 

States, bridge inspections are required to be performed and documented at least 

once every two years. The current bridge inspection approach relies mostly on 

visual inspections with limited field measurement. This approach is labor intensive 

and somewhat subjective (Moore et al. 2001).  

Developing technologies of instrumentation, data collection, remote sensing, 

and analysis provide the ability to evaluate a bridge’s structural response in real 

time. These technologies can form the basis of a structural health monitoring 

system, which would provide a more objective evaluation of the overall 

performance and condition of a bridge. This would assist bridge owners in 

efficiently allocating finite resources for maintenance. 
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Since bridge structures are highly indeterminate, relative changes in local 

stiffnesses can alter the way load is carried. Shenton III and Hu (2006) used the 

distribution of dead load strains in an analytical structural model to develop a 

baseline, and then used the baseline to detect simulated damage. Chakraborty and 

DeWolf (2006) and Cardini and DeWolf (2009) used strain data to determine 

baseline neutral axis locations and live load distribution among bridge steel girders 

to be used for long-term monitoring. Reiff et al. (2016) used strain data from traffic 

events to statistically establish a bridge signature and detect potential damage using 

girder distribution factors (GDFs). 

Artificial Neural Network (ANN) methods provide a non-mechanistic approach 

to evaluating baseline characteristics of bridges to be used for long-term 

monitoring. ANNs can be developed from gathered information, determine 

relationships from complex systems with noisy data, and generalize such 

relationships to be applicable to varying circumstances (Reed 2009). Lam et al. 

(2006) used an ANN to identify different types of damage patterns caused by 

known types of damage. Zhang et al. (2012) performed damage detection of deck 

delamination of bridges using ANNs as a key tool. Kromanis and Kripakaran 

(2014) used ANNs to learn the input/output relationship between induced 

temperature loads and strains of a laboratory truss and the input/output relationship 

between temperature readings and tilt measurements of a pedestrian bridge. 

Mehrjoo et al. (2008) used ANNs fed with the natural frequencies of bridge models 

and the corresponding mode shapes to detect damage at truss nodes. 
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The proposed approach in this study is to determine baseline performance 

characteristics of a structure by assembling response data from instrumentation. As 

it pertains to this study, the baseline performance characteristic of a structure is 

sensor measurements that capture the distribution of load being carried throughout 

the bridge. ANNs are used to determine the relationship between strains measured 

at several sensor locations on a bridge during traffic events. It is an output-only 

approach: it utilizes measured strains and does not require any information about 

the nature of the traffic. A baseline of performance is determined using the learned 

relationship between the many measured strains along the bridge during traffic 

events. The use of ANNs is effective at establishing said baseline. 

Additionally, a separate approach of performance assessment is presented 

utilizing aspects of the established ANN models of the bridge behavior, using 

damage identification as one example of its application. This approach 

demonstrates how bridge performance would be evaluated. A calibrated FEM is 

used to simulate potential damage since the studied bridge is not damaged. The 

simulated effects of damage are extracted from the FEM and applied to measured 

operational data to assess the capability of the proposed damage identification 

method. In structural health monitoring, there are four commonly used aspects of 

damage identification: detection, localization, assessment, and consequence (Rytter 

1993). The proposed method addresses the first two: it is successful at detecting 

damage, and damage is localized for most of the simulated damage scenarios. 

Suggestions are made for future work to improve upon these newly developed 

approaches.  
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2.3 Powder Mill Bridge, Instrumentation, and Measured Data 

This study is performed with operational traffic data from the Powder Mill 

Bridge (PMB), in Barre, Massachusetts (bridge B-02-012). The PMB, which 

opened in 2009, is owned by the Town of Barre and carries traffic on Vernon 

Avenue over the Ware River in Barre, Massachusetts (Figure 1). It is a continuous, 

two-lane, three-span bridge with six steel girders that act compositely with a 

concrete deck. The northern span of the structure widens into an intersection 

adjacent to the bridge. The bridge is in a rural area, near a waste management 

station. This location is optimal for research with operational traffic data, because 

many of the live loads experienced by the bridge are isolated, heavy trucks. The 

crossing of heavy vehicles over the bridge are herein referred to as truck events. 

 

Fig. 1. Powder Mill Bridge and DAQ System 

The bridge has many permanent sensors and data acquisition (DAQ) boxes that 

have been continuously recording and storing data since 2009. Figure 2 shows an 

instrumentation plan adapted from Sanayei et al. (2012) which displays the sensor 

locations, girder numbering, and sensor station numbering. A total of 50 strain 

gages recording at 50 Hz are potentially available for this study: one on each side 
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of the top faces of the bottom flanges of all four interior girders, and one on the 

interior side of the top faces of the bottom flanges of the exterior girders – at stations 

2, 4, 6, 8, and 10. Strains are averaged between adjacent gages for locations at which 

both gages function. If no gages function at a location, data from the location are 

not used. If only one of two gages functions at a location, then data at that location 

are used from only the working gage. Figure 2 designates the 27 usable sensor 

locations in this study. 

 

Fig. 2. Instrumentation Plan and Usable Sensor Locations (Sanayei et al. 2012) 

A trigger program is written and implemented that automatically records traffic-

induced strains when vehicles cross the bridge. The change in strain is used during 

a truck event, rather than the total strain. Since each truck event only lasts a few 

seconds and measurements are zeroed out for each truck event measurement, issues 

such as foil strain gage drift and temperature effects on gage wire resistance are 

negligible. 
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Truck events are used only when there is a single vehicle on the bridge at a 

time, because in this study the distribution of strains over the entire bridge caused 

by only a single vehicle load are assessed. The single vehicle must also be in either 

the northbound or southbound lane, as opposed to straddling the centerline of the 

road, because of way structural damage is simulated later in this work. Additionally, 

only truck events with heavy vehicles are used because the strain gage signal-to-

noise ratios are higher. A moving average filter with a window of 7/50th of a second, 

or 7 samples per second, is applied to strain signals. A program is written and 

implemented to automatically filter out truck events triggered by (a) a single light 

vehicle inducing maximum overall strain of less than 40 µ, (b) two or more 

vehicles simultaneously on the bridge, or (c) a single vehicle straddling the 

centerline of the road.  

 2.4 Bridge Behavior Determination 

2.4.1 Definition of Bridge Behavior 

The framework through which the performance of the bridge is expressed in 

this study is called bridge behavior, because it considers the interrelationship 

between the structural response at different locations. Bridge behavior is defined as 

each and every sensor location’s range of expected peak strain during a traffic event 

based on all other measured strains at the time at which it experiences its peak 

strain. For instance, the bridge behavior as observed at Girder 6 Station 2 and as 

observed at Girder 6 Station 4 are shown in Figures 3(a) and 3(b), respectively. The 

expected peak strain range ( max ) at Girder 6 Station 2 during a truck event can be 
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predicted based on the strains at all 26 other sensor locations (  ) at the instance 

in time at which Girder 6 Station 2 experiences max . Likewise, the expected peak 

strain range at Girder 6 Station 4 during a truck event can be determined based on 

the strains at all 26 other sensor locations at the instance in time at which Girder 6 

Station 4 experiences its own max . This process as visualized in Figure 3 is applied 

to all 27 sensor locations on the PMB. If the peak strain values at a sensor location 

excessively deviate from their expected values, then it is postulated that the bridge 

behavior has changed. For simplicity, bridge behavior without reference to a 

specific sensor location herein refers to all 27 measured input/peak strain output (

  / max ) configurations. Bridge behavior at Girder 6 Station 2, for example, 

herein refers to only the measured input/peak strain output relationship in Figure 

3(a). 

 

Fig. 3. Bridge Behavior as Observed at Girder 6 Stations 2 and 4 



 

11 

 

Moser and Moaveni (2011), Moaveni and Behmanesh (2012), and Alampalli 

(2000) determined that the modal properties of bridges vary with changing 

environmental operational conditions, such as temperature. Even though 

temperature can influence the physical bridge behavior of the PMB, thermistor data 

at the PMB was not used in this study because it did not have a significant effect 

on the developed bridge behavior model (as described later). When the model 

includes thermistor data as additional measured inputs, it performs similarly as it 

does when it omits thermistor data as additional inputs. Any actual temperature 

effects (or other environmental effects) that exist manifest themselves in this study 

by (a) creating a spread in data used to develop the baseline bridge behavior, (b) 

inducing more prediction error in the performance of the bridge behavior model, 

and (c) creating a spread in how accurately the damage effects simulated in the 

FEM (described later) represent the physical damage effects that are modeled. 

2.4.2 ANN Use and Characteristics 

The ANNs used in this study are feedforward perceptrons, which determine the 

optimal values of the parameters embedded in their framework to mimic the 

input/output relationship (Cao et al. 1998). Each data “point” used in the training 

of a perceptron can have multiple input terms and multiple output terms. In this 

study, the perceptrons train with data that has 26 measured input strains (  ) and 

1 peak strain output ( max ). The perceptrons have two hidden layers: the first has a 

log-sigmoid function and the second has a linear function. The first hidden layer 

contains six neurons and the second hidden layer contains one, to match the number 

of output terms. Two hidden layers is common for modeling relationships that are 
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not overly complex, and the functions used for the neurons in each layer are also 

typically recommended because they can model almost any relationship when used 

in succession (Hagan et al. 1996). 

The ANNs are trained with the Levenberg-Marquardt (LM) Algorithm with 

Bayesian Regularization (BR), as opposed to Steepest Descent, Newton’s, or 

Conjugate Gradient Methods, for example. The combination of LM and BR is used 

to create the simplest possible model that captures the underlying trends of the data 

to prevent the model from overfitting the data (MathWorks 2017). The LM 

Algorithm is used because of its common use in the field and for its capability to 

train ANNs in a variety of circumstances (Kostić and Gül 2017, Hsieh and Mura 

1995, and Hadi 2002). The objective function that the algorithm minimizes during 

its optimization is the sum of squared prediction error of all output terms. BR is 

applied to the LM algorithm to improve the ANNs’ generalization capabilities and 

prevent overfitting by including an additional term summed in the objective 

function of the LM algorithm: the sum of squared weights of the ANN. 

Conceptually, weights represent how much an ANN values particular inputs. By 

penalizing an ANN for having more and larger weights (a complex model), BR 

incentivizes the ANN during training to become a simpler model which strikes a 

balance between fitting and generalization capabilities (Hagan et al. 1996). ANN 

training is conducted using the MATLAB Neural Network Toolbox. 

2.4.3 ANN Model Training 

The 27 measured input/peak strain output relationships that comprise the PMB 

bridge behavior are modeled independently from one another. The extraction of 
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data during a typical truck event is shown in Figure 4 for two of the configurations, 

along with the corresponding locations of the sensors designated as peak strain 

outputs: the light cyan points are the measured inputs and the dark blue points are 

the peak strain outputs. The data extraction shown in the figure is performed 27 

times for each truck event, once for each sensor location as a single peak strain 

output with 26 measured strain inputs. 

 

Fig. 4. Extraction of Measured Strain Inputs and Peak Strain Outputs 

With the measured input and peak strain output extracted for all 27 

configurations for all the recorded truck events, a bootstrapping scheme is 

implemented to determine the bridge behavior, using ANNs trained with the 

extracted inputs and outputs. Bootstrapping is a nonparametric numerical approach 

that can replace many analytical statistical methods (Efron and Tibshirani 1993). In 

structural health monitoring studies on the PMB, bootstrapping has been used as a 

resampling method that determines the confidence interval of a bridge parameter 

Fig. 4(a). Girder 2 Station 2 Fig. 4(b). Girder 2 Station 6 
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value for the entire population of possible parameter values, given only a finite 

amount of sampled parameter values (Follen et al. 2014 and Reiff et al. 2016). 

A benefit of bootstrapping is that it enables the evaluation of different subsets 

of data in an overall database. The approach can then better account for data error 

with adjustment for data outliers. The general process of bootstrapping is to (a) 

create multiple subsets of data from the total observed data set by random sampling 

with replacement, (b) calculate the value of a desired parameter for each subset of 

data, (c) create a distribution of the parameter value, with one instance in the 

distribution being determined from each subset of data, and (d) determine the 

confidence interval of the parameter value based on corresponding percentiles of 

the parameter value distribution. The bootstrapping scheme used in this study is 

described for determining only the expected bridge behavior at Girder 2 Station 6. 

However, the process is performed 27 times to determine the bridge behavior at all 

27 sensor locations. 

First, 420 of the 1,929 total recorded events are randomly set aside from model 

training as a control group to assess its performance after the bootstrapping scheme 

is completed. The same 420 events are set aside for the bridge behavior models at 

all sensor locations. Then, the remaining 1,509 events are randomly subdivided into 

two data sets 1,000 times. In each subdivision, 85% of the events are used to train 

an ANN, and 15% are set aside from training. Each trained ANN is a best fit of the 

measured data, based on the 85% of the data it was trained with. 15% is a typical 

portion of data to set aside from ANN training for model performance assessment 

(Hagan et al. 1996). 
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One ANN is trained for each of the 1,000 data subsets, the inputs (  ) and 

outputs ( max ) of which are as visualized in Figure 4(b) for Girder 2 Station 6. These 

1,000 ANNs are herein referred to as individual ANN models for simplicity. All 

individual ANN models are slightly different from one another because each one 

was trained with different data. The performances of all individual ANN models 

are also slightly different from one another because (a) the models themselves are 

slightly different from one another, and (b) the performances the models are 

assessed with a different 15% of truck events set aside from training. An average 

of all 1,000 individual ANN models is taken to be the final ANN model. It is 

calculated as: 

      
1000

1

1

1000
i

i

ANN ANN 


    (1) 

where   ANN   is the final ANN model, and   1ANN   through 

  1000ANN   are the individual ANN models. 

The final ANN model gives the mean expected peak strain during a truck event 

at Girder 2 Station 6 given the strains at all other sensor locations at the time at 

which Girder 2 Station 6 experiences its peak strain. To determine the range of 

expected peak strains, a prediction error analysis is performed on the 1,000 

individual ANN models. Prediction errors for each model, for the 15% of data 

points set aside from training, are calculated as   max iE ANN   , where E  is 

the error, max  is the measured peak strain value, and   iANN   is the predicted 
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value from the i th individual ANN model. A distribution is then created that pools 

the prediction errors of all the individual ANN models of which the final ANN 

model is composed (Figure 5). This effectively represents the distribution of how 

much the measured data – which has not been used to train an individual ANN 

model – deviates from said trained individual ANN model. 

 

Fig. 5. Pooled Prediction Error Distribution at Girder 2 Station 6 

The pooled error distribution is normal. Therefore, 95% of the prediction errors 

lie between the 2.5th and 97.5th percentiles, which are shown as vertical lines. The 

measured truck event data at this point is now bootstrapped to be representative of 

the entire population of all possible truck event data. Therefore, the 2.5th and 97.5th 

percentiles of the pooled prediction errors represent the range within which there is 

a 95% confidence that any newly measured peak strains will deviate from the final 

ANN model. Based on this assertion, the 95% confidence interval for the peak 
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strain at Girder 2 Station 6 is calculated for any newly recorded truck event as 

follows: 

 
     

     

2.5

97.5

LB

UB

ANN ANN

ANN ANN

  

  

 

 
  (2) 

where   
LB

ANN   and   
UB

ANN   are the lower and upper bounds of the 95% 

confidence interval of the final ANN model’s peak strain prediction, respectively, 

and 2.5  and 97.5  are the 2.5th and 97.5th percentiles of the pooled prediction errors, 

respectively. This 95% confidence interval is the expected bridge behavior of the 

PMB at Girder 2 Station 6. Strain readings during many truck events outside this 

confidence interval would suggest that structural damage has occurred. 

This process is valid under the assumption that the final ANN model is similar 

to the individual ANN models of which it is comprised, because the pooled error 

distribution that determines the confidence interval is derived from the performance 

of the individual ANN models, not the final ANN model. Each individual ANN 

model is trained with a random 85% of the available data, so there is not much 

potential for differences between the individual ANN models. This process is also 

valid under the assumption that the amount that peak strains deviate from the final 

ANN model is independent of the measured input values. 

2.4.4 Expected Bridge Behavior 

All confidence interval ranges are summarized in Table 1. Most sensor 

locations have small confidence interval ranges for their peak strain values – within 

 2 microstrains – which is only about twice the filtered ambient noise level. G6-
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S8 is the largest outlier, potentially since that location is under the sidewalk and 

does not respond much to the roadway loadings. Other locations with large 

confidence intervals, such as G1-S6 and G3-S2, most have final ANN models that 

do not capture the structural behavior precisely. Overall, the confidence intervals 

imply that the peak strain values along the bridge are usually predicted reliably at 

most sensor locations. 

Table 1. Peak Strain Confidence Interval Ranges at All Sensor Locations 

Sensor 

Location 

Confidence Interval 

Lower Bound (με) 

Confidence Interval 

Upper Bound (με) 

G1-S2 -0.864 0.794 

G1-S6 -3.995 4.160 

G1-S8 -0.836 0.722 

G1-S10 -0.946 0.906 

G2-S2 -1.363 1.253 

G2-S4 -1.749 1.807 

G2-S6 -2.439 2.620 

G2-S8 -1.154 1.043 

G2-S10 -1.078 1.038 

G3-S2 -2.790 2.807 

G3-S4 -0.981 0.947 

G3-S6 -1.942 1.913 

G3-S8 -1.056 0.979 

G3-S10 -1.166 1.062 

G4-S2 -1.282 1.154 

G4-S4 -0.868 0.731 

G4-S6 -1.853 1.998 

G4-S8 -0.995 0.958 

G4-S10 -1.348 1.231 

G5-S2 -0.530 0.520 

G5-S6 -1.464 1.552 

G5-S8 -0.925 0.900 

G5-S10 -3.039 2.865 

G6-S2 -0.573 0.569 

G6-S4 -0.542 0.511 

G6-S6 -1.417 1.288 

G6-S8 -8.024 8.024 
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The peak strain values and the corresponding 95% confidence intervals at all 

sensor locations for the 420 PMB truck events set aside from model training are 

predicted. The bridge behavior model performs well. A typical performance of the 

bridge behavior model is demonstrated with the successful peak strain predictions 

for all sensor locations, shown in Figure 6 for one of the 420 set-aside events. The 

predictions (blue), which are shown in the figure at each sensor station separately, 

match the measured values (green) well. Additionally, all measured values are 

within their confidence intervals. 

 

Fig. 6. Bridge Behavior Model Peak Strain Predictions for Typical Truck Event 

The performance of the bridge behavior model is assessed with all 420 set-aside 

truck events, and the model is validated with the results (Table 2). The middle and 

right columns display the mean error magnitude and the error standard deviation, 

respectively, over all the 420 set-aside events at each location. The prediction errors 

of the peak strains at most locations are remarkably small, indicating that peak 
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strains at most of the used sensor locations on the bridge can be sufficiently 

predicted without any knowledge of the traffic that induced them. 

Table 2. Bridge Behavior Model Performance 

Sensor 

Location 

Mean Error 

Mag. (με) 

Error Std. 

Dev. (με) 

G1-S2 0.319 0.594 

G1-S6 1.201 4.308 

G1-S8 0.301 0.603 

G1-S10 0.349 0.713 

G2-S2 0.453 0.816 

G2-S4 0.526 0.895 

G2-S6 0.771 1.524 

G2-S8 0.384 0.655 

G2-S10 0.413 1.393 

G3-S2 0.957 1.422 

G3-S4 0.329 0.536 

G3-S6 0.694 1.453 

G3-S8 0.339 0.743 

G3-S10 0.421 0.647 

G4-S2 0.362 0.560 

G4-S4 0.247 0.414 

G4-S6 0.653 1.489 

G4-S8 0.356 0.950 

G4-S10 0.422 0.839 

G5-S2 0.193 0.494 

G5-S6 0.397 0.858 

G5-S8 0.255 0.405 

G5-S10 0.805 1.927 

G6-S2 0.169 0.243 

G6-S4 0.154 0.206 

G6-S6 0.384 0.725 

G6-S8 1.683 3.152 

 

2.4.5 Sufficiency of Number of Truck Events to Use Bootstrapping 

 In the bootstrapping scheme, it is desired for each of the 1,000 randomly 

resampled data subsets of truck events to sufficiently represent the variety and 

distribution of the entire population of all possible truck events. A data subset is 

considered stable and representative of the population when its distribution does 
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not change when extra data from the same population are added to it. The GDF of 

each girder as measured at Station 6 is the parameter used in this study to express 

the variety of truck events. Ghosn et al. (1986) defined the GDF of a girder as the 

strain experienced by the girder divided by the sum of strains experienced by all 

girders at the same transverse location: 

 

1
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i N

j

j

GDF








  (3) 

In this study, the strains used in the iGDF  calculation are sampled at the instant 

when Girder i  experiences its peak strain. 

One by one, the Girder 3 GDF (as an example) is calculated from a truck event 

randomly sampled from all 1,929 truck events without replacement, and is added 

to a pool of calculated Girder 3 GDFs. As each randomly sampled GDF gets added 

to the pool, the 0.2, 0.4, 0.6, and 0.8 quantiles of the GDF pool are calculated to 

assess the variety of truck events sampled up to that point. When the quantiles no 

longer change with the addition of extra truck events, then the amount of truck 

events is considered stable. A typical quantile plot is shown in Figure 7; the 

quantiles are sufficiently stable after 300 truck events. In this study, 420 events are 

set aside from training, and each individual ANN model used in the bootstrapping 

process trains with 85% of the 1,509 remaining truck events, which is 1,283 events. 

1,283 truck events is greater than 300; therefore it is sufficient. The same 

conclusion is reached when this assessment is performed for each of the six girder 

GDFs. 
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Fig. 7. Girder 3 GDF Quantile Stability Plot 

2.5 Damage Effects on Operational Data 

There are several ways a bridge’s performance can change, such as a change in 

relative stiffnesses of bridge components caused by the removal of a utility pipe. 

However, in this study, structural damage is used as the example of altered 

performance. To assess the effectiveness of the method of damage identification 

proposed later, several damage scenarios are generated (damage identification 

herein refers to the detection and localization of damage). Since the PMB has no 

known damage, the effects of damage are simulated in a CSiBridge FEM which 

was created and calibrated by Sanayei et al. (2012). In this research, hypothetical 

damage scenarios are developed via the FEM data to illustrate how the proposed 

method can identify structural damage. The types of simulated damage scenarios 
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and naming scheme of said scenarios are based on those used in previous research 

on the PMB. 

The first damage scenario is Case U, which contains no imposed damage 

(baseline condition). The second damage scenario, Case A, is interior girder 

fracture. It is modeled as a 2.5 mm-wide (longitudinally) section of Girder 2 from 

the midheight of the girder through the bottom flange that is altered to have an 

elastic modulus close to zero. The modeled girder crack was located at a diaphragm 

connection, close to the midspan of the girder. The third damage scenario, Case B, 

is fascia girder corrosion. It is modeled as a 30% reduction of the elastic modulus 

of the web and bottom flange of Girder 1 along its entire length. The last damage 

scenario, Case D, is deck delamination, which is modeled as a 35% reduction in the 

elastic modulus of deck concrete. The delaminated deck area in the FEM is 16 m 

in the longitudinal direction and transversely spans the entire southbound portion 

of the bridge over which trucks can drive. The delaminated area is centered 

longitudinally on the middle span of the model. Reiff et al. (2016) provided 

justification of the types, severities, and modeling of damage scenarios almost 

identical to those used in this research. The justification of their Case A can be 

traced to WisDot and FHWA (2001), Chajes et al. (2005), Kaufmann et al. (2004), 

and Farrar et al. (1994); the justification of their Case B can be traced to Enright 

and Frangopol (2000) and Miller et al. (2001); and the justification of their case D 

can be traced to Warhus et al. (1995). 

For each damage case, two simulated HS20 trucks are run separately over the 

bridge FEM: one northbound truck centered in the northbound lane and one 
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southbound truck centered in the southbound lane. The effects of damage are 

quantified in a way that is applicable to the framework of bridge behavior defined 

in this study.  

Damage effects in this study are defined as the percent change in measured 

inputs and peak strain outputs of all the bridge behavior models (bridge behavior at 

all sensor locations) between a bridge with damage and a bridge without damage. 

Several FEM truck runs are simulated to determine these damage effects. The 

measured input/peak strain output sampling process shown in Figure 4 is performed 

in the FEM for the bridge behavior model at all sensor locations, for all damage 

cases, for a northbound truck and then a southbound truck. For simplicity, damage 

effects herein refers to the damage effects for all 27 measured input/peak strain 

output configurations. Similarly, the damage effects at Girder 2 Station 6, for 

example, herein refers to the damage effects for the configuration with Girder 2 

Station 6 as the designated peak strain output. 

Since the calculated damage effects extracted from the FEM depend on the lane 

path of the truck, the damage effects applied to each operational PMB truck event 

depend on whether the truck at the PMB was southbound or northbound. A truck 

event is considered northbound when the peak strain at Girder 5 Station 6 is greater 

than that of Girder 2 Station 6. 

Since the operational PMB truck events on which damage effects are imposed 

are grouped simply as being northbound events or southbound events, it is assumed 

that damage effects as observed during a truck event with a truck centered in a lane 

is sufficiently representative of the damage effects as observed during a truck event 
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with a truck transversely located anywhere in that lane. To test this assumption, an 

FEM sensitivity analysis is performed in which damage effects as observed during 

truck events with a variety of transverse truck locations are compared to each other. 

The results of the sensitivity analysis validate the assumption. 

2.6 Damage Identification 

2.6.1 Damage Identification Trials 

The proposed use of damage detection in this study is largely for long-term 

monitoring of a bridge but can also be used for the rapid detection of sudden 

damage. Most structural deterioration is gradual. Ideally, a functioning bridge SHM 

system will provide long-term objective feedback which a bridge engineer can use 

to evaluate overall structural health and trends.  

Fifty trials of a week’s worth of simulated data are generated for each of the 

damage cases to assess how effectively damage is identified. The data of each trial 

is generated by randomly sampling, without replacement, 20 of the 420 truck events 

set aside from model training and applying damage effects to the 20 events. 20 

events are sampled because approximately that many truck events (which can be 

utilized) are recorded at the PMB each week. The remaining 400 set-aside truck 

events are left as they are initially recorded, with no known damage. The 20 events 

of each trial represent approximately a week’s worth of new passively collected 

data, and the remaining 400 events represent data that have been previously 

recorded when there was no known damage on the bridge, that was set aside from 

the model training. 
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First, the significance of a week’s worth of events with respect to damage 

detection is assessed. Similar to the process shown in Figure 7, a quantile stability 

plot is produced for the peak strain prediction error magnitudes, averaged across all 

27 sensor locations, for the 420 set-aside truck events (Figure 8). The number of 

events at which the quantiles stabilize (i.e., an almost constant quantile value with 

only small variations from additionally added data) represents the number of events 

required to fully convey how much the true PMB behavior deviates from the model 

– at least in its healthy state. Thus, it also represents the number of events required 

to decidedly determine whether damage is present. At the weekly average of twenty 

events, the quantiles are almost stable, but not completely so, since the quantile 

values change slightly when additional prediction errors are added to the pool of 

the first 20 prediction errors. This implies that the number of events in a typical 

week is not enough to decidedly detect damage rapidly in the case of sudden 

damage. However, it is enough to give an engineer a good impression of the 

behavior of the bridge, which is true because the damage detection method 

(assessed below) is extremely sensitive to structural changes. Additionally, if an 

engineer is observing slow deterioration over several years, as opposed to rapidly 

detecting sudden damage, then the number of events per week is sufficient because 

enough data is presented to the engineer over time. 
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Fig. 8. Prediction Error Quantile Stability Plot 

2.6.2 Damage Detection 

The first component of damage identification is detection (Rytter 1993). Since 

there is a bridge behavior model at each of the 27 sensor locations, damage 

detection is performed individually for each model. The method of damage 

detection used in this study is herein described for only the bridge behavior at 

Girder 2 Station 6; however, the process described below is performed 27 times 

(once for the bridge behavior at each sensor location). 

If damage exists in a generated trial of 20 “newly measured” truck events, then 

peak strains at Girder 2 Station 6 for those 20 events should deviate further from 

the final ANN model predictions than do sampled peak strains of events from its 

corresponding control group of 400 events. This comparison of deviation is done 

with the Wilcoxon rank-sum test. It is a nonparametric approach to determine the 

difference in medians between two sets of data (Wilcoxon, 1945). A one-sided test 
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is performed when there is an expectation of which data set is potentially larger; 

and a two-sided test is performed when it is unknown which data set is potentially 

larger (Helsel and Hirsch 2002). In this study, a two-sided test is used because the 

effects of damage on the measured data is unknown a priori. Additionally, when 

the smaller of the two data sets being compared is less than 10 samples, the exact 

method must be used (Helsel and Hirsch 2002); however, since the data sets being 

compared in this example both have more than 10 samples, the approximate method 

is used. 

In a Wilcoxon rank-sum test, the null hypothesis, 0H , is that the medians of 

both sets of data are the same. The parameter p  is the probability, when the null 

hypothesis is true, that the two data sets are at least as different from one another 

as they exist when compared in the rank-sum test. The value of p  ranges from 0 to 

1. The parameter   is the significance level. Any calculated p  value below   

demonstrates a rejection of 0H , and any calculated p  value above   demonstrates 

a failure to reject 0H . The parameter h  is calculated to be either 0 or 1. In this 

example, h  would be 1 if 0H  is rejected and would be 0 if there is a failure to reject

0H . The compared parameter of the two sets of data in each of the 50 trials is the 

deviation of the peak strains at Girder 2 Station 6 from the final ANN model 

predictions. A Wilcoxon rank-sum test is performed on the two pools of data with 

a significance level of 0.1%, or 0.001. For each of the 50 trials, p  and h  values are 

calculated to determine whether damage exists according to the bridge behavior 

model at Girder 2 Station 6. 
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A summary of these values for all trials is provided in Table 3 for each damage 

case for Girder 2 Station 6, as well as all the other sensor locations. Values of p  

are averaged across all trials; in the table, these mean values demonstrate that 

damage is detected ( h  = 1) at that location on average if they are less than 0.001. 

The lower the mean p  value, the more significant damage is on average according 

to the bridge behavior model at that location. For each scenario with induced 

damage, bridge behavior models at many locations are severely affected, as shown 

by the low mean p  values. The table also displays the percentage of the 50 trials 

for each damage scenario in which damage is detected at each location. Damage is 

reliably detected at many locations when there is damage, and damage is not 

detected at all when there is no damage. Damage is considered detected in general 

for a week’s worth of events if it is detected according to the bridge behavior model 

for at least one sensor location independently, because the bridge behavior model 

at each location is one way in which bridge behavior in general is defined and 

observed. Based on this assertion, damage is detected in 100% of the trials for cases 

in which there is damage, and damage is detected in 0% of the trials for Case U (no 

damage). This means there are no Type I or Type II errors in any of the trials with 

a significance level of 0.1%. 

Table 3. Damage Detection Trial Results 

Sensor 

Location 

Mean p Value % of Trials w/ Detected Dmg. 

Case U Case A Case B Case D Case U Case A Case B Case D 

G1-S2 5.3E-01 3.0E-01 9.9E-05 2.4E-01 0 4 98 14 

G1-S6 5.4E-01 5.2E-12 1.2E-07 6.0E-06 0 100 100 100 

G1-S8 5.3E-01 5.5E-10 2.6E-01 1.5E-01 0 100 12 30 

G1-S10 5.3E-01 5.8E-12 1.6E-12 3.7E-03 0 100 100 70 

G2-S2 5.3E-01 2.8E-01 2.6E-01 5.0E-04 0 16 16 92 
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Sensor 

Location 

Mean p Value % of Trials w/ Detected Dmg. 

Case U Case A Case B Case D Case U Case A Case B Case D 

G2-S4 4.5E-01 1.1E-04 1.1E-12 6.9E-13 0 96 100 100 

G2-S6 4.3E-01 4.7E-14 1.9E-09 9.8E-02 0 100 100 36 

G2-S8 4.9E-01 5.7E-04 1.7E-01 2.7E-08 0 92 20 100 

G2-S10 4.8E-01 3.1E-01 2.6E-01 1.1E-01 0 4 16 22 

G3-S2 5.1E-01 1.4E-01 1.3E-01 4.3E-01 0 24 26 2 

G3-S4 5.4E-01 1.8E-01 5.5E-03 3.0E-01 0 26 96 4 

G3-S6 5.0E-01 4.8E-13 5.0E-03 1.3E-02 0 100 78 68 

G3-S8 4.9E-01 5.0E-09 4.6E-12 3.5E-01 0 100 100 6 

G3-S10 5.0E-01 1.2E-02 4.9E-13 2.9E-01 0 70 100 8 

G4-S2 5.3E-01 1.3E-02 6.9E-14 8.7E-03 0 60 100 58 

G4-S4 5.1E-01 1.0E-04 3.2E-01 7.4E-11 0 98 6 100 

G4-S6 4.1E-01 4.8E-13 2.4E-02 3.7E-01 0 100 78 4 

G4-S8 5.0E-01 1.4E-12 5.9E-02 1.2E-06 0 100 68 100 

G4-S10 5.0E-01 8.7E-02 3.7E-01 2.3E-03 0 30 4 86 

G5-S2 5.0E-01 2.7E-01 2.7E-12 3.1E-02 0 12 100 42 

G5-S6 4.9E-01 3.1E-01 1.1E-10 1.4E-01 0 10 100 18 

G5-S8 5.0E-01 5.1E-01 3.7E-01 1.6E-08 0 0 4 100 

G5-S10 4.5E-01 2.9E-08 1.4E-07 3.7E-01 0 100 100 4 

G6-S2 5.3E-01 2.1E-03 2.9E-05 4.2E-02 0 80 98 28 

G6-S4 5.4E-01 2.7E-01 7.0E-03 1.6E-02 0 6 74 52 

G6-S6 4.7E-01 8.6E-02 2.4E-01 5.7E-02 0 24 10 36 

G6-S8 5.0E-01 2.5E-01 1.9E-02 3.2E-01 0 6 50 0 

 

2.6.3 Damage Localization 

The second component of damage identification is localization (Rytter 1993). 

Figure 9 displays average results for the way damage is attempted to be visually 

localized for each damage case for one trial out of the fifty that are performed. The 

black dots are the sensor locations, and the vertical axes are the peak strain values 

of each of the 20 events in the trial, zeroed with respect to the bridge behavior 

model predictions. The predicted peak strain values are zero on the vertical axes, 

and the vertical black bars are the confidence intervals of the predictions (see Table 

1). Each circle stemming out from zero on the vertical axis is the median deviation 

of a location’s measured peak strains from their predicted values over the 20 events 

in the trial. A circle is green if its value is within the location’s normalized 
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confidence interval, and a circle is red if its value is outside of it. They imply 

whether or not, respectively, the bridge behavior at each location is as expected. 

The authors hypothesize a priori that damage is localized based on how much each 

location’s measured peak strains deviate from the predicted values, because the 

structural effects of damage are most severe close to the damage. 

 

Fig. 9. Typical Week’s Damage Localization for (a) No Damage, (b) Fracture, (c) 

Corrosion, and (d) Delamination 

The proposed visual method successfully localizes the damage of Case A 

(Girder 2 fracture) both longitudinally and transversely, as shown in the typical 

trial. The measured peak strains deviate from the predicted values most severely at 

Girder 2 Station 6, which is adjacent to the damage, and then next most severely 

near that sensor location. The typical trial shown also demonstrates that the damage 

of Case B (Girder 1 corrosion) is successfully localized. Most of the median 

measured values that significantly deviate from their predicted values are along 
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Girder 1, which is corroded, and other locations of significant deviations are on the 

southbound half of the bridge.  

The simulated damage is not effectively localized for Case D (deck 

delamination). Even though the sensor locations whose median peak strains fall 

outside of their normalized confidence intervals are on the delaminated side of the 

bridge, they are concentrated longitudinally at the south pier of the bridge, as 

opposed to longitudinally distributed over the delaminated portion. This may be 

because the damage was not significant enough to force enough locations’ peak 

strain measurements outside of their confidence intervals, even though it was 

significant enough for several locations to detect damage. Lastly, as expected, the 

measured values for Case U (no damage) do not significantly deviate from the 

predictions. 

2.6.4 Further Discussion of Results 

The 0.1% significance level used in the Wilcoxon rank-sum tests is arbitrary. 

The value used in this study is one that effectively emphasizes the contrast in bridge 

behaviors between an undamaged and damaged structure. This issue is further 

addressed later. 

Even though the effects of non-catastrophic damage on the PMB would not be 

physically “experienced” very much at sensors far from the actual damage, Table 

3 demonstrates that damage is still typically detected in this study at most of the 

sensor locations. It is hypothesized that this occurs because of the way in which 

bridge behavior is defined: strains at sensor locations are not observed in isolation; 

they are observed in relation to one another. There are two ways in which damage 
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can be detected in this framework. (1) All the measured inputs that a final ANN 

model deems relevant are far from the damage, therefore their values are “normal.” 

The predicted peak strain output value is thus “normal” as well. The output sensor 

location is close to the damage, so the measured value is “not normal” and thus 

deviates from the model prediction. (2) Some of the measured inputs that the trained 

ANN model deems relevant are near the damage, therefore their values are “not 

normal.” The predicted peak strain output value is thus “not normal” as well. The 

output sensor location is far from the damage, therefore the measured value is 

“normal” and thus deviates from the model prediction. 

A phenomenon similar to that may also explain why measured peak strains 

during damage scenarios significantly deviate from their predicted values when 

they are close to damage, but do not necessarily deviate in the way that is expected. 

The typical damage localization trial for Case B (corrosion) exemplifies this. It is 

expected that all the median measured peak strains along Girder 1 would be lower 

than their predictions, since Girder 1 carries less load due to a loss of relative 

stiffness when it is corroded. However, in the damage localization plot in Figure 

9(c), all the Girder 1 median measured peak strains are higher than their predictions. 

2.7 Conclusion 

When tested against new data, the ANN-learned model of bridge behavior is 

shown to be effective and applicable to a variety of traffic events with unknown 

operational loading conditions. The proposed method of damage identification is 

remarkably successful at detecting damage, and damage is effectively localized for 

two out of three damage scenarios. 
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There is still much work to be done to enhance this new approach to quantifying 

and assessing bridge behavior. However, the preliminary results of this study 

demonstrate that it has the capability to be effective in the future for engineers to 

easily determine the baseline performance of bridges and receive automated weekly 

updates on bridges’ statuses. This would lead to more informed decision-making, 

which means that time and funding would be allocated more efficiently to maintain 

and improve US infrastructure. 

2.8 Future Work 

One issue that can be addressed in future work is the a priori determination of 

an appropriate significance level for damage detection for any bridge like the PMB, 

potentially based on the characteristics of the bridge and its instrumentation. Future 

work can also assess other input/output relationships, such as temperature inputs 

and strain outputs at all sensor locations when no trucks are on the bridge. Only one 

final ANN model would be needed to define the bridge behavior, rather than 27, 

because all the temperatures across the bridge can be used as direct predictors of all 

the strains across the bridge. 
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Chapter 3.  Truck Event Selection Process 

3.1 Overview of Truck Events Selection 

The two main objectives of this study are to (a) train ANNs to mimic the way a 

bridge creates a distribution of traffic-induced strains from a single vehicle and to 

(b) assess the damage identification capability of an approach that utilizes the 

trained ANNs. These objectives require the removal of many types of events from 

the pool of operational data with which the ANNs can potentially be trained. 

Undesirable traffic events are identified herein by assessing the distribution and 

timing of the strains at the bottom flanges of all six girders at Station 6, which is 

close to the midspan of the middle span of the bridge. SG-6, SG-22, SG-42, SG-62, 

SG-82, and SG-96 are used for Girders 1 through 6, respectively. Sanayei et al. 

(2012) provided a detailed summary of the instrumentation of the bridge. The 

strains at these sensor locations are assessed in all the following truck event 

selection rules, unless otherwise noted, as they are used in this study: with a moving 

average filter with a window of 7/50th of a second applied to the raw strain data. 

The order in which undesirable truck events are identified and removed are the 

same as it is presented herein. 33,985 total events are removed, the majority of 

which according to the requirements described in Section 3.2. 

3.2 Removal of Light Vehicle Events 

The types of vehicles that cross the PMB are divided into two categories: light 

and heavy (Follen at al. 2014). Only data from heavy vehicles are used, because the 

signal-to-noise ratio is higher. Based on their study, events are deemed as heavy 

truck events when the maximum overall strain experienced by any girder at Station 
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6 is greater than 40 microstrains. Figure 10 shows the strains of all the girders at 

Station 6 for a light vehicle event. 

 

Fig. 10. Typical Event with Light Vehicle 

3.3 Removal of Events with Excessive Head or Tail Energy 

Truck events with excessive strain energy anywhere on the bridge (but observed 

at Station 6) at the beginning or end of the event caused by a second vehicle are 

removed, because the objective of the ANN training is to simulate how the bridge 

distributes a single vehicle load – not several vehicle loads – to many sensor 

locations. Events are flagged as such when any of the girders have a variance of 

strain values in the first or last three seconds of the recorded event that is greater 

than 8 microstrains. A typical event flagged for this reason is plotted in Figure 11 

for Station 6. In the figure below, the strain values dipping below zero after the 

main truck event on the center span has ended signify that a new truck has crossed 
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onto the bridge – causing negative bending at Station 6 – before the main truck 

completely exits the bridge. 

 

Fig. 11. Typical Event with Excessive Head or Tail Energy 

3.4 Removal of Events with Centered Truck or Two Opposing Trucks at 

Midspan 

Events are removed if they are triggered by either (a) two trucks travelling in 

opposite directions that pass each other close to midspan of the middle span or (b) 

a single truck that straddles both lanes. Reason (a) is necessary because of the same 

reason described in Section 3.3. Reason (b) is necessary because damage is 

simulated in this study only for trucks in the northbound lane and in the southbound 

lane, not for trucks straddling the centerline. An event is flagged under this rule if 

it meets all the following criteria: (a) the peak strain of Girder 3 is the maximum 

overall strain of all the girders; (b) the smaller of the peak strains of Girders 2 and 

4 is greater than the larger of the peak strains of Girders 1 and 5; and (c) the larger 
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of the peak strains of Girders 2 and 4 is greater than 2/3 of the peak strain of Girder 

3. A typical event removed for this reason is shown in Figure 12 for all the girders 

at Station 6. Since Girder 3 clearly experiences the maximum strain, the truck event 

in the figure must be triggered by either a truck straddling Girder 3 or two trucks 

that meet close to midspan of the middle span. 

 

Fig. 12. Typical Event with Centered Truck or Two Opposing Trucks at Midspan 

3.5 Removal of Events with Two Aligned Trucks in Succession 

For the same reason described in Section 3.3, events are removed when they are 

triggered by two successive trucks in the same lane. To identify these events, 

definitions of key strain values – which pertain to this particular rule – must first be 

laid out. A peak is any strain data point whose two adjacent points are of a lower 

value than it is. A main peak is the peak of highest value of a single girder during 

an event. A secondary peak is any peak that is not a main peak. A valley is any 

strain data point whose two adjacent points are of a higher value than it is. A peak’s 
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prominence is the absolute difference between the peak’s value and the highest-

value valley adjacent to it. A valley’s prominence is the absolute difference between 

the valley’s value and the lowest-valued peak adjacent to it. 

For this particular truck event removal rule, a moving average filter with a 

window of 17/50th of a second is applied to the raw strain data. This window ensures 

that any strain peaks and valleys caused by noise in the data are removed, but 

ensures that the relationships between all the important peaks and valleys are 

preserved. Events are flagged for removal if the girder with the maximum overall 

strain of all the girders has a secondary peak that meets all the following criteria: 

(a) it is at least 40% of the magnitude of the girder’s main peak; (b) it occurs 

between 0.75 seconds and 8 seconds before or after the occurrence of the girder’s 

main peak; and (c) it has any valley between itself and the girder’s main peak that 

has a prominence of at least 45% of the prominence of the girder’s main peak. An 

event removed for this reason is shown in the Figure 13, with the default moving 

average window of 7/50th of a second applied for viewing consistency. In the figure, 

the two “bumps” signify two trucks crossing the bridge. The figure also confirms 

that both trucks are travelling in the same direction because percentage of load 

distributed to each girder is approximately the same for both bumps. 



 

43 

 

 

Fig. 13. Typical Event with Two Successive Aligned Trucks 

3.6 Removal of Events with Two Opposing Trucks not at Midspan 

For the same reasons described in Section 3.3, events are removed when they 

are triggered by two trucks travelling in opposite directions that pass each other 

somewhere other than near the midspan of the middle span of the bridge. To 

identify these events, the same definitions of key strain values used in Section 3.5 

are used here. Additionally, the same moving average window used in that section 

is used here, with the same reasoning as well. A truck event is removed if any girder 

whose main peak ranks 3rd, 4th, or 5th in value among all the girders’ main peaks 

has a main peak that meets both of the following criteria: (a) it occurs between 1 

second and 8 seconds before or after the occurrence of the overall main peak of all 

the girders; and (b) it has a magnitude of at least 15 microstrains when its raw strain 

data is filtered with a moving average window of 7/50th of a second. Such an event 

is shown in Figure 14 with a moving average window of 7/50th of a second for 
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viewing consistency. Similar to those in Figure 13, the two tallest “peaks” from 

Girder 2 signify two trucks on the bridge, with at least one being in the southbound 

lane. However, the peak strain of Girder 5 is offset from the other peaks by about 

1.5 seconds, and Girder 3 has the overall maximum strains of all the girders. This 

implies that one of the two trucks is traveling northbound.  

 

Fig. 14. Typical Event with Two Opposing Trucks not at Midspan 
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Chapter 4.  Artificial Neural Network Use 

4.1 Classification and Architecture 

The type of ANN used in this study is the feedforward perceptron, which learns 

the relationship between a set of inputs and outputs by determining the optimal 

values of the parameters embedded in its framework that form the input-output 

relationship (Cao et al. 1998). An idealized perceptron provided by Hagan et al. 

(1996) is shown in Figure 15. Each data “point” used in the training of a perceptron 

can have multiple input terms and multiple output terms. 

 

Fig. 15. Idealized Perceptron (Hagan et al. 1996) 

Output terms are predicted based on input terms with a complex net of functions 

that flow from layer to layer. The input of a single data “point” according to the 

idealized model is an R  x 1 vector, with R  input terms. The first neural layer has 

1s  neurons. Each neuron in the first layer (a) multiplies each input by a unique 

weight, (b) sums the products of the inputs and their corresponding weights, (c) 
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adds a bias to the sum, and (d) passes the final sum through a function. At the end 

of the first layer, there are 1s  intermediate terms, which are designated as 1

1a  

through 1

1

s
a . All the intermediate terms can be represented as the 1s  x 1 vector 

 1a . This process is repeated for each neural layer, where the input of each layer 

is the intermediate output of the previous layer. Each layer can have a unique 

number of neurons with their own unique weights and biases. The transfer function 

can vary between layers too. This process is repeated until the final layer, the 

output, is calculated. The output of a single data “point” according to the idealized 

model is an 3s  x 1 vector, with 3s  output terms. The number of neural layers is 

also customizable. 

The perceptrons used in this study have 26 input terms and 1 output term. In 

general, an ANN will have better generalization capabilities with less neural layers 

and less neurons in each layer. The objective of the neural network architect is to 

create the simplest possible model that captures the underlying trends of the data 

(MathWorks 2017). Each ANN in this study has two hidden layers, which are 

neural layers in between the input layer and the output layer. The first hidden layer 

has 6 neurons, so it receives 26 inputs from the input layer and has 6 intermediate 

outputs. The second hidden layer has 1 neuron, so it receives 6 intermediate inputs 

from the first hidden layer and has 1 output to the output layer. The first-layer 

neurons use a log-sigmoid function, and the second-layer neuron uses a linear 

function. Two hidden layers is common for modeling relationships that are not 

overly complex, and the functions used for the neurons in each layer are also 

typically recommended (Hagan et al. 1996). 
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4.2 Optimization and Regularization 

ANN training is an iterative process by which the ANN model improves to fit 

the training data as effectively as possible. The iterative process is a loop of 

assessing how well the ANN fits the data with its current set of weights and biases 

and adjusting the weights and biases for the next iteration based on its performance 

in the current iteration. ANNs can update their parameters with many different 

optimization algorithms. The one used in this study is the Levenberg-Marquardt 

Algorithm. The LM Algorithm is used because of its common use in the field and 

for its capability to train ANNs in a variety of circumstances (Kostić and Gül 2017, 

Hsieh and Mura 1995, and Hadi 2002). Hagan et al. (1996) provided a detailed 

explanation of it. 

Bayesian Regularization is implemented to affect the way in which the 

Levenberg-Marquardt Algorithm is used: it ensures a balance between data-fitting 

and generalization capabilities. Without Bayesian Regularization, the objective 

function used with the Levenberg-Marquardt Algorithm is the sum of squared 

errors of all output terms. Bayesian Regularization introduces an additional 

objective function term that is added to the sum of the squared errors: the sum of 

the squared weights. By penalizing the network for having more weights, the ANN 

is incentivized in its training to make more of its weights closer to zero. Weights 

with values closer to zero effectively eliminates parameters from its model, which 

simplifies the ANN and improves its generalization capability. This helps prevent 

the ANN from overfitting the data it trains with. Hagan et al. (1996) provided an 

in-depth statistical justification of the use of this regularization. 
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Chapter 5.  Simplified Analogy of Bridge Behavior and Damage Detection 

5.1 ANN Model Training 

ANN models in Chapter 2 are developed to mimic the structural behavior of the 

PMB. However, the nature and development of the ANN models are complex. 

Therefore the training, assessment, and use of the models is performed herein with 

a simplified analogy of the PMB operational data to provide a conceptual 

understanding. 

A hypothetical structure is assumed to have an input-output relationship of 

2y x z  , as measured by an observer, where 2y x  is the analytical 

relationship, and z  is a randomized, normally distributed noise term with a mean 

of 10 and a standard deviation of 7. The input-output relationship represents the 

relationship between two measured variables, such as the response at two different 

locations as the structure experiences loading. The expected output value based on 

an input value is the definition of the structure’s behavior. The “measured” data are 

the individual data points in Figure 16. 
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Fig. 16. Measured Data and Individual ANN Models 

There are 1,000 measured data points. The input variable x  spans from 0 to 

10,000 in uniform increments of 10. It is also shown that the noise term z  

introduces uncertainty of the input-output relationship of the structure. It is desired 

to determine the range of expected behavior of the structure, so a bootstrapping 

scheme is used. 

In this analogy, it is not desired to determine the range of expected values of y  

regardless of x ; rather, it is desired to determine the range of expected values of 

any single y  given a single value of x  upon which the value of y  depends. First, 

the existing set of 1,000 measured data points is randomly subdivided into two data 

sets 1,000 times. In each subdivision, 85% of the measured data points are used to 

train an ANN, and 15% are set aside from training to assess the performance of the 

trained ANN. Each trained ANN is a best fit of the measured data, based on the 

85% of the data it was trained with. Each data “point” used in the training of a 
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perceptron can have multiple input terms and multiple output terms; however, this 

simplified analogy only relates one input term and one output term: x  and y . 

One ANN is trained for each of the 1,000 data subsets. These ANNs are herein 

referred to as individual ANN models for simplicity. The curves of a few of the 

individual ANN models are shown in Figure 16. All the models are slightly 

different from one another because each individual model was trained with different 

data. The performances of all individual ANN models are also different from one 

another because (a) the models themselves are different from one another, and (b) 

the performances the models are assessed with a different 15% of the data points 

set aside from training. 

As shown in Figure 16, the individual ANN models do not differ much from 

one another. An average of all the individual ANN models is taken to be the final 

ANN model of the input-output relationship of the structure, which is ultimately 

very similar to the individual ANN models from which it is derived. It is calculated 

as: 

    
1000

1

1

1000
i

i

ANN x ANN x


    (4) 

 where  ANN x  is the final ANN model, and  1ANN x  through  1000ANN x  are 

the individual ANN models. 

5.2 Expected Behavior 

The final ANN model gives the expectation of y  given any x  value. To 

determine the range of expected y  values given any x  value, a residuals analysis 
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is performed on the 1,000 individual ANN models. Each model has prediction 

errors for the 15% of data points set aside from training, which are calculated as 

 iy ANN x   , where   is error, y  is the measured value, and  iANN x  is the 

predicted value from the i th individual ANN model. 

A distribution is then created that pools the prediction errors of the 15% of set-

aside data points of all the individual ANN models of which the final ANN model 

is composed (Figure 17). This effectively represents the distribution of how much 

the measured data – which has not been used to train an individual ANN model – 

deviates from said trained individual ANN models. 

 

Fig. 17. Pooled Prediction Error Distribution and 95% Confidence Interval 

The pooled error distribution is approximately normal. Therefore, 95% of the 

prediction errors lie between the 2.5th and 97.5th percentiles, which are shown as 

vertical lines. The measured data at this point has now been bootstrapped to be 

representative of the entire population of all possible data points. Therefore, the 
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2.5th and 97.5th percentiles of the pooled prediction errors representing the 95% 

confidence range that any newly measured data point may deviate from the final 

ANN model. Based on this assertion, the 95% confidence interval for the value of 

y  given any newly measured value of x  is calculated as follows: 

 
   

   

2.5

97.5

LB

UB

ANN x ANN x

ANN x ANN x





 

 

  (5) 

where  
LB

ANN x  and  
UB

ANN x  are the lower and upper bounds of the 95% 

confidence interval of the final ANN model’s prediction, respectively, and 2.5  and 

97.5  are the 2.5th and 97.5th percentiles of the pooled prediction errors, respectively 

(shown in Figure 18). This is effectively the 95% confidence interval of the 

expected behavior of the structure. 

 

Fig. 18. 95% Confidence Interval of y  Prediction Given x  
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This calculation is valid under the assumption that the amount that newly 

measured data points deviate from the final ANN model is independent of x . It is 

also valid under the assumption that the final ANN model is similar to the 

individual ANN models of which it is comprised, because the pooled error 

distribution that determines the confidence interval is derived from the performance 

of the individual ANN models, not the final ANN model. 

5.3 Damage Detection 

Hypothetical damage is imposed on the structure after the data points have been 

sampled from the undamaged structure. The input-output relationship with damage 

is represented mathematically as 2 10y x z   , where 10 is an offset caused by 

damage. Without the prior knowledge that damage exists, new samples must be 

measured to determine whether damage is present. A total of 50 new samples are 

taken after damage is imposed (Figure 19(a)). This sampling is represented by the 

newly introduced input-output equation, where x  is uniformly spaced between 0 

and 10,000. 

 

Fig. 19. Additional Samples (a) after and (b) before Imposed Damage 

Fig. 19(a). After Imposed Damage Fig. 19(b). Before Imposed Damage 
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If damage exists, then the newly sampled data should deviate further from the 

final ANN model than does sampled data taken prior to the imposition of damage. 

The newly sampled data, however, cannot be compared to the data shown in Figure 

16, which has been used to develop the final ANN model. Data used to develop the 

final ANN model will inherently deviate less from the model than will any newly 

sampled data, regardless of the presence of damage. Therefore, 300 additional 

samples are taken before the imposition of damage, shown in Figure 19(b). These 

300 additional samples have not been used to develop the final ANN model. This 

sampling is represented by the input-output equation without the damage term of 

10, where x  is uniformly spaced between 0 and 10,000. 

The 50 data points sampled after the damage imposition are compared to the 

300 data points sampled additionally when it is known that the structure is 

undamaged. This comparison is done with the two-sided approximate Wilcoxon 

rank-sum test with a significance level ( ) of 0.1%, or 0.001. A calculated p  value 

below 0.001 demonstrates a rejection of the null hypothesis 0H  with a 0.1% 

significance level, and a calculated p  value above 0.001 demonstrates a failure to 

reject 0H  with a 0.1% significance level. The parameter h  is calculated to be either 

0 or 1. In this example, h  would be 1 if 0H  is rejected and would be 0 if there is a 

failure to reject 0H . 

The compared parameter of the two sets of data is the deviation of the data 

points from the final ANN model. The resultant value of p  is 4.3829x10-12, which 

is much less than the   value of 0.001. This yields an h  value of 1, which implies 
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a rejection of the null hypothesis 0H  with a significance level of 0.1%. Therefore, 

it is concluded with 99.9% certainty that the structure is damaged during the 

sampling of the 50 new data points. 
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Chapter 6.  Temperature Sensitivity Analysis 

6.1 Effects of Temperature 

Moser and Moaveni (2011) and Moaveni and Behmanesh (2012) determined 

that the natural frequencies of a footbridge depend on the temperature. Clinton et 

al. (2006) observed the effects of weather – such as wind, rain, and temperature – 

on the fundamental frequency of a building. Alampalli (2000) showed that modal 

properties of a highway bridge are affected by operational conditions. The bridge 

behavior framework defined in this study assesses the relationship between 

measured strains at different locations. It does not consider environmental effects 

on the characteristics of the structure and how such potential changes in 

characteristics could affect the relationship between measured strains. 

The consideration of environmental effects would manifest itself in this study 

in two ways. Firstly, to predict the bridge behavior of the PMB more precisely, 

ANN models trained to mimic the bridge behavior of the PMB would need to 

include environmental effects as inputs in the measured input-peak strain output 

relationships defined earlier in this work. Secondly, to simulate the effects of 

damage more accurately, the damage effects which are simulated in the FEM would 

need to be determined for many different environmental conditions and then 

applied to operational truck events based on the corresponding operational 

conditions during the events. However, that would require accurate prior 

knowledge of environmental effects on the structure to properly simulate the 

environmental effects on the FEM structure in the first place. Therefore, only the 

first consideration is assessed in the rest of this chapter. 
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6.2 Sensitivity Analysis 

It is assumed that the two factors that affect the bridge behavior of the PMB 

most are (a) temperature and (b) whether the ground supporting the piers and 

abutments are frozen, which is indirectly a function of temperature. To assess the 

effect of environmental conditions on this study, a comparison is made between the 

performances of two developed bridge behavior models. One model is trained with 

the same measured input/peak strain output relationships as shown in Figure 3 

earlier in this work. The other model includes the temperatures of Girders 1 through 

6 and the ambient temperature as measured inputs to supplement the inputs shown 

in Figure 3. Both models are structured and developed the same way as the utilized 

bridge behavior model is in this study, except that the model that includes 

temperature has seven additional input terms. 

Of the 1,929 accepted truck events used in this study, only 502 have available 

temperature data and thus are the only events used in this sensitivity analysis. 50 of 

the 502 events are randomly set aside from model training to assess the 

performances of the two bridge behavior models. The same randomly selected 

events are set aside for both models. Each individual ANN in the bootstrapping 

process trains with a random 85% of the 452 events remaining for model training. 

A histogram of the ambient temperature during all the events used in this sensitivity 

analysis, shown below, demonstrates that there is enough variety in temperature for 

potential environmental effects on model performance to be observed. 
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Fig. 20. Ambient Temperatures of Truck Events in Sensitivity Analysis 

The performances of the two bridge behavior models are assessed with a 

residuals analysis. The model predictions of the peak strains are compared to the 

actual peak strains at all sensor locations for the 50 truck events set aside from 

model training.  

The residuals analysis for the 50 set-aside truck events is summarized in Table 

4. The three columns under Mean Error Mag. (με) display the mean of the 

prediction error magnitudes of the bridge behavior models not accounting for 

temperature and accounting for temperature, as well as the differences between the 

two. The three columns under Error Std. Dev. (με) display the error standard 

deviations of the bridge behavior models not accounting for temperature and 

accounting for temperature, as well as the differences between the two. When 

assessed at all sensor locations, the difference in performance between the two 

bridge behavior models is negligible. Therefore, environmental effects are not 
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accounted for in this study. Any actual environmental effects that exist manifest 

themselves in this study by (a) creating a spread in data used to train the final ANN 

models of bridge behavior, (b) inducing more prediction error of the final ANN 

models when they are assessed with set-aside truck events, and (c) creating a spread 

in how accurately the damage effects modeled in the FEM represent the actual 

damage effects that should be applied to each individual truck event. 

Table 4. Performances of Bridge Behavior Models with and without Temperature 

Sensor 

Location 

Mean Error Mag. (με) Error Std. Dev. (με) 

W/O 

Temp. 
W/ Temp. 

(W/)-

(W/O) 

W/O 

Temp. 
W/ Temp. 

(W/)-

(W/O) 

G1-S2 0.226 0.210 -0.016 0.258 0.251 -0.006 

G1-S6 0.801 0.676 -0.125 1.070 0.924 -0.145 

G1-S8 0.265 0.228 -0.037 0.249 0.267 0.019 

G1-S10 0.375 0.313 -0.062 0.454 0.397 -0.057 

G2-S2 0.424 0.353 -0.071 0.481 0.413 -0.068 

G2-S4 0.601 0.452 -0.149 0.592 0.405 -0.187 

G2-S6 0.721 0.727 0.006 1.011 0.989 -0.022 

G2-S8 0.504 0.425 -0.078 0.436 0.419 -0.017 

G2-S10 0.363 0.351 -0.012 0.440 0.452 0.012 

G3-S2 0.913 0.680 -0.233 1.129 0.838 -0.291 

G3-S4 0.358 0.273 -0.085 0.420 0.347 -0.073 

G3-S6 0.475 0.505 0.031 0.620 0.682 0.062 

G3-S8 0.325 0.323 -0.002 0.446 0.430 -0.016 

G3-S10 0.339 0.329 -0.010 0.387 0.380 -0.007 

G4-S2 0.188 0.207 0.019 0.287 0.272 -0.015 

G4-S4 0.192 0.165 -0.028 0.225 0.206 -0.019 

G4-S6 0.259 0.281 0.022 0.357 0.396 0.039 

G4-S8 0.169 0.173 0.004 0.226 0.231 0.005 

G4-S10 0.223 0.268 0.045 0.268 0.338 0.071 

G5-S2 0.074 0.082 0.008 0.092 0.107 0.015 

G5-S6 0.118 0.102 -0.016 0.130 0.132 0.002 

G5-S8 0.155 0.159 0.004 0.197 0.205 0.008 

G5-S10 0.141 0.148 0.006 0.174 0.175 0.001 

G6-S2 0.116 0.100 -0.016 0.148 0.113 -0.035 

G6-S4 0.151 0.139 -0.012 0.164 0.161 -0.003 

G6-S6 0.229 0.186 -0.043 0.532 0.273 -0.259 

G6-S8 7.588 7.593 0.006 7.779 7.787 0.007 
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Chapter 7.  Justification and Modeling of Damage Cases 

7.1 Case A: Interior Girder Fracture 

Damage Case A is an interior girder fracture. It is the first of three damage 

scenarios that contain simulated damage. The type, severity, and modeling of the 

damage for this scenario is justified herein (and is also done so for Cases B and D 

in subsequent sections). 

There are documented instances of similar bridge girder fractures, particularly 

near the midspan of bridges close to steel details. Several cracks were detected on 

the Hoan Bridge in 2000 on a southern approach span, which were believed to be 

initiated at constrained weld details on the webs (WisDOT and FHWA 2001). The 

Delaware I-95 Bridge over the Brandywine River had a brittle crack occur at a 

stiffener-web connection (Chajes et al. 2005). A crack was found at a lateral gusset 

plate connection of a girder in the Pennsylvania US-422 Bridge over the Schuykill 

River when retrofits were being performed (Kaufmann et al. 2004). For two of the 

three bridges above, girder cracks were not detected until routine inspection or 

maintenance. Due to the potentially catastrophic nature of girder cracks, it is 

beneficial to be able to detect them quickly after they develop.  

Farrar et al. (1994) analyzed the effects of a girder crack by inducing damage 

on the I-40 bridge over the Rio Grande River in New Mexico before it was 

scheduled to be demolished. To induce damage in the bridge, torch cuts of 

approximately 3/8” wide were incrementally applied starting at midheight of the 

web, progressing downward through the bottom flange.  
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In this research, to simulate a realistic girder fracture at the PMB, a 2.5 mm-

wide (longitudinally) section of Girder 2 in the FEM was altered to have an elastic 

modulus close to zero. The modeled girder crack was located at a diaphragm 

connection, close to the midspan of the girder. The crack is modeled from the 

midheight of the web through the bottom of the bottom flange. Reiff et al. (2016) 

implemented a reduction in the elastic modulus to simulate damage – for Case A, 

as well as Cases B and D (described below). Because Girder 2 has a decrease in 

stiffness from the crack, it carries less of the load than it does when there is no 

damage, and other girders carry a larger portion of the load than they do when there 

is no damage. 

7.2 Case B: Fascia Girder Corrosion 

Damage Case B is corrosion in the fascia girder. Fascia girder corrosion may 

be caused when de-icing salts mix with runoff water, which then runs off the side 

of the bridge onto exterior girders (Enright and Frangopol 2000). The resultant 

long-term corrosion causes section loss in the affected girder. Miller et al. (2001) 

tested corroded fascia girders that were removed from a bridge, and determined that 

their global loss in stiffness ranged from 13% to 32%. They also noted that most of 

the section loss occurred in the webs and bottom flanges. 

Based on their work, fascia girder corrosion is modeled in the calibrated FEM 

as a 30% reduction of the elastic modulus of the web and bottom flange of Girder 

1 along its entire length. Because the flexural stiffness of Girder 1 is decreased, 

Girder 1 takes less load from a truck when corroded than it normally would when 
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undamaged, and the rest of the girders carry additional load when Girder 1 is 

corroded. 

7.3 Case D: Southbound Deck Delamination 

Damage Case D is southbound deck delamination, in which bond between 

concrete and reinforcement is lost. Deck delamination is often caused by deck 

reinforcement corrosion, usually in the top reinforcement layer, which causes the 

concrete to decouple from the reinforcement bars. This reduces the strength of the 

structure (Warhus et al. 1995). Deck damage repairs are particularly costly (FHWA 

2002), so it would be beneficial to be able to more quantitatively identify deck 

damage on bridges in order for decision makers to make well-informed decisions 

regarding asset management. 

There are many factors that impact the severity of the effects of delamination 

on a structure, such as reinforcement ratio since it pertains to lost contributions of 

debonded bars, for instance (Jnaid and Aboutaha 2014). In general, a deck’s 

contribution to flexural stiffness when undamaged and the severity of its 

delamination ultimately will affect how much deck delamination reduces the 

flexural stiffness of part of a bridge. To most effectively work with the 

configuration and properties of the deck solid elements in the FEM, Reiff et al. 

(2016) modeled deck delamination as a 35% reduction in the elastic modulus of 

deck concrete at the PMB, which can be considered an advanced case of 

delamination. The delaminated deck area in the FEM is 16 m in the longitudinal 

direction and transversely spans the entire southbound portion of the bridge over 

which trucks can drive. The delaminated area is centered longitudinally on the 
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middle span of the model. Because the delaminated portion of the deck has less 

flexural stiffness, the bridge superstructure is less able to transversely distribute 

truck loads between the girders over which the delamination is imposed. 

Additionally, the southbound half of the bridge does not have as much load 

distributed to it as the northbound half does because it is relatively less stiff. 
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Chapter 8.  Uncertainty Introduced by FEM Damage Simulation 

8.1 Assumptions and Uncertainty in Damage Simulation 

In this research, assumptions are made when damage is simulated, when 

damage effects are extracted and processed from FEMs, and when the processed 

damage effects are applied to operational data from the PMB. Firstly, it is assumed 

that the structural behavior of the calibrated FEM is sufficiently reflective of the 

behavior of the real bridge. The results of the work of Sanayei et al. (2012) validate 

this assumption. 

Secondly, it is assumed that the damage effects observed in the calibrated FEM 

with an HS20 truck are sufficiently representative of the damage effects that would 

be observed during a truck event that meets the requirements laid out in Chapter 3. 

Note that the HS20 is an idealized design truck with an axle spacing, axle width, 

and an axle weight distribution that will not exactly reflect actual vehicles crossing 

the PMB. Because the trained bridge behavior model in this study accurately and 

effectively predicts the PMB structural behavior during operational truck events 

that the model has not yet seen (see Section 2.4.4), the variations of the axle 

spacings, axle widths, and axle weight distributions of the trucks at the PMB did 

not significantly hinder the performance of the model’s prediction capability. 

Therefore, even though the accepted PMB truck events are not those of an HS20 

truck, an HS20 truck is an acceptable representative truck to determine the effects 

of damage in the calibrated FEM. 

In addition, it is assumed that trucks at the PMB stay in the same lane as they 

cross the bridge. This assumption is made because (a) damage effects are 
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determined in the calibrated FEM for northbound events and southbound events, in 

which the truck is centered in the appropriate lane and maintains a linear path 

parallel to the longitudinal axis of the bridge, and (b) truck events at the PMB are 

determined to be northbound or southbound – and have damage appropriately 

applied based on it – by assessing the distribution of strains at sensor locations at 

only one station along the length of the bridge. This assumption is valid due to the 

short length of the bridge, the fact that only one lane exists in each direction, and 

the assumed reasonable driving habits of truck drivers. 

However, it is acceptable in this study to use PMB strain data from truck events 

in which truck transverse positions within the lanes themselves vary, both between 

different truck events and over the course of each individual event. For instance, it 

is acceptable for one northbound truck to remain flush to the road centerline for its 

entirety on the bridge and for another northbound truck to enter onto the bridge 

flush to the road centerline and exit the bridge centered in the lane. Damage effects 

as observed during a northbound truck centered in the northbound lane are applied 

to all northbound PMB truck events, regardless of where the trucks actually are in 

the northbound lane. The same approach is used for southbound PMB truck events. 

Even though the damage effects applied to truck events do not perfectly represent 

what the actual damage effects would be for each individual truck event, the 

discrepancy is proven to be acceptable with a sensitivity analysis. The sensitivity 

analysis is composed of multiple tests and is provided below to determine how 

much the transverse position of trucks within a lane affects the accuracy of the 

damage effects applied to truck events. 
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8.2 Lane Variation Sensitivity Analysis 

Damage effects in this study are calculated as the percent changes in measured 

strain input and peak strain output between no-damage and induced-damage FEM 

truck runs. For northbound events at the PMB, damage effects from the FEM 

simulations with the northbound HS20 centered in the northbound lane are applied. 

Likewise, for southbound events at the PMB, damage effects from the southbound 

FEM simulations are applied. A sensitivity analysis is performed to determine how 

much the transverse position of trucks within each lane affects the accuracy of the 

damage effects applied to truck events at the PMB. 

 One damage scenario was used in the sensitivity analysis: Case A, interior 

girder fracture. For the sensitivity analysis only, the effects of damage are 

qualitatively defined as the percent difference in the strain response of the 

undamaged bridge and damaged bridge during the same exact truck event, over the 

course of the whole event, at a location. This percent difference in response between 

a no-damage case and an induced-damage case is the parameter used to assess the 

similarity of damage effects observed during truck events with trucks in different 

lane paths. 8 tests are performed in this assessment, using 12 different simulated 

truck events in the calibrated FEM and two different sensor locations at which the 

strain responses are observed. The truck paths used are shown in Figure 21, and the 

FEM truck events run are shown in Table 5. 
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Fig. 21. Lane Paths for Sensitivity Analysis 

Table 5. FEM Truck Runs in Sensitivity Analysis 

Run No. Lane Path  Damage 

1 NB-1 N 

2 NB-1 Y 

3 NB-2 N 

4 NB-2 Y 

5 NB-3 N 

6 NB-3 Y 

7 SB-1 N 

8 SB-1 Y 

9 SB-2 N 

10 SB-2 Y 

11 SB-3 N 

12 SB-3 Y 

 

Lane paths NB-2 and SB-2 are centered in the northbound and southbound 

lanes, respectively. NB-1 and SB-1 are located such that the outer wheels of the 

HS20 truck are 0.21 m from the outer edge of their respective lanes; and NB-3 and 

SB-3 are located such that the inner wheels of the truck cross over the road 
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centerline by 0.16 m. NB-1, SB-1, NB-3, and SB-3 are assumed to be reasonable 

extents of typical truck events. 

The damage effects observed in the sensitivity analysis are determined to be the 

percent difference in strain response between Run 1 and Run 2, the percent 

difference in strain response between Run 3 and Run 4, the percent difference in 

strain response between Run 5 and Run 6, and so on for all runs. With the damage 

effects defined for each truck lane path, tests are performed to determine how well 

the damage effects as observed during a truck event with a truck centered in a lane 

(NB-2 and SB-2) represents the damage effects as observed during a truck event 

with a truck anywhere in that lane (NB-1, SB-1, NB-3, and SB-3). The tests 

performed are summarized in Table 6. In the table, Girder 2 Station 6 is the 

designated sensor location near the damage, and Girder 6 Station 2 is the designated 

sensor location far from the damage. 

Table 6. Sensitivity Analysis Tests 

 

The results of the sensitivity analysis are explained in detail below for only Test 

#1, and the rest of the test results are summarized. The FEM simulated truck event 

1 NB-2 NB-1

2 NB-2 NB-3

3 NB-2 NB-1

4 NB-2 NB-3

5 SB-2 SB-1

6 SB-2 SB-3

7 SB-2 SB-1

8 SB-2 SB-3

Far from Dmg.

Near Dmg.

Near Dmg.

Far from Dmg.

Far from Dmg.

Test No.

Lane Paths of 

Compared Damage 

Effects

Sensor Location at 

which Comparison 

is Made

Near Dmg.

Near Dmg.

Far from Dmg.
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strains at Girder 2 Station 6 are shown in Figure 22 for a truck moving along NB-2 

(centered in the northbound lane) and for a truck moving along NB-1 (outer portion 

of the northbound lane), both with and without the imposed girder fracture. As 

shown in the figure, the strains experienced at the sensor location decrease when 

there is damage. This is because the sensor location is on the fractured girder, near 

the fracture. Because Girder 2 has a loss in flexural stiffness when it becomes 

damaged, it takes less load under such conditions. 

 

Fig. 22. Strains near Damage for NB-2 and NB-1 with and without Damage 

The percent change in response used to represent damage in this sensitivity 

analysis, shown as   in Figure 23, is calculated for the strain response over entire 

truck events as: 

 
D U

U

 





    (6) 
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where D  and U  are the strain responses with and without damage, respectively. 

The discrepancy between  
2NB




  and  
1NB




 , the damage effects for lane 

paths NB-2 and NB-1, respectively, is shown in Figure 23 as 

and is also calculated as such. 

 

Fig. 23. Damage Effects near Damage for NB-2 and NB-1 

It is desired to determine not simply the difference between damage effects for 

NB-1 and NB-2, but rather the magnitude of that difference with respect to the 

magnitudes of the damage effects themselves. The effects of damage for NB-1 and 

NB-2 are similar to one another for most of the duration of truck events. The only 

points at which the magnitude of the discrepancy of the damage effects is large 

compared to the magnitude of the damage effects themselves are at approximately 

16 seconds and 43 seconds into the truck events. However, during those two times, 

the magnitude of the strain readings are almost zero (Figure 22). Therefore, if 

damage effects are ever applied at these times, then the applied effects would still 

   
1 2NB NB
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be negligible for the sensor location in this sensitivity analysis because the strain 

value to which they are applied is almost zero. 

The results for all the other tests summarized in Table 6 are consistent with the 

results of Test #1. It is therefore concluded that lane path location within lanes does 

not have a significant impact on damage effects regarding how they are applied in 

this study. The assumptions stated earlier in this chapter are valid. 
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Chapter 9.  Conclusion 

9.1 Summary of Work 

The live load responses of the PMB are used as a case study to assess a proposed 

statistical modeling method using ANNs for the development of structural health 

monitoring. Bridge behavior is a framework developed in this study with which 

bridge performance can be identified and learned. A method of long-term 

performance assessment using the expected bridge behavior, which can be 

passively evaluated over time, is introduced. Hypothetical damage is used as one 

way that bridge performance can change, and damage identification is conducted 

to assess performance and determine whether or not it changed. The bridge 

behavior model is assessed with truck events set aside from its development. The 

effects of damage are extracted from FEM truck runs and applied to operational 

data to assess the damage identification capabilities of the proposed method. 

When tested against new data, the ANN-learned model of bridge behavior is 

proved to be effective and applicable to a variety of traffic events with unknown 

loading conditions. Damage is also detected efficiently when an appropriate 

significance level is used for Wilcoxon rank-sum testing. Damage is localized for 

two out of the three generated scenarios in which damage is imposed on the bridge. 

Several sensitivity analyses and literature surveys are performed to justify 

components of the work performed in this thesis. A new method of categorizing 

truck events and filtering out undesirable truck events is presented. A brief 

overview of ANNs as they pertain to this study is provided. 
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9.2 Concluding Remarks 

This non-mechanistic framework of bridge behavior is powerful because it 

assesses performance with no knowledge of the traffic that induces the strains used 

in this study; it relates strains measured over the whole bridge during a variety of 

truck events of unknown nature. In addition, it is sensitive to the effects of damage 

because how interconnected the measured strains are in the ANN models trained to 

relate them to one another. Additional work is still required to make the methods in 

this study more effective at defining bridge behavior and identifying damage. For 

instance, new temperature input/strain output configurations can be assessed, and a 

method to determine a priori an appropriate Wilcoxon rank-sum test significance 

level can be developed. 

However, the preliminary results of this study demonstrate that future 

adaptations of this work could be promising. This global approach to bridge 

behavior can potentially be applied any type of bridge, with adjustments made to 

the types of data used as inputs and outputs of the ANN models. This framework 

for bridge behavior can be useful to the long-term objective of improving 

infrastructure management. 

9.3 Future Work 

One issue that can be addressed in future work is the a priori determination of 

an appropriate significance level for damage detection for any bridge like the PMB. 

This can be potentially based on many factors, such as the characteristics of the 
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bridge structure, its instrumentation, and the nature of the traffic that the bridge 

carries. 

Additionally, future work can determine how well different input/output 

relationships of the bridge behavior model are able to capture and convey changes 

in bridge performance. For example, the strains of multiple sensor locations can be 

clustered together to create input/output relationships that have strains in one region 

of the bridge act as predictors of strains in another region of the bridge. The way 

sensors can be clustered may end up depending on the bridge performance 

requirements established by bridge owners and carried out in design by engineers. 

Similarly, there is potential to assess other input/output relationships, such as 

temperature inputs and strain outputs at all sensor locations when no trucks are on 

the bridge. For said example, only one final ANN model would be needed to define 

the bridge behavior (rather than 27) because all the temperatures across the bridge 

can be used as direct predictors of all the strains across the bridge. In addition to 

temperature data, accelerometer and tiltmeter data at the PMB can potentially be 

incorporated into the input/output relationships.  

Also regarding ANNs, this research is intended as a proof of concept using an 

ANN design that is considered to most likely be effective according to literature. A 

sensitivity analysis can be performed to determine optimal ANN architectures and 

optimization algorithms, depending on what data the researcher uses to define 

bridge behavior. 

Further into the future, the methods in this study can be used to characterize 

damage on bridges similar to the PMB. The PMB is a small stringer bridge, which 
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is extremely common, so there is a lot of potential data to utilize and many bridges 

to which the findings can be applied. If bridges comparable to the PMB all have 

similar sensor instrumentations, the ways that damages manifest themselves in the 

different bridges’ behavior models can be studied on a broad scale. If conclusions 

could be drawn about how certain types of damage become apparent in bridge 

behavior models, then engineers responsible for bridges similar to the PMB can 

know what types of changes in bridge performance to look for when they are 

monitoring conditions in the long-term. 

Although the methods used in this research only apply to bridges that 

experience enough isolated live loads caused by a single heavy vehicle, the 

concepts introduced can be applied to bridges with more continuous traffic loads. 

For example, instead of defining bridge behavior as the interrelationships between 

instantaneous strain measurements, bridge behavior for large bridges with high-

volume traffic can be defined as the interrelationships between sensor locations’ 

statistical distributions of measurements recorded throughout a period of time. 
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Appendix 

A.1 Malfunctioning Strain Gage Detection and Truck Event Removal 

Some of the 50 bottom flange strain gages are observed as malfunctioning 

during recorded truck events. To address this issue, a two-step process is 

implemented. First, gages that malfunction for more than 30 accepted truck events 

(as described in Section 2.3) are removed from the study. The remaining gages are 

known as usable gages. Then, any accepted truck events during which a usable 

gage malfunctions is removed from this study. This two-step process ensures that 

enough sensors are used to define a sufficient bridge behavior model, and that 

enough accepted truck events are available to adequately train and assess the ANN 

models. 

First, strain gages are flagged as malfunctioning during an event if they have 

flat readings. A gage is flagged for this reason if the absolute difference between 

its maximum and minimum readings over the entire truck event is less than 0.05 

microstrains. The strains of various gages at Station 6 are plotted in Figure 24 to 

visualize what the readings of strain gages with this malfunction are relative to what 

those of functioning strain gages are. Then, strain gages are flagged as 

malfunctioning during an event if they have sudden jumps in readings. A gage is 

flagged for this reason if it has a change in reading of at least 15 microstrains within 

1/25th of a second throughout the entire event. There are three typical ways this 

occurs. The strains of various gages at Station 6 are plotted in Figures 25 through 

27 to visualize what the readings of strain gages with this malfunction are relative 

to what those of functioning strain gages are. 
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Fig. 24. Station 6 Strains for Typical Event with Flat Reading 

 

Fig. 25. Station 6 Strains for Typical Event with Jump in Data (1) 
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Fig. 26. Station 6 Strains for Typical Event with Jump in Data (2) 

 

Fig. 27. Station 6 Strains for Typical Event with Jump in Data (3) 

The strain gages entirely removed from the study are SG-4 (Girder 1 Station 4), 

SG-30 (Girder 2 Station 10), SG-33 (Girder 3 Station 2), SG-50 (Girder 3 Station 

10), SG-77, (Girder 5 Station 4), SG-78 (Girder 5 Station 4), SG-81 (Girder 5 

Station 6), and SG-100 (Girder 6 Station 10). 

A.2 All Girder GDF Quantile Stability Plots 

Figure 9 earlier in this work is used as an example to convey that there is a 

sufficient number of truck events to properly use the bootstrapping scheme to 

develop a probabilistic model of bridge behavior. The Girder 3 GDF quantile 

stability plot in the figure must also be supplemented with the quantile stability 

plots of all GDFs to completely convey that enough truck events are used. 
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Fig. 28. Girder 1 GDF Quantile Stability Plot 

 

Fig. 29. Girder 2 GDF Quantile Stability Plot 
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Fig. 30. Girder 3 GDF Quantile Stability Plot 

 

Fig. 31. Girder 2 GDF Quantile Stability Plot 
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Fig. 32. Girder 5 GDF Quantile Stability Plot 

 

Fig. 33. Girder 6 GDF Quantile Stability Plot 

A.3 Confidence Interval Formulation for All Output Sensor Locations 

Figure 10 earlier in this work demonstrates how a confidence interval of the 

peak strain prediction of one sensor location is determined. Below are the training 

error distributions, like that of Figure 10, for the 1,000 individual ANN models of 
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all 27 ANN bridge behavior models. The 2.5th and 97.5th percentiles of the 

following distributions, shown by the black bars in the histograms, determine the 

confidence interval range of any peak strain prediction at the corresponding sensor 

location. 

 

Fig. 34. Pooled Prediction Error Distribution at Girder 1 Station 1 

 

Fig. 35. Pooled Prediction Error Distribution at Girder 1 Station 6 
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Fig. 36. Pooled Prediction Error Distribution at Girder 1 Station 8 

 

Fig. 37. Pooled Prediction Error Distribution at Girder 1 Station 10 
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Fig. 38. Pooled Prediction Error Distribution at Girder 2 Station 2 

 

Fig. 39. Pooled Prediction Error Distribution at Girder 2 Station 6 
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Fig. 40. Pooled Prediction Error Distribution at Girder 2 Station 8 

 

Fig. 41. Pooled Prediction Error Distribution at Girder 2 Station 10 
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Fig. 42. Pooled Prediction Error Distribution at Girder 3 Station 2 

 

Fig. 43. Pooled Prediction Error Distribution at Girder 3 Station 4 
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Fig. 44. Pooled Prediction Error Distribution at Girder 3 Station 

 

Fig. 45. Pooled Prediction Error Distribution at Girder 3 Station 8 
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Fig. 46. Pooled Prediction Error Distribution at Girder 3 Station 10 

 

Fig. 47. Pooled Prediction Error Distribution at Girder 4 Station 2 
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Fig. 48. Pooled Prediction Error Distribution at Girder 4 Station 4 

 

Fig. 49. Pooled Prediction Error Distribution at Girder 4 Station 6 
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Fig. 50. Pooled Prediction Error Distribution at Girder 4 Station 8 

 

Fig. 51. Pooled Prediction Error Distribution at Girder 4 Station 10 
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Fig. 52. Pooled Prediction Error Distribution at Girder 5 Station 2 

 

Fig. 53. Pooled Prediction Error Distribution at Girder 5 Station 6 
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Fig. 54. Pooled Prediction Error Distribution at Girder 5 Station 8 

 

Fig. 55. Pooled Prediction Error Distribution at Girder 5 Station 10 
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Fig. 56. Pooled Prediction Error Distribution at Girder 6 Station 2 

 

Fig. 57. Pooled Prediction Error Distribution at Girder 6 Station 4 
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Fig. 58. Pooled Prediction Error Distribution at Girder 6 Station 6 

 

Fig. 59. Pooled Prediction Error Distribution at Girder 6 Station 8 

A.4 Strain Extraction from Finite Element Models 

The calibrated FEM in CSiBridge contains plane stress elements for the steel 

girders of the bridge. Stresses are extracted at the element nodes closest to each 

strain gage location. Stresses are extracted at such nodes at the top of the elements, 
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because the strain gages were installed on the tops of the bottom flanges of the 

girders. The nodal stresses of all four elements that share such nodes are averaged. 

Longitudinal strain, which is also the strain measured by the gages, is calculated as 

follows: 

 
yx

E E


     (7) 

where x  and 
y  are the longitudinal and transverse stresses, respectively. The 

elements from which the nodal stresses are extracted are plane stress, so there are 

no stresses in the z  direction that contribute to the longitudinal strain. 

A.5 Lane Variation Sensitivity Analysis Results for All Comparisons 

The observations made from Figures 22 and 23 partly validate the assumption 

that the transverse location of a truck within a lane does not significantly impact 

the accuracy of the damage effects applied to the data during that truck event. The 

observations made in the figures are for only one of the tests performed in the 

sensitivity analysis. The same types of figures are shown below for all the eight 

sensitivity analysis tests summarized in Table 6. The observations made from 

Figures 22 and 23 are also made for the following figures, which wholly validates 

the assumption that damage effects are not sensitive to lane path variation within a 

lane. 
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Fig. 60. Strains near Damage for NB-2 and NB-1 with and without Damage 

 

Fig. 61. Damage Effects near Damage for NB-2 and NB-1 
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Fig. 62. Strains near Damage for NB-2 and NB-3 with and without Damage 

 

Fig. 63. Damage Effects near Damage for NB-2 and NB-3 
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Fig. 64. Strains far from Damage for NB-2 and NB-1 with and without Damage 

 

Fig. 65. Damage Effects far from Damage for NB-2 and NB-1 
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Fig. 66. Strains far from Damage for NB-2 and NB-3 with and without Damage 

 

Fig. 67. Damage Effects far from Damage for NB-2 and NB-3 
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Fig. 68. Strains near Damage for SB-2 and SB-1 with and without Damage 

 

Fig. 69. Damage Effects near Damage for SB-2 and SB-1 
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Fig. 70. Strains near Damage for SB-2 and SB-3 with and without Damage 

 

Fig. 71. Damage Effects near Damage for SB-2 and SB-3 
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Fig. 72. Strains far from Damage for SB-2 and SB-1 with and without Damage 

 

Fig. 73. Damage Effects far from Damage for SB-2 and SB-1 
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Fig. 74. Strains far from Damage for SB-2 and SB-3 with and without Damage 

 

Fig. 75. Damage Effects far from Damage for SB-2 and SB-3 


