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in men with metabolic syndrome
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Abstract

Background: The impact of the Mediterranean diet (MedDiet) on high-density lipoprotein (HDL) kinetics has not
been studied to date. The objective of this study was therefore to investigate the effect of the MedDiet in the
absence of changes in body weight on apolipoprotein (apo) A-I kinetic in men with metabolic syndrome (MetS).

Methods: Twenty-six men with MetS (NCEP-ATP III) were recruited from the general community. In this fixed
sequence study, participants’ diet was first standardized to a control diet reflecting current averages in
macronutrient intake in North American men, with all foods and beverages provided under isoenergetic conditions
for 5 weeks. Participants were then fed an isoenergetic MedDiet over a subsequent period of 5 weeks to maintain
their weight constant. During the last week of each diet, participants received a single bolus dose of [5,5,5-2H3] L-
leucine and fasting blood samples were collected at predetermined time points. ApoA-I kinetic was determined by
multicompartmental modeling using isotopic enrichment data over time. Data were analyses using MIXED models.

Results: The response of HDL-cholesterol (C) to MedDiet was heterogeneous, such that there was no mean change
compared with the control diet. Plasma apoA-I concentration (−3.9%) and pool size (−5.3%, both P < 0.05) were
significantly lower after MedDiet and apoA-I production rate tended to be reduced (−5.7%, P = 0.07) with no change in
apoA-I fractional catabolic rate (FCR, -1.6%, P = 0.64). Participants among whom HDL-C concentrations were increased
with MedDiet (responders: mean ΔHDL-C: +9.9 ± 3.2%, N = 11) showed significantly greater reductions in apoA-I FCR
and in apoB and very-low-density lipoprotein-triglycerides (VLDL-TG) concentrations (all P < 0.04) than those among
whom HDL-C levels were reduced after the MedDiet (non-responders: mean ΔHDL-C: -12.0 ± 3.9%, N = 8). Correlation
analysis revealed that only variations in apoA-I FCR (r = -0.48, P = 0.01) and in plasma VLDL-TG (r = −0.45, P = 0.03)
concentrations were correlated with the individual HDL-C response to the MedDiet.

Conclusions: Data from this controlled feeding study suggest that the heterogeneous response of HDL-C to MedDiet,
in the absence of important weight loss, is primarily related to individual variations in apoA-I FCR and in plasma
VLDL-TG concentrations.
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Background
Low plasma high-density lipoprotein-cholesterol (HDL-C)
and high plasma triglyceride (TG) concentrations are
two diagnostic criteria of metabolic syndrome (MetS)
[1]. Over-secretion of very-low-density lipoprotein-
apolipoproteinB (VLDL-apoB) and accelerated clearance
of HDL particles appear to be the primary mechanisms
sustaining the high TG/low HDL phenotype in MetS [2].
Previous studies have demonstrated that when body

weight is maintained constant, diets low in saturated fat
and high in carbohydrates (CHO) have HDL-C lowering
and TG raising effects [3]. On the other hand, several
epidemiological studies have shown that adherence to
Mediterranean type diet (MedDiet), which is character-
ized among other factors by a high consumption of
monounsaturated fatty acids (MUFA) and low intake of
saturated and trans fat, is associated with a reduced risk
of overall mortality and death from cardiovascular dis-
ease [4]. However, the extent to which this is attributable
to beneficial changes in HDL concentrations and func-
tion with MedDiet is unknown. A recent meta-analysis
of 50 studies revealed that adherence to the MedDiet
was associated with significant reductions in body weight
and waist circumference [5]. Thus, it is not clear if the
favorable increase in plasma HDL-C concentrations often
seen with MedDiet is due to differences in diet compos-
ition per se or to concurrent reduction in body weight as
well. A better understanding of how HDL metabolism is
modified in response to MedDiet, per se, is crucial to help
identify optimal dietary interventions for low HDL-C
concentration management in high-risk individuals.
The objective of this study was to investigate the im-

pact of the MedDiet, in the absence of weight change,
on apolipoprotein (apo) A-I kinetics in men with MetS.
We hypothesized that in contrast to prior data having
documented the combined effect of the MedDiet and
weight loss, short-term consumption of a traditional
MedDiet in the absence of weight loss has no impact on
the catabolic rate of apoA-I and thus on plasma HDL-C
concentrations.

Methods
Population and study design
Details of the study design have been previously de-
scribed [6]. Briefly, 26 men (18 to 65 years) diagnosed
with the MetS (NCEP-ATP III [1]), and who did not
smoke, with no history of coronary heart disease (CHD)
or type 2 diabetes, and not using lipid-lowering or anti-
hypertensive medication were recruited for the study.
For inclusion in the study, men also had to have a stable
weight for at least 6 months prior to the start of the
study, not use vitamin supplements or natural health
products, and have no aversion to specific components
of the MedDiet. Study procedures were approved by the

Research Ethics Committee of Laval University and writ-
ten informed consent was obtained from all participants
prior to be enrolled in the study.

Isoenergetic experimental diets
Participants’ diet was first standardized to a control diet
reflecting current averages in macronutrient intake in
North American men [7]. Food was provided in
isoenergetic conditions over a 5-week period to maintain
body weight constant. This controlled feeding period was
included in the protocol to minimize inter-individual vari-
ations attributed to each participant’s usual diet. Partici-
pants were then provided with a MedDiet (5 weeks) that
was formulated to be concordant with characteristics of
the traditional Mediterranean eating pattern again in
isoenergetic conditions to maintain body weight constant
[8]. Seven-day menus and daily servings of various food
categories for the control diet and the MedDiet were de-
veloped for the study and have been described previously
[6]. Mean nutritional composition of the control diet and
the MedDiet are presented in Table 1.
All meals, foods and beverages including red wine

were provided to participants at the clinical investigation
unit (CIU) of the Institute of Nutrition and Functional
Foods (INAF). For most men, lunch (40% of daily energy
intake) was eaten at the CIU and dinners and breakfasts
at home. Men were instructed to consume only the
meals provided and to report any deviation from the
prescribed protocol on checklists. The use of vitamin
supplements, anti-inflammatory medications (NSAIDs)
and natural health products was strictly forbidden during
the entire experimental period. Subjects were instructed
to maintain their usual physical activity level except for
the 3 days that preceded blood sampling periods, during
which they were asked to refrain from intense physical
exercise.

Kinetic protocol
All participants underwent a kinetic study during the
last week of the control diet and the MedDiet. On each
occasions after a 12-h fast, participants received a single
i.v. bolus of [5,5,5-2H3] L-leucine (11 mg/kg) and fasting
blood samples (20 mL) were collected at predetermined
time points over a 96 hours period (0, 0.5, 1, 2, 4, 6, 8,
10 h). Additional twelve-hour fasting blood samples
were collected in the morning of the next 4 subsequent
days (24, 48, 72, 96 h). Participants remained on the
study diets for the duration of the kinetic study (5 days).

Plasma lipids and lipoproteins assessment
Plasma lipids were measured enzymatically on a Roche/
Hitachi Modular using Roche Diagnostics reagents (Roche
diagnostics GmbH, Mannheim, Germany) according
to standardized procedures [9]. The cholesterol and
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triglyceride content of the HDL2 and HDL3 subfractions
was determined after sequential precipitation with dextran
sulfate as previously described [10]. Plasma apoA-I
concentrations were measured by nephelometry (Dade
Behring, Mississauga, Ontario, Canada). Fasting blood glu-
cose concentrations were determined by the hexokinase-
glucose-6-phosphate dehydrogenase method [11] and
fasting insulin concentrations by radioimmunoassay [12].

Quantification and isotopic enrichment of apolipoprotein
A-I
ApoA-I in the d < 1.25 g/ml plasma fraction was obtained
by ultracentrifugation using a Beckman 50.4ti Rotor. Sam-
ples were then dialyzed overnight in a NaCl-Tris-EDTA
buffer. Following a cysteamine treatment for 4 h at 37°C,
samples were delipidated according to standardized proce-
dures [13]. ApoA-I was isolated by isoelectric focusing
(IEF) on a polyacrylamide-urea gels and bands were ex-
cised. Bands containing apoA-I were then hydrolysed for
24 hours at 110°C using 6 N HCl, dried and derivatized.
The isotopic enrichment (%) was determined by a gas
chromatograph-mass spectrometer (GC-MS; GC 6890 N,
MS 5973 N, Agilent Technologies, Palo Alto, CA).

Kinetic modeling
ApoA-I fractional catabolic rate (FCR) was determined by
multicompartmental modeling of the isotopic enrichment
data over time using the SAAM II software (University of
Washington, Department of Bioengineering, Seattle, WA).
Figure 1 shows the isotopic enrichment (%) over time
and the multicompartmental model from which kinetic
parameters are derived. Compartments 1–4 reflect the
kinetic of plasma leucine. Compartment 5 represents

the intracellular pool of leucine (hepatic and other tissues)
from which apoAI is synthesized and appears into the cir-
culation (compartment 7) after a delay (compartment 6).
Fractional catabolic rate (pools/day) of plasma apoA-I
was obtained from the best fit of isotopic enrichment of
apoA-I over time to the model. Pool size (PS) of apoA-I
was estimated by multiplying plasma apoA-I concentra-
tions by plasma volume (estimated at 0.045 l/kg body
weight) [14]. The production rate (PR in mg/kg/d) of

Table 1 Mean nutritional composition of the control diet and the MedDieta

Nutrientsb Control diet MedDiet Pc

Energy, kJ 13179 ± 1936 - 13270 ± 1856 - 0.506

Lipids, g/d (%) 119.0 ± 17.5 (34.0%) 112.7 ± 15.8 (32.0%) <0.001

SFA, g/d (%) 45.5 ± 6.7 (13.0%) 23.7 ± 3.3 (6.7%) <0.001

MUFA, g/d (%) 46.0 ± 6.8 (13.2%) 63.8 ± 8.9 (18.1%) <0.001

PUFA, g/d (%) 18.2 ± 2.7 (5.2%) 16.7 ± 2.3 (4.7%) <0.001

TFA, g/d (%) 7.0 ± 1.0 (2.0%) 1.2 ± 0.2 (0.3%) <0.001

Cholesterol, mg/d 414.1 ± 60.8 - 367.3 ± 51.4 - <0.001

Carbohydrates, g/d (%) 380.9 ± 56.0 (48.4%) 396.4 ± 55.5 (50.0%) <0.001

Total fibers, g/d 25.2 ± 3.7 - 53.6 ± 7.5 - <0.001

Soluble fibers, g/d 9.2 ± 1.4 - 15.4 ± 2.2 - <0.001

Proteins, g/d (%) 133.8 ± 19.7 (17.0%) 134.7 ± 18.8 (17.0%) 0.525

Alcohol, g/d (%) 9.0 ± 1.3 (2.0%) 22.7 ± 3.2 (5.0%) <0.001

Sodium, mg/d 4406 ± 647 - 3853 ± 539 - <0.001
a Values are presented as mean ± SD or percentage of daily energy intake.
b SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TFA, trans fatty acids.
c P value from the main effect of diet in the Mixed model (n = 26) for data expressed in g or mg/d. There is no variation in nutrient intake expressed in% of
calories because all subjects received the same diet regimen based on a 2500 kcal/d menu.
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Figure 1 Isotopic enrichment over time and
multicompartmental model used to derive apolipoprotein A-I
(apoAI) intravascular kinetic. Mean isotopic enrichment over time
of plasma apoA-I for the 26 men with MetS (symbols), model-
predicted values (lines) and multicompartmental model used to
determined kinetic parameters of apoA-I (insert). Compartments 1–4
reflect the kinetic of plasma leucine. Compartment 5 represents the
intracellular pool of leucine (hepatic and other tissues) from which
apoAI is synthesized and appears into the circulation (compartment 7)
after a delay (compartment 6).
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apoA-I was calculated by multiplying the FCR by the PS
of apoA-I, and correcting for body weight.

Statistical analysis
Data are reported as mean ± SD and percentage change
from the control diet unless stated otherwise. Data were
analyzed using the PROC MIXED procedure for re-
peated measures in SAS with diet (MedDiet vs. control
diet) as the main repeated effect (v9.2, Cary, NC). Indi-
vidual response of HDL-C to MedDiet was heteroge-
neous and “responders” and “non-responders” to the
MedDiet were identified based on an arbitrarily defined
change in plasma HDL-C being positive (≥0.05 mmol/L)
or negative (≤0.05 mmol/L). Subjects whose variations in
HDL-C were close to 0 were excluded to maximize dif-
ferences between groups. The two groups were com-
pared using the non-parametric Wilcoxon-Mann–
Whitney test while pair signed ranks were used to assess
within-group changes. Pearson univariate correlation
analyses adjusted for age were used to examine associa-
tions between diet-induced change in HDL-C and in
other parameters. Variables with a skewed distribution
were log-10 transformed prior to statistical analysis.
Differences at P ≤ 0.05 (two-sided) were considered
significant.

Results
Characteristics at screening of the 26 participants with
MetS are shown in Table 2 [6]. Based on the food check-
list, the mean compliance was 98.0 ± 5.3% for both
isoenergetic experimental diets and was similar in both
diets (not shown). The lipid profile and apoA-I kinetic
data after the control diet and the MedDiet are
presented in Table 3 [6]. Body weight was reduced by
1.2 ± 0.9 kg (P < 0.001) despite efforts to keep partici-
pants in isoenergetic conditions. However, body weight

was constant over the last three weeks of both
isoenergetic diets (data not shown). The change in waist
circumference did not quite reach statistical significance.
Adjustment for the small change in body weight or waist
circumference had no impact on the study outcomes
(not shown). Plasma HDL-C concentrations as well as in
HDL2 and HDL3 composition were similar after the
MedDiet compared with the control diet. Consumption
of the MedDiet led to significant reductions in plasma
apoA-I concentrations and PS (both P ≤ 0.01) compared
with the control diet. The MedDiet was also associated
with a trend toward a reduction in apoA-I PR (P = 0.07),
but had no impact on apoA-I FCR (P = 0.64) compared
with the control diet.
The individual HDL-C response to the MedDiet was

highly heterogeneous (Figure 2, panel A). Participants
among whom HDL-C concentrations were increased
with MedDiet (responders: mean ΔHDL-C: 9.9 ± 3.2%,
N = 11) showed significantly greater reductions in
apoA-I FCR and in apoB and VLDL-TG concentrations
(all P < 0.04) than those among whom HDL-C levels
were reduced after the MedDiet (non-responders: mean
ΔHDL-C: -12.0 ± 3.9%, N = 8) (Figure 2, panel B). Con-
sumption of the MedDiet had no impact on plasma
apoA-I concentrations among responders but signifi-
cantly reduced apoA-I PR and apoB concentrations
compared with the control diet (both P < 0.05). Among
non-responders, there was a significant reduction in
plasma apoA-I concentrations (P = 0.02) along with a
trend toward an increase in apoA-I FCR and plasma
VLDL-TG concentrations after MedDiet (both P < 0.11).
There was no difference in age between responders and
non-responders (data not shown). Diet-induced varia-
tions in HDL-C concentrations was significantly corre-
lated with diet-induced variation in plasma apoA-I
concentrations (r = 0.52), apoA-I FCR (r = −0.48) and

Table 2 Physical characteristics and metabolic profile of the 26 male subjects at screening

Variable Mean ± SD Range Frequency of MetS criteria

Age (years) 49.4 ± 11.6 24-62 -

Weight (kg) 98.3 ± 17.6 80.1-153.9 -

Waist circumference (cm) 110.9 ± 11.1 94.0-144.5 92.3%

Systolic BP (mm Hg) 123.8 ± 10.1 105-147 19.2%

Diastolic BP (mm Hg) 82.1 ± 6.6 71.5-94.5 42.3%

Total-C (mmol/l) 5.30 ± 1.22 2.46-7.88 -

LDL-C (mmol/l) 3.34 ± 1.05 1.36-6.07 -

HDL-C (mmol/l) 1.04 ± 0.29 0.34-1.90 46.2%

Triglycerides (mmol/l) 2.00 ± 0.82 0.52-3.71 57.7%

Fasting glucose (mmol/l) 5.66 ± 0.49 4.6-6.4 69.2%

MetS (%) 100 - -

BP blood pressure, C cholesterol, MetS metabolic syndrome, Values are presented as mean ± SD. Criteria for MetS were: waist circumference ≥ 102 cm, systolic
blood pressure ≥ 130 mm Hg or diastolic blood pressure ≥ 85 mm Hg, HDL-C <1.03 mmol/l, triglycerides ≥ 1.7 mmol/l and fasting glucose ≥ 5.6 mmol/l.
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VLDL-TG concentrations (r = −0.45, all P < 0.03). No
correlation was observed between MedDiet-induced
variations in HDL-C concentrations and apoA-I PR.

Discussion
Men with MetS consumed a pre-determined MedDiet
under carefully controlled isoenergetic feeding condi-
tions, after standardization of the participants’ diet on a
control diet to minimize inter-individual variations in
baseline apoA-I kinetics. We showed that 4–5 week
short-term consumption of a MedDiet significantly re-
duced plasma apoA-I concentrations and pool size, but
had no impact on average on plasma HDL-C concentra-
tions. This is at odds with data from studies having
shown that adherence to MedDiet principles was associ-
ated with improvements in HDL-C concentrations
[15,16]. However, adherence to MedDiet has also been
associated with significantly lower body weight [15,16],
which is likely to have confounded the effect of the diet
on HDL-C concentrations [17,18]. Although consump-
tion of the MedDiet had no impact on mean apoA-I
FCR and plasma VLDL-TG concentrations, the individ-
ual HDL-C response to MedDiet in men with MetS
appeared to be primarily determined by how apoA-I
FCR and VLDL-TG concentrations were modified by the
diet in each individual.
Consumption of the MedDiet vs. the control diet im-

plied several changes in diet composition, including
greater intakes of fibers, alcohol and MUFA and lower

intakes of trans fatty acids (TFA) and SFA. Kinetic studies
have shown that total dietary fat and/or SFA are associated
with apoA-I PR (positively) and apoA-I FCR (negatively)
[19,20]. A high MUFA diet consumed ad libitum reduced
apoA-I PS with no significant change in apoA-I PR and
FCR [21]. Consumption of trans fat has been shown to
increase apoA-I FCR relative to a SFA rich diet in hyper-
cholesterolemic women [22]. Water-soluble fibers have
been shown to reduce LDL-C without affecting HDL-C
concentrations [23]. Kinetic studies indicated that alcohol
consumption increases plasma HDL-C and apoA-I
concentrations mainly by increasing the PR of apoA-I
[24,25]. Thus, variations in apoA-I kinetics in response to
MedDiet in the present study must be interpreted in light
of all of these individual nutrient-specific effects combined
together. We hypothesize that the apparent reduction in
apoA-I PR is partly attributable to the reduced amount of
dietary SFA (−6.3%) in MedDiet vs. the control diet.
Indeed, restricting dietary total fat and SFA has been
shown to reduce hepatic apoA-I mRNA expression in
livers of Cebus monkeys [20,26]. The significant reduction
in LDL-C and apoB concentrations with MedDiet [6] may
also have contributed to lowering apoA-I PR. Indeed,
apoA-I PR has been positively correlated with plasma
LDL-C and LDL-apoB concentrations [27], suggesting less
need for reverse cholesterol transport when the plasma
LDL-C pool is reduced. It appears that the impact of in-
creasing alcohol intake as part of the MedDiet on raising
apoA-I PR did not fully compensate for these effects.

Table 3 Lipid profiles and plasma apoA-I kinetics after the control diet and the MedDiet in 26 men with MetS [6]

Variables Control diet MedDiet % change Pa

Weight (kg) b 98.4 ± 18.3 97.2 ± 18.3 −1.3% <0.001

Waist circumference (cm) b 111.5 ± 12.0 110.9 ± 11.7 −0.5% 0.056

VLDL-C (mmol/l) b 0.43 ± 0.24 0.42 ± 0.19 −3.5% 0.762

VLDL-TG (mmol/l) 1.31 ± 0.55 1.30 ± 0.53 −0.3% 0.961

HDL-C (mmol/l) b 0.91 ± 0.20 0.91 ± 0.19 0.0% 0.979

HDL2-C (mmol/l)
b 0.31 ± 0.10 0.31 ± 0.10 0.4% 0.829

HDL3-C (mmol/l) 0.61 ± 0.14 0.60 ± 0.14 −1.2% 0.642

HDL-TG (mmol/l) 0.14 ± 0.03 0.14 ± 0.03 −2.0% 0.645

HDL2-TG (mmol/l) b 0.03 ± 0.01 0.03 ± 0.01 −3.8% 0.626

HDL3-TG (mmol/l) b 0.11 ± 0.02 0.11 ± 0.02 −1.3% 0.773

HDL-ApoA-I (g/l) 1.10 ± 0.16 1.05 ± 0.16 −4.1% 0.014

Apo-AI

Concentration (g/l) 1.24 ± 0.17 1.20 ± 0.16 −3.9% 0.010

PS (mg) b 5521 ± 1341 5227 ± 1240 −5.3% <0.001

PR (mg/kg/d) 17.8 ± 4.12 16.7 ± 2.97 −5.7% 0.073

FCR (pool/d) 0.32 ± 0.07 0.31 ± 0.06 −1.6% 0.642

Apo apolipoprotein, C cholesterol, FCR fractional catabolic rate, HDL high density lipoprotein, PR production rate, PS pool size, TG triglycerides, VLDL very low
density lipoprotein. Values are presented as mean ± SD and percentage of change from values after the control diet.
a P value from the main effect of diet in the Mixed model (n = 26).
b Analysis was performed on log-transformed values.
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Men with MetS in the present study were character-
ized by an elevated apoA-I FCR after the control diet
(0.32 pool/day), and these figures are comparable with
those from a previous kinetic study in which
dyslipidemic subjects with MetS also had higher apoA-I
FCR compared with controls (0.30 vs. 0.20 pool/day)
[28]. Two other groups have shown that low HDL-C and
apoA-I concentrations in overweight/obese subjects with
insulin resistance were mainly accounted for by an
apoA-I hypercatabolism [29,30]. Our results showed that
the HDL-C response to MedDiet was highly heteroge-
neous. Participants among whom HDL-C increased with
MedDiet showed greater reductions in apoA-I clearance
rates and in plasma apoB and VLDL-TG concentrations
than those among whom HDL-C concentrations were
reduced with MedDiet. Moreover, correlation analysis
showed that individual variations in the catabolism of
apoA-I and in VLDL-TG concentrations were the stron-
gest correlates of individual changes in HDL-C concen-
trations with MedDiet. Our data reaffirm that even in
the context of significant dietary changes, the FCR of
apoA-I remains the key determinant of the HDL-C and

apoA-I response to MedDiet among men with MetS [2].
Indeed, although plasma apoA-I concentrations may be
partly determined by the PR of apoA-I, change in the PR
of apoA-I with MedDiet was not a significant correlate
of concurrent variations in plasma concentrations of
HDL-C and apoA-I in our study.
Several previous studies have shown that TG concentra-

tions correlate positively with the catabolism of apoA-I
[31,32]. Our data are consistent with that concept. Reduc-
tion in VLDL-TG decreases the hetero-exchange of neu-
tral lipids by CETP leading to less TG-enriched HDL
particles [33]. TG-poor HDL have been shown to be more
stable and consequently, cleared less rapidly from the cir-
culation [34]. We hypothesize that the increase in alcohol
consumption with the MedDiet may be partly responsible
for the heterogeneous TG response in these subjects with
MetS. Indeed, a recent study has shown that heavy alcohol
consumption can lead to either high or low concentrations
of VLDL-TG [35]. Finally, low-carbohydrate/high-fat diets
have HDL-C raising and TG lowering effects compared
with high-carbohydrate/low-fat diets [36]. It is possible
that the relatively high carbohydrate content of the
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Richard et al. Nutrition Journal 2013, 12:76 Page 6 of 8
http://www.nutritionj.com/content/12/1/76



MedDiet in our study may have attenuated its impact on
plasma HDL-C concentrations. Indeed, a high fat MedDiet
supplemented with nuts have been shown to reduce TG
and increase HDL-C concentrations compared with a low
fat diet [37].
To the best of our knowledge, this is the first study

having documented the impact of the MedDiet on
apoA-I kinetic in men with MetS. The carefully con-
trolled feeding feature of the present study, the high
compliance to the pre-determined diets and the rela-
tively large number of participants considering a kinetic
study are important strengths that need to be empha-
sized. Limitations of the current study pertain to the fact
that there was no control group independent of the
intervention and that participants were not randomized
to the two experimental diets in this fixed sequence
study. However, standardization of the baseline diet with
a control North American diet prior to consuming the
MedDiet allowed us to minimize inter-individual varia-
tions in baseline apoA-I kinetics and each participant
acts as their own control. The sort-term duration of the
study precludes any formal interpretation regarding
longer term effects of MedDiet on HDL and apoA-I kinet-
ics. Although MedDiet had no impact on HDL-C, some
functions of HDL particles might still be beneficially
altered by the diet, but this remained to be investigated.

Conclusions
Data from this controlled feeding study suggest that the
heterogeneous HDL-C response to a traditional MedDiet
in men with MetS, independent of weight change, ap-
pears to be primarily determined by individual responses
in apoA-I FCR and TG concentrations. The reduction in
apoA-I PR with MedDiet apparently has no incidence on
the HDL-C response to the diet and is probably due to
the reduced amount of SFA and the concurrent reduc-
tion in LDL-C concentrations.
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