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Abstract
The stylus of an atomic force microscope is used to scribe herringbone patterns of various wave-

lengths into a polyimide-coated substrate. The patterns serve as a template for alignment of the

liquid crystal octyloxycyanobiphenyl, and impose a bend distortion in the liquid crystal in the

vicinity of the herringbone apices. The pretransitional behavior of the liquid crystal is observed

by polarized microscopy as it is cooled through the nematic-smectic-A phase transition, facilitating

direct visualization of the extrapolation length, which is related to the tradeoff between elastic and

anchoring forces. Just above the phase transition temperature the expulsion of bend deformation

is observed, and is shown to be in good quantitative agreement with continuum theory. Very close

to the transition temperature a weak threshold behavior is observed, wherein the smectic-A phase

forms a monodomain for short period herringbones, but breaks into multiple domains when the

patterned period is large.

1



The transition from the nematic phase to the smectic-A phase in liquid crystals is one

of the classic problems of condensed matter physics [1–3]. Characteristic of the transition

are two geometric constraints imposed by the smectic order: The layers must be continuous

throughout the material, and because the layers are nearly incompressible, they must be

spaced equally. The latter constraint serves to forbid twist and bend deformations of the

director n̂, i.e., those that depend on the curl of the director field, from the bulk smectic

in a manner analogous to the Meissner effect in a type-I superconductor [1, 4]. Above the

transition temperature TNA one finds bulk smectic fluctuations that are characterized by

correlation lengths ξ|| and ξ⊥ parallel and perpendicular to n̂, respectively, that diverge as

T → TNA. These fluctuations have the effect of expelling the forbidden twist and bend

deformations from the bulk nematic. The corresponding elastic constants K22 and K33,

whose critical parts scale as ξ2
⊥/ξ|| and ξ||, respectively, therefore diverge on cooling towards

TNA [1].

Recently our group demonstrated that a short wavelength bulk bend deformation may be

imposed on a nematic liquid crystal by patterning a polyimide substrate with an appropriate

herringbone pattern by means of atomic force microscope (AFM) scribing [4]. The pattern

serves as an easy axis for liquid crystal alignment, in which the director follows the pattern

closely except in regions of high curvature, where the slope of the scribing direction changes

sign. In these regions the director is unable to follow the pattern due to elastic forces, and

instead of an abrupt change in orientation, the director changes smoothly over a length scale

2L = 2K33/Wϕ. Here L is known as the “extrapolation length” and Wϕ is the “quadratic

anchoring strength coefficient” associated with the ability of the substrate to orient the

liquid crystal. On approaching the smectic-A phase from above, the divergence of K33

results in a diverging extrapolation length L, and thus in a uniformation of the director.

Owing to our ability to impose a spatially sharp change in the easy axis, here we visualize

and measure the extrapolation length and its temperature variation directly above TNA,

and find that it is in good agreement with continuum theory. Then, on passing through

the transition temperature, sufficiently small bend must be completely expelled from the

smectic-A phase, analogous to the Meissner effect in which magnetic field is expelled from a

type-I superconductor[1]. In principle this would result in a single domain smectic-A phase

in which the director lies along some appropriate average easy axis. We find this to be the

case for short wavelength herringbone patterns. However, we show that when the wavelength

2



of the herringbone pattern is sufficiently large, there is a crossover to a multidomain texture

with a weak wavelength threshold.

A cell was constructed from two clean glass substrates: One substrate — the “master”

— was prepared so as to promote planar orientation with spatially varying azimuthal easy

axes by means of AFM nanopatterning, while the second “slave” substrate was prepared to

promote planar degenerate alignment. The master was prepared thus: A glass substrate was

spin-coated with the polyimide RN1175 (Nissan Chemical Industries) and baked at 200◦ C

for 1 h. Six squares of nominal dimensions 100× 100 µm, each separated by approximately

30 µm from the adjacent square(s), were scribed with a herringbone pattern using the stylus

(Nanodevices Tap300) of an atomic force microscope (Thermomicroscopes Explorer). In this

scheme stripes of parallel grooves separated by 200 nm were oriented azimuthally at an angle

γ = +15◦ with respect to the y-axis in one region of the herringbone and at γ = −15◦ in the

adjacent region. Figure 1 shows a schematic diagram of the writing pattern. Each scribed

square differed from the others only by its spatial period P (along the y-direction) of the

stripes, viz., 8, 10, 12, 14, 16 and 18 µm. To prepare the slave surface, a clean glass substrate

was spin-coated with warm (∼ 40◦ C) polymethyl methacrylate (PMMA) dissolved in 66%

vol. propylene glycol methyl ether acetate (PGMEA) with 33% vol. γ-butyrolacetone and

baked at 80◦ C for 2 h. The cell was assembled from the two substrates with mechanical clips.

The thickness of the cell was measured to be 1.5±0.1µm using an interferometry technique.

Finally, the cell was filled with the liquid crystal octyloxycyanobiphenyl (“8OCB” , Merck)

at temperature T = 76◦C, i.e., in the nematic phase, and then slowly cooled. Experiments

were performed above and below the nematic - smectic-A transition temperature TNA = 67◦

C.

To observe the alignment of the liquid crystal in the patterned areas as a function of

temperature, the cell was housed in an oven mounted on the stage of a polarizing microscope

and viewed between crossed polarizers; all six squares were simultaneously within the field of

view. A bandpass filter at wavelength 514.5 nm was inserted in the illumination light path to

facilitate quantitative measurements over a narrow wavelength range. The cell was rotated

so that the alignment direction of the herringbone lay at an angle of 22.5◦ with respect

to the axis of one of the polarizers; this arrangement maximizes the contrast between the

herringbone stripes of different orientation. The cell was cooled from the nematic phase and

into the smectic phase at a rate of 20 mK min−1 and microscope images were taken at 2 mK
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intervals, i.e., once every 6 s.

Well above TNA in the nematic phase, the herringbone pattern induced stripes at γ =

+15◦ and −15◦ that appeared bright and dark, respectively, such that the intensity varied

continuously in the region between adjacent stripes where the bend distortion is largest.

(Fig. 2a). Outside the well-aligned patterned regions, the nematic was found to exhibit

a characteristic Schlieren texture. As the temperature was cooled to just above TNA, the

optical contrast between the stripes gradually diminished (Fig. 2b). Figures 3a and 3b

show regions of the herringbone patterns of periods 10 and 18 µm at a series of decreasing

temperatures in the nematic phase. On cooling, it can be seen that the director associated

the shorter period patterns (8, 10, and 12 µm) becomes uniformized, culminating in a near

uniform orientation along the y-axis at the lowest temperture, which is 120mK inside the

smectic-A phase. This spatially uniform orientation can readily be seen: When the cell is

rotated, the entire cell becomes nearly uniformly dark between crossed polarizers when the

y-axis is aligned with the polarizer. On the other hand, the integrity of the γ = +15◦ and

−15◦ domains remains relatively unchanged on cooling into the smectic-A phase for the

larger period herringbone, with a narrow domain wall in which the director varies contin-

uously from one domain to the other. On cooling through the transition temperature TNA

into the smectic-A phase, the behavior in Fig. 2c was observed: Note that due to the bend

distortion, the observed transition temperature is lowered slightly in the patterned regions

relative to the unpatterned regions by ∼ lTNA |∇× n̂| [1] where l is the molecular length.

The two configurations — a uniform director orientation associated with the shorter wave-

length herringbones and a periodic director orientation associated with longer wavelength

herringbones — are illustrated schematically in Fig. 4a and 4b, where the view corresponds

to that through the cell thickness. Both configurations are observed simultaneously for the

two intermediate periods, namely of wavelength 14 and 16µm, with roughly 50% and 10%

of the patterned square covered by the uniform configuration, respectively. Each of these

configurations remains stable upon further cooling through the smectic phase.

Let us now turn to a model for the observed behavior. In the nematic phase, just above

TNA, the Frank-Oseen nematic bulk free energy density fb must be modified in the presence

of smectic order fluctuations by including the temperature dependence of the twist and bend
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elastic constants

fb =
1

2
K11(∇ · n̂)2 + K22(T )(n̂ ·∇× n̂)2 + K33(T )|n̂×∇× n̂|2, (1)

where K11 is the splay elastic constant. The director configuration n̂(r) adopted by the

liquid crystal is that which minimizes the total energy. Extant theories for the variation

of the elastic constants with temperature in the vacinity of the nematic - smectic-A phase

transition suppose the form [1, 5]

Kii(T ) = K0
ii + ∆Kiit

−νi , i = 2, 3 (2)

in which the bare elastic constant K0
ii for the nematic phase is modified by a term that

depends on the reduced temperature t = (T − TNA)/TNA with critical exponent νi.

In the present geometry, the herringbone pattern at the master surface tends to impose

an elastic bend distortion of the bulk director. The extent to which the director follows the

pattern in the region near the apices is determined by competition between the elastic and

anchoring strengths of the nematic: If the elastic constant of the dominant mode is large

relative to the anchoring term, it is favorable for the director to rotate over a wider wall

of width 2L at the expense of deviating from the easy axis imposed by the rubbing, and

vice-versa.

Away from the patterned surface, the elastic distortion relaxes toward a laterally uniform

orientation in order to diminish the overall bend elastic energy; it must, however, do so at

the expense of twist distortion. In the nematic phase of 8OCB, far above TNA, the elastic

constants satisfy the usual inequality for thermotropic nematics, K22 < K11 < K33 [6] and

are of approximate relative magnitude K11 ≈ 2K22 ≈ 2/3K33 [6, 7]. From the solution of

Laplace’s equation, the length scale in the z direction over which the director relaxes by

twisting is lz ∼ L
√

K22/K33 < L. Since ν3 > ν2, K33 always is greater than K11 and K22,

and thus lz decreases with decreasing temperature toward TNA.

Although analytical solutions for n̂(r) may be obtained in some instances such as cer-

tain one-dimensional problems or where some of the elastic constants are equal [8], for the

more complex geometry here it is necessary that the Euler-Lagrange equations be solved

numerically. For our system the director is constrained at both surfaces to lie parallel to the

substrate. The magnitude of any out-of-plane component of the director must therefore be

small and so the director may be represented by a single (azimuthal) angle ϕ
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n̂(y, z) = [sin ϕ(y, z), cos ϕ(y, z), 0] (3)

the Euler-Lagrange equation obtained from 1 is

Eϕ =
∂fb

∂ϕ
−∇ · ∂fb

∂∇ϕ
= 0. (4)

which may be discretized by cell-centered finite difference operators[9]

∇ϕ→
(

ϕi+1,j − ϕi−1,j

2δy
,
ϕi,j+1 − ϕi,j+1

2δz

)

∇2ϕ→ ϕi+1,j + ϕi−1,j − 2ϕi,j

δy2
+

ϕi,j+1 + ϕi,j−1 − 2ϕi,j

δz2
.

∂ϕ

∂y∂z
→ (ϕi+1,j − ϕi−1,j)(ϕi,j+1 − ϕi,j−1)

4δyδz
(5)

where the ϕ(y, z) is represented on the vertices of a rectangular mesh ϕi,j with a unit cell

of size δy × δz. Assuming a surface anchoring energy density of the Rapini-Papoular form

[10],

fs =
1

2
Wϕ sin2[ϕ(y)− ϕe(y)] (6)

where ϕe(y) is the spatially-dependent easy axis, the boundary condition may be derived

from the balance of surface torques [8]

ŝ · ∂fb

∂∇ϕ
− ∂fs

∂ϕ
= 0 (7)

where ŝ is the surface normal. Note that the surfacelike saddle-splay elastic term [11] with

associated constant K24 does not enter the present analysis because deformations of the

director field are constrained to a single plane. Derivatives with respect to the z-coordinate

in the boundary condition were discretized using asymmetric second order finite difference

operators of the type [9]
∂ϕ

∂z
→ 3ϕi,j − 4ϕi,j+1 + ϕi,j+2

2δz
(8)

and periodic boundaries were imposed on the left and right hand sides. Free parameters

for the system of equations (4) and (7) are K11, K22,K33, P as well as boundary conditions

Wϕ(y) and ϕe(y); the solution ϕi,j may then be obtained by taking successive Newton steps

from an initial guess configuration until convergence. To ensure that the mesh has sufficient

resolution to represent the solution, the solution was interpolated onto a finer mesh and the

corresponding system of equations solved as before; this process of refinement was repeated

until the solution converged.
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The predicted configuration of the director as a function of temperature was calculated

using the above procedure for each herringbone pattern. For each simulation at a particular

temperature, numerical values of the ratios K11/K33 and K22/K33 were obtained from the

parameterization due to Allender et al. [12] of Madhusudhana’s measurements [6, 7] of the

elastic constants as a function of temperature. The anchoring strength coefficient Wϕ and the

elastic constant K11 were assumed to be independent of temperature. Calculated results for

ϕ at several temperatures above TNA are displayed in an edge-on view in Fig. (5). Consistent

with the qualitative discussion above, the distorted bend region gradually becomes confined

to the patterned surface as the bulk director becomes more spatially uniform with decreasing

temperature in the nematic phase.

In order to facilitate comparison with experiment, we simulated the propagation of plane

polarized light through the structure predicted from the continuum calculation. Numeri-

cal techniques such Finite Difference Time Domain (FDTD) [13] have been used for this

purpose but remain computationally expensive. A reasonable first-order approximation for

normal incidence is to assume that the intensity of light observed at a single point under the

polarizing microscope is due to a ray that has propagated as a plane wave, and has passed

through the liquid crystal immediately beneath the point of interest parallel to the z-axis,

remaining perpendicular to the substrates. In this way, the full two-dimensional optical

calculation can be reduced to the parallel computation of many one-dimensional problems,

since only the z-variation of the director — and hence dielectric tensor — is incorporated

into the calculation.

The optical calculation for intensity as a function of y proceeds as follows: The liquid

crystal was divided into thin (≈ 1 nm) layers over which the director was treated as con-

stant. Assuming a 1-dimensional plane-wave solution, the electric and magnetic modes and

associated eigenvectors were calculated for each layer using the Berreman 4x4 method [14].

The overall scattering matrix for the entire liquid crystal stack then was computed following

Ref. [15] by matching the electric and magnetic fields at each layer interface. The inten-

sity transmitted following the analyzer was obtained from the appropriate element of the

scattering matrix.

From images exhibiting the uniformation behavior, experimental intensity profiles as a

function of y were obtained by averaging over a region 40 pixels (corresponding to about

6µm) wide in the x direction. The calculated profiles were simultaneously fitted for all
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temperatures and herringbone spatial periods using a least-squares fit of the averaged profiles

by way of the linear mapping Iexperimental = AIcalculated + B, where A, B, and the transition

temperature TNA were treated as fitting parameters. A value Wϕ = 0.2 erg cm−2 [4] was

used to calculate the director profiles, although the quality of fits as assessed from the

residuals was found to be relatively insensitive to the anchoring strength coefficient beyond

requiring the correct order of magnitude. A single value of TNA was required for all fits

but it was found necessary to allow A and B to vary weakly (to within 10%) among the

different herringbone patterns; such a variation may be accounted for by nonuniformity of

illumination and cell thickness. Representative fits at several temperatures are shown in

Fig. 6. Despite the simplicity of the optical model, which does not account for diffraction

limitations, the theoretical profiles are in excellent agreement with the images at the higher

temperatures, although there is some small systematic deviation close to the transition. Such

behavior is to be expected, as the modified nematic continuum theory used above holds only

when the smectic correlation length is much less than the system size.

Let us now turn to the weak threshold behavior, whereby the liquid crystal becomes either

uniformly oriented along the y-axis (for smaller P ) or breaks into domains parallel to the local

easy axes over most of the herringbone pattern (for larger P ) as the temperature approaches

TNA. Although one might imagine that the divergence of the bend elastic modulus, and thus

of the extrapolation length L , on approaching the transition temperature from above would

result in a uniform director orientation at and below TNA, this clearly is not the case for

the patterns with larger periods. We speculate that when the correlation lengths ξ⊥ and

ξ‖ become sufficiently large on cooling so as to be a significant fraction of the associated

relaxation lengths lz and L, the smectic order becomes “locked in” at this critical temperature

Tc (We note that Kii diverges as eq. 2 with a constant background term K0
ii, whereas ξ⊥,‖

has only a divergent part. Thus the correlation lengths can approach and crossover the

relaxation lengths as T → TNA). If at this temperature the bend distortion occurs over a

small length scale relative to half of the herringbone period P , i.e., 2L' P/2, the smectic

will break into domains, each of width ∼ P/2. On the other hand, if 2L( P/2 at Tc, then a

spatially uniform smectic domain is more favorable. The actual crossover from one behavior

to the other is complicated due to the presence of higher Fourier components associated

with the herringbone pattern, surface memory effects involving an evolution of Wϕ with

time, and local defects that may serve as nucleation sites. In particular, the higher Fourier
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components likely will cause the actual crossover to occur when L is somewhat smaller

than P/4. Now consider 8OCB at T ∼ TNA + 30 mK, the temperature at which the two

behaviors (uniform vs. multiple domains) appear to begin their differentiation in Figs. 3.

At this temperature, L becomes comparable to P/4 ≈ 3 × 10−4cm [16], associated with

the crossover from multidomain for longer periods to a uniform monodomain for shorter

periods. As noted above, the presence of higher Fourier components in the distortion field

likely drives the crossover to occur for values of L smaller than P/4. Given this and other

spurious effects, the simple picture of monodomain vs. polydomain behavior presented here

must be considered only approximate.

To summarize, we have imaged directly the growing extrapolation length L as the temper-

ature of the liquid crystal is cooled toward the nematic–smectic-A phase transition. Based

on continuum elastic theory and a simple optical model, calculations for the transmitted

intensities were found to be in good agreement with the measured profile as a function of

temperature. Additionally, we observed a soft threshhold behavior on cooling toward TNA

when the liquid crystal is subjected to a bend distortion by herringbone nanopatterns of

different spatial periods. For short periods the bend distortion is expelled completely, with

the director field adopting a uniform bulk configuration. For long periods the smectic breaks

into domains that are separated by curvature walls. On cooling toward TNA, the observed

behavior is consistent with the mechanism for which the director pattern (uniform or do-

main) becomes locked in at a critical temperature Tc > TNA at which the smectic correlation

length grow to the same order as the associated relaxation lengths. If at this temperature the

extrapolation length L is much smaller than half the herringbone period multiple domains

obtain; in the opposite limit a monodomain appears.

Polarizing microscopy of the uniformation process yields excellent signal-to-noise ratio

and offers the intriguing possibility of probing the critical parameters of the nematic -

smectic-A transition through machine vision techniques. Since such techniques are highly

scalable, and require only sufficient material to cover the pattern, they are readily adaptable

to high throughput methods. A more robust model to facilitate the solution of this inverse

problem is presently under development.
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Figure 1: Schematic of part of the herringbone pattern inscribed on the master substrate using the

AFM stylus.
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Figure 2: (Color online) Polarizing microscope images of a cell with six herringbone patterns of

indicated period at different temperatures: a) nematic phase b) just above the N-A transition c) In

the smectic phase. Notice uniform orientation on Fig. c for smaller period squares.
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Figure 3: (Color online) Detail of polarizing microscopy image at different temperatures showing a)

the uniformation process on a short-period pattern b) division into domains of different orientation

on a longer-period pattern.
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Figure 4: Cartoons illustrating proposed director configurations at a temperature just above TNA

a) uniformation b) division into domains separated by curvature walls.
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Figure 5: (Color online) Simulated azimuthal director configurations for 8OCB in contact with a

P = 8µm pattern at four temperatures above the nematic-smectic-A transition which occurs at

T = TNA.
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Figure 6: (Color online) Representative fits of a simulated theoretical response from continuum

theory and a simple optical model (solid lines) to intensity profiles obtained by averaging over

multiple lines in the microscope images (circles). Herringbone periods are 8, 10 and 12µm.
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