
Open Syntax: Improving Access for All Users

Robert J.K. Jacob

Department of Electrical Engineering and Computer Science
Tufts University

Medford, Mass. USA
and

Tangible Media Group
MIT Media Laboratory

Cambridge, Mass. USA

ABSTRACT
Trends in new multi-modal user interfaces and pervasive mobile
computing are raising technical problems for building flexible
interfaces that can adapt to different communication modes. I
hope to show how some aspects of the technical solutions that
will be needed for these problems will also help to solve problems
of access for elderly users.

General Terms
Human Factors, Standardization, Languages.

Keywords
User interface management system, syntax, semantics, universal
access, dialogue independence, multi-modal interaction.

1. INTRODUCTION
A basic problem for both pervasive mobile computing and for
universal access is to provide a wide range of different access and
interaction mechanisms that reach the same underlying data and
functionality. It applies when providing new more powerful
multi-modal interfaces to common applications for improved
interaction. Here the goal is to improve the interface to an
application. It also applies to providing alternative cross-modal
access to applications for mobile users. Here the need is to
accommodate users with temporarily limited interaction facilities
as they drive or walk or use a telephone by adapting the interface
to their context. And it also applies to the problem of providing
access to elderly users who might have physical, cognitive, or
other limitations or differences compared to the users for whom
the original interfaces were designed. All three of these cases
require an interchangeable or adaptable user interface front end,
accessing a standard application back end. All three of these
problems can share a similar technical solution for designing
software structures for building user interfaces.

This paper addresses lower-level interaction issues, where we
seek to provide customized access to common facilities. We want
to provide different, specialized forms of “nuts and bolts”
interface to the same underlying data or functions—so that elderly
users can share information and functions with the rest of the
community. There will also be cases where more thoroughly
specialized functions or facilities might be provided just for
elderly users, specialized not just at the lower levels, but in their
conceptual models as well, but we do not address this part of the
landscape here.

2. SYNTAX AND SEMANTICS
The first step is to decompose user interface design into the
semantic, syntactic, and lexical levels, as first described by Foley
and Wallace[3, 4]:
The semantic level describes the functions performed by the
system. This corresponds to a description of the functional
requirements of the system. It specifies what information is
needed for each operation on an object, what errors can occur,
how the errors are handled, and what the results of each operation
are—but it does not address how the user will invoke the
functions. The semantic level defines “meanings,” rather than
“forms” or “sequences,” which are left to the lower levels. It
provides the high-level model or abstraction of the functions of
the system.
The syntactic level describes the sequences of inputs and outputs
necessary to invoke the functions described. That is, it gives the
rules by which which sequences of words (indivisible units of
meaning or “tokens”) in the language are formed into proper (but
not necessarily semantically meaningful) sentences. The design of
the syntactic level describes the sequence of the logical input,
output, and semantic operations, but not their internal details. A
logical input or output operation is an input or output token. The
tokens cannot be further decomposed without loss of meaning.
For example, the mouse movements and mouse button clicks
needed to make a menu selection do not individually provide
information to the application. Its internal structure is described at
the lexical level, while the syntactic describes when the user may
enter it and what will happen next if he or she does (for an input
token) or when the system will produce it (for an output token).
The lexical level determines how the inputs and outputs are
actually formed from primitive hardware operations or lexemes. It
represents the binding of hardware actions to the hardware-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WUAUC’01, May 22-25, 2001, Alcácer do Sal, Portugal.
Copyright 2001 ACM 1-58113-424-X/01/0005…$5.00.

independent tokens of the input and output languages. While
tokens are the smallest units of meaning with respect to the syntax
of the dialogue, lexemes are the actual hardware input and output
operations that comprise the tokens.
As a simple illustration, consider an automated teller machine
(ATM). The semantic level defines the basic commands the user
can execute, such as logging in, withdrawing cash, and making
deposits. It specifies each command and its inputs and outputs,
but carefully avoids specifying how the command is to be
invoked. The syntactic level defines the permissible sequences of
input tokens to invoke each command. For example, a withdrawal
command might require a token for the command itself, one for
which account to use, and another for the amount. The syntax
prescribes all the acceptable orderings for these tokens. Finally,
the lexical level defines each of the tokens in terms of a primitive
hardware action. For example, the withdraw command itself
might be a dedicated function key, the account choice might be
made with a touch screen, and the amount might be entered with a
keypad.
Web browsing provides another example of these distinctions.
The semantic level of the design is embodied in the content
presented in the web page, the command for requesting another
page, and the command to transmit a filled-in data form page. The
syntactic and lexical levels are concerned with the user interface
for examining the web page—scrolling, rearranging, changing
colors and styles locally, and even navigating through a
downloaded 3D world—as well as maintaining personal history
lists, hotlists, or bookmarks, and manipulating data items on a
downloaded form. A different user interface (browser) can be
substituted, changing the syntactic and lexical layers, without
affecting the semantic layer (web servers).
Shneiderman's syntactic-semantic object-action model is a related
approach, which also separates the task and computer concepts
(i.e., the semantics) from the syntax for carrying out the task[17].
For example, the task of writing a scientific journal article can be
decomposed into the sub-tasks for writing the title page, the
body, and the references. Similarly, the title page might be
decomposed into a unique title, one or more authors, an abstract,
and several keywords. To write a scientific article, the user must
understand these task semantics. To use a word processor, the
user must learn about computer semantics, such as directories,
filenames, files, and the structure of a file. Finally, the user must
learn the syntax of the commands for opening a file, inserting
text, editing, and saving or printing the file. Novices often
struggle to learn how to carry out their tasks on the computer and
to remember the syntactic details. Once learned, the task and
computer semantics are relatively stable in human memory, but
the syntactic details must be frequently rehearsed. A
knowledgeable user of one word processor who wishes to learn a
second one only needs to learn the new syntactic details. More
importantly, the same should apply to a user who wants to access
the same word processing functionality from a PDA or non-
visually while driving a car or using a large-print interface or
perhaps one with a menu structure designed to reduce short-term
memory load.

3. USER INTERFACE SOFTWARE
A key principle in user interface software is dialogue
independence, the notion of separating all user interface-related
code from the rest of the application code, first described by

Hartson and Hix[6]. This allows changes to be made to the
dialogue design without affecting the application code, and thus
makes easier the repeated changes to prototype interfaces that are
often needed. Using our multi-level model, this means that the
code for the semantic level is separated from the code for the
syntactic and lexical levels through a well-defined software
interface (see Figure 1).

Figure 1. Dialogue independence, using a user interface

management system.

A user interface management system (UIMS) is a software
component that is separate from the application program that
performs the underlying task[14]. The UIMS conducts the
interaction with the user, implementing the syntactic and lexical
levels, while the rest of the system implements the semantic level.
Like an operating system or graphics library, a UIMS separates
functions used by many applications and moves them to a shared
subsystem. It centralizes implementation of the user interface and
permits some of the effort of designing tools for user interfaces to
be amortized over many applications and shared by them. It also
encourages consistent “look and feel” in user interfaces to
different systems, since they share the user interface component.
A UIMS also supports the concept of dialogue independence,
where changes can be made to the interface design (the user-
computer dialogue) without affecting the application code. This
supports the development of alternative user interfaces for the
same application (semantics), which facilitates both iterative
refinement of the interface through prototyping and testing and, in
the future, alternative interfaces for users of different physical or
other disabilities (see Figure 2).
The key ingredient of UIMSs and other high-level user interface
software tools is a way of describing and implementing the
interactive behavior or dialogue sequencing. The choice of
specification language or model used for this is thus the key to
UIMS design. Permissible sequences of user actions can be
defined in a variety of ways. Whether such methods are literally
linguistic or interactive, they generally fall under the rubric of

user interface description languages (UIDLs). Most of these are
based on various kinds of special-purpose languages for interface
design[9].

Figure 2. Alternate interfaces to same application.

With a UIMS, the code for an interactive application consists of
two parts: a dialogue component, which handles communication
with the user and implements the syntactic and lexical levels of
the system; and a computational component, which performs the
functional processing and implements the semantic level[10]. The
semantic level of an application developed with a UIMS is
typically written as a set of subroutines. The UIMS is responsible
for calling appropriate routines in response to user inputs. In turn,
the routines influence the dialogue—for instance, by modifying
what the user can do next on the basis of the outcome of a
computation. External control is a simpler, less powerful
alternative, where the action routines have no influence over the
flow of the dialogue; control resides solely in the UIMS.
Component software technologies such as COM, CORBA, and
JavaBeans, provide platforms for implementing shared control;
the UIMS and application can communicate in both directions
through the software component interface.

4. OPEN SYNTAX
Given this framework for thinking about user interface design and
software, a solution becomes clear. We need to provide
alternative front ends to a common back end for a given
application. That is, interchangeable syntactic/lexical modules,
communicating with a single semantic module. This in turn
requires that interactive programs be opened up, so that their front
and back ends can be separated. While many modern GUI
programs are built using toolkits and user interface management
systems that facilitate this split, they rarely provide runtime (or
any) access to the internal dialogue between their front and back
ends. Open Syntax seeks to provide runtime access to the
software interface between front and back end, syntax and
semantics, interface and application,
The ultimate goal is to provide a retargetable syntax module that
can adapt to the user in several ways: It might adapt to different
contexts or situations as the user moves around, such as office,
car, airplane, shopping mall (using a PDA), or war room. When
the system is started, it would dynamically determine the user's
current situation and the input and output devices and channels
available for interaction, and provide an appropriately tailored
user interface. The interface could similarly adapt to different user
abilities, to accommodate temporary and permanent physical and

cognitive characteristics of elderly users. For example, it might
provide a large-type interface. More interestingly, it might
provide an interface with an alternate syntax designed to reduce
short-term memory load. In each case, the change is made only to
the front end or syntax of the interface; the back end or semantics
remains the same.
To accomplish this, we need to separate the syntactic and
semantic portions of an interactive application. We have
described the technical means and intellectual framework needed
to separate the two. Unfortunately, too many applications
intertwine them, because it is often expedient and may provide
prettier looking interfaces as well as proprietary benefits to
software companies. What is required is to allow access past the
syntax directly to core functionality or semantics in an
application-independent way.
For example, it is usually difficult to access the functions of a
word processing program without going through its specific user
interface. Some success has been achieved with email programs,
which use standard protocols (POP, IMAP) for accessing message
retrieval and filing functions. Any IMAP email client can access
any IMAP server, with generally good interoperability. Moreover,
email in plain text and MIME is even more application-
independent. Any email program can generally send mail to be
read by any other email program, with a well-accepted set of
standards for the “semantic” functions inherent in all email.
Nevertheless, software vendors continue to try to add non-
standard “enhancements” to their email, which can only be
accessed through the user interface of their own product. This has
obvious business advantages, but defeats the broader goal of
adaptable access to basic functions. Calendar programs have also
begun to provide generic functions, so that they can share data
between office computers, PDAs, and web calendar servers.
Spreadsheets have not reached this stage.
An analogy can be found in text markup—the distinction between
markup based on appearance (bold, italic) and that based on
content (title, heading). Early word processing programs such as
runoff and troff provided markup for appearance, but rapidly
added macro facilities that could be used for more content-
oriented markup. HTML documents on the World-Wide Web
followed something of the reverse of this progression. Early
HTML was often marked up by content (title, heading), but as
designers sought ways to make their pages look distinctive,
markup became more appearance-oriented. The cascading style
sheets extension to HTML seeks to support more distinctive
graphic design while retaining content-oriented markup; its
success remains to be seen. Interaction in HTML remains at a
more semantic level, perhaps, because the facilities provided are
so limited. This can be a benefit. Imagine downloading an HTML
input <form>, turning it into a menu to be filled in using a touch-
tone telephone or a Braille teletype, and then sending the resulting
data back in HTML, with no need to inform the server as tohow
the user filled in the form.
We thus claim that Open Syntax and user interface management
system technology can provide a useful technical substrate for
improving access by elderly users. Because the same technology
is useful for other purposes, such as mobile computing, new forms
of multi-mode interaction, and universal access for disabled users,
we hope it will be more likely to be adopted. From a practical

viewpoint, tying universal access to a technology with a broader
target audience will help to achieve its wider adoption.

5. MODE-INDEPENDENT INTERACTION
The notion of interchangeable front ends for user interaction
might also be extended to a more general idea of interaction and
knowledge that can appear in different modes as needed. A
computer might display information about how to repair a
machine or a summary of daily stock market performance in a
variety of media. It could present pictures or diagrams, animated
video clips, a text document, a spoken lecture or narrative on the
subject, or various multi-media combinations of these, such as a
diagram with a spoken narration about it. To realize this today,
each of the separate representations of, for example, how to repair
the machine must have been stored in the computer individually
ahead of time. The video clips, the spoken lecture, and the
combination description must each be input and stored separately
in the computer, to be replayed on command. Some ad-hoc
translation from one medium to another may be possible, such as
extracting still pictures from a video or creating speech from a
text file by speech synthesis. But such translations often result in
presentations that are suboptimal in their new media. Information
is lost in the translation, and other information that might be more
appropriate in the target medium was not present in the source.
Instead, we envision a situation where much of the knowledge
about how to repair the machine might be stored once, in a form
that does not depend on the choice of media used, and then output
in different media and forms as needed to suit the individual user
and the situation. The user may have personal preferences as to
which media or combinations are preferred, or learning styles that
work better or worse for different individuals, or disabilities—a
visually impaired user might use a spoken or other auditory
display instead of a visual one. The playback situation may also
require different modes—the user could be sitting in front of and
watching a screen or driving a car, in which case an auditory
presentation would be preferred. [12]
The parallel between this situation and the UIMS should be
obvious. In both cases, there is an underlying core of (media-
independent) information or operations that might be expressed in
various ways and a separate component that converts that
information into a specific presentation or interface to the user.
Implicit in both is the notion that the presentation or interface
component might be changed, without having to modify the
knowledge base or application component in order to provide an
alternate view or interface for the same knowledge or application
functionality. While there has been some research in the user
interface software area working toward systems that can
automatically generate a user interface from a specification of the
application functionality[1, 2], this is largely a problem for future
research. However the UIMS-like framework itself (i.e., the
dialogue independent application representation plus separate
dialogue component) applies both to automatically-generated
interfaces and manually-designed specifically-authored ones.

6. NEXT GENERATION INTERACTION
STYLES
This section outlines some more general trends in user interface
research. In most cases these are being developed with no thought
to their impact on elderly users. We describe them here in order to

open them up for consideration of their potential benefits and
problems for the elderly.
The first is less a future development than one that has already
come to pass—increased reliance on visual communication and
interaction. Modern “graphical user interfaces” are indeed highly
graphical: they require considerable visual acuity to perceive;
good manual dexterity to manipulate a cursor with respect to the
displayed graphics; and, because they use visual communication
so effectively, they are often difficult to translate into other modes
for visually impaired users. Early text-based interaction with
teletypes or “glass teletype” displays could easily be translated
into spoken words or larger type. Compare this to the screen of a
modern GUI. While the words on the screen can be spoken or
enlarged, there is much information communicated by the
arrangement of objects on the screen and by subtle graphical
details. These greatly enhance interaction for many users, but they
make it more difficult to provide a translator into a non-visual or
less highly-visual mode. This is a well established problem with
today's graphical interfaces, perhaps likely to get worse as new
interfaces make fuller use of more senses for communication.
Direct access to the underlying syntactic-semantic interface
would of course provide one solution here, by bypassing the
graphics and directly accessing the basic functionality in a mode-
independent way.
A related trend is toward increased naturalness in user interfaces.
Such interfaces seek to make the user's input actions as close as
possible to the user's thoughts that motivated those actions, that is,
to reduce the “Gulf of Execution” described by Hutchins, Hollan,
and Norman[7], the gap between the user's intentions and the
actions necessary to input them into the computer. The motivation
for doing this is that it builds on the equipment and skills humans
have acquired through evolution and experience and exploits
them for communicating with the computer. Direct manipulation
interfaces[16] have enjoyed great success, particularly with new
users, largely because they draw on analogies to existing human
skills (pointing, grabbing, moving objects in space), rather than
trained behaviors. Virtual reality interfaces, too, gain their
strength by exploiting the user's pre-existing abilities and
expectations. Navigating through a conventional computer system
requires a set of learned, unnatural commands, such as keywords
to be typed in, or function keys to be pressed. Navigating through
a virtual reality system exploits the user's existing, natural
“navigational commands,” such as positioning his or her head and
eyes, turning his or her body, or walking toward something of
interest. Tangible User Interfaces similarly leverage real-world
manipulation of real physical objects to provide a more natural
interface[8]. The result is to increase the user-to-computer
bandwidth of the interface and to make it more natural, because
interacting with it is more like interacting with the rest of the
world. Such interface require less memorization of commands,
because they leverage things the user already knows. We
conjecture that this might be especially significant for elderly
users.
Another trend in future interaction is toward lightweight, non-
command, passive interactions, which attempt to glean inputs
from context and from physiological or behavioral measures. We
can thus obtain input from a user without explicit action on his or
her part. For example, behavioral measurements can be made
from changes the user's typing speed, general response speed,
manner of moving the cursor, frequency of low-level errors, or

other patterns of use. A carefully designed user interface could
make intelligent use of such information to modify its dialogue
with the user, based on, for example, inferences about the user's
alertness or expertise (but note that there is also the potential for
abuse of this information). These measures do not require
additional input devices, but rather gleaning of additional,
typically neglected information from the existing input stream. In
a similar vein, passive measurements of the user's state may also
be made with additional hardware devices. In addition to three-
dimensional position tracking and eye tracking, a variety of other
physiological characteristics of the user might be measured and
the information used to modify the computer's dialogue with its
user[15]. Blood pressure, heart rate, respiration rate, eye
movement and pupil diameter, and galvanic skin response (the
electrical resistance of the skin) are examples of measurements
that are relatively easy and comfortable to make, although their
accurate instantaneous interpretation within a user-computer
dialogue is an open question. A more difficult measure is an
electro-encephalogram, although progress has been made in
identifying specific evoked potential signals in real time. Looking
well beyond the current state of the art, perhaps the final frontier
in user input and output devices will be to measure and stimulate
neurons directly, rather than relying on the body's transducers.
This is unrealistic at present, but it may someday be a primary
mode of high-performance user-computer interaction. If we view
input in HCI as moving information from the brain of the user
into the computer, we can see that all current methods require that
this be done through the intermediary of some physical action.
We strive to reduce the Gulf of Execution, the gap between what
the user is thinking and the physical action he or she must make to
communicate that thought. From this point of view, reducing or
eliminating the intermediate physical action ought to improve the
effectiveness of the communication for all users. The long-term
goal might be to see the computer as a sort of mental prosthesis,
where the explicit input and output steps vanish and the
communication is direct, from brain to computer.
Another way to predict the future of computer input devices is to
examine the progression that begins with experimental devices
used in the laboratory to measure some physical attribute of a
person. As such devices become more robust, they may be used as
practical medical instruments outside the laboratory. As they
become convenient, non-invasive, and inexpensive, they may find
use as future computer input devices. The eye tracker is such an
example[11]; the physiological monitoring devices discussed may
well also turn out to follow this progression.
In each of these cases, from relatively mundane use of context,
behavior and simple passive measurement to notions that sound
like science fiction, all of these lightweight or passive interface
reduce the effort the user must make to communicate with the
computer by taking information from implicit inputs rather than
requiring all input to be explicitly produced by the user. We
conjecture that this may be a benefit to elderly users with reduced
physical or cognitive ability or reduced speed at which they can
generate input.
We might also predict the future of user interfaces by looking at
some of the characteristics of emerging new computers. The
desktop workstation seems to be an artifact of past technology in
display devices and in electronic hardware. In the future, it is
likely that computers smaller and larger than today's workstation
will appear, and the workstation-size machine may disappear.

This will be a force driving the design and adoption of future
interface mechanisms. Small computers are already appearing—
laptop and palmtop machines, personal digital assistants, wearable
computers, and the like. These are often intended to blend more
closely into the user's other daily activities. They will certainly
require smaller devices, and may also require more unobtrusive
input/output mechanisms, if they are to be used in settings where
the user is simultaneously engaged in other tasks, such as talking
to people or repairing a piece of machinery. At the same time,
computers will be getting larger. As display technology improves,
as more of the tasks one does become computer-based, and as
people working in groups use computers for collaborative work, a
office-sized computer can be envisioned, with a display that is as
large as a desk or wall (and has resolution approaching that of a
paper desk). Such a computer leaves considerable freedom for
possible input means. If it is a large, fixed installation, then it
could accommodate a special-purpose console or “cockpit” for
high-performance interaction. It might also be used in a mode
where the large display is fixed, but the user or users move about
the room, interacting with each other and with other objects in the
room. In that case, while the display may be very large, the input
devices would be small and mobile. The flexibility gained by this
wider range of physical form factors ought to be beneficial for
accommodating elderly users, but it has not yet been explored for
this purpose.
Two other trends in user interfaces are continuous input and
output and parallel interaction across multiple modes[5]. These
can be seen clearly in virtual reality interfaces, but the
fundamental characteristics are common to a wider range of
emerging user interfaces. They share a higher degree of
interactivity than previous interfaces. They involve continuous
input/output exchanges between user and computer (using
gestures and sensors) rather than streams of discrete tokens (using
mouse and keyboard). Moreover, their user-computer dialogues
often involve several parallel, asynchronous channels or devices,
rather than the single-thread nature of todays mouse and keyboard
interfaces. These two characteristics will have a considerable
effect on user interface software[13], but it is not yet clear
whether these will be good, bad, or neutral for elderly users.

7. ACKNOWLEDGMENTS
I want to thank Jim Schmolze for collaborating in our exploration
of mode-independent interaction and my colleagues and students
in the Tangible Media Group at MIT and the EECS Department at
Tufts for all sorts of help and valuable discussion.
Research described in this paper has been supported in part by
NSF, NEH, Office of Naval Research, the Berger Family Fund,
the Tufts Selective Excellence Fund, and by the Things That
Think and Digital Life Consortia of the MIT Media Lab.

8. REFERENCES
[1] C.M. Beshers and S.K. Feiner, “Scope: Automated

Generation of Graphical Interfaces,” Proc. ACM UIST'89
Symposium on User Interface Software and Technology, pp.
76-85, Addison-Wesley/ACM Press, Williamsburg, Va.,
1989.

[2] J. Foley, W.C. Kim, S. Kovacevic, and K. Murray, “Defining
Interfaces at a High Level of Abstraction,” IEEE Software,
vol. 6, no. 1, pp. 25-32, January 1989.

[3] J.D. Foley and V.L. Wallace, “The Art of Natural Graphic
Man-Machine Conversation,” Proceedings of the IEEE, vol.
62, no. 4, pp. 462-471, 1974.

[4] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes,
Computer Graphics: Principles and Practice, Addison-
Wesley, Reading, Mass., 1990.

[5] M. Green and R.J.K. Jacob, “Software Architectures and
Metaphors for Non-WIMP User Interfaces,” Computer
Graphics, vol. 25, no. 3, pp. 229-235, July 1991.

[6] H.R. Hartson and D. Hix, “Human-computer Interface
Development: Concepts and Systems for its Management,”
Computing Surveys, vol. 21, no. 1, pp. 5-92, 1989.

[7] E.L. Hutchins, J.D. Hollan, and D.A. Norman, “Direct
Manipulation Interfaces,” in User Centered System Design:
New Perspectives on Human-computer Interaction, ed. by
D.A. Norman and S.W. Draper, pp. 87-124, Lawrence
Erlbaum, Hillsdale, N.J., 1986.

[8] H. Ishii and B. Ullmer, “Tangible Bits: Towards Seamless
Interfaces between People, Bits, and Atoms,” Proc. ACM
CHI'97 Human Factors in Computing Systems Conference,
pp. 234-241, Addison-Wesley/ACM Press, 1997.

[9] R.J.K. Jacob, “Using Formal Specifications in the Design of
a Human-Computer Interface,” Communications of the ACM,
vol. 26, no. 4, pp. 259-264, 1983. Also reprinted in Software
Specification Techniques, ed. N. Gehani and A.D.
McGettrick, Addison-Wesley, Reading, Mass, 1986, pp. 209-
222. http://www.eecs.tufts.edu/~jacob/papers/cacm.txt
[ASCII]; http://www.eecs.tufts.edu/~jacob/papers/cacm.ps
[Postscript].

[10] R.J.K. Jacob, “An Executable Specification Technique for
Describing Human-Computer Interaction,” in Advances in
Human-Computer Interaction, Vol. 1, ed. by H.R. Hartson,
pp. 211-242, Ablex Publishing Co., Norwood, N.J., 1985.

[11] R.J.K. Jacob, “Eye Movement-Based Human-Computer
Interaction Techniques: Toward Non-Command Interfaces,”
in Advances in Human-Computer Interaction, Vol. 4, ed. by
H.R. Hartson and D. Hix, pp. 151-190, Ablex Publishing
Co., Norwood, N.J., 1993.

http://www.eecs.tufts.edu/~jacob/papers/hartson.txt [ASCII];
http://www.eecs.tufts.edu/~jacob/papers/hartson.ps
[Postscript].

[12] R.J.K. Jacob and J.G. Schmolze, “A Human-Computer
Interaction Framework for Media-Independent Knowledge,”
AAAI Workshop on Representations for Multi-Modal
Human-Computer Interaction, pp. 26-30, Position paper,
Technical Report WS-98-09, AAAI Press, Menlo Park,
Calif., 1998.
http://www.eecs.tufts.edu/~jacob/papers/aaai98.html
[HTML]; http://www.eecs.tufts.edu/~jacob/papers/aaai98.ps
[Postscript].

[13] R.J.K. Jacob, L. Deligiannidis, and S. Morrison, “A Software
Model and Specification Language for Non-WIMP User
Interfaces,” ACM Transactions on Computer-Human
Interaction, vol. 6, no. 1, pp. 1-46, March 1999.
http://www.eecs.tufts.edu/~jacob/papers/tochi.pmiw.txt
[ASCII];
http://www.eecs.tufts.edu/~jacob/papers/tochi.pmiw.ps
[Postscript].

[14] D.R. Olsen, User Interface Management Systems: Models
and Algorithms, Morgan Kaufmann, San Francisco, 1992.

[15] R.W. Picard, Affective Computing, MIT Press, Cambridge,
Mass., 1997.

[16] B. Shneiderman, “Direct Manipulation: A Step Beyond
Programming Languages,” IEEE Computer, vol. 16, no. 8,
pp. 57-69, 1983.

[17] B. Shneiderman, Designing the User Interface: Strategies for
Effective Human-Computer Interaction, Third Edition,
Addison-Wesley, Reading, Mass., 1997.

