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ABSTRACT 
Trends in new multi-modal user interfaces and pervasive mobile 
computing are raising technical problems for building flexible 
interfaces that can adapt to different communication modes. I 
hope to show how some aspects of the technical solutions that 
will be needed for these problems will also help to solve problems 
of access for elderly users.  
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1. INTRODUCTION  
A basic problem for both pervasive mobile computing and for 
universal access is to provide a wide range of different access and 
interaction mechanisms that reach the same underlying data and 
functionality. It applies when providing new more powerful 
multi-modal interfaces to common applications for improved 
interaction. Here the goal is to improve the interface to an 
application. It also applies to providing alternative cross-modal 
access to applications for mobile users. Here the need is to 
accommodate users with temporarily limited interaction facilities 
as they drive or walk or use a telephone by adapting the interface 
to their context. And it also applies to the problem of providing 
access to elderly users who might have physical, cognitive, or 
other limitations or differences compared to the users for whom 
the original interfaces were designed. All three of these cases 
require an interchangeable or adaptable user interface front end, 
accessing a standard application back end. All three of these 
problems can share a similar technical solution for designing 
software structures for building user interfaces.  

This paper addresses lower-level interaction issues, where we 
seek to provide customized access to common facilities. We want 
to provide different, specialized forms of “nuts and bolts” 
interface to the same underlying data or functions—so that elderly 
users can share information and functions with the rest of the 
community. There will also be cases where more thoroughly 
specialized functions or facilities might be provided just for 
elderly users, specialized not just at the lower levels, but in their 
conceptual models as well, but we do not address this part of the 
landscape here.  

2. SYNTAX AND SEMANTICS  
The first step is to decompose user interface design into the 
semantic, syntactic, and lexical levels, as first described by Foley 
and Wallace[3, 4]:  
The semantic level describes the functions performed by the 
system. This corresponds to a description of the functional 
requirements of the system. It specifies what information is 
needed for each operation on an object, what errors can occur, 
how the errors are handled, and what the results of each operation 
are—but it does not address how the user will invoke the 
functions. The semantic level defines “meanings,” rather than 
“forms” or “sequences,” which are left to the lower levels. It 
provides the high-level model or abstraction of the functions of 
the system.  
The syntactic level describes the sequences of inputs and outputs 
necessary to invoke the functions described. That is, it gives the 
rules by which which sequences of words (indivisible units of 
meaning or “tokens”) in the language are formed into proper (but 
not necessarily semantically meaningful) sentences. The design of 
the syntactic level describes the sequence of the logical input, 
output, and semantic operations, but not their internal details. A 
logical input or output operation is an input or output token. The 
tokens cannot be further decomposed without loss of meaning. 
For example, the mouse movements and mouse button clicks 
needed to make a menu selection do not individually provide 
information to the application. Its internal structure is described at 
the lexical level, while the syntactic describes when the user may 
enter it and what will happen next if he or she does (for an input 
token) or when the system will produce it (for an output token).  
The lexical level determines how the inputs and outputs are 
actually formed from primitive hardware operations or lexemes. It 
represents the binding of hardware actions to the hardware-
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independent tokens of the input and output languages. While 
tokens are the smallest units of meaning with respect to the syntax 
of the dialogue, lexemes are the actual hardware input and output 
operations that comprise the tokens.  
As a simple illustration, consider an automated teller machine 
(ATM). The semantic level defines the basic commands the user 
can execute, such as logging in, withdrawing cash, and making 
deposits. It specifies each command and its inputs and outputs, 
but carefully avoids specifying how the command is to be 
invoked. The syntactic level defines the permissible sequences of 
input tokens to invoke each command. For example, a withdrawal 
command might require a token for the command itself, one for 
which account to use, and another for the amount. The syntax 
prescribes all the acceptable orderings for these tokens. Finally, 
the lexical level defines each of the tokens in terms of a primitive 
hardware action. For example, the withdraw command itself 
might be a dedicated function key, the account choice might be 
made with a touch screen, and the amount might be entered with a 
keypad.  
Web browsing provides another example of these distinctions. 
The semantic level of the design is embodied in the content 
presented in the web page, the command for requesting another 
page, and the command to transmit a filled-in data form page. The 
syntactic and lexical levels are concerned with the user interface 
for examining the web page—scrolling, rearranging, changing 
colors and styles locally, and even navigating through a 
downloaded 3D world—as well as maintaining personal history 
lists, hotlists, or bookmarks, and manipulating data items on a 
downloaded form. A different user interface (browser) can be 
substituted, changing the syntactic and lexical layers, without 
affecting the semantic layer (web servers).  
Shneiderman's syntactic-semantic object-action model is a related 
approach, which also separates the task and computer concepts  
(i.e., the semantics) from the syntax for carrying out the task[17]. 
For example,  the task of writing a scientific journal article can be 
decomposed  into the sub-tasks for writing the title page, the 
body, and the references.  Similarly, the title page might be 
decomposed into a unique title,  one or more authors, an abstract, 
and several keywords. To write a  scientific article, the user must 
understand these task semantics.  To use a word processor, the 
user must learn about computer  semantics, such as directories, 
filenames, files, and the structure  of a file. Finally, the user must 
learn the syntax of the commands  for opening a file, inserting 
text, editing, and saving or printing  the file. Novices often 
struggle to learn how to carry out their  tasks on the computer and 
to remember the syntactic details. Once  learned, the task and 
computer semantics are relatively stable in  human memory, but 
the syntactic details must be frequently rehearsed.  A 
knowledgeable user of one word processor who wishes to learn a 
second  one only needs to learn the new syntactic details. More 
importantly, the same should apply to a user who wants to access 
the same word processing functionality from a PDA or non-
visually while driving a car or using a large-print interface or 
perhaps one with a menu structure designed to reduce short-term 
memory load.  

3. USER INTERFACE SOFTWARE  
A key principle in user interface software is dialogue 
independence, the notion of separating all user interface-related 
code from the rest of the application code, first described by 

Hartson and Hix[6]. This allows changes to be made to the 
dialogue design without affecting the application code, and thus 
makes easier the repeated changes to prototype interfaces that are 
often needed. Using our multi-level model, this means that the 
code for the semantic level is separated from the code for the 
syntactic and lexical levels through a well-defined software 
interface (see Figure 1).  
 

 
Figure 1. Dialogue independence, using a user interface 

management system.  
 
A user interface management system (UIMS) is a software 
component that is separate from the application program that 
performs the underlying task[14]. The UIMS conducts the 
interaction with the user, implementing the syntactic and lexical 
levels, while the rest of the system implements the semantic level. 
Like an operating system or graphics library, a UIMS separates 
functions used by many applications and moves them to a shared 
subsystem. It centralizes implementation of the user interface and 
permits some of the effort of designing tools for user interfaces to 
be amortized over many applications and shared by them. It also 
encourages consistent “look and feel” in user interfaces to 
different systems, since they share the user interface component. 
A UIMS also supports the concept of dialogue independence, 
where changes can be made to the interface design (the user-
computer dialogue) without affecting the application code. This 
supports the development of alternative user interfaces for the 
same application (semantics), which facilitates both iterative 
refinement of the interface through prototyping and testing and, in 
the future, alternative interfaces for users of different physical or 
other disabilities (see Figure 2).  
The key ingredient of UIMSs and other high-level user interface 
software tools is a way of describing and implementing the 
interactive behavior or dialogue sequencing. The choice of 
specification language or model used for this is thus the key to 
UIMS design. Permissible sequences of user actions can be 
defined in a variety of ways. Whether such methods are literally 
linguistic or interactive, they generally fall under the rubric of 



user interface description languages (UIDLs). Most of these are 
based on various kinds of special-purpose languages for interface 
design[9].  
 

 
Figure 2. Alternate interfaces to same application.  

 
With a UIMS, the code for an interactive application consists of 
two parts: a dialogue component, which handles communication 
with the user and implements the syntactic and lexical levels of 
the system; and a computational component, which performs the 
functional processing and implements the semantic level[10]. The 
semantic level of an application developed with a UIMS is 
typically written as a set of subroutines. The UIMS is responsible 
for calling appropriate routines in response to user inputs. In turn, 
the routines influence the dialogue—for instance, by modifying 
what the user can do next on the basis of the outcome of a 
computation. External control is a simpler, less powerful 
alternative, where the action routines have no influence over the 
flow of the dialogue; control resides solely in the UIMS. 
Component software technologies such as COM, CORBA, and 
JavaBeans, provide platforms for implementing shared control; 
the UIMS and application can communicate in both directions 
through the software component interface.  

4. OPEN SYNTAX  
Given this framework for thinking about user interface design and 
software, a solution becomes clear. We need to provide 
alternative front ends to a common back end for a given 
application. That is, interchangeable syntactic/lexical modules, 
communicating with a single semantic module. This in turn 
requires that interactive programs be opened up, so that their front 
and back ends can be separated. While many modern GUI 
programs are built using toolkits and user interface management 
systems that facilitate this split, they rarely provide runtime (or 
any) access to the internal dialogue between their front and back 
ends. Open Syntax seeks to provide runtime access to the 
software interface between front and back end, syntax and 
semantics, interface and application,  
The ultimate goal is to provide a retargetable syntax module that 
can adapt to the user in several ways: It might adapt to different 
contexts or situations as the user moves around, such as office, 
car, airplane, shopping mall (using a PDA), or war room. When 
the system is started, it would dynamically determine the user's 
current situation and the input and output devices and channels 
available for interaction, and provide an appropriately tailored 
user interface. The interface could similarly adapt to different user 
abilities, to accommodate temporary and permanent physical and 

cognitive characteristics of elderly users. For example, it might 
provide a large-type interface. More interestingly, it might 
provide an interface with an alternate syntax designed to reduce 
short-term memory load. In each case, the change is made only to 
the front end or syntax of the interface; the back end or semantics 
remains the same.  
To accomplish this, we need to separate the syntactic and 
semantic portions of an interactive application. We have 
described the technical means and intellectual framework needed 
to separate the two. Unfortunately, too many applications 
intertwine them, because it is often expedient and may provide 
prettier looking interfaces as well as proprietary benefits to 
software companies. What is required is to allow access past the 
syntax directly to core functionality or semantics in an 
application-independent way.  
For example, it is usually difficult to access the functions of a 
word processing program without going through its specific user 
interface. Some success has been achieved with email programs, 
which use standard protocols (POP, IMAP) for accessing message 
retrieval and filing functions. Any IMAP email client can access 
any IMAP server, with generally good interoperability. Moreover, 
email in plain text and MIME is even more application-
independent. Any email program can generally send mail to be 
read by any other email program, with a well-accepted set of 
standards for the “semantic” functions inherent in all email. 
Nevertheless, software vendors continue to try to add non-
standard “enhancements” to their email, which can only be 
accessed through the user interface of their own product. This has 
obvious business advantages, but defeats the broader goal of 
adaptable access to basic functions. Calendar programs have also 
begun to provide generic functions, so that they can share data 
between office computers, PDAs, and web calendar servers. 
Spreadsheets have not reached this stage.  
An analogy can be found in text markup—the distinction between 
markup based on appearance (bold, italic) and that based on 
content (title, heading). Early word processing programs such as 
runoff and troff provided markup for appearance, but rapidly 
added macro facilities that could be used for more content-
oriented markup. HTML documents on the World-Wide Web 
followed something of the reverse of this progression. Early 
HTML was often marked up by content (title, heading), but as 
designers sought ways to make their pages look distinctive, 
markup became more appearance-oriented. The cascading style 
sheets extension to HTML seeks to support more distinctive 
graphic design while retaining content-oriented markup; its 
success remains to be seen. Interaction in HTML remains at a 
more semantic level, perhaps, because the facilities provided are 
so limited. This can be a benefit. Imagine downloading an HTML 
input <form>, turning it into a menu to be filled in using a touch-
tone telephone or a Braille teletype, and then sending the resulting 
data back in HTML, with no need to inform the server as tohow 
the user filled in the form.  
We thus claim that Open Syntax and user interface management 
system technology can provide a useful technical substrate for 
improving access by elderly users. Because the same technology 
is useful for other purposes, such as mobile computing, new forms 
of multi-mode interaction, and universal access for disabled users, 
we hope it will be more likely to be adopted. From a practical 



viewpoint, tying universal access to a technology with a broader 
target audience will help to achieve its wider adoption.  

5. MODE-INDEPENDENT INTERACTION  
The notion of interchangeable front ends for user interaction 
might also be extended to a more general idea of interaction and 
knowledge that can appear in different modes as needed. A 
computer might display information about how to repair a 
machine or a summary of daily stock market performance in a 
variety of media. It could present pictures or diagrams, animated 
video clips, a text document, a spoken lecture or narrative on the 
subject, or various multi-media combinations of these, such as a 
diagram with a spoken narration about it.  To realize this today, 
each of the separate representations of, for example, how to repair 
the machine must have been stored in the computer individually 
ahead of time. The video clips, the spoken lecture, and the 
combination description must each be input and stored separately 
in the computer, to be replayed on command. Some ad-hoc 
translation from one medium to another may be possible, such as 
extracting still pictures from a video or creating speech from a 
text file by speech synthesis. But such translations often result in 
presentations that are suboptimal in their new media. Information 
is lost in the translation, and other information that might be more 
appropriate in the target medium was not present in the source.  
Instead, we envision a situation where much of the knowledge 
about how to repair the machine might be stored once, in a form 
that does not depend on the choice of media used, and then output 
in different media and forms as needed to suit the individual user 
and the situation. The user may have personal preferences as to 
which media or combinations are preferred, or learning styles that 
work better or worse for different individuals, or disabilities—a 
visually impaired user might use a spoken or other auditory 
display instead of a visual one. The playback situation may also 
require different modes—the user could be sitting in front of and 
watching a screen or driving a car, in which case an auditory 
presentation would be preferred. [12]  
The parallel between this situation and the UIMS should be 
obvious. In both cases, there is an underlying core of (media-
independent) information or operations that might be expressed in 
various ways and a separate component that converts that 
information into a specific presentation or interface to the user. 
Implicit in both is the notion that the presentation or interface 
component might be changed, without having to modify the 
knowledge base or application component in order to provide an 
alternate view or interface for the same knowledge or application 
functionality. While there has been some research in the user 
interface software area working toward systems that can 
automatically generate a user interface from a specification of the 
application functionality[1, 2], this is largely a problem for future 
research. However the UIMS-like framework itself (i.e., the 
dialogue independent application representation plus separate 
dialogue component) applies both to automatically-generated 
interfaces and manually-designed specifically-authored ones.  

6. NEXT GENERATION INTERACTION 
STYLES  
This section outlines some more general trends in user interface 
research. In most cases these are being developed with no thought 
to their impact on elderly users. We describe them here in order to 

open them up for consideration of their potential benefits and 
problems for the elderly.  
The first is less a future development than one that has already 
come to pass—increased reliance on visual communication and 
interaction. Modern “graphical user interfaces” are indeed highly 
graphical: they require considerable visual acuity to perceive; 
good manual dexterity to manipulate a cursor with respect to the 
displayed graphics; and, because they use visual communication 
so effectively, they are often difficult to translate into other modes 
for visually impaired users. Early text-based interaction with 
teletypes or “glass teletype” displays could easily be translated 
into spoken words  or larger type. Compare this to the screen of a 
modern GUI. While the words on the screen can be spoken or 
enlarged, there is much information communicated by the 
arrangement of objects on the screen and by subtle graphical 
details. These greatly enhance interaction for many users, but they 
make it more difficult to provide a translator into a non-visual or 
less highly-visual mode. This is a well established problem with 
today's graphical interfaces, perhaps likely to get worse as new 
interfaces make fuller use of more senses for communication. 
Direct access to the underlying syntactic-semantic interface 
would of course provide one solution here, by bypassing the 
graphics and directly accessing the basic functionality in a mode-
independent way.  
A related trend is toward increased naturalness in user interfaces. 
Such interfaces seek to make the user's input actions as close as 
possible to the user's thoughts that motivated those actions, that is, 
to reduce the “Gulf of Execution” described by Hutchins, Hollan, 
and Norman[7], the gap between the user's intentions and the 
actions necessary to input them into the computer. The motivation 
for doing this is that it builds on the equipment and skills humans 
have acquired through evolution and experience and exploits 
them for communicating with the computer. Direct manipulation 
interfaces[16] have enjoyed great success, particularly with new 
users, largely because they draw on analogies to existing human 
skills (pointing, grabbing, moving objects in space), rather than 
trained behaviors. Virtual reality interfaces, too, gain their 
strength by exploiting the user's pre-existing abilities and 
expectations. Navigating through a conventional computer system 
requires a set of learned, unnatural commands, such as keywords 
to be typed in, or function keys to be pressed. Navigating through 
a virtual reality system exploits the user's existing, natural 
“navigational commands,” such as positioning his or her head and 
eyes, turning his or her body, or walking toward something of 
interest. Tangible User Interfaces similarly leverage real-world 
manipulation of real physical objects to provide a more natural 
interface[8]. The result is to increase the user-to-computer 
bandwidth of the interface and to make it more natural, because 
interacting with it is more like interacting with the rest of the 
world. Such interface require less memorization of commands, 
because they leverage things the user already knows. We 
conjecture that this might be especially significant for elderly 
users.  
Another trend in future interaction is toward lightweight, non-
command, passive interactions,  which attempt to glean inputs 
from context and from physiological or behavioral measures. We 
can thus obtain input from a user without explicit action on his or 
her part. For example, behavioral measurements can be made 
from changes the user's typing speed, general response speed, 
manner of moving the cursor, frequency of low-level errors, or 



other patterns of use. A carefully designed user interface could 
make intelligent use of such information to modify its dialogue 
with the user, based on, for example, inferences about the user's 
alertness or expertise (but note that there is also the potential for 
abuse of this information). These measures do not require 
additional input devices, but rather gleaning of additional, 
typically neglected information from the existing input stream. In 
a similar vein, passive measurements of the user's state may also 
be made with additional hardware devices. In addition to three-
dimensional position tracking and eye tracking, a variety of other 
physiological characteristics of the user might be measured and 
the information used to modify the computer's dialogue with its 
user[15]. Blood pressure, heart rate, respiration rate, eye 
movement and pupil diameter, and galvanic skin response (the 
electrical resistance of the skin) are examples of measurements 
that are relatively easy and comfortable to make, although their 
accurate instantaneous interpretation within a user-computer 
dialogue is an open question. A more difficult measure is an 
electro-encephalogram, although progress has been made in 
identifying specific evoked potential signals in real time. Looking 
well beyond the current state of the art, perhaps the final frontier 
in user input and output devices will be to measure and stimulate 
neurons directly, rather than relying on the body's transducers. 
This is unrealistic at present, but it may someday be a primary 
mode of high-performance user-computer interaction. If we view 
input in HCI as moving information from the brain of the user 
into the computer, we can see that all current methods require that 
this be done through the intermediary of some physical action. 
We strive to reduce the Gulf of Execution, the gap between what 
the user is thinking and the physical action he or she must make to 
communicate that thought. From this point of view, reducing or 
eliminating the intermediate physical action ought to improve the 
effectiveness of the communication for all users. The long-term 
goal might be to see the computer as a sort of mental prosthesis, 
where the explicit input and output steps vanish and the 
communication is direct, from brain to computer.  
Another way to predict the future of computer input devices is to 
examine the progression that begins with experimental devices 
used in the laboratory to measure some physical attribute of a 
person. As such devices become more robust, they may be used as 
practical medical instruments outside the laboratory. As they 
become convenient, non-invasive, and inexpensive, they may find 
use as future computer input devices. The eye tracker is such an 
example[11]; the physiological monitoring devices discussed may 
well also turn out to follow this progression.  
In each of these cases, from relatively mundane use of context, 
behavior and simple passive measurement to notions that sound 
like science fiction, all of these lightweight or passive interface 
reduce the effort the user must make to communicate with the 
computer by taking information from implicit inputs rather than 
requiring all input to be explicitly produced by the user. We 
conjecture that this may be a benefit to elderly users with reduced 
physical or cognitive ability or reduced speed at which they can 
generate input.  
We might also predict the future of user interfaces by looking at 
some of the characteristics of emerging new computers. The 
desktop workstation seems to be an artifact of past technology in 
display devices and in electronic hardware. In the future, it is 
likely that computers smaller and larger than today's workstation 
will appear, and the workstation-size machine may disappear. 

This will be a force driving the design and adoption of future 
interface mechanisms. Small computers are already appearing—
laptop and palmtop machines, personal digital assistants, wearable 
computers, and the like. These are often intended to blend more 
closely into the user's other daily activities. They will certainly 
require smaller devices, and may also require more unobtrusive 
input/output mechanisms, if they are to be used in settings where 
the user is simultaneously engaged in other tasks, such as talking 
to people or repairing a piece of machinery. At the same time, 
computers will be getting larger. As display technology improves, 
as more of the tasks one does become computer-based, and as 
people working in groups use computers for collaborative work, a 
office-sized computer can be envisioned, with a display that is as 
large as a desk or wall (and has resolution approaching that of a 
paper desk). Such a computer leaves considerable freedom for 
possible input means. If it is a large, fixed installation, then it 
could accommodate a special-purpose console or “cockpit” for 
high-performance interaction. It might also be used in a mode 
where the large display is fixed, but the user or users move about 
the room, interacting with each other and with other objects in the 
room. In that case, while the display may be very large, the input 
devices would be small and mobile. The flexibility gained by this 
wider range of physical form factors ought to be beneficial for 
accommodating elderly users, but it has not yet been explored for 
this purpose.  
Two other trends in user interfaces are continuous input and 
output and parallel interaction across multiple modes[5]. These 
can be seen clearly in virtual reality interfaces,  but the 
fundamental characteristics are common to a wider range of 
emerging user interfaces. They share a higher degree of 
interactivity than previous interfaces. They involve continuous 
input/output exchanges between user and computer (using 
gestures and sensors) rather than streams of discrete tokens (using 
mouse and keyboard). Moreover, their user-computer dialogues 
often involve several parallel, asynchronous channels or devices, 
rather than the single-thread nature of todays mouse and keyboard 
interfaces. These two characteristics will have a considerable 
effect on user interface software[13], but it is not yet clear 
whether these will be good, bad, or neutral for elderly users.  
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