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Abstract

The first part of this dissertation develops foundational material on the rational cohomology
of Lie groups, their classifying spaces, and homogeneous spaces. In parallel, it develops the
basics of Borel equivariant cohomology, with an aim to understanding equivariant cohomology
of isotropy actions of K on compact homogeneous spaces G{K.

In the last few chapters, we establish several original results on such actions. Briefly, this work
essentially reduces the question of when such an action is equivariantly formal to the case the
isotropy subgroup K is a torus and the transitively acting group G is simply-connected, then
completely classifies the possibilities in the event K further is a circle.

The appendices include an exposition of Borel’s original proof of a theorem of Chevalley
providing a framework for computing the cohomology of principal bundles; the lengthy origi-
nal proof of an original result on circles inverted by an inner automorphism of a containing Lie
group, which was superseded but the author still wanted to see published somewhere; and some
applications (the original motivation for this work) of the Berline–Vergne/Atiyah–Bott localiza-
tion theorem to classical (pre-1941) results in topology.

A more detailed account of the content, including a delineation of what is original to this
work and what is expository, can be found in the introduction.
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On the equivariant cohomology of homogeneous spaces



Chapter 1

Introduction

My goal in this document is to explore the satisfiability and consequences of a technical condition

on equivariant cohomology called equivariant formality. This notion had already been alighted

upon by Borel in Chapter XII of his Seminar [BBF+60], but was not formally defined until the

work of Goresky, Kottwitz, and MacPherson [GKM98] in 1997. These three used equivariant

formality to build an edifice now called GKM-theory which among other things computes the

equivariant cohomology H˚
TpXq in the event T is a complex torus acting equivariantly formally

on a complex algebraic variety X in such a way that X contains only finitely many T-orbits of

dimensions zero and one. This machinery has been applied to Hamiltonian actions on symplectic

manifolds, and the action of a compact Lie group K on a homogenous space G{K with rk K “

rk G, and is part of a by now well-understood story which has been intensively applied in parts of

symplectic topology and algebraic geometry. The impetus behind this research was a suggestion

from my advisor Loring W. Tu that it might be profitable to understand what happens in the

much less studied case that rk K ă rk G.

My initial work in this regard was applying the powerful equivariant localization theorems of

Berline–Vergne and Atiyah–Bott to characteristic classes, and in doing so, I was able to recover a

number of classical (pre-1950) results essentially for free. The metaphor I used when describing

2
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orally my exploits was that of wandering around classical algebraic topology with a gigantic

hammer, looking for things to hit. I regale the reader with tales of these deeds in Appendix C.

The problem I kept encountering, toting this hammer around, was the one you would expect:

I was not sure could actually be hit with it. So a second program arose, which became the

more substantial part of this project: that of finding out when the natural action of K on G{K is

equivariantly formal, for compact Lie groups G and K. This is taken up in Chapter 11.

The tools involved in this determination are essentially classical, involving the cohomology of

homogeneous spaces and invariant theory. The former was a major topic of research for decades,

starting with work of Čech and Hopf in the 1930s on cohomology of Lie groups (leading to the

discovery of Hopf algebras), and coming into focus in the late 1940s with the discovery of the

Leray spectral sequence and the Cartan algebra of principal bundles. The Serre spectral sequence

of the Borel fibration G Ñ pESˆGq{S Ñ BS, which is the same as the Leray sequence of the map

pESˆ Gq{S Ñ BS, plays a key role in our work.

After Eilenberg and Moore discovered their spectral sequence, the Eilenberg–Moore spectral

sequence of the bundle G{S Ñ BS Ñ BG overtook the Serre spectral sequence as the primary tool

for studying cohomology of homogeneous spaces [BS67]. It was found that this spectral sequence

usually collapsed at E2. The work of Hans Munkholm [Mun74] and Joel Wolf [Wol77] was appar-

ently considered to be the final nail in this project; they found, roughly, what had already been

expected: if k is a field of high enough characteristic, then H˚pG{K; kq – Tor‚H˚pBG;kq
`

k, H˚pBK; kq
˘

as rings, and under weaker hypotheses, as H˚pBG; kq-modules. This reduced the problem to an al-

gebraic one, resolvable algorithmically in any given individual case given the map H˚pBG; kq ÝÑ

H˚pBK; kq. At this point, the cohomology of homogeneous spaces seemingly was decided to be

a solved problem, and algebraic topologists collectively moved on. While computations of the

cohomology of individual homogeneous spaces of interest have been published since, nothing
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substantial about the general problem seems to have been written since 1977.

Unfortunately, the theoretical conclusion to the computation of H˚pG{K; kq does not immedi-

ately translate into transparent formulae for the ring structure or even—what is more relevant

to us—for the total Betti number h‚pG{Kq “ dimk H˚pG{K; kq, and I resorted to the earlier Borel–

Cartan description to recover this data in cases of interest. I take the opportunity in Chapter 8

to recount this deserving and largely forgotten story, which at the same time motivates the Car-

tan model for equivariant cohomology.1 It is this development which I consider to be the main

feature of this account, and which I spent the greatest time developing. The core insight is that

most everything can be thought of as arising as a consequence of Serre spectral sequence of a

bundle and the Koszul complex, a primordial acyclic chain complex tied to the cohomology of a

universal bundle.

This exposition is largely original, in that the proofs are recalled from the my own memories

or created anew except where otherwise noted, and this material is not typically developed in

the manner and in this order I do here. Results that here are seen as a consequence of a rational

Koszul complex are usually developed as a consequence of connections, Lie algebra cohomology,

and the Weil algebra, important analytically-flavored tools which, however, it is actually possible

to circumvent almost entirely. Part of my motivation for this lengthy exposition was a mild

dissatisfaction with existing texts covering the material of Chapter 8, which tend to rely heavily

on unexplained notation without providing recapitulation of its meaning, to require iterative

callbacks to earlier material, and in one instance to spend several hundred pages developing in

great generality algebraic preliminaries which are then only ever applied to principal bundles of

compact Lie groups anyway.

My goal throughout is to require only basic commutative algebra, Lie theory, and algebraic

1 Already in 1977 [Sul77], Dennis Sullivan describes the Borel–Cartan technology as “current in 1950 and ignored
later in topology,” and then uses it to motivate Sullivan models; see Hess [Hes99].
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topology, so that this dissertation will in principle be readable to a second-year graduate student.

To this end, much standard material is briefly recapitulated without narrative in the first two

“background” appendices, which are definitively not, however, the right place to first encounter

this material.

Parts of this journey will be somewhat impressionistic, some background results will quoted

without proof, and the history will not necessarily be entirely correct. Still, I hope at the end the

narrative has some worth besides merely as background to my own work.

A note on style: As the reader might already have guessed from the absolute overkill in the ac-

knowledgments, this document hews but imperfectly to the conventions standard in research

work.

I initially put in extra background operating off the (spurious) assumption that committee

members unfamiliar with equivariant cohomology would appreciate having all the background

in one document; but when I realized how dramatically incorrect that was, rather than dialing

it back and producing a more modestly-scaled and tightly-targeted document, I just cranked it

up to 11 continued regardless—I felt I was committed at that poin,t and really wanted to get

out what I had to say in my own way. Compounding this commitment, I came a bit later to the

realizations that

1. given that this dissertation is essentially subject only to the approval of my advisor, I can

essentially go on about whatever I want, for as long as I want, and

2. this is probably the only published document I will ever have such complete creative control

over.

So the authorial voice is very present, the intermittent grandiloquence and weird phrasings I find

amusing unchecked, and really, why not? Hopefully the resulting text isn’t unreadably irritating
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for these excesses.

A note on attributions: In the course of this work, I rediscovered many known results, including

results from 1940 and 1946–7 which do not seem to be well-known, through what could be

considered either an admirable DIY ethos and spirit of adventure or else a pathological inability

to make myself familiar with the relevant literature. Some results and proofs I discovered seemed

too obvious not to be known, and yet do not appear elsewhere in papers or books (yet!) known

to me. Given this history, it seems dangerous to claim a number of proofs presented here as

original: it may simply be that the correct citation is contained in some part of the sixty-odd

years of relevant literature I’ve failed to uncover. To handle such instances, I consistently use the

coded phrase “the author does not know of a citation” as a hopefully not overly crass way of

claiming originality of effort, if not of outcome, for a given proof or result.

That said, Section 10.1 and Chapter 11 comprise unequivocally original material. The mild

extensions Corollary 10.3.11 and Theorem 10.3.16 of the Shiga–Takahashi criterion are also origi-

nal.

The following results and proofs, the author does not know a reference for:

• the included proof of the counting lemma Corollary 2.4.5,

• the Serre spectral sequence proof of the bundle lemma Theorem 4.4.1,

• the proof in Section 8.5—or any published proof for that matter—of the Leray–Koszul

theorems on H˚pG{S1;Qq,

• the low-tech, low-dimensional topology proof of the standard result Proposition 6.3.4 that

the standard rotation action of S1 on S2 is equivariantly formal,

• the “natural isomorphism” verions of the statements in Section 6.4, which, though trivial

extensions of standard results, allowed the author to prove Theorem 10.1.4,
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• the adaptation into modern language and rational coefficients of Borel’s proof of Cheval-

ley’s and Cartan’s theorems in Section 8.1.2 (though this result is subsumed by now-

standard techniques of rational homotopy theory),

• the adaptation to sheaves, rather than couvertures, of Borel’s original proof of Chevalley’s

theorem, as exposited in Appendix D,

• the cohomological lifting result Proposition B.3.4,

• the equivariant proof of the Hopf–Samelson result in Proposition C.3.1.

The following results reflect only an originality of effort, in that the results and the proofs were

already known (if not to the author at the time):

• the tensor decomposition results of Section 6.2,

• the equivariant proof of the fixed point result Proposition C.3.2 and attendant Proposi-

tion C.3.3.



Chapter 2

Bundles, actions, and orbits

The main body of this work will be in understanding functors from group actions to abelian

groups, so in this chapter we recount some material on continuous group actions that, though

standard, is not covered in a typical graduate algebra, topology, or Lie theory course and so

seemed to deserve formal demarcation from the algebraic and topological background relegated

to the appendices.

2.1. The category of G-actions

Let G be a topological group. The category G-Top of G-actions is specified as follows:

• Objects are pairs pX, Aq P Top of topological spaces, such that X is equipped with a contin-

uous G-action that restricts to an action on A. One says X (as well as A) is a G-space.

• Morphisms are G-equivariant maps (briefly G-maps): continuous maps of pairs f : pX, Aq ÝÑ

pY, Bq such that f pgxq “ g f pxq for all g P G and x P X.

The objects are really actions, but we will abusively refer to them as spaces whenever convenient.

As with Top, we will consider the class of individual G-spaces and G-maps between such as a

full subcategory via the canonical inclusion X ÞÝÑ pX,∅q.

8
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A right G-space and a left are essentially the same: the anti-isomorphism g ÞÑ g´1 : G Ñ G

converts a right action to a left action (and vice versa) via gx :“ xg´1. We will only worry about

the difference in the event a space admits both a left and a right action.

There are two canonical functors to Top, the forgetful functor that takes an action G ñ pX, Aq

and returns the pair pX, Aq P Top, disregarding the action, and the orbit-space functor pX, Aq ÞÑ

pX{G, A{Gq.

The product and coproduct in G-Top have the topological product and disjoint union as

underlying spaces. The action on the coproduct is the union of the actions; the intended action

on the product XˆY is the diagonal action given by g ¨ px, yq :“ pgx, gyq, so that the projections

X Ð XˆY Ñ Y are also G-maps. The orbit space of the diagonal action is the mixing space

Xˆ
G

Y :“ XˆYLpg´1x, yq „ px, gyq.

If we write the action on X instead as a right action, one has the more aesthetically pleasing

identification pxg, yq „ px, gyq.1 The application of the orbit-space functor ´{G to the projection

diagram X Ð XˆY Ñ Y yields a mixing diagram

X

��

XˆYoo //

��

Y

��
X{G Xˆ

G
Yoo // Y{G.

We always let G act trivially on the closed unit interval I “ r0, 1s. A G-homotopy between two

G-maps f , f 1 : X ÝÑ Y is a G-map F : X ˆ I ÝÑ Y such that Fp´, 0q “ f and Fp´, 1q “ f 1. This

is the proper notion of homotopy within the category G-Top, and has the important feature that

application of the orbit-space functor takes a G-homotopy Xˆ I ÝÑ Y of G-maps to a homotopy

1 One could say g commutes with comma.
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pX{Gq ˆ I ÝÑ Y{G. In particular, a pair p f : X ÝÝÝÑÐÝÝÝ Y : f 1q of G-maps such that f 1 ˝ f and f 1 ˝ f

are G-homotopic to idX and idY (respectively) descend to a homotopy equivalence X{G » Y{G.

We end this section with the observation that mixing with the translation action of G on itself

changes nothing.

Lemma 2.1.1 ([Bre72, Prop. II.2.2, p. 73]). Let Γ be a topological group and X a right Γ-space. Then

Xˆ
Γ

Γ « X.

Proof. The composite X «
ÝÑ X ˆ t1u ãÑ X ˆ Γ � pX ˆ Γq{Γ is clearly continuous. It is surjective

because the diagonal Γ-orbit of any point px, γq P Xˆ Γ contains the point pxγ´1, 1q, and injective

because px, 1q “ py, 1q ¨ γ “ pyγ, γq only if γ “ 1 and x “ y. To see its inverse is continuous,

consider the composition

Xˆ Γ ÝÑ Xˆ Γ ÝÑ X,

px, γq ÞÝÑ px, γ´1q ÞÝÑ xγ´1.

This map is constant on diagonal Γ-orbits, since pxδ, γδq ÞÝÑ xδ ¨ δ´1γ “ xγ´1, so it descends to

a continuous map pXˆ Γq{Γ ÝÑ X, the inverse to the map X ÝÑ pXˆ Γq{Γ described above.

2.1.1. Freedom and efficacy

We will have to deal with fixed point sets of isotropy actions starting in Section 10.2. If a group

G acts on a topological space X, we denote the fixed point set of the action by XG.

A G-action Gˆ X ÝÑ X is said to be effective (or faithful) if only the neutral element 1 P G

acts trivially: that is, one has the implication

@x P X pgx “ xq ùñ g “ 1.
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Equivalently, an action is effective just if it curries to an injective homomorphism G ÝÑ Homeo X.

A G-action Gˆ X ÝÑ X is said to be free if only the neutral element 1 P G fixes any point: that

is, one has the implication

Dx P X pgx “ xq ùñ g “ 1.

These conditions can be pleasingly restated in terms of stabilizers thus:

• an action is effective when
Ş

xPX Gx “ t1u;

• an action is free when
Ť

xPX Gx “ t1u.

We will write G-Free for the full subcategory of G-Top whose objects are free G-actions. Contained

in G-Free is the full subcategory of principal G-bundles and G-maps (automatically bundle maps),

as discussed in Appendix B.1.3.

In Section 4.2.3, we will define a construction that from any G-action produces a free G-action,

and use it to define an equivariant cohomology theory.

2.2. The category of G-orbits

The action on a G-space X induces an orbit decomposition: one has

X “
ž

GxPX{G

Gx

as sets where the orbit Gx is defined as tgx : x P Xu and the inclusion Gx ãÝÝÑ X is continuous.

The orbits have a fairly tightly constrained structure: the pointwise stabilizers or isotropy sub-

groups Stabpxq “ Gx :“ tg P G : gx “ xu of points x P X are closed subgroups if X is T1,2 and the

2 It will be in all cases we care about. The proof is that the inverse image of txu under the action Gˆ X ÝÑ X and
the set Gˆ txu are both closed if txu is.
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orbit–stabilizer theorem induces homeomorphisms

G{ Stabpxq „
ÝÑ Gx :

g Stabpxq ÞÝÑ gx,

where G{ Stabpxq is the left coset space with the quotient topology. Such a space is called a

homogeneous space for G. These maps are clearly continuous, and will certainly be open as well

if G is compact and X Hausdorff, which they are in our cases of interest. We mark this proposition

for later use.

Proposition 2.2.1. Let G be a locally compact, Hausdorff, second countable topological group acting

continuously on a locally compact Hausdorff space X, and Stabpxq the stabilizer in G of x P X. Then the

group action induces a homeomorphism

G{ Stabpxq «
ÝÑ Gx.

Proof. The argument above suffices for a compact Lie group acting on a Hausdorff space. See

Garrett [Gar10, Prop. 6.0.2] for a proof of the statement with the weaker hypotheses.

It follows that an understanding of the full subcategory G-Orbit of right quotients of G by

closed subgroups is an important component of understanding G-Top. Write SubpGq for the cat-

egory of closed subgroups of G, with morphisms inclusions and isomorphisms H „
ÝÑ gHg´1 in-

duced by inner automorphisms of G. Then the correspondence K ÞÝÑ G{K induces an equivalence

SubpGqop „
ÝÑ G-Orbit of categories: an inclusion H ãÝÝÑ K corresponds to a G-equivariant quo-
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tient map G{K ÝÝ� G{H; and if H “ gKg´1, then rg : x ÞÝÑ xg descends to a G-homeomorphism

G{H „
ÝÑ G{K :

xH ÞÝÑ xgK.

2.3. Tubes, slices, and G–CW complexes

Given the orbit decomposition, one can ask how much of the structure of G-Top is determined

by G-Orbit (or equivalently by SubpGq), and the answer, in a sense, is all of it, at least if G is a

compact Lie group. We reproduce here the topological consequences of this analytic structure,

suppressing most actual analysis. Most of this material can be found in the useful Appendix B

to the book by Ginzburg et al. [GGK02]. Much of the exposition in this section is inspired by a

manuscript textbook of Raoul Bott and Loring Tu [BTar].

Let G be a compact Lie group acting smoothly on a manifold M, and x P M. Then K “ Stabpxq

is a closed subgroup of G, hence a Lie group, and the coset space G{K is a manifold as noted

in Theorem B.4.3, diffeomorphic to the orbit Gx. Moreover, orbits admit equivariant tubular

neighborhoods [Kos53].

Theorem 2.3.1 (Equivariant tubular neighborhood theorem (Koszul)). Let G be a compact Lie group,

M a smooth G-manifold, and x P M a point. Then there exists a G-invariant open neighborhood of Gx in

M.

Sketch of proof. Given a Riemannian metric x´,´y1 on M and Haar measure dg on G, the aver-

age xv, wy :“
ş

Gxg˚v, g˚wy1 dg defines G-invariant Riemannian metric on M. This induces a G-

invariant metric d on M. The neighborhood BεpGxq “
 

y P M : dpGx, yq ă ε
(

is G-invariant.

This statement can and should be strengthened.
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Proposition 2.3.2 (Koszul). For small enough ε, the tubular neighborhood of Theorem 2.3.1 is G-

isomorphic to the normal bundle.

Sketch of proof. The G-invariant metric defines a norm }´ } on TM which allows us to canonically

embed the normal bundle ν to Gx as the orthogonal complement of TpGxq in pTMq|Gx. It is a

well-known feature of the exponential map that each point gx P Gx, there exists ε ą 0 such that

expgx is defined on the ball Bεp0q Ĺ Tx M. Since Gx is compact, there then exists ε small enough

that for all x and all v P pTMq|Gx with }v} ă ε, the map exp : pv P Tgx Mq ÞÝÑ expgx v is defined.

The exponential of M, when restricted to TpGxq, is the exponential for Gx and so maps into Gx,

so to obtain a potential homeomorphism from some bundle to a tubular neighborhood of Gx,

we should restrict our exponential to the orthogonal complement ν to TpGxq, which also has the

correct total dimension dim
“

pTMq|Gx
‰

´ dim Gx “ dim M. If we decrease ε sufficiently, then by

the nonequivariant tubular neighborhood theorem, exp is a G-equivariant diffeomorphism from

νε :“ tv P ν : }v} ă εu to BεpGxq.

Finally, if we write νx for the disk Tx MX νε, we can rewrite νε as a disk bundle.

Proposition 2.3.3. In this notation, there is a G-equivariant diffeomorphism G ˆ
Gx

νx
„
ÝÑ νε.

Proof. Under the action

µ : Gˆ νx ÝÑ νε,

pg, vq ÞÝÑ g˚v,

each g P G takes νx diffeomorphically onto pνεqgx, since g P Diff M is itself smooth and invertible

and we constructed the norm on ν to be G-invariant. The fiber of µ over a fixed v0 P pνεqy0 is the

collection of pairs pg, vq, pg1, v1q, etc., with g˚v “ v0. We must have gx “ g1x “ y0 for any two
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such pairs, so k “ g´1g1 P Gx, or g1 “ gk and then

g˚v˚ “ v0 “ g1˚v1 “ g˚k˚v1

implies pg1, v1q “ pgk, k´1
˚ vq by bijectivity of g˚. So each fiber is an orbit of the diagonal action

Gx ñ Gˆ νx given by k ¨ pg, vq “
`

g˚pk˚q´1, k˚v
˘

of Gx. Quotienting out this action, µ descends to a

diffeomorphism ϕ : GˆGx νx
„
ÝÑ νε, which is left G-equivariant: ϕrg1g, vs “ g1˚g˚v “ g1˚ϕrg, vs.

Given a point x P M, if there is a Gx-invariant superset X Q x such that GX is an open

neighborhood of x satisfying GX « G ˆGx X, then X is called a slice. We have just seen that a

small normal disk νx is such a slice, so the result is also traditionally called the slice theorem. It is

a subtle theorem of Sören Illman that the in addition to these slices, smooth G-manifolds admit

another very nice kind of G-equivariant decomposition.

Definition 2.3.4 (Matumoto). A G–CW complex is a topological space X admitting a filtration

pXnq as follows:

• X0 “
š

KPSubpGq
š

αpG{Kq ˆD0
α

• Given Xn, there are G-equivariant maps ϕα,K : pG{KqˆSn
α ÝÑ Xn, where K runs over SubpGq

and α over some arbitrary index set, compiling into a map

ϕ “
ž

α,K

ϕα,K :
ž

α,K

pG{Kq ˆ Sn
α ÝÑ Xn

such that

Xn`1 “
Xn >

š

α,KpG{Kq ˆDn`1
α

N

ϕpsq „ s.

• X “
Ť

Xn with the weak topology.



Chapter 2. Bundles, actions, and orbits 16

Write en for the interior of a disk Dn. Then the various pieces G{Kˆ en making up X, called G-

cells, are comprised of open n-balls gKˆ en, called the n-cells of the complex. We write CellnpXq

for the set of n-cells of X. A G–CW pair pX, Aq is a G–CW complex X and subcomplex A.

Note that G acts cellularly on a G–CW complex X in the sense that if σ P CellnpXq, then so also

is gσ in CellnpXq, and given such a cell σ, every point x P σ has the same stabilizer Stabpxq “:

Stab σ under the defining G-action. Setting G “ 1 to be the trivial group in the definition recovers

CW-complexes in the traditional Whitehead sense; because an orbit is a “point” in the equivariant

sense, this definition is a natural generalization. The following is then plausible.

Proposition 2.3.5 (Matumoto [Mat71b]). Let X be a G–CW complex. Then the orbit space X{G inherits

a canonical CW structure whose n-cells are
 

σ{G : σ P CellGn pAq
(

.

Theorem 2.3.6 (Illman [Ill83]). Let G be a compact Lie group and M a smooth manifold, possibly with

boundary. Then M admits a G–CW structure.

Thus G–CW complexes are a natural class of topological group actions to consider from the

point of view of homotopy theory.

Historical remarks 2.3.7. The result Theorem 2.3.6 has an interesting history. It was Takao Matu-

moto [Mat71a, Prop. 4.4] who first considered G–CW structures and observed that they existed

for compact Lie groups G and smooth, closed G-manifolds. His proof relies on an earlier result of

Chung-Tao Yang [Yan63], which in turn relies on a result of Stewart Cairns [Cai41] whose proof

was never published, and which unfortunately contradicts a valid 1970 result of Larry Sieben-

mann [Sie77, p. 312]. The contradiction was apparently discovered by John Mather around 1976

and relayed to Sören Illman by Katsuo Kawakubo; Illman reported this error in 1978 [Ill78], and

Andrei Verona was able to repair Yang’s proof in 1979 [Ver79]. Illman was then able to regain

Matumoto’s result in 1983 [Ill83, Thm. 7.1], twenty years after Yang’s proof and a full forty-two
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after Cairns’s statement.

2.4. Fixed point sets of actions on homogeneous spaces

In order to localize integrals over and study cohomology rings of fixed point sets of actions on

homogeneous spaces, as we shall do in Chapter 10 and Appendix C, it helps to understand what

these sets are.

We initially focus on describing these fixed point sets in terms of normalizers. Several of

these lemmas are due to Oliver Goertsches and Sam Noshari, while the author does not know

citations for the others. The proofs (admittedly trivial) are of the author’s own design unless

noted otherwise.

Lemma 2.4.1. Let G be a group, H and K subgroups acting respectively by left and right multiplication.

The fixed point set pG{KqH is tgK P G{K : g´1Hg ď Ku.

Proof. We have the chain of equivalences of set containments

gK P pG{KqH ðñ HgK “ gK ðñ g´1HgK “ K ðñ g´1Hg ď K ðñ H ď gKg´1.

The last condition is clearly independent of the representative g of gK P G{K.

This set is easier to describe in the event of a torus action.

Lemma 2.4.2 ([Goe12, Lem. 4.3]). Let G be a compact, connected Lie group, K a closed, connected

subgroup, and S the maximal torus of K. The fixed point set pG{KqS is NGpSqK{K, which is homeomorphic

to the coset space NGpSq{NKpSq.
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Proof (after Goertsches). From Lemma 2.4.2 we know

gK P pG{KqS ðñ g´1Sg ď K.

By Theorem B.4.9, the latter condition holds if and only if there is k P K such that k´1g´1Sgk “ S,

in which case gk P NGpSq and g P NGpSqK. Thus pG{KqS “ NGpSqK{K ď G{K.

Now, there is a natural continuous map NGpSq � NGpSqK � NGpSqK{K, under which an

element n P NGpSq is sent to K if and only if n P K, so the “kernel” is NGpSq X K and one has a

continuous bijection

NGpSq
L

NGpSq X K ÐÑ NGpSqK
L

K.

Since these are compact Hausdorff spaces, this is a homeomorphism. But the denominator on

the left is NKpSq by definition.

This is even simpler if the isotropy subgroup is a torus.

Corollary 2.4.3. Let G be a compact, connected Lie group containing a torus S. Then

pG{SqS “ NGpSq{S

Proof. Take K “ S in Lemma 2.4.2.

The Weyl group also comes up in this context as well, for the following reason.

Lemma 2.4.4. Let G be a compact Lie group and K a closed subgroup containing a maximal torus T. The

set of fixed points of the left multiplication action of T on the right coset space G{K is in natural bijection

with the coset space WG{WK, where WG “ NGpTq{T is the Weyl group of G. In particular, WG is the fixed

point set of the left action of T on G{T.
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Proof. By Lemma 2.4.2, we have pG{KqT « NGpSq{NKpSq, so by what is essentially the third

isomorphism theorem,

pG{KqT «
NGpTq
NKpTq

ÐÑ
WG

WK
.

Lemma 2.4.1 obviously implies many fixed point sets are empty.

Corollary 2.4.5. Let G be a compact Lie group and K and H subgroups. The set of fixed points of the left

multiplication action of H on the right coset space G{K is empty unless H is conjugate in G to a subgroup

of K. In particular, if rk H ą rk K, then pG{KqH “ ∅.

Now that we have at least a philosophical understanding of these fixed point sets, we try

to develop as well an understanding of the number and homeomorphism types of their com-

ponents. These components will turn out to be quotients of centralizers, and their cohomology

rings computable by techniques we will develop in Section 8.3.1. One needs the following useful

counting lemma.

Proposition 2.4.6 (Noshari [GN15, Proposition 2.3]). Let Γ be compact Lie group and H a closed

subgroup. Then the number of components of Γ{H is given by

ˇ

ˇπ0pΓ{Hq
ˇ

ˇ “
|π0Γ| ¨

ˇ

ˇπ0pH X Γ0q
ˇ

ˇ

|π0H|
,

where Γ0 is the identity component of Γ.

Proof. Consider the intermediate group Γ0H, which is some union of components of Γ. One has

a bundle

Γ0HL

H ÝÑ Γ
L

H ÝÑ Γ
L

Γ0H,

the fiber of which has only one component, since Γ0 is connected, so to find
ˇ

ˇπ0pΓ{Hq
ˇ

ˇ is to find

the index rΓ : Γ0Hs “
ˇ

ˇπ0pΓ{Γ0Hq
ˇ

ˇ, which is finite because rΓ : Γ0s already is, Γ being compact.
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Moreover, since indices are transitive,

|π0Γ| “ rΓ : Γ0s “ rΓ : Γ0HsrΓ0H : Γ0s “
ˇ

ˇπ0pΓ{Hq
ˇ

ˇ ¨ rΓ0H : Γ0s.

For π0H, one has an analogous decomposition

|π0H| “ rH : H X Γ0s
ˇ

ˇπ0pH X Γ0q
ˇ

ˇ,

linked to the previous one by the “second isomorphism theorem” bijection rΓ0H : Γ0s “ rH :

H X Γ0s. Rearranging, one finds

|π0Γ|
ˇ

ˇπ0pΓ{Hq
ˇ

ˇ

“ rΓ0H : Γ0s “ rH : H X Γ0s “
|π0H|

ˇ

ˇπ0pH X Γ0q
ˇ

ˇ

,

and isolating
ˇ

ˇπ0pΓ{Hq
ˇ

ˇ on one side yields the result.

In what follows, let G be a compact, connected Lie group, K a closed, connected subgroup,

and S a maximal torus of K. Write N “ NGpSq and write Z “ ZGpSq for the centralizer. Recall

that π0N denotes the component group of N. Then pG{KqS « N{NKpSq is naturally expressed in

terms of other known objects.

Lemma 2.4.7. Conjugation induces maps

N ÝÑ Aut S;

π0N Aut S.

The kernel of the first is the centralizer Z, which is consequently the identity component of the normalizer

N.
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Proof. Conjugation yields a continuous natural homomorphism

N ÝÑ Aut S,

n ÞÝÑ
`

x ÞÝÑ nxn´1˘.

The kernel of this map is definitionally Z, for conjugation by n P N fixes S pointwise if and only

if n commutes with all elements of S. By the first isomorphism theorem, we obtain an injection

N{Z Aut S.

Since G is connected, the centralizer Z of S is connected, being the union of those maximal

tori of G that contain S. As Z is connected and Aut S discrete, it follows Z is the connected

component of the identity in N.

Corollary 2.4.8 (Noshari). Let G be a compact, connected Lie group, K a closed, connected subgroup, and

S the maximal torus of K. Then the fixed point set pG{KqS « NGpSq{NKpSq has |π0N|{|WK| connected

components, each homeomorphic to Z{S.

Proof. To get the number of components, apply Proposition 2.4.6 with Γ “ NGpSq and H “ NKpSq,

noting N0 “ Z by Lemma 2.4.7 and that NKpSq X ZGpSq “ ZKpSq “ S is path-connected because

S is a maximal torus of K.

Since NGpSq acts transitively, the components will be mutually homeomorphic, and the iden-

tity component is

ZGpSqNKpSq
L

NKpSq « ZGpSq
L

ZGpSq X NKpSq “ Z{S

by the second isomorphism theorem.

Corollary 2.4.9. Let G be a compact, connected Lie group and S a torus in G. Then the fixed point set

pG{SqS « N{S has |π0N| connected components, each homeomorphic to Z{S.
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Classifying spaces

In this section, we carry out the construction of the universal principal G-bundle EG Ñ BG,

which we use essentially as a tool to convert actions into closely related free actions. The existence

of this bundle is more important than the details of its construction in almost everything that

follows, but we will at one key point (Definition 10.1.3) use the fact that EG admits commuting

right and left actions of G, and to justify this fact we provide the construction.

3.1. The weak contractibility of EG

The original purpose of the universal principal G-bundle EG Ñ BG was to be a principal G-

bundle such that all others G Ñ E Ñ B arose as pullbacks. For that reason, the resulting map

B ÝÑ BG of base spaces classifies the bundle E Ñ B, and is called the classifying map of the

bundle, and BG is called the classifying space of a principal G-bundle.

The fact that EG is weakly contractible—which is much of why we care about the universal

bundle—turns out to be a consequence of that demand. In this subsection, we explain the rele-

vance of this demand. It will simplify the argument to know that all maps of principal G-bundles

are pullbacks.

22
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Proposition 3.1.1. Consider a principal G-bundle map

P //

��

E

��
X

f // B.

The pullback bundle f ˚E Ñ X is isomorphic to P Ñ X as a principal G-bundle.

Proof. Recall from earlier that the total space f ˚E “ X is the pullback in Top of the diagram

X Ñ B Ð E. Since P also admits a map to such a diagram, there is a continuous map P Ñ f ˚E

commutatively filling in

P //

  

**f ˚E //

��

E

��
X

f // B.

For any x P X, by assumption, the maps of fibers P|x Ñ E| f pxq Ð p f ˚Eq|x are G-equivariant

homeomorphisms, so P Ñ f ˚E is a bijective G-map. To see its inverse is continuous, it is enough

to restrict attention to an open U Ď X trivializing both P and f ˚E, so we need only show the

inverse of a continuous G-bijection ϕ filling in the diagram

U ˆ G
ϕ //

��

U ˆ G

��
U

is continuous. By commutativity, we may write ϕpx, 1q “
`

x, ψpxq
˘

for a continuous ψ : U Ñ G,

so that ϕpx, gq “
`

x, ψpxqg
˘

by equivariance. Then ϕ´1px, gq “
`

x, ψpxq´1g
˘

, and since ψ and

g ÞÑ g´1 are continuous, so is ϕ´1.

Thus the EG Ñ BG we seek just needs to be a final object in the category of principal G-

bundles. Recall that Top admits CW approximations, so that up to homotopy, we may assume
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the base space of our principal G-bundle P Ñ X is a CW complex. Then X is built one level at a

time from a discrete set X0 of vertices by gluing disks Dn`1
α to the n-skeleton Xn along attaching

maps ϕα : BDn`1
α « Sn ÝÑ Xn, so we can view P as being constructed inductively from principal

G-bundles over these attached cells.

We require one intuitively plausible lemma, which we will not prove.

Lemma 3.1.2 ([Ste51, Cor. 11.6, p. 53]). Let B be a contractible, paracompact Hausdorff space and E Ñ B

an F-bundle for some fiber F. Then E is isomorphic as an F-bundle to Bˆ F.

By the lemma, principal G-bundles over disks are trivial, so P|Xn`1 is the identification space of

P|Xn with some bundles Dn`1
α ˆG Ñ Dn`1

α , the identifications given by G-maps Sn
α ˆG ÝÑ P|Xn .

The task of constructing a G-map P ÝÑ EG can now be undertaken one cell at a time. To start,

P|X0 is a disjoint union of copies of G, and any homeomorphic map of these to fibers of EG Ñ BG

will work. Suppose inductively that a G-map P|Xn ÝÑ EG has been built, and we want to extend

this to the space P|Xn Y pDn`1ˆGq, where Dn`1ˆG is attached by a G-map Sn ˆG ÝÑ P|Xn . We

can do anything we want over the interior of Dn`1, and we know what must happen over P|Xn ,

so our only constraint is the composition of the preexisting G-map and the attaching map,

ψ : Sn ˆ G ÝÑ P|Xn ÝÑ EG.

Thus the task is really to extend an arbitrary G-map SnˆG ÝÑ EG over the interior of Dn`1ˆG:

Dn`1 ˆ G

&&
Sn ˆ G

ψ
//

?�

OO

EG.

But a G-map rψ : Dn`1ˆG ÝÑ EG is uniquely determined by its restriction to the standard section
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Dn`1 ˆ t1u since rψpx, gq “ rψpx, 1qg, so it is necessary and sufficient to extend the restriction

Sn ÝÑ EG to a map Dn`1 ÝÑ EG. If it is possible to do so, then restrictions of the latter map

to concentric spheres of decreasing radius form a nullhomotopy of the map Sn ÝÑ EG, so the

condition finally turns out to be that πnpEGq “ 0.

Proposition 3.1.3. A principal G-bundle EG ÝÑ BG is universal just if π˚pEGq “ 0.

Thus the collapse EG ÝÑ pt of the total space is a weak homotopy equivalence, and so if EG

is a CW complex, then it is actually contractible by Whitehead’s theorem B.2.7. Now seems as

good a time as any to derive a corollary we will use repeatedly later.

Corollary 3.1.4. If G is a path-connected group, then BG is simply-connected.

Proof. The long exact homotopy sequence Theorem B.2.4 of G Ñ EG Ñ BG contains subse-

quences

0 “ πn`1pEGq ÝÑ πn`1pBGq ÝÑ πnpGq ÝÑ πnpEGq “ 0,

yielding isomorphisms πn`1pBGq – πnpGq for all n, and in particular for n “ 0.

3.2. A construction of EG for G a compact Lie group

Example 3.2.1. Embedding Cn ãÝÝÑ Cn`1 as Cn ˆ t0u, the direct union is the countable direct sum

C8 “
À

NC, which can be seen as the subspace of the countable direct product
ś

NC such that

all but finitely many coordinates are 0. Within C8 lies the unit 8-sphere

S8 :“ t~z P C8 :
ÿ

z2
j “ 1u.
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Write C8ˆ :“ C8zt0u. The scalar multiplication of C on C8 restricts to a free action of Cˆ on C8ˆ

and of S1 on S8, with the same orbit space

CP8 :“ C8ˆ{Cˆ « S8{S1,

called infinite complex projective space. The fiber space S8 Ñ CP8 can be seen as the increasing

union of restrictions S2n´1 Ñ CPn´1, where we conceive S2n´1 as S8 XCn. Each CPn admits an

open cover by contractible affines, so these restrictions are all principal S1-bundles, and S8 Ñ

CP8 is as well.

We claim this bundle satisfies the requirements to be ES1 Ñ BS1. Because S8 is the union of

the unit spheres S2n´1 Ĺ Cn, by a compactness argument, any map Sm ÝÑ S8 must lie inside

some sufficiently large Sn, and πmSn “ 0 for m ă n. Thus S8 is weakly contractible. There is a

natural CW structure on S8 where two hemispheres Dn attach to each Sn´1 to form Sn, so we

know from Whitehead’s theorem S8 is contractible, but in fact, it is possible to see so directly as

well.

Proposition 3.2.2. The unit 8-sphere S8 is contractible.

Proof. There is a homotopy taking the subspace S1 :“ S8X
`

t0uˆC8
˘

« S8 with first coordinate

zero to the point e1 “ p1,~0q, given by

htp~zq :“ psin tqe1 ` pcos tq~z;

this is just a renormalization of the straight-line homotopy. Now it will be enough to find a

homotopy from S8 to S1. Write s : ~z ÞÝÑ p0,~zq for the shift homeomorphism. One’s first inclination



Chapter 3. Classifying spaces 27

is to take

ftp~zq “ p1´ tq~z` t ¨ sp~zq.

If we can show ftpS8q avoids~0 P C8, then the renormalization f̂t :“ ft{| ft| will suit our purposes.

Now note any ~z P C8 has a last nonzero coordinate zn, so the nth and pn ` 1qst coordinates

`

p1´ tqzn, tznq of ftp~zq will never simultaneously be zero, and the linear maps ft P EndCC8 are

injective. Thus f̂t is an isotopy.

Example 3.2.3. Replacing C with the quaternions H (respectively, the reals R) and S1 with Spp1q «

S3 (resp., Op1q « S0 – Z{2), one finds a universal Spp1q-bundle ESpp1q Ñ BSpp1q is

S3 ÝÑ S8 ÝÑ HP8

and a universal Op1q-bundle EOp1q Ñ BOp1q is

S0 ÝÑ S8 ÝÑ RP8.

Any closed subgroup K ď G acts freely on EG by a restriction of the G-action, so one has

a natural map EG ÝÑ EG{K with fiber K. It is intuitively plausible that this is also a fiber

bundle, and this is actually the case in the event G is a Lie group: by Theorem B.4.3, G ÝÝ� G{K

is a principal K-bundle, and the local trivializations φ : pEGq|U
«
ÝÑ U ˆ G of EG Ñ BG and

G|V
«
ÝÑ V ˆ K of G Ñ G{K combine to yield local trivializations φ´1pU ˆ G|Vq ÝÑ U ˆV ˆ K

making EG Ñ EG{K a principal K-bundle, so that EG can serve as EK and EG{K as BK.

To make use of this observation, we can use the classic result Theorem B.4.7, due to Peter

and Weyl, that every compact Lie group has a faithful finite-dimensional unitary representation.

Thus, if we can find EUpnq, we will have bundles EG Ñ BG for all compact Lie groups G. Here
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is one construction.

Example 3.2.4. The infinity-sphere S8 can be seen as the collection of orthonormal 1-frames in

C8 and CP8 as the space of 1-dimensional vector subspaces of C8. Analogously, one can form

the infinite complex Stiefel manifolds VnpC8q of orthonormal n-frames in C8, which is to say,

sequences pv1, . . . , vnq of n mutually orthogonal vectors of length one, topologized as a subspace

of
ś

n S8, and the infinite complex Grassmannian GnpC8q of n-planes in C8. Just as S8 projects

onto CP8, so does each VnpC8q project onto GnpC8q through the span map pv1, . . . , vnq ÞÝÑ

ř

Cvj. The unitary group Upnq acts freely on VnpC8q; if one considers an element of S8 as an

infinite vertical vector, or a 8ˆ 1 matrix, then an element of VnpC8q can be seen as an 8ˆ n

matrix, and right multiplication by an n ˆ n matrix in Upnq produces another 8ˆ n matrix

spanning the same column space, so that the fiber of the span map VnpC8q ÝÑ GnpC8q is

homeomorphic to Upnq. With a little work, it can be seen that Upnq Ñ VnpC8q Ñ GnpC8q is a

fiber bundle.

Moreover, an analogue of the contraction of S8 in Example 3.2.1 shows VnpC8q to be con-

tractible: the idea is to first conduct the isotopy f̂t of S8 consecutively n times, taking S8 into

t0un ˆ S8 and hence VnpC8q into Vn
`

t0un ˆC8
˘

, and then use a renormalized straight-line ho-

motopy generalizing ht to take Vn
`

t0un ˆ C8
˘

to the identity matrix In P Cnˆn Ĺ C8ˆn, rep-

resenting the standard basis of the subspace Cn ă C8. Write gt for the resulting homotopy

VnpC8q ˆ I ÝÑ C8ˆn. In the same way that our first guess for S8 failed to have image strictly

unit-length, this map gt, while it preserves linear independence, does not preserve orthogonal-

ity. But if we postcompose to gt the Gram–Schmidt orthonormalization procedure, which is a

well-defined projection

tn-tuples of linearly independent vectors in C8u ÝÑ VnpC8q,
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we achieve the desired homotopy.

One analogously finds that VnpR8q Ñ GnpR8q and VnpH8q Ñ GnpH8q respectively satisfy

the hypotheses for EOpnq Ñ BOpnq and ESppnq Ñ BSppnq. The double cover VnpR8q{SOpnq “:

rGnpR8q of GnpR8q, the oriented Grassmannian consisting of all oriented n-planes in R8, is a

BSOpnq.

3.3. Milnor’s functorial construction of EG

These constructions, though pleasing, are ad hoc. In 1955, John Milnor [Mil56] found a functorial

construction of EG Ñ BG that works for any topological group G, not even assumed Hausdorff,

which we will briefly summarize.

To lay the groundwork, the join X ˚Y of two topological spaces X and Y is the quotient of the

product X ˆ Y ˆ I with an interval by identifications px, y, 0q „ px, y1, 0q and px, y, 1q „ px1, y, 1q

for all x, x1 P X and all y, y1 P Y. We may think of this as an pX ˆYq-bundle over I that has been

collapsed to X over 0 and to Y over 1, and consider X and Y to be included as these particular

end-subspaces.

Figure 3.3.1: Some low-dimensional joins

II * S
0

S
0

* S
0

S
1

*

Examples 3.3.2. The join I ˚ I of two intervals is a 3-simplex ∆3, the join S0 ˚ S0 is a circle S1, and

the join S1 ˚ S0 is a 2-sphere S2.

It is not hard to see that generally X ˚ pt is the cone CX on X and, as in the examples

above, X ˚ S0 is the suspension SX of X, so the process of iteratively joining points generates the
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simplices ∆n and that of iteratively joining copies of S0 yields spheres Sn.

In particular, the join S1 ˚ S1 is S3, which can also be seen more geometrically. If one views S3

as the unit sphere in C2, it is “foliated” by

Tr :“
 

pz cos r, w sin rq : z, w P S1(,

for r P r0, π{2s, which are tori S1 ˆ S1 for r P p0, π{2q and circles for r P t0, π{2u: the S1 factor

corresponding to the w-coordinate collapses at r “ 0 and the S1 corresponding to the z-coordinate

collapses at r “ π{2. Further foliating the toral Tr into circles with constant ratio z{w P S1 yields

the Hopf fibration S1 Ñ S3 Ñ S2.

The key feature of joins is that they are more connected than their factor spaces, as one already

sees in the sphere examples above.

Lemma 3.3.3. Let X, Y ‰ ∅ be nonempty spaces. Then the join X ˚Y is path-connected.

Proof. Fix a basepoint x0 “ rx0, y, 0s P X Ĺ X ˚ Y. From a given rx, y, ts P X ˚ Y, we may trace a

path to y P Y simply by increasing t to 1, then follow the path t ÞÑ
“

x0, y, p1´ tq
‰

back to x0.

Lemma 3.3.4. Let X be a path-connected space and Y nonempty. Then the join X ˚Y is simply-connected.

Proof. The projection t : XˆYˆ I ÝÝ� I induces a projection X ˚Y ÝÝ� I we also call t. The subset

V :“ t´1r0, 1q deformation retracts onto X by uniformly decreasing t to 0, and X in turn contracts,

within X ˚Y, to any fixed y0 P Y via ftpxq “ rx, y0, ts, so V is contractible in X ˚Y.

To show a loop γ in X ˚ Y is nullhomotopic, it therefore suffices to homotope it into V. We

could always do so if X ˚Y deformation retracted into V, but it does not. The partial quotient

A :“ XˆYˆ ILpx, y, 0q „ px, y1, 0q,
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where the X factor over t “ 1 is not quotiented out, does however deformation retract into

rV “ t´1r0, 1q Ĺ A, so if γ can be lifted to A, it can be homotoped into V.

Figure 3.3.5: Nullhomotoping a curve γ in X ˚Y to lift into A

YX*

Ñ
paq

A

Ñ
pbq

A

Ñ
pcq

A

Such an attempt to lift a γ to A is represented by arrow paq in Figure 3.3.5. If we write γ in

terms of the coordinates x, y, t, then t ˝ γ is everywhere defined, but x ˝ γ is indeterminate when

t ˝ γ “ 1 and y ˝ γ when t ˝ γ “ 0. Lifting to γ to A amounts precisely to continuously extending

x ˝ γ to the whole domain S1. This may initially be impossible: because the X-coordinate is

collapsed at t “ 1, it may be that γ is continuous at a point z P pt ˝ γq´1t1u even though the left

and right limits px ˝ γqpz ` 0q and px ˝ γqpz ´ 0q are not equal. But we can homotope γ into a

curve that does lift into A, as follows, and then we will be done.

Let us : I ÝÑ I be a nondecreasing homotopy fixing t0, 1u and such that u1r1{2, 1s “ t1u.1

Then hs : px, y, tq ÞÝÑ
`

x, y, usptq
˘

is a homotopy of X ˚Y collapsing t´1r1{2, 1s onto Y, so that γ is

homotoped to a loop γ1 with t ˝ γ1 “ 1 on the set C “ tz P S1 : pt ˝ γqpzq ě 1{2u. This transition is

represented, in A, by the arrow pbq in Figure 3.3.5.

Thus x ˝γ1 is a continuous function on S1zC, and we need to extend it to a continuous function

x1 : S1 ÝÑ X. We should plainly take x1 “ x ˝ γ on BC “ tz P S1 : pt ˝ γqpzq “ 1{2u, so it remains to

define x1 on the open set CzBC Ĺ S1, which is a union of open intervals pz0, z1q. But to extend x1

over pz0, z1q is to find a path in X connecting x1pz0q and x1pz1q, which we may always do because

X is path-connected. This extension is represented by arrow pcq in Figure 3.3.5.

1 Explicitly, we can let us : I ÝÑ I be the straight-line homotopy between the identity map u0 and the map
u1ptq “ mint1, 2tu.
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Definition 3.3.6. A nonempty space X is p´1q-connected, and, for each n P N, is n-connected if

πjpXq “ 0 for all j ď n.

Lemma 3.3.7. If X is m-connected and Y is n-connected, then X ˚Y is pm` n` 2q-connected.

Proof. The previous lemmas prove the cases pm, nq P
 

p´1,´1q, p0,´1q
(

; now assume n ě 0.

Applying the Mayer–Vietoris sequence in singular homology to the expected cover tU, Vu, where

U “ t´1r0, 2{3q » X and V “ t´1p1{3, 1s » Y and U XV “ t´1p1{3, 2{3q » X ˆY, one recovers exact

fragments

HN`1pXq ‘ HN`1pYq ÝÑ HN`1pX ˚Yq ÝÑ HNpXˆYq.

The first map is induced by the inclusions X, Y ÝÑ X ˚Y, both of which are nullhomotopic since

X and Y are nonempty, so HN`1pX ˚Yq injects into HNpXˆYq.

Recall that the Künneth theorem in homology Theorem B.2.2 yields a group isomorphism

HNpXˆYq –
à

0ďjďN

`

HjpXq b HN´jpYq
˘

‘
à

0ďjďN
TorZ1

`

HjpXq, HN´j´1pYq
˘

.

These terms can be nonzero only if j ě m`1 and N´ j ě n`1, so adding inequalities, HNpXˆYq

can be nonzero if and only if N ě m` n` 2. Equivalently, HNpXˆYq “ 0 for N ď m` n` 1.

It follows that HjpX ˚Yq “ 0 for j ď m` n` 2. Since π1pXq “ 0 by the previous lemma, X ˚Y

is pm` n` 2q-connected by the Hurewicz Theorem B.2.6.

It follows by induction that the n-fold iterated join ˚n X is pn´ 1q-connected. Including ˚n X

as the first factor of ˚n`1 X “ p˚n Xq ˚ X, we can form the direct limit

EX :“ lim
ÝÑ

n

˚ X.

Because for all n we have EX « p˚n`1 Xq ˚ EX, it follows that every πnpEXq “ 0. Note that the E
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construction is functorial: a continuous map ψ : X ÝÑ Y induces a continuous map Eψ : EX ÝÑ

EY taking r~xj,~ts ÞÝÑ
“ÝÝÝÑ
ψpxjq,~tj

‰

.

Now let G be a topological group. To construct a G-action on EG, we first provide a different

description of it. For any topological space X, write CX for the cone on X, the quotient of the

product X ˆ I obtained by pinching X ˆ t0u to a point. Then X ˚Y can be seen as the subspace

of CXˆ CY consisting of elements rx, t1, y, t2s such that t1 ` t2 “ 1 and X as the subspace where

t2 “ 0. Similarly, the triple join X ˚ Y ˚ Z can be seen as
 

rx, t1, y, t2, z, t3s P CX ˆ CY ˆ CZ :

t1 ` t2 ` t3 “ 1
(

, and X ˚Y as the subspace where t3 “ 0, and the infinite join EG can be seen as

!

`

rgj, tjs
˘

jPN P
ź

N
CG : only finitely many tj ‰ 0 and

ÿ

tj “ 1
)

.

Write these elements briefly as e “ r~gj,~ts. With this topology, each coordinate function tj : EG ÝÑ

r0, 1s and restriction t´1
j p0, 1s ÝÑ G of a “coordinate” gj is continuous. Then a free, continuous

right action of G on EG is given by

r~gj,~ts ¨ g :“ rÝÑgjg,~ts.

Set BG :“ EG{G, with the quotient topology.

We still must show EG Ñ BG is a fiber bundle. Much like projective space, EG admits an

open cover by sets Uj “ t´1
j p0, 1s. On Uj, the gj-coordinate is well-defined and continuous, so

φj “ pp, gjq : Uj ÝÑ ppUjq ˆ G

is a continuous bijection. Its inverse φ´1
j is also continuous since it is given by

`

ppeq, g
˘

ÞÝÑ

eg´1
j g. Where defined, φi ˝ φ´1

j is given by
`

ppeq, g
˘

ÞÝÑ φipeg´1
j gq “

`

ppeq, gig´1
j gq. The transition
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function g ÞÝÑ gig´1
j g is clearly continuous on Ui XUj, so EG Ñ BG is a principal G-bundle.

The classifying space construction B is also functorial, because if ψ : G ÝÑ H is a continuous

homomorphism, Eψ is fiber-preserving—

Eψ
`

r~gj,~ts ¨ g
˘

“ EψrÝÑgjg,~ts “
“ÝÝÝÝÑ
ψpgjgq,~t

‰

“
“ÝÝÝÑ
ψpgjq,~t

‰

¨ ψpgq “ Eψ
`

r~gj,~ts
˘

¨ ψpgq

—so that Eψ descends to a well-defined continuous map Bψ : BG ÝÑ BH.

Remark 3.3.8. The most technically demanding part of this proof, Lemma 3.3.4, can be circum-

vented if one does not care about a hard bound on the number of joins required to achieve

n-connectedness: if X is path-connected, then the middle part t´1p0, 1q in X ˚ X is also path-

connected, so the Seifert–van Kampen theorem applies, which is a much easier proof. We hope

our proof of this lemma is fairly readily apprehended; the Milnor original (pp. 431–432) is es-

sentially the explicit statement of a homotopy coupled with a remark that the formula is easily

verified to be well defined and to provide the needed contraction.

Historical remarks 3.3.9. The notation for EG and BG descends from a proud historical precedent.

The way to denote a bundle F Ñ E π
Ñ B equipped with a local trivialization with transition

functions taking values in G ď HomeopFq, as late as the 1960s [Ste51; BH58; BH59; BH60], was a

quintuple pE, B, F, p, Gq, with the last two entries often omitted. This arrowless notation requires

one to always remember which object lives in which position, but does have the benefit that if a

bundle is named ξ, it has canonically associated with it an entourage of ready-named objects

pEξ , Bξ , Fξ , πξ , Gξq “ ξ.

The standard name for the universal principal G-bundle under this convention is, naturally
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enough,

pEG, BG, G, πG, Gq.

In subsequent decades, perhaps as the functorial nature of E : G ÞÑ EG and B : G ÞÑ BG is

embraced, one can see the subscripts of EG and BG gradually move up until one has the EG ÝÑ

BG of modern day.



Chapter 4

Cohomology theories

It would be an understatement to say singular cohomology has proven useful in topology. Given

that all symmetry arises as the manifestation of group actions, it would seem fruitful to determine

if a similar, equivariant theory might be constructed that takes as input not topological spaces, but

continuous group actions. Such constructions have been undertaken. In this chapter, we expound

characteristics of singular cohomology we would like equivariant cohomology to share, and then

construct a candidate theory.

4.1. Desiderata

Ordinary cohomology is a functor H˚ : Top ÝÑ k-CGA whose underlying functor to graded

k-vector spaces decomposes as a product
ś

Hn of functors Hn : Top ÝÑ k-Mod satisfying the

Eilenberg–Steenrod axioms:

• H˚pptq “ H0pptq – k.

• Homotopic maps f , g : pX, Aq ÝÑ pY, Bq induce equal ring homomorphisms H˚ f “ H˚g.

• If pX, Aq P Top and A is a deformation retract of some neighborhood of itself in X, then the

map H˚pX{A, A{Aq ÝÑ H˚pX, Aq induced by the quotient map pX, Aq ÝÑ pX{A, A{Aq “

36
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pX{A, ptq is an isomorphism.

• There is a natural transformation δ : H˚pX, Aq ÝÑ H˚`1pAq between the graded k-Mod-

valued functors pX, Aq ÞÑ H˚pX, Aq and pX, Aq ÞÑ H˚pAq, fitting into the exact triangle

H˚A // H˚X

��
H˚pX, Aq,

δ

[[

where the other maps are the ring maps induced by the inclusions pA,∅q ãÑ pX,∅q ãÑ

pX, Aq.

• Given a collection pXα, Aαq of pairs and pX, Aq their disjoint union, the inclusions pXα, Aαq ãÝÝÑ

pX, Aq induce an isomorphism

H˚pX, Aq „
ÝÑ

ź

α

H˚pXα, Aαq.

A functor satisfying these axioms is called an ordinary multiplicative cohomology theory;

the word multiplicative is here because we ask the functor take values in graded rings rather than

just graded groups Any space X admits a unique map X ÝÑ pt, and any nonempty space X

retracts onto a point x P X, meaning pt Ñ txu ãÑ X Ñ pt is the identity. Such a retraction induces

algebra maps k “ H0pptq Ñ H˚X Ñ k such that the composition k Ñ k is the identity, so that the

maps k Ñ H˚X are injections. Because the map X Ñ pt is unique, given any map X Ñ Y, the

canonical map k Ñ H˚X is the composition k Ñ H˚Y Ñ H˚X, so this map k Ñ H˚ is a bit of

extra structure to cohomology; for this reason, we call k the coefficient ring.

It can be shown that all cohomology theories agree on CW-complexes. Since any topologi-

cal space admits a CW approximation with the same weak homotopy type and weak homotopy
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equivalences induce isomorphisms in cohomology (Theorem B.2.8), these axioms determine or-

dinary cohomology so far as homotopy theory cares.

A G-equivariant cohomology theory E˚ with coefficients in a commutative ring k is defined

analogously, except the “ordinary” demand E˚pptq “ E0pptq “ k is relaxed and the source cate-

gory is taken to be G-Top.

Explicitly, we want a functor E˚ : G-Top ÝÑ E˚-CGA satisfying the following axioms:

• G-homotopic maps f , g : pX, Aq ÝÑ pY, Bq induce equal ring homomorphisms E˚ f “ E˚g.

• If pX, Aq P G-Top and A is a G-equivariant deformation retract of some neighborhood

of itself in X, then the map E˚pX{A, A{Aq ÝÑ E˚pX, Aq induced by the quotient map

pX, Aq ÝÑ pX{A, A{Aq “ pX{A, ptq is an isomorphism.

• There is a natural transformation δ : E˚pX, Aq ÝÑ E˚`1pAq between the functors pX, Aq ÞÑ

E˚pX, Aq and pX, Aq ÞÑ E˚pAq from G-Top ÝÑ gr-k-Mod, fitting into the exact triangle

E˚A // E˚X

��
E˚pX, Aq.

δ

ZZ

• Given a collection pXα, Aαq of pairs and pX, Aq their disjoint union, the inclusions pXα, Aαq ãÝÝÑ

pX, Aq induce an isomorphism

E˚pX, Aq „
ÝÑ

ź

α

E˚pXα, Aαq.
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4.2. Candidate theories

In this section, we moot some possible equivariant cohomology theories to study before settling

on Borel equivariant cohomology for the remainder of the work.

4.2.1. The cohomology of the naive quotient

Regular cohomology already does most of what we want, so a first idea might be to precompose

it with the orbit functor ´{G, yielding

E˚ : G-Top ÝÑ k-CGA,

X ÞÝÑ H˚pX{Gq.

This E˚ is a G-equivariant cohomology theory essentially because H˚ is a cohomology theory;

the satisfaction of the axioms is immediately inherited from H˚ and the fact that the maps in the

source category are G-equivariant. In addition, one has E˚pptq “ H˚ppt{Gq “ H˚pptq “ k, so this

is an ordinary G-equivariant cohomology theory.

Unfortunately, this E˚ discards much useful information. For one thing, any nonempty G-

orbit has trivial G-equivariant cohomology under this theory. For another arguable failing, in

the standard example of G “ S1 acting on X “ S2 by rotation about a fixed axis, one has

X{G “ S2{S1 « r´1, 1s » pt, so that E˚pS2q “ k. While it is informative that this action has trivial

E˚-cohomology, one cannot help but feel some information has been lost in translation.

4.2.2. Bredon cohomology

A more homotopy-theoretically informative theory can be derived as follows.

To motivate the construction, suppose first that we are given a G-equivariant cohomology
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E˚. As a G-action decomposes set-wise as a union of orbits Gx « G{ StabGpxq, a first step to

understanding E˚ might be to understand where it takes the translation actions G ñ G{K for

closed K ď G, or in other words, its restriction to the orbit category G-Orbit. This restriction is a

contravariant functor G-Orbit ÝÑ k-CGA or, alternately, a covariant functor

M : SubpGq ÝÑ k-CGA

from the category of closed subgroups of G. Call such a functor a system of coefficients. If X is

a G–CW complex, so decomposed into G-cells Dn ˆ pG{Kq with trivial G-action on Dn, which

in turn equivariantly deformation retract to G{K, this system of coefficients should in principle

completely determine E˚. In fact, the equivariant Mayer–Vietoris sequence, a consequence of the

axioms for a G-equivariant cohomology theory, implies have the following theorem.

Proposition 4.2.1 ([AP93, Thm. 1.1.3, p. 8]). Let G be a compact Lie group and let E˚ and 1E˚ be

G-equivariant cohomology theories in the sense of Section 4.1, and suppose there exists a natural transfor-

mation η : E˚ ÝÑ 1E˚ which is an isomorphism when restricted to the orbit category G-Orbit. Then η is a

natural isomorphism.

The idea of Bredon cohomology is to start with a system of coefficients M concentrated in

degree 0 and from it produce a (unique) ordinary G-equivariant cohomology theory, “ordinary”

in the sense that E˚pG{Kq “ E0pG{Kq “ MpG{Kq for K P SubpGq, and unique in the sense of

the theorem above. The word “ordinary” is chosen because this is an equivariant version of the

dimension axiom: the orbits G{K are the equivariant version of points.

Recall from Section 2.2 that the maps of SubpGq are the inclusions and the G-conjugacies,

corresponding in the dual orbit category G-Orbit to equivariant quotient maps and to equivariant

homeomorphisms G{gKg´1 ÝÑ G{K given by xgKg´1 ÞÝÑ xgK, so that besides the groups
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MpG{Kq, the functor M carries the data of maps MpG{Kq ÝÑ MpG{Hq for G ě H ě K and maps

MpG{Kq ÝÑ MpG{gKg´1q which maps we will call, with acceptable ambiguity, Mpcgq.

Recall that a G–CW complex X is composed of G-cells enˆpG{Kqwhich are themselves unions

of cells en, the collection of which is called CellnpXq. If σ P CellnpXq, say σ “ enˆ gK Ĺ enˆpG{Kq,

then the isotropy subgroup K “ Stab x is constant across points x P σ, and we can call this group

Stab σ. We define the G-equivariant cellular cochain group with coefficients in M to be

Cn
GpX; Mq :“

!

ϕ : CellnpXq ÝÑ
ž

KPSubpGq

MpG{Kq
ˇ

ˇ

ˇ
ϕpσq P MpG{ Stab σq, ϕpgσq “ Mpcgqϕpσq

)

,

functions taking each n-cell to the coefficient group corresponding to the common orbit type of

its points, and equivariant with respect to the defining action of G on CellpXq and the conjuga-

tion action of G on M. The definition makes sense because Stab gσ “ gpStab σqg´1. The relative

equivariant chains Cn
GpX, A; Mq are the subgroup vanishing on CellnpAq.

It follows from the definition that such a cochain ϕ is determined uniquely by its value at

one σ in each orbit Gσ, and in particular if there is one orbit Ge0 « G{K, one gets C0
GpG{K; Mq –

MpG{Kq as hoped. The differential is defined in tight analogy with the definition of the nonequiv-

ariant cellular coboundary map, but we will stop without getting any more explicit, satisfied that

with more work these groups yield an ordinary G-equivariant cohomology theory Hn
GpX, A; Mq.

Historical remarks 4.2.2. This construction is due to Bredon in the event that G is discrete. The

general definition for compact groups is apparently due to Matumoto [Mat73]. Bredon cohomol-

ogy is the equivariant cohomology theory most commonly used in equivariant homotopy theory.

Definitions nowadays tend to involve equivariant spectra and more homotopy-theoretic technol-

ogy than we use here, and replace the spheres Sn
α in our definition Definition 2.3.4 of G–CW

complexes by representation-spheres, one-point compactifications of vector spaces carrying repre-
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sentations of G. The author knows very little about this subject and dares not explore it further

here, but given that it is the main flavor of cohomology in modern equivariant homotopy theory,

it seemed it should at least be mentioned.

4.2.3. Borel equivariant cohomology

Having surveyed equivariant cohomology theories we are not interested in at present, for various

reasons, we settle on the variant we will care about.

Recall from Chapter 3 that given any topological group G, there exists a principal G-bundle

G Ñ EG Ñ BG such that EG is contractible, called a universal principal G-bundle. Given a left

G-space X, the product space EG ˆ X, equipped with the diagonal action, is another G-space

homotopy equivalent to X, but the new action is free since

pe, xq “ g ¨ pe, xq “ peg´1, gxq ùñ e “ eg´1

and the action G ñ EG is free. Call X ÞÝÑ EG ˆ X the freeing functor; we can view it as a

projection G-Top ÝÑ G-Free. Now we can consider the orbit space of this new, free action. The

mixing diagram (Section 2.1) for EG and X is

EG

��

EGˆ Xoo //

��

X

��
BG EGˆ

G
Xoo // X{G.

The new space on the bottom,

XG :“ EGˆ
G

X “
EGˆ X

N

peg, xq „ pe, gxq,
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is called the homotopy quotient of X by G or the Borel construction [BBF+60, Def. IV.3.1, p. 52].

This space can be viewed as a sort of completion of X{G, and its ordinary cohomology will be,

at least nominally, the subject of most of our researches. Note

ptG “ EGˆ
G

pt « EG{G “ BG.

Definition 4.2.3. (Borel [BBF+60, IV.3.3, p. 53]) The singular cohomology H˚pXG; kq of the homo-

topy quotient XG is the (Borel) equivariant cohomology H˚
GpX; kq of the action of G on X. The

diagonal G-orbit of px, eq P X ˆ EG is denoted rx, esG. The equivariant cohomology of a point is

H˚
G :“ H˚

Gpptq “ H˚pBGq.

As suggested by the fact that the freeing functor can be seen as a projection, the homotopy

quotient construction does not differ essentially from the regular quotient construction if the

original action was free.

Proposition 4.2.4. Let G act freely on a CW complex M. Then the homotopy quotient MG is homotopy

equvalent to the orbit space M{G.

Proof. The map ρ : re, xs ÞÑ Gx from MG Ñ M{G has fiber EG{ Stabpxq in general. If G acts freely

on M, then all fibers are EG. Since EG is contractible, the long exact homotopy sequence of the

bundle EG Ñ MG Ñ M{G shows ρ is a weak homotopy equivalence. By Whitehead’s theorem, ρ

is a homotopy equivalence.

As pointed out in (B.1), given a G-space X, the mixing construction yields an X-bundle X Ñ
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XG Ñ BG associated to the principal G-bundle G Ñ EG Ñ BG. Explicitly, the projection is

XG ÝÑ BG,

re, xsG ÞÝÑ eG.

Definition 4.2.5. The bundle X Ñ XG Ñ BG described above is the Borel fibration of the action

of G on X.

4.3. The Atiyah–Hirzebruch–Leray–Serre spectral sequence

Now that we have discussed fiber bundles and cohomology theories, we discuss the behavior of

cohomology theories, including equivariant cohomology, on bundles.

Notation 4.3.1. Where possible, we write the total space of a fiber bundle as E, but in situations

when we also have a cohomology theory E˚ and a spectral sequence pE‚,‚
r q to deal with, we

regretfully name the total space X.

Given a fiber bundle F Ñ X π
Ñ B with B a CW complex, let Bp be the p-skeleton of B. Then

pBpq is an increasing topological filtration of B and pXpq :“ pπ´1Bpq an increasing topological

filtration of X. Define Xp “ Bp “ ∅ for p ă 0. Suppose we are also given a multiplicative

cohomology theory E˚. Then associated to each pair pX, Xpq is a long exact sequence E˚X Ñ

E˚Xp Ñ E˚pX, Xpq. Because Xp Ď Xp`1, each map E˚X ÝÑ E˚Xp factors through E˚Xp`1, so the

topological filtration pXpq leads to a decreasing algebraic filtration

FpE˚X “ kerpE˚X ÝÑ E˚Xp´1q

of E˚X. The shift in indices is so that F0E˚X is all of E˚X. Assume for convenience that π1B
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acts trivially on E˚pFq. Then turning the crank of the associated filtration spectral sequence of

Corollary A.5.3, one arrives at the following.

Theorem 4.3.2 (Atiyah–Hirzebruch–Leray–Serre [AH61, Rmk. 2.2]). Let F Ñ X Ñ B be a fiber

bundle and E˚ a multiplicative cohomology theory such that π1B acts trivially on E˚pFq. There exists a

right half-plane spectral sequence pEr, drq with

Ep,q
2 “ Hp`B; EqpFq

˘

,

Ep,q
8 “ grp Ep`qpXq.

This is a simultaneous generalization of the following spectral sequences.

Theorem 4.3.3 (Atiyah–Hirzebruch [AH61, Thm. 2.1]). Let E˚ be a multiplicative cohomology theory

and X a topological space. There exists a right half-plane spectral sequence pEr, drq with

Ep,q
2 “ Hp`X; Eqpptq

˘

,

Ep,q
8 “ grp Ep`qpXq.

Proof. Take F “ pt and X “ B in Theorem 4.3.2.

Theorem 4.3.4 (Serre [McC01, Theorem 5.2, p. 135]). Let F Ñ E Ñ B be a fibration such that π1B

acts trivially on H˚pFq. There exists a first-quadrant spectral sequence pEr, drq with

Ep,q
2 “ Hp`B; HqpFq

˘

,

Ep,q
8 “ grp Hp`qpEq.

If H˚pFq is a free k-module (for example, if k is a field), we may also write E2 – H˚pBq b H˚pFq. Further,
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this construction is functorial in that a map of bundles induces a map of spectral sequences.

Proof. Take E˚ “ H˚ (and write E for X) in Theorem 4.3.2 and apply Theorem B.2.1.

Definition 4.3.5. The spectral sequence of Theorem 4.3.4 is the Serre spectral sequence.

Critically, this formulation applies to principal bundles.

Proposition 4.3.6. If G Ñ E Ñ B is a principal G-bundle, then π1B acts trivially on H˚pGq.

Proof. Because the transition functions are given by right multiplication by elements of G, and

this action of G on H˚pGq is trivial since G is path-connected, it follows the action of π1B on

H˚pGq is trivial.

It is important to us to be able to identify the maps in cohomology induced by fiber inclusion

and projection to the base.

Proposition 4.3.7. Let F i
Ñ E π

Ñ B be a fibration such that π1B acts trivially on H˚pFq. The fiber pro-

jection i˚ : H˚pEq ÝÑ H˚pFq is realized by the left-column map E‚,‚
8 � E0,‚

8 ãÑ E0,‚
2 in Theorem 4.3.4: to

wit, we can write

gr
‚

H˚pEq „
ÝÑ E‚,‚

8 ÝÝ� E0,‚
8 ãÝÝÑ E0,‚

2
„
ÝÑ H˚pFq.

Likewise, the base lift π˚ : H˚pBq ÝÑ H˚pEq is realized by the bottom-row map E‚,0
2 � E‚,0

8 ãÑ E‚,‚
8 :

H˚pBq „
ÝÑ E‚,0

2 ÝÝ� E‚,0
8 ãÝÝÑ E‚,‚

8

„
ÝÑ gr

‚
H˚pEq.
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Proof [McC01, p. 147]. We have a commutative square

F F

��

// pt

��
F

��

i // E

��

π // B

pt // B B

where each column (and row) is a fibration, with the original fibration in the middle column, and

the maps between columns are fiber-preserving. These maps induce maps of spectral sequences,

which we can denote as

FEr ÐÝ Er ÐÝ
BEr.

The middle spectral sequence is the Serre spectral sequence of the original fibration, while FEr

is that of F Ñ F Ñ pt, which collapses at FE2 “ H˚
`

pt; H˚pFq
˘

“ H˚pFq, and FEr is that of

pt Ñ B Ñ B, which also collapses instantly, at BE2 “ H˚
`

B; H˚pptq
˘

“ H˚pBq. On E2 pages,

the induced maps are E2pi˚q : E2 ÝÑ
FE2, which is the left-column projection H˚

`

B; H˚pFq
˘

ÝÑ

H0
`

B; H˚pFq
˘

– H˚pFq, and E2pπ
˚q : BE2 ÝÑ E2, which is the bottom-row inclusion H˚pBq ÝÑ

H˚
`

B; H0pFq
˘

, the maps we would like to descend to the maps i˚ “ gr
‚

i˚ and π˚ “ gr
‚

π˚ on

E8 pages. The maps between E8 pages are

H˚pFq

FE2

„

OO

gr
‚

H˚pEq
gr‚ i˚
oo BE2

gr‚ i˚
oo

H˚pBq,

„

OO

by the fact that the isomorphism of final page E8 with gr
‚

H˚pEq is natural. But that shows that

these maps descend from the E2 column and row maps as claimed.
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Remark 4.3.8. In the event the fibration F Ñ E π
Ñ B is in fact a fiber bundle, as it will be in all

cases that actually concern us, the Serre spectral sequence is isomorphic from E2 on to the Leray

spectral sequence of the map π, which we will introduce in Appendix D.2 to complete our account

of Borel’s original 1953 proof of Theorem 8.1.12.

We have stated Serre’s theorem for singular simplicial cohomology, but he initially stated it

for singular cubical homology and cohomology, and it goes through essentially unchanged for

Alexander–Spanier cohomology, Čech cohomology, or cohomology with APL-cochains as we will

use in Theorem 8.1.3.

Corollary 4.3.9. Let F Ñ E Ñ B be a fibration such that the action of π1B on H˚pFq is trivial and

H˚pFq is a free k-module. Then the fiber inclusion F ãÝÝÑ E is surjective in cohomology if and only if the

spectral sequence of the bundle collapses at E2.

Proof. Recall from the last remark that the fiber projection H˚pEq ÝÑ H˚pFq can be realized as

E8 � E0,‚
8 ãÑ E0,‚

2 . This map is surjective if and only if E0,‚
8 “ E0,‚

2 , which in turn means that

E0,‚
2 “ E2 X ker d2 “ E3 X ker d3 and so on: all differentials vanish on the left column H˚pFq.

But all differentials from the left column vanish if and only if the sequence collapses at E2. The

“if” implication is clear. For the “only if,” note that by our assumptions, E2 – H˚pBq bk H˚pFq,

and d2 vanishes on H˚pBq by lacunary considerations, so since d2 is an antiderivation, d2 “ 0.

But this means E3 – H˚pBq b H˚pFq, and since d3 vanishes on H˚pFq “ E0,‚
3 and H˚pBq, one has

d3 “ 0. By induction, E8 – E2.

Corollary 4.3.10. Let F Ñ E Ñ B be a fibration such that the action of π1B on H˚pFq is trivial and

H˚pFq is a free k-module. Suppose further that F and B are of finite type. Then the Poincaré polynomials

satisfy

ppEq ď ppBqppFq,
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(in the sense that each coefficient of ppBqppFq ´ ppEq is nonnegative) with equality if and only if the fiber

inclusion F ãÝÝÑ E is surjective in cohomology.

Proof. We have E2 “ H˚pBq b H˚pFq in the Serre spectral sequence of F Ñ E Ñ B, so ppE2q “

ppBqppFq. The rank of each Ep,q
r , and hence the Poincaré polynomial, can only decrease by E8,

and it can only fail to decrease if E2 – E8; that is the case if and only if H˚pEq ÝÝ� H˚pFq, by

Corollary 4.3.9.

Corollary 4.3.11. Let F Ñ E Ñ B be a fibration such that the action of π1B on H˚pFq is trivial and

H˚pBq and H˚pFq are both concentrated in even degrees. Then the spectral sequence collapses at E2.

Proof. If H˚pBq and H˚pFq are both concentrated in even degrees, then so is the tensor product

E2 “ H˚pBq b H˚pFq concentrated in even total degree. Since the differentials dr increase total

degree by 1, mapping from even diagonals to odd and vice versa, they must all be trivial, so the

sequence collapses at E2.

The Serre spectral sequence allows a vast generalization of the covering result Proposi-

tion B.3.5.

Proposition 4.3.12. Let F Ñ E Ñ B be a fiber bundle such that the action of π1B on H˚pFq is trivial

and h‚pBq and h‚pFq are finite. Then the Euler characteristics of these spaces satisfy χpEq “ χpFqχpBq.

Proof. Consider E2 “ H˚pBq b H˚pFq as a single complex with degpHpBb HqFq “ p` q. With

this grading, χpE2q “ χpBq ¨ χpFq. By repeated application of Proposition A.2.1, one finds

χpE2q “ χpE3q “ ¨ ¨ ¨ “ χpE8q “ χpEq.

Finally, the construction that we undertook with G–CW complexes makes available a spectral
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sequence due to Matumoto that expresses equivariant cohomology in terms of singular cohomol-

ogy.

Theorem 4.3.13 (Equivariant Atiyah–Hirzebruch [Mat73]). Let G be a compact Lie group and E˚ a

G-equivariant cohomology theory with values in k-CGA, and pX, Aq a G–CW pair. Then there exists a

spectral sequence of k-CGAs, functorial in pX, Aq, such that

• Ep,q
1 – Ep`qpXp, Xp´1 Y Aq,

• E‚,q
2 – H˚

GpX, A; Eqq, the Bredon cohomology with M “ Eq coefficients, as discussed in Sec-

tion 4.2.2,

• Ep,q
8 “ grp Ep`qpX, Aq.

Remarks 4.3.14. (a) Although we will also have occasion to invoke the spectral sequence of a

filtered DGA again in Section 8.1.1, from here on out, “spectral sequence” simpliciter will connote

the cohomological Serre spectral sequence of a bundle. This construct will be deployed with

sufficient frequency that we allow ourselves also to abbreviate it SSS.

(b) These spectral sequences apply more generally in the instance that π1B fails to act trivially

on E˚pFq, with the concession that the coefficients E˚pFq must instead be taken to be a sheaf of

groups or, at the most concrete, viewed as a krπ1Bs-module.

4.3.1. The transgression in the Serre spectral sequence

We will make extensive use of the transgression in the Serre spectral sequence of a bundle in

what follows. On the E2 level, an edge homomorphism dr takes (a submodule of) Hr´1pFq to (a

quotient of) HrpBq, but it seems worth stating more explicitly what this means on the cochain

level, so we put forth here two slightly more topologically explicit descriptions.
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Proposition 4.3.15. Let F i
Ñ E π

Ñ B be a fiber bundle such that the action of π1B on H˚pFq is trivial.

An element rzs P Hq´1pFq (Definition A.5.12) transgresses to the image of rbs P HqpBq in Eq,0
q if and only

if there exists c P Cq´1pEq in the singular cochain group such that i˚c “ z and δc “ π˚b. This is the

picture:

Cq´1pEq
δ

��

i˚ // Zq´1pFq

τ

tt

c_

��

� // z0

xxZqpBq
π˚
// ZqpEq, b � // δc.

Sketch of proof. Recall that the Serre spectral sequence is the filtration spectral sequence associated

to the filtration of the simplicial cochain algebra C˚pEq given by

FpC˚pEq “ ker
`

C˚pEq ÝÑ C˚pπ´1Bp´1q
˘

,

the kernels of the restriction maps to the subbundles π´1Bp of E lying over the p-skeleta Bp of the

base space B. The elements of the complement FpH˚pEqzFp´1H˚pEq, then, are classes represented

by cocycles which vanish over the p-skeleton of B but not over its p-cells. Morally, these classes

are carried by the portion of E lying over the p-cells of B. Elements of F0H˚pEq are thus already

carried by π´1B0 « B0 ˆ F, and arise from H˚pFq, while elements in FpCppEqzFp`1CppEq, on the

other hand, are those p-cycles that are only nontrivial on singular chains with all p “directions”

arising from the base B, and thus come from p-cycles in the base. At the E2 level, classes in

H˚pEq are arbitrary, while a class in FpHppEq is represented by something in the square Ep,0
2 –

HppFq b H0pFq – HppFq.

Let z P Zq´1pFq be a cocycle in the fiber. It extends (say by zero) to a cochain c P CqpEq, which

need not be a cocycle. Because the differentials dr in the Serre spectral sequence arise from the

singular coboundary map δ through the filtration, drpcq is defined in Er if and only if δ pushes

c forward by r steps in the filtration. Thus in this case δ takes a “fiber” cocycle c to a “base”
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cocycle.

If δc survives to Eq, then in E2, it is represented by a class in Fq
`

H˚pBq b H˚pFq
˘

“ HqpBq b

H0pFq – HqpBq, so δc is in the image of π˚ : ZqpBq ÝÑ ZqpEq.

There is another way of explaining this which may be more illuminating and doesn’t require

us to work at the cochain level. Recall from Theorem B.2.4 that associated to a bundle F i
Ñ E π

Ñ B

is an exact triangle of homotopy groups

π˚pFq ÝÑ π˚pEq ÝÑ π˚pBq
deg´1
ÝÝÝÝÑ π˚pFq.

Thus there is a degree-shifting map linking the homotopy groups of the base and fiber. Viewing

F “ E|pt as a specific fiber over a point pt P B, this sequence can be seen to arise from a long

exact sequence of relative homotopy groups associated to the pair pE, Fq:

π˚pFq ÝÑ π˚pEq ÝÑ π˚pE, Fq
deg´1
ÝÝÝÝÑ π˚pFq.

Because E is locally trivial, a map of pairs pDn, Sn´1q ÝÑ pB, ptq can be lifted to a map pDn, Sn´1q ÝÑ

pE, Fq, and taking homotopy classes, a bit of work shows π˚pE, Fq – π˚pB, ptq in such a way that

the two long exact sequences can be identified. The long exact sequence of a pair

H˚pFq
deg`1
ÝÝÝÝÑ H˚pE, Fq ÝÑ H˚pEq ÝÑ H˚pFq.

is one of the Eilenberg–Steenrod axioms, but it no longer will do in general to substitute rH˚pBq “

H˚pB, b0q for H˚pE, Fq. If it did, we would have the desired degree-shifting cohomological map

linking the base and the fiber. Nevertheless, π is a map of pairs pE, Fq ÝÑ pB, b0q, so one has map
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of long exact sequences

¨ ¨ ¨ // Hq´1pFq δ // HqpE, Fq // HqpEq i˚ // HqpFq // ¨ ¨ ¨

¨ ¨ ¨ // Hqpptq //

OO

HqpB, ptq

π˚

OO

„ // HqpBq

π˚

OO

// Hqpptq ////

OO

¨ ¨ ¨

Proposition 4.3.16. The transgression is given by the composition pπ˚q´1 ˝ δ where defined.

Proof. If z P Zq´1pFq is a cocycle representing rzs P Hq´1pFq, then δrzs P HqpE, Fq is by definition

the class of δc for any cochain c P CqpEq such that i˚c “ z. Such a class may or may not be the

image under π˚ of some rbs P HqpB, b0q “ HqpBq, but if it is, then the elements pz, c, bq satisfy

exactly the specification put forth in Proposition 4.3.15.

Thus the transgressed classes in Hq´1pFq can be seen as the images of the connecting homo-

morphism η “ pπ´1q˚ ˝ δ in a fictitious long exact sequence

H˚pFq
η
ÝÑ H˚pBq ÝÑ H˚pEq i˚

ÝÑ H˚pFq

of a bundle corresponding to the long exact sequence of homotopy groups. The transgressive

elements are morally those for which such a sequence holds.

Remark 4.3.17. A real proof of this characterization of the transgression in the Serre spectral

sequence can be found in McCleary [McC01, Thm. 6.6, p. 186].

There is an analogous Serre spectral sequence of a bundle in homology, whose differentials are

of degree p´r, r ´ 1q, and a (partially defined) transgression HrpBq ÝÑ Hr´1pBq. Dually to our

definition in cohomology, the transgressed elements of HqF are images of transgressive elements
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of Hq`1B under an incompletely-defined map τ˚ in a fictitious long exact sequence

H˚pBq
τ˚
ÝÑ H˚pFq ÝÑ H˚pEq ÝÑ H˚pBq.

Because the Hurewicz homomorphism π˚pX, Aq ÝÑ H˚pX, Aq from homotopy groups to

homology groups discussed in Theorem B.2.6 is natural, it pieces together into a map from the

homotopy long exact sequence of a pair pE, Fq to the homology long exact sequence of that pair.

It follows from the existence of this map of long exact sequences and the long exact homotopy

sequence of a bundle (Theorem B.2.4) that everything in the image of the Hurewicz map π˚F ÝÑ

H˚F is the image of the transgression in every fibration with fiber F, a fact we will have cause to

comment on again in Section 7.6. Moreover, the cohomology transgression τ : Hq´1pFq ÝÑ HqpBq

and the homology transgression τ˚ : HqpBq ÝÑ Hq´1pFq are dual [Ral].

4.4. A natural lemma on bundles

In this section, we use the Serre spectral sequence to prove a lemma on cohomology of bundles

we will use repeatedly to good effect. It seems analogous to the Leray–Hirsch theorem that if

F Ñ E Ñ B is a bundle such that H˚pEq Ñ H˚pFq is surjective, then H˚pEq – H˚pBqbH˚pFq as an

H˚pBq-module. There is a proof by Larry Smith [Smi67, Cor. 4.4, p. 88] using the Eilenberg–Moore

spectral sequence as well as the SSS, but the author found the result independently through the

following proof, so it has pride of place.

Let F be a topological space and ξ0 : E0 Ñ B0 an F-bundle. From the category of F-bundles

and F-bundle maps, we can form a slice category F-Bun{ξ0 of F-bundles over ξ0 as follows. An

object of F-Bun{ξ0 is an F-bundle ξ equipped with a bundle map ξ Ñ ξ0; a morphism between

objects ξ1 Ñ ξ0 and ξ Ñ ξ0 is a bundle map ξ1 Ñ ξ making the expected triangle commute. Such
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a map entails the following commuting prism:

E1
h
//

f 1

++

ξ1

��

E
f
//

ξ

��

E0

ξ0

��
B1 h̄ //

f 1

33B
f̄ // B0.

(4.1)

Note that the maps between total spaces yield two functors

F-Bun{ξ0 ÝÑ H˚pE0q-CGA :

pE Ñ Bq ÞÝÑ H˚pEq;

pE Ñ Bq ÞÝÑ HpBq bH˚pB0q H˚pE0q.

If H˚pE0q ÝÑ H˚pF0q is surjective, we claim these functors are naturally isomorphic.

Theorem 4.4.1. Let ξ0 : E0 Ñ B0 be an F-bundle such that the fiber inclusion F ãÝÝÑ E0 is H˚-surjective,

such that H˚pFq is a free k-module, and such that π1B0 acts trivially on H˚pFq. Then the fiber inclusions

of all F-bundles over ξ0 are H˚-surjective, and there is a natural ring isomorphism

H˚pEq „
ÐÝ H˚pBq bH˚pB0q H˚pE0q

of functors F-Bun{ξ0 ÝÑ H˚pE0q-CGA. Diagrammatically, the commutative diagram (4.1) gives rise to

H˚pE1q H˚pEqh˚oo

H˚pB1q bH˚pB0q H˚pE0q

„

OO

H˚pBq bH˚pB0q H˚pE0q.

„

OO

h̄˚b id
oo

Verbally, if a fiber inclusion is surjective in cohomology, then cohomology takes pullbacks to
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pushouts.

Proof. By the definition of a bundle map, the fiber inclusion F ãÝÝÑ E0 factors as F ãÑ E Ñ

E0, so the assumed surjectivity of H˚pE0q Ñ H˚pEq Ñ H˚pFq implies surjectivity of the factor

H˚pEq ÝÑ H˚pFq.

Because of these surjections, the spectral sequences of these bundles stabilize at their E2 pages

by Corollary 4.3.9. Applying H˚ to the right square of the assemblage (4.1) yields

H˚pEq H˚pE0q
f˚oo

H˚pBq

ξ˚

OO

H˚pB0q,
f̄˚
oo

ξ˚0

OO

which manifests on the E2 page as

H˚pBq b H˚pFq H˚pB0q b H˚pFq
f̄˚b idoo

H˚pBq

idb 1

OO

H˚pB0q.
f̄˚

oo

idb 1

OO

The commutativity of the left square means there is an induced map of rings

H˚pBq bH˚pB0q H˚pE0q ÝÑ H˚pEq,

bb x ÞÝÑ ξ˚pbq f ˚pxq,

whose E2 manifestation is the canonical H˚pBq-module isomorphism

H˚pBq bH˚pB0q

“

H˚pB0q b H˚pFq
‰ „
ÝÑ H˚pBq b H˚pFq.

Since this E2 map is a bijection, the ring map is an H˚pE0q-algebra isomorphism.

For naturality, note that the ring map h˚ : H˚pEq ÝÑ H˚pE1q is completely determined its

restrictions to its tensor-factors H˚pBq and H˚pE0q. The left square and top triangle of (4.1) imply
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the commutativity of the squares

H˚pE1q H˚pEqh˚oo

H˚pB1q

pξ1q˚

OO

H˚pBq,
h̄˚
oo

ξ˚

OO
H˚pE1q H˚pEqh˚oo

H˚pE0q

p f 1q˚

OO

H˚pE0q,

f˚

OO

so that these factor maps are respectively h̄˚ : H˚pBq ÝÑ H˚pB1q and idH˚pE0q.



Chapter 5

The cohomology of complete flag manifolds

The algebraic relation between a compact group and its maximal torus informs all discussion of

invariant subalgebras going forward, and is epistemologically prior to much of our discussion

of the cohomology of homogeneous spaces, being treated with sui generis methods that do not

apply in the general case.

The quotient G{T of a compact, connected Lie group by its maximal torus T, called a com-

plete flag manifold, was among the first homogeneous spaces other than groups and symmetric

spaces whose cohomology was understood. This material will be cited at least in Section 6.2,

Section 8.3.2, and Theorem B.4.9, and does not fit well anywhere else, so we propound it now. It

is fundamental, and but for the discussion of the Serre spectral sequence in Theorem 4.3.4, could

have gone earlier.

5.1. The cohomology of a flag manifold

The cornerstone result is the following.

Theorem 5.1.1. Let G be a compact, connected Lie group and T a maximal torus in G. Then the cohomol-

ogy of H˚pG{Tq is concentrated in even dimensions.

58
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Proof sketch 1. Associated to G is a complexified Lie group GC which is a complex manifold, and

which contains a Borel subgroup B, a complex Lie group containing T and such that

GC{B « G{T.

Thus G{T admits a complex manifold structure and hence a CW structure with even-dimensional

cells.

We will use consequences of this theorem in such a critical way in Section 6.2, Theorem B.4.9,

and Section 8.3.2 that we would feel somewhat guilty only sketching this proof, so we repro-

duce Borel’s original 1950 proof. This argument was first published somewhat telegraphically

in Leray’s contribution [Ler51] to the 1950 Bruxelles Colloque, and is elaborated in Borel’s the-

sis [Bor53]. It invokes two facts we shall not prove about invariant differential forms, which are

these.

Proposition 5.1.2. Suppose a compact Lie group G acts on a manifold M. Then every cohomology class in

H˚pM;Rq is represented by a G-invariant differential form ω, which is determined uniquely by its value

ωx P ΛT˚x M, an alternating multlinear form on the tangent space of one point x of M.

Proposition 5.1.3. Let G be a compact Lie group and K a closed subgroup. The alternating multlinear

form ωx P Λpg{kq_ representing a G-invariant form ω P ΩpG{Kq is invariant under the action Ad˚ K of

K induced by the conjugation action on K on G.

Borel’s proof of Theorem 5.1.1. By Theorem B.2.1, we may use R coefficients. Write ` “ rk G and

n “ dim G ´ rk G. We prove the result by a double induction on ` and n. If ` “ 0, then G is

discrete, and we are done. Inductively suppose we have proven the result for all groups of rank

`´ 1. If n “ 0, then rk G “ dim G, so G “ T is a torus and we are done.
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Now suppose inductively we have proven the result for ` and n´ 1. Note that without loss

of generality, by Theorem B.4.4, G can be taken to be of the form Aˆ K with A a torus and K

simply-connected. Since A is a factor of the maximal torus T of G, one has G{T “ K{pT X Kq,

and rk K “ rk G´ rk A, so we are done by induction on ` unless rk A “ 0 and G “ K is simply-

connected.

So assume G is simply-connected. We claim there exists an element x P G such that x R

ZpGq and x2 P ZpGq. To see this, let x P G, and recall from Proposition B.4.11 that ZpGq is the

intersection of all maximal tori in G, so in a given maximal torus T one can always find y with

y2n
“ x, but if these lay in all tori for all n, then ZpGq would fail to be discrete. Let K be the

identity component of the centralizer ZGpxq of x. Because x lies in the maximal torus T of G, we

know rk K “ rk G, and because x R ZpGq, the dimension dim ZGpxq “ dim K is strictly less than

dim G. Thus H˚pK{Tq is evenly graded by the inductive assumption.

The tangent space g{k “ T1KpG{Kq to the identity coset 1K in G{K can be identified with an

orthogonal complement kK to k in g in such a way that the isotropy action of K on T1KpG{Kq

corresponds to the adjoint action of K on kK.

By Proposition 5.1.2, each de Rham cohomology class on G{K contains a left G-invariant

element, which is then determined by its restriction to T1KpG{Kq – kK. Such a restriction is, by

Proposition 5.1.3, an alternating pAd Kq-invariant multilinear form on kK. Because x2 is central,

Adpxq P GLpgq is an involution; thus g splits as the 1-eigenspace k and an orthogonal p´1q-

eigenspace, which must be kK. Since Adpxq acts as multiplication by ´1 on kK, a nonzero Adpxq-

invariant alternating form on kK can only have even degree. As x P K, it follows we must have

H˚pG{Kq concentrated in even degree.

Now we can apply the Serre spectral sequence to K{T Ñ G{T Ñ G{K. Both H˚pK{Tq and

H˚pG{Kq are evenly-graded, so by Theorem 4.3.4, so also is G{T. In fact, by Corollary 4.3.11, the
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spectral sequence collapses at E2 and H˚pG{Tq – H˚pG{Kq b H˚pK{Tq as an H˚pK{Tq-module.

Corollary 5.1.4. Let G be a compact, connected Lie group and T a maximal torus in G. Then the Euler

characteristic of χpG{Tq is positive.

5.2. The acyclicity of G{NGpTq

In this section we prove another result whose importance will not immediately be clear, but

which recurs in Section 6.4 and Section 10.1.

Proposition 5.2.1. Let G be a compact, connected Lie group, T a maximal torus in G, and N “ NGpTq

the normalizer. Then dim G{N is even and G{N is Q-acyclic:

H˚pG{N;Qq “ H0pG{N;Qq – Q.

Proof [MT00, Thm. 3.14, p. 159]. The torus T acts on G{N on the left, fixing the identity coset 1N

(since T ď N); we claim this is the only such fixed point. Indeed, let t P T be a topoological gen-

erator. If an element gN P G{N is fixed under multiplication by t, it is fixed under multiplication

by all powers of t, and thus, by continuity, by all of T, so that TgN “ gN, or g´1Tg ď N. Since T

is a connected component of N and 1 “ g´11g P T, it then follows g´1Tg “ T, or g P N, so that

gN “ 1N is the lone fixed point.

Let dim nK “ m. Because T fixes 1N, it induces a T-action on the tangent space g{n “

T1NpG{Nq to G{N at the identity coset 1N, which can also be seen as the normal subspace

nK ă g orthogonal to n in the tangent space to G at 1. Because T acts by isometries on nK, it

leaves invariant ε-spheres Sm´1 about the origin 0 P nK. The exponential exp : nK ÝÑ G{N will

map a sufficiently small sphere isometrically and T-equivariantly into G{N, and this T-invariant



Chapter 5. The cohomology of complete flag manifolds 62

image sphere Sm´1 divides G{N into a T-invariant disk Dm and a T-invariant complement M.

Since T is path connected, the map `t is homotopic to the identity, so χp`tq “ χpidq on both Sm´1

and M. As only 1N P G{N is fixed by multiplication by T, and this point lies in the interior of

Dm it follows `t acts without fixed points on Sm´1 and M. By the Lefschetz fixed point theorem

Theorem B.2.11, then,

χpMq “ χpSm´1q “ 0.

It follows m is even. Note that H˚pG{N, Mq – H˚pDm, Sm´1q – rH˚pSmq, so that the relative Euler

characteristic χpG{N, Mq is 1m “ 1. The long exact sequence of the pair pG{N, Mq then gives

χpG{Nq “ χpMq ` χpG{N, Mq “ 0` 1 “ 1.

As G{T Ñ G{N is a finite cover with fiber W “ N{T and HoddpG{Tq “ 0 by Theorem 5.1.1, it

follows from Proposition B.3.1 that

HoddpG{Nq – HoddpG{TqW “ 0.

Thus h‚pG{Nq “ χpG{Nq “ 1, so it must be that H˚pG{Nq “ H0pG{Nq – Q.

We have the following useful corollary, which will reemerge much later in Appendix C as a

consequence of the Berline–Vergne/Atiyah–Bott localization theorem.

Corollary 5.2.2 (Weil). Let G be a compact, connected Lie group, T a maximal torus in G, and W the

Weyl group of G. Then

χpG{Tq “ |WG|.

Proof. Since G{T ÝÑ G{N is a |W|-sheeted covering and χpG{Nq “ 1 by Proposition 5.2.1, it
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follows from Proposition B.3.5 that

χpG{Tq “ χpG{Nq ¨ |W| “ |W|.

This means in a homogeneous space G{K, one can for cohomological purposes replace K with

the normalizer of its maximal torus.

Corollary 5.2.3. Let G be a compact, connected Lie group, K a closed, connected subgroup of lesser rank,

S a maximal torus of K, and N “ NKpSq the normalizer of this torus in K. Then the natural projection

G{N ÝÑ G{K induces a ring isomorphism

H˚pG{Kq „
ÝÑ H˚pG{Nq.

Proof. There is a fiber bundle K{N Ñ G{N Ñ G{K, whose fiber K{N is acyclic by Proposi-

tion 5.2.1, so π1pG{Kq acts trivially on H˚pK{Nq “ H0pK{Nq – Q, and the Serre spectral sequence

of this bundle collapses instantly at

gr
‚

H˚pG{Nq “ E2 “ H˚pG{Kq bQ – H˚pG{Kq.

Because the bigraded algebra H˚pG{Nq is concentrated in the bottom row, the associated graded

construction leaves it unchanged, so this is a ring isomorphism.

There is also the following further result, later generalized by Chevalley.

Corollary 5.2.4 (Leray). The ring H˚pG{Tq is isomorphic to the regular representation of the Weyl group

WG.

Proof. One characterization of the regular representation W Aut
`

QrWs
˘

of a group W is
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through the character w ÞÝÑ tr w|QrWs of the representation: a representation L is W-isomorphic

to the regular representation just if

tr w|L “

$

’

’

’

’

&

’

’

’

’

%

|W| w “ 1,

0 w ‰ 1.

Now consider the standard right action1 of W “ NGpTq on G{T given by gT ¨ nT :“ gnT. Since

gnT “ gT ðñ nT “ g´1gT “ T ðñ n P T,

no element of W other than the identity has any fixed points. Now this action induces an repre-

sentation of W in H˚pG{Tq. For w ‰ 1, since there are no w-fixed points, w has Lefschetz number

χpwq “ 0; but since H˚pG{Tq is evenly graded by Theorem 5.1.1, this means that tr w|H˚pG{Tq “ 0.

On the other hand, χp1q “ χpG{Tq “ |W| by Proposition C.3.3.

We also can show that the Euler characteristic of a generic compact homogeneous space is

zero.

Corollary 5.2.5. Let G be a compact, connected Lie group and K a closed, connected subgroup of lesser

rank. Then χpG{Kq “ 0.

Proof. Let S be a maximal torus of K and T be a maximal torus of G containing S. Then we

have a fiber bundle T{S Ñ G{S Ñ G{T. Since the base is simply-connected, it follows from

Proposition 4.3.12 that

χpG{Sq “ χpG{TqχpT{Sq “ χpG{Tq ¨ 0,

this last since a torus T{S is a product of circles and χpS1q “ 1 ´ 1 “ 0. Let N “ NKpSq be
1 N.B. The proof of this result in [MT00, Prop. VII.3.25, p. 399] is wrong, as it tries to use the left multiplication

action.
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the normalizer in K of its maximal torus S. Since N Ñ S is a cover with fiber WK, so also is

G{S Ñ G{N, so by Proposition B.3.5,

χpG{Nq “ χpG{SqL|WK| “ 0.

Now by Corollary 5.2.3 we have χpG{Kq “ χpG{Nq “ 0.

Historical remarks 5.2.6. The Euler characteristic dichotomy that χpG{Kq ą 0 or “ 0 depending as

rk G “ rk K or rk G ą rk K is due to Hopf and Samelson [HS40, p. 248].



Chapter 6

First properties of equivariant cohomology

In this chapter, G is a connected Lie group.

6.1. Values on the orbit category and Mayer–Vietoris

We have shown the importance of the orbit category G-Orbit in understanding G-actions, so the

first order of business in understanding equivariant cohomology should be to know the values

it takes on this category. It will be enough to understand the cohomology ring H˚pBKq of the

classifying space BK, as we will come to in Section 7.6. We will primarily care about the case the

coefficient ring k “ Q, but for some statements we can get away with k “ Z.

Proposition 6.1.1. Let G be a Lie group and K a closed subgroup. Then for any coefficient ring k there is

an isomorphism

H˚
GpG{K; kq “ H˚pBK; kq.

Proof. The proof is topological and nearly formal. The equivariant cohomology H˚
GpG{Kq is the

singular cohomology of the homotopy quotient pG{KqG “ EGˆG G{K, which is homeomorphic

to EG{K, taking P “ EG in the following lemma. But EG{K “ BK for G Lie and K closed, by

Theorem B.4.3.

66



Chapter 6. First properties of equivariant cohomology 67

Lemma 6.1.2 ([BTar, Prop. 4.5]). Let G be a Lie group and K a closed subgroup, and suppose P ÝÑ B is

a principal bundle. Then there is a homeomorphism

PˆG G{K ÝÑ P{K,

rp, gKs ÞÝÑ pgK.

Proof. The continuity and well-definedness of the map follow from the fact the right action

Pˆ G ÝÑ P,

pp, gq ÞÝÑ pg

is continuous and constant on each diagonal orbit rp, gsG “
 

ppx, x´1gq : x P G
(

. It thus descends,

by definition, to a continuous map ϕ : PˆG G ÝÑ P, and since this map is right K-equivariant in

that ϕrp, gksG “ ϕrp, gsG ¨ k for k P K, to a well-defined, continuous map PˆG G{K ÝÑ P{K. The

map is bijective and because an inverse is given by the map

P{K ÝÑ Pˆ
G

G{K,

pK ÞÝÑ rp, KsG.

It is not immediate this inverse is continuous, but would be if we could factor it through a

continuous map P{K ÝÑ Pˆ tKu taking pK ÞÝÑ pp, 1Kq. Though this is not generally possible,

it is enough for continuity to be able to do it locally, and this is equivalent to finding local

sections of P Ñ P{K. But this we can do: since P is assumed a G-bundle and G is a K-bundle by

Theorem B.4.3, it follows P is an K-bundle, and so locally trivial.

Now that we know what H˚
G does on the orbit category, one hopes to be able to use the
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decomposition of a compact G-space as a G–CW complex, a union of disks Dn ˆ G{K along G-

equivariant maps, for K and n varying, to understand what it does to a G-space in general, a

sort of “cellular equivariant cohomology.” And indeed H˚
GpD

n ˆ G{Hq “ H˚
GpG{Hq – H˚pBHq,

so these building blocks behave as simply as one could hope for.

This approach has mostly theoretical utility, because G–CW decompositions seem to be hard

to come by in the wild, but an understanding of the cohomology of a union is still valuable.

Proposition 6.1.3 (Equivariant Mayer–Vietoris). Let U and V be G-invariant subsets of a G-space X

and suppose U YV “ X. Then there exists a long exact sequence

¨ ¨ ¨ ÝÑ Hn´1
G pU XVq ÝÑ Hn

GpXq ÝÑ Hn
GpVq ‘ Hn

GpVq ÝÑ Hn
GpU XVq ÝÑ Hn`1

G pXq ÝÑ ¨ ¨ ¨ .

Proof. Since U and V are G-invariant, so is U XV. The decomposition U YV “ X translates on

taking homotopy quotients to a decomposition UG Y VG “ XG such that UG X VG “ pU X VqG,

and the result follows on applying the Mayer–Vietoris sequence in singular cohomology.

6.2. The equivariant Künneth theorem

Recall from Section 2.1 that if G acts on spaces X and Y, there is a natural diagonal product

action on X ˆY. In ordinary cohomology, at least with coefficients in a field k, one has H˚pX ˆ

Yq – H˚X b H˚Y, and in less favorable circumstances, one still has at least a Künneth spectral

sequence as mentioned in Remark A.5.5. With more severe restrictions, something similar holds

in equivariant cohomology.

Theorem 6.2.1 (Equivariant Künneth theorem [KV93]). Suppose a topological group G acts continu-

ously on spaces X and Y in such a way that the fiber restriction H˚
GpY; kq ÝÑ H˚pY; kq arising from the
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Borel fibration is surjective, with H˚pY; kq a free k-module.1 Then, for the same coefficient ring k, there

exists an isomorphism

H˚
GpXˆYq – H˚

GpXq b
H˚G

H˚
GpYq.

This will follow from some diagram equivalences and the recurrent bundle lemma Theo-

rem 4.4.1.

Lemma 6.2.2. The following diagram commutes, where every column and row form a bundle, the bundles

over BG are Borel fibrations, and the central object pXˆYqG is the pullback XG ˆBG ˆYG:

Y

��

Y

��
X // pXˆYqG //

��

YG

��
X // XG // BG.

(6.1)

Proof. The commutativity of the entire diagram will be clear if we show that we can replace

pX ˆ YqG with the pullback XG ˆBG ˆYG in such a way that the lower-right square becomes a

pullback square. Let ∆EG :“
 

pe, eq P EGˆ EGu be the diagonal. Now

XG ˆ
BG

YG “
 `

re, xs, re1, ys
˘

P XG ˆYG : Dg P G peg “ e1q
(

«

 

pe, x, eg, yq P EGˆ Xˆ EGˆY
(

N

peh, x, egh1, yq „ pe, hx, e, gh1yq

«

 

pe, e, x, yq P ∆EGˆ XˆY
(

N

peg, eg, x, yq „ pe, e, gx, gyq,

1 If this fiber restriction is surjective, it is said that the G-action on Y is equivariantly formal; we will have much more
to say about this condition in later chapters, predominantly for k “ Q.
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the second homeomorphism because under the relation imposed on EGˆ X ˆ EGˆY, one can

always find a representative pe, x, e, yq, and restricted to such representatives, the relation imposed

by h and h1 is just the relation imposed on ∆EG ˆ X ˆ Y in the third term. On the other hand,

since ∆EGˆ X ˆY is G-equivariantly homeomorphic to EGˆ X ˆY, we finally see pX ˆYqG «

XG ˆBG YG. Explicitly, the homeomorphism is given by

re, x, ys ÞÝÑ
`

re, xs, re, ys
˘

.

The maps to XG and YG take these elements to re, xs and re, ys respectively, so the diagram

commutes.

Corollary 6.2.3. Let G be a Lie group and G and K closed subgroups. Then one has a homeomorphism

pG{H ˆ G{KqG « BH ˆ
BG

BK

Proof. Putting X “ G{H and Y “ G{K in Lemma 6.2.2, one finds pG{HˆG{KqG « pG{HqG ˆ
BG
pG{KqG,

but from Lemma 6.1.2 one also knows pG{HqG « BH and pG{KqG « BK.

The bundle lemma Theorem 4.4.1 and Lemma 6.2.2 make the equivariant Künneth theorem

immediate.
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Proof of Theorem 6.2.1. Taking cohomology of diagram (6.1) yields the commutative diagram

H˚pYq H˚pYq

H˚pXq H˚
GpXˆYq

OO

oo H˚
GpYq

OO

oo

H˚pXq H˚
GpXq

OO

oo H˚
G.

OO

oo

(6.2)

By assumption, the top-right vertical map H˚
GpYq ÝÑ H˚pYq is surjective so by the bundle lemma

Theorem 4.4.1, it follows H˚
GpXˆYq – H˚

GpXq b H˚
GpYq is surjective.

We state here a corollary about equivariant cohomology of homogeneous spaces, once we

prove another bundle equivalence.

Proposition 6.2.4. Let G be a Lie group and H and K closed subgroups. Then one has homeomorphisms

pG{HqK « BKˆBG BH « pG{KqH.

Proof. By symmetry, it will be enough to prove the first homeomorphism. A candidate map is

ψ : pG{HqK “ EGˆK G{H ÝÑ BKˆBG BH,

re, gHsK ÞÝÑ peK, egHq.

One suspects that this map must in fact yield an isomorphism of G{H-bundles over BK, and
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indeed it does. To define an inverse, start with the homeomorphism

EGˆBG EG ÝÑ EGˆ G :

pe, egq ÞÝÑ pe, gq,

and follow it with the projections EGˆ G Ñ EGˆ G{H Ñ EGˆK G{H to get

φ : EGˆBG EG ÝÑ EGˆK G{H “ pG{HqK,

pe, egq ÞÝÑ re, gHsK.

To see φ descends to a well defined inverse BK ˆBG BH ÝÑ pG{HqK, let a point peK, egHq P

BK ˆBG BH be given and consider two points in its preimage EG ˆBG EG. One natural choice

is pe, egq, and the others are all pek, eghq for some k P K and h P H. We can rewrite pek, eghq as

`

ek, pekqpk´1ghq
˘

. Now

φ
`

ek, pekqpk´1gqh
˘

“ rek, k´1ghHsK “ re, gHsK “ φpe, egq,

so φ descends to a continuous map BK ˆBG BH ÝÑ pG{HqK inverse to ψ. Thus the spaces are

homeomorphic pG{Hq-bundles over BK.

Remark 6.2.5. For the sake of completeness, we note the composite homeomorphism pG{HqK
«
ÝÑ

pG{KqH is given by

re, gHsK ÞÝÑ peK, egHq ÞÝÑ reg, g´1KsH.

This map does not preserve any particular bundle structure, but does yield an isomorphism

H˚
KpG{Hq – H˚

HpG{Kq for any coefficient ring.
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Corollary 6.2.6 ([KV93, Prop. 68, p. 161]). Let G be a compact Lie group, K a subgroup of full rank,

and H another closed subgroup. Then

H˚
HpG{Kq – H˚

KpG{Hq – H˚
H b

H˚G
H˚

K

as rings.

Proof. Take X “ G{H and Y “ G{K in the diagram (6.2). The diagram becomes

H˚pG{Kq H˚pG{Kq

H˚pG{Hq H˚
G
`

G{H ˆ G{K
˘

OO

oo H˚
K

OO

oo

H˚pG{Hq H˚
H

OO

oo H˚
G.

OO

oo

From Corollary 6.2.3 and Proposition 6.2.4, we know

pG{KqH « pG{HqK « BH b
BG

BK « pG{H ˆ G{KqG.

Thus the first two rings in the statement of this corollary are always isomorphic. We will prove

in Section 8.3.2 that the map H˚
K ÝÑ H˚pG{Kq is surjective, so Theorem 6.2.1 will apply.

Corollary 6.2.7. Let G be a compact Lie group and K a connected, closed subgroup of equal rank. Then

H˚
KpG{Kq – H˚

K b
H˚G

H˚
K.

Corollary 6.2.8 (Leray, 1950). Let G be a compact Lie group and K a closed, connected subgroup of equal
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rank. Then

H˚pG{K;Qq – Q b
H˚G

H˚
K

Proof. Take H “ 1 in Corollary 6.2.6.

Remarks 6.2.9. We seem to have obtained Corollary 6.2.8 without any real effort, but this ease is

illusory: it depends on knowing H˚
K ÝÑ HpG{Kq is surjective, an important fact which we will

only demonstrate later as Theorem 8.3.11, this time relying directly on Theorem 5.1.1, the fact

that the cohomology of a flag manifold G{T is concentrated in even dimensions.

For a more explicit presentation of the computation Corollary 6.2.7 in terms of character-

istic classes—which initially inspired the author’s rediscovery of the work in this section—see

Tu [Tu10]. Subsequent to reading this Tu paper, the author rediscovered Proposition 6.2.4 and

Corollary 6.2.6 independently of outside enlightenment, without understanding the equivari-

ant Künneth theorem applied and before realizing the seeming ubiquity of the bundle lemma

Theorem 4.4.1. Related statements appear throughout the literature; see for example Prop. 3.9

in Goertsches and Töben [GT10a] and Kumar and Vergne [KV93, Prop. 68, p. 161]. Kumar and

Vergne prove one of the isomorphisms in Corollary 6.2.6, using the Cartan model absent bundle-

theoretic considerations; it may simply be that they do not care about the other isomorphism.

Wilhelm Singhof [Sin93, Proposition (2.3)] also comes very close to stating Proposition 6.2.4,

in a rather different context. Singhof’s work was on biquotients: if G is a group with subgroups

H and K, then the product group Kˆ H acts on G by

pk, hq ¨ g :“ hgk´1,

and the biquotient K {G{H is the quotient of G by this action. If G is a Lie group and the action

of HˆK is free, the biquotient K {G{H is a smooth manifold. The class of diffeomorphism classes
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of such biquotients is strictly larger than that of homogeneous spaces; for example, the exotic

7-spheres can be shown to arise in this fashion.

In our case, G will be compact. When the action of H ˆ K is free, K {G{H is homotopy

equivalent to our pG{KqH « pG{HqK « BK ˆBG BH by Proposition 4.2.4, and in that event

H˚pK {G{Hq – H˚
K bH˚G

H˚
H by our result. Singhof showed that if Kˆ H acts freely on G, then we

have the this isomorphism even in the more general case rk K` rk H “ rk G, using an induction

argument on tori to limit the possibly nonzero regions of the Eilenberg–Moore spectral sequence

associated to the homotopy pullback square

K {G{H //

��

BH

��
BK // BG;

this spectral sequence is known by the work of many (Singhof cites Hans Munkholm [Mun74])

to in this case collapse at E2 “ Tor‚,‚
H˚G
pH˚

K, H˚
Hq, and in our case this is an algebra isomorphism.

The calculation here that H˚
KpG{Hq – H˚

K bH˚G
H˚

H, on the other hand, holds regardless of how

big H is, and irrespective of whether the action is free.

As Singhof only uses the homotopy commutativity of the pullback, it follows that his proof

applies equally well to the calculation of H˚
KpG{Hq when rk K ` rk H “ rk G and the subgroup

K ¨ H of G contains a maximal torus of G, independently of whether or not Kˆ H acts freely on

G. The Eilenberg–Moore spectral sequence is really the proper tool for talking about cohomology

of pullbacks, but we have resisted including this generalization in this chapter because it seemed

excessive to also have to include an exposition of the Eilenberg–Moore spectral sequence at this

date.
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6.3. The standard example

In this section, we compute the equivariant cohomology of the standard motivating action and

show it to be equivariantly formal. This result follows more quickly from the equivariant localiza-

tion theorem Corollary 9.2.5, but this however requires an account of maps H˚
T ÝÑ H˚

S between

cohomology rings of classifying spaces which we only develop in Section 7.8.1.

Write ρ1 for the rotation action S1 ñ S2 on the standard unit sphere fixing the z-axis, and ρq

for the action “sped up by a factor of q,” so that eiθ P S1 acts as rotation by qθ radians. We write

the ρq-equivariant cohomology of S2 as H˚
ρq
pS2q.

Proposition 6.3.1. One has

H˚
ρ1
pS2q – Zrx, ys{pxyq, deg x “ deg y “ 2.

Proof. The orbits of each ρq are the latitudes Cz for fixed z, which are circles for z P p´1, 1q

and the poles for z “ ˘1. Thus discs U “ z´1r´1, 1{2q and V “ z´1p´1{2, 1s are invariant, as is

their intersection U XV which is the annulus z´1p´1{2, 1{2q. Because the deformation retractions

of U to the south pole z “ ´1 and V to the north pole z “ 1 are ρq-equivariant, it follows

H˚
ρq
pUq – H˚

ρq
pVq – H˚

ρq
pptq. Similarly, since U XV deformation retracts to the equatorial circle

S1
eq, we have H˚

ρq
pU X Vq – H˚

ρq
pS1

eqq. It follows we should try to understand the homotopy

quotients pS1
eqqρq and ptρq

.

Identifying S1
eq with the complex unit circle S1,

pS1
eqqρq «

S8 ˆ S1
eq

N

peζ, sq „ pe, ζqsq , e P S8, ζ P S1, s P S1
eq.

The identification relation „ on S8 ˆ S1 yields pe, sq „ pes1{q, 1q for each qth root of s. Because
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these qth roots of s differ multiplicatively by elements of the group µq of qth roots of unity, pXqqz

is homeomorphic to the quotient space S8{µq, which is is an infinite lens space Lq. Note that L2

is the real projective space RP8, while L1 is just S8 again.

For z P t˘1u, on the other hand, the orbit Cz is a pole S1 acts on trivially, and

ptρq
“

S8 ˆ pt
N

peζ, ptq „ pe, ptq « S8{S1 “ CP8.

So Xq can be seen as the union

`

CP8 ˆ t´1u
˘

Y
`

Lq ˆ r´1, 1s
˘

Y
`

CP8 ˆ t1u
˘

obtained from the disjoint union of these parts by gluing Lq ˆ t1u to CP8 ˆ t1u and Lq ˆ t´1u to

CP8 ˆ t´1u along the map

αq : Lq ÝÑ CP8,

eµq ÞÝÑ eS1.

The q “ 1 case of our adjunction space construction shows that X1 is obtained from S8 ˆ r´1, 1s

by gluing on two copies of CP8 to the ends with the canonical projection S8 ÝÑ CP8 as

attaching map. Here is a picture of X1; the middle part is drawn thin because S8 is contractible.

Figure 6.3.2: A schematic of pS2qρ1

Since S8 is contractible, as we demonstrated in Proposition 3.2.2, the attaching map S8 ÝÑ
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CP8 is nullhomotopic, so we may homotope X1 inside itself onto the subspace

CP8 Y p´1, 1q YCP8.

Since p´1, 1q is contractible, it follows that X is homotopy equivalent to a wedge CP8 _CP8.

From the fact that CP8 “ BS1, we will show in Section 7.3 as an elementary application of the

Serre spectral sequence that H˚pCP8q – Zrxs, where deg x “ 2. It then follows from the wedge

axiom2 that

H˚
ρ1
pS2q “ H˚pX1q – H˚pCP8 _CP8q “

Zrxs ˆZrys
p1, 0q „ p0, 1q

– Zrx, ys{pxyq,

where x, y P H2 are the first Chern classes of the component CP8’s.

But we promised to see this with the Mayer–Vietoris sequence. Note that rH˚pS8q “ 0 since

S8 is contractible. For n “ 0, since everything is connected, the Mayer–Vietoris sequence yields

the short exact sequence 0 Ñ Z ∆
ÝÑ Z2 ´

ÝÑ ZÑ 0, and for n ě 1, it gives the fragment

0 Ñ Hn
ρ1
pS2q ÝÑ HnpCP8q ‘ HnpCP8q Ñ 0.

Thus the map H˚
ρ1
pS2q ÝÑ H˚pCP8qˆH˚pCP8q is injective. Because the factor maps H˚

ρ1
pS2q ÝÑ

H˚pCP8q are ring homomorphisms induced by the inclusions U, V ãÝÝÑ S2, it follows Hn
ρ1
pS2q ÝÑ

H˚pCP8qˆH˚pCP8q “ ZrxsˆZrys is an injective ring homomorphism, surjective in degrees ě 0.

In particular, its image contains p1, 1q, px, 0q, p0, yq, and a dimension argument shows these are

algebra generators for the image. It is not hard to see this ring is isomorphic to Zrx, ys{pxyq.

2 The wedge axiom on a cohomology theory, due to Milnor, is that rH˚p
Ž

α Xαq –
ś

α
rH˚pXαq. This is a theorem

under our axioms, but is equivalent to the Eilenberg–Steenrod disjoint union axiom granted the other axioms, and is
sometimes substituted for it.
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Corollary 6.3.3. One has

H˚
ρq
pS2q – Zrs1, s2, tsLps1s2, s1 ` s2 ´ qtq,

– Zrs, tsLps2 ´ qstq, |sj| “ |s| “ |t| “ 2.

Proof. To determine H˚
ρq
pS2q for |q| ą 1 we make use of the map X1 ÝÝ� Xq which is the identity on

the end caps CP8 and is the quotient map S8 ÝÑ Lq on the slices z “ const arising from latitudes

of S2. Now consider the Mayer–Vietoris sequences of the open covers of X1 and of Xq given by

z´1r´1, 1{2q and z´1p´1{2, 1s. These open sets deformation retract respectively onto the end caps

z´1t´1u and z´1t1u, which are homeomorphic to CP8 for both X1 and Xq. The intersection of

these open sets is z´1p´1{2, 1{2q, which deformation retracts onto the slice z´1t0u. This slice is an

S8 for X1 and is Lq for Xq. Thus the map of Mayer–Vietoris sequences corresponding to these

covers and the map X1 ÝÑ X1 is as follows:

H2k´1pS8q // H2kpX1q // H2kpCP8q‘2 // H2kpS8q

H2k´1pLqq //

OO

H2kpXqq //

OO

H2kpCP8q‘2 // H2kpLqq //

OO

H2k`1pXqq // H2k`1pCP8q‘2.

We have already calculated that H˚pX1q “ Zrx, ys{pxyq, and it follows from the Serre spectral

sequence of the circle bundle Lq ÝÝ� CP8 that H˚pLqq – Zrus{pquq, where u is the pullback of a

generator x P H2pCP8q. Filling in these known values yields the diagram

0 // Ztxk, yku Ztxk, yku // 0

0 // H2kpXqq //

OO

Ztxk, yku
f // pZ{qquk // H2k`1pXqq // 0.
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The map marked f is the difference of the two maps H2kpCP8q ÝÑ H2kpLqq induced by including

z´1p´1{2, 1{2q into z´1r´1, 1{2q and into z´1p´1{2, 1s. Since these inclusions are both homotopic to

the attaching map Lq Ñ CP8 adjoining an endcap CP8 to Xq, it follows that f pxkq “ f p´ykq “ uk,

so H2kpXqq “ ker f is a free Z-module generated by qxk, qyk, and xk ` yk. (One of the generators

qxk and qyk is redundant, but there is no symmetric way to select just one.)

Since f is surjective, it follows from exactness of the bottom row that H2k`1pXqq “ 0, so

H˚pXqq is concentrated in even degree and the ring map H˚pXqq ÝÑ H˚pX1q “ Zrx, ys{pxyq

induced by X1 ÝÑ Xq is injective. Since xy “ 0 in H˚pX1q, we have the relations

px` yqj “ xj ` yj,

qxpx` yqj´1 “ qxj,

qypx` yqj´1 “ qyj,

so that the image of H˚pXqq in H˚pX1q is the subring generated by qx, qy, x ` y, or, since the

relation qpx` yq ´ qx “ qy holds in Zrx, ys{pxyq, by just x` y and qx. Since xy “ 0, it is clear that

within the image of H˚pXqq, the following relations hold:

qx ¨ qy “ 0,

qx` qy “ qpx` yq,

pqxq2 “ q ¨ pqxq ¨ px` yq,

Because each H2kpXqq is free of rank two, a dimension argument shows there are no other re-

lations. Writing s1, s2 for the respective preimages of qx, qy and t for the preimage of x ` y, the

result follows.
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We note in passing that q “ 0 yields H˚
ρ0
pS2q “ H˚pBS1 ˆ S2q – Zrus b H˚pS2q. We claim that

the fiber restriction maps H˚
ρq
pS2q ÝÑ H˚pS2q are surjective for all q.

Proposition 6.3.4. The actions ρq of S1 on S2 are equivariantly formal. The fiber projection H˚
ρq
pS2q ÝÑ

H˚pS2q can be represented as

Zrs1, s2, tsLps1s2, s1 ` s2 ´ qtq ÝÑ ∆rss pdeg s “ 2q :

t ÞÝÑ 0,

s1 s2 ÞÝÑ s.

First proof. As S2 Ñ Xq Ñ CP8 is a fiber bundle over a connected space and the cohomology

rings of the fiber and base are concentrated in even degree, by Corollary 4.3.11 the Serre spectral

sequence collapses at E2 – H˚pCP8q b H˚pS2q, so that in particular the map E8 ÝÑ H˚pS2q is

surjective; but this is just the map H˚pXqq ÝÑ H˚pS2q induced by the fiber inclusion, so the action

ρq is equivariantly formal.

Because rk H2pXqq “ 2, it is spanned by two generators, one of which maps to the fundamen-

tal class in H2pS2q and the other of which generates the image of H2pCP8q ÝÑ H2pXqq. Because

the diagonal S1-action on S8 ˆ S2 induced by ρq is free on the end-cap S8 ˆ tz “ 1u, the pro-

jection map Xq ÝÑ CP8 “ BS1 of the Borel fibration can be seen as a retraction to each CP8

end-cap. The injection H2pXqq ÝÑ H2pCP8q‘2 in the Mayer–Vietoris sequence above is induced

by the inclusions of the open sets in the cover, or equivalently by the inclusions of the end-caps.

The commutative diagram

Xq

"" ""
CP8 >CP8 //

+ �

99

CP8,
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where the horizontal map identifies the two copies of CP8, induces

H2pXqq

„

vv
Ztx, yu “ H2pCP8q2 H2pCP8q “ Ztuu,

gg

x`y ÞÝÑu
oo

so the image of H˚pCP8q ÝÑ H˚pXqq is the subring Zrx ` ys “ Zrts, and the map H˚pXqq ÝÑ

H˚pS2q induced by the fiber inclusion S2 ãÝÝÑ Xq must take t ÞÝÑ 0 and s1, s2 ÞÝÑ rS2s.

Second, geometric proof for q “ 1. Because each object in the bundle S2 Ñ Xq Ñ CP8 is simply

connected, the Hurewicz theorem gives natural isomorphisms π2
„
ÝÑ H2 in this sequence, and

because H2 is free and H1 “ 0, the sequence

H2pS2q ÐÝ H2pXqq ÐÝ H2pCP8q

is dual to the sequence

π2pS2q ÝÑ π2pXqq ÝÑ π2pCP8q.3

Since H2pS2q ÐÝ H2pXqq is dual to π2pS2q ÝÑ π2pXqq, it will be enough to understand the

homotopy class of a fiber inclusion σ : S2 ÝÑ X1, which factors as

S2 «
ÝÑ te0u ˆ S2 ãÝÝÑ S8 ˆ S2 ÝÝ�

{S1
X1.

3 In fact, although we do not need this fact, this last sequence is short exact. For of course π1pS2q “ 0. Now CP8

admits a decomposition as a union of one cell in each even dimension. Its 2-skeleton is S2, and the attaching map
of the 4-cell e4 is the Hopf map Be4 “ S3 ÝÑ S2. Any map S3 ÝÑ CP8 can be homotoped by cellularity into the
2-skeleton S2. Since π3pS2q is generated by the Hopf map, which is coned off by e4, it follows π3pCP8q “ 0 as well.
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Pick a point e0 P S1 Ĺ S3 Ĺ S8; for example, we can set e0 “ 1 P C Ĺ C8. Then

im σ “ S1 ˆ S2L
S1 Ĺ S3 ˆ S2L

S1 Ĺ X1.

Over z “ ˘1, then, σ1 is just the inclusion of the poles of S2 into CP8 as the class r1,~0s. The other

latitudes σpCzq are taken, under the homeomorphism pS8 ˆ Czq{„ ÝÑ S8 given by re, ss ÞÝÑ es,

to

σpCzq « S1 Ĺ S3 Ĺ S8.

We can conceive this S1 as the unit circle in the first C factor in C8 and S3 as the unit sphere in

the first two factors C2. It is harmless to think of the open subset z´1p´1{2, 1{2q as p´1{2, 1{2q ˆ S8.

Because π1pS3q “ 0, the restriction of σ to a loop S1 « C0 ÝÑ z´1t0u « S8 is nullhomotopic

in S3 Ĺ S8. Using such a nullhomotopy in S3, we can pinch the image under σ of the equator;

this is homotopy (a) of Figure 6.3.5. Then we can expand this “contracted segment” in such a

way that σpCzq is a circle for z R r´1{2, 1{2s, but the image σpCzq is the point j “ p0, 1q P S3 for

z P r´1{2, 1{2s; this is homotopy (b) of Figure 6.3.5. Thus the image of σ is now two spheres σ´1

and σ1 connected by a path.

Figure 6.3.5: Homotoping a representative of π2X1 into the end-caps t˘1u ˆCP8

Now that we have done so, we can continuously deform σ to a singular sphere σ1 such that

the interval of z-values such that σ1pCzq « pt is all of p´1, 1q, completing the homotopy (c) in

Figure 6.3.5. The image of σ1 will be the union of the interval p´1, 1q ˆ tju and of two spheres,

σ1´1 and σ11 comprising embedded CP1’s in the end-caps CP8.
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To see that this singular sphere σ1 is what we want, view σpCzq, for each ´1 ă z ă ´1{2, as

a subset of S3. The process of crushing σ1 down to σ11 « CP1, for each fixed z-coordinate circle

σpCzq, viewed as a subset of S3, is just the canonical projection

S3 ÝÝ� CP1,

pζ1, ζ2q ÞÝÑ rζ1, ζ2s “ pζ1, ζ2q ¨ S1.

The point σpC´1q is the class r1, 0s P CP2 Ĺ CP8, and the point σpC´1{2q is the quaternion j “

p0, 1q P S3, so σ1pC´1q “ r1, 0s and σ1pC´1{2q “ r0, 1s. The images σ1pCzq Ĺ CP1 for ´1 ă z ă ´1{2

are circles interpolating between these two poles, so σ1´1 ultimately can be seen as a degree-1

map S2 ÝÑ S2 “ CP1 Ĺ CP8. Similarly, one has σ1pC1{2q “ r0, 1s and σ1pC1q “ r1, 0s, so σ11 is a

degree-p´1q map S2 ÝÑ S2.

The Mayer–Vietoris sequence yields an isomorphism π2pCP8q‘2 „
ÝÑ H2pCP8q‘2 „

ÝÑ H2pX1q.

If we write x˚, y˚ P π2pCP8q‘2 for the dual generators to the generators x, y in H2pX1q, and v˚ P

π2pS2q for the dual to a generator v P H2pS2q, then we have just shown σ˚v˚ “ x˚ ´ y˚ P π2pX1q.

Thus

σ˚xv˚ “ xσ˚v˚ “ 1,

σ˚yv˚ “ yσ˚v˚ “ ´1,

so σ˚x “ v and σ˚y “ ´v.
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6.4. Weyl-invariants and the restricted action a maximal torus

In Appendix B.4, we pointed that the maximal torus of a compact, connected Lie group and its

Weyl group carry much of its algebraic structure. In this section, we show something similar the

same holds for the equivariant cohomology of an action of a compact, connected Lie group K

and the restricted action by that group’s maximal torus S. To do so, we use two results from

Chapter 7. One is Theorem 5.1.1, and the other is Section 7.4, which we will prove later. Later, in

Section 10.1, we will use the characterization in this section to obtain Theorem 10.1.4, one of this

dissertation’s major original results.

To start, we state a natural enhancement of the motivating observation Proposition 4.2.4 about

free homotopy quotients.

Lemma 6.4.1. Let K be a group, S a subgroup, and X and Y free K-spaces admitting a K-equivariant map

X ÝÑ Y. Then these diagrams commute:

XS //

»

��

XK

»

��

XK
» //

��

X{K

��
X{S // X{K, YK

» // Y{K;

so up to homotopy, XK ÝÑ YK is equivalent to X{K ÝÑ Y{K and XS ÝÑ XK to X{S ÝÑ X{K.

In this statement, the horizontal maps in the first square are the “further quotient” maps

rx, esS ÞÝÑ rx, esK : XˆEK
S ÝÝ� XˆEK

K and xS ÞÝÑ xK : X{S ÝÝ� X{K.

Definition 6.4.2. In the rest of this section, we let K be a compact, connected Lie group, S a

maximal torus, N “ NKpSq the normalizer of S in K, and W “ N{S the Weyl group of K.

Write K-Top for the category of topological spaces with continuous K-actions and K-equivariant

continuous maps, K-Free for the full subcategory of free K-actions, Q-CGA for the category of (ho-
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momorphisms between) graded commutative Q-algebras, and H˚
S -CGA for subcategory of graded

commutative H˚
S -algebras. Recall that the freeing functor X ÞÑ X ˆ EK of Section 4.2.3 taking a

right K-action to the diagonal action is a functor K-TopÑ K-Free.

Observation 6.4.3. Suppose K acts on the right on a space X. Then W acts on the right on the

orbit space X{S by xS ¨ nS “ xnS, and so on the cohomology H˚pX{Sq. Given a K-equivariant

map X ÝÑ Y, the induced map X{S ÝÑ Y{S is W-equivariant, so the map H˚pX{Sq ÐÝ H˚pY{Sq

is as well.

Lemma 6.4.4. Suppose a finite group W acts on spaces X and Y and there is a W-equivariant continuous

map X ÝÑ Y inducing a surjection H˚pXq ÝÝ�
ϕ

H˚pYq. Then the map H˚pXqW ÐÝ H˚pYqW is also

surjective.

Proof. The restriction to elements b P H˚pYqW has image in H˚pXqW by W-equivariance: if w ¨ b “

b for all w P W, then w ¨ ϕpbq “ ϕpw ¨ bq “ ϕpbq is invariant as well.

To see the restriction is surjective, let a P H˚pXqW . Then it has a preimage b P H˚pYq, not a

priori W-invariant. However, the W-average b̄ “ 1
|W|

ř

wPW w ¨ b certainly is, and by equivariance,

ϕpb̄q “ ā. Since a was assumed invariant, this average is just a again.

Lemma 6.4.5 (Leray, 1950). There is a natural isomorphism

H˚pX{Kq „
ÝÑ H˚pX{SqW

of functors pK-Freeqop ÝÑ Q-CGA.

Proof. The quotient map X{S ÝÑ X{K factors as

X{S ÝÑ X{N ÝÑ X{K.
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The factor X{S ÝÑ X{N is a regular covering with fiber W, which induces by Proposition B.3.1

an isomorphism H˚pX{Nq „
ÝÑ H˚pX{SqW . The fiber of the factor X{N Ñ X{K is K{N, and

H˚pK{Nq – H˚pK{Sq by Corollary 5.2.3.

Naturality follows because the diagram

X //

��

X{S //

��

X{N

��

// X{K

��
Y // Y{S // Y{N // Y{K

commutes and because, by Observation 6.4.3, the map X{S ÝÑ Y{S is W-equivariant.

This lemma makes available a natural phrasing of an important, well-known result [Hsi75,

Prop. III.1, p. 31].

Corollary 6.4.6. Let K be a compact, connected Lie group with maximal torus S. Then there are natural

isomorphisms of functors pK-Topqop ÝÑ H˚
K-CGA and pK-Topqop ÝÑ H˚

S -CGA respectively taking

H˚
KpXq

„
ÝÑ H˚

S pXq
W ,

H˚
S b

H˚K
H˚

KpXq
„
ÝÑ H˚

S pXq.

Proof. Note that XS is the composition of the freeing functor X ÞÑ EK ˆ X of Definition 6.4.2

and the orbit-space functor Z ÞÑ Z{S. Since the diagonal action on EK ˆ X is free, the first

isomorphism follows by Lemma 6.4.4.

Also note that ξ0 : BS ÝÑ BK is a pK{Sq-bundle. Because H˚pK{Sq is evenly-graded by Theo-

rem 5.1.1 and H˚
S is evenly-graded by Section 7.4, the E2 page of the spectral sequence associated

to ξ0 is concentrated in even rows and columns, meaning it collapses by Corollary 4.3.11 and so

the fiber inclusion K{S ãÝÝÑ BS is surjective on cohomology by Corollary 4.3.9.
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Recall from the beginning of Section 4.4 the category F-Bun{ξ0 of bundles over ξ0. The con-

struction p´qSãÑK : X ÞÝÑ pXS Ñ XKq is a functor K-Top ÝÑ F-Bun{ξ0; the bundle map XS ÝÑ BS

comes from the Borel fibration. Now the second isomorphism follows by Theorem 4.4.1.

Corollary 6.4.7. Let K be a compact, connected Lie group with maximal torus S and Weyl group W. Then

H˚pBKq – H˚pBSqW .

Proof. Take X “ pt in Corollary 6.4.6.

Remarks 6.4.8. (a) The results Lemma 6.4.5 and Corollary 6.4.6 are classical and very well known,

except that the naturality of these isomorphisms is never stated. This naturality is the key feature

that allowed us to use them to discover our original proof of Theorem 10.1.4, one of the main re-

sults of this work; knowing only that these isomorphisms exist abstractly without understanding

the relation between them does not suffice to prove the theorem.

(b) Lemma 6.4.5 can fail if there exist elements of H˚pX{S; kq annihilated by scalar multiplication

by |W|. For example, consider the action of G “ t˘1u Ĺ Rˆ by scalar multiplication on X “ S8 Ĺ

R8. Then X{G « RP8, and the maximal torus T is trivial, so WG “ G, and X{T “ X “ S8 again.

With Z coefficients, one finds

H˚pX{G;Zq – Zrc1s{p2c1q, deg c1 “ 2,

H˚pX{T;ZqWG “ H0pS8;ZqG “ Z.

Similarly, with F2 coefficients,

H˚pX{G;F2q – F2rw1s, deg w1 “ 1,

H˚pX{T;F2q
WG “ H0pS8;F2q

G “ F2.
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Historical remarks 6.4.9. Leray had proved a version of Lemma 6.4.5 for classical G [Ler49b] already

in 1949, and proved the general version in his Colloque paper [Ler51, Thm. 2.2]. The author is

indebted to Borel [Bor98] for guiding him to these references.



Chapter 7

The cohomology of Lie groups and classifying

spaces

In this chapter, we develop enough of the theory of the cohomology of Lie groups and homo-

geneous spaces to justify the theorems we use in the last few chapters and the preparations we

have made in the preceding ones. This beautiful story seems to be rarely taught nowadays, so

we take this opportunity to be a bit more discursive than otherwise we might. We start out with

k “ Z, retreating shamelessly to k “ Q when torsion rears its head. Importantly, though, if we

were willing to deal with such complications, we would not have to retreat; this is in contrast

with the earlier, Lie-algebraic methods with which this theory is typically developed which rely

essentially upon R-algebra structures and destroy torsion off the bat.

The rational cohomology of a compact Lie group G is as simple as anyone has any right

to expect, and this simplicity can be seen as caused either by the multiplcation on G or by the

existence of invariant differential forms (again a consequence of the multiplication). The Serre

spectral sequence will allow us to compute the rational cohomology of the classical groups, a

major achievement in the 1930s, in a few pages.

The Serre spectral sequence of G Ñ EG Ñ BG will allow us to compute the cohomology of

90
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the classifying spaces BG. This computation can be seen (perhaps ahistorically) as inspiring the

definition of the Koszul complex, and through it, the definition of Lie algebra cohomology.

Moreover, the Serre spectral sequence of G Ñ EG Ñ BG induces a machine, invented by

Borel in his thesis, for computing the cohomology of homogeneous spaces G{K. This machine

also inspires our definition of the Cartan algebra, another means to compute the cohomology of

a homogeneous space which simultaneously is the motivating example behind the Cartan model

for equivariant cohomology.

The Cartan algebra was one of the motivating examples behind the definition of minimal

models, which developed into a central tool of rational homotopy theory in the late 1960s. We

use one tool from rational homotopy theory, the algebra of polynomial differential forms, to

update Borel’s 1953 proof that the Cartan algebra computes the cohomology of a homogeneous

space.

We will cite general references for this material throughout the chapter, and diligently recount

historical origins when we know them. Proofs, however, unless explicitly noted otherwise, have

been dredged from the author’s own memories or created anew.

The innovation in our presentation of this chapter is that we are able to present the Cartan

algebra and its application in algebraic terms with essentially no use of the Lie algebra of G, of

the Lie derivative, or of connections, and without developing rational homotopy theory. Though

many sources cover this material in more or less detail [Colloque; And62; Ras69; GHV76; Oni94],

all of them rely on Lie-algebraic methods. Rational homotopy theoretic proofs of Cartan’s theo-

rem can be found in texts [FHT01; FOT08], as an application of a much more of a general theory

we for lack of space do not develop here. In fact, Cartan’s theorem was an early instance of and

an inspiration for such methods, as discussed for example by Hess [Hes99].
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7.1. The cohomology of the classical groups

Using the Serre spectral sequence, we can recover the main results of the 1930s on the cohomol-

ogy of Lie groups in a few pages. We start with Z coefficients, then abscond away to simpler

rings when it makes life easier.

7.1.1. Complex and quaternionic unitary groups

Note that Upnq acts by isometries on Cn, so that it preserves the unit sphere S2n´1. If we view

this action as a left action on the space Cnˆ1 of column vectors, the first column of an element

g of Upnq determines where it takes the standard first basis vector e1 “ p1,~0qJ P S2n´1, so the

stabilizer of e1 is the subgroup
»

—

—

–

1 ~0

~0J Upn´ 1q

fi

ffi

ffi

fl

of elements with first column e1, which we will identify with Upn ´ 1q. Since the first vector

of g P Upnq can be any element of S2n´1, the action of Upnq on S2n´1 is transitive, so the orbit–

stabilizer theorem yields a diffeomorphism Upnq{Upn´ 1q – S2n´1, which is in fact a fiber bundle

Upn´ 1q ÝÑ Upnq ÝÑ S2n´1.

Similarly, the action of Sppnq on Hn, preserving the unit sphere S4n´1, gives rise to a fiber bundle

Sppn´ 1q ÝÑ Sppnq ÝÑ S4n´1,
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and the action of Opnq on Rn, preserving Sn´1, gives rise to bundles

Opn´ 1q ÝÑOpnq ÝÑ Sn´1,

SOpn´ 1q ÝÑ SOpnq ÝÑ Sn´1.

The SSSs of these bundles allow us to recover the cohomology of the classical groups.

Proposition 7.1.1. The integral cohomology of the unitary group Upnq is given by

H˚
`

Upnq;Z
˘

– Λrz1, z3, . . . , z2n´1s, deg zj “ j.

This can be seen as saying that in the SSSs of the bundles (right angles down) in the diagram

Up1q //

„

��

Up2q //

��

Up3q //

��

¨ ¨ ¨

��

// Upnq //

��

Upn` 1q

��
S1 S3 S5 ¨ ¨ ¨ S2n´1 S2n`1,

(7.1)

the simplest possible thing happens, and the cohomology of each object is the tensor product of

those of the objects to the left of it and below it.

Proof. The proof starts with the case Up1q – S1, so that H˚pS1q – Λrz1s. Inductively assume

H
`

Upnq
˘

– Λrz1, z3, . . . , z2n´1s as claimed. We have a fiber bundle

Upnq ÝÑ Upn` 1q ÝÑ S2n`1,

where the cohomology of the fiber and base are known, so the impulse is to use Theorem 4.3.4.
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Since the cohomology of the fiber is free abelian by assumption, the E2 page is given by

E‚,0
2 b E0,‚

2 “ Λru2n`1s bΛrz1, z3, . . . , z2n´1s,

and the sequence is concentrated in columns 0 and 2n` 1. Since the bidegree of the differential

dr is pr, 1´ rq, the only differential that could conceivably be nonzero is d “ d2n`1, of bidegree

p2n` 1,´2nq.

Figure 7.1.2: The Serre spectral sequence of Upnq Ñ Upn` 1q Ñ S2n`1

.

.

.

2n´1 z2n´1 uz2n´1

.

.

.

5 z5 uz5

z1z3 uz1z3

3 z3 uz3

1 z1 uz1

0 1 u

0 ¨ ¨ ¨ 2n` 1

0

0

0

0

But this d sends the square E0,q
2n`1 “ Hq

`

Upnq
˘

in the leftmost column into the fourth quadrant,

so dzj “ 0 for all j. Because d satisfies the product rule and sends all generators of E2n`1 into the

fourth quadrant, it follows d “ 0. Thus E2 “ E8 “ Λrz1, z3, . . . , z2n´1, u2n`1s.

A priori, this is only the the associated graded algebra of H˚
`

Upn` 1q
˘

, but since E8 is an

exterior algebra, by Proposition A.5.10, there is no extension problem.

The same proof, applied to the bundles Sppn´ 1q Ñ Sppnq Ñ S4n´1 and starting with Spp1q «

S3, yields the cohomology of the symplectic groups.
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Proposition 7.1.3. The integral cohomology of the symplectic group Sppnq is given by

H˚
`

Sppnq;Z
˘

– Λrz3, z7, . . . , z4n´1s, deg zj “ j.

The diagram associated to this induction is

Spp1q //

„

��

Spp2q //

��

Spp3q //

��

¨ ¨ ¨

��

// Sppnq //

��

Sppn` 1q

��
S3 S7 S11 ¨ ¨ ¨ S4n´1 S4n`3,

(7.2)

The cohomology of the special unitary groups is closely related to that of the unitary groups.

Proposition 7.1.4. The integral cohomology of the special unitary group SUpnq is given by

H˚
`

SUpnq;Z
˘

– Λrz3, . . . , z2n´1s, deg zj “ j.

Proof. The determinant map yields a split short exact sequence

1 Ñ SUpnq ãÝÝÑ Upnq
det
ÝÝ� S1 Ñ 1; (7.3)

a splitting is given by z ÞÝÑ diagpz,~1q. This semidirect product structure means Upnq is topologi-

cally a product SUpnq ˆ S1, and it follows from the Künneth theorem B.2.2 that

H˚
`

SUpnq
˘

– H˚
`

Upnq
˘

LL

H˚pS1q “ Λrz1, z3, . . . , z2n´1s
L

pz1q “ Λrz3, . . . , z2n´1s.

The information we have accumulated makes it easy to cheaply acquire as well the cohomol-

ogy the complex and quaternionic Stiefel manifolds: the idea is just, in the diagram (7.1), to stop

before one gets to Up1q.
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Proposition 7.1.5. The integral cohomology of the complex Stiefel manifolds VjpCnq “ Upnq{Upn´ jq is

H˚
`

VjpCnq;Z
˘

“ Λrz2pn´jq`1, . . . , z2n´3, z2n´1s.

The integral cohomology of the quaternionic Stiefel manifolds VjpHnq “ Sppnq{Sppn´ jq is given by

H˚
`

VjpHnq;Z
˘

“ Λrz4pn´jq`3, . . . , z4n´5, z4n´1s.

Proof. The spectral sequences of the bundles (7.1) dealt with in Proposition 7.1.1 all collapsed at

the E2 page, so that in particular the maps H˚Upnq ÝÑ H˚Upn´ 1q are surjective and the iterated

map H˚Upnq ÝÑ H˚Upn´ jq is surjective by induction: explicitly, it is the projection

Λrz1, z3, . . . , z2pn´jq´1s bΛrz2pn´jq`1, . . . , z2n´1s ÝÝ� Λrz1, z3, . . . , z2pn´jq´1s,

with kernel pz1, z3, . . . , z2pn´jq´1q the extension of the augmentation ideal of the second factor.

One has more or less definitionally the fiber bundle

Upn´ jq ÝÑ Upnq ÝÑ VjpCnq, (7.4)

whose SSS collapses at E2 by Section 8.3.1 since we have just shown the fiber projection is sur-

jective. Thus the base pullback H˚VjpCnq ÝÑ H˚Upnq is injective and H˚VjpCnq is an exterior

subalgebra of H˚Upnq whose augmentation ideal extends to the kernel pz2pn´jq`1, . . . , z2n´1q of

the fiber projection. We see H˚VjpCnq can only be as claimed.

The proof for H˚VjpHnq is entirely analogous.
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7.1.2. Real difficulties

The degeneration of spectral sequences that occurs for unitary and symplectic fails for the orthog-

onal groups, because in the analogue of the iterated fiber decompostion (7.1) of the orthogonal

groups, one encounters spheres of adjacent dimension, which could lead to nontrivial differ-

entials. Indeed, this does lead to rather complicated 2-torsion, so we pass to simpler coefficient

rings. Even with this simplification, there seems to be a certain unavoidable difficulty in handling

H˚SOpnq, forcing case distinctions and a rather explicit calculation of a map of homotopy groups.

The proofs here are, in the author’s own opinion, cleaner and more scrutable than those in the

source material, but he would not claim they make an easy read. The reader could be forgiven

for skipping this section and resuming at Section 7.2, but it seemed right to say what could be

explained about H˚SOpnq with the tools already at hand.

To proceed, we require on a lemma [MT00, Cor. 3.13, p. 121] about the cohomology of a Stiefel

manifold V2pRnq. The proof here is a hybrid of Mimura and Toda’s and that in online notes by

Bruner, Catanzaro, and May [BCM]. Recall our notational conventions from Appendix A.3.2.

Lemma 7.1.6. The real Stiefel manifold V “ V2pRnq (for n ě 4) has

Hn´2pVq “

$

’

’

’

’

&

’

’

’

’

%

Z n even,

Z{2 n odd.

Proof. If we define V2pRmq :“ SOpmq{SOpm´ 2q as the set of pairs of orthogonal elements of Sm´1,

or equivalently nˆ 2 matrices with orthonormal columns, then projection to the first column is a

bundle map, yielding

Sm´2 ÝÑ V2pRmq ÝÑ Sm´1.
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The associated Serre spectral sequence is as in Figure 7.1.7, and it is clear the lone potentially

nonzero differential is Hn´2pSn´2q
d
ÝÑ Hn´1pSn´1q.

Figure 7.1.7: The differential dm´1 in the Serre spectral sequence of Sm´2 Ñ V2pRmq Ñ Sm´1

m´ 2 z uz

...

...

0 1 u

0 ¨ ¨ ¨ m´ 1

In particular, we have H jpVq “ 0 for j ă n ´ 2, and HjpVq as well by the universal coefficient

Theorem B.2.1. Since we have assumed n ě 4, it follows from the long exact homotopy sequence

of the bundle (Theorem B.2.4) that V is simply-connected, so by the Hurewicz Theorem B.2.6,

πn´2pVq – Hn´2pVq, and we can concern ourselves with this group instead. The long exact

homotopy sequence of Theorem B.2.4 contains the subsequence

πm´1pSm´1q
B
ÝÑ πm´2pSm´2q ÝÑ πm´2pVq ÝÑ πm´2pSm´1q

loooooomoooooon

0

,

showing πn´2pVq – coker B, so our task is now to identify im B.

Note that V “ V2pRmq admits a description as Opmq{Opm´ 2q as well as SOpmq{SOpm´ 2q.1

There is a natural map Sn´1 ÝÑ Opnq taking a unit vector v to the reflection rv in the hyperplane

of Rn orthogonal to v. Evidently rv “ r´v, so this map factors through RPn´1. Recall that we

1 The point is that we can extend any orthonormal 2-frame pv, wq P V2pRmq to g P Opnq, but we can also always
alter the last m´ 2 columns to put our representative in SOpnq. If m “ 3, multiply the last column by ´1; if m´ 2 ě 2,
transpose the last two columns.
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see Opn ´ 1q as the stabilizer of the standard first basis vector e1 “ p1,~0qJ of Rn under the

standard action pg, vq ÞÑ gv. The evaluation map p1 : g ÞÑ ge1 is “projection to first column,”

taking Opnq ÝÑ Sn´1. It factors through “projection to the first two columns,” which is a map

p2 : Opnq ÝÑ V2pRnq. Concatenating these maps yields a sequence

r
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

Sn´1 ÝÑ RPn´1 ÝÑ O

p1
hkkkkkkkkkkkikkkkkkkkkkkj

pnq ÝÑ
p2

V ÝÑ
q

Sn´1 .

The composition is given by p1rpvq “ p1prvq “ rvpe1q.

Let Dn´1 “ tv P Sn´1 : v ¨ e1 ě 0u be the northern hemisphere and Sn´2 “ BDn´1 the equator,

those unit vectors perpendicular to e1. We claim r takes the equator Sn´1 ÝÑ Opn ´ 1q and

p1r takes the interior D̊n´1 homeomorphically onto Sn´1zte1u. For the first claim, if v P Sn´1 is

perpendicular to e1, then e1 in is in the hyperplane fixed by rv, so prpvq “ rvpe1q “ e1. That means

the first column of rv is e1, so by definition rv P Opn´ 1q.

For the second claim, let v P D̊n´1. If v “ e1, then re1pe1q “ ´e1, and otherwise v and e1

together span a 2-plane which cuts Sn´1 in a circle and vK in a line, and prpvq “ rvpe1q lies

in this plane. See Figure 7.1.8. Since pr preserves these circles, it is be enough to show that

the restriction of pr to each open upper semicircle is injective, and this is the case because if

>pe1, vq “ θ P p´π{2, π{2q, then >
`

rvpe1q,´e1
˘

“ 2θ.

Figure 7.1.8: The reflection of e1 through vK

v
e1

v

(  ) rv e1

e1–

–θ
π
–
2

–θ
π
–
2

2θ

θ
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The restriction of p1r to Dn´1 is then a map of pairs

pDn´1, Sn´2q
ι
ÝÑ pV, Sn´2q

q
ÝÑ pSn´1, ptq

which is a homeomorphism on D̊n´1, so the composition qι represents a generator of the relative

homotopy group πn´1pSn´1, ptq – πn´1pSn´1q. Since the map of pairs q : pV, Sn´2q ÝÑ pSn´1, ptq

induces the isomorphism of relative homotopy groups that translates the long exact homotopy

sequence of a pair into that of a bundle, it follows the restriction χ “ pι æ Sn´2q represents a

generator of im B.

We can understand χ as the restriction of r to Sn´2 followed by projection to the second

column (since the target Sn´2 Ĺ V is the fiber of V Ñ Sn´1 over e1). Because any v P Sn´3 is

perpendicular to both e1 and e2, the reflection rv will leave the first two coordinates invariant and

so be in Opn´ 2q. Thus p2rpS3q “ pt. Since rv “ r´v, the same argument as for p1r shows that

p2r takes the interiors of both north and south hemispheres homeomorphically onto Sn´2zpt, so

restrictions to these hemispheres are maps

τ˘ : pDn´2, Sn´2q ÝÑ pSn´2, ptq

representing generators of πn´2pSn´2, ptq – πn´2pSn´2q such that rχs “ rτ`s ` rτ´s. These gener-

ators are closely related: τ´ “ τ` ˝ α, where

α : Sn´2 ÝÑ Sn´2,

v ÞÝÑ ´v,

is the antipodal map. Since α is the composition of n´1 reflections in Rn´1, it is of degree p´1qn´1,
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so that rχs “ Brιs is sn :“ ˘
`

1` p´1qn´1
˘

times a generator of πn´2pSn´2q. Since seven “ ˘2 and

sodd “ 0, the group πn´2pVq – Z{snZ is as claimed.

Remark 7.1.9. Since V2pRnq is the set of pairs pv, wq with v P Sn´1 and w K v, it can be seen as the

set of unit vectors in the tangent bundle TSn´1. This is a Sn´2-bundle associated to a principal

SOpn´ 1q-bundle, and it can be shown that the image of the element 1 of the fiber cohomology

group Z “ Hn´2pSn´2q in the base cohomology group Hn´1pSn´1q “ Z is the Euler class of this

bundle (see Section 7.7); the fact that this number alternates between zero and two can be seen

as a reflection of the fact that the Euler characteristics (Appendix A.3.2) of spheres obey the rule

χpSnq “ 1` p´1qn.

Corollary 7.1.10. The nonzero integral cohomology groups of the real Stiefel manifold V “ V2pRnq are

H0pVq – H2n´3pVq – Z, Hn´2pVq “

$

’

’

’

’

&

’

’

’

’

%

Z n even,

0 n odd,

Hn´1pVq “

$

’

’

’

’

&

’

’

’

’

%

Z n even,

Z{2 n odd.

In particular, the differential Hn´2pSn´2q
d
ÝÑ Hn´1pSn´1q shown in Figure 7.1.7) is zero if n is even and

multiplication by 2 if n is odd. The mod 2 cohomology ring of V is

H˚pV;F2q – Λrvn´2, vn´1s

Proof. If n is even, we have πn´2pVq “ Hn´2pVq infinite cyclic from Lemma 7.1.6, so by universal

coefficients, Hn´1pVq is also free abelian, and it follows d “ 0 and Hn´2pVq – Z.

If n is odd, we have Z{2 – πn´2pVq “ Hn´2pVq, so by universal coefficients, Hn´2pVq “ 0 and

Hn´1pVq is the sum of Z{2 and a free abelian group. But Hn´1pVq is cyclic, since it is coker d, so

we have Hn´1pVq – Z{2.
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As for the modulo 2 case, we have 2 ” 0 pmod 2q, so the map d is always zero and the SSS

collapses. There is no extension problem simply by a dimension count.

The main point of this argument, for us, is that the map d is trivial for n even and an isomor-

phism over Zr1
2 s if n is odd. In the mod 2 case, these differentials are all zero, so we can induct

up with spheres rather than V2pRnqs.

Corollary 7.1.11. The mod 2 cohomology ring of V “ VjpRnq has a simple system vn´1, . . . , vn´j of

generators (see Definition A.3.4), where deg vi “ i. That is,

H˚pV;F2q “ ∆rvn´1, vn´2, . . . , vn´js.

Proof. We fix n and prove the result by induction on j P r1, ns. For j “ 1, the result is just

H˚pSn´1q “ Λrvn´1s. Suppose by induction the result holds for Vj´1pRnq and the Serre spectral

sequence of Sn´pj´1q Ñ Vj´1pRnq Ñ Vj´2pRnq collapses at E2. Then the E2 page of the Serre

spectral sequence of Sn´j Ñ VjpRnq ÝÑ Vj´1pRnq is (additively)

E2 “ ∆rvn´1, . . . , vn´pj´1qs b ∆rvn´j´1s,

so the induction will go through if and only if E2 “ E8 in this spectral sequence as well. The only

potentially nontrivial differential is dn´pj´1q, which vanishes on the base ∆rvn´1, . . . , vn´pj´1qs and

so is determined by the map

Hn´j´1pSn´j´1q
dn´j`1
ÝÝÝÝÑ Hn´j`VjpRnq

˘

indicated in Figure 7.1.12.
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Figure 7.1.12: The Serre spectral sequence of Sn´j Ñ VjpRnq Ñ Vj´1pRnq over F2

n´ j vn´j

0 n´ j` 1 n´ 1

vn´j

...

0 1 ¨ ¨ ¨ ¨ ¨ ¨ vn´j`1 ¨ ¨ ¨ vn´1

0 ?

To see this map is zero, we identify it with the analogous differential in the Serre spectral se-

quence of Sn´j Ñ V2pRn`2´jq Ñ Sn`1´j, which we already know to be zero by Corollary 7.1.10.

To do that, consider the following commutative diagram:

Sn´j

��

Sn´j

��
V2pRn`2´jq //

��

VjpRnq

��

// Vj´2pRnq

Sn`1´j // Vj´1pRnq // Vj´2pRnq.

Each row and column is a bundle, and the bundle projections are of the form “consider the first

few vectors”; for example, the map VjpRnq Ñ Vj´2pRnq simply forgets the last two vectors of a

j-frame on Rn, and the fiber over a pj´ 2q-frame is the set of 2-frames orthogonal to those j´ 2

vectors in Rn, and so is a V2pRn´j`2q.

The map of columns induces a map pψrq of spectral sequences from pEr, drq to the spectral

sequence p1Er, 1drq of the left column, which collapses at 1E2. The bottom row is the bundle whose

Serre spectral sequence we inductively assumed collapses, so ψn`1´j : Hn`1´j
`

Vj´1pRnq
˘

ÝÑ
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Hn`1´jpSn`1´jq is an isomorphism. The relation

0 “ 1dn`1´jψn`1´j “ ψn`1´jdn`1´j

then ensures dn`1´j “ 0 and we have collapse.

Taking j “ n´ 1 yields the result we really were after.

Corollary 7.1.13. The mod 2 cohomology ring of the special orthogonal group SOpnq has a simple system

v1, . . . , vn´1 of generators:

H˚
`

SOpmq;F2
˘

“ ∆rv1, v2, . . . , vn´1s,

where F2tvn´1u is the image of Hn´1pSn´1q ÝÑ Hn´1
`

SOpnq
˘

.

Remark 7.1.14. We used the induction Sn´j Ñ VjpRnq Ñ Vj´1pRnq to pick up the cohomology of

the Stiefel manifolds along the way to that of SOpnq. We could also have inducted the other way,

using

SOp2q //

„

��

SOp3q //

��

SOp4q //

��

¨ ¨ ¨

��

// SOpnq //

��

SOpn` 1q

��
S1 S2 S3 ¨ ¨ ¨ Sn´1 Sn,

in analogy with (7.1). Then the task is to show that the differential Hn´1
`

SOpnq
˘

ÝÑ HnpSnq is

zero. We can still use the collapse of the Serre spectral sequence of Sn´1 Ñ V2pRn`1q Ñ Sn to do

this; the relevant bundle map is

SOpnq

��

// Sn´1

��
SOpn` 1q

��

// V2pRn`1q

��
Sn Sn.
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The induction is substantially subtler over Z or even over k “ Zr 1
2 s, because the differentials

no longer must be trivial. We can use the real Stiefel manifolds V2pRnq – SOpnq{SOpn ´ 2q as

building blocks now, though, the same way we used spheres before:

¨ ¨ ¨ // SOpn´ 4q

��

// SOpn´ 2q //

��

SOpnq

��
V2pRn´4q V2pRn´2q V2pRnq.

(7.5)

Proposition 7.1.15. Let 2n ` 1 ě 3 be an odd integer and 2j ă 2n ` 1 an even integer. Then taking

coefficients in k “ Zr1
2 s, we have

H˚
`

SOp2n` 1q
˘

– Λrz3, z7, . . . , z4n´1s, deg z4i´1 “ 4i´ 1.

H˚
`

V2jpR2n`1q
˘

– H˚
`

SOp2n` 1q
˘
MM

H˚
`

SOp2n´ 2j` 1q
˘

– Λrz4pn´jq`3, . . . , z4n´1s.

Proof. By Corollary 7.1.10, we have H˚
`

V2pR2j`1q
˘

“ Λrz4j´1s, so the objects in (7.5) have the

same cohomology as those in (7.2) which yielded the same structure (over Z) for H˚
`

Sppnq
˘

. The

result for H˚
`

VjpRnq
˘

follows as in Proposition 7.1.5.

To recover V2j´1pR2nq, consider the map of bundles

V2j´2pR2n´1q

��

V2j´2pR2n´1q

��
V2j´1pR2nq //

��

V2jpR2n`1q

��

// S2n

S2n´1 // V2pR2n`1q // S2n.

The Serre spectral sequence of the middle column collapses at E2 by an elaboration of our calcu-
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lation above.2 Thus we can use the bundle lemma Theorem 4.4.1 to conclude

H˚
`

V2j´1pR2n´1q
˘

– Λre2n´1s b
Λrz4n´1s

Λrz4pn´jq`3, . . . , z4n´1s “ Λre2n´1s bΛrz4pn´jq`3, . . . , z4n´5s.

Taking n “ j, we recover H˚
`

SOp2nq
˘

.

Proposition 7.1.16. Let 2n ě 2 be an even integer and 2j´ 1 ă 2n odd. Then

H˚
`

V2j´1pR2nq
˘

– Λre2n´1s bΛrz4pn´jq`3, . . . , z4n´5s,

where deg zi “ i and deg e2n´1 “ 2n´ 1. In particular,

H˚
`

SOp2nq
˘

– Λre2n´1s bΛrz3, . . . , z4n´5s.

We can state the result for SOpmq more uniformly as follows:

Corollary 7.1.17. Over k “ Zr1
2 s, the cohomology ring of SOpmq is

H˚
`

SOpmq;Zr1
2 s
˘

“

$

’

’

’

’

&

’

’

’

’

%

Λrz3, z7, . . . , z4n´5s bΛre2n´1s, m “ 2n,

Λrz3, z7, . . . , z4n´5s bΛrz4n´1s, m “ 2n` 1,

where k ¨ e2n´1 is the image of H2n´1pS2n´1q ÝÑ H2n´1
`

SOp2nq
˘

.

2 The relevant bundle map is this:

SOp2n´ 2j` 1q // SOp2n´ 1q //

��

V2j´2pR2n´1q

��
SOp2n´ 2j` 1q // SOp2n` 1q // V2jpR2n`1q.

Both rows yield tensor decompositions in cohomology, and the fiber inclusion SOp2n´ 1q ÝÑ SOp2n` 1q is surjective
in cohomology with kernel pz4n´1q, so the same holds of the right-hand map we are interested in.
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To get the cases V`pRmq where ` ” m pmod 2q, we can use the Serre spectral sequence of

Sm´` ÝÑ V`pRmq ÝÑ V`´1pRmq.

as we did in Corollary 7.1.11. The E2 page is H˚
`

V`´1pRmq
˘

b ∆rsm´`s, and the only potentially

nonzero differential is dm´``1 which is determined by a map d : Hm´`pSm´`q ÝÑ Hm´``1
`

V`´1pRmq
˘

.

By the last two propositions, the ring H˚
`

V`´1pRmq
˘

is an exterior algebra on generators of de-

gree at least 2m´ 2`` 3 if m is odd, and at least m´ 1 if m is even. In the former case, d is zero

by lacunary considerations. In the latter, ` ě 2 since it is of the same parity as m, so we have

m ´ ` ` 1 ď m ` 1, with equality if and only if ` “ 2. Thus, if ` ą 2, then d “ 0 by lacunary

considerations, and if ` “ 2, then we showed d “ 0 in Corollary 7.1.10. So no matter what, the

sequence collapses at E2, so by Proposition A.4.4, we have

H˚
`

V`pRmq
˘

– H˚
`

V`´1pRmq
˘

b ∆rsm´`s

whenever m ” ` pmod 2q.

To compile these cases into one statement, we introduce some notation. Let S be a free k-

module or basis thereof and ϕ a proposition whose truth or falsehood is easily verifiable. We

write

Λ
“

tS : ϕu
‰

“

$

’

’

’

’

&

’

’

’

’

%

ΛrSs if ϕ is true,

k otherwise.

Then, gathering cases and doing some arithmetic on indices, we arrive at the following.

Proposition 7.1.18 ([BCM, Thm. 2.5]). The cohomology of the real Stiefel manifold V`pRmq with coeffi-



Chapter 7. The cohomology of Lie groups and classifying spaces 108

cients in k “ Zr1
2 s is given by

H˚
`

V`pRmq
˘

– Λrz4j´1 : 2m´2``1 ď 4j´1 ď 2m´3s b Λrem´1 : m evens b ∆rsm´` : m´ ` evens.

Remark 7.1.19. The author found the useful notation for abbreviating case distinctions in Propo-

sition 7.1.18 in the notes by Bruner, Catanzaro, and May [BCM]. Both Mimura and Toda [MT00,

Thm. III.3.14, p. 121] and Félix, Oprea, and Tanré [FOT08, Prop. 1.89, p. 84] have misprints in

their statements of the result Proposition 7.1.18 where the (even, even) case is omitted and an-

other case repeated twice with different results. For example, Mimura and Toda list two noniso-

morphic rings for the case (odd, odd). For those keeping score, the misprint in [FOT08] is also

nonisomorphic to the misprint in [MT00].

It is standard to discuss along with SOpnq its simply-connected double cover Spinpnq.

Proposition 7.1.20. The cohomology of Spinpnq for n ě 2 satisfies

H˚
`

Spinpnq;Zr1
2 s
˘

– H˚
`

SOpnq;Zr1
2 s
˘

.

Proof. Since π : Spinpnq ÝÑ SOpnq is a connected double cover and 2 is invertible, the isomor-

phism follows immediately from Corollary B.3.2.

Finally, we will relate without proof the multiplicative structure of H˚SOpnq and H˚Spinpnq

with F2 coefficients. The standard proofs invoke Steenrod squares, a technology we have not

developed here and which we have made the decision (somewhat arbitrarily, given the length of

this thesis) lies too far afield.
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Proposition 7.1.21. The mod 2 cohomology of SOpnq for n ě 2 is given by

H˚
`

SOpnq;F2
˘

“ F2rv1, . . . , vn´1s{a,

where the ideal a is generated by the relations

v2
i ”

$

’

’

’

’

&

’

’

’

’

%

v2i, 2i ă n,

0, 2i ě n.

Ridding ourselves of excess generators, we can write

H˚
`

SOpnq;F2
˘

“ F2rv1, v3, . . . , vtn{2u´1s{b,

where b is the truncation ideal pvrn{is
i q generated by the least powers of vi of degree exceeding n´ 1.

The mod 2 cohomology of Spinpnq admits a simple system of generators containing an element z of

degree 2rlog2 ns ´ 1 and generators vj for each j P r1, n´ 1s which is not a power of 2:

H˚
`

Spinpnq;F2
˘

“ ∆
“

z
2rlog2 ns´1

, vj : 1 ď j ă n, j ‰ 2r‰.

Historical remarks 7.1.22. The lemma 7.1.6 is due to Eduard Stiefel [Sti41], also the namesake of the

Stiefel manifolds and the Stiefel–Whitney classes. A comprehensive account of this material, also

including explicit computations for the cohomology of the exceptional groups, can be found in

the much recommended book of Mimura and Toda [MT00]. As an indication of the nontriviality

of computing H˚SOpnq, even with easier coefficient rings. we point out that while the cohomol-

ogy ring H˚
`

SOpnq; k
˘

for k a field follows immediately from what we have done in this section

and extracting the additive structure of the integral cohomology is not hard afterward, describing



Chapter 7. The cohomology of Lie groups and classifying spaces 110

the integral cohomology ring from this data is a nontrivial problem which was seemingly only

fully resolved in 1989 [Pit91].

7.2. The rational cohomology of Lie groups

All the cohomology rings of classical Lie groups, over sufficiently simple coefficient rings k,

become exterior algebras, and one might wonder whether this holds over Lie groups in general.

It has been known since the 1930s that it does, due to work of Heinz Hopf exploiting a natural

algebraic structure in the (co)homology of a topological group, a development that essentially

reduced the study of Lie group cohomology to obtaining torsion information and collating it

back into integral cohomology.

We begin by isolating the essential feature of topological groups for our purposes.

Definition 7.2.1. An H-space3 is a topological space G equipped with a continuous product map

µ : Gˆ G ÝÑ G containing an element e P G neutral up to homotopy: we demand g ÞÝÑ µpe, gq

and g ÞÝÑ µpg, eq be homotopic to idG.

Such a map induces a coproduct in cohomology, the composition

H˚pGq
H˚pµq
ÝÑ H˚pGˆ Gq ÝÑ H˚pGq b H˚pGq,

where the second map arises through the Künneth theorem. We denote the coproduct by µ˚.

Because H˚pµq and the Künneth map are maps of graded k-algebras, it follows µ˚ is a graded

algebra homomorphism, and that if x P HnpGq, then µ˚pxq P
À

H jpGq b Hn´jpGq.

Suppose as well that G is connected. We know µp´, eq » idG; diagrammatically, this is the

homotopy-commutative triangle below on the left, and taking cohomology whilst being casual

3 The choice ofH, due to Serre, is in honor of Heinz Hopf.
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about Künneth maps yields the commutative diagram on the right.

G « //

id
))

Gˆ teu i // Gˆ G

µ

��
G

H˚pGq H˚pGq b H0pGq„oo H˚pGq b H˚pGq
H˚piqoo

H˚pGq
id

kk

H˚pµq

OO

This means the component of µ˚pxq lying in HnpGq b H0pGq is x b 1. The same argument run

with the identity µpe,´q » idG yields the component 1b x in H0pGq b HnpGq. So

µ˚pxq “ 1b x` xb 1`
ÿ

pdeg ě 1q b pdeg ě 1q.

Recall that the cup product ! : H˚pGq ˆ H˚pGq ÝÑ H˚pGq is induced in a similar way by the

diagonal map ∆ : G ÝÑ GˆG taking g ÞÝÑ pg, gq; to wit, it can be understood as the composition

H˚pGq b H˚pGq ÝÑ H˚pGˆ Gq ∆˚
ÝÑ H˚pGq.

As ∆ and µ admit some relations on a topological level, we recover some cohomological identities.

Trivially but importantly, µ ˆ µ is a map
ś4 G ÝÑ

ś2 G taking the quadruple px, y, x, yq to

the pair
`

µpx, yq, µpx, yq
˘

“ p∆ ˝ µqpx, yq. If we write τ : G ˆ G ÝÑ G ˆ G for the transposition

switching the first and second coordinates, then px, y, x, yq “ pidˆτ ˆ idqpx, x, y, yq “ pidˆτ ˆ

idqp∆ˆ ∆qpx, yq, so that

∆ ˝ µ “ pµˆ µq ˝ pidˆτˆ idq ˝ p∆ˆ ∆q. (7.6)

Taking the cohomology of (7.6), being casual with Künneth maps again, and recalling the sign

conventions for a tensor product of CGAs, one finds that for all homogeneous a, b P H˚pGq,

µ˚pabq “ µ˚paqµ˚pbq,
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so that µ˚ : H˚pGq ÝÑ H˚pGq b H˚pGq is a ring homomorphism. All this inspires the following

definition.

Definition 7.2.2. A Hopf algebra over k is a graded (not necessarily associative) k-algebra A such

that A0 – k equipped with an algebra homomorphism µ˚ : A ÝÑ Abk A such that

µ˚paq ” 1b a` ab 1
`

mod rAb
k
rA
˘

for each homogeneous a P A. (Here rAC A is the augmentation ideal
À

iě1 Ai – A{A0 of elements

of positive degree, as defined in Appendix A.3.)

What we have shown is that, given an H-space G, its cohomology ring H˚pGq is naturally a

commutative, associative Hopf algebra. The presence of the coproduct imposes severe constraints

on the algebra structure, especially with regard to algebra generators. [Hat02, Prop. 3C.4, p. 285]

Here is Hopf’s powerful structure theorem.

Theorem 7.2.3 (Hopf, char k “ 0: Hopf’s theorem [Hop41, Satz I, p. 23] ; Borel, char k ą 0). Let k

be a field and A a commutative, associative Hopf algebra over k such that dimk An is finite for all n. As

an algebra,

• if char k “ 0, then A is a free k-CGA,

• if char k “ 2, then A – ΛV for an oddly-graded vector space V,

• if char k “ p ą 2, then A is the tensor product of a free k-CGA and truncated symmetric algebras

krαs{pαpj
q, where α is even-dimensional.

Proof [Hat02, p. 285]. We prove the result for char k “ 0 by induction on the number n of algebra

generators, starting with n “ 0 so the result is trivial. Inductively suppose we have shown the

result for n generators and A is generated by n` 1. Order these algebra generators x1, . . . , xn, y by
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weakly increasing degree, and let A1 be the subalgebra generated by x1, . . . , xn. This is actually a

Hopf subalgebra, for µ˚pxjq “ 1b xj ` xj b 1` pdeg ă |y|q, so the last term cannot involve y, and

must lie in A1. Since µ˚ is an algebra homomorphism, we must have µ˚pA1q ď A1 b A1. Because

A is a CGA generated by A1 and x, there is a surjective k-algebra homomorphism

A1 bΛrys ÝÝ� A if |y| is odd,

A1 b Srys ÝÝ� A if |y| is even.

To see A is free, it is enough to prove these maps are injective.

If |y| is odd, suppose a` by “ 0 in A, where a, b P A1. Then 0 “ µ˚pa` byq P Ab A projects

under Ab A ÝÝ� Ab pA {{ A1q to

0 “ ab 1` pbb 1qpyb 1` 1b yq “ pa` by
loomoon

0

q b 1` bb y “ bb y.

This can only be zero if b is, but then 0 “ a` 0y, so a “ 0 and our relation was trivial.

If |x| is even, we instead have to deal with a potential nontrivial relation
ř

ajyj “ 0 with

aj P A1. Assume the degree in y of this polynomial is minimal among nontrivial relations, and

consider the image of 0 “ µ˚
ř

ajyj P Ab A under the projection to Ab A{p rA1, y2q – Ab ∆rys.

Remembering that the aj and y2 map to 0 in the second tensor factor, we see the image is

0 “
ÿ

paj b 1qpyb 1` 1b yqj “
ÿ

ajyj
loomoon

0

b 1`
ÿ

ajyj´1 b y.

We must then have
ř

ajyj´1 “ 0, contradicting the minimality of our relation
ř

ajyj “ 0.

Corollary 7.2.4. Let G be a compact, connected Lie group. Then H˚pG;Qq is an exterior algebra.
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Proof. We already know generates H˚pGq is a free k-CGA, say on V. If V contained any even-

degree elements, then by the theorem, HnpGq would be nontrivial for arbitrarily large n; but it

cannot be, because G is a finite-dimensional CW complex. So V is oddly graded and H˚pGq –

ΛV.

Corollary 7.2.5. Let G be a Lie group and G Ñ E Ñ B a principal G-bundle and suppose H˚pEq ÝÑ

H˚pGq surjects and k is a field of characteristic zero. Then there exists a k-CGA isomorphism

H˚pEq – H˚pBq b H˚pEq.

Proof. By Corollary 4.3.9, one has an H˚pBq-module isomorphism H˚pEq – H˚pBq b H˚pGq. By

Corollary 7.2.4, H˚pGq is a free k-CGA, so by Proposition A.4.4, a lifting of H˚pEq ÝÝ� H˚pGq

induces a ring isomorphism H˚pBq b H˚pGq „
ÝÑ H˚pEq.

We can do a bit better in identifying the generators of H˚pGq.

Definition 7.2.6. We call x primitive if µ˚pxq “ 1b x` xb 1. Write

PA “ tx P A : x is primitiveu

for the primitive subspace and grade this space by PrA “ PAX Ar. Note that the only primitive

in A0 – k can be the identity so that P0A “ 0 and PA is contained in the augmentation ideal rA.

If A “ H˚pGq is the cohomology ring of an H-space G, we abbreviate PG :“ PH˚pGq. Another

way to phrase the definition is to say that PA is the kernel of the k-linear homomorphism

ψ : A ÝÑ Ab A,

x
ψ
ÞÝÑ µ˚pxq ´ p1b x` xb 1q.
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There is a natural k-linear composite map

PpAq ãÝÝÑ rA ÝÝ� rA{ rA rA “: QpAq

linking primitives and indecomposables (for which, see Appendix A.3.2), which is an isomor-

phism in the case we care about.

Proposition 7.2.7 (Milnor–Moore). Let A be a commutative, cocommutative Hopf algebra finitely gen-

erated as an algebra over a field k. Then this canonical map takes PpAq „
ÝÑ QpAq. In particular, A is

generated by primitive elements.

Proof. The strong statement is more than we need, but we will prove the result in the case A is a

coassociative Hopf algebra over a field k of characteristic ‰ 2 with underlying algebra an exterior

algebra, following Mimura and Toda [MT00, p. 369] for injectivity; this weaker version is due to

Hopf and Samelson. Write A “ ΛV, for V an oddly-graded vector space. That V „
ÝÑ QpAq is

clear, so we just need to show V can be chosen such that PpAq “ V.

Pick a basis X of V. By anticommutativity, a basis of ΛV is given by monomials y “ x1x2 ¨ ¨ ¨ xn

with xi P X of weakly increasing degree. If n ą 1, then we have

µ˚pyq “
ź

µ˚pxiq “
ź

`

x1 b 1` 1b xi ` p¨ ¨ ¨ q
˘

“ 1b y` rx1 b x2 ¨ ¨ ¨ xns `
ÿ

ab b,

where none of the terms ab b have a P Qx1. It follows the term x1 b x2 ¨ ¨ ¨ xn doesn’t cancel, and

thus µ˚pyq ‰ yb 1` 1b y, so PpAq ď V.

For the other containment, we induct on dim V. Assume the result is proved for n, and that

dim V “ n ` 1. Arrange a homogeneous basis x1, . . . , xn, y of V in weakly increasing degree.

By induction, V1 “ Qtx1, . . . , xnu, where we may choose xj primitive, and it remains to show
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y is. Since each xj is primitive, we have µ˚pxjq ď Λrxjs bΛrxjs for each j, so the coproduct µ˚

descends to a coproduct µ˚ on ΛV {{Λrxjs, and since this is an exterior algebra on n generators,

by induction, we have µ˚pyq “ 1b y` yb 1 in this quotient, so back in ΛV bΛV, the difference

ψpyq :“ µ˚pyq´ p1b y` yb 1q lies in the ideal pxjb 1, 1b xjq. Varying j, we see ψpyq lies in the the

intersection of all these ideals. If we write xI :“
ś

iPI xi, this intersection ideal is that generated

by the tensor products xI b xJ such that I > J “ t1, . . . , nu is a partition. In fact, since by definition

ψpyq P rAb rA, it lies in the ideal generated by xI b xJ with neither I nor J empty. We are then

done unless |y| “
řn

i“1 |xi|, so assume this equality holds. Then since ψpyq is homogeneous and

the generating elements xI b xJ already have the right degree, we can write

ψpyq “
ÿ

I>J“t1,...,nu

aI,J xI b x J

for some scalars aI,J P k.

The fact that pµ˚ b idqµ˚ “ pidb µ˚qµ˚, the coassociativity of A, follows for H˚pGq from the

associativity of the multiplication on G. It is not hard to see this is equivalent to the condition

pψb idqψ “ pidbψqψ. Applying this equation to y we obtain

ÿ

aI,JψpxIq b xJ “
ÿ

aI,J xI b ψpxJq,

where the sum runs over parititions I > J “ t1, . . . , nu with I ‰ ∅ ‰ J. These equations expand to

ÿ

aI,J
ÿ

I1,I2

xI1 b xI2 b xJ “
ÿ

aI,J
ÿ

J1,J2

xI b xJ1 b xJ2 ,

where I > J “ t1, . . . , nu as before and in the sums on either side, one has I1 > I2 “ I and J1 > J2 “ J,

and I, J, I1, I2, J1, J2 ‰ ∅. Fix a partition I1 > I2 > J “ t1, . . . , nu. The coefficients of xI1 b xI2 b xJ
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on the left-hand side and the right, which must consequently be equal, are aI,J and aI1,I2>J . These

equalities show all aI,J are equal to some single scalar a P k, so

ψpyq “ a
ÿ

I,J‰∅
xI b xJ “ aψpx1 ¨ ¨ ¨ xnq,

or ψpy´ ax1 ¨ ¨ ¨ xnq “ 0. Thus x1, . . . , xn, y´ ax1 ¨ ¨ ¨ xn is a set of primitive generators of A.

Remark 7.2.8. An analogous result holds in characteristic 2 with the weaker assumption on A that

it not necessarily be an exterior algebra, but merely admit a simple system of generators (see

Definition A.3.4). The proof is correspondingly much more difficult.

We will later need as well the fact that a map of H-spaces induces a map of primitives in

cohomology.

Proposition 7.2.9. Let φ : K ÝÑ G be a homomorphism of H-spaces. Then the map φ˚ : H˚pGq ÝÑ

H˚pKq in cohomology takes PG ÝÑ PK.

Proof. To ask a linear homomorphism φ be multiplicative is precisely to require µG ˝ pφˆ φq “

φ ˝ µK. In cohomology, then, if z P PG is primitive, we have

µ˚Kφ˚z “ pφ˚ b φ˚qµ˚Gz “ pφ˚ b φ˚qp1b z` zb 1q “ 1b φ˚z` φ˚zb 1.

There is a further theorem determining dim PG.

Theorem 7.2.10 (Hopf [Hop40, p. 119]). Let G be a compact, connected Lie group and T a maximal

torus. Then the total Betti number h‚pGq “ 2dim T.

Proof [Sam52]. By the preceding theorem, H˚pG;Qq is an exterior algebra, so from Appendix A.3.2

we see h‚pGq “ 2l for some l P N. To see that l “ dim T, consider the squaring map s : g ÞÝÑ g2
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on G. Since s “ µ ˝ ∆, it follows that for a primitive a P H˚pGq one has

s˚a “ ∆˚µ˚a “ ∆˚p1b a` ab 1q “ 1 ! a` a ! 1 “ 2a,

so if rGs P Hdim GpGq is the fundamental class, the product of l independent primitives, one

has s˚rGs “ 2lrGs. Thus the degree of s is 2l . On the other hand, restricting to the abelian

subgroup T – pR{Zqn, it is easy to see the s-preimage of a generic element of T contains 2dim T

points, which, since s is orientation-preserving, should each be counted with multiplicity 1. By

a standard theorem on degree [Hat02, Ex. 3.3.8, p. 258] we then know 2dim T “ deg s “ 2l , so

l “ dim T.

The only reason we cite Samelson’s recounting of Hopf’s proof is that the report it is taken

from is already in English. These results also let us obtain a classical topological fact usually

proven through other means.

Corollary 7.2.11 ([BtD85, Prop. V.(5.13), p. 225]). The second homotopy group π2G of a compact Lie

group G is trivial.

Proof. The universal compact cover rG of G (see Theorem B.4.4) satisfies π2 rG – π2G by the long

exact homotopy sequence of a bundle Theorem B.2.4, and rG – AˆK for A a torus and K simply

connected. Using the long exact homotopy sequence of the short exact sequence 0 Ñ Zn Ñ

Rn Ñ Tn, one sees π2A “ 0, and since π1K “ 0, successively applying the Hurewicz theorem,

the universal coefficient theorem, and Hopf’s theorem, one finds π2K – H2K – H2K “ 0, so

π2 rG – π2 Aˆ π2K “ 0.

Remark 7.2.12. The multiplication on a Lie group G induces a product on H˚pG;Qq, the Pontrjagin

product, making it a Hopf algebra as well, the homology ring, which is dual to H˚pG;Qq. It is this
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ring that Hopf originally discovered the structure of, though the way he put it was that the

homology ring of G was isomorphic to that of a product
ś

S2nj´1 of odd-dimensional spheres.

Serre found later [FHT01, p. 216] that this was actually due to a rational homotopy equivalence:

there is a map
ś

S2nj´1 ÝÑ G inducing isomorphisms

π˚

´

ź

S2nj´1
¯

bQ „
ÝÑ π˚pGq bQ

on rational homotopy groups. Because the rational Hurewicz map

π˚

´

ź

S2nj´1
¯

bQ ÝÑ H˚
´

ź

S2nj´1;Q
¯

is an isomorphism when restricted to the span
À

Q ¨ rS2nj´1s of the fundamental classes of the

factor spheres, the image of the Hurewicz map π˚pGqbQ ÝÑ H˚pG;Qq contains the homological

primitives P˚pGq “ PH˚pGq. By Remark 4.3.17, then, these primitives are in the image of the

transgression in the homological Serre spectral sequence of any G-bundle.

7.3. The Serre spectral sequence of S1 Ñ ES1 Ñ BS1

The ideological mainspring of all the spectral sequence calculations we will do in the rest of this

document is a sequence that is only two pages page long, the Serre sequence of the universal

principal circle bundle S1 Ñ ES1 Ñ BS1.4 We use our knowledge of H˚pS1q and H˚pES1q to work

out H˚pBS1q.

4 We earlier, in Section 3.2, identified S8 Ñ CP8 as a model, but the calculation actually does not require this
topological knowledge.
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Proposition 7.3.1. The cohomology of BS1 “ CP8 is given by

H˚pCP8q – Zrus, deg u “ 2.

Proof. By Proposition 4.3.6, π1BS1 acts trivially on H˚pS1q, so we can use untwisted coefficients

in Theorem 4.3.4.5 Thus we can write

Ep,q
2 “ Hp`BS1; HqpS1;Zq

˘

As the total space ES1 is contractible, its cohomology ring H˚pES1q is that of a point, a lone Z in

dimension zero, and the associated graded ring E8 again Z because the filtration is trivial.

The cohomology H˚pS1q is an exterior algebra Λrz1s, where z1 P H1pS1q is the fundamental

class, so in particular it is a graded free abelian group, and

Ep,q
2 – HppBS1q b H1pS1q.

Since the second factor is nonzero only for q P t0, 1u, the entire sequence is concentrated in these

two rows.

Figure 7.3.2: The potentially nonzero region in the Serre spectral sequence of S1 Ñ ES1 Ñ BS1

.

.

.

2

1 ¨ ¨ ¨

0 ¨ ¨ ¨

0 2 4 6 8 10 12 ¨ ¨ ¨

Thus d “ d2 is the only differential between nonzero rows, so E3 “ E8 “ Z and d must kill

5 In fact, from the homotopy long exact sequence of S1 Ñ ES1 Ñ BS1, it follows that π2BS1 – Z is its only
nonzero homotopy group, so CP8 » BS1 is an Eilenberg–Mac Lane space KpZ, 2q. In particular, BS1 is in particular
simply-connected.
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everything else in E2. Because the rows E‚,q
2 “ 0 except for q P t0, 1u and d decreases q by 1, the

complex pE2, dq breaks, for each p P Z, into short complexes

0 Ñ Ep,1
2 ÝÑ Ep`2,0

2 Ñ 0.

Because the SSS is concentrated in the first quadrant, all groups in the short complex are defini-

tionally zero for p ă ´2. For p “ ´2, we have the very short complex

0 Ñ E0,0
2 Ñ 0,

red in Figure 7.3.3, witnessing the apotheosis of E0,0
2 – Z to H0pES1q “ E8. This in fact happens

for any SSS where the fiber and base are path-connected, and must happen, since H0 “ Z for all

three spaces.

For p “ ´1, we have the very short sequence

0 Ñ E1,0
2 Ñ 0,

green in Figure 7.3.3. The middle object must zero because otherwise it would survive to E3 “ E8,

which would mean H1pES1q ‰ 0. (Then again, we already knew this because BS1 is simply-

connected and H0 is always free abelian, so that the universal coefficient theorem B.2.1 yields

H1pBS1q – H1pBS1q – π1pBS1qab “ 0.)



Chapter 7. The cohomology of Lie groups and classifying spaces 122

Figure 7.3.3: The first few subcomplexes of E2 in the Serre spectral sequence of S1 Ñ ES1 Ñ BS1

0

0 0 E0,1
2

Z E1,0
2 E2,0

2

0 0 0

For p ě 0, the total degrees p ` 1 and p ` 2 are positive, so that both groups in the short

complex must die in E3. The only way this can happen is if the d linking them is both injective

and surjective, so an isomorphism: that is,

Ep,1
2 – Ep`2,0

2 for all p ě 0.

The first occurrence of this, for p “ 0, is blue in Figure 7.3.3. On the other hand, the simple fact

that H0pS1q – Z – H1pS1q as abstract groups implies, on tensoring with HppBS1q, that likewise

Ep,0
2 – Ep,1

2 .

Assembling these isomorphisms, all groups in even columns p “ 0, 2, 4, . . . (red in Figure 7.3.4),

and all groups in odd columns (green) are isomorphic. The base cases E0,0
2 “ H0pES1q “ Z and

E1,0
2 “ π1BS1 “ 0 then determine all the other entries: zero in odd columns and Z in even.
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Figure 7.3.4: The partitioning by isomorphism class of groups Ep,q
2 in the Serre spectral sequence

of S1 Ñ ES1 Ñ BS1

1 Z ¨ ¨ ¨

0 Z 0 Z ¨ ¨ ¨

0 1 2 3 4 5 6 7 ¨ ¨ ¨

Reading off the bottom row E‚,0
2 – H˚pBS1q b H0pS1q – H˚pBS1q, we find the cohomology

groups of BS1 “ CP8 are

HnpCP8q “

$

’

’

’

’

&

’

’

’

’

%

Z n even,

0 n odd.

Recall that the differential d “ d2 was an antiderivation restricting to an isomorphism H1pS1q
„
ÝÑ

H2pBS2q. If we write u “ dz P H2pBS2q for the image of the fundamental class of S1, then since

du “ 0, applying the product rule yields

dpuk`1zq “ pk` 1q du
ljhn

0

¨ukz ` uk`1 ¨ dz
ljhn

u

“ uk`2

for k ě 0. Since this d is an isomorphism E2k,1
2

„
ÝÑ E2k`2,0

2 and z and u are nonzero, it follows by

induction that uk generates H2kpCP8q for all k.

We could more easily have found the graded group structure of H˚pCP8q through cellu-

lar cohomology after pushing down the increasing union S8 “ S1 Y S3 Y S5 Y ¨ ¨ ¨ to a strictly

even-dimensional CW structure CP8 “ e0 Y e2 Y e4 Y ¨ ¨ ¨ , but the spectral sequence also makes

computing the ring structure almost trivial.

For later reference, note that, topology aside, the calculation we just made is a manifestation

of the following algebraic fact. Define B to be the graded ring Zrus, where deg u “ 2, and assign
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it the trivial differential. Let A be the graded ring BbΛrzs, where deg z “ 1. Make A a Z-CDGA

extending pB, 0q by assigning as differential the unique antiderivation d that vanishes on 0 and

satisfies

dz “ u.

Then pA, dq is acyclic: H0pAq “ Z and HnpAq “ 0 for n ą 0. The reason we were able to deduce

H˚pCP8q “ Zrus is that Zrus is the unique B that makes an A “ BbΛrzs constructed as above

acyclic.

7.4. The Serre spectral sequence of T Ñ ET Ñ BT

The circle is the one-dimensional case of the torus Tn “
śn S1. By the Künneth theorem, one has

H˚pTnq –
n
â

H˚pS1q “
n
â

Λrzs “ Λrz1, . . . , zns “ ΛH1pTnq,

where zj is the fundamental class of the jth factor circle and H1pTnq “ Ztz1, . . . , znu is the primitive

subspace as discussed in Proposition 7.2.7.

To understand H˚pBTq, there are at least two options. The first is an analysis analogous to,

but more intricate than, that in the last section: one sees easily d2 : H1pTq ÝÑ H2pBTq must be

an isomorphism and then puts more work into showing that means d2 is injective on the entire

first column E0,‚
2 – H˚pTq and that E3 “ E8 “ Z. The second invokes the functoriality of the

universal principal bundle construction G ÞÝÑ pG Ñ EG Ñ BGq to make the problem trivial. As
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the functors E and B preserve products, one has the bundle isomorphism

T „ //

��

ś

S1

��
ET „ //

��

ś

ES1

��
BT „ //

ś

BS1,

so that BT “
śn CP8 and H˚pBTq “

Â

Zrujs – Zru1, . . . , uns.

The bundle isomorphism in fact induces a Künneth isomorphism of SSSs, so that

E2 “
n
â

j“1

`

Srujs bΛrzjs
˘

– Sr~us bΛr~zs,

with differential d2 the unique antiderivation annihilating Sr~us and taking zj ÞÑ uj for each j.

Thus
´

Sr~us bΛr~zs, zj ÞÑ uj

¯

is another example of an acyclic CDGA.

7.5. The Koszul complex

In the spectral sequences of universal bundles T Ñ ET Ñ BT, the cohomology H˚pTq of the

fiber is an exterior algebra and the cohomology H˚
T of the base is a polynomial algebra on the

same number of generators, and the algebra generators of fiber and base cancel one another in a

one-to-one fashion in the spectral sequence. We claim and will later see that this pattern holds for

all compact, connected Lie groups G. If it does, then because the dr are antiderivations, the edge

isomorphisms dr : E0,r´1
r

„
ÝÑ Er,0

r determine the dr entirely. We have already seen this pattern
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to obtain for G “ T a torus, although this is somewhat evident because the only nontrivial

differential is d2. In order to show this situation holds more generally, we first formalize it.

Because the bijection of generators is in some sense the main feature of these spectral se-

quences, one could regard the fact these cancellations occur on different pages as an artifact

of the filtration, and, regarding all later pages as subpages of E2 (which makes sense because

all pages are free algebras, hence projective) instead consider d “
ř

r dr, on E2, as the one true

differential, letting all cancellation happen at the same time, and one would expect to still have

HdpE2q “ Z. This does not completely make sense, because the edge homomorphisms dr are

maps from subalgebras of E2 to quotients of it, but it nearly does, and the idea motivates the

following definition.

Definition 7.5.1. V “
À

ją0 V2j´1 be a positively- and oddly-graded free graded k-module. The

grading on V induces a grading on ΛV making it a free CGA. Let ΣV “ V‚´1 be the suspension,

the regrading of V, concentrated in even degree, defined by pΣVqj :“ Vj´1.6 There is a naturally

induced grading on the symmetric algebra SΣV, making it a free CGA.

Let KV :“ SΣV bΛV. Because S1rΣVs ‘Λ1rVs generates KV as a k-algebra, there is a unique

antiderivation d of degree 1 on KV that restricts on Λ1V to the defining isomorphism

d “ Σ : Λ1rVs „ÝÑ V „
ÝÑ S1rΣVs

of ungraded free k-modules. Consequently, dS1rΣVs “ 0 and hence dpSΣVq “ 0. The complex

pKV, dq is the Koszul complex associated to V. Write KnrVs “
À

SjrΣVs bΛn´jrVs for the sub-

module of KV spanned by products of n generators. This grading of KV, the multiplicative

grading, induces a grading of HdpKVq such that HnpKVq is the image of the cochains in KnrVs.

6The notation is meant to suggest the suspension ΣX of a topological space X, which satisfies HnpXq – Hn`1pΣXq.
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Given a basis pvjq of V and associated basis pdvjq of ΣV, the bijections d : kvj
„
ÝÑ kdvj cancel

vj and dvj from the cohomology HpKq, just like the edge maps in the SSS of T Ñ ET Ñ BT, so

we expect the cohomology to be trivial.

Proposition 7.5.2 (Koszul). Let k be such that each natural n ¨ 1 is invertible.7 Then the Koszul complex

is acyclic.

First proof [Car51, Thm. 1]. The inverse isomorphism h “ d´1 : S1rΣVs „
ÝÑ Λ1rVs extends uniquely,

just as d does, to an antiderivation of KV of degree ´1. We claim it is a chain homotopy of pKV, dq.

The composition dh is the projection K1rVs Ñ S1rVs and hd the projection K1rVs Ñ Λ1rVs,

so hd ` dh “ id on K1rVs. Inductively assume that also L “ dh ` hd “ n id on KnrVs. Write a

decomposable (e.g., basis) element of Kn`1rVs as ab, for a P K1rVs and b P KnrVs. Then by the

product rule, the base case, and the inductive assumption,

Lpabq “ pLaqb` aLpbq “ ab` nab “ pn` 1qab,

concluding the induction.

For any n-cocycle a we then have na “ phd` dhqa “ dha, so each d-cocycle is a coboundary

for n ě 1. Thus HpKVq “ H0pKVq – k.

The same argument incidentally also shows the h-cohomology of KV is trivial.

Second proof. Find a k-basis vj of V, so that V “
À

kvj and ΣV “
À

kdvj. Then we have algebra

isomorphisms

KV “ SΣV bΛV – S
“à

kdvj
‰

bΛ
“à

kvj
‰

–
â`

Srdvjs bΛrvjs
˘

“
â

Krkvjs,

7 Functionally, this means k contains Q.
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and this also holds on the level of CDGAs, because the coproduct differential induced by the

Koszul differential on each Krvjs and the original Koszul differential d on KV are both an-

tiderivations on KV extending the linear isomorphism Λ1rVs „
ÝÑ S1rΣVs and such an extension

is unique. Because everything in sight is a free k-module, the simplest version of the algebraic

Künneth formula Corollary A.3.10 holds, and

H˚
d pKVq –

â

j
H˚

dj

`

Krvjs
˘

– kbj – k.

We cite here an algebraic lemma for later use.

Proposition 7.5.3. Let k be a field and d : V ÝÑ W a k-linear map of finite-dimensional k–vector spaces.

Extend d uniquely to an antiderivation D on ΛVb SW annihilating SW. Then resulting k-CDGA admits

a factorization as

pΛV b SW, dq –
`

Λrker ds, 0
˘

b Krcoim ds b
`

Srcoker ds, 0
˘

.

Proof. Because V ‘W admits a vector space decomposition

pker d‘ coim dq ‘ pim d‘ coker dq,

ΛV b SW admits an algebra decomposition

Λrker ds b
`

Λrcoim ds b Srim ds
˘

b Srcoker ds

The Λrker ds and Srcoker ds factors are annihilated by D and intersect im D trivially, while by the

definition of image and coimage, d induces the linear isomorphism coim d „
ÝÑ im d of the first
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isomorphism theorem, so that the factor Λrcoim ds b Srim ds is the Koszul algebra Krcoim ds.

The Koszul complex, which makes its first appearance in thesis work of Koszul dealing with

Lie algebra cohomology, which had recently been defined by Chevalley and Eilenberg, was soon

discovered to have important uses in commutative algebra. Here is a more general definition.

Definition 7.5.4. Let A be a unital commutative ring over k. Given a sequence ~a “ pajqjPJ of

elements of A, we can form an abstract free k-CGA ΛrzjsjPJ “
Â

jPJ Λrzjs and the tensor algebra

KA~a :“ ΛrzjsjPJ bk A,

and make KA~a a CDGA by extending the k-linear map
À

jPJ kzj ÝÑ A given by zj ÞÝÑ aj to an

antiderivation d. We grade KA~a by multiplicative degree in the exterior factor, so that

K´n
A ~a :“ ΛnrzjsjPJ b A,

and deg d “ 1, and call this grading the resolution grading. The k-CDGA pKA~a, dq is the Koszul

complex associated to the sequence~a.

Given an A-module M, the tensor product module

KAp~a, Mq :“ KA~ab
A

M “
`

Λrzjs b
k

A
˘

b
A

M – Λprzjs b
k

M,

inherits a differential, vanishing on M, given by

dp1bmq “ 0, m P M,

dpzj bmq “ 1b ajm, j P J,
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and the resulting chain complex is again called a Koszul complex.

Koszul complexes KAp~a, Mq being defined by sequence of ring elements, their potential acyclic-

ity is related to properties of this sequence.

Definition 7.5.5. Let A be a unital commutative ring over k. A finite or countable sequence pajq

of elements of A is called a regular sequence if for each n, the image of an is not a zero-divisor

in the quotient ring A{pa1, . . . , an´1q. Given an A-module M, the same sequence is called M-

regular (or an M-sequence) if each an annihilates no nonzero elements of the quotient module

M{pa1, . . . , an´1qM. An ideal aE A is called a regular ideal if it can be generated by a regular

sequence.

Regular sequences do not normally remain regular under permutation, but do if all elements

lie in the Jacobson radical of A, and in particular if A is a local ring and the elements aj are

non-units [Eis95, Cor. 17.2, p. 426].

Proposition 7.5.6. Let A be a connected CGA and aj elements of rA; then the sequence pajq is regular just

if each permutation is.

Since we really care only about cohomology rings, order in a regular sequence shall never be

an issue for us. The connection between Koszul complexes and regular sequences is the following.

Proposition 7.5.7 ([Ser00, IV.A.2, Prop. 3, p. 54]). Given a Noetherian commutative ring A, a sequence

~a of elements of the Jacobson radical of A, and a finitely-generated A-module M, the following conditions

are equivalent:

1. H´n
`

KAp~a, Mq
˘

“ 0 for n ě 1;

2. H´1
`

KAp~a, Mq
˘

“ 0;

3. the sequence~a is M-regular.
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The last relevant fact about Koszul complexes is that they compute Tor.

Proposition 7.5.8. Let A “ Sr~as be a free commutative k-CGA generated by a sequence ~a of elements of

even degree, and let B be an A-CGA. Then the Koszul complex KAp~a, Bq associated to ~a computes Tor in

that

H´ppKA~abA Bq – TorA
p pk, Bq, p ě 0.

Proof. The base ring k is an A-algebra in a natural way via A ÝÝ� A{ rA – k. Since the generators

are independent, by Proposition 7.5.7, the Koszul complex pKA~a, dq is acyclic, with

H˚pKA~aq “ H0pKA~aq – kr~as{p~aq – k.

It follows that K‚A~a, with the resolution grading from Definition 7.5.4, is an A-module resolution

of k, so that the ´pth cohomology of the sequence

¨ ¨ ¨ ÝÑ K´2
A ~a bA B ÝÑ K´1

A ~a bA B ÝÑ K0
A~a bA B ÝÑ 0

computes TorA
p pk, Bq.

Note that in fact TorA
‚ pk, Bq is a bigraded CGA. The product descends from the product on

Λrzjs bk B, and the second component of the grading from the grading
À

Bq on B. We set

Tor´p,q
A pk, Bq “ TorA

p pk, Bqq “ Hp`Λrzjs b
k

Bq˘.

Historical remarks 7.5.9. Regular sequences were introduced by Serre in 1955 as E-sequences [Bor67,

p. 93], and this terminology apparently hung on for quite a while [Bau68, Def. 3.4]. Smith [Smi67,

p. 79] uses ESP-sequence and calls a graded ideal generated by such a sequence a Borel ideal.
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7.6. The Serre spectral sequence of G Ñ EG Ñ BG

“. . . the behavior of this spectral sequence . . . is a bit like an Elizabethan drama, full of action,

in which the business of each character is to kill at least one other character, so that at the end

of the play one has the stage strewn with corpses and only one actor left alive (namely the

one who has to speak the last few lines).”8 —J. F. Adams

We have found H˚pBTq for all tori and by Corollary 6.4.7, we know that H˚pBG;Qq can

be viewed as the Weyl-invariant subring H˚pBT;QqW , so theoretically, we understand H˚pBGq

now. In practice, and especially if one wants to understand the situation with Z coefficients—

something we will eventually punt on—there is more work to be done.

In the torus computation, the algebra generators H1pTq “ PH˚pTq of H˚pTq (the primitives,

as defined in Section 7.2) and H2pBTq – QH˚pBTq of H˚pBTq (the indecomposables, as defined

in Appendix A.3.2) were linked bijectively by nontrivial differentials and were annihilated, and

the algebraic repercussions of this bijection sufficed to force E8 “ Z. To work with merely

generators greatly simplifies any computation, so one might hope that such a pattern holds as

well for nonabelian groups. The proof of this result is due to Borel in his thesis [Bor53].

Theorem 7.6.1 (Borel [Bor53, Théorème 13.1].). Let k be a commutative ring, P an oddly-graded free

k-module, and ΛP the exterior algebra on P. Suppose pEr, drq is a spectral sequence of bigraded k-algebras

such that E2 admits a tensor decomposition E‚,0
2 b E0,‚

2 with E0,‚
2 – ΛP and E8 “ E0,0

8 – k. Then

E‚,0
2 – SrΣPs is a symmetric algebra on the suspension of P.

In particular, if we let k be a field, so that H˚pG; kq is an exterior algebra, and apply the result

to the Serre spectral sequence of the universal bundle G Ñ EG Ñ BG, we find H˚pBG; kq is a

8 This deservedly popular description arises in a description [Ada76] of the behavior of the Adams spectral se-
quence.
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polynomial ring.

Proof [FOT08, p. 39]. The Koszul complex KP associated to P, as an algebra, is the tensor product

SrΣPs bΛP. The symmetric algebra factor SrΣPs has a natural even grading grading induced by

the even grading pΣPqp – Pp´1 on its generators, and this grading induces a horizontal filtration

on KP given by

FppKPq “
à

jďp
SrΣPsj bΛP.

Because the differentials in KP all have filtration degree at least 2 with respect to this filtration,

in the filtration spectral sequence p1Er, 1drq associated to KP (see Corollary A.5.4), we have 1E2 “

1E1 “
1E0 “ gr

‚
KP – KP.

The left column 1E0,‚
2 is given by gr0 KP – F0pKPq – ΛP and the last page 1E8 “ gr

‚
H˚pKPq “

H0pKPq “ k is what we want as well, so by the Zeeman–Moore comparison theorem, to show that

E‚,0
2 “ SrΣPs in the original spectral sequence, it will be enough to create a filtration-preserving

DGA map λ2 : KP “ 1E2 ÝÑ E2 inducing an isomorphism on E8.

Since 1E0,‚
2 – ΛP – E0,‚

2 , the restriction of λ2 to the left columns should clearly be the identity,

and it remains to map the generators ΣP of the bottom row 1E‚,0
2 into E‚,0

2 . By construction, each

homogeneous subspace Pr´1 ă ΛP of algebra generators transgresses to pΣPqr in p1Erq, so in

order that λ2 be a chain map, it is necessary and sufficient to show each subspace Pr´1 ă ΛP “

E0,‚
2 transgresses in the original spectral sequence. This is a consequence of an induction that

simultaneously depends on and proves the following lemma.

Theorem 7.6.2 (Borel transgression theorem). With the same hypotheses as in Theorem 7.6.1, all

elements of P transgress.

Proof [MT00, p. 379]. The proof is an induction on maximum degree D of an element of P. The

base case r “ 1 is given by Section 7.4.
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Now suppose the theorem holds for D ´ 2 odd and that P has maximum degree D. De-

compose P “ PD ‘ P1, where deg PD “ D and deg P1 ă D. By the inductive assumption,

the elements of P1 transgress. Thus one can apply Theorem 7.6.1 to the spectral subsequence

p1Er, 1drq ď pEr, drq generated by P1 and its transgressions to see that Ep,q
r “ 1Ep,q

r agree for

pp, q, rq P r0, D ` 1s ˆ r0, Ds ˆ r0,8s. Call this submodule the determined prism: all differentials

dr in and out of Er are already accounted for by p1Er, 1drq, or else the restrictions of Er and 1Er

to the prism would not agree. As E0,D
8 “ 0, every element of the space PD must fail to lie in

the kernel of some dr : E0,D
r ÝÑ Er,D`1´r

r , but the determined prism contains all these except for

ED`1,0
D`1 . It follows Pr must transgress. The same reasoning applied to maps into ED`1,0

2 shows,

since ED`1,0
8 “ 0, that the transgression PD

τ
ÝÑ ED`1,0

D`1 must be surjective. This concludes the

induction.

Remarks 7.6.3. (a) Borel [Bor53, Prop. 16.1] found an additional result over F2 requiring not that

the left column A be an exterior algebra or that its indecomposables be oddly graded, but instead

that A admit a simple system xα of generators (see Definition A.3.4) which transgress. The result

then additionally concludes no elements of A other than those in the span of the xα transgress.

(b) Considering the homology Serre spectral sequence of the universal bundle G Ñ EG Ñ BG,

Remark 7.2.12 shows the primitives PH˚pGq ă H˚pGq are all in the image of the transgression.

Because H˚pGq – H˚pGq and H˚pBGq – H˚pBGq on the level of graded vector spaces and the

homological and cohomological transgressions are dual (Remark 4.3.17), this means all elements

of PG transgress in the cohomological Serre spectral sequence. This seems to yield an alternate

proof of the Borel transgression Theorem 7.6.2, which would enable us to conclude the proof of

Theorem 7.6.1 more simply, without the painful induction, if we so chose.

A profitable rephrasing of Borel’s calculation of the SSS prEr, d̃rq of G Ñ EG Ñ BG is to

noncanonically lift the edge maps as follows. Writing PG ă H˚pG;Qq for the space of primi-
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tives and QpBGq ă H˚pBG;Qq for the space of indecomposables, rceall that H˚pGq – ΛPG and

H˚pBGq – S
“

QpBGq
‰

. The edge isomorphisms descend to maps

d̃r : Pr´1H˚pGq „
ÝÑ Qr H˚pBGq

which can be seen as summing to the isomorphism9

τ : PG „
ÝÑ QpBGq.

Setting V “ PG and constructing the Koszul complex KV, this τ uniquely extends uniquely to

the Koszul differential. Because H˚pBGq is free on QpBGq, on the level of CGAs, we recover

rE2 “ H˚pBGq b H˚pGq “ KV

and can consider τ as an antiderivation rE2 ÝÑ rE2, which we call a choice of transgression.10 By

construction, it satisfies the following proposition.

Proposition 7.6.4. The transgression τ lifts the edge homomorphisms d̃r in the sense that for each r ě 0,

the following diagram commutes:

H˚pGq τ // H˚pBGq

����
rE0,r´1

r
d̃r

„ //

OO

OO

rEr,0
r .

We will need a corollary about the original, unlifted transgression to prove Cartan’s theorem

later in Theorem 8.1.3 and Theorem D.3.1.

9 I owe this description to Paul Baum’s thesis [Bau62, p. 3.3].
10 The lifting of QpBGq back to a subspace of H˚pBGq that produces this isomorphism is not unique, but the

differences produced by starting with a different lifting turn out to be immaterial, so we will identify QpBGq with a
subalgebra of H˚pBGq at this point, consider it done, and never speak of it again.
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Corollary 7.6.5 (Borel). Let G Ñ E π
Ñ B be a principal G-bundle classified by χ : B ÝÑ BG. Write τ

for the transgression of the universal bundle G Ñ EG Ñ BG In the spectral sequence of π, each primitive

z P PH˚pGq transgresses to χ˚τz.

Proof. This follows from the existence of the bundle map from G Ñ E Ñ B to G Ñ EG Ñ BG,

which induces a spectral sequence map as in Theorem 4.3.4 intertwining the edge homomor-

phisms.

Historical remarks 7.6.6. Borel’s proof of this result was more subtle than ours in at least three

ways. For one, he did not assume Q coefficients, but simultaneously worked over Z and Fp

coefficients for p ą 2.

Second, the Zeeman–Moore theorem was not available to him, so he did not construct a

comparison map, but explicitly, inductively, and through careful bookkeeping ruled out the pos-

sibility of H˚pBGq being anything other than a polynomial ring, keeping track at the same time

of what elements of ΛP transgressed and ultimately determining them to be only the primitives

P themselves.

Thirdly, and most historically remarkably, in determining H˚pBGq Borel did not have access

to BG itself. In 1952, it was only known in general that n-universal principal bundles Epn, Gq ÝÑ

Bpn, Gq existed for each n P N with πiEpn, Gq “ 0 for i ď n. Borel’s H˚pBGq is actually defined as

the inverse limit of the rings H˚
`

Bpn, Gq
˘

, known cohomology rings of already-existing objects.

Resultingly, for numerous topological applications in which I cavalierly deploy BG, Borel must

instead invoke H˚
`

Bpn, Gq
˘

for n sufficiently large.
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7.7. Characteristic classes

Borel’s Theorem 7.6.1, the mod 2 addendum Remarks 7.6.3.(a) and knowledge of the cohomol-

ogy rings of classical groups from Section 7.1 make instantly available a great deal of algebraic

information about classifying spaces.

Corollary 7.7.1. Let k “ Zr1{2s. The cohomology rings of the classifying spaces of the classical groups are

H˚
`

BOpnq;F2
˘

– F2rw1, . . . , wns, deg wj “ j,

H˚
`

BSOpnq;F2
˘

– F2rw2, . . . , wns, deg wj “ j,

H˚
`

BUpnq;Z
˘

– Zrc1, . . . , cns, deg cj “ 2j,

H˚
`

BSUpnq;Z
˘

– Zrc2, . . . , cns, deg cj “ 2j,

H˚
`

BSppnq;Z
˘

– Zrq1, . . . , qns, deg qj “ 4j,

H˚
`

BSOp2n` 1q; k
˘

– krp1, . . . , pn´1, pns, deg pj “ 4j,

H˚
`

BSOp2nq; k
˘

– krp1, . . . , pn´1, es, deg pj “ 4j, deg e “ 2n.

Definition 7.7.2. The wj in the preceding corollary are the Stiefel–Whitney classes, the cj the

Chern classes, the qj the symplectic Pontrjagin classes, the pj the Pontrjagin classes, and e the

Euler class.

Remark 7.7.3. For G P tU, Sp, SOu, the inclusions Gpnq ãÑ Gpn` 1q preserve objects named cj, qj, pj

respectively for j ď n and annihilate cn`1, qn`1, pn`1, with the exception that H˚
`

BSOp2n`1q
˘

ÝÑ

H˚
`

BSOp2nq
˘

takes pn ÞÝÑ e2.

The Pontrjagin classes and Euler class as described above are actually integral in that they

are in the image of the canonical map H˚
`

BSOpmq;Z
˘

ÝÑ H˚
`

BSOpmq;Zr1{2s
˘

. These classes

carry certain well-known relations. For example, the inclusion Upnq SOp2nq induces a
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map H2n
`

BSOp2nq;Z
˘

ÝÑ H2n
`

BUpnq;Z
˘

carrying e ÞÝÑ cn, and mod-2 coefficient reduction

Hn
`

BSOpnq;Z
˘

ÝÑ Hn
`

BSOpnq;F2
˘

takes e ÞÝÑ wn.

All of these rings can also be calculated independently from the result Corollary 6.4.7 that

H˚pBGq – H˚pBTqW and an understanding of the Weyl group action on BT. For example, the

existence of the Euler class can be seen as a result of the fact that WSOp2n`1q “ t˘1un ¸ Sn and

WSOp2nq is the subgroup St˘1un ¸ Sn, where St˘1un ă t˘1un is the index-two subgroup whose

elements contain an even number of´1 entries. The product e “ t1 ¨ ¨ ¨ tn P Zrt1, . . . , tns is invariant

under St˘1un but not under all of t˘1un, and as a result does not occur in H˚
`

BSOp2n` 1q
˘

; its

square pn “ t2
1 ¨ ¨ ¨ t

2
n is however invariant under the larger group’s action.

The cohomology classes of Definition 7.7.2, elements of a cohomology ring BG only known

after 1955 to globally exist, are abstract manifestations of objects associated to vector bundles

which were defined in the 1930s and early 1940s by their namesakes.11

Definition 7.7.4. Let E ÝÑ B be a principal G-bundle and χ : B ÝÑ BG a classifying map. Given

c P H˚pBGq, its pullback χ˚pcq P H˚pBq is written c˚pEq and called a characteristic class of

E ÝÑ B.

These characteristic classes are functorial invariants of principal bundles: because the uni-

versal bundle is terminal, a map of bundles induces a commutative triangle of maps of base

spaces.

Proposition 7.7.5. Let E Ñ B be a principal G-bundle, let f : B1 Ñ B be a continuous map, and let

c P H˚pBGq. Then the pullback bundle f ˚E satisfies

cp f ˚Eq “ f ˚cpEq P H˚pBq.

11 With the obvious exception of the Euler class.
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Given a vector bundle F Ñ V
ξ
Ñ B with transition functions in a linear group G, there is an

associated principal G-bundle G Ñ P Ñ B as described in Appendix B.1.3, and one can associate

to V Ñ B the characteristic classes of P Ñ B,

cpVq :“ cpPq,

calling them the characteristic classes of the vector bundle V Ñ B. For example

• if ξ : V Ñ B is a quaternionic vector bundle it defines symplectic classes qjpξq P H4jpB;Zq,

• if ξ is a complex vector bundle one has Chern classes cjpξq P H2jpB;Zq,

• if ξ is a real vector bundle one has Pontrjagin classes pjpξq P H4jpB;Zq and Stiefel–Whitney

classes wjpξq P H jpB;F2q, and

• if ξ is an orientable vector bundle with fiber F “ Rn, it has an Euler class epξq P HnpB;Zq,

and the first Stiefel–Whitney class w1 can be shown to vanish.

A smooth manifold M determines a tangent bundle TM Ñ M, which thus defines a charac-

teristic class

cpMq :“ cpTMq P H˚pMq

for each characteristic class c of the tangent bundle. For example, we can equip TM with a

Riemmannian or Hermitian metric to reduce its structure group to Opnq or Upnq, so all smooth

manifolds carry Pontjagin and Stiefel–Whitney classes, orientable smooth manifolds carry an

Euler class epMq P HtoppMq, and almost complex manifolds carry Chern classes.

These classes turn out to be well-defined invariants of the topological manifold underlying M

in that they are independent of the chosen metrics and smooth or almost complex structures. To
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see the metrics are irrelevant, one way to proceed is to note that the Gram–Schmidt construction

can be seen as a product decomposition [BT82, Ex. 6.5(a)]

SLpn,Rq “ SOpnq ¨M,

where M is the contractible space of positive-definite symmetric matrices. If we consider ESOpnq

to be ESLpn,Rq, which is valid, as discussed in Section 3.2, since SOpnq and SLpn,Rq are Lie

groups, the former closed in the latter, then taking quotients yields the bundle

M ÝÑ BSLpn,Rq ÝÑ BSOpnq,

with contractible fiber M, so that BSLpn,Rq » BSOpnq. Similar homotopy equivalences hold for

other classifying spaces of linear groups, so one can dispense with the metrics at the negligible

cost of viewing the characteristic classes instead as arising in BGLpn;Fq or BSLpn;Fq for F P

tR,C,Hu.

Assume now M is compact and oriented. A characteristic class c in HtoppM;Zq – Z is then

some integer multiple n ¨ rMs˚ of the cohomological fundamental class rMs˚; alternately, evalu-

ation of c against the homological fundamental class rMs yields an integer n. These integers are

called characteristic numbers of the manifold, and the data given by characteristic numbers for

a real manifold can be seen as the composition

Hn`BSOpnq;Z
˘ χ˚
ÝÑ HnpM;Zq „

ÝÑ Z,

where χ : M ÝÑ BSOpnq is the characteristic map of the associated principal SOpnq-bundle.

The Pontrjagin numbers are the images under this composition of the degree-n level of the
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subring Zrp1, . . . , pns, and the Euler characteristic can be seen as the image of e:

Theorem 7.7.6. Let M be a smooth, compact, oriented n-manifold. Then the Euler class e P HnpM;Zq

and cohomological fundamental class rMs˚ P HnpM;Zq and the Euler characteristic χpMq P Z satisfy the

relation

e “ χpMq ¨ rMs˚.

This the reason behind the nomenclature Euler class. This equivalence also yields an out-

landishly complicated way of seeing the Euler characteristic of an odd-dimensional closed man-

ifold is zero.

In Appendix C, we will use equivariant cohomology to describe simple conditions under

which characteristic numbers vanish.

7.8. Maps of classifying spaces

The machine for computing H˚pG{Kq depends critically on an understanding of the map

ρ˚ “ pBiq˚ : H˚pBGq ÝÑ H˚pBKq

induced by the inclusion i : K ãÝÝÑ G; this understanding is also due to Borel [Bor53, §28].
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7.8.1. Maps of classifying spaces of tori

To start, let i : S ãÝÝÑ T be an inclusion of tori. By functoriality, or else by taking ES “ ET and

representing BS ÝÑ BT as the “further quotient” map ET{S ÝÝ� ET{T, we have a bundle map

S �
� i //

��

T

��
ES » //

��

ET

��
BS Bi // BT,

which induces a map
`

ψr : prEr, d̃rq ÝÑ pEr, drq
˘

between the spectral sequences of the bundles.

Because these sequences both collapse on the third page, ψr is just an isomorphism H0pETq „
ÝÑ

H0pESq “ Z for r ě 3, so we may as well drop page subscripts and consider the lone interesting

map, which by Theorem 4.3.4 is

ψ “ pBiq˚ b i˚ : H˚pBTq b H˚pTq ÝÑ H˚pBSq b H˚pSq.

Because, by the definition of a chain map, we have dψ “ ψd̃, and, as we have just seen, d : H1pSq ÝÑ

H2pBSq and d̃ : H1pTq ÝÑ H2pBTq are group isomorphisms, we have the commutative square

H1pSq

„

��

H1pTq

„

��

i˚oo

H2pBSq H2pBTq.
pBiq˚oo

(7.7)

Thus i˚ : H1pTq ÝÑ H1pSq is conjugate to pBiq˚ : H2pBTq ÝÑ H2pBSq. Since H2pBTq generates

H˚pBTq as an algebra, and pBiq˚ is a ring homomorphism, this means pBiq˚ is determined

uniquely by i˚. This i˚, in turn, is described by i in a transparent way. It is dual to the map
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i˚ : H1S ÝÑ H1T, or equivalently to the map π1piq.

In the case most critical for us later, S will just be a circle, which we will identify with the

standard complex unit circle S1 ă Cˆ. Similarly identify T with pS1qn. Then i : S ãÝÝÑ T can be

written as

i : S1 ÝÑ pS1qn,

z ÞÝÑ pza1 , . . . , zanq,

where the exponent vector ~a P Zn is a list of integers with greatest common divisor 1, so that i

is injective.12 If xj P π1pTq “ H1pTq is the fundamental class of the jth factor circle and y P H1pSq

the fundamental class of S, then

i˚ : y ÞÝÑ
ÿ

ajxj.

Let px˚j q be the dual basis for H1pTq and y˚ P H1pSq the cohomological fundamental class. Then

the dual map i˚ : H1pTq ÝÝ� H1pSq in cohomology takes x˚j ÞÝÑ ajy˚ since

pi˚x˚j qy
˚ “ x˚j

`

i˚y
˘

“ x˚j
`

ÿ

a`x`
˘

“ aj.

Put another way, the matrix of i˚ is the transpose of the matrix of i˚. Write s “ dy P H2pBSq and

uj “ d2x˚j P H2pBTq so that H˚pBSq “ Zrss and H˚pBTq “ Zr~us. Then, the square above implies

that pBiq˚pujq “ ajs, so that if pp~uq P Zr~us is any polynomial,

pBiq˚pp~uq “ ppa1s, . . . ansq “ ppa1, . . . , anqsdeg p.

12This vector~a is only well-defined up to the choice of identifications S – S1 and T – pS1qn, but will suffice for our
later applications.
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7.8.2. Maps of classifying spaces of compact, connected Lie groups

Let K ãÝÝÑ G be an inclusion of compact, connected Lie groups. If S is a maximal torus of K, then

there exists a maximal torus T of G containing S. Through the functoriality of the classifying

space functor B and cohomology, this square of inclusions gives rise to two further commutative

squares:

S �
� i //
_�

��

T� _

��
K �� // G

ùñ

BS Bi //

��

BT

��
BK

ρ
// BG

ùñ

H˚pBSq H˚pBTq
pBiq˚oo

H˚pBKq
� ?

OO

H˚pBGq.
ρ˚
oo

?�

OO

The vertical maps in the last square are inclusions by Corollary 6.4.7. Thus ρ˚ can be computed

as the composition

H˚pBGq „
ÝÑ H˚pBTqWG

pBiq˚
ÝÝÝÑ H˚pBSq;

it follows from the commutativity of the square that the image lies in H˚pBSqWK – H˚pBKq.

Example 7.8.1. Let G “ Up4q and K “ Spp2q, identified as a subgroup of G through the injective

ring map H C2ˆ2 given by α` jβ ÞÝÑ
”

α ´β̄
β ᾱ

ı

. A standard maximal torus for G is given by

the subgroup T “ Up1q4 of diagonal unitary matrices, which meets K in the subgroup

S “
!

diagpz, z̄, w, w̄q P Up1q4 : z, w P S1
)

.

With respect to the expected basis of H1pTq and the fundamental classes of the factor circles

w “ 1 and z “ 1 of S, and the dual bases in H1, the maps H1pSq ÝÑ H1pTq and H1pSq ÐÝ H1pTq
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are given respectively by

»

—

—

—

—

—

—

—

—

—

—

–

1 0

´1 0

0 1

0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

»

—

—

–

1 ´1 0 0

0 0 1 ´1

fi

ffi

ffi

fl

.

By the commutative square (7.7), the second matrix also represents H2pBSq ÐÝ H2pBTq with

respect to the transgressed bases t1, t2, t3, t4 of H2pBTq and s1, s2 of H2pBSq.

The Weyl group of Up4q is the symmetric group S4 on four letters acting on T and hence

BT by permutation of the four coordinates. It follows that when H˚
`

Up4q
˘

is conceived as the

invariant subring H˚pBTqS4 of H˚pBTq, it is generated by the elementary symmetric polynomials

σ1, σ2, σ3, σ4 in t1, t2, t3, t4, lying in respective degrees 2, 4, 6, 8. These are the first four Chern classes

cj.

The Weyl group of Spp2q is the group t˘1u2 ¸ S2, acting on H1pSq and hence on H2pBSq “

Qts1, s2u by negating and/or switching the two coordinates. It follows the invariant subring

H˚
`

BSpp2q
˘

– H˚pBSqWSpp2q is generated by q1 “ s2
1 ` s2

2 and q2 “ ps1s2q
2. These are the first two

symplectic Pontrjagin classes. The generators cj exhibit the following properties under H˚pBTqS
4

ãÝÝÑ

H˚pBTq ÝÑ H˚pBSq:

c1 “ t1 ` t2 ` t3 ` t4 ÞÝÑ ps1 ´ s1q ` ps2 ´ s2q “ 0,

c2 “
1
2
`

σ2
1 ´ σ1pt2

1, t2
2, t2

3, t2
4q
˘

ÞÝÑ
1
2
`

0´ ps2
1 ` s2

1 ` s2
2 ` s2

2q
˘

“ ´ps2
1 ` s2

2q “ ´q1,

c3 “ pt1 ` t2qt3t4 ` t1t2pt3 ` t4q ÞÝÑ p0 ¨ ´s2
2q ` p´s2

1 ¨ 0q “ 0,

c4 “ t1t2t3t4 ÞÝÑ s2
1s2

2 “ q2.
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That is, H˚
`

BUp4q
˘

ÝÑ H˚
`

BSpp2q
˘

is surjective, a fact we will later be able to see as a conse-

quence of the surjectivity of H˚
`

Up4q
˘

ÝÑ H˚
`

Spp2q
˘

.

Example 7.8.2. Let G “ Spp2q and K “ S “ SOp2q, identified as a subgroup of G through the

standard inclusion R ãÝÝÑ H. One maximal torus T of Spp2q containing S is that generated by S

and

S1 “

$

’

’

&

’

’

%

»

—

—

–

cos θ i sin θ

i sin θ cos θ

fi

ffi

ffi

fl

: θ P r0, 2πs

,

/

/

.

/

/

-

.

With respect to the basis rSs, rS1s of H1pTq, and the dual bases in H1, the maps H1pSq ÝÑ H1pTq

and H1pSq ÐÝ H1pTq are given respectively by
“

1
0

‰

and
„

1 0



. By (7.7) again the second matrix

also represents H2pBSq ÐÝ H2pBTq with respect to the transgressed bases t1, t2 of H2pBTq and t1

of H2pBSq. Generators for H
`

BSpp2q
˘

are q1, q2 as in Example 7.8.1, and we have

q1 “ t2
1 ` t2

2 ÞÝÑ t2
1,

q2 “ t2
1t2

2 ÞÝÑ t2
1 ¨ 0 “ 0.

This is an instance of a general result about the map ρ˚ in the event G is semisimple and S a

circle, which we will later use in determining the rings H˚pG{S1q.

Lemma 7.8.3. Let K be a semisimple Lie group containing a circle S. The image of H˚
K ÝÑ H˚

S – Qrss

contains s2 P H4
S.

Proof. Let T be a maximal torus of K containing S, so that H˚
K ÝÑ H˚

S factors as HW
T ãÑ H˚

T Ñ H˚
S ,

where W is the Weyl group of K, by the results of Section 7.8.2. Identifiying H˚
T “ Qru1, . . . , uns

and H˚
S “ Qrss, by Section 7.8.2, the exponents aj of the inclusion S1 ãÑ T – pS1qn determine the

map H4
T ÝÑ H4

S according to the formula ρ˚qp~uq “ qp~aqs2.

The elements of H4
T can be seen as quadratic forms on the vector space π1TbQ – H1pT;Qq –



Chapter 7. The cohomology of Lie groups and classifying spaces 147

H2pBT;Qq. So to show the map pH4
Tq

W ÝÑ H4
S is surjective regardless of the choice of S, it suffices

to find a W-invariant definite bilinear form on π1T bQ. But the Killing form Bp´,´q : kˆ k ÝÑ

R is Ad-invariant and negative definite by Proposition B.4.12, so the restriction to tˆ t is W-

invariant, and the restriction to the diagonal is a W-invariant, negative definite quadratic form B

on t. But π1T embeds in t in a canonical way as the kernel of exp : t ÝÝ� T, so the restriction of B

to π1TbQ corresponds to an element of HK
4 – pH

4
Tq

W whose Q-span surjects onto H4
S.

Historical remarks 7.8.4. The choice of notation ρ˚ for this important map follows historical prece-

dent dating back to the heroic era of large tuples described in Historical remarks 3.3.9. Borel and

later Hirzebruch canonically assigned the name ρpK, Gq to the map BK ÝÑ BG induced by an

inclusion K ãÑ G and ρ˚pK, Gq to the resulting map H˚pBGq ÝÑ H˚pBKq in cohomology.



Chapter 8

The cohomology of homogeneous spaces

In this chapter, and again starting in Chapter 10, we discuss properties of a specific type of

compact homogenous space G{K in terms of the transitively acting group G and the isotropy

subgroup K. Now seems like a good time to formalize this setup.

Definition. Let G be a compact, connected Lie group, and K a closed, connected subgroup. In

this situation we call pG, Kq a compact pair of Lie groups.

Our discussion will really be about properties of such pairs. Associated to a compact pair

pG, Kq are three fiber bundles. The first, K Ñ G Ñ G{K, follows from Theorem B.4.3. The second

is the Borel fibration G Ñ GK Ñ BK, which is a principal G-bundle. The third is the fibration

G{K Ñ BK Ñ BG, where the projection Bi : BK ÝÑ BG can be seen as the “further quotient”

map EG{K ÝÝ� EG{G. Thus each three consecutive terms of the sequence

K i
ÝÑ G

j
ÝÑ G{K

χ
ÝÑ BK Bi

ÝÑ BG (8.1)

form a fibration up to homotopy. This section is devoted to a general discussion of the implica-

148
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tions of this fiber sequence in the resulting cohomology sequence

H˚pKq i˚
ÐÝ H˚pGq

j˚
ÐÝ H˚pG{Kq

χ˚
ÐÝ H˚

K
ρ˚

ÐÝ H˚
G. (8.2)

It is a curious historical coincidence that the study of the cohomology of homogeneous spaces

seems to break into three basic periods, the first studying the Leray spectral sequence of the first

three terms, the second studying the Serre spectral sequence of the second three terms, and last

studying the Eilenberg–Moore spectral sequence of the last three terms. It is the second period

characterization that we employ in what follows, but all these maps will have some relevance for

us.

8.1. The Borel–Cartan machine

We begin by introducing the device that will carry out all our computations.

8.1.1. The spectral sequence map

The five terms of (8.1) form the labeled subdiagram in the following diagram of bundle maps.

K �
� i //

��

G

j
��

G

��
EK //

��

GK //

χ

��

EG

��
BK BK

ρ // BG

(8.3)

Here the first and last columns are universal bundles and the second column is the Borel fibration.

As the Borel fibration is a principal G-bundle, the classifying map ρ : BK ÝÑ BG must exist;

explicitly, if we take EK “ EG, then the map on total spaces inducing ρ “ Bi : eK ÞÝÑ eG is given
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by re, gsK ÞÝÑ eg. The middle row can be seen as

EGˆK K ãÝÝÑ EGˆK G ÝÝ� EGˆG G,

the outer terms being homeomorphic to EG by Lemma 2.1.1. Upon taking cohomology, the posi-

tions of EK and EG in the diagram and commutativity provide another reason the compositions

i˚ ˝ j˚ and χ˚ ˝ ρ˚ are zero.

The Borel approach to understanding the cohomology of H˚pG{Kq depends on the G-bundle

map between the second two bundles,

G

j
��

G

��
GK //

χ

��

EG

��
BK

ρ
// BG.

(8.4)

This bundle map induces a map from the spectral sequence prEr, d̃rq of the universal bundle,

which we now completely understand, to the spectral sequence pEr, drq of the Borel fibration,

which we do not. As GK » G{K, the latter sequence converges to H˚pG{Kq. We write

pψrq : pEr, drq ÐÝ prEr, d̃rq

for this map of spectral sequences. Recall from Appendix A.5.2 that these maps ψr : rEr ÝÑ Er are

DGA homomorphisms, meaning dr ˝ ψr “ ψr ˝ d̃r, and each descends from that on the previous

page, meaning ψr`1 “ H˚pψrq. The map ψ2 : E2 ÐÝ rE2 between second pages is

ρ˚ b id : H˚pBKq b H˚pGq ÐÝ H˚pBGq b H˚pGq,
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where idH˚pGq is the isomorphism rE0,‚
2

„
ÝÑ E0,‚

2 of the leftmost columns and ρ˚ “ pBiq˚ : H˚pBKq ÐÝ

H˚pBGq is the map rE‚,0
2 Ñ E‚,0

2 of bottom rows.

It is a consequence of the following lemma that the map ρ˚ at least largely determines

H˚pG{Kq.

Proposition 8.1.1. Let G be a compact, connected Lie group whose primitive subspace PG ă H˚pGq is

concentrated in degree ď q´ 1. Then if G Ñ E Ñ B is a principal G-bundle, its SSS collapses at Eq`1.

Proof. Recall that the spectral sequence prEr, d̃rq of the universal G-bundle collapses at rEq`1 “

rE8 “ Q. Because G Ñ E Ñ B is principal, it admits a bundle map to the universal bundle, as in

(8.4) inducing a spectral sequence map pψrq : prEr, d̃rq ÝÑ pEr, drq, which is a chain map, meaning

drψr “ ψrd̃r. Thus the edge maps dr : E0,r´1
r ÝÑ Er,0

r all vanish for r ą q. Now, the dr also vanish

on the bottom row E‚,0
r by lacunary considerations, and are antiderivations with respect to an

algebra structure on Er descending from that of E2 “ H˚pBq b H˚pGq, so they vanish entirely for

r ą q.

In particular, since the edge homomorphisms of the universal bundle spectral sequence

prEr, d̃rq are determined entirely composition by an isomorphism τ : PG „
ÝÑ QpBGq restricting

the transgression, it follows much of the structure of pEr, drq is determined by the composition

ρ˚ ˝ τ. In fact, in the next subsection we will show that this composition itself yields a differential

d on E2, the Cartan differential, such that H˚pE2, dq – H˚pG{Kq and pEr, drq is the filtration spectral

sequence associated to the filtered DGA pE2, dq, equipped with the horizontal filtration induced

from H˚
K.
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8.1.2. Cartan’s theorem

In this subsection, we prove Cartan’s theorem that the complex described above actually deter-

mines H˚pG{Kq completely. To do so, we will have to briefly invoke a cochain-level description of

the situation, and rather than use singular cochains, we compute cohomology with Dennis Sulli-

van’s rational algebra APL of polynomial differential forms. This object plays an essential role in

rational homotopy theory [FHT01, p. 121], but for our purposes, all we need to know about APL

is that it is a contravariant functor Top ÝÑ Q-CDGA such that H˚
`

APLpXq
˘

– H˚pX;Qq for CW

complexes X. That APLpXq is itself already a CGA and not merely a CGA up to homotopy is the

key feature.

Temporarily taking a step back from homogeneous spaces, consider the universal bundle

G Ñ EG Ñ BG. Lifting indecomposables, which is possible by Proposition A.4.3 since H˚pBGq is

a free CGA, the transgression yields a map

PpGq „
ÝÑ

τ
QpBGq ãÝÝÑ H˚pBGq,

Since H˚pBGq is also a free CGA, there exists a CGA section i˚ : H˚pBGq ÝÑ APLpBGq, so we can

lift τ to i˚τ : PH˚pGq ÝÑ APLpBGq.

Now consider a principal G-bundle G Ñ E π
Ñ B The bundle is classified by some map

χ : B ÝÑ BG, inducing a ring map χ˚ : APLpBGq ÝÑ APLpBq, and we can form the composition

χ˚i˚τ : PpGq Ñ H˚pBGq Ñ APLpBGq Ñ APLpBq

Because H˚pGq “ ΛPpGq is a free CGA, we can extend this lifted transgression uniquely to an
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antiderivation on

C :“ APLpBq b H˚pGq

which we will again call χ˚i˚τ and which vanishes on APLpBq. Similarly, the differential dB of

APLpBq extends uniquely to an antiderivation on C annihilating Q b H˚pGq, which we again

call dB. We consider C as a Q-CDGA with respect to the unique differential dC :“ dB ` χ˚i˚τ

extending both dB and χ˚i˚τ. See Figure 8.1.2.

Figure 8.1.2: The differential of the algebra C “ APLpBq b H˚pGq as defined on primitives

...

5 P5pGq

3 P3pGq

1 P1pGq

0 A0
PLpBq A1

PLpBq A2
PLpBq A3

PLpBq A4
PLpBq A5

PLpBq A6
PLpBq ¨ ¨ ¨

0 1 2 3 4 5 6 ¨ ¨ ¨

χ˚i˚τ

χ˚i˚τ

χ˚i˚τ

dB dB dB dB dB dB dB

Let pz`q be a basis of PpGq and set β` “ pχ
˚i˚τqz` for each `, so that we have

dCpαb 1q “ dBαb 1, α P APLpBq;

dCp1b z`q “ β` b 1.

The chain maps
`

APLpBq, dB
˘

Ñ pC, dCq Ñ
`

H˚pGq, 0
˘

induce ring homomorphisms H˚pBq Ñ

H˚pCq Ñ H˚pGq.
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Theorem 8.1.3 (Chevalley [Car51][Kos51][Bor53, Thm 24.1, 25.1] ). Let G
j
Ñ E π

Ñ B be a principal

G-bundle, and let pC, dCq and λ be as above. Then there exists an isomorphism λ˚ : H˚pC, dCq
„
ÝÑ H˚pEq

making the following diagram commute:

H˚pCq

λ˚

��

!!
H˚pBq

π˚   

>>

H˚pGq.

H˚pEq
j˚

==

Proof. We want to construct a chain map λ : C ÝÑ APLpEq into the algebra of polynomial differ-

ential forms on E (any CDGA calculating H˚pEq would do), which we will then show to be a

quasi-isomorphism by showing it induces an isomorphism between later pages of the associated

filtration spectral sequences. The spectral sequence corresponding to H˚
`

APLpEq
˘

– H˚pEq will

be the SSS pEr, drq of G
j
Ñ E π

Ñ B with respect to APL cochains.

Note that by construction and by Corollary 7.6.5 a primitive z` P Hr´1pGq transgresses in Er

to drrz`s “ rβ`s. By Proposition A.5.13, this means there exists an form γ` P APLpEq such that

rj˚γ`s “ z` P H˚pGq and dEγ` “ π˚β` P APLpEq. Define λ on algebra generators by

λ : APLpBq b H˚pGq ÝÑ APLpEq,

αb 1 ÞÝÑ π˚α,

1b z` ÞÝÑ γ`.

Then λ is a chain map by construction, for following through the formulas on generators, we
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have

dEλpαb 1q “ dEπ˚α “ π˚dBα “ λdCpαb 1q;

dEλp1b z`q “ dEγ` “ π˚β` “ λdCp1b z`q.

Filter B by its p-skeleta Bp, and E by the preimages π´1Bp of these, and filter C and APLpEq

by

FpC “
à

iěp
Ai

PLpBq b H˚pGq, Fp APLpEq “ ker
`

APLpEq ÝÑ APLpπ
´1Bp´1q

˘

.

Then λ preserves filtration degree for elements of H˚pBq, which is enough to see that it sends

FpC ÝÑ Fp APLpEq.

Write pEr, drq still for the spectral sequence of the filtration on APLpEq and p1Er, 1drq for that of

the filtration on C. The former is just the SSS of G Ñ E Ñ B using APL cochains (Theorem 4.3.4),

E2 “ H˚pBq b H˚pGq.

This form applies because the transition functions of a principal G-bundle are elements of G,

which act trivially on the cohomology of the fibers G since G is path-connected, so by the action

π1pBq ÝÑ Aut H˚pGq is trivial.

On the other hand, following through the reasoning in Corollary A.5.4 in this case, 1E0 is

the associated graded algebra gr C – C, and 1d0 is the differential induced by dC “ dB ` χ˚i˚τ.

Since χ˚i˚τ is induced by the transgression τ, it has filtration degree ě 2 on all elements it fails

to annihilate outright, and so vanishes under the associated graded algebra construction, and
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likewise dB adds one to the filtration degree, so 1d0 “ 0 and 1E1 “
1E0 – C. Thus 1d1 “ dB and

1E2 – H˚pBq b H˚pGq – E2.

Now that we know these pages can both be identified with H˚pBqbH˚pGq in a natural way, it

remains to show λ2 : 1E2 ÝÑ E2 becomes the identity map under these identifications. But this is

also the case by construction: the base elements α P APLpBqb 1 and λpαb 1q “ π˚α P APLpEq both

become rαs b 1 in 1E2 “ E2 and the fiber elements 1b z` P 1b H˚pGq and λp1b z`q “ γ` P APLpEq

each become 1b rj˚γ`s “ 1b z`.

Since λ2 is a chain isomorphism, it follows every λr is for 2 ď r ď 8. Since λ is a map of

filtered DGAs inducing an isomorphism

1E8 “ gr H˚
`

APLpBq b H˚pGq, dC
˘ „
ÝÑ gr H˚pEq “ E8

of associated graded cohomology algebras, it follows from Proposition A.5.1 that the map

H˚pλq : H˚
`

APLpBq b H˚pGq, dC
˘

ÝÑ H˚pEq

is also an isomorphism.

Remark 8.1.4. We are fairly committed to a classical viewpoint in this work, but those with some

grounding in rational homotopy theory might note that pSQpBKq bΛPG, dq is a Sullivan model.

The algebra C “ APLpBq b H˚pGq, although simpler than APLpEq, still involves the algebra

APLpBq of polynomial forms on the base B, which though graded-commutative and smaller than

the algebra of singular cochains on B, is still typically a very large ring (if B is a CW complex of

positive dimension, then dimQ APLpBq ě 2ℵ0), which we would rather replace with H˚pBq.
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The E2 page of the filtration spectral sequence associated to the filtration induced from the

“horizontal” grading on APLpBq is the algebra we want, namely H˚pBq b H˚pGq equipped with

the differential d2 vanishing on H˚pBq and sending z P PG to pχ˚τqz “
“

pχ˚i˚τqz
‰

P H|z|`1pBq.

Definition 8.1.5. The algebra C “ H˚pBq b H˚pGq equipped with the antiderivation d extending

PpGq τ
Ñ QpBGq ãÑ H˚pBGq

χ˚
Ñ H˚pBq

is the Cartan algebra of the principal bundle G Ñ E Ñ B.

Remark 8.1.6. Observe that the Cartan algebra of a principal bundle G Ñ E Ñ B is the Koszul

complex (Definition 7.5.4) of a sequence ~a in H˚pBq of images of generators of H˚pBGq under

the characteristic map χ˚ : H˚pBGq ÝÑ H˚pBq. This follows because indeed H˚pBGq “ S
“

QpBGq
‰

by Borel’s Theorem 7.6.1 and ΛPG b SQpBGq, equipped with τ : PG „
ÝÑ QpBGq, is the Koszul

complex of PG. In particular, one has the following isomorphism.

Proposition 8.1.7. Let G Ñ E Ñ B be a principal bundle and C its Cartan algebra. Then there is an

isomorphism

H˚pCq – Tor‚,‚
H˚G

`

Q, H˚pBq
˘

.

Proof. By Remark 8.1.6, C is the Koszul complex of the map χ˚ : H˚pBGq ÝÑ H˚pBq, and by

Proposition 7.5.8, the cohomology of this complex is Tor‚,‚
H˚G

`

Q, H˚pBq
˘

.

We would like to find a chain of quasi-isomorphisms linking
`

APLpBq b H˚pGq, dC
˘

with

C “
`

H˚pBqbH˚pGq, d
˘

. One natural sufficient condition is for there to exist a quasi-isomorphism

`

H˚pBq, 0
˘

ÝÑ
`

APLpBq, dAPLpBq
˘

. This follows from the following lemma, as applied to the Cartan

algebra. Recall from Definition A.4.6 that in this situation the complex
`

APLpBq, dAPLpBq
˘

is called

formal.
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Lemma 8.1.8. Let pB, dBq be a graded formal k-DGA with λ :
`

H˚pBq, 0
˘

ÝÑ pB, dBq a quasi-isomorphism.

Let F be a CGA, and suppose C “ Bb F is equipped with a differential ξ vanishing on Bb k and sending

generators of f into the subring of dB-cocycles ZpBq. Extend dB to an antiderivation vanishing on kb F,

and define dC “ dB ` ξ, and note that ξ descends to a differential ξ̄ on H˚pBq b F. Then

λb idF :
`

H˚pBq b F, ξ̄
˘

ÝÑ pBb F, dCq

is a quasi-isomorphism.

Proof. To see λb id is a chain map, it is enough to verify on generators from H˚pBq and F Since

ξ vanishes on Bb k, for b P B we have

dCpλb idq
`

rbs b 1
˘

“ pdB ` ξqpλbb 1q “ pdBλqbb 1 “ 0 “ pλb idqξ̄
`

rbs b 1
˘

,

and for a generator f of F we have

dCpλb idqp1b f q “ dCp1b f q “ ξp f q b 1 “ pλb idqξ̄p1b f q,

so λb idF is a chain map. Equipping both bigraded algebras with the horizontal filtration induced

by the grading on B, it is clear ξ increases filtration degree. Form the filtration spectral sequences

of each. It is clear the E2 page for H˚pBq b F is just H˚pBq b F again, and as noted in the lead-up

to this lemma, the E2 for Bb F is H˚pBq b F by the argument in the proof of Theorem 8.1.3. The

map λ2 is then the identity, so by Proposition A.5.7, λb id is a quasi-isomorphism.

Corollary 8.1.9. Let B be a generalized symmetric space in the sense of Definition A.4.8 and G Ñ E Ñ B

a principal G-bundle over B. Then the Cartan algebra calculates H˚pEq.

Proof. By Example A.4.9, a generalized symmetric space is formal, so Lemma 8.1.8 applies.
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Corollary 8.1.10 (Koszul, [Kos51]). Let pG, Kq be a pair such that G{K is a symmetric space. Then the

Cartan algebra of K Ñ G Ñ G{K calculates H˚pGq.

The case of critical interest to us, of course, is the Borel fibration G ÝÑ GK ÝÑ BK.

Definition 8.1.11. The Cartan algebra of the Borel fibration G ÝÑ GK ÝÑ BK, given by C “

H˚pBKqbH˚pGq equipped with antiderivation d extending ρ˚ ˝ τ : PpGq ÝÑ QpBGq ÝÑ H˚pBKq,

is the Cartan algebra of the pair pG, Kq.

The key theorem, due to Cartan, is that the Cartan algebra of a compact pair pG, Kq does

compute H˚pG{Kq.

Theorem 8.1.12 (Cartan, [Car51, Thm. 5, p. 216][Bor53, Thm. 25.2]). Given a compact pair pG, Kq,

there is an isomorphism H˚
`

H˚pBKq b H˚pGq
˘ „
ÝÑ H˚pG{Kq making the following diagram commute:

H˚
`

H˚pBKq b H˚pGq
˘

��

  
H˚pBKq

χ˚ !!

==

H˚pGq

H˚pG{Kq
j˚

>>
(8.5)

Proof. Because H˚pBKq – S
“

QpBGq
‰

is a free CGA, it is formal and Lemma 8.1.8 applies.

Remark 8.1.13. One might object that the inclusion of the hypothesis that the base B be formal

is heavy-handed. Unfortunately, not all manifolds are formal, and in the instance one is not, the

Cartan algebra of a bundle can fail to compute the cohomology of the total space. For an example

of this phenomenon, see Section 3 of Baum and Smith [BS67, p. 178].

Corollary 8.1.14. There is an isomorphism

Tor‚,‚
H˚pBGq

`

Q, H˚pBKq
˘

– H˚pG{Kq.
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Proof. By Theorem 8.1.12 and Proposition 8.1.7, H˚pG{Kq – H˚pCq – Tor‚,‚
H˚pBGq

`

Q, H˚pBq
˘

.

Remark 8.1.15. If we set K “ G, this statement makes precise our motivating claim in the introduc-

tion to Section 7.5 that the differentials in the SSS of the universal bundle G Ñ EG Ñ BG filter an

antiderivation τ extending the transgression which can be seen as the “one true differential.” In

the same way, the SSS of the Borel fibration G Ñ GK Ñ BK filters the differential on the Cartan

algebra. This does not make this SSS, which we have already exploited to such effect, any less

valuable: we will see examples in the next section where the Cartan algebra is unpleasantly com-

plicated and it behooves us to look at the associated graded algebra E8 “ gr H˚pG{Kq instead.

Moreover, in precisely the complement of this “bad” case, the associated graded construction is

an isomorphism, so that the SSS of the Borel fibration calculates H˚pG{Kq on the algebra level.

Rather than one description being more powerful, it is the equivalence of these two descriptions

that turns out to be critical.

Remark 8.1.16. It is only fair to say at one point why we insist so fervently that K be connected.

The main issue is that if K is not connected, then BK will not be simply-connected, and the

Serre spectral sequence of the Borel fibration is calculated with local coefficients. One can still

say some things, for if K0 ă K is the identity component, then BK0 ÝÑ BK and G{K0 ÝÑ G{K

are finite coverings, so if |π0K| is invertible in k, one can embed H˚pG{Kq as the π0K-invariants

of H˚pG{K0q by Proposition B.3.1 and likewise H˚
K as the π0K-invariants of H˚

K0
.

That G be connected, on the other hand, is not a real restriction if we insist K be connected,

for then K will lie in the identity component G0 of G and G{K will factor homeomorphically as

π0Gˆ G0{K, a finite disjoint union of copies of G0{K.

Historical remarks 8.1.17. The original, unpublished statement of Chevalley’s theorem, as best the

author can tell, applied to the de Rham cohomology of a smooth principal G-bundle with com-

pact total space. This statement is cited by Cartan and Koszul both (without proof) in the Colloque
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proceedings. Borel’s generalization of this result, as proved in his thesis, removes the smoothness

hypotheses by relying, instead of on forms, on an object of Leray’s creation known as a couverture,

which was superseded so quickly and so thoroughly by the ring of global sections of a fine sheaf

of R-CDGAs that it never acquired an English translation. Borel’s statement of the result still

requires compactness of the base because it relies on (what is essentially) sheaf cohomology with

compact supports and a result of Cartan which in modern terms can be interpreted as saying a

resolution of the constant sheaf R on a paracompact Hausdorff space by a fine sheaf of R-CDGAs

always exists. Neither the principal bundle G Ñ EG Ñ BG nor a Q-CDGA model of cohomology

was available to Borel at the time, so in his statement [Bor53, Thm 24.1] of Chevalley’s theorem,

our H˚pBq is replaced with (essentially, again) a fine resolution B of the real constant sheaf on B.

As we have noted in Historical remarks 7.6.6, Borel did not actually have BK available, so his

proof was slightly complicated by the need to invoke n-universal K-bundles Epn, Kq ÝÑ Bpn, Kq

for n sufficiently large. Borel’s proof also incorporated not the Serre spectral sequence as we

did, but the more sophisticated Leray spectral sequence from which Serre extracted his, applied

simultaneously to an early formulation of a sheaf and a couverture. We will reproduce a less

drastic modernization of Borel’s original argument in Appendix D, and delve slightly further

there into the meaning of the Leray spectral sequence, fine sheaves, and couvertures.

8.2. The structure of the Cartan algebra, I

The Cartan algebra makes a few results on H˚pG{Kq easy which would require more sophisti-

cation if attacked with the map of spectral sequences that was the subject of Section 8.1.1. We

reproduce here the important bundle diagram (8.4), the spectral sequence of which the Cartan
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algebra encodes.

G

j
��

G

��
GK //

χ

��

EG

��
BK

ρ
// BG.

One important subobject of the Cartan algebra is related to the image of the map j˚ : H˚pG{Kq ÝÑ

H˚pGq induced by j : G ÝÝ� G{K » GK.

Definition 8.2.1. The image of j˚ : H˚pG{Kq ÝÑ H˚pGq is called the Samelson subring of H˚pGq.

It meets the primitives PG ď H˚pGq in the Samelson subspace pP.

The importance of the Samelson subspace is that in fact it generates im j˚.

Proposition 8.2.2. The Samelson subring is the exterior algebra ΛpP.

Proof. At the end of the spectral sequence pEr, drq of the Borel fibration G Ñ GK Ñ BK, the

projection E‚,‚
8 ÝÝ� E0,‚

8 to the first column is the “associated graded” map gr j˚ : gr H˚pG{Kq ÝÑ

H˚pGq (Proposition 4.3.7), so im j˚ – E0,‚
8 . To show this is ΛpP, it will be enough to show each E0,‚

r

is an exterior algebra on a subspace of PG. Note that E0,‚
2 of the first page is H˚pGq “ ΛPG and

assume inductively that Er “ ΛPr for some Pr ď PG.

In the spectral sequence prEr, d̃rq of the universal bundle, the subspace Pr´1H˚pGq ă H˚pGq

survives to rEr, after which it disappears because of the edge isomorphism

d̃r : Pr´1pGq „
ÝÑ rEr,0

r .

From the chain equations

ψr ˝ d̃r “ dr ˝ ψr (8.6)
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which arise from the bundle map (8.4) to the universal bundle, it follows inductively that Pr´1H˚pGq

cannot vanish before Er`1, because for each q ă r one has

dqz “ dqψqz “ ψqd̃qz “ ψq0 “ 0.

On the other hand, the differential dr annihilates Pr X E0,ďr´2
r because it sends it into the fourth

quadrant. If we write V “ Pr X E0,ďr´1
r and VK for the subspace of Pr spanned by elements of

degree other than r´ 1, then since ΛPr – ΛVK bΛV, we need only show that kerpdr æ ΛVq “

ΛpV X ker drq. But that follows from Proposition 7.5.3.

Proposition 8.2.3. If rHK is the augmentation ideal of H˚
K, then one has pP “ d´1

`

rHK ¨ im d
˘

.

Proof. Let z P Pr´1G, and suppose drz “ 0 in Er, so that z survives to E0,‚
8 . Then it must be that

the lift dz P E2 lies in the kernel of E‚,0
2 ÝÝ� E‚,0

r , which is the ideal generated by the lifts to

E2 of the images of previous edge maps di : E0,i´1
i ÝÑ Ei,0

i . Since these edge differentials lift to

those components of d which advance the horizontal filtration by fewer than r steps, it follows

dz P rHK ¨ im d.

On the other hand, if dz P rHK ¨ im d and drz “ 0 in im r, then the im d components can

only arise from earlier differentials, as later differentials dr`n send z past dz in the horizontal

filtration.

The Samelson subring is in fact a tensor factor of H˚pG{Kq.

Definition 8.2.4. Let pG, Kq be a compact pair. We write qP :“ PG{pP, and call this the Samelson

complement; the notation is supposed to indicate its complementarity to pP.

Proposition 8.2.5. The Cartan algebra admits a coproduct decomposition

pH˚
K bΛPG, dq –

`

H˚
K bΛqP, dq b pΛpP, 0q.
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The proof is just what one would naively hope; we paraphrase from Greub et al [GHV76,

3.15 Thm. V, p. 116].

Proof. Choose some Q-linear section

pP ÝÑ ker d ď H˚
K bΛPG

of the column projection ker d � H˚pG{Kq
j˚
Ñ H˚pGq. This section extends uniquely to a ring

injection f : ΛpP ÝÑ ker d which we can extend further to a ring map

pH˚
K bΛqPq bΛpP ÝÑ H˚

K bΛPG

pab žq b ẑ ÞÝÑ pab žq ¨ f pẑq.

This ring map is also a chain map, since it is the identity on the first tensor-factor of its domain

and since for ẑ P ΛpP we have 0 “ dp f ẑq “ f
`

0pẑq
˘

.

It remains to see f is bijective. Note that f is the identity on HK b ΛqP and that given an

element z P pP, since f is defined to be a section of the projection to the leftmost column, we

have f pzq ” 1 b z
`

mod rH˚
K
˘

. Thus f preserves the the horizontal filtration induced by the

filtration FpH˚
K “

À

iěp Hp
K on the base H˚

K and induces an isomorphism gr
‚

f on associated

graded algebras. By Proposition A.5.7, f is an isomorphism.

Corollary 8.2.6. Let pG, Kq be a compact pair. Then there exists a tensor decomposition

H˚pG{Kq – H˚pH˚
K bΛqP, dq bΛpP,

where the subring ΛpP “ im j˚ ď H˚pGq is induced from the projection j : G ÝÑ G{K.
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We write the first factor as J.

Corollary 8.2.7. The factor J satisfies Poincaré duality.

Proof. Since G{K is a compact manifold, H˚pG{Kq is a PDA by Theorem A.3.12, and the exterior

algebra ΛpP is a PDA, so by Proposition A.3.14, so also must be the remaining factor J.

The same way that im j˚ admits a description as the leftmost column of E8 for the SSS of

G Ñ GK Ñ BK, so also the image of χ˚ admits a description as the bottom row E‚,0
8 .

Definition 8.2.8. The map χ˚ : H˚
K ÝÑ H˚pG{Kq is traditionally called the characteristic map and

im χ˚ – H˚
K {{H˚

G is the characteristic subring of the pair pG, Kq. The factor J “ H˚
`

H˚
K bΛqP, d

˘

of H˚pG{Kq in the decomposition Corollary 8.2.6 is called the characteristic factor.

The name characteristic subring arises because, up to homotopy, the classifiying map G{K ÝÑ

BK of the principal K-bundle K Ñ G Ñ G{K is the projection χ : GK ÝÑ BK of the Borel fibration

(see (8.1)), and the characteristic classes of the former K-bundle bundle lie in im χ˚. The charac-

teristic factor is so called because H˚
K ãÝÝÑ H˚

K bH˚pGq factors through H˚
K bΛqP, making clear the

following containment.

Proposition 8.2.9. The characteristic ring im χ˚ is contained in the characteristic factor J.

The cohomology sequence (8.2) is coexact at H˚
K, yielding the following pleasing description

of the characteristic subring.

Proposition 8.2.10. The characteristic subring is given by im χ˚ – H˚
K {{H˚

G.

Proof. The bottom row H˚
K lies in the kernel of the Cartan differential, and meets its image in

the ideal j generated by ρ˚pim τq. Since τ : PpGq „
ÝÑ QpBGq surjects onto generators of H˚

G, it

follows that the ideal j which is the kernel of H˚
K ÝÑ H˚

`

H˚
K bH˚pGq

˘

is generated by the image

ρ˚ rHG of the augmentation ideal, so this image is H˚
K{pρ

˚
rHGq “: H˚

K {{H˚
G, the ring-theoretic
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cokernel. By the commutativity of the diagram (8.5), this image subalgebra corresponds to im χ˚

in H˚pG{Kq.

This information is already enough to compute H˚pG{Kq in many cases of interest.

8.3. Cohomology computations, I

Lest we miss the trees for the forest in fleshing out our general description of the Cartan algebra,

we take a detour to describe the cohomology of two popular classes of homogeneous spaces G{K,

namely those for which H˚pGq Ñ H˚pKq is surjective and those for which rk G “ rk K.

8.3.1. Cohomology-surjective pairs

The map (8.4) of spectral sequences lets us easily reobtain Hans Samelson’s classic theorem

that H˚pGq – H˚pKq b H˚pG{Kq whenever H˚pGq ÝÝ� H˚pKq. Pictorially, this means the Serre

spectral sequence of G Ñ GK Ñ BK looks like that of Up4q Ñ Up4qSpp2q Ñ BSpp2q, as pictured in

Figure 8.3.3; for now, just look at the E8 page, on the right.

Definition 8.3.1. If pG, Kq is a compact pair such that K ãÑ G induces a surjection H˚pGq ÝÑ

H˚pKq in cohomology, we call pG, Kq a cohomology-surjective pair.

Theorem 8.3.2 (Samelson [Sam41, Satz VI(b), p. 1134]). Suppose that pG, Kq is a cohomology-surjective

pair. Then

1. ρ˚ : H˚
G ÝÑ H˚

K is surjective,

2. χ˚ : H˚
K ÝÑ H˚pG{Kq is trivial,

3. the Samelson subspace pP is complementary to PpKq in PpGq,

4. H˚pG{Kq is the exterior algebra ΛpP – ΛPpGq {{ΛPpKq, and



Figure 8.3.3: The Serre spectral sequence of Up4q Ñ Up4qSpp2q Ñ BSpp2q; nonzero differentials (shown) send ˆ ÞÑ ˝, whereas ‚s survive to the next page
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5. H˚pGq – H˚pKq b H˚pG{Kq.

6. If the Poincaré polynomials of PG and PK are respectively ppPGq “
řn

j“1 tdj and ppPKq “
ř`

j“1 tdj ,

then ppG{Kq “
śn

j“``1p1` tdjq.

Proof. By Proposition 7.2.9 the fact i : K ãÝÝÑ G is a group homomorphism implies i˚ : H˚pGq ÝÝ�

H˚pKq takes the primitives PpGq ÝÑ PpKq. Because we have assumed i˚ surjective, it follows

i˚PpGq “ PpKq and because i˚ is a ring homomorphism that ker i˚ – Λ
“

PpGq{PpKq
‰

.

The outer columns of (8.3) are a bundle map between the universal principal K- and G-

bundles, inducing a map of Serre sequences interleaving the transgressions. Restricting to prim-

itives, one has the commutative diagram

PpKq

τK„

��

PpGqi˚oooo

τG „

��
QpBKq QpBGq,

Qρ˚
oo

(8.7)

which implies that Qpρ˚qQpBGq “ QpBKq and hence that ρ˚ : H˚pBGq ÝÑ H˚pBKq is also sur-

jective. It follows from the triviality of χ˚ ˝ ρ˚ that the characteristic subring im
`

χ˚ : H˚
K ÝÑ

H˚pG{Kq
˘

is Q.

If we embed PpKq� PpGq by taking a section of i˚, we see from the transgression square (8.7)

that the complement of PpKq is annihilated by ρ˚ ˝ τG, so that the Samelson subspace pP ď PpGq

is a complement to PpKq, or pP – PpGq{PpKq.

Because ρ˚ ˝ τ ends PpKq onto QpBKq and annihilates pP, we have a ring factorization of

E2 – H˚pBKq b H˚pGq as

“

H˚pBKq b H˚pKq
‰

bΛpP,

which respects the transgression in that all differentials are trivial on pP, and the left tensor factor
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is the beginning of the filtration spectral sequence corresponding to the Koszul complex on

QpBKq (cf. Proposition 7.6.4). It follows E8 “ E0,‚
8 – ΛpP. Thus we can identify the short coexact

sequence H˚pKq Ð
i˚

H˚pGq Ð
j˚

H˚pG{Kq with

0 Ð ΛPpKq ÐÝ Λ
“

PpKq ‘ pP
‰

ÐÝ ΛpP Ð 0;

the tensor factorization is valid simply because by Proposition A.4.3 the free CGA ΛPpKq is

projective.

The result on Poincaré polynomials follows from the statements in Appendix A.3.2, since

ppΛPGq “
śn

j“1p1` tdiq and ppΛPKq “
ś`

j“1p1` tdiq.

Remarks 8.3.4. (a) With the benefit of hindsight, our calculations of the cohomology rings of SUpnq

in Proposition 7.1.4 and of VjpCnq and VjpHnq in Proposition 7.1.5 can all be seen to be of this

form.

(b) The Samelson isomorphism H˚pGq – H˚pG{Kq b H˚pKq also follows directly from Corol-

lary 7.2.5 independent of any consideration of classifying spaces.

Proposition 8.3.5 ([Car51, 1˝, p. 69][Bor53, Corollaire, p. 179]). Let i : K ãÝÝÑ G be an inclusion of

compact, connected Lie groups. Then ρ˚ : H˚
G ÝÑ H˚

K is surjective if and only if i˚ : H˚pGq ÝÑ H˚pKq

is.

Proof. This follows immediately from the commutative square (8.7) in the proof of Theorem 8.3.2

since the vertical maps are isomorphisms.

Most of these conditions are clearly equivalent. In fact, a weaker dimension condition on

H˚pG{Kq is equivalent to cohomology-surjectivity.
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Proposition 8.3.6 ([GHV76, Thm. 10.19.X,(6) p. 466]). Let pG, Kq be a compact pair. One has

h‚pGq ď h‚pG{Kq ¨ h‚pKq,

with equality if and only if pG, Kq is cohomology-surjective.

Proof [GHV76, Cor. to Thm. 3.18.V, p. 125]. This follows from Corollary 4.3.10 as applied to the

Serre spectral sequence of K Ñ G Ñ G{K,

Example 8.3.7. Recall from Example 7.8.1 that H˚
`

BUp4q
˘

ÝÑ H˚
`

BSpp2q
˘

is surjective. From

Proposition 8.3.5, we see as well that H˚
`

Up4q
˘

ÝÑ H˚
`

Spp2q
˘

, as promised. We had

c1 ÞÝÑ 0,

c2 ÞÝÑ ´q1,

c3 ÞÝÑ 0,

c4 ÞÝÑ q2,

so in the primitive subspace PUp4q “ Qtz1, z3, z5, z7u we have PSpp2q “ Qz3 ‘Qz7 and pP “

Qz1 ‘Qz5. It follows from Section 8.3.1 that

H˚
`

Up4q{Spp2q
˘

– Λrz1, z5s, deg zj “ j.

The resulting spectral sequence, Figure 8.3.3, appears complicated, but this complexity is only

apparent. Staring closely at the picture, one sees that ΛpP “ Λrz1, z5s is a tensor-factor, to which

nothing ever happens, and the massive simplifications after the 4th and 8th pages just witness

that the Koszul complexes Krz3s and Krz7s are other tensor-factors.
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Alternately, not bothering with the picture, the transgression in the universal principal Up4q-

bundle takes z1 ÞÝÑ c1 and z5 ÞÝÑ c3, this means that ΛpP “ Λrz1, z5s splits off in the Cartan

algebra immediately, and Srq1, q2s bΛrz3, z7s is a Koszul complex, so acyclic.

A little more work shows that H˚
Up2nq ÝÑ H˚

Sppnq is surjective for all n with kernel the odd

Chern classes, and it follows

H˚
`

Up2nq{Sppnq
˘

– Λrz1, . . . , z4n´3s, deg zj “ j.

As an example application of Samelson’s theorem, we prove a result which will be of use to

us later in investigating equivariant formality of isotropy actions.

Lemma 8.3.8. Let S be a torus in a compact, connected Lie group G and Z “ ZGpSq its centralizer in Z.

The cohomology of Z decomposes as

H˚pZq – H˚pSq b H˚pZ{Sq.

Consequently, H˚pZ{Sq is an exterior algebra on rk G´ rk S generators and h‚pZ{Sq “ 2rk G´rk S.

Proof. By Theorem 8.3.2, it will be enough to show the inclusion S ãÝÝÑ Z surjects in cohomology.

Since S is normal in Z, the quotient Z{S is another Lie group, so π2pZ{Sq “ 0 by Corollary 7.2.11

and in the long exact homotopy sequence (Theorem B.2.4) of the bundle S Ñ Z Ñ Z{S we find the

fragment 0 “ π2pZ{Sq Ñ π1S Ñ π1Z. Since S and Z are topological groups, their fundamental

groups are abelian by Proposition B.4.2 and hence isomorphic to their first homology groups

by Proposition B.2.5, so H1pS;Zq ÝÑ H1pZ;Zq is injective. It follows from Theorem B.2.1 that

H1pS;Qq ÝÑ H1pZ;Qq is injective, and, dualizing, that H1pZ;Qq ÝÑ H1pS;Qq is surjective. Since

H1pSq generates H˚pSq, it must be that H˚pZq ÝÑ H˚pSq is surjective as well.
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The statement on Betti number follows because Z must have the same rank as G, since S is

contained in some maximal torus of G by Theorem B.4.9.

Historical remarks 8.3.9. Proposition 8.3.5 was first proven by Cartan [Car51, 1˝, p. 69][Bor53,

Corollaire, p. 179].

A surjection H˚pGq ÝÑ H˚pKq in cohomology corresponds dually to an injection H˚pKq ÝÑ

H˚pGq in homology, and it was this condition Hans Samelson researched in the work in which the

tensor decomposition (5.) above was first proven [Sam41]. It has since been said that K is totally

nonhomologous to zero in G. Samelson said the Isotropiegruppe U nicht homolog in der Gruppe G ist

or U  0, the letter U for Untergruppe (our K), and showed if the fundamental class rKs P H˚pKq

did not become zero in H˚pGq, then H˚pKq ÝÑ H˚pGq: the fundamental class rKs P H˚pK;Qq –

ΛpPKq˚ is the product of a set of algebra generators, so if ρ˚rKs ‰ 0 in H˚pGq, then ρ˚ is injective.

The “totally” is redundant and sometimes dropped for this reason.

When the cohomology ring rather than the homology ring became the primary actor, later

expositors (e.g. [GHV76]) named the condition, by analogy, totally noncohomologous to zero, even

though that name taken literally would imply the surjection H˚pGq ÝÝ� H˚pKq should be injec-

tive. These conditions have been abbreviated variously TNHZ, TNCZ, and n.c.z. For safety’s sake,

in dealing with this situation we will always simply say a map surjects in cohomology.

8.3.2. Pairs of equal rank

We recast some of the results from Chapter 5 in this framework.

Definition 8.3.10. A compact pG, Kq is an equal-rank pair if rk G “ rk K.

Theorem 8.3.11 (Leray). Let pG, Kq be an equal-rank pair. Then

1. ρ˚ : H˚
G ÝÑ H˚

K is injective,



Chapter 8. The cohomology of homogeneous spaces 173

2. χ˚ : H˚
K ÝÑ H˚pG{Kq is surjective,

3. the Samelson subspace pP is trivial,

4. H˚pG{Kq – E‚,0
8 is H˚K {{H˚

G – HWK
T {{HWG

T .

5. If the Poincaré polynomials of PpGq and PpKq are respectively ppPGq “
řn

j“1 t
2gj´1
j and ppPGq “

řn
j“1 t

2k j´1
j , then the Poincaré polynomial of G{K is

ppG{Kq “
ppBKq
ppBGq

“

n
ź

j“1

1´ t2k j

1´ t2gj
. (8.8)

Proof. The inclusion K ãÑ G induces an injection of Weyl groups WK � WG. and in turn an

inclusion HWG
T ãÑ HWK

T ãÑ H˚
T of Weyl invariants. Recalling from Corollary 6.4.7 that H˚

G – HWG
T ,

this means H˚
G � H˚

K � H˚
T and in particular ρ˚ : H˚

G ÝÑ H˚
K is injective.1 Since the transgression

τ : PG „
ÝÑ QpBGq is also injective, the composition ρ˚ ˝ τ : PG ÝÑ H˚

K is as well, so its kernel pP

is 0. The injectivity of ρ˚ combined with the fact im χ˚ – H˚
K {{H˚

G means H˚
K – H˚

G b im χ˚ as an

H˚
G-module, so the Cartan algebra H˚pBKq b H˚pGq factors as

pim χ˚, 0q b
`

H˚
G b H˚pGq, d

˘

.

Since the second term is a Koszul complex, which has trivial cohomology by Proposition 7.5.2,

we have H˚pG{Kq – im χ˚ “ H˚
K {{H˚

G by the Künneth theorem.

As far as Poincaré polynomials are concerned, note first that we are implicitly assuming the

1We have proved this from abstract results about invariants, but these maps arise from the cohomology of the base
spaces in the sequence

GT //

��

GK //

��

EG

��
BT // BK // BG,

of principal G-bundles maps, where the maps of total spaces can be conceived as “further quotient” maps among
quotients of EGˆ G.
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results of Section 7.2 that H˚pGq and H˚pKq are exterior algebras in order to conclude QpBGq –

ΣPG is spanned by generators of degree 2gj, and H˚pBGq “ S
“

QpBGq
‰

is a polynomial ring on

these generators. so by the results of Appendix A.3.2, we have

ppBGq “
ź

j

1
1´ t2gj

and ppBKq “
ź

j

1
1´ t2k j

.

The H˚
G-module isomorphism H˚

K – H˚
G b H˚pG{Kq reduces on the the level of graded vector

spaces to

ppBKq “ ppBGq ¨ ppG{Kq.

Multiplying through by ppBGq´1 “
ś

jp1´ t2gjq yields the claimed formula.

Corollary 8.3.12 (Leray, [Bor53, Prop. 29.2, p. 201]). Let G be a compact, connected Lie group and T a

maximal torus. Then the characteristic map χ˚ : H˚pBTq ÝÑ H˚pG{Tq is surjective, and if the Poincaré

polynomial of PpGq is ppPGq “
řn

j“1 t
2gj´1
j , then

ppG{Tq “
n
ź

j“1

1´ t2

1´ t2gj
.

We have also a converse.

Proposition 8.3.13. If H˚pG{Kq is concentrated in even degrees, then K and G are of equal rank.

Proof. If H˚pG{Kq is concentrated in even degrees, then the Euler characteristic χpG{Kq ą 0.

Thus the result follows from Corollary 5.2.5; if we had rk K ă rk G, then we would also have

χpG{Kq “ 0.

This result also admits a purely algebraic proof involving commutative algebra and the Samel-

son subspace.
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Corollary 8.3.14 (Borel [Bor53, Corollaire, p. 168]). Suppose pG, Kq is a pair of compact, connected

Lie groups such that the characteristic homomorphism χ˚ : H˚
K ÝÑ H˚pG{Kq is surjective. Then for every

principal G-bundle G Ñ E Ñ B, the fiber inclusion of the quotient bundle G{K ÝÑ E{K Ñ B is

surjective in cohomology.

Proof. The principal bundle G Ñ E Ñ B is classified by a map B ÝÑ BG, inducing a bundle

map to the universal bundle G Ñ EG Ñ BG. Taking the right quotient of the total spaces of both

bundles by K yields a bundle map

G{K

f
��

G{K

χ

��
E{K

��

h // BK

��
B // BG.

But the existence of this map puts us in the situation of By Theorem 4.4.1, one has H˚pE{Kq ÝÑ

H˚pG{Kq surjective; moreover,

H˚pE{Kq – H˚pBq bH˚G
H˚

K.

Theorem II, sec. 10.7, Theorem VII, sec. 3.17, and the Corollary to Proposition V, sec. 3.18.

Example 8.3.15. Consider the pair
`

Upnq, Tn
˘

. The Weyl group WUpnq is the symmetric group Sn

acting on H˚
T “ Qrt1, . . . , tns by permuting the generators tj P H2pBTq, so H˚

Upnq “ Qrc1, . . . , cns is

generated by the elementary symmetric polynomials cj “ σjp~tq. It follows that the cohomology of

the complex flag manifold Upnq{Tn is

H˚
`

Upnq{Tn˘ – Qrt1, . . . , tns{pc1, . . . , cnq,
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with Poincaré polynomial

p
`

Upnq{Tn˘ “
p1´ tqn

N

śn
j“1p1´ tqj “ 1p1` tqp1` t` t2q ¨ ¨ ¨ p1` t` t2 ` ¨ ¨ ¨ ` tn´1q,

which, evaluated at t “ 1, yields rational dimension n! “ |Sn| “ |WUpnq|. We will see this is no

coincidence.

If we take n “ 2, then

Up2q{T2 “
Up2q

N

Up1q ˆUp1q « Gp1,C2q “ CP1 « S2,

so we know what to expect. Indeed, c1 “ t1 ` t2 and c2 “ t1t2 in H˚
T “ Qrt1, t2s, so

H˚
`

Up2q{T2˘ – H˚
T2 {{H˚

Up2q “
Qrt1, t2s

N

pt1 ` t2, t1t2q
– Qrt1s{pt2

1q

as predicted.

For a less trivial example, take n “ 3, so that c1 “ t1 ` t2 ` t3 and c2 “ t1t2 ` pt1 ` t2qt3 and

c3 “ t1t2t3. Since we are setting each cj ” 0, we can eliminate out the generator t3 ” ´pt1 ` t2q

and know 0 ” c2 ” t1t2´ pt1` t2q
2 “ ´pt2

1` t2
2` t1t2q. Simplifying c3 ” 0 yields t1t2

2` t2
1t2 ” 0, so

H˚
`

Up3q{T3˘ –
Qrt1, t2s

N

pt2
1 ` t2

2 ` t1t2, t2
1t2 ` t1t2

2q.

See Figure 8.3.16.

Figure 8.3.16: A basis for the E8 page of the Serre spectral sequence of Up3q Ñ Up3qT3 Ñ BT3

0 1 t1, t2 t2
1, t2

2 t3
1 ` t3

2

0 2 4 6
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Example 8.3.17. Consider the pair
`

Sppnq, Sppkq ˆ Sppn´ kq
˘

, yielding the quotient Gpk,Hnq. The

Weyl group WSppnq is the semidirect product symmetric group t˘1un ¸ Sn, where Sn acts by

permuting the entries of t˘1un, and WSppnq acts on H˚
T “ Qrt1, . . . , tns by permuting and negating

the generators tj P H2pBTq, so H˚
Sppnq “ Qrq1, . . . , qns is generated by the elementary symmetric

polynomials qj “ σjpt2
1, . . . , t2

nq in the squares t2
j P H4pBTq. The Weyl group WSppkqˆSppn´kq “

WSppkq ˆWSppn´kq permutes the subrings Qrt1, . . . , tks and Qrtk`1, . . . , tns separately, so

H˚
`

Gpk,Hnq
˘

–
Qrt1, . . . , tks

WSppkq bQrtk`1, . . . , tns
WSppn´kq

N

pq1, . . . , qnq

We will calculate explicitly what happens if n “ 5 and k “ 3. For convenience, set uj “ t2
j . The

numerator ring H˚
Spp3q b H˚

Spp2q is the polynomial subring Qrr1, r2, r3, s1, s2s of Qru1, u2, u3, u4, u5s

generated by the five generators on the left, and the denominator is the ideal generated by the

elements on the right:

r1 “ u1 ` u2 ` u3,

r2 “ u2pu1, u2, u3q,

r3 “ u1u2u3,

s1 “ u4 ` u5,

s2 “ u4u5;

q1 “ r1 ` s1,

q2 “ r1s1 ` r2 ` s2,

q3 “ r3 ` r2s1 ` r1s2,

q3 “ r3s1 ` r2s2,

q5 “ r3s2.

Imposing the congruences generated by setting each qj ” 0 and crunching relations a few times

yields

H˚
`

Gp3,H5q
˘

–
Qrr1, r2s

N

pr4
1 ´ r2

1r2 ´ r2
2, 2r3

1r2 ` 3r1r2
2q,

deg r1 “ 4, deg r2 “ 8.
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Historical remarks 8.3.18. Leray’s determination of H˚pG{Tq dates back to 1946 in the event G is a

compact, connected, classical simple group [Ler46b]. By 1949, he only requires that the universal

compact cover (see Theorem B.4.4) rG of G contain no exceptional factors [Ler49a]. His original

statement of Theorem 8.3.11 requires no exceptional group to occur as factors of the universal

compact cover rG of G, but allows K to be any closed subgroup, not necessarily connected, of

equal rank. His additional requirement on G is removed by the time of his contribution [Ler51]

to the 1950 Brussels Colloque de Topologie. The formula (8.8) was first conjectured by Guy Hirsch

and is hence traditionally called the Hirsch formula. According to Dieudonné [Die09, p. 448],

Cartan and Koszul obtained this result independently around the same time. The initial proof

that H˚pG{Tq is the regular representation of WG also dates to Leray in the Bruxelles conference;

he had earlier shown in [Ler49a] the same result holds if G is finitely covered by a product of

classical groups.

8.4. The structure of the Cartan algebra, II: formal pairs

Returning to our discussion of homogeneous spaces, let pG, Kq be a compact pair and consider

the Cartan algebra H˚
K b H˚pGq with differential d induced by ρ˚ ˝ τ.

Recall that if the Samelson subspace pP ď H˚pGq is the subspace of the primitives of G where

d vanishes and qP “ PG{pP is the Samelson complement, we defined the characteristic factor to be

J :“ H˚
`

H˚
K bΛqP, d

˘

and found a tensor decomposition (Corollary 8.2.6)

H˚pG{Kq – J bΛpP.

One would like in a similar way to be able to tensor-factor out the characteristic subring im χ˚

from J, but this is not generally possible. The best we are able to do in this regard is the following.



Chapter 8. The cohomology of homogeneous spaces 179

Proposition 8.4.1. The characteristic ring im χ˚ is simultaneously a subring and quotient ring of the

characteristic factor J “ H˚pH˚
K bΛqPq.

Proof. Since the image of d meets H˚
K in ρ˚H˚

G, the composite projection

H˚
K b H˚pGq ÝÝ� H˚

K ÝÝ� H˚
K {{H˚

G “ im χ˚

descends in cohomology to a homomorphism H˚pG{Kq ÝÝ� im χ˚ split by the defining inclusion

im χ˚ ãÝÝÑ H˚pG{Kq.

In this section, we explore the propitious case in which the characteristic subring im χ˚ is the

characteristic factor J.

Definition 8.4.2. If H˚pG{Kq – im χ˚bΛpP, we call pG, Kq a formal pair (traditionally, such a pair

is called a Cartan pair).

Example 8.4.3. Suppose pG, Kq is a cohomology-surjective pair. Then, by Theorem 8.3.2, the char-

acteristic factor J is trivial.

Example 8.4.4. Suppose pG, Kq is an equal-rank pair. Then, by Theorem 8.3.11, the Samelson sub-

ring ΛpP is trivial and the characteristic factor J is the characteristic ring im χ˚.

One can see formal pairs as the smallest class of cases that contains both these extreme

examples. Another way of seeing it is this: the first interesting page of the Serre spectral sequence

of the Borel fibration G Ñ GK Ñ BK is E2 “ E‚,0
2 b E0,‚

2 – H˚
K b H˚pGq, a coproduct of CGAs,

with one tensor-factor each arising from the base and the fiber of the fibration. In our examples

in Section 8.3.2 and Section 8.3.1, this tensor-product structure persisted throughout the entire

sequence, in that the decomposition Er “ E‚,0
r b E0,‚

r continued to hold, and

E8 “ E‚,0
8 b E0,‚

8 “
`

H˚
K {{H˚

Gq bΛpP
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was the tensor product of the characteristic subring im χ˚ and the Samelson subring ΛpP.2 For a

representative example, see Figure 8.5.4. This is also the optimal situation from a purely numer-

ical perspective, because, in particular, the tensor decomposition yields a factorization

ppG{Kq “ ppE‚,0
8 q ¨ ppE0,‚

8 q, (8.9)

of Poincaré polynomials and in particular, setting the formal variable t “ 1, a factorization

h‚pG{Kq “ dimQ E‚,0
8 ¨ dimQ E0,‚

8 .

We will expound a number of properties of and equivalent characterizations of the formal

pair condition, in the process justifying the nomenclature. The very fact that there are so many

ways of stating this property should be a further argument, were one needed, for the naturality

of the concept.

But first we introduce an important bound on the dimension of the Samelson subspace.

Definition 8.4.5. The deficiency of a compact pair pG, Kq is the integer

dfpG, Kq :“ rk G´ rk K´ dim pP.

Proposition 8.4.6. The deficiency is a natural number. That is, for any compact pair pG, Kq, one has

dim PG´ dim PK ě dim pP.

Proof [Bau68, Lem. 3.7, p. 26]. Since qP ‘ pP “ PG by definition, it is enough to show dim qP ě

2 We concede that in those examples, it was the tensor product of precisely one of those factors—there are historical
reasons why those cases were studied first.
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dim PK. This can be shown through Poincaré polynomials. We may view H˚
K as an algebra over

the polynomial ring A “ S
“

τpqPq
‰

by restricting ρ˚ : H˚
G ÝÑ H˚

K. If we lift a basis of H˚
K {{H˚

G “

H˚
K {{ A back to H˚

K, this basis spans H˚
K as an A-module (typically with some redundancy; we do

not expect H˚
K to be a free A-module). Thus ppH˚

K {{H˚
Gq ¨ ppAq ě ppH˚

Kq (in that each coefficient

of tn on the left is at least its counterpart on the right), or dividing through,

ppH˚
K {{H˚

Gq ě
ppH˚

Kq

ppAq
.

Both the numerator and denominator on the right-hand side are products of factors 1´ tn, by

(A.2). There are dim PK such factors in the numerator and dim qP in the denominator, so if we

had dim PK ą dim qP, the rational function ppH˚
Kq{ppAq would have a pole at t “ 1, but this is

impossible because it is majorized by the polynomial ppH˚
K {{H˚

Gq.

Theorem 8.4.7 ([Oni94, Thm. 12.2, p. 211]). Let pG, Kq be a compact pair. The following conditions are

equivalent:

1. pG, Kq is a formal pair.

2. The kernel pim rρ˚q of the characteristic map H˚
K

χ˚
ÝÑ H˚pG{Kq is a regular ideal in the sense of

Definition 7.5.4.

3. The characteristic factor J in the decomposition H˚pG{Kq – J bΛpP is evenly-graded.

4. The deficiency dfpG, Kq “ dim PG´ dim PK´ dim pP is zero.

Proof. We always have H˚pG{Kq – J bΛpP, so the task is to prove the remaining conditions are

equivalent to the statement J “ im χ˚.
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1 ðñ 2. If we singly grade the CDGA C “ H˚
K bΛqP, by

¨ ¨ ¨ ÝÑ H˚
K bΛ2

qP ÝÑ H˚
K bΛ1

qP ÝÑ H˚
K Ñ 0, (8.10)

where the differential d vanishes on H˚
K and is induced by

qP ãÝÝÑ PG „
ÝÑ

τ
QpBGq

ρ˚

ÝÑ H˚
K

then J “ im χ˚ “ H˚
K {{H˚

G if and only if H˚pCq “ H0pCq. But if we write ~x for a basis of

τpqPq ď H˚
G, then C is the Koszul complex KH˚G

p~x, H˚
Kq of Definition 7.5.4. The commutative algebra

result Proposition 7.5.7 then states this Koszul complex is acyclic if and only if the sequence is

regular.

1 ùñ 3. This is clear since im χ˚ “ H˚
K {{H˚

G inherits an even grading from H˚
K.

3 ùñ 2. If J is evenly graded, then H1 of the Koszul complex C of (8.10) above must be zero

because qP ď PG is oddly-graded. But by Proposition 7.5.7, this also means J “ H˚pCq “ H0pCq “

H˚
K {{H˚

G “ im χ˚.

2 ðñ 4 [Oni94, p. 144]. Write y1, . . . , yn for a basis of QpBKq and b1, . . . , b` for a basis of

τpqPq ď Sryis. Note that we know that dfpG, Kq ě 0 in any event by Proposition 8.4.6, and if

dfpG, Kq “ 0, then dim qP “ dim PK.

Working over k “ Q or C, the ring kryis{pbjq is finite-dimensional as a k-module, so the variety

V “ Vpb1, . . . , b`q Ď kn is zero-dimensional. By a result of algebraic geometry [VA67, Ch. 16], the

sequence pbjq is regular if and only each component of V is pn ´ `q-dimensional. Thus pbjq is

regular if and only if rk K “ n “ ` “ dim qP.

The justification for our choice of terminology is the following result:
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Theorem 8.4.8 ([Oni94, p. 145][GHV76, Thm. 10.17.VIII]). A pair pG, Kq is formal if its Cartan algebra

is formal in the sense of Definition A.4.6.

Proof [GHV76, Thm. 2.19.VIII, Thm. 3.30.XI, Thm. 10.17.VIII]. For the forward direction, one al-

ways has an algebra map

λ : pH˚
K bΛPG, dq ÝÑ

`

pH˚
K {{H˚

Gq bΛpP, 0
˘

,

ab 1 ÞÝÑ
`

a` pČim ρ˚q
˘

b 1,

1b z ÞÝÑ 1b
`

z` pqPq
˘

,

which is in fact a DGA homomorphism since dp1b qPq is contained in im ρ˚. If pG, Kq is a formal

pair, so that H˚pG{Kq – pH˚
K {{H˚

Gq bΛpP, then λ is a quasi-isomorphism, so the Cartan algebra

pH˚
K bΛPG, dq is formal.

The other direction, attacked without development of the algebra of Sullivan models, requires

more work, but this is the tack we take here. Write Q “ QpBKq and P “ qP ď ΛrPGs, so that the

reduced Cartan algebra pC, dq, with pΛpP, 0q factored out, is pSQbΛP, dq for some differential d.

We will show that if this algebra is formal, then the tensor-factor inclusion SQ ãÝÝÑ SQbΛP “ C

induces a surjection SQ ÝÝ� H˚pCq “ J, so J “ H˚
K {{H˚

G. The result will really follow for all

oddly-graded spaces P and evenly-graded Q and all antiderivations d.

Consider the desuspended space Σ´1Q given by pΣ´1Qqp :“ Qp`1, so that SQbΛΣ´1Q “

KrΣ´1Qs, equipped with the natural differential dQ extending the degree-1 isomorphism Σ´1Q „
ÝÑ

Q, is a Koszul complex. We use this Koszul complex to “untwist” our original complex, in a sense

which will become clear.

Because pC, dq is formal, there is a zig-zag of quasi-isomorphisms connecting it to
`

H˚pCq, d
˘

through a sequence of DGAs pBi, diq. The Koszul map Σ´1Q „
ÝÑ Q induces maps to C and to
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H˚pCq and we may lift this and project this linear map to propagate it to the other Bi, completing

a commutative cone

Σ´1Q

tt vv || ## )) ++
C B1oo // B2 ¨ ¨ ¨oo // Bn´1 Bnoo // H˚pCq.

If κi : Σ´1Q ÝÑ Bi is the ith map, then there is a unique differential Di on Bi bΛΣ´1Q that is di

on Bi bQ and is κi on Qb Σ´1Q, and the DGA maps between pBi, diq naturally extend to DGA

maps between the DGAs pBi bΛΣ´1Q, Diq. Filtering these bigraded algebras by the Bi-degree,

and applying the filtration spectral sequence of Corollary A.5.4 to these algebras and the DGA

maps between them, we find induced isomorphisms between the E2 pages H˚pBiq bΛΣ´1Q. By

Theorem A.5.6 and Proposition A.5.7, these DGA maps also induce isomorphisms of E8 pages

and hence are quasi-isomorphisms.

In particular,
`

H˚pCq b ΛΣ´1Q, dQ
˘

and
`

C b ΛΣ´1Q, d ` dQ
˘

are quasi-isomorphic, where

d` dQ stands for the unique antiderivation which is d on SbQ and which takes Σ´1Q ÝÑ Q ď

SQ. There is also a natural map

CbΛΣ´1Q “ SQbΛPbΛΣ´1Q ÝÑ ΛP

which we claim is also a quasi-isomorphism. Indeed, bigrading SQbΛPbΛΣ´1Q by

pSQbΛPbΛΣ´1Qqp,q “ pSQbΛΣ´1Qqp b pΛPqq,

and applying the filtration spectral sequence to the p-filtration, one encounters an isomorphism

on the E2 pages because d1 is the Koszul differential on the SQbΛΣ´1Q factor. Thus by Theo-
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rem A.5.6 and Proposition A.5.7 again, we have a quasi-isomorphism
`

H˚pSQbΛPqbΛΣ´1Q, dQ
˘

ÝÑ

pΛP, 0q. Moreover, the natural maps C ÝÑ CbΛΣ´1Q and C ÝÝ� ΛP fit into a commutative tri-

angle inducing the cohomology triangle

H˚pSQbΛPq
j˚

&&uu
H˚

`

H˚pCq bΛΣ´1Q
˘ „ // ΛP.

The algebra on the left is the cohomology of the Koszul complex which computes Tor˚SrQs
`

Q, H˚pCq
˘

,

by Proposition 7.5.8, so the kernel of the left map

H˚pCq ÝÑ Tor0
SrQs

`

Q, H˚pCq
˘

“ QbSrQs H˚pCq “ H˚pCq LL SrQs

is the ideal of H˚pCq generated by the image of the generators Q. Since the triangle is commuta-

tive, this is also the kernel of the right map j˚ : H˚pCq ÝÑ ΛP, or in other words, the sequence

SQ
χ˚
ÝÑ H˚pSQbΛPq

j˚
ÝÑ ΛP

is coexact. The second map j˚ is induced by the projection map SQbΛP ÝÑ ΛP with kernel

ĂSQ b ΛP, so its ker j˚ is made up of those cohomology classes in H˚pCq represented in C by

elements of ĂSQ b ΛP. Write a for the kernel of H˚pCq ÝÝ� im χ˚, viewed as the subalgebra

represented by cocycles in SQbĄΛP. Then we have H˚pCq “ a ¨H˚pCq ` im χ˚ by the assumption

on ker j˚, so by Nakayama’s lemma [AM69, Cor. 2.7], H˚pCq “ im χ˚.

Proposition 8.4.9. Let pG, Kq be a formal pair of Lie groups. If the Poincaré polynomials of the Samelson
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subspace pP, the Samelson complement qP, and the primitive space PK are given respectively by

pppPq “
rk G´rk K

ÿ

j“1

tdj , ppqPq “
rk K
ÿ

`“1

tcj , ppPKq “
rk K
ÿ

`“1

tk j ,

then the Poincaré polynomial of G{K is

ppG{Kq “ ppΛpPq ¨
ppBKq

p
`

SrΣqPs
˘
“

rk G´rk K
ź

j“1

p1` tdjq ¨

rk K
ź

`“1

1´ tcj`1

1´ tk j`1

and its total Betti number is

h‚pG{Kq “
2rk G

2rk K ¨

rk K
ź

`“1

c` ` 1
k` ` 1

“

ˇ

ˇπ0NGpKq
ˇ

ˇ

|WK|
2rk G´rk K

Proof. By equation (8.9), given the equations (8.9) and (A.2), all that really remains to be shown is

that ppH˚
K {{H˚

Gq “ ppBKq{p
`

SrΣqPs
˘

as claimed. But Theorem 8.4.7, the generators of im ρ˚ form a

regular sequence of rk K elements of H˚
K of degrees cj` 1. These generators are thus algebraically

independent and form a polynomial subalgebra S – SrΣqPs of H˚
K such that H˚

K is a free S-module.

The result then follows from Proposition A.3.8.

Proposition 8.4.10 ([Oni94, Rmk., p. 212]). Suppose pG, Kq is a compact pair and S a maximal torus of

K. Then pG, Kq is a formal pair if and only if pG, Sq is.

Proof. This follows from Corollary 6.4.6, with X “ G. Write W for the Weyl group of K. If pG, Sq is

formal, then H˚
S pGq “ H˚pG{Sq – pH˚

S {{H˚
Gq bΛpP. Since the W-action on H˚pGq descends from

the K-action, which is trivial since K is path connected, the action of W on H˚
S pGq affects only the

bottom row H˚
S {{H˚

G, and we have

H˚pG{Kq “ H˚
KpGq – H˚

S pGq
W –

´

H˚
S
LL

H˚
G

¯W
bΛpP –

´

pH˚
S q

W LL

H˚
G

¯

bΛpP –
`H˚

K
LL

H˚
G

˘

bΛpP.
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On the other hand, if pG, Kq is formal, so that H˚
KpGq – pH

˚
K {{H˚

Gq bΛpP, then

H˚pG{Sq – H˚
S b

H˚K
H˚pG{Kq – H˚

S b
H˚K

H˚
K
LL

H˚
G
bΛpP – H˚

S
LL

H˚
G
bΛpP.

Proposition 8.4.11. Suppose pG, Kq is a compact pair such that G{K is a symmetric space. Then pG, Kq

is a formal pair.

Proof. We have already stated in Example A.4.9 that a symmetric space G{K is formal, but here

is an actual proof. This venerable argument, essentially due to Élie Cartan, would actually turn

into a proof G{K is geometrically formal with the mere addition of a proof that the representing

forms we find are in fact harmonic.

Recall from Proposition 5.1.2 that elements of H˚pG{K;Rq are all represented by G-invariant

forms on G{K, which are determined by their values at the identity coset, which are elements

of the exterior algebra Λpg{kq_, and further from Proposition 5.1.3 that G-invariance on ΩpG{Kq

translates to pAd˚ Kq-invariance in Λpg{kq_. Thus all elements of H˚pG{Kq are represented by

elements of
`

Λpg{kq_
˘K. Let θ P Aut G be the involution fixing K, so that g admits a decomposition

g “ k‘ p with k the Lie algebra of K and p the p´1q-eigenspace of θ˚ P Aut g. Then g{k – p, so

H˚pG{Kq is represented by elements of Λrp_sK.

We claim that all these elements correspond to closed differential forms. Indeed, because

θ is a Lie group automorphism, the induced map θ˚ on ΩpG{Kq commutes with the exterior

derivative d, and so the same holds true of the differentials induced on Λpg{kq_ – Λrp_s. Now,

since θ˚ acts as ´ id on p, its dual θ˚ acts as ´ id on p_ and so acts as p´1q` ¨ id on the summand

Λ`rp_s spanned by wedge products of ` elements of p_. Let ω be one such element. Then, since

d ˝ θ˚ “ θ˚ ˝ d, we have

p´1q``1dω “ θ˚dω “ dθ˚ω “ p´1q`dω,
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so dω “ 0. Thus all elements of Λrp_sK ΩpG{Kq are closed, so G{K is a formal space.

Remarks 8.4.12. Though the formality condition on pairs pG, Kq is convenient, is natural, has

many equivalent formulations, is guaranteed by several commonly studied sufficient conditions,

and is invariant under the act of replacing the isotropy group K with its maximal torus S, there

still seems to be no simpler way of determining formality of a randomly given pair pG, Kq than

carefully examining the image of the map ρ˚ : H˚
G ÝÑ H˚

S , and our knowledge has arguably not

improved in any major way since regular sequences were introduced into commutative algebra

in the mid-1950s. Indeed, it seems computing the map ρ˚ is an NP-hard problem [Ama13, Sec. 1].

The deficiency first appears in Paul Baum’s 1962 doctoral dissertation [Bau62], where it is

shown inter alia that if k “ Z or k is any field and H˚pG; kq and H˚pK; kq are exterior algebras and

the analogue of the deficiency with k coefficients satisfies dfpG, Kq ď 2, then the Eilenberg–Moore

spectral sequence of G{K Ñ BK Ñ BG collapses at E2 “ TorH˚K
pk, H˚

Gq. The deficiency thus links

our account with the Eilenberg–Moore spectral sequence analysis of the cohomology of homoge-

neous spaces. This deficiency is actually an invariant of the homogeneous space G{K and not just

of the compact pair pG, Kq according to a theorem of Arkadi Onishchik; see Onishchik [Oni72].

Historical remarks 8.4.13. What we call a formal pair is traditionally called a Cartan pair (as seen,

e.g., in the standard reference by Greub et al. [GHV76, p. 431]). The condition already arises in

Cartan’s classic transgression paper in the Colloque [Car51, (3) on p. 70], so the attribution is just,

but the name is made inconvenient by the vast prolificacy of the Cartans: pursuant to the work

of Cartan père on symmetric spaces, the pair pk, pq of ˘1-eigenspaces of the Lie algebra g induced

by an involutive Lie group automorphism θ : G Ñ G is also called a Cartan decomposition or a

Cartan pair. (This writer spent an embarrassingly long time in finally convincing himself these

two concepts of “Cartan pair” were entirely unrelated.)

The formal pair condition also appears in the (Russian-language) writings of Doan Kuin’,
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where—at least as the translator would have it—K is said to be in the normal condition in G.

This locution did not catch on. We hope that despite the existence of standard terminology, the

semantic overload placed on the word regular, and the possible confusion of formality per se with

equivariant formality, this section has made the case that these terms are natural, justified, and

preferable.

8.5. The cohomology of G{S1

In order to obtain Theorem 11.1.7, arguably the main result of this thesis, we needed a grasp on

the cohomology rings H˚pG{S;Qq of homogeneous spaces G{S for G compact connected and S a

circle. We found the following dichotomy; these are the only two options because dimQ H1pSq “

1.

Proposition 8.5.1. Let G be a compact, connected Lie group and S a circle subgroup. Then the rational

cohomology ring H˚pG{Sq has one of the following forms.

1. If H1pGq ÝÑ H1pSq is surjective, then there is z1 P H1pGq such that

H˚pG{Sq – H˚pGqLpz1q.

In terms of total Betti number, h‚pGq “ 1
2 h‚pG{Sq.

2. If H1pGq ÝÑ H1pSq is zero, there are z3 P H3pGq and s P H2pG{Sq such that

H˚pG{Sq –
H˚pGq
pz3q

b
Qrss
ps2q

.

In terms of total Betti number, h‚pGq “ h‚pG{Sq.

This turns out to be a trivial generalization of long-known results. General statements on
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the cohomology of a homogeneous space were already available to Jean Leray in 1946, the year

after his release from prison [Mil00, sec. 3, item (4)]. In the second of his four Comptes Rendus

announcements from that year [Ler46a, bottom of p. 1421], he states the following result.3

Theorem 8.5.2 (Leray, 1946). Let G be a compact, simply-connected, Lie group and S a closed, one-

parameter subgroup [viz. a circle]. Then there exist an n P N, a primitive element z2n`1 P H2n`1pGq, and

a nonzero s P H2pG{Sq such that

H˚pG{Sq –
H˚pGq
pz2n`1q

b
Qrss
psn`1q

The following year, Jean-Louis Koszul published a note [Kos47b, p. 478, display] in the

Comptes Rendus regarding Poincaré polynomials for these spaces.

Theorem 8.5.3 (Koszul, 1947). Let G be a semisimple Lie group and S a circular subgroup. Then the

Poincaré polynomials (in the indeterminate t) of G{S and G are related by

ppG{Sq “ ppGq
1` t2

1` t3 .

This result implies that in fact n “ 1 in Leray’s theorem. This enhanced version of Leray’s

result follows from Proposition 8.5.1 simply because H1pGq – H2
G “ 0 for semisimple groups.

We will rely on the part of the proposition on total Betti numbers later to prove Theorem 11.1.7.

The author is unaware of any published proof of the Leray and Koszul results, which is part of

the motivation for including a proof of Proposition 8.5.1 here.

Before doing so, we illustrate the result with a representative example. Let S be a circle

contained in the first factor Spp1q of the product group G “ Spp1q ˆUp2q. The cohomology of G

3See also Borel [Bor98, par. 12]; only owing to Borel’s summary are we confident “compact Lie group” is the
contextually-correct interpretation of Leray’s groupe bicompact.
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is the exterior algebra

H˚pGq “ Λrq3, z1, z3s, deg z1 “ 1, deg z3 “ deg q3 “ 3,

and that of BS is

H˚
S “ Qrss, deg s “ 2.

The spectral sequence pEr, drq associated to G Ñ GS Ñ BS is as follows. Its E2 page is the

tensor product H˚
S bH˚pGq. Because the map H1pGq ÝÑ H1pSq is zero, the differential d2 is zero,

and d3 is zero for lacunary reasons, so E4 “ E2. The differential d4 annihilates each of s, z1, z3

and takes q3 ÞÝÑ s2.

Figure 8.5.4: The Serre spectral sequence of Spp1q ˆUp2q Ñ
`

Spp1q ˆUp2q
˘

S Ñ BS

z1z3q3 sz1z3q3 s2z1z3q3 ¨ ¨ ¨

6 z3q3 sz3q3 s2z3q3 ¨ ¨ ¨

z1z3 z1q3 sz1z3 sz1q3 s2z1z3 s2z1q3 ¨ ¨ ¨

3 z3 q3 sz3 sq3 s2z3 s2q3 ¨ ¨ ¨

z1 sz1 s2z1 ¨ ¨ ¨

0 1 s s2 ¨ ¨ ¨

E4 0 2 4 ¨ ¨ ¨

z1z3 sz1z3

3 z3 sz3

z1 sz1

0 1 s

E8 0 2

Because d4 is an antiderivation, its kernel is the subalgebra Qrss bΛrz1, z3s and its image the

ideal ps2q in that subalgebra. Elements mapped to a nonzero element by d4 are marked as blue

in the diagram and elements in the image in red; the vector space spanned by these elements

vanishes in E5. Thus E5 “ ∆rss bΛrz1, z3s, where ∆rss “ Qrss{ps2q – H˚S2. For lacunary reasons,
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E5 “ E8. In fact,

G{S “ Spp1q
L

SˆUp2q « S2 ˆUp2q,

so this tensor decomposition was not unexpected.

This example has all the features of the general case; the pair is always formal, and either it

is cohomology-surjective or else d4 is a nontrivial differential taking some z3 ÞÝÑ s2 P H4
S, which

then collapses the sequence at E5. If H1pGq ‰ 0, then the exterior subalgebra of H˚pGq generated

by H1pGq, an isomorphic H˚pAq, is in the Samelson subring, and can be split off before running

the spectral sequence; the factoring out of this subalgebra is the algebraic analogue of the product

decomposition Proposition 11.3.1 of G{S.

Lemma 8.5.5. A compact pair pG, S1q is formal.

Proof. Consider the map ρ˚ : H˚
G ÝÑ H˚

S in the sequence

H˚
G

ρ˚

ÝÑ H˚
S

χ˚
ÝÑ H˚pG{Sq.

Because ρ˚ is a homomorphism of graded rings and H˚
S – Qrss is a polynomial ring in one

variable, the cokernel pρ˚ rHSq of χ˚ is generated by a single homogeneous element and hence is

a regular ideal psnq for some n. By Theorem 8.4.7, it follows pG, Sq is a formal pair.

Proof of Proposition 8.5.1. If H1pGq ÝÝ� H1pSq, then Samelson’s Corollary 7.2.5 applies and yields

the result, so assume instead this map is zero. By Lemma 8.5.5, pG, Sq is a formal pair, so

H˚pG{Sq – H˚
S
LL

H˚
G
bΛpP

with dim pP “ rk G ´ rk S “ rk G ´ 1 and dim qP “ 1. It follows that ρ˚ ˝ τ takes qP „
ÝÑ Qs` for

some `, yielding Leray’s theorem. To obtain Koszul’s, it remains to show ` “ 2.
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By Proposition B.3.4, we may replace G with its universal compact cover Aˆ K, where A is

a torus and K simply-connected, and S with the identity component of its lift in this cover. If

H1pGq ÝÑ H1pSq is trivial, then because H˚pAq is generated by H1pAq, it follows H˚pAq ď ΛpP

splits out of the Cartan algebra, so we may as well assume G “ K is semisimple.

We now return to the map of spectral sequences described in Section 8.1.1. Recall the differ-

entials in the spectral sequence pEr, drq of the Borel fibration K Ñ KS Ñ BS vanish on H˚
S and are

otherwise completely determined by by the composition

ρ˚ ˝ τ : PK ÝÑ H˚
K ÝÑ H˚

S .

Because K is semisimple, H1pKq “ 0, so it follows H2
K “ 0 as well by Borel’s calculation from

Section 7.6 of the spectral sequence of K Ñ EK Ñ BK. The edge homomorphisms d2 and d3 then

must be zero, so

E4 “ E2 “ H˚
S b H˚pKq

and the first potentially nontrivial differential is

d4 : H3pKq „Ñ H4
K ÝÑ H4

S.

By Lemma 7.8.3, this is surjective, so dz “ ρ˚τz “ s2 for some z P P3pKq. Thus pČim ρ˚q is generated

by s2 as claimed, concluding the proof.

Historical remarks 8.5.6. Our presentation in this chapter of Cartan algebra computation of the

cohomology ring H˚pG{K;Qq of a homogeneous space G{K introduced what we believe to be the

least possible algebraic overhead, very little analysis at all, and only hints of rational homotopy

theory. That said, such a presentation is dishonest as an origin story. This work was originally cast
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in Lie-algebraic terms, with the transgression we have been so casual about explicitly determined

by a connection and induced from a CDGA called the Weil algebra . The Weil algebra, as an

algebra, is the Koszul complex of Section 7.5, but is outfitted with a different differential which

incorporates the adjoint action of the Lie algebra of G. It does this to emulate the behavior of

connection and curvature forms determined by a connection on a principal bundle, and these in

turn arise due to a desire to understand the cohomology of the total space of a principal bundle in

terms of forms arising from pullback in its base. Thus it is an algebraic model of the cohomology

of EG Ñ BG and the homotopy quotient that predates the general discovery of these objects. The

story of understanding the cohomology of the base of a bundle through invariant forms starts

with the work of Élie Cartan in the early 1900s and continues through the work of Henri Cartan

and his school (Koszul, Borel, and for a time Leray, with major unpublished contributions by

Chevalley and Weil) in the late 1940s and early 1950s.

The main and classical source for these developments is the conference proceedings [Col-

loque] to the 1950 Colloque de Topologie (espaces fibrés), held in Bruxelles, with contributions by

Beno Eckmann, Heinz Hopf, Guy Hirsch, Koszul, Leray, and Cartan. The second of the two pa-

pers by Cartan in this volume, “La transgression dans un groupe de Lie et dans un espace fibré

principal” [Car51], promulgates in Lie-algebraic terms what we have called the Cartan algebra

and was directly responsible for the institution of the Cartan model of equivariant cohomology, a

full ten years before Borel model gained currency. The classic sketched proof of the equivariant de

Rham theorem showing the equivalence between these two models of equivariant cohomology is

also contained in this terse paper.

There is no shortage of secondary sources for the work of this school [And62; Ras69; GHV76;

Oni94], especially as it applies to the Cartan model of equivariant cohomology [GS99; GLS96;

GGK02], so the author can only hope his in recasting these results in terms of elementary algebra
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over the rationals is of independent interest to some person other than himself.



Chapter 9

Equivariant formality

9.1. Equivariant formality of group actions

The main motivation of this document is to discuss the equivariant formality of certain Lie group

actions. It is past time we defined the concept.

Definition 9.1.1 ([GKM98]). The action of a topological group G on a space X is said to be

equivariantly formal if the fiber inclusion X ãÝÝÑ XG in the Borel fibration X Ñ XG Ñ BG

surjects in cohomology.

The computational utility of this condition is that it implies the H˚
G-module structure on

H˚
GpXq is as simple as one could hope [GGK02, Lemma C.24, p. 208]. Looking back, one can also

see it is the condition on Y in Theorem 6.2.1.

Proposition 9.1.2. Let a topological group G act on a topological space X such that H˚pX; kq is a free

k-module of finite type. The following conditions are equivalent:

1. The action of G on X is equivariantly formal.

2. The SSS of the Borel fibration X Ñ XG Ñ BG collapses at E2.

3. The equivariant cohomology H˚
GpXq is isomorphic to H˚

G b H˚pXq as an H˚G-module.

196
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4. The H˚
G-rank of H˚

GpXq is h‚pXq.

Proof. We prove a cycle of implications.

1 ùñ 2. If H˚pXGq ÝÑ H˚pXq is surjective, then the SSS of the Borel fibration collapses at E2 by

Corollary 4.3.9.

2 ùñ 3. If the SSS of the Borel fibration collapses at E2, then

gr
‚

H˚
GpXq “ E8 “ E2 “ H˚

G b H˚pXq

by Theorem 4.3.4, and H˚
GpXq – gr

‚
H˚

GpXq as an H˚
G-module (regardless of how badly the asso-

ciated graded construction modifies the multiplication as a whole).

3 ùñ 4. This is trivial.

4 ùñ 1. We prove the contrapositive. Suppose that H˚
GpXq ÝÑ H˚pXq fails to be surjective.

Considering the SSS pEr, drq of the Borel fibration, this nonsurjective map can be considered as

the composition

E8 ÝÝ� E0,‚
8 ãÝÝÑ E0,‚

2 ,

so the containment E0,‚
8 ă E0,‚

2 must be strict; there is some z P E0,‚
2 – k b H˚pXq which is not

in E8. Since this z generates a cyclic H˚
G-module summand H˚

G b k ¨ z of E2, it follows then that

rkH˚G
E8 ă rkH˚G

E2 “ h‚pXq.

In fact, equivariant formality of an action of a compact, connected Lie group depends only

on the restricted action of its maximal torus.

Lemma 9.1.3 ([GGK02, Prop. C.26, p. 207]). If K is a compact, connected Lie group and S a maximal

torus, and K acts on a space X, then the action of K is equivariantly formal if and only if the restricted

action of S is.
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Proof. We have an X-bundle map between Borel fibrations,

XS //

��

XK

��
BS // BK,

so if the action of K is equivariantly formal, then by Theorem 4.4.1, the fiber inclusion X ãÝÝÑ XS

is H˚-surjective as well.

Now suppose that the action of S is equivariantly formal, and consider the homomorphism

of spectral sequences induced by the X-bundle homomorphism above. The map H˚
K ÝÑ H˚

S is an

inclusion of Weyl group invariants by Lemma 6.4.5, so the map on E2 pages is injective, and the

differential for the E2 page of X Ñ XK Ñ BK is the restriction of that for X Ñ XS Ñ BS. But the

latter differential is zero, by assumption, so the former is as well. By induction on page number,

the sequence for X Ñ XK Ñ BK collapses at E2 as well, so H˚pXKq ÝÑ H˚pXq is surjective.

Remark 9.1.4. In fact, that S is a maximal torus was inconsequential to the “only if” direction of the

theorem: any restriction of an equivariantly formal action to a subgroup remains equivariantly

formal.

9.2. The Borel localization theorem and equivariant formality

In Section 6.3, we computed the equivariant cohomology of a rotation action on S2 by embedding

this ring into the equivariant cohomology of the fixed point set and showed these actions to be

equivariantly formal. The method of our computation turns out to be an instance of a much more

general pattern: for torus actions on compact manifolds, much of the structure of equivariant

cohomology is determined by the fixed point set. The reduction of the previous section should

also count as some evidence that a focus on torus actions might be worthwhile. (In fact, we only
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neglected to prove this important theorem in Chapter 6 because we had not yet developed the

theory of maps H˚
T ÝÑ H˚

S which we need here.)

9.2.1. The localization theorem

Let T be a torus and M a compact T-manifold. The fixed point set MT is compact and T-

invariant—and so itself a T-manifold—and the inclusion MT ãÝÝÑ M induces a restriction H˚
TpMq ÝÑ

H˚
TpM

Tq in equivariant cohomology. This latter ring is the simplest one could hope: it is the sin-

gular cohomology of the homotopy quotient pMTqT, which, since the action T ñ MT is trivial,

is

ETˆ
T

MT «
ET
T
ˆMT “ BTˆMT.

Then the traditional singular Künneth isomorphism, even with Z coefficients, yields

H˚
TpM

Tq “ H˚
T b H˚pMTq, (9.1)

so H˚
TpM

Tq is a free H˚
T-module

Remark 9.2.1. This is the “largest” H˚
TpMq could be: the Serre spectral sequence of the Borel

fibration M Ñ MT Ñ BT shows that H˚
TpMq is a subquotient of H˚

T b H˚pMq as an H˚
T-module.

Both H˚
TpMq and H˚

TpM
Tq are H˚

T-algebras, the latter well-understood, so there is a natural

hope one could understand the latter in terms of the former.

Theorem 9.2.2 (Atiyah–Borel [BBF+60, Prop. IV.3.6, p. 54][Hsi75, Thm. III.1, p. 40]). Let T be a

torus and M a compact T-manifold. Denote by MT the fixed point set of the action of T on M. There exists

a nonzero element f P H˚
T such that the H˚

T-algebra homomorphism

H˚
TpM;Zq ÝÑ H˚

TpM
T;Zq
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induced in T-equivariant cohomology by restriction becomes an isomorphism upon inversion of f . That is

to say, there exists a nonzero f P H˚
T for which the induced map

H˚
TpM;Zq f ÝÑ H˚

TpM
T;Zq f

of algebras over pH˚
Tq f “ H˚

Tr f
´1s is an isomorphism.

Proof. The proof will proceeds induction on a T-invariant open cover, using the equivariant

Mayer–Vietoris sequence. By the equivariant tubular neighborhood Theorem 2.3.1, each orbit

Tx admits a T-invariant open neighborhood Vx in M. Each x P MT is an orbit, so U :“
Ť

xPMT Vx

is a T-invariant open neighborhood of MT. Since M is compact, U and finitely many other Vx, call

them Vxj , suffice to cover M. By the definition of a tubular neighborhood, U equivariantly defor-

mation retracts to MT and each Vxj to Txj, so one has H˚
TpUq – H˚

TpM
Tq and H˚

TpVjq – H˚
TpTxjq.

We now have only to apply the equivariant Mayer–Vietoris sequence Proposition 6.1.3 to this

cover tU, Vjuj to recover H˚
TpMq.

We understand the ring H˚
TpM

Tq exactly as well as we understand H˚pMTq, so it remains to

understand the H˚
TpTxjq. Fix a j and write S “ Sj “ Stabpxjq ă T. We know Txj « T{S from

Proposition 2.2.1 and H˚
TpT{Sq – H˚pBSq from Proposition 6.1.1. As a subgroup of a torus, S is

constrained to be of the form S0ˆ F, where the torus S0 is its identity component and F is a finite

abelian subgroup of T. Writing BS “ ET{S, we can view BS0 as a finite covering space of BS:

F ÝÑ BS0 ÝÑ BS.

If m “ mj “ |F|, and we set k “ Zr 1
m s, then by Corollary B.3.2, the map H˚pBS; kq ÝÑ H˚pBS0; kq

is an isomorphism. Thus, if we replace Z with Zr 1
m s, we can replace S with S0. For convenience,

we invert all the mj in our coefficient ring now, replacing Z with k “ Zr1{m1, . . . , mns. The short
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exact sequence

0 Ñ S Ñ T Ñ T{S Ñ 0

of tori splits, by Proposition A.4.2, so that T – S ˆ T{S. By the Künneth Theorem B.2.2, then,

H˚pBSq is a tensor factor of H˚pBTq, so there is a factor projection H˚pBTq ÝÝ� H˚pBSq inducing

a H˚
T-algebra structure on H˚pBSq. The kernel of the projection is generated by the rk T´ rk S ą 0

elements of H2
T that generate the polynomial subring H˚

`

BpT{Sq
˘

. Any g P H2
T{S acts as multi-

plication by 0 on H˚
S “ H˚pBSq, so by the discussion in Appendix A.1, if we invert g we get

H˚
S rg

´1s “ 0.

Thus, for each xj, there is an element gj P H˚
T annihilating HTpVjq – H˚

TpTxjq – H˚pBSjq. We

claim the least common multiple of the gj annihilates H˚
T
`
Ť

Vj
˘

. Indeed, suppose inductively for

W “
Ťn´1

j“1 that a nonzero element h P H˚
T annihilates H˚

TpWq. The restriction map H˚
TpWq ÝÑ

H˚
TpW XVhq is an H˚

T-algebra homomorphism, so h also annihilates H˚
TpW XVnq, and lcmph, gnq

annihilates this ring, H˚
TpWq, and H˚

TpVnq. The equivariant Mayer–Vietoris sequence of the pair

pW, Vnq contains exact fragments

H˚´1
T pW XVnq ÝÑ H˚

TpW YVnq ÝÑ H˚
TpWq ‘ H˚

TpVnq,

and by Lemma A.1.1, since lcmph, gnq annihilates the outer terms, it also annihilates the inner

term. Thus if V “
Ť

j Vj, the nonzero element lcmpgjq P H˚
T annihilates H˚

TpVq. Now consider the

equivariant Mayer–Vietoris sequence of the cover tU, Vu of M:

H˚´1
T pU XVq ÝÑ H˚

TpMq ÝÑ H˚
TpUq ‘ H˚

TpVq ÝÑ H˚
TpU XVq.
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On inverting g “ lcmpgjq, we obtain an exact sequence

0 ÝÑ H˚
TpMqrg

´1s ÝÑ H˚
TpUqrg

´1s ‘ 0 ÝÑ 0

where, as noted above, H˚
TpUq “ H˚

TpM
Tq. To get this isomorphism, we inverted 1{m1 . . . mn so to

obtain the theorem with coefficients in Z, we take f “ lcmpmjgjq.

Example 9.2.3. In our examples from Section 6.3, the rotation actions ρq : S1 ñ S2, the fixed point

set pS2qS
1

was the doubleton S0 containing the north and south poles. By Corollary 9.2.5, we have

rkH˚
S1

H˚
ρ1
pS2q “ rkZ H˚

`

S0;Z
˘

“ 2.

If we go ahead and all the nonzero elements of H˚
T, we obtain a simpler statement.

Notation 9.2.4. Recall that we write h‚pXq “ dimQ H˚pX;Qq for the total Betti number. If T is a

torus, we write pH˚
T – Qpu1, . . . , u`q for the field of fractions of H˚

T – Zru1, . . . , u`s and pH˚
TpXq for

the localization pH˚
T b

H˚T
H˚

TpXq.

Corollary 9.2.5. Let T be a torus and M a compact T-manifold. Then

pH˚
TpMq – pH˚

TpM
Tq – pH˚

T b
Q

H˚pMTq.

Proof. The first isomorphism is immediate from Theorem 9.2.2 on further localization, while the

second follows from tensoring (9.1) with pH˚
T.

Corollary 9.2.6. Let T be a torus and M a compact T-manifold. Then

rkH˚T
H˚

TpMq “ h‚pMTq.
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Proof. The rank of a finitely generated H˚
T-module N is the same as the dimension over pH˚

T of

pH˚
T bH˚T

N. Taking N “ H˚
TpMq, and using Corollary 9.2.5 and the fact pMTqT « BTˆMT, we get

the chain of equations.

rkH˚T
H˚

TpMq “ dim
pH˚T

pH˚
TpMq “ dim

pH˚T
pH˚

TpM
Tq “ h‚pMTq.

Historical remarks 9.2.7. The main result of this section is a result is often called the “Borel local-

ization theorem,” though Borel only proved it for T “ S1. In Hsiang Wu-Yi’s (項武義) standard

text [Hsi75, p. 39], it is only called a “localization theorem of Borel–Atiyah–Segal type,” so the

author asked on online for the origin story [Bee]. The result was apparently first stated by Atiyah

in unpublished 1965 Warwick lecture notes which this writer does not know how to obtain.

Atiyah (via email) confirms that the result in equivariant cohomology for higher-dimensional

tori is probably originally due to him, but warns that history is never straightforward and the

published record is only part of the story. The Atiyah–Segal completion theory in equivariant

K-theory was inspired by this result.

The theorem in cohomology has been substantially generalized since its discovery, both in

replacing T with more general groups (at the cost of replacing MT with a related set; see for

example Pedroza–Tu [PT07]) and in also considering strata of n-dimensional orbits, MT being

the 0-dimensional case. See for instance Goertsches–Töben [GT10b] and Franz–Puppe [FP07].

9.2.2. Equivariant formality of torus actions and fixed points

We can use localization to obtain a simple numerical criterion for equivariant formality of torus

actions. We will depend on the results of Appendix B.3 and Section 9.2 to such an extent that

uniform statements would be impossible in the rest of this document if we did not, as we always
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will from here on out, take coefficient ring k “ Q unless explicitly stated otherwise. We denote

our tori from now on by S instead of T unless they are maximal in a larger Lie group under

consideration; in the cases of interest to us, they will not be.

Lemma 9.2.8 ([GGK02, Cor. C.27]). Let S be a torus and M a compact S-manifold. Then the action of S

on M is equivariantly formal if and only if

h‚pMq “ h‚pMSq.

Proof. By Proposition 9.1.2, the action of S on M is equivariantly formal if and only if h‚pMq “

rkH˚S
H˚

S pMq, but by Corollary 9.2.6, h‚pMq “ rkH˚S
H˚

S pMq “ h‚pMSq.

In fact, one inequality in this lemma holds regardless of whether the action is equivariantly

formal.

Lemma 9.2.9 (Borel [BBF+60, IV 5.5, p. 62]). Let S be a torus and M a compact S-manifold. Then

h‚pMq ě h‚pMSq. (9.2)

Proof [GGK02, Lemma C.24]. Consider the spectral sequence pErq of the Borel fibration M Ñ

MS Ñ BS. Since the E2 page is H˚
S b H˚pMq, we have rkH˚S

E2 “ h‚pMq. Because E8 is a subquo-

tient of E2, we know

rkH˚S
E2 ě rkH˚S

E8;

rank at most stays the same as the sequence unwinds. Now E8 “ gr
‚

H˚
S pMq is isomorphic to

H˚
S pMq as an H˚

S -module, so that

h‚pMq “ rkH˚S
E2 ě rkH˚S

E8 “ rkH˚S
H˚

S pMq.
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But by Corollary 9.2.5,

rkH˚S
H˚

S pMq “ h‚pMSq.

Remark 9.2.10. Though we cite Lemma 9.2.8 to Ginzburg et al. [GGK02], the result as stated there

is over-optimistic, as can be seen from examples of Franz and Puppe [FP08, Sec. 5]. It becomes

true if “torsion-free” in the statement in [GGK02] is everywhere replaced by “free.”



Chapter 10

Equivariant formality of isotropy actions

As we first stated in Section 2.2, in the event G is a Lie group and K a closed subgroup, the orbit

space G{K of the right K-action is a homogeneous space. The left action of the isotropy subgoup

K on this space given by k ¨ gK “ pkgqK is the isotropy action. Recall from the beginning of

Chapter 8 that when G is a compact, connected Lie group and K a closed, connected subgroup,

we say pG, Kq is a compact pair of Lie groups.

Definition 10.0.1. A compact pair pG, Kq is said to be isotropy-formal if the isotropy action of K

on G{K is equivariantly formal in the sense of Definition 9.1.1.

To motivate discussion of the isotropy action, note that K is essentially the largest subgroup

of G which can act equivariant formality on G{K.

Proposition 10.0.2. Let pG, Kq be a compact connected pair and H a closed subgroup of G. If the natural

action of H on G{K, obtained from restricting the defining G-action on G{K, is equviariantly formal, then

the maximal torus TH of H is conjugate in G to a subtorus of K.

Proof. By Lemma 9.1.3, if H acts equivariant formality on G{K, then so does TH. By Lemma 9.2.8,

this occurs if and only if G{K and the fixed point set pG{KqTH have equal total Betti number. In

particular, the total Betti number of the fixed point set must be positive. But CreffpGGT shows

206
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that pG{KqTH is nonempty if and only if TH is conjugate in G to a subgroup of K.

The present chapter, with the exception of Section 10.1, will lay the groundwork for the theory

of isotropy-formal actions and summarize its condition as of April 2014. A few epicycles on the

Shiga–Takahashi criterion devised by the author are included. The following chapter will recount

the author’s original contributions.

10.1. Reduction of isotropy-formality to a maximal torus

Let pG, Kq be a compact connected pair and S a maximal torus of K. From Lemma 9.1.3, we know

pG, Kq is isotropy-formal if and only if the restricted action of S on G{K is also equivariantly

formal. What may be a surprise—or may seem perfectly natural, but in any event was not known

before last April—is that the other instance of K can also be replaced by S: that is, K acts equiv-

ariant formality on G{K if and only if K acts equivariant formality on G{K, which is to say, the

pair pG, Sq is isotropy-formal.

To prove the result, we will need to simultaneously consider left and right actions and homo-

topy quotients. From our construction of the Milnor EK in Section 3.3, we know that EK admits

as well as the natural right action a natural left action.

Definition 10.1.1. As with a left action, given a right action of a group K on a space X, there is a

diagonal action of K on Xˆ EK given by px, eq ¨ k “ pxk, k´1eq, and a right homotopy quotient

XK :“
Xˆ EK

pxk, eq „ px, keq
.

We denote the orbit of px, eq under K by rx, esK P XK. We temporarily denote by KX the left

homotopy quotient defined in Section 4.2.3. We still use the left homotopy quotient to define
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equivariant cohomology:

H˚
KpXq :“ H˚pKXq.

Also as with a left action, given a right action of K on X, there is a map XK ÝÝ� X{K,

functorial in K and in X, which is a weak homotopy equivalence if the action is free, and satisfies

the statements in Lemma 6.4.1.

Remark 10.1.2. Although the notation is inconsistent with that we used previously, under which

XK was a left homotopy quotient, all statements about homotopy quotients are equivalent for the

left and the right actions.

The key point of this equivalence is the following. Let CK “
`

Kˆ r0, 1s
˘

{
`

Kˆt0u
˘

be the cone

on K. The Milnor EK can be viewed as that subspace of the countably infinite product
ś8

n“1 CK

populated by lists of pairs ptn, knq such that
ř8

n“1 tn “ 1 and only finitely many tn ‰ 0. The

group K acts diagonally both on the left and on the right of EK by k ¨ ptn, knq “ ptn, kknq and

ptn, knq ¨ k “ ptn, knkq respectively. There is a natural self-homeomorphism of EK given by

e “ ptn, knq ÞÝÑ ptn, k´1
n q “: e´1,

which takes ke ÞÝÑ e´1k´1. This homeomorphism allows us to exchange the right actions we have

used heretoforth for left actions as often as we wish, and also descends to a homeomorphism

K {EK «
ÝÑ EK{K “ BK.

It is only for matters related to the next definition that distinguishing between left and right

actions becomes important, and it is for this definition we have temporarily abandoned our

previous notation.
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Definition 10.1.3. If X admits both a left S-action and a right K-action, then the right homotopy

quotient XK admits a left S-action and the left homotopy quotient SX admits a right K-action,

and we can form the homotopy biquotient

SXK :“
ESˆ Xˆ EK

pe1s, x, ke2q „ pe1, sxk, e2q
« SpXKq « pSXqK,

whose elements are denoted Sre1, x, e2sK.

With the new definitions we can prove the result.

Theorem 10.1.4. Let pG, Kq be a compact pair and S a maximal torus of K. The pair pG, Kq is isotropy-

formal if and only if pG, Sq is.

Proof. By Lemma 9.1.3, it is enough to show that K acts equivariant formality on G{S if and only

if it does on G{K.

For the forward direction, assume K acts equivariant formality on G{S. Since K acts freely by

right multiplication on G and KG, by Observation 6.4.3, the Weyl group W “ NKpSq{S of K acts

on H˚pG{Sq and H˚
KpG{Sq, and

H˚pG{Sq ÐÝ H˚
KpG{Sq

is W-equivariant. Because, by assumption, this map is surjective, by Lemma 6.4.4, the restriction

H˚pG{SqW ÐÝ H˚
KpG{Sq

W to subrings of W-invariants is also surjective; but by the naturality

statement in Lemma 6.4.5, this surjection is equivalent to the map

H˚pG{Kq ÐÝ H˚
KpG{Kq

induced by the fiber inclusion G{K ãÝÝÑ KG{K.

For the reverse direction, assume the fiber inclusion G{K ãÝÝÑ KG{K is H˚-surjective. Since
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the right K-actions on G and GK are free, by Lemma 6.4.1, we may replace the fiber inclusion

with κ : GK ãÝÝÑ KGK. Write ξ0 : BS Ñ BK again. Applying the right homotopy-quotient func-

tor p´qSãÑK of Corollary 6.4.6 to the fiber inclusion G ãÝÝÑ GK of the Borel fibration yields the

following map in F-Bun{ξ0:

GS
� � λ //

����

KGS

����

// // BS

����
GK
� �

κ
// KGK // // BK,

rg, e2sS_

��

� // Kre1, g, e2sS_

��

� // Se2_

��
rg, e2sK

� // Kre1, g, e2sK
� // Ke2,

where the inclusions in the left square are the fiber inclusions in the Borel fibrations in question.1

Applying Theorem 4.4.1 to this diagram, the upper-left map λ˚, which we wish to show is

surjective, is equivalent to

κ˚ b idH˚S
: H˚pKGKq bH˚K

H˚
S ÝÑ H˚pGKq bH˚K

H˚
S .

But by assumption, κ˚ is surjective, and ´bH˚K
H˚

S is right exact.

Remarks 10.1.5. (a) The original proof of the “if” implication in Theorem 10.1.4 relied on the

enhanced form of Corollary 6.4.6 stated in Theorem B.4.9, which can be used to show the map

λ˚ is equivalent to κ˚ b idH˚S
. We insist upon the naturality statements because without them,

Theorem 10.1.4 would no longer follow.

(b) One might wonder if the passage to the notationally cumbersome homotopy biquotient in this

proof is avoidable, but our proof relies crucially on the notion of being a bundle over BS Ñ BK,

1 N.B.: The rows are not themselves bundles: the maps from the total spaces to the common base space BK of the
Borel fibrations GS Ñ KGS Ñ BK and GK Ñ KGK Ñ BK are given by Kre1, g, e2sS ÞÝÑ e1K and Kre1, g, e2sK ÞÝÑ e1K.
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and the necessary maps do not exist from G{S Ñ G{K. Indeed, consider the horn

G{S ÐÝ GS ÝÑ BS,

gS ÞÝÑrg, esS ÞÝÑ Se.

A map G{S ÝÑ BS completing this horn to a triangle would have to take gS ÞÝÑ Se for all

g P G and e P ES, an infeasibly tall order. Morally, since the map GS ÝÑ G{S quotients ES out

of GS “ G ˆS ES, while GS ÝÑ BS quotients out G, the quotients G{S and BS have “nothing

left in common” to construct a nontrivial map from. One can still use Lemma 6.4.1 to get the

necessary right H˚
K- and H˚

S -algebra structures on H˚pG{Sq and H˚
KpG{Sq, and then reason using

Corollary 6.4.6 on right tensor factors, but this subterfuge seems more circuitous and less honest

(and less natural, no pun intended), than simply invoking homotopy biquotients.

(c) That said, we shall not need biquotients again, so from now on the reader can consider

anything denoted XK to be the left or the right homotopy quotient as she or he pleases.

10.2. Isotropic torus actions and fixed points

A key component of the proofs of our results in Chapter 11, is the manifestation in the case of an

isotropy action of the fixed-point characterization Lemma 9.2.8, which recall:

Lemma 9.2.8 ([GGK02, Cor. C.27]). Let S be a torus and M a compact S-manifold. Then the action of S

on M is equivariantly formal if and only if

h‚pMq “ h‚pMSq.

Let pG, Kq be a compact pair with and S a maximal torus. of K To understand isotropy-
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formality of pG, Sq, we should understand the fixed point set pG{SqS. Let N “ NGpSq be the

normalizer of S and Z “ ZGpSq its centralizer. Recall from the beginning of Appendix B that π0N

denotes the component group of N.

Now recall Lemma 8.3.8 from Section 8.3.1.

Lemma 8.3.8. Let S be a torus in a compact, connected Lie group G and Z “ ZGpSq its centralizer in Z.

The cohomology of Z decomposes as

H˚pZq – H˚pSq b H˚pZ{Sq.

Consequently, H˚pZ{Sq is an exterior algebra on rk G´ rk S generators and h‚pZ{Sq “ 2rk G´rk S.

This result makes available a useful dimension computation.

Corollary 10.2.1 (Goertsches–Noshari, 2014 [GN15, Prop. 3.1]). Let pG, Kq be a compact pair with S

a maximal torus of K. Then

h‚
`

pG{KqS
˘

“
|π0N|
|WK|

¨ 2rk G´rk S

Proof. We know from Corollary 2.4.8 that N{S has |π0N|{|WK components, each homeomorphic

to Z{S and from Lemma 8.3.8 that h‚pZ{Sq “ 2rk G´rk S.

Proposition 10.2.2 (Goertsches–Noshari, 2014 [GN15, Prop. 3.2]). Let pG, Kq be a compact pair with

S a maximal torus of K. The action of S on G{K is equivariantly formal if and only if

h‚pG{Sq ď
|π0N|
|WK|

¨ 2rk G´rk S. (10.1)

Proof. By Lemma 9.2.8, the action is equivariantly formal if and only if h‚pG{Kq “ h‚
`

pG{KqS
˘

,

and we always have the ě direction by Lemma 9.2.9, so we only need the reverse inequality.
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From Corollary 10.2.1, the right-hand side is h‚pG{Sq “
|π0N|
|WK|

¨ 2rk G´rk S.

Corollary 10.2.3. Let pG, Sq be a compact pair with S a torus. Then pG, Sq is isotropy-formal if and only

if

h‚pG{Sq ď |π0N| ¨ 2rk G´rk S. (10.2)

10.3. Earlier work on equivariant formal isotropy actions

The groundwork in equivariant cohomology and cohomology of homogeneous spaces being laid,

we in this section summarize the state of knowledge on isotropy-formality as of April 2014.

10.3.1. Isotropy-formality of equal-rank and generalized symmetric pairs

It is classical that a generalized flag manifold has equivariantly formal isotropy action [Bri98,

Prop. 1].

Proposition 10.3.1. An equal-rank pair pG, Kq is isotropy-formal.

Proof. Consider the spectral sequence of the Borel fibration G{K Ñ pG{KqK Ñ BK. Recall from

Theorem 7.6.1 and Theorem 8.3.11 that the rings H˚
K and H˚pG{Kq are both concentrated in even

degree. By Corollary 4.3.11, the spectral sequence collapses at E2, so by Proposition 9.1.2, the

action is equivariantly formal.

Recall (Definition 8.3.1) that pG, Kq is said to be cohomology-surjective if H˚pGq ÝÑ H˚pKq is

surjective; this was the other

Proposition 10.3.2 ([Shi96, Cor. 4.2, p. 180]). A cohomology-surjective pair pG, Kq is isotropy-formal.

In fact, cohomology-surjectivity admits a characterization in terms of isotropy-formality, due

to Oliver Goertsches and Sam Noshari.
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Proposition 10.3.3 (Goertsches–Noshari, 2014 [GN15, Prop. 3.3]). Let pG, Kq be a compact pair. Then

the following are equivalent:

1. pG, Kq is isotropy-formal and NGpSq{NKpSq is connected.

2. pG, Kq is a cohomology-surjective.

Proof. Let S be a maximal torus of K. If pG, Kq is cohomology-surjective, then by Theorem 8.3.2,

we have H˚pG{Kq – ΛPG {{ΛPK, so

h‚pG{Kq “ 2rk G´rk K ď

ˇ

ˇπ0NGpKq
ˇ

ˇ

ˇ

ˇπ0NGpSq
ˇ

ˇ

2rk G´rk K “ h‚
`

pG{KqS
˘

,

by Corollary 10.2.1, which implies by Proposition 10.2.2 that pG, Kq is isotropy-formal and by

Lemma 9.2.9 that
ˇ

ˇπ0NGpKq
ˇ

ˇ “ 1.

On the other hand, if
ˇ

ˇπ0NGpKq
ˇ

ˇ “
ˇ

ˇπ0NGpSq
ˇ

ˇ, then by Proposition 10.2.2 again, isotropy-

formality is just the demand h‚pG{Kq “ 2rk G´rk K, which happens if and only if pG, Kq is cohomology-

surjective, by Proposition 8.3.6.

Recall from Definition A.4.8 that a generalized symmetric pair pG, Kq is a compact pair such that

K is the identity component of the fixed point set of some finite-order continuous automorphism

θ P Aut G, and that pG, Kq is a symmetric pair in the event θ2 “ id. Goertsches proved in 2011 that

such symmetric pairs are isotropy-formal.

Theorem 10.3.4 (Goertsches [Goe12, Sec. 1, Theorem]). All symmetric pairs pG, Kq are isotropy-

formal.

Noshari, in his master’s thesis work, generalized the result to generalized symmetric pairs.

Theorem 10.3.5 (Goertsches–Noshari [GN14, Thm. 5.6]). All generalized symmetric pairs pG, Kq are

isotropy-formal.
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It is worth summarizing the proofs of these results, as they comprise a substantial portion of

the existing literature on isotropy-formality.

The original proof for symmetric pairs [Goe12] breaks symmetric pairs into equal-rank pairs,

split-rank pairs, and outer symmetric pairs. The equal-rank case follows from Proposition 10.3.1;

split-rank pairs turn out to be cohomology-surjective, so that Proposition 10.3.2 applies; and

the outer symmetric pairs form a small, completely classified set of exceptional cases which are

checked individually.

The proof [GN14] for generalized symmetric pairs pG, Kq proceeds on related but distinct

lines. Let S be a maximal torus of K. The analysis of the outer symmetric pairs pG, Kq in the

earlier Goertsches paper was abetted by a subdivision of the Cartan subalgebra s of K into

polyhedral cones called compartments, which are analogous to Weyl chambers of WG but instead

are permuted simply transitively by π0NGpKq – NGpKq{ZGpKq. There exists a closed, connected

group H, the folded subgroup, sharing a maximal torus S with K, intermediate between K and G

in that K ď H ď G, and such that the compartments in s are the Weyl chambers for H. The group

H is called “folded” because, on the Lie algebra level, its Dynkin diagram ∆H is a quotient of ∆G

by a graph automorphism.

This folded pair pG, Hq is again a generalized symmetric pair, and the earlier arguments about

compartments are now reflected in the replacement of the isotropy subgroup K with this folded

H. Noshari shows that the folded pair pG, Hq is in fact cohomology-surjective, so that Proposi-

tion 10.3.2 or Proposition 10.3.3 applies and pG, Hq is both isotropy-formal and (by Theorem 8.3.2)

formal. Noshari has an argument, subsumed by our Theorem 10.1.4, that if pG, Hq is formal and

K shares a maximal torus with H, then pG, Hq is isotropy-formal if and only if pG, Kq is, so this

shows the initial generalized symmetric pair was isotropy-formal.

Breaking news. Personal communication with Oliver Goertsches informs us that work into this
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question proceeds apace and the finite-order restriction on the automorphism θ has been by-

passed. The state of the art is now thus:

Theorem 10.3.6 (Goertsches–Noshari [GN15]). Let pG, Kq be a compact pair such that K “ pGθq0 is

the identity component of the fixed point set of a continuous group automorphism θ of G. Then pG, Kq is

isotropy-formal and formal.

10.3.2. The criterion of Shiga and Takahashi

On a related note, in 1996, Hiroo Shiga took up the question of isotropy-formality [Shi96], and

working in the Cartan model, discovered the following sufficient condition.

Theorem 10.3.7 (Shiga). Let pG, Kq be a compact pair and N “ NGpKq the normalizer. Suppose

1. pG, Kq is formal, and

2. the map H˚pG{KqN ãÑ H˚pG{Kq Ñ H˚pGq induced by G ÝÝ� G{K is injective.

Then pG, Kq is isotropy-formal.

We have discussed the notion of a formal pair at some length in Section 8.4, but the other

condition, that H˚pG{KqN ÝÑ H˚pGq be injective, is less transparent. Fortunately, Shiga provided

more easily interpreted equivalent conditions.

Definition 10.3.8. Let pG, Kq be a compact pair with normalizer N “ NGpKq. We say the pair

pG, Kq is invariant-surjective if the map H˚
G ÝÑ HN

K of polynomial invariants is a surjection.

Then Theorem 10.3.7 admits the following equivalent restatement.

Proposition 10.3.9 (Shiga). If a compact pair pG, Kq is formal and invariant-surjective, then it is isotropy-

formal.
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Shiga actually includes his statement of this result the condition that pG, Kq be formal, but

by Theorem 8.3.2, this demand is redundant. In a later-written (but earlier-published) technical

report [ST95] coauthored with Hideo Takahashi, Shiga also provides a partial converse to this

result.

Theorem 10.3.10 (Shiga–Takahashi). Let pG, Sq be a formal pair with S a torus. Then pG, Sq is isotropy-

formal if and only if it is invariant-surjective.

Shiga and Takahashi actually also require S to contain regular elements invoke regular ele-

ments to ensure the centralizer Z “ ZGpSq is a maximal torus of G, so that Z{S is a torus and

h‚pZ{Sq “ 2rk G´rk S, but only this dimensional condition is used in the proof, and by Lemma 8.3.8,

it goes through whether or not S contains regular elements. Shiga informs us via email that he is

aware the regularity condition is redundant.

In fact, we noticed the S in the theorem need not be a torus either.

Corollary 10.3.11. Let pG, Kq be a formal pair. Then pG, Kq is isotropy-formal if and only if it is invariant-

surjective.

Proof. Let S be a maximal torus of K. Then pG, Kq is formal, isotropy-formal, or invariant-

surjective if and only if pG, Sq is, by, respectively, Proposition 8.4.10, Theorem 10.1.4, and the

following lemma, so the result follows from Theorem 10.3.10.

Lemma 10.3.12. The map H˚
G ÝÑ pH˚

Kq
NGpKq is surjective if and only if the map H˚G ÝÝ� pH˚

S q
NGpSq is.

Proof. Retreating to real coefficients everywhere, there is a natural isomorphism H˚
S – Rrss, and it

will be enough to show that under this identification, the image of pH˚
Kq

NGpKq in Rrss is RrssNGpSq.

Given g P NGpKq, since gKg´1 “ K, it follows gSg´1 is a maximal torus of K, so since all

maximal tori of K are conjugate, there exists k P K such that kgSpkgq´1 “ S, or in other words,

kg P NGpSq. Thus K ¨ NGpKq “ K ¨ NGpSq as subgroups of G.



Chapter 10. Equivariant formality of isotropy actions 218

There is a canonical isomorphism RrksK „
ÝÑ H˚

K, the Chern–Weil isomorphism (see, e.g.,

[GGK02, p. 209]) so we can write

pH˚
Kq

NGpKq –
`

RrksK
˘NGpKq

“ RrksK¨NGpKq “ RrksK¨NGpSq.

The Chevalley restriction theorem (see, e.g., [GGK02, Prop. C.12, p. 200]) states that restriction of

invariant polynomials from k to s yields an isomorphism RrksK „
ÝÑ RrssWK . Since WK “ NKpSq{S

injects into NGpSq{S, we then have

pH˚
Kq

NGpKq –
`

RrksWK
˘NGpSq

– RrssNGpSq – pH˚
S q

NGpSq.

The Shiga–Takahashi criterion, moreover admits of a stronger characterization, at least in the

event that the action of the normalizer on sbC is by pseudoreflections.

Definition 10.3.13. Let k be a field, V is a finite-dimensional k–vector space, and Γ a finite sub-

group of GLpVq. An element γ P Γ fixing a hyperplane (a codimension-1 subspace) in Γ is a

pseudoreflection. The image of G in GLpVq is called a pseudoreflection group if it is generated by

pseudoreflections.

Example 10.3.14. (a) The Weyl group of G acts as a reflection group on t, the Cartan subalgebra.

(b) Fix an integer n ě 2. The natural multiplication representation of the group xe2πi{ny of nth

roots of unity on C is by pseudoreflections, for the fixed point set 0 is a hyperplane.

(c) The normalizer in Spp3q of the torus S “
 

diagpz, z3w, w´5q : z, w P S1
(

does not act on s

by pseudoreflections. Indeed s is two-dimensional and π0NSpp3qpSq – t˘1u contains only the

identity and the antipodal map v ÞÝÑ ´v, which is not a pseudoreflection.

Leray’s theorem that H˚pG{Tq is the regular representation of WG, Corollary 5.2.4, is an in-
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stance of a more general algebraic fact on pseudoreflection groups, proven by Chevalley in 1955.

Note that an action of a group Γ on a k–vector space V naturally induces actions on both the

symmetric algebra SrVs of V and that on its dual, SrV_s. Borrowing a notation from algebraic

geometry, we write krVs :“ SrV_s for the ring of polynomial functions on V.

Theorem 10.3.15 (Chevalley [Che55]). Suppose char k “ 0 and Γ is a pseudoreflection group. Then

SrVs {{ SrVsW is the regular representation of W.

Now we can state another version of Shiga–Takahashi. We tacitly extend to C coefficients,

noting that vector space dimension of cohomology rings is unaffected.

Theorem 10.3.16. If pG, Kq is a compact pair, if S is a maximal torus of K, and if N “ π0NGpSq acts as a

pseudoreflection group on the complexified Lie algebra sbC of S, then any two of the following statements

imply the third.

• The pair pG, Kq is formal.

• The pair pG, Kq is isotropy-formal.

• The pair pG, Kq is invariant-surjective.

Proof. By Proposition 8.4.9, the pair pG, Sq is formal if and only if

h‚pG{Sq “ 2rk G´rk S dim H˚
S {{H˚

G. (10.3)

The second condition, invariant-surjectivity, can be stated as

H˚
S {{H˚

G “ H˚
S {{ pH

˚
S q

N ,

Since H˚
S is a polynomial ring, this is the regular representation of N, by the Chevalley reflection

Theorem 10.3.15. Since the image of H˚
G Ñ H˚

S lies in pH˚
S q

N , this condition is satisfied if and only
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if

dim H˚
S {{H˚

G “ |N|. (10.4)

The condition that pG, Sq be isotropy-formal can be restated thus:

h‚pG{Sq “ 2rk G´rk S|N|, (10.5)

But any two elements of tp10.3q, p10.4q, p10.5qu imply the third.

Remark 10.3.17. The Shiga–Takahashi criterion initially appeared to us to be an inapplicable cu-

riosity, its proof sui generis and honestly a bit impenetrable, but as we have seen, the criterion

turns out to be quite general and to admit a proof that falls naturally out of the cohomology the-

ory of homogeneous spaces as developed in Chapter 8. This embellished criterion is very pow-

erful, and with proper interpretation our result Theorem 11.1.7 can be seen as a consequence.

Indeed, the work of Goertsches and Noshari on isotropy-formality of generalized symmetric

pairs can be seen as a consequence as well.

Goertsches, Noshari, and the author are aware of no examples of isotropy-formal pairs that

are not also formal; the standard examples of informal pairs all fail to satisfy the dimension

condition Proposition 10.2.2. The author suspects isotropy-formal pairs may all be formal and

the formality condition entirely redundant, in which case Corollary 10.3.11 implies that isotropy-

formality and invariant-surjectivity are equivalent conditions on compact pairs.



Chapter 11

Equivariant formality of isotropic torus actions

This chapter forms the core of our original work on equivariant formality of isotropy actions. We

begin with a summary.

11.1. Survey of original work on isotropy-formality

The reduction of an isotropy action to a toral action was sufficiently important to our discussion

of the literature that we were forced to state it earlier, but we reproduce it here.

Theorem 10.1.4. Let pG, Kq be a compact pair and S a maximal torus of K. The pair pG, Kq is isotropy-

formal if and only if pG, Sq is.

This result reduces the study of isotropy-formality to understanding embeddings of tori in

Lie groups, an already more feasible-looking endeavor. Further, the question reduces to the case

the commutator subgroup K is simply-connected.

Theorem 11.1.1. Let pG, Sq be a compact pair with S a torus. If rG is a finite central covering of G and rS

the identity component of the preimage of S in rG, then pG, Sq is isotropy-formal if and only if p rG, rSq is.

The proof is in Section 11.2. In fact, the question nearly reduces to the case G itself is simply-

connected.

221



Chapter 11. Equivariant formality of isotropic torus actions 222

Theorem 11.1.2. Let pG, Sq be a compact pair with S a torus, K the commutator subgroup of G, and

S1 “ pSX Kq0 the identity component of its intersection with S. Then the pair pG, Sq is isotropy-formal if

and only if both

1. pK, S1q is isotropy-formal and

2. any element of K which normalizes S1 normalizes all of S.

The proof is in Section 11.3. These reductions having been achieved, we completely determine,

as a proof of concept, whether pG, S1q is isotropy-formal, where S1 is any circle subgroup of G.

Definition 11.1.3. Let pG, Sq be a compact pair, with S a torus. Then S is said to be reflected in G

if there exists g P G normalizing S and such that gsg´1 “ s´1 for all s P S.

Put another way, a torus is reflected if conjugation by some g P G acts as inversion on S.
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Algorithm 11.1.4. Let pG, Sq be a compact pair with S a circle. The following steps determine

whether pG, Sq is isotropy-formal.

1. Check whether S lies in the commutator subgroup K of G, a semisimple group. If not, then

pG, Sq is isotropy-formal.

2. If S is contained in K, continue. We may assume by Theorem 11.1.1 that K is a product

of simple Lie groups Kj as listed in Proposition B.4.5. Find the images Sj of S under the

compositions S ãÑ K� Kj.

3. For each Kj, determine from Table 11.1.5 whether Sj is reflected in Kj.

4. If each Sj is reflected in Kj, then pG, Sq is isotropy-formal.

5. If some Sj is not reflected in Kj, then pG, Sq is not isotropy-formal.

Table 11.1.5: Reflected lines in simple Lie algebras

Type of K The circle S in K is reflected . . .
An if the exponent multiset J satisfies J “ ´J
Bn always.
Cn always.
D2n always.
D2n`1 if S is contained in a D2n subgroup.
G2 always.
F4 always.
E6 if S is contained in a D4 subgroup.
E7 always.
E8 always.

(see Remarks 11.1.6(b)).

Remarks 11.1.6. (a) To ask a circle S lie in the commutator subgroup K is equivalent to asking the

image of π1S ÝÑ π1G be infinite or the image of H1pGq ÝÑ H1pSq be trivial (Proposition 11.4.2

and Remark 11.4.3).

(b) The exponent multiset J is the sequence of integers a1, . . . , an P Z, considered without order,

but with multiplicity, such that the injection S1 pS1qn realizing S as a circular subgroup
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of a maximal torus of Upnq (the diagonal subgroup, say) is given by z ÞÝÑ pza1 , . . . , zanq. We

write ´J for the multiset t´aju1ďjďn whose entries are the opposites of those of J; that is to say,

for each a P Z, the element ´a occurs in ´J with the same multiplicity that a occurs in J. See

Proposition E.1.2.

(c) The demand a circle S in a group of type D2n`1 lie within a D2n subgroup means the Lie

algebra s of S is conjugate into the subspace sop2q‘2n ‘ t1u‘2 of the standard (block diagonal)

infinitesimal maximal torus sop2q‘2n`1. See Proposition E.1.3.

(d) The manifestation of the condition that a circle S ď E6 lying within a given maximal torus

T6 of E6 also be contained in a D4 subgroup is somewhat complicated and is the subject of

Appendix E.1.3. One succinct statement is Proposition E.1.14.

The succinct statement Algorithm 11.1.4 is the concatenation of Theorem 11.1.7, Proposi-

tion 11.4.2, Proposition 11.5.3, and Proposition 11.5.4. The construction of Table 11.1.5 is taken up

in Section 11.6. The constituent Theorem 11.1.7 in particular is important enough to be stated in

this introduction.

Theorem 11.1.7. Let G be a compact, connected Lie group and S a circular subgroup of G. There are the

following three mutually exclusive cases.

1. The inclusion S ãÝÝÑ G surjects in cohomology and S is not reflected in G.

2. The inclusion S ãÝÝÑ G is trivial in cohomology and

2a. S is reflected in G.

2b. S is not reflected in G.

Only in the case 2b is pG, Sq not isotropy-formal.

Here are two sample consequences.
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Proposition 11.1.8 (anonymous referee, 2015). Let pG, Kq be a compact pair, where K – SUp2q –

Spp1q or else K – SOp3q. Then pG, Kq is isotropy-formal.

Proof. These K are precisely those of type A1, whose maximal torus is a circle S. This circle S is

reflected in K because the Weyl group WA1 – t˘1u. It follows that S is also reflected in G, so by

Theorem 11.1.7, the pair pG, Sq is isotropy-formal. By Theorem 10.1.4, pG, Kq is isotropy-formal as

well.

Example 11.1.9. If S is a circle in the unitary group Upnq, then
`

Upnq, S
˘

is or is not isotropy-formal

as indicated in Table 11.1.10.

Table 11.1.10: The classification for circles in Upnq

Embedding of S Is
`

Upnq, S
˘

isotropy-formal?
S ę SUpnq Yes
S ď SUpnq and J “ ´J Yes
S ď SUpnq and J ‰ ´J No

11.2. Lifting to the universal compact cover

Recall the structure theorem Theorem B.4.4 for compact Lie groups, which states, inter alia, that a

compact, connected Lie group G admits a finite central extension π : rG ÝÑ G which is the direct

product of a semisimple, simply-connected Lie group K and a torus A: if the fiber of π is F, we

may write

G – rG{F “ Aˆ K L

F.

This rG is a universal compact cover.

In determining which toral isotropy actions are equivariantly formal, we would like to replace

G with rG and the torus S in G with the identity component rS “ π´1pSq0 of its preimage in rG, a

torus of equal rank. Note that π´1pSq “ FrS, and recall this cohomological lifting lemma proven
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in Appendix B.

Proposition B.3.4. Let G be a compact connected Lie group and K a closed, connected subgroup, let rG be

the universal compact cover of G (see Theorem B.4.4), and rK the identity component of the preimage of K

in rG, and let F be the kernel of p : rG ÝÑ G. If |F{pFX rKq| is invertible in k, then

H˚pG{Kq – H˚p rG{rKq.

As total Betti number is unchanged under the substitution pG, Sq ÞÝÑ p rG, rSq, we want to see

the same is true of normalizer components. Write rN “ N
rGp
rSq and N “ NGpSq for the normalizers

of the tori.

Proposition 11.2.1. Under the foregoing assumptions, the projection π : rG ÝÑ G induces an isomor-

phism π0 rN
„
ÝÑ π0N.

Proof. Since π is a homomorphism, it sends rN ÝÑ N, inducing the claimed map π0 rN ÝÑ π0N.

To see this map is injective, suppose rw P rN is such that w “ πp rwq induces the identity on S.

Then for all s P S we have wsw´1s´1 “ 1, so since π is a homomorphism, rwrs rw´1
rs´1 P F for all

rs P rS. Since rs ÞÝÑ rwrs rw´1
rs´1 is a continuous function rS ÝÑ F to a discrete space, sending 1 ÞÑ 1,

rw must centralize rS.

To see the map is surjective, given w P N, let rw be any preimage in rG. Since π is a homomor-

phism, conjugation by rw must take rS into π´1pSq, and since it fixes 1, it must in fact take rS ÝÑ rS,

so that rw P rN.

These facts in hand, we conclude the proof of Theorem 11.1.1.

Theorem 11.1.1. Let pG, Sq be a compact pair with S a torus. If rG is a finite central covering of G and rS

the identity component of the preimage of S in rG, then pG, Sq is isotropy-formal if and only if p rG, rSq is.
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Proof. We know from Proposition 10.2.2 that pG, Sq is isotropy-formal if and only if

h‚pG{Sq “
ˇ

ˇπ0
`

NGpSq
˘ˇ

ˇ2rk G´rk S.

But evidently rk rG “ rk G and rk rS “ rk S; from Proposition B.3.4, we know h‚p rG{rSq “ h‚pG{Sq;

and from Proposition 11.2.1, we know π0
`

N
rGp
rSq
˘

ÐÑ π0
`

NGpSq
˘

.

In what follows, we can therefore replace G with its universal compact cover rG “ Aˆ K. For

later, when we specialize to circles, we note the following corollary of Proposition 11.2.1.

Corollary 11.2.2. Under these hypotheses, the torus S is reflected in G just if rS is reflected in rG.

11.3. Reduction to a semisimple group

In this section, G is the product of a torus A and a simply-connected Lie group K. Let S be a

torus in G and

K “ K{pSX Kq,

G “ G{S,

AKS “ cokerpS Ñ Aq.

The trivial bundle K Ñ G Ñ A induces a bundle K Ñ G Ñ AKS we claim is also trivial.

Proposition 11.3.1. Given the above hypotheses, G « Kˆ AKS.

Proof. The kernel of the composition S ãÑ G� A is SX K, so there is an isomorphism

S :“ S{pSX Kq „
ÝÑ impS Ñ Aq “: A‖S
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of tori. Factoring out SX K, we have

G “
Kˆ A

S
«

Kˆ A
S

by the third isomorphism theorem. As A is a torus, the projection A ÝÝ� AKS splits, by Proposi-

tion A.4.2, so that A may be factored as A – AKS ˆ A‖S in the display, and

Kˆ A
S

«
Kˆ A‖S

S
ˆ AKS «

Kˆ S
S

ˆ AKS

But pKˆ Sq{S « K by Lemma 2.1.1.

Now we can carry through the claimed (near-)reduction to the semisimple case.

Theorem 11.1.2. Let pG, Sq be a compact pair with S a torus, K the commutator subgroup of G, and

S1 “ pSX Kq0 the identity component of its intersection with S. Then the pair pG, Sq is isotropy-formal if

and only if both

1. pK, S1q is isotropy-formal and

2. any element of K which normalizes S1 normalizes all of S.

Proof. By Proposition 11.2.1, we may as well assume that G “ Aˆ K, so that N “ NGpSq “ Aˆ

NKpSq. Note further that because K is normal in G, any group element normalizing S also must

normalize S1. Write N1 “ NKpS1q. Thus we have π0N – π0
`

NKpSq
˘

ď π0N1. From Lemma 9.2.9 as

applied to the pair pK, S1q and Corollary 10.2.1, we have

h‚pK{S1q ě |π0N1| 2rk K´rk S1 ě |π0N| 2rk K´rk S1 . (11.1)

Write AKS “ cokerpS Ñ Aq and A‖S “ impS Ñ Aq, so that rk A “ rk A‖S ` rk AKS and
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rk S “ rk A‖S ` rk S1. Then we know

rk G´ rk S “ prk A` rk Kq ´ prk A‖S ` rk S1q “ rk AKS ` rk K´ rk S1.

From Proposition 11.3.1, we have h‚pG{Sq “ 2rk AKS
h‚pK{S1q, so multiplying (11.1) by 2rk AKS

yields

h‚pG{Sq ě |π0N1| 2rk G´rk S ě |π0N| 2rk G´rk S. (11.2)

Corollary 10.2.3 states that pG, Sq is isotropy-formal if and only if the inequalities (11.2) are in

fact equalities, which is equivalent to (11.1) being equalities. But by Corollary 10.2.3 again, this

can only happen if pK, S1q is isotropy-formal and additionally π0pN1q – π0pNq.

Remarks 11.3.2. (a) There do exist cases where the inequality |π0N| ď |π0N1| is strict, making

Theorem 11.1.2 something less than a full reduction to the semisimple case. For instance, let

G “ Aˆ K “ S1 ˆ SUp2q2, pick a circle S1 in SUp2q, let T be the maximal torus Aˆ S1 ˆ S1 of G,

and let

S “
 

pz; w, zw´1q : z, w P S1(

be a rank-two subtorus of T, so that

S1 “
 

p1; w, w´1q : w P S1(.

Then |π0N1| “ 2, the nontrivial element of π0N1 acting on T as pz; t, uq ÞÝÑ pz; t´1, u´1q since A is

central. But this map takes pz; w, zw´1q to pz; w´1, z´1wq, which is not in S unless z “ z´1 “ ˘1,

so π0N “ 1.

(b) Write T1 for a maximal torus of K containing impS Ñ Kq. The demand each element w P N1
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normalize S is equivalent to the demand that for each pa, tq P S ď Aˆ T1, we have pa, wtw´1q P S,

so that wtw´1t´1 P S1 “ S X K for all t P impS Ñ T1q. Equivalently, the induced action of N1

on impS Ñ T1q{S1 is trivial. It is not clear, however, this reformulation is more enlightening or

applicable than the original.

11.4. Equivariant formality of isotropic circle actions

It is now our goal to demonstrate the statements Algorithm 11.1.4 and Table 11.1.5 regarding

equivariant formality of circle actions.

We first make some preliminary remarks on π0N. In general, continuous automorphisms of

a torus S – pR{Zqr “ Rr{Zr are induced by linear isometries of Rr fixing the integer lattice Zr,

which correspond to elements of GLpr,Zq, so that Aut S – GLpr,Zq. When S is a circle, r “ 1

and GLp1,Zq “
 

r˘1s
(

, so by Lemma 2.4.7 the component group π0N must be trivial or be

generated by the involution s ÞÝÑ s´1. Thus to determine |π0N| in this case, it will suffice to

determine whether there is any element g P G such that g´1sg “ s´1 for all s P S. Recall from

Definition 11.1.3 that a circle is said to be reflected if there is some such element g. We summarize:

Proposition 11.4.1. If pG, Sq is a compact pair and S a circle, then the cardinality of π0
`

NGpSq
˘

is 2 if S

is reflected in G and 1 otherwise.

A complete analysis of when a circle is reflected is conducted in Section 11.5. To be able

to apply Corollary 10.2.3, it remains to understand h‚pG{Sq, which was a consequence of the

theorem Proposition 8.5.1 of Leray and Koszul.

Proposition 8.5.1. Let G be a compact, connected Lie group and S a circle subgroup. Then the rational

cohomology ring H˚pG{Sq has one of the following forms.
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1. If H1pGq ÝÑ H1pSq is surjective, then there is z1 P H1pGq such that

H˚pG{Sq – H˚pGqLpz1q.

In terms of total Betti number, h‚pGq “ 1
2 h‚pG{Sq.

2. If H1pGq ÝÑ H1pSq is zero, there are z3 P H3pGq and s P H2pG{Sq such that

H˚pG{Sq –
H˚pGq
pz3q

b
Qrss
ps2q

.

In terms of total Betti number, h‚pGq “ h‚pG{Sq.

Now we can prove Theorem 11.1.7.

Theorem 11.1.7. Let G be a compact, connected Lie group and S a circular subgroup of G. There are the

following three mutually exclusive cases.

1. The inclusion S ãÝÝÑ G surjects in cohomology and S is not reflected in G.

2. The inclusion S ãÝÝÑ G is trivial in cohomology and

2a. S is reflected in G.

2b. S is not reflected in G.

Only in the case 2b is pG, Sq not isotropy-formal.

Proof. Recall (Corollary 10.2.3) that h‚pN{Sq “ |π0N| 2rk G´rk S and that pG, Sq is isotropy-formal

if and only if h‚pG{Sq “ h‚pN{Sq. Proposition 11.4.1 imposes the constraint |π0N| P t1, 2u, and

Proposition 8.5.1 the constraint h‚pG{Sq P
 1

2 h‚pGq, h‚pGq
(

. By Lemma 9.2.9, it is impossible that

both h‚pG{Sq “ 1
2 h‚pGq and |π0N| “ 2, so there are only the following three cases.
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1. We have h‚pG{Sq “ 1
2 h‚pGq and |π0N| “ 1. Equivariant formality is achieved.

2. We have h‚pG{Sq “ h‚pGq, and

2a. |π0N| “ 2. Equivariant formality is achieved.

2b. |π0N| “ 1. Equivariant formality is not achieved.

It is convenient to be able to express the conditions on the map H1pGq ÝÑ H1pSq in terms of

the intersection of S with the commutator subgroup K.

Proposition 11.4.2. Let G be a compact, connected Lie group and S a toral subgroup. The inclusion

S ãÝÝÑ G is trivial in cohomology if and only if S is contained in the commutator subgroup K.

Proof. Note that being contained in the commutator subgroup is invariant under taking covers,

and recall from Section 11.2 that the rank of H1pGq ÝÑ H1pSq is as well, so we may assume

G “ Aˆ K with A a torus and K simply-connected. Note that S ď K just when the composition

S Ñ G Ñ A is trivial.

If S Ñ G Ñ A is trivial, then H1pAq Ñ H1pGq Ñ H1pSq is trivial. Since π1K “ H1pK;Zq is

zero, so also are H1pKq and H1pKq, meaning H1pAq – H1pGq by the Künneth theorem. Thus in

this case H1pGq ÝÑ H1pSq is also trivial.

On the other hand, if S Ñ G Ñ A is not trivial, its image is a circle in A, possibly traversed

multiple times, so that S ÝÑ A induces a nonzero map H1pSq ÝÑ H1pAq. Dualizing, H1pAq ÝÑ

H1pSq is nonzero.

Remark 11.4.3. The torus S is actually contained in the commutator subgroup K of G if and only if

its image in A “ G{K is trivial. Since H˚pA;Qq – H˚pG;Qq by the lifting lemma Proposition B.3.4

and the topological Künneth Theorem B.2.2, it follows that this occurs if and only if H˚pG;Qq ÝÑ

H˚pS;Qq is trivial. Dualizing, that happens if and only if H˚pS;Qq ÝÑ H˚pG;Qq is trivial. Because
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H˚pS;Qq is an exterior algebra on generators H1pS;Qq, that is equivalent to H1pS;Qq ÝÑ H1pG;Qq

being trivial, or the image of H1pS;Zq ÝÑ H1pG;Zq being torsion, or equivalently, the kernel

having full rank. Since S and G are groups, their fundamental groups are abelian, so this is

actually the map π1S ÝÑ π1G. Thus one has the statement

S ď K ðñ impπ1S ÝÑ π1Gq is finite.

In the event S – S1, the statement is that S lies in K if and only if π1S ÝÑ π1G fails to be injective,

and conversely, that π1S ÝÑ π1G is injective if and only if S does not lie in K.

Remark 11.4.4. The results on circles can be seen as a consequence of the (slightly enhanced)

Shiga–Takahashi criterion Theorem 10.3.10, though only the sufficiency direction follows from

the published version.

Let pG, Sq be a compact pair, S a circle, and N “ NGpSq. The pair is formal by Lemma 8.5.5,

so pG, Sq is isotropy-formal if and only if H˚
G ÝÑ HN

S is surjective by Corollary 10.3.11. Note

that |N| ď 2 by Proposition 11.4.1. If |N| “ 1, then HN
S “ H˚

S , so Shiga–Takahashi says that

pG, Sq is isotropy formal if and only if H˚
G ÝÑ H˚

S is surjective, which happens if and only

H˚pGq ÝÑ H˚pSq is surjective by Proposition 8.3.5, the cohomology-surjective case.

If |N| “ 2, on the other hand so that S is reflected in G, then HN
S is the fixed point of H˚

S “ Qrss

under the involution s ÞÝÑ ´s, which is the subring Qrs2s, and the image of H˚
G ÝÑ HN

S contains

this subring by Lemma 7.8.3.

The reflected circles still must be determined in some way. Shiga himself [Shi96, pp. 80–

82] carries through this program in the special case
`

SUpnq, S1
˘

, showing both necessity and

sufficiency for his conditions in this case and reassuringly arriving at the same result as we did.
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11.5. Reflectibility of circles: reduction

In the next two sections, we continue the classification implied by Algorithm 11.1.4 by determin-

ing when circles are reflected in a compact Lie groups G. This section reduces reflectibility in

stages to the case G is a semisimple group, then a simply-connected group, and finally a simple

group. First note that elements of NGpSq reflecting S, if they exist, can be represented by elements

of the Weyl group WG “ NGpTq{T of G.

Lemma 11.5.1 ([Bou68, Ex. IX.2.4, p. 391][DW98, Lem. 9.7, p. 20]). Let G be a compact, connected

Lie group, T a maximal torus, and S a subtorus. Given an automorphism of S induced by conjugation by

a normalizing element n P NGpSq, there exists an element w P NGpTq inducing the same automorphism.

Proof. Conjugation by n stabilizes the centralizer Z :“ ZGpSq of S, for given z P Z and s P S, since

nsn´1 P S by normality, we have

pnzn´1qspnzn´1q´1 “ nzpn´1snqz´1n´1 “ npn´1snqn´1 “ s.

T is a maximal torus of Z, so also must nTn´1 be, by Theorem B.4.9. All maximal tori of Z are

conjugate, so there exists z P Z such that znTn´1z´1 “ T, or zn P NGpTq. Since z P Z centralizes

S and nSn´1 “ S, conjugation by w “ zn induces the same automorphism of S as n does.

Write FixNGpTqpSq for the set of elements of NGpTq fixing S pointwise. This association N  

NGpTq is not a function, but if n Þ w1 and n Þ w2, then conjugation by w´1
1 w2 fixes S pointwise.

so N  NGpTq descends to a well-defined homomorphism

N ÝÑ
NGpTq

ZGpSq X NGpTq
–

WG

FixWGpSq

with kernel Z; thus, to determine |π0N|, we need only survey Weyl group elements. We state this
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as a proposition.

Proposition 11.5.2. Let G be a compact, connected Lie group and S a torus in G. Write N “ NGpSq for

its normalizer and Z “ ZGpSq for its centralizer. Then the conjugation action of G induces an injection

π0N – N{Z � WG{FixWGpSq. In particular, S is reflected in G if and only if conjugation by some

element of the Weyl group WG of G induces s ÞÝÑ s´1 on S.

Note that for the purposes of the previous definition, S need not be a circle. Now, however

assume S is a circle in G. From Proposition 11.2.1 and Corollary 11.2.2, we may assume G is the

product Aˆ K of a torus A and a simply-connected Lie group K.

Proposition 11.5.3. Let G be a compact, connected Lie group and S a toral subgroup. Then S is reflected

in G if and only if it is reflected in the commutator subgroup K.

Proof. Assuming G “ Aˆ K, from Theorem 11.1.7 and Proposition 11.4.2, we know that S is not

reflected unless it is contained in K. Further, since the conjugation action of A is trivial, if S is

reflected, it is also reflected in K.

Reflectibility of a circle in a simply-connected group in turn depends only on simple factors,

for the fact Lemma B.4.10 that Weyl group of a product is the product of the Weyl groups of the

factors then translates into the expected statement about reflectibility in products.

Proposition 11.5.4. Let K be a product of Lie groups Kj. If S is a toral subgroup of K and Sj, for each j,

its image under the projection K ÝÝ� Kj, then S is reflected in K just if each Sj is reflected in Kj.

Proof. Write Tj for maximal tori of Kj containing Sj. If S is reflected in K, then there is some

element pwjq P W “
ś

WKj such that pwjq reflects S. Since the projections
ś

Tj ÝÑ Tj are W-

equivariant, it follows each Sj is reflected by wj in Kj.

Now suppose each Sj is reflected in Kj. Then each Sj is reflected by some wj P Wj, so the list

w “ pwjq reflects the torus
ś

Sj in K; and S is a subtorus of
ś

Sj.
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So, to determine reflectibility of a given circle in a compact, connected Lie group, we need

only lift it to the universal cover, verify that it intersects any toral component trivially, and check

whether or not its projection to each simple factor is reflected.

We will make repeated use of the following.

Observation 11.5.5. Let G be a compact, connected Lie group and H a closed, connected sub-

group. If a torus S of H is reflected in H, it is also in G.

11.6. Reflected circles in simple groups

In this section we let G be a simple Lie group and classify reflected circles S in G. If we fix

a maximal torus T of G, then by Theorem B.4.9, some conjugate gSg´1 is contained in T, and

conjugation x ÞÝÑ gxg´1 takes NGpSq to NGpgSg´1q, so that S is reflected in G if and only if its

conjugate gSg´1 is. So from now on, we can just assume S is in our chosen maximal torus T.

Proposition 11.6.1. Let G be a simple Lie group and S a circular subgroup. Then S is reflected in G if

and only if it is reflected by the longest word w0 in the Weyl group W of G.

Proof. The circle S determines a line s in the Lie algebra t of T. Arbitrarily orienting s, we can

write it as the union s` Y ´s` of a “positive” and “negative” ray. By Proposition B.4.18, the

nonzero points of s` lie in a unique closed Weyl chamber C, and by Definition B.4.17 there exists

a system ∆ “ tα1, . . . , αdim Tu of simple roots such that C is the “positive” closed Weyl chamber in

t, where all αj ě 0. It then follows that ´s` lies in the negative closed Weyl chamber ´C where

all αj ď 0. The Weyl group acts simply transitively on Weyl chambers by Proposition B.4.18, so

only the longest word w0 P W sends ∆ ÝÑ ´∆ and hence C ÝÑ ´C, and there will exist an

element w P W taking s` ÝÑ ´s` if and only if w0 does so.

Chi-Kwong Fok (personal communication) pointed out this fact as well a representation-
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theoretic consequence.

Proposition 11.6.2. Let G be a simple Lie group and S a circular subgroup. Then S is reflected in G if

and only if the irreducible representation of G determined by S is self-dual.

Proof. Identifying t with t_ through the Killing form, (the image of) s` meets the weight lattice

of G and determines a minimal dominant weight λ; and S is reflected if and only if some Weyl

group element takes λ to ´λ. Again, if any Weyl element does so, then w0 will, so S is reflected

if and only if λ “ ´w0λ. The representation dual to the irreducible representation with highest

weight λ is that with highest weight ´w0λ.

The construction of Table 11.1.5 now proceeds case by case through the Killing–Cartan clas-

sification Proposition B.4.5.

Proposition 11.6.3. Let T be a maximal torus in a simple Lie group G whose type is one of

Bn, Cn, D2n, G2, F4, E7, E8.

Then S is reflected in G.

First proof. If G is a simple Lie group of one of these types, its Weyl group W is a Coxeter group

of corresponding type. For Coxeter groups of these types, the longest word w0 acts as ´ id on the

vector space (here t) carrying the defining representation of W [Kan01, Lem. 27-2, p. 283][Hum92,

p. 82], so t is reflected.

Second proof. It is known that central involutions of a Weyl group act as X ÞÝÑ ´X on the Lie

algebra t of a maximal torus [DW01, Thm. 1.8] and that the center of W is isomorphic to Z{2 for

the Weyl groups of types Bn, Cn, D2n, G2, F4, E7, and E8 [DW01, Rmk. 1.9].
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Figure 11.6.5: The graph involutions of An
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In the remaining cases, the longest word w0 P W does not act as ´ id on t, so more work is

required.

Proposition 11.6.4. Let G be a simple Lie group with trivial center (viz., of type An, D2n`1, or E6) and

let S be a circle in G. Then S is reflected in G if and only if there is some w P W such that w ¨ s lies in

the fixed point subalgebra tθ of the Cartan subalgebra under an automorphism θ P Autptq induced by a

nontrivial diagram automorphism of the Dynkin diagram of G.

Proof. From Proposition 11.6.1 we know S is reflected if and only if s is reflected by w0. Note that

this occurs if and only if s is fixed pointwise by the nontrivial automorphism ´w0 P Autptq. This

automorphism ´w0 stabilizes but does not fix the positive closed Weyl chamber C, and so cannot

be induced from W, which acts simply transitively on Weyl chambers. Likewise, any extension

of ´w0 to an automorphism of g is an outer automorphism in that it is not in the image of Ad G.

But it is known [FH91, Prop. D.40, p. 498] that all outer automorphisms of g are induced by a

graph automorphism of the Dynkin diagram Γ of G in that

Out g :“
Aut g
Ad G

– Aut Γ.

It thus remains only to understand the fixed point subalgebras of diagram automorphisms

for Lie algebras of type An, D2n`1, and E6.

Proposition 11.6.6. In a Lie algebra of type An, a point v P t_ ă Rn`1 of the dual Cartan algebra is fixed

by an automorphism of the Dynkin diagram if and only if some reversing the coordinates of v yields ´v.
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Proof. The Dynkin diagram of An and its only automorphism θ are depicted in Figure 11.6.5;

the map θ acts on simple roots of An by exchanging αj ÐÑ αn´j, as in the figure. The fixed

point subspace of t_ – Rn is spanned by the vectors αj ` αn´j so it contains those vectors v1 “

ra1 ¨ ¨ ¨ ans P Rn for which aj “ an´j. These αj are usually identified with ej ´ ej`1 P Rn`1, where

pejq1ďjďn`1 is the standard basis on Rn`1.1 This embedding v1 ÞÝÑ v P Rn`1 takes

ra1 a2 ¨ ¨ ¨ an´1 ans ÞÝÑ
“

a1 pa2 ´ a1q ¨ ¨ ¨ pan ´ an´1q ´ an
‰

,

so the symmetry requirement aj “ an´j translates into the antisymmetry condition vj “ ´vn`1´j

on the coordinates of v.

Corollary 11.6.7. Let K “ SUpnq and let S be a circular subgroup. Then S is reflected if and only if the

exponent multiset2 J of the inclusion S ãÝÝÑ T satisfies J “ ´J.

For example, r´1 0 1s P R3 meets this condition and r2 1 ´ 3s does not.

Proof. Using the W-equivariant isomorphism t_
„
ÝÑ t discussed in Corollary B.4.16, we may

identify tθ with pt_qθ ă Rn`1. The Weyl group WAn “ Sn`1 acts on Rn`1 by permutation of coor-

dinates, so given v P t, there exists a w P Sn`1 such that w ¨ v P tθ if and only if some permutation

of the entries of ´v yields v. The result then follows immediately from Proposition 11.6.6 and

Proposition 11.6.4.

Remarks 11.6.8. (a) The root subsystems of A2` and A2`´1 fixed by θ are respectively of types Bn

and Cn. The former corresponds on the group level to the inclusion SOp2`` 1q ãÝÝÑ SUp2`` 1q

and the latter to the Sppnq embedded in SUp2nq via the block map on coordinates induced by

1Thus t_ is usually considered as the subspace of elements whose coordinates sum to zero in the Cartan algebra
Rn`1 for Upn` 1q.

2 A multiset is like a sequence, except elements are not ordered, but are counted with multiplicity. Other collections
often considered as multisets are roots of a polynomial and eigenvalues of an operator.
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Figure 11.6.9: The graph involution of D2n`1
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the ring injection H˚ C2ˆ2. These subgroups are fixed points of involutive automorphisms

of SUpnq yielding the classical symmetric spaces SUpnq{SOpnq and SUp2nq{Sppnq.

(b) The self-duality criterion Proposition 11.6.2 rears its head here as follows. The representation

τ of S on Cn given by restricting the defining representation of SUpnq to S is a direct sum

Àn
j“1 ρbaj of tensor powers of the defining representation ρ of S1 on C. The dual representation

τ_ “
Àn

j“1 ρbp´ajq, will be isomorphic to τ just if J “ ´J.

Proposition 11.6.10. In a Lie algebra of type D2n`1, a point v P t_ ă R2n`1 of the dual Cartan algebra

is fixed by an automorphism of the Dynkin diagram if and only if the last coordinate of v is zero.

Proof. The Dynkin diagram of D2n`1 and its lone graph automorphism θ are shown in Fig-

ure 11.6.9. This θ fixes all simple roots except α2n and α2n`1, which it exchanges. The fixed point

subspace of pt_qθ is spanned by the vectors tαjujă2n and by α2n ` α2n`1. The roots αj for j ď 2n

are usually identified with ej ´ ej`1 P R2n`1, and a2n`1 with en ` en`1, where pejq1ďjďn`1 is the

standard basis on R2n`1. The image of the composite embedding pt_qθ ãÑ t_ Ñ R2n`1 is R2nˆt0u

since α2n ` α2n`1 “ 2e2n.

Corollary 11.6.11. Let S be a circle in Spinp4n` 2q. Then S is reflected in Spinp4n` 2q if and only if it

is conjugate into a Spinp4nq subgroup.

Proof. Using the W-equivariant isomorphism t_
„
ÝÑ t discussed in Corollary B.4.16, we may

identify pt_qθ with tθ “ R2n ˆ t0u ă R2n`1. The Weyl group WD2n`1 “ t˘1u2n ¸ S2n`1 acts on



Chapter 11. Equivariant formality of isotropic torus actions 241

R2n`1 by permutating its coordinates and inverting an even number of them, so given v P t, there

exists a w P WD2n`1 such that w ¨ v P tθ if and only if one coordinate is zero. The result then follows

immediately from Proposition 11.6.10 and Proposition 11.6.4.

Remark 11.6.12. The sublattice of a D2n`1 lattice fixed by θ is of type B2n and corresponds to a

SOp4nq subgroup of SOp4n` 2q. This subgroup is the fixed point set of an involutive automor-

phism of SOp4n` 2q yielding the classical symmetric space SOp4n` 2q{SOp4nq “ V2pR4n`2q.

Figure 11.6.13: The graph involution of E6
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Proposition 11.6.14. In a Lie algebra of type E6, a point v P t_ of the dual Cartan algebra is fixed by an

automorphism of the Dynkin diagram if and only if it lies in a certain F4 sublattice.

Proof. The Dynkin diagram of E6 and its only automorphism θ are depicted in Figure 11.6.13;

the map θ acts on simple roots of E6 as indicated in the picture, and pt_qθ is spanned by ∆ “

tα1`α6, α2`α5, α3, α4u. By assumption, we have αi ¨αj “ ´2|αi||αj| for adjacent αi, αj and αi ¨αj “ 0

otherwise, so ∆ is a simple root system of type F4 with a1 ` α6 and α2 ` α5 long and α3 and α4

short.

Proposition 11.6.15. A circular subgroup S of E6 or its universal cover rE6 is reflected just if it is conjugate

into a Spinp8q subgroup.

Proof. Using the W-equivariant isomorphism t_
„
ÝÑ t discussed in Corollary B.4.16, we may

identify pt_qθ with tθ . It follows immediately from Proposition 11.6.14 and Proposition 11.6.4 that
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the tangent spaces s ă t to reflected circles S are precisely those such that there exists w P WE6

such that w ¨ s ă tθ . Now because pt_qθ is spanned by an F4 sublattice of the E6 root lattice, its

dual tθ is tangent to the maximal torus T4 of an F4 subgroup. In the classic series of inclusions

Spinp8q ă F4 ă E6, the first two share a maximal torus T4, so tθ is actually tangent to the maximal

torus of a Spinp8q.

Remark 11.6.16. We had a much more intricate proof of the classification in Table 11.1.5 before it

was pointed out to us by Chi-Kwong Fok (personal communication) and Jay Taylor [Tay] that the

longest word of the Weyl group yields a simpler (no pun intended) classification. This original

proof is reproduced for comparison in Appendix E.

Included in particular are detailed original proofs that there are precisely forty-five such T4

in a given maximal torus T6 of E6. containing all and only reflected circles. A reader who finds

our current justification that pt_qθ corresponds to an F4 subgroup of E6 sketchy will find there

a much more detailed explanation why this must be the case and why in fact tθ must be are

tangent to maximal tori of Spinp8q subgroups. We will also show there that each of the associated

t4 are spanned by four mutually orthogonal coroots in the E6 coroot lattice. As a consequence,

we accidentally demonstrate the well-known fact that WF4 injects into WE6 with index forty-five.

Finally, we will provide an explicit description of the 135 mutually orthogonal bases of roots of

pt6q_ which span the forty-five reflected subspaces pt4q_.
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Algebraic background

In this appendix we gather a ragtag assortment of algebraic preliminaries. Notationally, in all

that follows we denote containment of an algebraic substructure by “ď,” containment of an ideal

by “E,” isomorphism by “–,” and bijection by “Ø.” The restriction of a map f : A ÝÑ B to a

subset U Ď A is written f æ U.

A.1. Commutative algebra

We will only need a very little commutative algebra, but it will include the following. Let A be

an ungraded commutative ring and B a unital A-algebra. We say an element a P A annihilates B

if a1 “ 0 in B. Given any a P A we may localize, or invert a in A, to form a new A-algebra

Aa :“ Ara´1s – Arxs{pax´ 1q.

The class of x in Aa, called a´1, serves as an inverse to a in Ara´1s; if Ara´1s “ 0 is the zero ring,

this still holds for uninteresting reasons.

243
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We define localization of an A-module M by

Ma :“ Mra´1s :“ Aa b
A

M.

Localization is a exact functor in that it takes an exact sequence of A-modules to an exact se-

quence of Ara´1s-modules.

The localization Mra´1s turns out to be trivial if and only if each element m P M is annihilated

by some power an of M ([AM69, Ex. 3.1, p. 43]); the idea is that then m “ xnanm “ xn0 “ 0 in

Mra´1s. We say that M is a-torsion in this instance. For a unital A-algebra B to be a-torsion, it

is necessary and sufficient that a power of a annihilate the unity 1 P B, and then Bra´1s “ 0. We

have the following useful lemma.

Lemma A.1.1. Let A be a ring, a an element of A, and

M Ñ N Ñ P

an exact sequence of A-module homomorphisms. Then if M and P are a-torsion, so also is N.

Proof. Since localization is an exact functor, the localized sequence

Mra´1s
loomoon

0

ÝÑ Nra´1s ÝÑ Pra´1s
loomoon

0

,

is also exact, meaning Nra´1s is zero.

A.2. Chain complexes

Our cohomology theories will always take coefficients in an ungraded, commutative ring k with

unity; usually, k will be Q or R. The category of k-modules and k-module homomorphisms
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is denoted k-Mod. A differential group is a pair pA, dq, where A P k-Mod is a k-module and

d P Endk A, the differential, is a nilsquare endomorphism, so that the composition d2 :“ d ˝ d “ 0

is the constant map to the zero element of A. A morphism f : pA, dq Ñ pB, δq in the category of

differential groups is a chain map, a group homomorphism f : A Ñ B such that f d “ δ f .

A Z-graded k-module is an A P k-Mod admitting a direct sum decomposition A “
À

nPZ An.

An element a P A is homogeneous if there exists some integer |a| “ deg a, the degree of A, such

that a P Adeg a. We blur the distinction between 0 P An and 0 P A, and leave the degree of the

latter indeterminate. A k-module homomorphism f : A ÝÑ B between graded k-modules is said

to be a graded k-module homomorphism of degree n “ deg f if

deg f paq “ n` deg a “ deg f ` deg a

for all homogeneous a P A. We let gr-k-Mod be the category of graded k-modules and graded

k-module homomorphisms.

A chain complex pA, dq is a differential group such that A P gr-k-Mod and additionally d is of

degree 1. We write d æ An “: dn. A map f : pA, dq Ñ pB, δq of chain complexes is a chain map of

differential groups that is additionally a graded map of degree 0, so that f An ď Bn. We let k-Ch

denote the category of chain complexes and chain maps of k-modules,

The cohomology HpA, dq of a differential k-module pA, dq is the quotient pker dq{pim dq, which

makes sense because d2 “ 0. We also write this as HdpAq. The differential group is exact if

HdpAq “ 0. A chain map f : pA, dq Ñ pB, δq induces a homomorphism f ˚ : HpA, dq Ñ HpB, δq of

k-modules. If this map is an isomorphism, then one says f is a quasi-isomorphism.

If A is a chain complex, then HpA, dq is graded by

HnpA, dq :“ H˚pA, dqn :“ ker dn{ im dn´1.
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Then a (graded) chain map induces a map of graded modules, so cohomology is a functor

k-Ch ÝÑ gr-k-Mod. A chain complex pA, dq is said to be acyclic if H˚pA, dq “ H0pA, dq “ k,

meaning HnpA, dq “ 0 for n ‰ 0.

We will say a map A ÝÑ B of differential groups surjects in cohomology or is H˚-surjective

if it induces a surjection H˚pAq ÝÝ� H˚pBq. In the opposite extreme case, that the map H˚pAq ÝÑ

H˚pBq is zero in dimensions ě 1 and is the isomorphism H0pAq ÝÑ H0pBq in dimension 0, we

call this map trivial, and say the map X ÝÑ Y is trivial in cohomology. If A ÝÑ B is the map

f ˚ : H˚pYq ÝÑ H˚pXq in cohomology induced by a continuous map f : X ÝÑ Y, then we likewise

say f is surjective in cohomology or trivial in cohomology if f ˚ is.

A.2.1. Polynomials and numbers associated to a graded module

A graded k-module A is said to be of finite type if each graded component An has finite k-rank.

Given a graded k-module A of finite type, we define the Poincaré polynomial of A to be the

formal rational function

ppAq :“
ÿ

nPZ
prkk Anqtn.

The sum ppXq|t“1 “
ř

rkk An is the total rank. If we evaluate at t “ ´1 instead, we get the Euler

characteristic χpAq :“ ppXq|t“´1 “
ř

p´1qn rkk An; this last is only well defined if the total Betti

number is finite.

Given a chain complex, Euler characteristic is preserved under cohomology: one has the

following corollary of the rank–nullity theorem of introductory linear algebra as applied to the

differential d.

Proposition A.2.1. Let pA, dq be a chain complex over k of finite total Betti number. Then

χpAq “ χ
`

H˚pA, dq
˘

.
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A.3. Commutative and differential graded algebras

A cohomology ring is a commutative graded algebra, and it is defined as the cohomology of a

chain complex which is itself a graded algebra. We set out some commonplaces of these objects.

A.3.1. Commutative graded algebras

A cohomology ring A will be a graded commutative k-algebra. This means A is a graded k-

module, and additionally the product is such that

Am ¨ An ď Am`n;

and for all homogeneous elements a, b P A, one has

ba “ p´1q|a||b|ab.

Mostly, these rings will actually be N-graded, so that An “ 0 for n ă 0, and the absolute co-

homology rings H˚pXq (as opposed to relative cohomology rings H˚pX, Yq) will be unital, so

that the map x ÞÑ x ¨ 1 embeds k � A0 ãÑ A and the k-algebra structure can be seen as the

restriction of the ring multiplication Aˆ A ÝÑ A. We will call these k-CGAs for short, and the

category of graded commutative k-algebras and degree-preserving k-algebra homomorphisms

will be written k-CGA.

The cohomology theories of interest to us will also be algebras over CGAs E˚, or E˚-algebras.

For us an E˚-algebra structure on a CGA A is a k-bilinear map E˚ˆ A ÝÑ A that “adds degrees”

in that

E˚m ¨ An ď Am`n.
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For absolute (as opposed to relative) cohomology theories, as we shall deal in almost exclu-

sively, these maps will arise from the multiplication of A via precomposition with k-algebra

homomorphisms E˚ ÝÑ A, just as the action of k often is. The associated morphisms in the

category E˚-CGA are those that preserve the multiplication; for absolute cohomologies, such a

map f : A ÝÑ B is one these are precisely those where the composition E˚ Ñ A Ñ B equals the

structure map E˚ Ñ B.

The product in k-CGA is the ring product AˆB, graded by pAˆBqn “ AnˆBn. The coproduct

is the graded tensor product: this is Abk B as a group, with the grading

pAb
k

Bqn “
à

``m“n
A` b

k
Bm

and the commutation rule p1 b bqpa b 1q “ p´1q|a||b|a b b for a P A|a| and b P B|b|. As often

as feasible, we suppress ring subscripts on tensor signs, and in elements, we omit the tensor

signs themselves, letting ab b “: ab, so that for example we recover the reassuring expression

ba “ p´1q|a|b|ab.

Given a graded unital k-algebra A with a preferred basis pajq of A0 ‰ 0, the map A0
„
ÝÑ

ktaju
`
ÝÑ k given by

ř

γjaj ÞÝÑ
ř

γj induces a natural ring homomorphism A ÝÝ� A0 ÝÑ k

called the augmentation. Its kernel rA is called the augmentation ideal; the notation is in analogy

with reduced cohomology.1 If A0 – k, we say A is connected; the terminology is because the

singular cohomology of a connected space satisfies this condition. In this case, the augmentation

ideal is
À

ně1 An.

Given homomorphism f : A ÝÑ B of graded k-algebras, write

B {{ A :“ B{
`

f p rAq
˘

.

1 Industry standard seems to be A, but I prefer to reserve this notation for quotients.
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This is the right conception of cokernel for maps between cohomology rings: one wants the 0-

graded component to stay the same and the rest of the image of f to vanish. If A is a graded

subalgebra of B, then one wants to think of

0 Ñ A Ñ B Ñ A {{ B Ñ 0

as a “short exact sequence” of rings, but of course this doesn’t make sense: the sequence A Ñ

B Ñ C of k-modules is exact at B if impA Ñ Bq “ kerpB Ñ Cq, but the image of a ring map

is a ring, while the image is an ideal, a different type of object. The compromise solution is the

following definition.

Definition A.3.1. A sequence A Ñ B Ñ C of ring maps is said to be coexact at B if

kerpB Ñ Cq “
`

imp rA Ñ rBq
˘

.

Example A.3.2. Let A be a graded k-subalgebra of a graded k-algebra B. Then 0 Ñ A Ñ B Ñ

A {{ B Ñ 0 is a short coexact sequence, by design. If A and C are k-algebras, free as k-modules (in

the applications we care most about, k “ Q), then taking B “ Ab C, we see the sequence

0 Ñ A ÝÑ Ab C ÝÑ C Ñ 0

is short coexact.

Remark A.3.3. The reasoning for the somewhat intimidating term coexact is thus [MS68, p. 762]:

the sequence A Ñ B Ñ C of k-modules is exact if

impA Ñ Bq “ kerpB Ñ Cq.
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Recall that the coimage of a map f : A ÝÑ B is the quotient A{ker f , the object that the first

isomorphism theorem tells us is naturally isomorphic to the image of f (which is probably why

people usually don’t bother defining coimage). Let A Ñ B Ñ C be a sequence of graded k-

algebras. Dualizing the definition of exactness gives the condition

cokerpA Ñ Bq “ coimpB Ñ Cq, (A.1)

which makes sense because both sides are rings (and which would be equivalent to the original

exactness condition if these were modules instead). Now

cokerpA Ñ Bq “ B{
`

imp rA Ñ rBq
˘

,

coimpB Ñ Cq “ B{kerpB Ñ Cq,

so that

cokerpA Ñ Bq “ coimpB Ñ Cq ðñ kerpB Ñ Cq “
`

imp rA Ñ rBq
˘

,

the left-hand equation being the dualized exactness condition (A.1) and the right-hand the con-

dition we dubbed coexactness in Definition A.3.1.

A.3.2. Bigraded algebras

Some k-algebras A we will encounter will have a bigrading:

A “ A‚,‚ “
à

p,qPZ
Ap,q
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in such a way that the bidegrees pp, qq add under multiplication:

Ai,j ¨ Ap,q ď Ai`p,j`q.

We conventionally visualize such a ring as a grid in the xy-plane, with the pth column

Ap,‚ “
à

q
Ap,q

residing in the strip p ď x ď p` 1 and the qth row

A‚,q “
à

p
Ap,q

residing in the strip q ď y ď q` 1. For us, such gradings will always reside in the first quadrant:

pp, qq P NˆN.

A linear map f : A Ñ B of bigraded algebras is said to have bidegree bidegp f q “ pp, qq if

f pAi,jq ď Bi`p,j`q. A bigraded ring will be said to commutative if the associated singly-graded

k-algebra A‚ “
À

n An, graded by An :“
À

p`q“n Ap,q and called the total complex, is a CGA. A

differential bigraded algebra pA, dq is a bigraded algebra such that d is an antideriviation on the

associated singly-graded algebra A‚ of degree 1. We make no further demands initially as to how

d interacts with the bigrading, but note that since dAn ď An`1, one has for each bidegree pi, jq

that dAi,j ď
À

` Ai``,j`1´`, and composing with projections to Ai``,j`1´`, one obtains component

maps d` : Ai,j ÝÑ Ai``,j`1´` of bidegree p`, 1´ `q such that

d “
ÿ

`PZ
d`.
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Free graded algebras

Suppose that char k ‰ 2. As with modules, there are free objects in the category of k-CGAs, which

have the following description. Given a free graded k-module V if we separate it into even- and

odd-degree factors Veven and Vodd, then the free graded commutative k-algebra on V is the graded

tensor product

SVeven bk ΛVodd

of the symmetric algebra SVeven on the even-degree generators and the exterior algebra ΛVodd on

the odd-degree generators. Given k-bases~t “ pt1, . . . , tmq of Veven and ~z “ pz1, . . . , znq of Vodd, we

also write these as

Sr~ts :“ SVeven;

Λr~zs :“ ΛVodd.

Write

∆rzms :“ kt1, zmu,

for the unique rank–two unital k-algebra with elements of degrees zero and m, which is the

cohomology of an m-sphere. This is Λrzms for m odd and Srzms{pz2
mq for m even.

In the event char k “ 2, the graded commutativity relation xy “ p´1q|x| |y|yx, or equivalently

xy˘ yx “ 0, forces genuine commutativity xy “ yx for all elements since 1 “ ´1 in k. Thus a free

k-CGA is a symmetric algebra SV in characteristic 2, independent of the grading on V. Algebras

which merely resemble ΛV still play an important role in characteristic two.

Definition A.3.4. Let k be a commutative ring. A k-algebra A (not assumed graded commutative),

free as a k-module, is said to have a simple system of generators v1, . . . , vn, . . . if a k-basis for A



Appendix A. Algebraic background 253

is given by the monomials

vj1 ¨ ¨ ¨ vj` , j1 ă ¨ ¨ ¨ ă j`,

where each generator occurs at most once. If A has a simple system of generators, we write

A “ ∆rv1, . . . , vn, . . .s

despite the fact that this description does not specify A up to algebra isomorphism.

Example A.3.5. The exterior algebra Λrz1, . . . , zns admits z1, . . . , zn as a simple system of genera-

tors.

This is of course the motivating case. The multiplication need not be anticommutative, as one

can see from the following example.

Example A.3.6. Borel [Bor54, Théorème 16.4] found that the mod 2 homology ring of Spinp10q is

given by

H˚
`

Spinp10q;F2
˘

“ ∆rv3, v5, v6, v7, v9, v15s,

where all v2
j “ 0 and all pairs of vj commute except for pv6, v9q, which instead satisfy

v6v9 “ v9v6 ` v15.

For a last example consider polynomial rings.

Example A.3.7. The polynomial ring krxs admits x, x2, x4, x8, . . . as a simple system of generators,

as consequence of the binary representation for natural numbers.
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Poincaré polynomials for free algebras

In most cases we care about, the Poincaré polynomial will applied to a nonnegatively-graded k-

CGA of finite type. The Poincaré polynomial is a homomorphism gr-k-Mod ÝÑ krts in the sense

that

ppAˆ Bq “ ppAq ` ppBq, ppAb Bq “ ppAq ¨ ppBq.

Usually the CGA in question will be the cohomology ring H˚pX; kq of a space, and we will write

ppXq :“ p
`

H˚pX; kq
˘

“
ÿ

nPN
rkk HnpX; kqtn.

The individual ranks hkpXq :“ rkk HkpX; kq are called the Betti numbers of X; the associated total

rank ppXq|t“1 “
ř

hnpXq is called the total Betti number of the space and denoted h‚pXq. The

Euler characteristic ppXq|t“´1 “
ř

p´1qnhnpXq of H˚pX; kq is called the Euler characteristic of the

space, and written χpXq. If we write hevenpXq “
ř

h2npXq and hoddpXq “
ř

h2n`1pXq, then

h‚pXq ` χpXq “ 2 ¨ hevenpXq;

h‚pXq ´ χpXq “ 2 ¨ hoddpXq

Free CGAs behave pleasantly under Poincaré polynomial because pp´q is multiplicative. If

deg x “ n is odd, then p
`

Λrxs
˘

“ 1` tn. Thus given an exterior algebra ΛV on an oddly-graded

free k-module V of finite type, with Poincaré polynomial ppVq “
ř

tnj (it is okay if certain nj

occur more than once), the tensor rule yields

ppΛVq “
ź

p1` tnjq.
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Likewise, if deg x “ n is even, then Srxs “ krxs is spanned by 1, x, x2, . . ., so

p
`

Srxs
˘

“
ÿ

jPN
tjn “

1
1´ tn .

Given an exterior algebra SV on an evenly-graded free k-module V of finite type, ppVq “
ř

tnj ,

then, the tensor rule yields

ppSVq “
ź 1

1´ tnj
. (A.2)

Proposition A.3.8. Let k be a field, V be a positively-graded k–vector space, SV the symmetric algebra,

and W a graded vector subspace of SV such that the subalgebra A it generates is a free CGA and SV is a

free A-module. Then

ppSV {{ Aq “
ppSVq
ppSWq

.

Proof. Let pqαq be a homogeneous A-basis for SV. Then pqαb1q forms a graded basis for SV {{ A “

SV b
rA k, so on the level of graded k-modules, one has SV – A bk ktqα b 1u – A b pSV {{ Aq.

Taking Poincaré polynomials and dividing through by ppSV {{ Aq gives the result.

This sort of quotient will become relevant to us in Section 8.4, where it will be found that

an important subring of the cohomology ring H˚pG{K;Qq, of a compact homogeneous space,

namely the image of the characteristic map χ˚ : H˚pBK;Qq ÝÑ H˚pG{K;Qq, is frequently of this

form.

Indecomposables

The indecomposable elements of A are, informally, those of positive degree that cannot be written

as sums of products of lower-degree elements; the idea is to find an analogy for irreducible

polynomials for rings with more complex ideal structure. Recalling that The most convenient
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definition turns out to be this: the module of indecomposables is the k-module

QpAq :“ rA{ rA rA – rAb
A

k

where rA is the augmentation ideal and the denominator denoted rA rA is understood to be the

module spanned by products ab for a, b P rA of positive-degree elements. Under this definition we

see Q is functorial, since a graded homomorphism A ÝÑ B takes rA ÝÑ rB and hence rA rA ÝÑ rBrB.

If A is a free k-module, then so is QpAq, so the k-module surjection rA ÝÝ� QpAq splits, and

we can consider QpAq (in a badly noncanonical way) as a k-submodule of algebra generators for

A. Because it satisfies a product rule, an (anti)derivation d on A, like a ring homomorphism, is

uniquely determined by its values on such a lifted QpAq, so a linear map on QpAq determines at

most one antiderivation of A. .

A.3.3. Differential graded algebras

A chain complex pA, dq concentrated in nonnegative degree such that A is also a graded ring

satisfying the product rule

dpabq “ da ¨ b` p´1q|a|a ¨ db

for homogeneous elements a, b is a differential graded algebra (or k-DGA). A differential d on a

graded ring satisfying this condition is called an antiderivation. A derivation, on the other hand,

satisfies

dpabq “ da ¨ b` a ¨ db.

An (anti)derivation on a unital k-algebra satisfies d1 “ 0 and hence dpk ¨ 1q “ 0. A morphism of

DGAs is a k-algebra map that is simultaneously a chain map. If A was a k-CGA, then we say

pA, dq is a commutative differential graded algebra (henceforth k-CDGA).
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The kernel Z “ ker d of an (anti)derivation d is a subalgebra, because d is additive and

because if da “ db “ 0, then dpabq “ pdaqb ˘ apdbq “ 0. The image B “ im d is an ideal of

Z “ ker d, because if b “ da P B and c P Z, then b P Z and dpacq “ pdaqc` apdcq “ bc.

The product in the category of DGAs is the graded ring direct product Aˆ B, equipped with

the differential dpa, bq :“ pda, dbq. The coproduct is the same tensor product Ab
k

B as for CGAs,

equipped with the unique antiderivation given by

dpab bq “ dab b` p´1q|a|ab db

on pure tensors. If we omit the tensor signs, this gives back, formally, the same product rule.

A.3.4. The algebraic Künneth theorem

It is trivial that a product of DGAs remains a product on taking cohomology. In an ideal world,

the same would remain true of coproducts, and this ideal world is achieved in the event one of

the DGAs lacks torsion.

Theorem A.3.9. Let k be a principal ideal domain and suppose A and C are graded differential k-modules,

each free as a graded k-module. Then

HnpAb
k

Cq –
à

0ďjďn

`

H jpAq b Hn´jpCq
˘

‘
à

0ďjďn
Tork

1
`

H j`1pAq, Hn´jpCq
˘

.

Proof. Write Zn “ kerpdn : An ÝÑ An`1q and Bn “ impdn´1 : An´1 ÝÑ Anq. Then one has a short

exact sequence

0 Ñ Z ÝÑ A ÝÑ B‚`1 Ñ 0

of complexes where the differentials on Z and B‚`1 are 0. Since we have assumed C is flat, on
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tensoring these complexes with C, we obtain a short exact sequence

0 Ñ Zb C ÝÑ Ab C ÝÑ B‚`1 b C Ñ 0

of complexes, where the differentials on Z‚bC and B‚`1bC are both idAbdC and the differential

on A‚ b C is the expected dA b idC˘ idAb dC. Write i‚ : B‚ ÝÑ Z‚ for the inclusion; then it is

not hard to see the the connecting map in the long exact sequence in cohomology is the map

pib idCq
˚ : B‚ b H˚pCq ÝÑ Z‚ b H˚pCq induced by ib idC. Thus we get a short exact sequence

0 Ñ cokerpib idCq
˚ ÝÑ H˚pAb Cq ÝÑ kerpi‚`1 b idCq

˚ Ñ 0.

Because 0 Ñ B‚`1 ÝÑ Z‚`1 ÝÑ H‚`1pAq Ñ 0 is exact, the first term is H˚pAq bk H˚pBq and

the last is Tork
1
`

H˚`1pAq, H˚pCq
˘

. Resorting summands to gather equal total degrees yields the

statement of the theorem.

In particular, one has the following.

Corollary A.3.10. Let A and C be k-DGAs free as k-modules and such that H˚pCq is flat over k. Then

H˚pAb
k

Cq – H˚pAq b
k

H˚pCq

as k-algebras.

Proof. The hypotheses precisely ensure the Tork
1 term vanishes.

Note that it more than suffices k be a field.
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A.3.5. Poincaré duality algebras

The real cohomology ring of a compact manifold exhibits an important phenomenon which we

generalize to an arbitary CGA.

Definition A.3.11. Let A be a k-CGA, free as a k-module. Suppose there exists a maximum n P N

such that An ‰ 0, that An – k, and that for all j P r0, ns the natural pairing

Aj ˆ An´j ÝÑ An

obtained by restricting the multiplication of A is nondegenerate. Then we call A a Poincaré

duality algebra (or PDA) and a nonzero element of An a fundamental class for A, which we

write as rAs. If we fix a homogeneous basis pvjq of A, we can define a linear map a ÞÝÑ a˚ on A

by setting v˚j :“ vn´j whenever vjvn´j “ rAs and extending linearly. Such a linear map is called a

duality map.

Theorem A.3.12 (Poincaré; [BT82, I.(5.4), p. 44]). If M is a compact manifold, the real singular coho-

mology ring H˚pM;Rq is a PDA.

Example A.3.13. Let V be a finitely generated, oddly-graded free k-module. Then the exterior

algebra ΛV is a Poincaré duality algebra with fundamental class given by the product of a basis

of V.

Poincaré duality is a severe restriction on the structure of a ring, with powerful consequences,

and it is inherited by tensor-factors.

Proposition A.3.14. Let A and B be k-CGAs, free as k-modules, and suppose B is a PDA. Then Ab B

exhibits Poincaré duality just if A does.
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Sketch of proof. If A and B are PDAs with duals given by a ÞÝÑ a˚ and b ÞÝÑ b˚, then ab b ÞÝÑ

a˚ b b˚ is easily seen to be a duality on A b B up to sign. If, on the other hand, b ÞÝÑ b˚ is a

duality on A and ab b ÞÝÑ ab b is a duality on Ab B, then for any homogeneous a P A one has

ab 1 “ a˚ b rBs for some a˚ P A, and a ÞÝÑ a˚ is a duality on A.

A.4. Splittings and formality

An epimorphism A ÝÝ� B is said to split if there exists a monomorphism B A, called a

section, such that the composition B Ñ A Ñ B is the identity on B. This section is virtually never

canonical, but it is frequently useful to be able to lift the structure of B back into A, in however

haphazard a manner.

Surjective homomorphisms onto free objects always split in categories whose objects carry a

group structure (we always assume the axiom of choice), and we use this simple fact repeatedly.

Proposition A.4.1. Let π : A ÝÝ� F be a surjection in gr-k-Mod and suppose F is free. Then π splits.

Proof. Let S be a k-basis for F and for each s P S pick a preimage as P π´1tsu. This assignment

extends to the needed section.

Restricting to the case everything lies in one graded component, one obtains the result in

k-Mod. Specializing to the category S1-Mod of modules over S1 – R{Z (which are projective

limits of tori, hence called pro-tori), one obtains the following useful statement.

Proposition A.4.2. Any exact sequence 0 Ñ A ÝÑ B ÝÑ C Ñ 0 of tori splits: we can write B –

A ‘ σpCq as an internal direct sum of topological groups for some suitable section σ : C B of the

projection to C.
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Alternate proof. Any short exact sequence of free abelian groups splits, and the functors

A ÞÝÑ AbZ R{Z,

π1pT, 1q ÞÝÑT

furnish an equivalence of categories between finitely generated free abelian groups and tori.

We will also need to apply this principle to CGAs.

Proposition A.4.3. Let F be a free k-CGA and π : A ÝÝ� F a surjective k-CGA homomorphism. Then

there exists a section i : F A of π.

Proof. Suppose F is free on the graded k-module V. Since V is free as a graded module, there

exists a section i : V A of π over V by Proposition A.4.1. As π is a ring homomorphism,

the subalgebra A1 generated in A by iV projects back onto F under π. Were A1 not itself a free

k-CGA, there would be some relation between homogeneous elements of A1 other than those

ensured by the CGA axioms, and it would not be possible for π|A1 to be surjective, so there is no

such relation. Thus π|A1 is a CGA isomorphism; now extend i to be its inverse.

When we deal with principal bundles, the following simple proposition will be useful.

Proposition A.4.4. Let 0 Ñ A ÝÑ B ÝÑ F Ñ 0 be a coexact sequence of k-CGA maps with F free and

B of finite type. Suppose further that for each degree n we have rkk Bn “ rkkpAb
k

Fqn. Then B – Ab F.

Proof. The projection B ÝÑ F splits by Proposition A.4.3, and together with rB, the lift of rF
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generates A as an algebra, so there is a commutative diagram

Ab F

��

A

>>

  

F,

``

  
>>

~~
B

of ring maps with the vertical map surjective. If this vertical map failed to also be injective, the

rank assumption would fail, so it is an isomorphism.

Here is an example application of such a splitting.

Example A.4.5. We will show in Section 7.2 that the cohomology ring H˚pG;Rq of a compact,

connected Lie group is an exterior algebra. If we compute this cohomology using the de Rham

complex ΩpGq, an R-CDGA, and write Z˚pGq “ ker d for the ring of closed forms, then Z˚pGq is

an R-CGA, so the natural projection Z ÝÝ� H˚pG;Rq admits a section, and we can embed

H˚pGq Z˚pGq ãÝÝÑ ΩpGq

as a subalgebra.

One can of course always find representative forms, but the ability to select them to form a

subring on the nose, rather than up to homotopy, is rather special, and this circumstance is of

sufficient utility that we here extract a formal statement of this behavior for later use (no pun

intended).

Definition A.4.6. A differential graded k-algebra pA, dq is said to be formal if there exists a zig-
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zag of k-DGA quasi-isomorphisms

pB1, d1q

$$xx

¨ ¨ ¨

""}}

pA, dq

zz
`

H˚pAq, 0
˘

pB2, d2q pBn, dnq

connecting
`

H˚pAq, 0
˘

and pA, dq. A path-connected topological space X is said to be formal if

there exists a formal Q-DGA with cohomology H˚pX;Qq.

Example A.4.7. We will find in Section 7.6 that for a compact, connected Lie group G, the co-

homology of its classifying space BG (see Appendix B.1.3 for the definition and Chapter 3 for

the construction) is a symmetric algebra, hence a free CGA. There exists a Q-CDGA computing

rational singular cohomology, called APL [FHT01, Ch. 10], and it follows there exists a Q-CDGA

map H˚pBGq APLpBGq.

Now seems as good a place as any to define generalized symmetric spaces, which we will

invoke occasionally later.

Definition A.4.8. Let G be a connected Lie group and θ P Aut G a smooth automorphism of

finite order. Then the fixed point set Gθ is a closed subgroup of G. Let K be a subgroup of Gθ

containing its identity component pGθq0. Then G{K is called a generalized symmetric space. In

the event θ is an involution, G{K is a symmetric space. If in addition G and K are compact and

connected, we call pG, Kq a (generalized) symmetric pair.

The generalized symmetric spaces and especially the symmetric spaces per se form a com-

pletely classified system of examples which have been intensively studied since the early 1900s.

Example A.4.9. Élie Cartan demonstrated that symmetric spaces G{K are formal, in fact showing

that the collection of harmonic forms on a symmetric space forms a subring of the differential
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forms ΩpG{Kq consisting of one element from each class in H˚pG{Kq. We will produce a version

of this proof in Proposition 8.4.11.

Svjetlana Terzić [Ter01] and independently Zofia Stępień [Ste02] have also shown that compact

generalized symmetric spaces G{K with isotropy group K connected are formal. It is not, however,

the case that wedge products of harmonic forms on such spaces are again harmonic (that such

should happen is called geometric formality); see Terzić’s later joint article with Dieter Kotschick

[KT03].

A.5. Filtrations and spectral sequences

This section comprises a few words, without proofs, about the spectral sequence associated to a

filtered differential group.

A.5.1. Filtered differential groups

Consider the total order Z as a category in the opposite of the standard way, so that there exists

a (unique) arrow n Ñ m just when n ě m, and write SubpAq for the category of k-submodules of

A and inclusions therebetween.

A filtered group is a pair pA, F‚q, where A is a k-module and F‚ : ZÑ SubpAq is a functor with

F0 “ A. In other words, this is an infinite descending sequence

¨ ¨ ¨ “ F́ 1 “ F0 “ A ě F1 ě F2 ě ¨ ¨ ¨ .

We also write Fn “ Fn A. One can recompile this information into a Z-graded group

à

F‚A :“
à

rPZ
Fr A
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and the inclusions Fn`1A ãÝÝÑ Fn A into an injective endomorphism i P Endk
`
À

F‚A
˘

of degree

´1 which stabilizes to an isomorphism in nonpositive degrees. Viewing i as a direct system

and taking the direct limit recovers the original filtered group, so we may regard pA, F‚q and

p
À

F‚A, iq as equivalent objects and denote both, slightly abusively, by pA, iq. Say a filtration is

complete if Fp A “ 0 for all sufficiently large p. The group

gr
‚

A :“ coker i‚ “
à

rě0
Fr A{Fr`1A

is the associated graded group of pA, iq. A map f : A ÝÑ B is said to preserve filtrations pA, iq and

pB, ιq if f pFp Aq ď FpB (or equivalently f ˝ i “ ι ˝ f ). We write such a map as f : pA, iq ÝÑ pB, ιq.

Such a map induces an associated graded map gr
‚

f : gr
‚

A ÝÑ gr
‚

B. We have the following

recurring result on such maps.

Proposition A.5.1. Let f : pA, iq ÝÑ pB, ιq be a filtration-preserving chain map of filtered groups. Sup-

pose that both filtrations are complete. Then if gr
‚

f is an isomorphism, so also must be f itself.

Proof. Fix a filtration degree p sufficiently large that Fp`1A “ 0 “ Fp`1B. We have a map

0 // Fp`1A //

f
��

Fp A //

f
��

grp A //

„ gr‚ f
��

0

0 // Fp`1B // FpB // grp B // 0

of short exact sequences; by the five lemma, it follows Fp f : Fp A ÝÑ FpB is an isomorphism. This

begins a decreasing induction on p, which terminates in f : A „
ÝÑ B when p “ 0.

A filtered differential group is a triple pA, d, iq such that pA, dq is a differential group, pA, iq a

filtered group, and d preserves the filtration, inducing restricted differentials Fnd P Endk Fn A. (It

is also true that then i is a chain map p
À

F‚A, dq Ñ p
À

F‚A, dq.) A homomorphism of filtered
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differential groups is a chain map commuting with the filtration.

Given a filtered differential group pA, d̃, ı̃q, the differential d̃ descends to a differential d̄ on

gr
‚

A, inducing a short exact sequence of differential groups

0 Ñ A ı̃
ÝÑ A

̃
ÝÝ� gr

‚
A Ñ 0.

This induces a triangular exact sequence

HpAq i // HpAq

j

��
E

k

ZZ

of cohomology groups, where E “ Hd̄pgr
‚

Aq. Such a triangle is traditionally called an exact

couple. Here i and j are induced from ı̃ and ̃ respectively, and k arises from the snake lemma

and takes ra` ı̃As ÞÑ rı̃´1das. If we set d “ jk, then d2 “ jpkjqk “ 0, so d is a differential on E. The

original filtration ı̃ descends to a filtration FnH˚pAq “ inH˚pAq “ H˚

d̃ pim ı̃nq.

Note that a map of filtered differential groups induces a map of short exact sequences and a

map of exact couples in cohomology (a triangular prism), and so in particular a map of differen-

tial groups on the E components. We have deg i “ deg j “ 0 and deg k “ 1.

A.5.2. The spectral sequence of an exact couple

There is a functor

A0
i // A0

j
��

E0,

k

YY

ùñ

A1
i1 // A1

j1
��

E1,

k1

YY
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taking an exact couple to the derived couple whose objects are A1 “ iA0 and E1 “ HpE0, d0q, and

whose maps are given by i1 “ pi æ iA0q and j1 : ia ÞÝÑ rjas and k1 : res ÞÝÑ ke.

This process can be iterated, and the sequence pEr, drq of differential groups so derived is

called the spectral sequence of the exact couple. Each Er is traditionally called a page. Note

that pA0, iq is a filtered group with Fr A0 “ Ar “ ir A0. Write A8 for the intersection
Ş

rě0 Ar “

Ş

rě0 ir A0. If for each a P A0, the sequence piraq eventually stabilizes, then i8 “ i æ A8 is injective,

and fits into a short exact sequence

A8
i8 // A8

j8
��

E8;

0

ZZ

that is, E8 “ coker i8, and we may think as this E8 as the limiting behavior of the pages pErq

and call it the limiting page. If Er – E8 for some finite r, we say the sequence collapses at Er.

To see how E8 arises, recall that Er`1 “ pker drq{pim drq, where ker dr and im dr are in

turn subgroups of Er “ pker dr´1q{pim dr´1q. Thus, under the quotient map π : ker dr´1 ÝÝ�

Er, the groups ker dr and im dr lift to subgroups π´1 im dr ď π´1 ker dr of ker dr´1, each con-

taining im dr´1. By the third isomorphism theorem, we still have pπ´1 ker drq{pπ
´1 im drq –

pker drq{pim drq “ Er`1. Iteratively pulling back all the way to E0, we get a sequence of subgroups

B0 ď B1 ď B2 ď B3 ď ¨ ¨ ¨ ď Z3 ď Z2 ď Z1 ď Z0

of E0 such that Er`1 “ Zr{Br. Now we can unambiguously declare Z8 :“
Ş

Zr and B8 :“
Ť

Br,

and take E8 “ Z8{B8.

A homomorphism of spectral sequences is a sequence
`

ψr : prEr, d̃rq ÝÑ pEr, drq
˘

rěn of chain
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maps of differential groups such that each ψr`1 for r ě n is induced by ψr, which is to say

ψr`1 “ H˚pψrq. From the remark at the end of Appendix A.5.1, it follows that a map of filtered

differential groups induces a map of exact couples and iteratively a map of spectral sequences.

A.5.3. The spectral sequence of a filtered differential graded algebra

Now let us consider a filtered chain complex pA, ı̃, dq. This is a filtered differential group such that

A “
À

nPN An is a nonnegatively-graded group, dAn ď An`1, and ı̃ is a graded homomorphism

of degree 0, so that iAn ď An. Thus each An inherits a filtration, as well. In the resulting exact

couple HpAq Ñ HpAq Ñ HpEq, one has i : HnpAq ÝÑ HnpAq and j : HnpAq ÝÑ HnpEq of degree

zero, but k : HnpEq ÝÑ Hn`1pEq of degree 1.

Theorem A.5.2 (Koszul). Let pA, d, iq be a filtered chain complex. Then in the spectral sequence associated

to the exact couple 0 Ñ A i
ÝÑ A ÝÑ gr A Ñ 0, one has

• pE0, d0q “ pgr
‚

A, gr
‚

dq,

• E1 – H˚pgr
‚

Aq,

• E8 – gr
‚

H˚pAq.

We call this the filtration spectral sequence of the filtered chain complex pA, d, iq. All pages inherit a

bigrading Ep,q
r induced from the grading Ep,q

0 “ grp Aq of E0 “ gr
‚

A, and the differential dr is of bidegree

pr, 1´ rq. This is first-quadrant spectral sequence in that Ep,q
r “ 0 if p ă 0 or q ă 0.

Given a bigraded differential algebra A, a natural decreasing filtration, the horizontal filtra-

tion, is given by

Fp A :“
à

iěp
Ai,‚.

If in the decomposition d “
ř

`PZ d` of Appendix A.3.2 one has d` “ 0 for ` ă 0, then d is
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filtration-preserving, and we call pA, d, iq a filtered differential bigraded algebra. In this case,

the theorem applied to pA, d, iq yields a spectral sequence pEr, drq with E0 – A again and the

differentials dr induced from the components dr.

Corollary A.5.3. Let pA, d, iq be a filtered, nonnegatively-bigraded DGA. Then in the spectral sequence

associated to the horizontal filtration one has

• pE0, d0q – pA, d0q,

• E1 –
À

pPN H˚pAp,‚, d0q, d1 “ H˚
d0pd1q,

• E2 – H˚
d1 H˚

d0pAq,

• E8 – gr
‚

H˚pAq.

In one key situation in which we apply this spectral sequence, we are able to say even more

about E2.

Corollary A.5.4. If pA, d, iq is a filtered, nonnegatively-bigraded DGA such that A “ A‚,‚ is a tensor

product A‚,0 b A0,‚, and i is the horizontal filtration, then d0 is induced by a map A0,‚ ÝÑ A0,‚ and d1

by a map A‚,0 ÝÑ A‚,0, and we have

• E0 – A, d0 “ idb d0,

• E1 – A‚,0 b H˚
d0pA0,‚q, d1 “ d1 b id,

• E2 – H˚
d1pA‚,0q b H˚

d0pA0,‚q,

• E8 – gr
‚

H˚pAq.

In Section 4.3, after we have discussed fiber bundles, we will introduce the Serre spectral

sequence, which will have also have a tensor structure on E2, for more topological reasons.
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Remark A.5.5. The algebraic Künneth Theorem A.3.9 of this chapter and the universal coefficient

Theorem B.2.1 of the next both generalize to filtration spectral sequences if we do not assume

that the modules in question are not free over the base ring k or that k is not a principal ideal

domain.

A.5.4. Fundamental results on spectral sequences

A common way to understand the cohomology ring of a filtered DGA is to engage in wishful

thinking: one finds another spectral sequence one would like to approximate that of the DGA in

question, contrives a map between the idealized sequence and the actual sequence, and shows it

yields an isomorphism on a late enough page. The theoretical justification behind this chicanery

has at most two steps.

Theorem A.5.6 (Zeeman–Moore comparison theorem, [McC01, Thm. 3.26, p. 82]). Let pψrq : p1Er, 1drq ÝÑ

pEr, drq be a map of spectral sequences such that E2 – E‚,0
2 b E0,‚

2 and 1E2 –
1E‚,0

2 b 1E0,‚
2 decompose as

tensor products. Then any two of the following three conditions imply the third:

• ψ‚,0
2 : E‚,0

2 ÝÑ 1E‚,0
2 is an isomorphism,

• ψ0,‚
2 : E0,‚

2 ÝÑ 1E0,‚
2 is an isomorphism,

• ψ8 : E8 ÝÑ 1E8 is an isomorphism.

Given an isomorphism of E2 pages or E8 pages then shows that the inducing map of DGAs

was a quasi-isomorphism.

Proposition A.5.7. Let f : A ÝÑ B be a map of filtered DGAs and pψrq : p1Er, 1drq ÝÑ pEr, drq the

associated map of filtration spectral sequences. Suppose that both filtrations are complete in each degree:

for each n P N there exists ppnq P N such that when p ě ppnq one has Fp An “ 0 “ FpBn. If ψr is an

isomorphism for any r ě 0, then f ˚ : H˚pAq ÝÑ H˚pBq is an isomorphism.
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Proof. If any ψr is an isomorphism, then since 1drψr “ ψrdr, it follows that all later ψr and ψ8

are isomorphisms. By Corollary A.5.3, ψ8 is the isomorphism gr
‚

f ˚ : gr
‚

H˚pAq ÝÑ gr
‚

H˚pBq.

For any given total degree n, we can apply Proposition A.5.1 to the map ψn
8 : gr

‚
HnpAq ÝÑ

gr
‚

HnpBq to conclude Hnp f q is an isomorphism.

A much simpler fact that comes up frequently is the following:

Proposition A.5.8. Let pEr, drq be a first-quadrant spectral sequence. If p ă r and q ă r ´ 1, then

Ep,q
r “ Ep,q

8 .

Proof. Because the bidegree of dr is pr, 1´ rq, the domain Ep´r,q`r´1
r of the component of dr with

codomain Ep,q
r lies in the second quadrant, and the codomain Ep`r,q`1´r

r of the component of

dr with domain Ep,q
r lies in the fourth quadrant. See Figure A.5.9. Since these quadrants are

inhabited only by zero groups, the differentials in and out of Ep,q
r are zero, so Ep,q

r “ Ep,q
r`1. All

later differentials out of this square must also be zero for the same reason.

Figure A.5.9: The differentials to and from E4,3
5 leave the first quadrant
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This genre of reasoning, that something must stabilize at a certain page—or vanish before

a certain page, lest it survive to E8—goes by the trade name of “lacunary considerations.”

One uses such considerations as frequently as possible because they are usually far simpler
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than actually computing differentials. Occasionally this kind of spatial reasoning enables one to

understand what happens in a spectral sequence without having done any algebra at all.

Proposition A.5.10 ([McC01, Example 1.K, p. 25]). Let pA, dq be a filtered differential bigraded k-

algebra, free as a k-module. If E8 is a free k-CGA, then E8 – H˚pA, dq as a k-CGA.

This is analogous to the statement of Proposition A.4.3, except here the “quotient” object

is actually the associated graded algebra, and there is not a priori an algebra map H˚pAq ÝÑ

gr
‚

H˚pAq “ E8.

Proof. Consider the indecomposables QpE8q as a bigraded k-submodule of algebra generators

of E8. Because E8 “ gr
‚

H˚pAq and H˚pAq are isomorphic on the level of bigraded k-modules,

we can map QpE8q to H˚pAq in such a way as to preserve the bidegree. This yields a bigraded

module injection QpE8q H˚pAq. Since E8 is the free CGA on QpE8q, this injection extends

uniquely to the filtration-preserving CGA map f : E8 ÝÑ H˚pAq in the diagram below (the

bottom row will be explained).

QpE8q
$$

$$

� _

��

E8 f
//

„

��

H˚pAq

��

E8 gr‚ f
// E8.

Since f lifts generators of gr
‚

E8 to H˚pAq in a filtration-preserving manner and gr
‚

E8 “ E8,

the map gr
‚

f : E8 ÝÑ E8 is the identity on QpE8q by the identity map. Since gr
‚

f is a ring

map, it is then the identity map on E8 (and a fortiori an isomorphism) so an application of

Proposition A.5.1 shows the original f : E8 ÝÑ H˚pAq is a CGA isomorphism.
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A.5.5. The transgression

Early on in the history of bigraded spectral sequences of the form discussed above, it was noticed

that the edge maps dr : E0,r´1
r ÝÑ Er,0

r from the left column to the bottom row have a special

importance.

Figure A.5.11: An edge map

5 E0,5
6

4

3

2

1

0 E6,0
6

0 1 2 3 4 5 6

d6

Definition A.5.12 (Koszul, 1950 [Kos50, Sec. 18]). Let pEr, drq be the filtration spectral sequence

of a filtered DGA pA, dq. If z P E0,r´1
2 is in the kernel of each dp for p ă r, so that drz P E0,r

r is

defined (that is, if z survives long enough to be in the domain of an edge homomorphism), then

z is said to transgress. The dotted map τ in the diagram

E0,r´1
r

dr

��

� � // E0,r´1
2

τ

uu
Er,0

2
// // Er,0

r ,

viewed as a k-linear map from a submodule of E0,r´1
2 to a quotient module of Er,0

2 , is the trans-

gression.

Proposition A.5.13. Let pEr, drq be the filtration spectral sequence of a filtered DGA pA, dq. An element

z P E0,r´1
2 transgresses to τz P Er,0

2 if and only if there exists y P A which represents z in gr0 A “

E0,r´1
2 “ Hr´1pgr0 A, d0q and such that dy P A represents τz in Er,0

2 “ H0pgrr A, d0q.
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Historical remarks A.5.14. According to the concluding notes in Greub et al. [GHV76], instances of

transgressions were first identified by Shiing-Shen Chern [Che46] and Guy Hirsch [Hir48] before

Koszul observed the pattern and coined the term “transgression” in his thesis work.

The filtration spectral sequence is first described in Koszul’s Comptes Rendus note [Kos47a],

and is extracted from Leray’s earlier work as described in a 1946 Comptes Rendus notice [Ler46a].

Koszul was the first other person to work through and understand Leray’s post-war topological

output, and was the chief instigator of the simplifications that made spectral sequences accessible

to the rest of the mathematical community [Mil00].
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Topological background

In this appendix we define some relevant topological categories and state some well-known re-

sults in algebraic topology and Lie theory. We will take homotopy groups and singular homology

and cohomology groups as known concepts, and cite basic results in algebraic topology without

proof, but will restate that the 0th homotopy set π0X of a space X is its set of path-components,

which inherits a group structure if X is a group. We denote homotopy equivalences by “»,”

homeomorphisms by “«,” and Lie group isomorphisms by “–.” If a group G acts on a space X

via φ : Gˆ X ÝÑ X, we write φ : G ñ X. The interior of a manifold M with boundary is
˝

M and

its boundary is BM. The complement of a set A Ď B is BzA.

B.1. Topological structures of interest

Let Top be the category whose objects are pairs pX, Aq of topological spaces, A closed in X,

with morphisms pX, Aq ÝÑ pY, Bq those continuous maps f : X ÝÑ Y such that f pAq Ď B. The

category whose objects are individual topological spaces and morphisms continuous maps is

included as a full category through the inclusion X ÞÝÑ pX,∅q, where ∅ is the empty space.

275
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B.1.1. Cell complexes

A CW complex is a topological space X equipped with a decomposition into a union of disks

of increasing dimension. Less elliptically, such an X must admit a filtration pXnq into n-skeleta

meeting the following conditions:

• The 0-skeleton X0 is a discrete space.

• Given the n-skeleton Xn, index a collection of distinct pn` 1q-disks as pDn`1
α qαPA. From each

boundary Sn
α , let a continuous map ϕα : Sn

α ÝÑ Xn, the attaching map, be given. These maps

assemble into a map ϕ :
š

αPA Sn
α ÝÑ Xn, and Xn`1 is defined to be the quotient space

Xn >
š

αPA Dn`1
α

N

s „ ϕpsq

of the disjoint union: we’ve identified the boundaries of the Dn`1
α with their images in Xn.

• We let X “
Ť

nPN Xn be the colimit, with the direct limit topology. This amounts to saying

U Ď X is open just if each U X Xn is open in Xn.

A map f : X ÝÑ Y between two CW complexes is said to be cellular if it respects the skeleta:

f : Xn ÝÑ Yn for all n.

Write CW for the subcategory of Top whose objects are CW pairs consisting of a CW complex

X and closed subcomplex A, and whose maps pX, Aq ÝÑ pY, Bq are required to be cellular,

meaning both X ÝÑ Y and the restriction A ÝÑ B are cellular. The category CW is a homotopy-

theoretic skeleton of Top in the sense that given any pX, Aq P Top there exists prX, rAq P CW and

a weak homotopy equivalence prX, rAq ÝÑ pX, Aq in Top. This map (or pX, Aq itself) is called a

CW approximation [Hat02, Example 4.15, p. 353]. Moreover, any map of pairs is the same up to

homotopy as a map between CW complexes: given a map pX, Aq ÝÑ pY, Bq of pairs there exists
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a map between CW approximations making the following square commute up to homotopy:

prX, rAq //

��

pX, Aq

��
prY, rBq // pY, Bq.

Although CW is unstable under the formation of mapping spaces, with judicious use of CW

approximations, we may basically assume every space that follows is a CW complex.

B.1.2. Fiber bundles

A fiber space with is a continuous surjection E ÝÑ B such that for each b P B, we have h´1tbu « F

for some fixed space F, the fiber. Each h´1tbu is also called a fiber, E is the total space, and B

the base. We abbreviate this assemblage as F Ñ E Ñ B. Given two fiber spaces p : E Ñ B and

p1 : E1 Ñ B1, a map h : E ÝÑ E1 of total spaces is fiber-preserving if it sends fibers into fibers.

Equivalently, there is a map h̄ of bases making the following diagram commute:

E h //

p
��

E1

p1
��

B h̄ // B1.

Then hp´1tbu Ď pp1q´1
 

h̄pbq
(

for all b P B. Fiber spaces with fiber F and fiber-preserving maps

form a category whose isomorphisms are fiber-preserving homeomorphisms.

A fiber space p : E Ñ B with fiber F is a fiber bundle, or an F-bundle (or locally trivial), if

• the base B admits an open cover of sets U such that there are fiber space isomorphisms

φU : p´1pUq «
ÝÑ U ˆ F, called (local) trivializations, and

• these trivializations are compatible in the sense that given two overlapping trivializing
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opens U and V, the transition functions gU,V defined by the composite homeomorphism

φU,V : pU XVq ˆ F
φ´1

V
ÝÑ p´1pU XVq

φU
ÝÑ pU XVq ˆ F

px, f q ÞÝÑ
`

x, gU,Vpxqp f q
˘

,

are continuous maps U XV ÝÑ Homeo F. Morally, different coordinatizations of the same

trivial subbundle should differ continuously.

Given a fiber space F Ñ E
p
Ñ B and an subset U Ď B, the restriction E|U is the F-bundle

pp æ Uq : p´1pUq Ñ U. This generalizes to the following construction. Given a continuous map

h : X ÝÑ B (for restrictions, an inclusion), we can construct a pullback space h˚E Ñ X with fiber

F fitting into the commutative square

h˚E
rh“pr2 //

h˚p :“pr1
��

E

p
��

X h // B,

where the new total space is

f ˚E “ Xˆ
B

E :“
 

px, eq P Xˆ E : hpxq “ ppeq
(

Ĺ Xˆ E

and the new maps the restrictions of the factor projections from Xˆ E. This total space is called

the fiber product, and (with the maps), it is the pullback of the diagram X Ñ B Ð E in Top.1 If

E Ñ B was an F-bundle, so also is h˚E Ñ X: given a local trivialization

φ “ pp, ρq : p´1U «
ÝÑ U ˆ F,

1 This notation Xˆ
B

E, now universal, is due to Paul Baum [Smi67, p. 68].
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a trivialization of the pullback ph˚Eq|h´1pUq is given by

idX ˆ ρ : px, eq ÞÝÑ
`

x, ρpeq
˘

,

and such sets h´1pUq cover X. The resulting bundle is a pullback bundle.

If F, E, B are all smooth manifolds and the fiber inclusion, projection, and transition functions

are all C8, we say F Ñ E Ñ B is a smooth bundle. One can similarly define holomorphic and

algebraic bundles, but smooth and merely continuous bundles are all we shall work with.

B.1.3. Principal bundles

Suppose we are given a fiber bundle F Ñ E Ñ B admitting trivializations pφUqUPU , such that

each transition function gU,V takes values in some subgroup G of the group Homeo F of self-

homeomorphisms of the fiber. As G is a topological group, its multiplication is continuous, and

left multiplication `g by any element of g P G is a self-homeomorphism of G. In this way the

transition function values gU,Vpxq P G can be viewed as elements of Homeo G, and we can form

a G-bundle G Ñ P Ñ B by starting with the disjoint union
š

UPU U ˆ G and gluing the pieces

by the relations

px, gq „
`

x, gU,Vpxq ¨ g
˘

for all nonempty intersections U XV of sets in U and all x P U XV and g P G.

The disjoint union we started with admits a global right G-action pu, gq ¨ g1 “ pu, gg1q, which

descends to a right G-action on P since the transition functions act on the left of the fibers G.

This right action is simply transitive on each fiber. We call a G-bundle admitting a right G-action

acting simply transitively on each fiber a principal G-bundle; this motivating bundle G Ñ P Ñ B

is one such.
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We can recover the original F Ñ E Ñ B from G Ñ P Ñ B and the map ψ : G ÝÑ Homeo F by

a pushout construction:

E « Pˆ
G

F :“
Pˆ F

`

rx, gs, f
˘

„
`

rx, 1sψpgq f
˘ «

š

UPU U ˆ Gˆ F
`

x, gU,Vpxqg, f
˘

„ px, g, f q „
`

x, 1, ψpgq f
˘ (B.1)

Verbally, this can be seen as extracting the G-valued transition functions from a principal G-

bundle and applying them to F instead of G. For this reason, the bundles E Ñ B and P Ñ B are

said to be associated. Because this correspondence is reversible, principal G-bundles essentially

carry all information about fiber bundles.

Further, in Chapter 3, we construct a universal principal G-bundle EG Ñ BG that every principal

G-bundle is a pullback of. Given such a bundle, a space F, and a homomorphism ψ : G ÝÑ

Homeo F, it follows the the associated F-bundle EGˆG F Ñ BG is universal for F-bundles with

transition functions in ψpGq; for example, EGLpn,Rq ˆ
GLpn,Rq

Rn Ñ BGLpn,Rq is a universal vector

bundle.

B.2. Algebraic topology grab bag

This section is just a collection of useful algebro-topological results we will need later, presented

without much in the way of motivation.

The algebraic Künneth Theorem A.3.9 has at least two major topological repercussions.

Theorem B.2.1 (Universal coefficients [Hat02, Thms. 3.2, 3.A.3, pp. 195, 264]). Let X be a topological

space and k a principal ideal domain. For each n P N one has the following short exact sequences of abelian

groups:

0 Ñ HnpX;Zq b
Z

k ÝÑ HnpX; kq ÝÑ Tork
1
`

Hn´1pX;Zq, k
˘

Ñ 0,

0 Ñ Ext1
k
`

Hn´1pX;Zq, k
˘

ÝÑ HnpX; kq ÝÑ HomZ
`

HnpX;Zq, k
˘

Ñ 0.
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Proof. The homology sequence follows from Theorem A.3.9 by taking C “ C0 “ k and A “ C‚pXq

the singular chain complex, taking into account the differentials go in the opposite direction

expected. The cohomology sequence arises from taking C “ k and A “ HomZ
`

C‚pXq,Z
˘

the

singular cochain complex, noting AbZ k – HomZ
`

C‚pXq, k
˘

.

Theorem B.2.2 (Topological Künneth [Hat02, Thm. 3B.6, 3.21][Mas91, Thm. 11.2, p. 346]). Let X

and Y be topological spaces and k an abelian group. Suppose H˚pXq is of finite type. Then for each n P N

one has the following split short exact sequences of abelian groups:

0 Ñ
à

0ďjďn

`

HjpXq b Hn´jpYq
˘

ÝÑHnpXˆY; kq ÝÑ
à

0ďjďn
Tork

1
`

HjpX; kq, Hn´j´1pY; kq
˘

Ñ 0;

0 Ñ
à

0ďjďn

`

H jpX; Zq b HnpY; kq
˘

ÝÑHnpXˆY; kq ÝÑ
à

0ďjďn`1
TorZ1

`

H jpX;Zq, Hn`1´jpY; kq
˘

Ñ 0.

When one of the rings H˚pX; kq or H˚pY; kq is free as a k-module, the Ext and Tor terms

disappear and these isomorphisms assume a product form

H˚pXˆYq – H˚Xb H˚Y.

One also obtains the following relation between integral homology and cohomology.

Proposition B.2.3. Let X be a topological space. The torsion subgroups and torsion-free quotients of the

singular homology and cohomology groups H˚pX;Zq and H˚pX;Zq satisfy

HnpX;Zq – HnpX;Zqfree ‘ Hn´1pX;Zqtors

We will use fiber bundles frequently, and need a criterion for determining when the funda-

mental groups of their base spaces are trivial.
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Theorem B.2.4 ([Hat02, Thm. 4.3]). Let F Ñ E Ñ B be a fiber bundle. Then there is associated a long

exact sequence of homotopy groups

¨ ¨ ¨ ÝÑ π2pFq ÝÑ π2pEq ÝÑ π2pBq ÝÑ π1pFq ÝÑ π1pEq ÝÑ π1pBq ÝÑ π0pFq ÝÑ π0pEq Ñ 0.

There are important but subtle relations between the homology and homotopy groups.

Proposition B.2.5. The first singular homology group of a space X is the abelianization of its fundamental

group: H1pX;Zq – π1pXqab.

Theorem B.2.6. Let X be a simply-connected topological space and let n ą 1 be the least natural number

such that πnX is nontrivial. Then the same n is also minimal such that HnX is nontrivial, and the natural

Hurewicz map

πnX ÝÑ HnX,

rσ : Sn ÝÑ Xs ÞÝÑ σ˚rSns,

taking the homotopy class of a map from a sphere to the pushforward of the fundamental class, is an

isomorphism.

The homotopy groups completely determine homotopy type in the following sense.

Theorem B.2.7 (Whitehead [Hat02, Thm. 4.5, p. 346]). Let f : X ÝÑ Y be a map of CW complexes

such that πn f : πnX „
ÝÑ πnY is an isomorphism for all n ě 0 (a weak homotopy equivalence). Then

f is a homotopy equivalence.

Theorem B.2.8 (Whitehead [Hat02, Thm. 4.21, p. 356]). ] Let f : X ÝÑ Y be a weak homotopy

equivalence of topological spaces. Then Hn f : HnY „
ÝÑ HnX is an isomorphism for all n.
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We will also need the Lefschetz fixed point theorem. Note that if X is of finite type, the natural

maps HnpX;Zq� HnpX;Zqfree � HnpX;Qq carry a Z-basis of the free Z-module HnpX;Zqfree to

a Q-basis of HnpX;Qq.

Definition B.2.9. Let f : X Ñ X be a continuous self-map of a topological space X of finite

type. Then associated endomorphisms Hnp f q P AutQ HnpX;Qq are defined for each n ě 0. The

Lefschetz number

χp f q :“
ÿ

ně0

p´1qn tr Hnp f q

is the alternating sum of these traces, where each trace is taken with respect to a basis of HnpX;Qq

inherited from HnpX;Zqfree.

Since the trace of the identity map of a vector space is just the dimension of that space and

HnpidXq “ idHnpX;Qq one immediately has the following.

Proposition B.2.10. Let f : X ÝÑ X be a continuous self-map of a topological space of finite type. Then

the Lefschetz number of the identity map idX is the Euler characteristic of X:

χpXq “ χpidXq.

The more interesting fact about the Lefschetz number is the Lefschetz fixed point theorem.

Theorem B.2.11 (Lefschetz, [Hat02, Thm. 2C.3, p. 179]). Let X be a topological space which is a

deformation retract of a simplicial complex and f : X ÝÑ X a continuous map without fixed points. Then

the Lefschetz number χp f q is 0.
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B.3. Covers and transfer isomorphisms

In this section, we leverage a standard result on the cohomology of covers to a statement we use

later about the cohomology of homogeneous spaces.

Proposition B.3.1 ([Hat02, Prop. 3G.1]). Let F be a finite group acting by homeomorphisms on a space

X, so that p : X ÝÑ X{F is a finite covering. Suppose |F| is invertible in k. Then the map

p˚ : H˚pX{F; kq ÝÑ H˚pX; kq

is an injection with image the invariant subring H˚pX; kqF.

Proof. Since simplices ∆n are simply-connected, each singular simplex σ : ∆n ÝÑ X{F lifts to a

singular simplex rσ : ∆n ÝÑ X. The map τ : σ ÞÝÑ
ř

fPF f ˝ rσ summing over all such lifts then

induces a transfer map τ : CnpX{Fq ÝÑ CnpXq of singular chain groups. For each lift frσ we

have pp frσq “ σ, so p ˝ τ “ |F| ¨ id on CnpX{Fq. Dualizing yields a cochain map τ˚ : CnpX; kq ÝÑ

CnpX{F; kq such that τ˚ ˝ p˚ “ |F| ¨ id on CnpX; kq, so the same holds in H˚pX; kq.

If we demand |F| be a unit in k, then τ˚ ˝ p˚ is an isomorphism, so p˚ is injective. Since

p ˝ f “ p for all f P F, it follows im p˚ is contained in the invariant subring H˚pX; kqF. On the

other hand, since τ ˝ p sends rσ ÞÝÑ
ř

fPF f ˝ rσ, it follows p˚τ˚α “
ř

fPF f ˚α for all α P H˚pX; kq.

In particular, if α P H˚pX; kqF is F-invariant, then p˚τ˚α “ |F|α, so p˚ surjects onto HpX; kqF.

Corollary B.3.2. In the situation of Proposition B.3.1, suppose the action of F on X is the restriction of a

continuous action of a path-connected group Γ on X. Then

H˚pX{F; kq – H˚pX; kq

Proof. Let f P F. Since Γ is path-connected, the left translation γ ÞÝÑ f γ on Γ is homotopic to the
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identity. It follows f acts trivially on H˚X. Thus pH˚XqF – H˚X for any coefficient ring.

Proposition B.3.3. Let Γ be a path-connected group, H0 a connected subgroup, and F a finite central

subgroup of Γ. Write F0 “ FX H0 and suppose |F{F0| is invertible in k. Then

H˚pΓ{FH0q – H˚pΓ{H0q.

Proof. The space Γ{FH0 is the quotient of Γ{H0 by the left action of F{F0 given by f F0 ¨ γH0 “

γ f H0, which is well defined because F is central in Γ. But F{F0 is a subgroup of the path-

connected group Γ{F0, so the result follows from Corollary B.3.2.

Proposition B.3.4. Let G be a compact connected Lie group and K a closed, connected subgroup, let rG be

the universal compact cover of G (see Theorem B.4.4), and rK the identity component of the preimage of K

in rG, and let F be the kernel of p : rG ÝÑ G. If |F{pFX rKq| is invertible in k, then

H˚pG{Kq – H˚p rG{rKq.

Proof. By Theorem B.4.4, F is central, so taking rG “ Γ and H0 “ rK in the statement of Proposi-

tion B.3.3 we have Γ{H0 “ rG{rK and Γ{FH0 « G{pprKq “ G{K and the result follows..

The two preceding lifting results are too simple not to have been known, yet the author knows

no reference.

Proposition B.3.5. Let F Ñ X Ñ B be a finite-sheeted covering. If either of the Euler characteristics

χpXq, χpBq is finite, then so is the other, and χpXq “ χpBq ¨ |W|.

Proof sketch. Taking a CW approximation, we may assume X and B to be CW complexes and

X Ñ B cellular. Each cell of B is covered by |F| cells in X, so the result follows from cellular
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homology.

B.4. The structure of compact Lie groups

In this section, we record—without much explanation, interstitial verbiage, or real comprehensibility—

the background we require on compact Lie groups. Dwyer and Wilkinson [DW98] develop this

material in an atypical algebro-topological manner concordant with the approach adopted here.

Bröcker and tom Dieck [BtD85] is another standard reference.

Proposition B.4.1. There exists a smooth map exp : g ÝÑ G, the exponential, which is surjective if G

is compact and connected, which restricts to a homomorphism on the preimage of any connected abelian

subgroup (in particular, on any line), and whose inverse in a neighborhood of 1 P G serves as a smooth

chart.

Proposition B.4.2 ([Wik14]). The fundamental group of a topological group is abelian.

Theorem B.4.3 ([War71, Thm. 3.58, p. 120][GGK02, Prop. B.18, p. 179]). Let G be a Lie group and K

a closed subgroup. Then G{K is a manifold and K Ñ G Ñ G{K a principal K-bundle.

One of the main structure theorems for compact Lie groups is the following.

Theorem B.4.4 ([HM06, Thm. 2.19, p. 207]). Every compact, connected Lie group G admits a finite

central extension

0 Ñ F ÝÑ rG ÝÑ G Ñ 0

such that rG is the direct product of a compact, simply-connected Lie group K and a torus A. Thus

G –
Aˆ K M

F .
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We call rG the universal compact cover of G; it is uniquely determined up to isomorphism.2

Proposition B.4.5 (Élie Cartan–Wilhelm Killing). Every simply-connected Lie group K is a direct

product of finitely many simple groups, groups whose maximal proper normal subgroups are finite. A

simply-connected simple group is one of the following:

SUpnq, Sppnq, Spinpnq, G2, F4, rE6, rE7, E8,

with the exception of Spinp1q “ Op1q and Spinp4q “ SUp2q ˆ SUp2q; the three infinite families comprise

the simply-connected classical groups and the last five the exceptional groups.

We will not explain the exceptional groups, but the groups Spinpnq are double covers of SOpnq

for n ě 3 (when π1SOpnq – Z{2) and Spinp2q “ SOp2q – S1.

A compact group finitely covered by a simply-connected group is called semisimple.

Proposition B.4.6. Let G be a compact, semisimple Lie group. Then H1pG;Qq “ 0.

Proof. It is an artifact of our definitions that G admits a simply-connected finite cover rG. By the

universal coefficient theorem Theorem B.2.1, we have H1p rG;Qq – H1p rG;Qq – H1p rG;Zq bQ, and

by Proposition B.4.2 and Proposition B.2.5 we know H1p rG;Zq – π1 rG, which we have assumed to

be a finite group.

A classification-type result in the opposite direction is that all compact Lie groups can be seen

as closed subgroups of GLpn,Cq.

Theorem B.4.7 (Fritz Peter–Hermann Weyl [BtD85, Thm. III.4.1, p. 136]). Every compact Lie group

G admits a faithful representation.

2 This is arguably a misnomer; this object cannot be initial in that we can always cover the toral factor A with
another torus, and in particular the fiber F is not uniquely determined by this characterization.
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This is a corollary of the Peter–Weyl theorem, and implies in particular that every compact Lie

group embeds as a closed subgroup of Upnq for n sufficiently large.

B.4.1. The maximal torus

A real torus is a Lie group smoothly isomorphic to the direct product of finitely many copies

of the complex circle group S1 – Up1q; for us tori are always considered as Lie groups. A one-

dimensional torus is a circle. Much of the structure of the structure of compact, connected Lie

groups arises due to tori they contain. The centralizer ZGpKq of a subgroup K of a group G is the

set of g P G such that gkg´1 “ k for each k P K.

Lemma B.4.8. Any torus T contains a topological generator, an element generating a dense subgroup.

Sketch of proof. Any element of R` none of whose coordinates is a rational multiple of any other

will project to such an element in pR{Zq` – T.

Theorem B.4.9. Let G be a compact, connected Lie group. Every torus S of G is contained in a torus T

which is properly contained in no other torus; such a T is called a maximal torus of G. Every element lies

in some maximal torus, each maximal torus is its own centralizer in G, and all maximal tori are conjugate

in G.

Given a group G, and a subgroup K of G, we write NGpKq for the normalizer of K in G, the

set of elements g P G such that gKg´1 “ K. The Weyl group WG of G is defined to be the quotient

group NGpTq{T, the collection of nontrivial symmetries of T induced by conjugation. It is always

a finite reflection group.

Lemma B.4.10. Let G “
ś

Gj be a product of finitely many connected Lie groups Gj. Then the Weyl

group of G is the direct product
ś

WpGjq.
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Proof. This is an immediate consequence of the fact the functor pG, Kq ÞÝÑ NGpKq preserves

products.

Proposition B.4.11. Let G be a connected, compact Lie group. Then the center ZpGq is the intersection

of all maximal tori in G.

Proof [DW98, Prop. 7.1]. Any element of G lies in some conjugate gTg´1 of any given maximal

torus T of G, so if z P G, there exists t P T with z “ gtg´1, or equivalently t “ g´1zg. If z P ZpGq

is central, then g´1zg “ z, so z P T. So a central element lies in every maximal torus.

On the other hand, if x P G fails to lie in some maximal torus T, it has some conjugate in T,

say gxg´1 ‰ g, meaning gx ‰ xg.

B.4.2. The root and weight lattices

This section contains a terse recounting of some standard results in Lie theory we use in Sec-

tion 11.6 and Appendix E.1.3 to complete the classification of equivariantly formal isotropic

circle actions.

Proposition B.4.12 ([BtD85, Prop. V.(5.13), p. 214]). On the Lie algebra g of G there exists a symmetric

bilinear form Bp´,´q, the Killing form, which is invariant under adjoint action of G. This form is

negative definite if G is compact.

Sketch of proof. Each element v P g defines a linear endomorphism ad v P End g by pad vqw :“

rv, ws. Once a basis of g is selected, a trace is well defined, and one sets Bpv, wq :“ trpad v ˝

ad wq.

Let G be a compact Lie group and T a maximal torus. The adjoint action of T on g yields, on

tensoring with C, a representation T ÝÑ AutCpgbCq. Because T is abelian and C algebraically
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closed, this representation decomposes as a direct sum of joint eigenspaces gϑ given by

gϑ “ tv P g : t ¨ v “ ϑptqv for each t P T u

for some continuous homomorphisms

ϑ : T ÝÑ S1.

On the Lie algebra level, these homomorphisms correspond to roots

α : t ÝÑ R.

such that ϑpexp vq “ e2πiαpvq for all v P t. We think of these roots α as lying in the dual vector

space t_ :“ HomRpt,Rq. They form a finite subset Φ Ĺ t_, the root system of G, spanning the root

lattice QpGq :“ ZΦ ă t_. A generic half-space H` of t_ contains precisely half these roots, and

determines a notion of positivity according to which the roots Φ` :“ ΦX H` are the positive

roots. An N-basis for Φ` comprises a set ∆ of simple roots for G, and a set of simple roots forms

an R-basis for t_.

The negative of the Killing form defines an inner product on g which we will simply denote

by v ¨w. This inner product defines on t the Killing isomorphism

κ : t „
ÝÑ t_,

v ÞÝÑ pw ÞÑ v ¨wq.

of t with its dual [BtD85, p. 194], which is W-equivariant with respect to the standard action
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described in Proposition B.4.15. In particular, associated to each root α P t_ is a coroot α_ “

2
α¨ακ

´1pαq P t. The Z-span of these is the coroot lattice Q_pGq ă t.

The roots are completely determinative of simply-connected Lie groups.

Proposition B.4.13. A connected, compact Lie group G is characterized uniquely by its maximal torus,

its center, and its roots.

The coroot lattice is contained in the integer lattice ΛpTq :“ kerpexp : t Ñ Tq – π1T as the

kernel [BtD85, p. 223] of a canonical surjection ΛpTq ÝÝ� π1G. We will need roots and coroots

just for the following three results.

Proposition B.4.14. If a Lie group G is simply-connected, then

Q_pGq “ ΛpTq.

Proposition B.4.15. The faithful representation of the Weyl group WG on t induced by the adjoint repre-

sentation and the dual representation on t_ are generated by the root reflections

sα : v ÞÝÑ v´ 2αpvqα_ for v P t,

sα : β ÞÝÑ β´ 2
α ¨ β

α ¨ α
α for β P t_

in simple roots α P ∆.

Corollary B.4.16. If the roots α P ΦpGq all satisfy α ¨ α “ 2, as when G P tAn, E6, D4u, then Killing

isomorphism κ : t „
ÝÑ t_ takes Q_pGq isomorphically onto QpGq.

The roots and the Weyl group determine a canonical decompositions of t and t_.

Definition B.4.17. Let ∆ “ tα1, . . . , αrk Gu be a collection of simple roots for a Lie group G, and

let pε jq P t˘u
rk G be a sequence of signs. Any intersection of the half-planes α´1

j pε jR`q is a Weyl
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chamber and its closure
Ş

jpε jαjq
´1r0,8q is a closed Weyl chamber. The chamber corresponding

to all positive signs,
Ş

j α´1
j pR

`q, is the positive or fundamental Weyl chamber, and likewise for

the closed Weyl chambers. Since given any root α, its opposite ´α is also a root, for any Weyl

chamber C̊, there is a system of simple roots ∆ such that C̊ is the positive Weyl chamber.

Proposition B.4.18 ([Ada69, Thm. 5.13, Cor. 5.16]). Let G be a compact, connected Lie group and W

its Weyl group. The Weyl group W acts simply transitively on the set of Weyl chambers, and given any

closed Weyl chamber C, each orbit of the adjoint action of W on tzt0u meets C in precisely one point.



Appendix C

Classical results on the cheap

Every story has a beginning, however humble. In this appendix, which originated this work, we

apply the Atiyah–Bott/Berline–Vergne localization theorem in a calculated manner to achieve

simple proofs of classical results. There was no natural place to include these results earlier,

as it would not have made sense to do so before developing (1) the cohomology ring H˚pBTq,

which led into the cohomology of homogeneous spaces (Chapter 7), or (2) the Borel localiza-

tion theorem, which led naturally into the discussion of equivariant formality of torus actions

(Chapter 11); still, the author felt it should be included.

C.1. Equivariant extensions of characteristic classes

All characteristic classes (Section 7.7) admit equivariant extensions.

Lemma C.1.1. Let G be a topological group, M a G-space, E Ñ M a vector bundle, and cpEq P H˚pMq

a characteristic class. There exists an equivariant extension cGpEq P H˚
GpMq.

Proof. The mixing construction of Section 2.1 yields a vector bundle EG Ñ MG. Fix a point

e0 P EG; then i : x ÞÑ re0, xs is the fiber inclusion of the Borel fibration M Ñ MG Ñ BG, and the

original bundle E Ñ M is the pullback of the induced bundle EG Ñ MG under i:

293



Appendix C. Classical results on the cheap 294

E

��

� � // EG

��

// // BG

M � �

i
// MG // // BG.

The class

cGpEq :“ cpEGq P H˚
GpMq

pulls back to cpEq by naturality:

i˚cpEGq “ cpi˚EGq “ cpEq.

In particular, this holds for the Euler class of an oriented vector bundle: given an oriented

vector bundle ν : E Ñ M over a G-manifold M, with fiber of dimension n, the Euler class

epνq P HnpMq as defined in Section 7.7 has an equivariant extension eGpνq P Hn
GpMq, called

the equivariant Euler class.

C.2. The Berline–Vergne/Atiyah–Bott localization theorem

In this section we provide a brief statement of a simple version of the Atiyah–Bott formulation

of the Berline–Vergne/Atiyah–Bott localization theorem, which suffices to recover some classical

resutls.

Recall from (9.1) that if T acts trivially on a manifold N, then H˚
TpNq – H˚

T b H˚pNq as an

H˚
T-algebra. As H˚

T is a polynomial ring Zru1, . . . , udim Ts by (Section 7.4), one can view elements

of H˚
TpNq as polynomials with coefficients in HpNq:

H˚
TpNq – H˚pNqru1, . . . , udim Ts.
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The classical evaluation map (or Kronecker pairing)

HnpNq ˆ HnpNq ÝÑ Z,

induced by evaluating a singular cochain on a chain, then extends to an evaluation map

H˚
TpNq ˆ H˚pNq ÝÑ Zru1, . . . , udim Ts

given by extending additively the maps

`

HnpNqru1, . . . , udim Ts
˘

ˆ HnpNq ÝÑ Zru1, . . . , udim Ts,

pa ¨ uI , xq ÞÝÑ apxq ¨ uI .

Rather than the traditional angle-bracket pairing, we denote evaluation simply by juxtaposition.

If we extend the coefficient ring H˚
T to its localization pH˚

T – Qpu1, . . . , udim Tq, then one similarly

has a pairing

pH˚
TpNq ˆ H˚pN;Qq ÝÑ Qpu1, . . . , udim Tq,

which obeys the following powerful and influential theorem, the “hammer” spoken of in the

introduction.

Theorem C.2.1 (Berline–Vergne/Atiyah–Bott localization [BV82][AB84]). Let M be a compact, ori-

ented manifold admitting an action by a torus T. Suppose a P Hdim MpM;Qq is a cohomology class

admitting a T-equivariant extension aT P Hdim M
T pM;Qq. For each connected component N of the fixed

point set MT, write iN for the inclusion N ãÝÝÑ M, write νN for the normal bundle to N in M, with

orientation induced from M, write eTpνNq for the T-equivariant Euler class of νN , and denote homological
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fundamental classes with brackets. Then

arMs “
ÿ

NĎMT

i˚NaT

eTpνNq
rNs.

Remarks C.2.2. (a) The left-hand side of the display lies in H˚
T, whilst the terms of the right-hand

side a priori lie only in the field of fractions pH˚
T; it is part of the theorem that the sum of these

rational functions is a polynomial.

(b) Evaluation against rNs annihilates all of H˚
TpNq except Hdim NpNq b H˚

T, so the theorem says

something rather subtle about the nature of the “lower-degree” coefficients of an equivariant

extension.

(c) This is a weak version of the Atiyah–Bott formulation of the theorem: the full statement instead

uses cohomological pushforwards, on elements a P HGpM;Qq on both sides of the equation. The

Berline–Vergne formulation uses the Cartan model, replaces evaluation with integration, and

evaluates the resulting equivariant forms at a vector X P t. Given how exclusively this dissertation

has relied on the Borel model, it made sense to opt for the less analytic formulation here.

C.3. The hammer applied

As promised, in this section we reobtain some classical theorems by application of Berline–

Vergne/Atiyah–Bott localization.

Proposition C.3.1 (Hopf–Samelson, [HS40, pp. 240–251]). Let G be a compact Lie group and H a

subgroup of lesser rank. Then the Pontrjagin numbers and Euler characteristic of G{H vanish.

Proof. Let T be a maximal torus in G and consider the equivariant cohomology H˚
TpG{Hq under

the left action of T. By Lemma C.1.1, the characteristic classes of the tangent bundle E “ TpG{Hq

have equivariant extensions cTpEq.
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For a characteristic class c P HtoppG{H;Rq, with corresponding characteristic number crG{Hs,

by Theorem C.2.1,

crG{Hs “
ÿ

NĎpG{HqT

i˚NcT

eTpνNq
rNs

which by Corollary 2.4.5 is an empty sum.

The localization formula also allows us a simple way to calculate Euler characteristics in the

event a space admits a torus action with isolated fixed points.

Proposition C.3.2. Let T be be a torus and M a compact T-manifold with isolated fixed points. Then the

Euler characteristic χpMq is |MT|, the number of fixed points.

Proof [Mei06, Example 9.5]. Write νp for the normal bundle to a singleton tpu Ď M, and ip : tpu ãÑ

M for the inclusion. By Theorem C.2.1,

χpMq “ epTMqrMs “
ÿ

pPMT

i˚peTpTMq
eTpνpq

.

But i˚pTM – Tp M “ νp (since t0u “ Tptpu ď Tp M), so by naturality,

i˚eTpTMq “ eT`i˚pTMq
˘

“ eTpνpq,

and we arrive at the less intimidating formula

χpMq “
ÿ

pPMT

1.

This formula provides a slightly different explanation for the observation that χpG{Hq “ 0

when H is not of full rank in G, a result usually obtained by use of the Serre spectral sequence,

since by Corollary 2.4.5, the action of a maximal torus T of G on G{H has no fixed point. One
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can also obtain this result from an application of

Proposition C.3.2 also allows us to cheaply reclaim a familiar result on homogeneous spaces,

using the fixed point set of the left action of T on G{H calculated in Lemma 2.4.4.

Proposition C.3.3 (Leray). Let G be a compact Lie group and H a subgroup containing a maximal torus

T. Then

χpG{Hq “ |WG| { |WH|,

where WG “ NGpTq{T is the Weyl group of G. In particular, χpG{Tq “ |WG|.

Proof. Use Proposition C.3.2, counting fixed points with Lemma 2.4.4.

Historical remarks C.3.4. It was this writer’s advisor Loring W. Tu who suggested to him Propo-

sition C.3.1 might be true and might admit of an equivariant proof. As far as we are aware, this

proof is new; however, given that our initial literature search failed to uncover that this result was

over seventy years old, the reader could be forgiven for imagining the equivariant proof might

also not be original. The equivariant proof of Proposition C.3.2 was also independently obtained,

despite this proof being so standard as to be found in introductory expository accounts [Mei06].

In fact, the author seems to recall something stronger than Proposition C.3.1 holds, although

he cannot recall the reference: the tangent bundle of such a homogeneous space is stably par-

allelizable. One can find the analogous observations for Chern classes of stable almost complex

structures of homogeneous spaces G{S, for S a torus, not necessarily maximal, in the last paper

of the Borel–Hirzebruch trilogy on characteristic classes of homogeneous spaces [BH58; BH59;

BH60].

According to Dieudonné’s history [Die09], the result χpG{Tq “ |WG| was first proven by Weil

in 1935 [Wei35, p. 520] and rediscovered by again by Hopf and Samelson [p. 251][HS40] (they

write W “ S and σ “ |W|). In fact, they prove the full Proposition C.3.3 at the end of this paper.
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Borel’s proof of Chevalley’s theorem

We will require a very little standard material on sheaves and sheaf cohomology to proceed

([War71, Ch. 5], [ET14, Sec. 2]).

D.1. Sheaf cohomology

Taking as known the concepts of sheaf, constant sheaf, fine sheaf, acyclic sheaf, resolution, and

sheaf cohomology, let k be a principal ideal domain and k the constant sheaf in the rest of this

subsection.

Definition D.1.1. Let C ‚ be any acyclic resolution of the constant sheaf k on a paracompact

topological space X. Let A be any other sheaf on X. Then the sheaf cohomology H˚pX; A q is the

cohomology of the complex

0 Ñ pC 0 bA qpXq ÝÑ pC 1 bA qpXq ÝÑ pC 2 bA qpXq ÝÑ ¨ ¨ ¨

of k-modules of global sections. In particular, the sheaf cohomology H˚pX; kq is H˚
`

C ‚pXq
˘

.

Proposition D.1.2. Let X be a topological space homotopy equivalent to a finite CW complex. Then the

299
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singular cohomology and sheaf cohomology rings

H˚pX; kq – H˚pX; kq

are isomorphic.

Definition D.1.1 holds if the resolution F‚ is a fine sheaf of R-DGAs on a paracompact space

X, and it is possible to find these.

Proposition D.1.3 (Cartan). Let X be a paracompact space. Then there exists a fine sheaf of R-CDGAs

resolving the constant sheaf R.

Proposition D.1.4. Let F be a sheaf of k-DGAs and G a fine sheaf of k-DGAs on a paracompact topo-

logical space X. Then the sheaf tensor product F b G is again fine.

This has the following somewhat surprising corollary.

Corollary D.1.5. Let F be a sheaf of torsion-free k-DGAs and G a fine sheaf of k-DGAs on a paracompact

topological space X. Then the canonical sheaf map G ÝÑ F b G induces isomorphisms between the

cohomology rings of the DGAs G pXq and pF b G qpXq with the expected differentials.

We will need to apply this result only in a rather specific case.

Example D.1.6. Let π : E ÝÑ B be a smooth fiber bundle with compact total space. Let ΩE be the

sheaf de Rham complex on E, assigning to each open U Ď E the de Rham complex ΩpUq; this is

a fine sheaf. Let ΩB be the sheaf de Rham complex on the base space B, and π˚ΩB its pullback

to E: given U Ď B, one assigns

pπ˚ΩBqpUq “ ΩB
`

πpUq
˘

.1

1 This simplification of the usual definition suffices because π is an open map: since πpUq is itself open, the direct
limit lim

ÝÑVĚπpUq ΩBpVq is just ΩB
`

πpUq
˘

again.
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Now we can formally construct the tensor product C :“ π˚ΩB bΩE, which will be another fine

sheaf of R-DGAs on E by Corollary D.1.5. It follows the de Rham cohomology H˚pE;Rq is the

cohomology of the complex

A “ C pEq “
`

π˚ΩB bR ΩE
˘

pEq.

This is disorienting, because it looks much as if we are claiming the cohomology of the

complex A1 “ π˚ΩpBq bΩpEq is H˚pEq, whereas by the Künneth theorem Corollary A.3.10 and

the fact that π˚ is injective on forms (so that π˚ΩpBq – ΩpBq), we should have

H˚pA1q “ H˚pBq b H˚pEq.

Our escape is that the sheaf C is radically different from the presheaf U ÞÝÑ Ω
`

πpUq
˘

bΩpUq

on E it is associated to, so that A and A1 are far from being quasi-isomorphic.

Since a sheaf is determined completely by its stalks, it suffices to recall that at some (hence

any) x P E, the stalk is

`

π˚ΩB bΩE
˘

|x :“ ΩB|πpxq bΩE|x.

So a form τ bω P C pUq “ ΩB
`

πpUq
˘

bΩEpUq becomes zero in the stalk if and only if τ “ 0 on

some sufficiently small neighborhood of πpxq or else ω “ 0 on a neighborhood of x. Since global

sections of C are pieced together from stalks, a tensor τbω of forms represents zero if and only

if τ and ω are never simultaneously nonzero.

Analogously, one has the following.

Proposition D.1.7. Let π : E ÝÑ B be a smooth fiber bundle with compact total space, B be a fine sheaf
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of R-DGAs on B, and E a fine sheaf of R-DGAs on E. Then

pπ˚B b E qpEq – pπ˚BqpBq b E pEq
O

´

 

τbω : supp bX πpsupp eq “ ∅
(

¯

.

We will need only two more results on sheaf cohomology.

Proposition D.1.8. Let F be a sheaf of k-DGAs and G an acyclic sheaf of k-DGAs on topological space

X. Then the natural sheaf map F ÝÑ F b G induces isomorphisms in sheaf cohomology.

Definition D.1.9. Let X be a topological space and F a sheaf of k-modules on X. Suppose C ‚ is

a resolution of k, so that

0 Ñ k ÝÑ C 0 ÝÑ C 1 ÝÑ C 2 ÝÑ ¨ ¨ ¨

is an exact sequence of sheaves. Then the cohomology sheaf H ppF q is the sheaf given by the pth

cohomology of the complex of sheaves

0 Ñ C 0 bF ÝÑ C 1 bF ÝÑ C 2 bF ÝÑ ¨ ¨ ¨ ;

proceeding stalkwise, one has

H ppF qx “
kerpC p|x bF |x ÝÑ C p`1|x bF |xq

N

impC p´1|x bF |x ÝÑ C p|x bF |xq.

Historical remarks D.1.10. Cartan’s original proof of the existence of a fine resolution of R-DGAs

was never published, part of a veritable rash of non-publication that afflicted the work of this

school and made this exposition a bit difficult more difficult than otherwise it might have been.
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D.2. The Leray spectral sequence

We paraphrase Borel’s 1951 ETH exposition of the Leray spectral sequence [Bor51, Exposé VII-3].

Let f : X ÝÑ Y be a map of spaces, with Y paracompact, and let F be a fine sheaf of k-DGAs

on X and G a fine sheaf of k-DGAs on Y. Then the pushforward f ˚F is again a sheaf on Y, and

the sheaf G b f˚F is again fine, so that the sheaf cohomology H˚pX; f ˚G bF q is just H˚pX; kq.

Now F and f ˚G are k-DGAs, so f ˚G bF admits a natural bigrading

pG b f˚F q` “
à

p`q“`
G p b f˚F q,

and one can filter it by p:

FppG b f˚F q : U ÞÝÑ
à

iěp
pG i b f˚F ‚qpUq.

We now restrict to global sections and consider the filtration spectral sequence of the horizontal

filtration

FppG b f˚F qpYq :“
à

iěp
pG i b f˚F qpYq.

as described in Corollary A.5.4.

To make this sequence usable requires a bit of unpacking. The global sections of G b f˚F and

of f ˚G bF are both given by

pG b f˚F qpYq – p f ˚G bF qpXq – G pYq bF pXq
O

´

 

τbω : f´1psupp τq b supp ω “ ∅
(

¯

(D.1)

as described in Proposition D.1.7. Since f ˚G bF is a fine sheaf on X, we have H˚pX; f ˚G bF q –

H˚pX; kq by Proposition D.1.2 and hence Ep,q
8 – grp Hp`qpX; kq, where associated graded modules
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are taken with respect to the filtration

Fpp f ˚G bF qpXq :“
à

iěp
p f ˚G i bF qpYq.

on p f ˚G bF qpXq lifting the filtration on pG b f˚F qpYq.

Because G is already graded, the associated graded construction changes nothing on the

algebra level, so

E0 “ pG b f˚F qpYq

again. The differential d0 is induced by the differential dF of F and is zero on F , so we have

Ep,q
1 “

`

G p bH qp f˚F q
˘

pYq.

These are global sections of a product sheaf, as in Proposition D.1.7; support of an element of

H qp f˚F qpYq is determined by which stalks it vanishes on. The differential d1 is zero on H qp f˚F q

and extends the differential dG of G . Recall from Definition D.1.1 that since G is acyclic, sheaf

cohomology on Y with coefficients in any sheaf A is given by

H˚pY; A q “ H˚
`

pG ‚ bA qpYq; dG b idA

˘

;

in particular one finds Ep,q
2 is the sheaf cohomology

Ep,q
2 pYq – Hp`Y; H qp f˚F q

˘

.

To understand this last better, note that the pushforward f˚F is the sheaf whose stalk at y P Y is
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the direct limit of F pUq over neighborhoods U of f´1tyu, so

p f˚F q|y “ H˚
`

f´1tyu; k
˘

.

Now, cohomology with coefficients in f˚F and in G b f˚F are the same by Corollary D.1.5, and

we can write by abuse of notation

E
p,q

2 pYq “ Hp
´

Y; Hq` f´1tyu
˘

¯

.

Essentially, this is the cohomology of Y with coefficients varying over the cohomology of the

fibers. This spectral sequence pEr, drq is the Leray spectral sequence of the map f : X ÝÑ Y.

In the event f : X ÝÑ Y was a bundle, the fibers are homeomorphic, so the cohomology

groups H˚pFq of individual fibers are isomorphic, related to one another by isomorphisms

γ˚ : H˚pE|γp0qq ÝÑ H˚pE|γp1qq induced by lifting paths γ : r0, 1s ÝÑ Y in the base to homeo-

morphisms between fibers. Thus the Leray spectral sequence of a bundle projection π : E ÝÑ B

is the Serre spectral sequence of the bundle F Ñ E Ñ B, at least after the E2 page. Just as with the

Serre spectral sequence, if the coefficients are trivial—and critically for us, if F “ G is a group and

the bundle is principal, by Proposition 4.3.6—the coefficient sheaf in E2 can be seen as constant,

and then if H˚pGq is a free k-module, we have E2 “ H˚pBq b H˚pGq.

We summarize this discussion:

Theorem D.2.1 (Leray). Let f : X ÝÑ Y be a map of spaces, with Y paracompact. Let F be a fine sheaf of

k-DGAs on X and G a fine sheaf of k-DGAs on Y. Equip the sheaf G b f˚F with the horizontal filtration

induced by the grading of G . Then associated to the map f is a spectral sequence of k-DGAs satisfying

• Ep,q
0 – pG p b f˚F qqpYq,
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• Ep,q
2 – Hp

`

Y; H qp f˚F q
˘

,

• Ep,q
8 – grp Hp`qpX; kq.

In the event f : X ÝÝ� Y is the projection of a fiber bundle, this sequence agrees with the Serre spectral

sequence after E2; if further G Ñ X
f
Ñ Y is a principal G-bundle for G a topological group, then

E2 – H˚pYq b H˚pGq.

Remark D.2.2. It is because the Serre spectral sequence is a very special instance of the Leray spec-

tral sequence that it is often called the Leray–Serre spectral sequence. The Leray spectral sequence

of a fibration a priori contains strictly more information than the Serre spectral sequence; it is

precisely because the entire Leray spectral sequence contains such a surfeit of data that Serre’s

paring it down to a spectral sequence of singular cohomology groups in the event of a fibration

revolutionized homotopy theory.

D.3. Borel’s proof

In this section, we provide a proof of Chevalley’s theorem close to Borel’s original. Most of it is

in the setup; once the relevant DGAs are defined, the quasi-isomorphisms are nearly immediate.

Let k “ R, let G be a compact, connected Lie group, and let G Ñ E π
Ñ B be a smooth principal

G-bundle. Write P “ PG for the space of primitives of H˚pGq “ H˚pG;Rq, so that H˚pGq – ΛP.

Fix a transgression

τ : P „
ÝÑ QH˚pBGq H˚pBGq.

As π : E Ñ B is a principal G-bundle, there is a classifying map χ : B ÝÑ BG. Let rxjs be a basis

of P and rbjs “ χ˚τpxjq P H˚pBq for each j.
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Let B be an fine sheaf of R-CDGAs resolving the constant sheaf R on B, as guaranteed by

Proposition D.1.3 and likewise E be a fine sheaf of R-CDGAs resolving the constant sheaf R on

E, so that by Definition D.1.1 and Proposition D.1.2,

H˚pBq – H˚
`

BpBq
˘

; H˚pEq – H˚
`

E pEq
˘

.

We can pull B back to a sheaf π˚B on E and then the tensor product π˚B b E is another fine

sheaf on E. If we set C “ pπ˚B b E qpEq with the expected differential, then by Corollary D.1.5,

H˚pCq “ H˚
`

pπ˚B b E qpEq
˘

– H˚pEq

as well. Recall from Proposition D.1.7 that C can be seen as the quotient of pBq b E pEq by the

ideal n spanned by elements of empty support; accepting

By Theorem 7.6.2, the classes rxjs P PG are universally transgressive, which in particular

means in this instance they transgress in the filtration spectral sequence pEr, drq of C as filtered

by

Cp :“
à

iěp
pπ˚Bi b E qpEq.

By Theorem D.2.1, this is a version of the Leray spectral sequence of π : E ÝÑ B, which from

E2 – H˚pBq b H˚pGq on, is isomorphic to the Serre spectral sequence of this bundle. Thus, as

discussed in Proposition 4.3.15, the transgression of the primitive classes rxjs P PG means there

exist elements cj P C such that dCcj “ π˚bj b 1 pmod nq,

These transgressive cochains allow us to compile a simpler model C1 of H˚pEq as in the

previously cited version Theorem 8.1.3 of Theorem D.3.1. As ΛP is a free CGA, we can lift it

to a subalgebra Λtxju of pπ˚B b E qpEq generated by global sections xj of π˚B b E . Let C1 “
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BpBq bΛtxju, with differential the unique antiderivation dC1 satisfying

dC1pbb 1q “ dBbb 1, dC1p1b xjq “ bj b 1

and filtration

pC1qp :“
à

iěp
BipBq b H˚pGq.

Then the map

λ : C1 ÝÑ C :

bb 1 ÞÝÑ π˚bb 1,

1b rxjs ÞÝÑ cj

is a filtration-preserving DGA homomorphism, which we hope to show is a quasi-isomorphism.

Theorem D.3.1 (Chevalley). This map λ is a quasi-isomorphism completing a commutative diagram

H˚pC1q

λ˚

��

!!
H˚pGq

!!

==

H˚pBq.

H˚pEq

==

Proof (Borel). Apply the filtration spectral sequence of (Corollary A.5.4) to both DGAs and the

map λ˚. The spectral sequence pEr, drq of C is the Leray spectral sequence of π : E ÝÑ B, as

discussed in Appendix D.2, by the identification (D.1). Write p1Er, 1drq for the spectral sequence of
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C1. The 0th page is the associated graded algebra of the filtration:

1Ep,‚
0 “ BppBq b H˚pGq.

Since deg xj ě 1, we have deg bj ě 2, so dC1 increases the filtration degree of each element of

H˚pGq by at least 2, and the filtration degree of elements of BpBq by 1. Thus no image of dC1

survives the associated graded procedure, so 1d0 “ 0 and

1E1 “
1E0 “ BpBq b H˚pGq.

The differential 1d1 still sends generators of H˚pGq at least two filtration degrees forward, but acts

as dB on BpBq, so that 1d1 “ δB b idH˚pGq and

1E2 – H˚pBq b H˚pGq.

Thus 1E2 – E2; it just remains to see the map λ2 : 1E2 ÝÑ E2 itself is such an isomorphism

in a manner making the diagram commute. But 1 b rxjs P C1 and 1 b xj pmod nq P C both

become 1b rxjs in H˚pBq b H˚pGq, and bb 1 P C1 and bb 1 pmod nq P C both become rbs b 1 in

H˚pBq b H˚pGq.

Historical remarks D.3.2. The proof presented above is in terms of a historically late formulation of

Leray’s technology; there were several such accounts, of gradually improving comprehensibility.

The entirety of the account that follows is derived from the work of Borel expositing Leray’s

work, both in 1951 and 1997 [Bor51; Bor98].

Leray’s original motivation for the topological edifice he erected seems to have been the de

Rham complex. This is an R-CGA of forms supported on various subsets, yielding a complex
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which Poincaré already had shown to be trivial on Euclidean subsets, but which collate together

nonetheless to contain global information about a manifold, as conjectured by Élie Cartan and

proven by Georges de Rham in his thesis. Recall that the support of forms ω, τ on a manifold M

satisfies these axioms:

supppτ`ωq Ď supp τY supp ω; supppτ^ωq Ď supp τX supp ω; supppα ¨ωq Ď supp ω;

supp dω Ď supppωq; supp 0 “ ∅; supp 1 “ M.

Leray’s idea, beautiful in its audacity, is to equip a topological space X with a complex (complexe

concrete) K of “forms on a space,” equipped with a support function

K ÝÑ tclosed subsets of Xu,

k ÞÝÑ |k|,

satisfying the same axioms as differential forms despite the absence of any native notion of

smoothness, and despite elements of k not being functions in a real sense. As a purely algebraic

object, a complex is a CGA over a commutative coefficient ring (which we will write as A to

allow k P K); only the support function imparts any topological content.

With this setup, and some further definitions, Leray is able to reprove a good amount of

existing algebraic topology as of 1945, proving that the cohomology of certain types of complexes

recovers Hopf’s and Samelson’s theorems on Lie groups, the Lefschetz fixed-point theorem, the

Brouwer fixed-point theorem, invariance of domain, Poincaré duality, and Alexander duality.

Building up couvertures (defined below) associated to nerves of a cofinal sequence of closed covers

of a topological space, Leray can show this cohomology is isomorphic to Čech cohomology on

compact Hausdorff spaces X.
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Here are some of those further definitions. If F Ď X is a closed subset, the intersection F.K is

defined to be the quotient

F.K :“ K{
 

k P K : |k| X F “ ∅
(

with support function k ÞÝÑ |k| X F, and there is a natural restriction homomorphism K ÝÑ F.K.

If F “ txu is a singleton, one writes xK; these are the germs of forms if K “ ΩpMq is the de Rham

complex. The system of such restrictions F ÞÝÑ F.K becomes a sheaf (faisceau) under Leray’s later

(1946) definition, which should be contrasted with the modern definition depending on an open

cover; Leray’s definition arises because he is at this point interested in cohomology with compact

supports on a locally compact space. The tensor product K b K1 of two complexes is assigned

supports

|z| :“ tx P X : the image of z is nonzero under Kb K1 ÝÑ xKb xK1u,

where the maps determining the support of z are the tensor products of the restriction maps

discussed previously. The intersection K M K1 is then given by

K M K1 :“ Kb K1L z P Kb K1 : |z| “ ∅
(

.

Our Proposition D.1.7 can be seen as a later sheaf-theoretic redaction of this definition.

An A-complexe is fine (fin) if every finite cover pUjq of X admits a partition of unity, which is

a set of A-endomorphisms ϕj : K ÝÑ K such that

supp ϕjpkq Ď Uj X supp k,
ÿ

ϕjpkq “ k

for all k P K. An A-complex is a couverture if its stalks are acyclic: i.e., if H˚pxKq “ H0pxKq – A

for every x P X. Leray’s original cohomology on a normal space is that of the union of all
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couvertures.

The closest thing to a fine couverture in modern language seems to be the space of global

sections of a fine resolution of the constant sheaf. The intersection K M F of a sheaf and a complex

is as expected, and one can take coefficients in an A-module M merely by forming the tensor

product KbM or K M F bM, where the elements of AbM are viewed as having global support.

A complex K (for example, a couverture) can be pushed forward under proper maps f : X ÝÑ Y

and pulled back under any map g : Z ÝÑ Y: as algebraic structures f K – K – g´1K, but the

supports of k in f K and g´1K are respectively f
`

|k|
˘

and g´1
`

|k|
˘

.

By the time of Borel’s 1951 lectures on Leray’s work [Bor51], a sheaf (Borel credits this defini-

tion to Lazard) has become the espace étalé associated to a presheaf satisfying the gluing axioms,

so essentially the modern, open-set definition. The statement of the Leray spectral sequence in

these lecture notes is as follows.

Theorem D.3.3 (Leray). Let f : X ÝÑ Y be a continuous map, K and L fine A-couvertures, M an

A-algebra, and F the sheaf associated to f pKbMq. Then there exists a spectral sequence in which

E0 “ gr
`

f´1pLqM KbM
˘

, E1 “ L M HpFq, E2 “ H
`

L M HpFq
˘

,

(d0 is the derivation induced by that of K, and d1 the derivation induced by that of L) and which terminates

in the associated graded algebra of H˚pX, Mq, compatibly filtered.



Appendix E
The original classification of reflected circles in
simple groups

The construction of Table 11.1.5 proceeds case by case through the Killing–Cartan classification

Proposition B.4.5. We do most of this theoretically, and then computationally verify a key detail

in the E6 case.

E.1. Theoretical reflections

E.1.1. The case all circles are reflected

It is known that if one exists, a central involution of the Weyl group acts as X ÞÝÑ ´X on the Lie

algebra t of a maximal torus [DW01, Theorem 1.8] and further, that if there does exist a central

involution, it is represented by the longest word w0 P W. We could therefore simply note that the

center of W is Z{2 for the Weyl groups of types Bn, Cn, D2n, G2, F4, E7, and E8 [Kan01, Lem. 27-2,

p. 283], but we can also argue directly.

Proposition E.1.1. Let K be a finite quotient of any of the simply-connected classical simple Lie groups

Spinp2n` 1q, Sppnq, and Spinp4nq, or the simply-connected exceptional Lie groups of types G2, F4, E7,

and E8, and S a maximal torus of K. Then S is reflected in K.

Proof. It will be conventient to write J :“

»

—

—

–

0 1

1 0

fi

ffi

ffi

fl

P Op2q. Here are the cases.

313
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• Spinp2n` 1q. In SOp2n` 1q, conjugations by the orthogonal block-diagonal matrices g1 “

diag
`

J, . . . , J, r1s
˘

and g´1 “ diag
`

J, . . . , J, r´1s
˘

reflect the block-diagonal maximal torus

T “ SOp2qn ˆ
 

r1s
(

, and one of g˘1 is in SOp2n` 1q. Since Spinp2n` 1q is a double cover of

SOp2n` 1q, the maximal torus rT of Spinp2n` 1q is reflected by Corollary 11.2.2.

• Sppnq. Choose as maximal torus the subgroup T “ Up1qn ă Spp1qn of diagonal elements

with coordinates in the t1, iu-plane of H. Then conjugation by the diagonal matrix diagpj, ¨ ¨ ¨ , jq “

j ¨ I P Sppnq reflects T.

• Spinp4nq. Conjugation by the block-diagonal matrix diagpJ, . . . , Jq P SOp4nq reflects each

element of the block-diagonal maximal torus T “ SOp2q2n. Since Spinp4nq is a double cover

of SOp4nq, the maximal torus rT of Spinp4nq is reflected by Corollary 11.2.2.

• G2. The roots are the vertices of a nested pair of regular hexagons in the plane t˚ – t. The

Weyl group is the dihedral group D6 of order 12, which contains rotation by π.

• F4. Recall [MT00, Theorem 7.4(1), p. 357] that F4 acts transitively on the octonionic plane

OP2 with point-stabilizer Spinp9q. A maximal torus T4 of Spinp9q is reflected in Spinp9q, so

by Observation 11.5.5, it is also reflected in F4. But T4 is also maximal in F4.

• E7. Recall [Wol67, p. 285] that E7 admits a local product subgroup H – SOp12q ¨ SUp2q.

Since this subgroup is of rank 7, it contains a maximal torus of E7. By Observation 11.5.5,

it suffices to know this maximal torus is reflected in H. Because H is finitely covered by

the direct product SOp12q ˆ SUp2q, it is enough, by Corollary 11.2.2, to see that a maximal

torus of SOp12q ˆ SUp2q is reflected. Finally, by Proposition 11.5.4, it is enough to know the

maximal tori of SOp12q and SUp2q – Spp1q are reflected; but we proved so above.

• E8. Recall [Wol67, p. 285] that E8 has a subgroup SOp16q of rank 8. Let T8 be a maximal
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torus of E8 lying in this SOp16q. We showed above that T8 is reflected in SOp16q, so by

Observation 11.5.5, it also is reflected in E8.

E.1.2. The cases of SUpnq and Spinp4n` 2q

In the remaining cases, there is no Weyl element reflecting the entire maximal torus, and we have

to distinguish between circles.

Proposition E.1.2. Let K “ SUpnq and let S be a circular subgroup. Then S is reflected if and only if the

exponent multiset J of the inclusion S ãÝÝÑ T satisfies J “ ´J.

Proof. Let T be the diagonal maximal torus Up1qn X SUpnq of SUpnq. Then S is conjugate into T,

and we may replace S with this conjugate, which is the image of a map z ÞÝÑ diagpza1 , . . . , zanq,

where the aj P Z have greatest common divisor 1 and
ř

aj “ 0. Write J “ ta1, . . . , anu for the

multiset of exponents characterizing this embedding of S.1

The Weyl group of SUpnq is the symmetric group Sn, acting on T through permutation of

coordinates, so S is reflected if and only if there exists σ P Sn such that diag
`

zaσp1q , . . . , zaσpnq
˘

“

diagpz´a1 , . . . , z´anq for all z P S1. This is the case if and only if J and ´J are equal as multisets.

Proposition E.1.3. Let S be a circle in Spinp4n` 2q. Then S is reflected in Spinp4n` 2q if and only if it

is conjugate into a Spinp4nq subgroup.

Proof. By Proposition 11.2.1, it is equivalent to work in SOp4n` 2q, where the equivalent state-

ment is this: a circle S in SOp4n ` 2q, is reflected if and only if it is conjugate into the block-

diagonal subgroup diag
`

SOp4nq, 1, 1
˘

of SOp4n` 2q.

For sufficiency, if S ă T is contained in some SOp4nq ˆ t1u2 subgroup, then conjugation by a

block-diagonal matrix with 2n blocks J and one 2ˆ 2 block I induces s ÞÝÑ s´1 on S.
1 That is, as with the collection of roots of a polynomial, elements are not ordered, but are counted with multiplicity.

Though the sequence pa1, . . . , anq is not uniquely determined by S, the pair of multisets tJ,´Ju is; equivalently, J is
well-defined up to sign.
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For necessity, if S ă T is not contained in any SOp4nq subgroup, there are no 0 exponents aj

in the exponent multiset Jpφq “ ta1, . . . , anu of the embedding

φ : S1 „
ÝÑ S ãÝÝÑ SOp2q2n`1 „

ÝÑ pS1q2n`1,

z ÞÝÑ pza1 , . . . , zanq,

so all exponents aj are either negative or positive. If there are n`pφq positive exponents and n´pφq

negative exponents, then since n`pφq ` n´pφq “ 2n` 1 is odd, the numbers n`pφq, n´pφq are of

differing parity. By Proposition 11.5.2, any reflection of S must be induced by the Weyl group

W “ WD2n`1 “ H2n ¸ S2n`1, where H2n ă t˘1u2n`1 is the hyperplane defined by
ś2n`1

j“1 ε j “ 1

and S2n`1 acts on T and on the normal factor H2n by permuting entries. Thus an even number of

exponent signs in Jpw ˝ φq differ from the corresponding signs in Jpφq, so any w P W preserves

the parities of n` and n´:

n`pw ˝ φq ” n`pφq pmod 2q;

n´pw ˝ φq ” n´pφq pmod 2q.

If w were to reflect S, however, we would need Jpw ˝ φq “ ´Jpφq, so that n`pw ˝ φq ” n´pφq and

n´pw ˝ φq ” n`pφq pmod 2q, which is impossible since n`pφq and n´pφq are of different parity.

Thus S cannot be reflected in SOp4n` 2q.

E.1.3. E6

We come to the final and most interesting case. In this section we allow ourselves to freely quote

non-introductory material on reflection groups from the literature. Recall from Table 11.1.5 the

desired conclusion:
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Proposition E.1.4. A circular subgroup S of E6 or its universal cover rE6 is reflected just if it is conjugate

into a Spinp8q subgroup.

To motivate this conclusion, consider the famous chain of inclusions

SUp2q ă SUp3q ă G2 ă Spinp8q ă Spinp9q ă F4 ă E6 ă E7 ă E8,

or more specifically the subchain Spinp8q ă F4 ă E6. The three-fold universal cover rE6 ÝÝ� E6

restricts to covers of F4 and Spinp8q. Since these groups are simply-connected, they are isomorphic

to the identity components of their preimages, so we get a lifted chain Spinp8q ă F4 ă rE6.

Because a maximal torus T4 of Spinp8q is reflected in Spinp8q, it is also reflected in E6 and rE6, by

Observation 11.5.5 and Corollary 11.2.2:

Proposition E.1.5. Any circular subgroup S of E6 or rE6 contained in a Spinp8q subgroup is reflected.

To prove Proposition E.1.4, we must show this sufficient condition is also necessary. Fix a

maximal torus T6 of rE6. We create a collection of 4-spaces in the dual pt6q_ to the Lie algebra

of T6 which contains all reflected subspaces of pt6q_, transport those spaces to t6 through the

Killing isomorphism, then show these subspaces are the Lie algebras of maximal tori of Spinp8q

subgroups of rE6.

Definition E.1.6. Let XLV be the collection of subspaces RΞ of pt6q_ spanned by quadruples Ξ of

mutually orthogonal roots of rE6. Write κ for the W-equivariant isomorphism t6
„
ÝÑ pt6q_ between

the adjoint and coadjoint representations of rE6 induced through the Killing form, as described in

Proposition B.4.12.

Proposition E.1.7. The union
Ť

wPWE6
tv P t6 : w ¨ v “ ´vu of all p´1q-eigenspaces of the adjoint action

of WE6q is
Ť

XLV.
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Proof. Any collection tαju Ă pt
6q_ of jointly orthogonal roots is reflected by the product

ś

wαj P W

of commuting root reflections corresponding to those roots. Because κ is W-equivariant, each

κ´1pRΞq P κ´1pXLVq is contained in the p´1q-eigenspace of some Weyl element.

For the other direction, if v P t is a nonzero vector reflected by an element w P W of order

2k ¨m, where m is odd, then wm ¨ v “ ´v as well. So all reflected lines are reflected by elements of

even-power order.

Each involution w P W can be expressed as a product of orthogonal root reflections [Car72,

Lem. 5, p. 5], and it will become clear later in this section (or alternately from the results of

Appendix E.2) that the largest such collection is of cardinality 4, so all p´1q-eigenspaces of invo-

lutions in W are contained in
Ť

XLV.

We now need only show the p´1q-eigenspace of each element of orders 4, 8, . . . in W is also

in
Ť

XLV. Given a pair w, w1 P W whose p´1q-eigenspaces satisfy V´1pwq ď V´1pw1q, then for

all g P W we have V´1pgwg´1q “ g ¨ V´1pwq ď g ¨ V´1pw1q “ V´1pgw1g´1q as well, so we only

need to check for one element in each conjugacy class of even-power order elements whether its

p´1q-eigenspace is contained in
Ť

XLV.

One may verify this using the GAP 4 program comprising Appendix E.2, which returns a

positive result on a mid-2011 iMac with 4 gigabytes of RAM in approximately 1.5 seconds.

It remains to show elements of XLV are tangent to Spinp8q subgroups. Because it will turn

out (Proposition E.1.13) that |XLV| “ 45, it is impractical to demonstrate individually for each RΞ

that it arises from a Spinp8q, so we will show (Proposition E.1.8) that W acts transitively on XLV,

and then it will suffice to prove a single κ´1pRΞq is tangent to the maximal torus of a Spinp8q

subgroup.

But to do any of this, we need to be more explicit about what these spaces and roots are.

Though the space pt6q_ is six-dimensional, it standard to identify it not with R6 but rather with a
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six-dimensional subspace of R8 “ R5 ˆR3, the larger space conceived of as a Cartan algebra for

E8. A standard system of simple roots for E6, already invoked in the program in Appendix E.2,

is [CCN+85, p. 26][Bou68, Planche V, p. 260]

∆ :“
 1

2 p1, 1, 1, 1, 1; 1, 1, 1q,

´p1, 1, 0, 0, 0; 0, 0, 0q,

p1,´1, 0, 0, 0; 0, 0, 0q,

p0, 1,´1, 0, 0; 0, 0, 0q,

p0, 0, 1,´1, 0; 0, 0, 0q,

p0, 0, 0, 1,´1; 0, 0, 0q
(

.

These simple roots ∆ span the six-dimensional subspace

pt6q_ “
`

R5 ˆ t0u3˘ ‘ R ¨ p1, 1, 1, 1, 1; 1, 1, 1q

and generate the system Φ of 72 roots obtained by permuting the first five coordinates of

γ12 “ p1, 1, 0, 0, 0; 0, 0, 0q,

δ12 “ p1,´1, 0, 0, 0; 0, 0, 0q,

ε1 “ 1
2 p1,´1,´1,´1,´1; 1, 1, 1q,

ζ “ 1
2 p1, 1, 1, 1, 1; 1, 1, 1q,

η12 “ 1
2 p´1,´1, 1, 1, 1; 1, 1, 1q,

(E.1)

and multiplying the resulting elements by ˘1. Among these we declare the 36 positive roots to
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be2

Φ` :“
 

γab, δab, ηab
(

1ďaăbď5 Y
 

εa
(

1ďaď5 Y tζu.

Now we can show the elements of Ξ are conjugate.

Proposition E.1.8. The Weyl group WE6 acts transitively on XLV.

This follows immediately from the following stronger statement. (Cf. Carter [Car72, Lemma 11.(i),

p. 14], where transitivity is proved for triples.)

Lemma E.1.9. The Weyl group WE6 acts simply transitively on the set of ordered quadruples of mutually

orthogonal roots in pt6q_.

Proof. Given any ordered quadruple pα, β, γ, δq in Φ, we find a unique element of WE6 sending it

to pζ,´ε1, δ23, δ45q.

Since W acts transitively and isometrically on Φ, there exists a w P W such that wα “ ζ, and

w ¨ tβ, γ, δu is contained in the set ΦpA5q “ t˘εau1ďaď5 Y t˘δabu1ďaăbď5 of roots orthogonal to ζ.

Amongst these, a spanning sequence is ∆pA5q “ p´ε1, δ12, δ23, δ34, δ45q. Each entry has inner

product ´1 with adjacent entries and is orthogonal to the others, so ΦpA5q is a root system of

type A5, and root reflections in ΦpA5q generate a Weyl subgroup WpA5q ă WE6 fixing ζ. As

WpA5q acts transitively on ΦpA5q, there is a w1 P WpA5q such that w1wβ “ ´ε1. Since w1 is an

isometry, the roots w1w ¨ tγ, δu are contained in the set ΦpA3q Ĺ ΦpA5q “ t˘δabu1ďaăbď5 of roots

orthogonal to tζ,´ε1u.

Amongst these, a spanning sequence is ∆pA3q “ pδ23, δ34, δ45q, so ΦpA3q is a root system of

type A3, and root reflections in ΦpA3q generate a Weyl subgroup WpA3q ă WpA5q fixing pζ,´ε1q.

As WpA3q acts transitively on ΦpA3q, there is a w2 P WpA3q such that w2w1wγ “ δ23. Since w2

2 Here, to be clear, in δab the 1 appears in the ath coordinate and the´1 in the bth, but we will let ηab “ ηba and γab “

γba for notational convenience. For example, δ24 “ ´δ42 “ p0, 1, 0,´1, 0; 0; 0, 0q and η43 “ η34 “
1
2 p1, 1,´1,´1, 1; 1, 1, 1q

and ε5 “
1
2 p´1,´1,´1,´1, 1; 1, 1, 1q.
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is an isometry, the root w2w1wδ is contained in the set ΦpA1q “ t˘δ45u of roots orthogonal to

tζ,´ε1, δ23u, a system of type A1.

The root reflection in ΦpA1q generates a Weyl subgroup WpA1q ă WpA3q fixing pζ,´ε1, δ23q.

As WpA1q acts transitively on ΦpA1q, there is exists a w3 P WpA1q such that w3w2w1wδ “ δ45.

Thus the composition w3w2w1w does what we want to the quadruple pα, β, γ, δq. That it is

the unique Weyl group element doing so follows from a sequence of applications of the orbit–

stabilizer theorem. Since WE6 has order 51,840 and transitively permutes 72 roots, it follows

Stabpζq has order 720. Since Stabpζq transitively permutes the 30 roots ΦpA5q, it follows that the

ordered pair stabilizer Stabpζ,´ε1q has order 24. Since this stabilizer transitively permutes the

12 roots ΦpA3q, it follows the triplet-stabilizer Stabpζ,´ε1, δ23q has order 2. And this stabilizer

acts simply transitively on ΦpA1q “ t˘δ0u, so Stabpζ,´ε1, δ23, δ45q is trivial and WE6 acts simply

transitively on ordered quadruples of mutually orthogonal roots.

Now we show such a ΦXRΞ is a D4 root system.

Lemma E.1.10. The D4 root subsystems of Φ are precisely tΦXRΞ : RΞ P XLVu.

Proof. A root system of type D4 is spanned by four mutually orthogonal roots, so a D4 subsystem

of Φ must be ΦXRΞ for some RΞ P XLV.

On the other hand, let Ξ “ tγ12, δ12, γ34, δ34u; then RΞ P XLV is generic by Proposition E.1.8.

The quadruple ∆ “ pγ12, γ34, δ34,´γ23q in ΦXRΞ spans RΞ, its first three entries are mutually

orthogonal, and γ23 ¨ γ12 “ γ23 ¨ γ34 “ γ23 ¨ δ34 “ ´1, so ΦXRΞ is a root system of type D4.

Now we can finally show XLV does have something to do with Spinp8q.

Proposition E.1.11. Given a maximal torus T6 of rE6, the duals in t6 to the spaces XLV in pt6q_ are

precisely the Lie algebras t6 of those maximal tori T4 of Spinp8q subgroups such that T4 is contained in

T6.
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Proof. Recalling the discussion of integer and coroot lattices in Appendix B.4.2, consider a Spinp8q

in rE6 whose maximal torus T4 lies in T6. The inclusion T4 ãÝÝÑ T6 induces inclusions t4 ãÝÝÑ t6 and

ΛpT4q ãÝÝÑ ΛpT6q.3 Since Spinp8q and rE6 are both simply-connected, their coroot lattices are their

integer lattices by Proposition B.4.14, so this last inclusion can also be written Q_
`

Spinp8q
˘

ãÝÝÑ

Q_prE6q. Selecting all elements of length
?

2 in these lattices respectively yields root systems

Φ_pSpinp8qq Ĺ Φ_prE6q of types D4 and E6 within t4 and t6. Because all roots of both groups are

long, by Corollary B.4.16 the Killing isomorphism κ takes these systems respectively to a root

system ΦpD4q of type D4 and the root system Φ of rE6 described above. By Lemma E.1.10, the

span of ΦpD4q is ΦXRΞ for some Ξ P XLV. That is, κpt4q P XLV.

The transitivity of the action on orthogonal quadruples makes it relatively simple to enumer-

ate XLV.

Lemma E.1.12. A vector space RΞ P XLV is spanned by precisely three distinct sets of four mutually

orthogonal roots.

Proof. Let Ξ “ tγ12, δ12, γ34, δ34u again. The positive roots Φ` XRΞ are tγab, δab : 1 ď a ă b ď 4u.

Among these, the three roots orthogonal to δab are tγab, γcd, δcdu, where
ˇ

ˇta, b, c, du
ˇ

ˇ “ 4 and c ă d,

and likewise the three roots orthogonal to γab are tδab, γcd, δcdu, so the spanning quadruples are

determined by the partitions of t1, 2, 3, 4u into pairs of pairs
 

ta, bu, tc, du
(

, of which there are

three.

Now we can conclude the enumeration.

Proposition E.1.13. We have |XLV| “ 45.

Proof. The Weyl group WE6 acts simply transitively on the set of ordered quadruples pα, β, γ, δq

of mutually orthogonal roots, by Proposition E.1.8, and
ˇ

ˇt˘1u4 ¸ S4
ˇ

ˇ distinct such quadruples

3 To tie this back to circles, the exponential of each line s in t6 containing a point of ΛpT6q is a circle in T6, so the
set of circles in T6 can be identified with the projectivization PΛpT6q.
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correspond to any given set tα, β, γ, δu of four mutually orthogonal positive roots, so there are

ˇ

ˇWE6

ˇ

ˇ {
ˇ

ˇt˘1u4 ¸ S4
ˇ

ˇ “ 51,840{384 “ 135 such sets. By Lemma E.1.12, each such 4-space admits

three distinct unordered bases of positive roots, so there are 135/3 = 45 distinct such spaces.

To summarize, we have proven the following.

Proposition E.1.14. If a circular subgroup S lies within a maximal torus T6 of E6, then S is reflected just

if it is contained one of forty-five Weyl-conjugate maximal tori lying in T6 which are tangent spaces of

Spinp8q subgroups of E6

Remarks E.1.15. (a) Proposition E.1.13 also shows that the stabilizer of any element of XLV in WE6

is a group of order
ˇ

ˇWE6

ˇ

ˇ{45 “ 1,152 “
ˇ

ˇWpF4q
ˇ

ˇ. If we write N “ NE6pT
4q and Z “ ZE6pT

4q, then

by the proof of Observation 11.5.5 we have the chain of injections

WpF4q
N
Z

WE6

FixWE6
pT4q

,

and we have in essence just shown the map WpF4q � N{Z is actually an isomorphism and

FixWE6
pT4q is trivial, so that WpF4q injects into WE6 as the set of elements normalizing T4. The

author is advised this result can be understood from Carter’s book [Car85, Sec. 13.3].

(b) We originally found the 135 maximal mutually orthogonal sets of positive roots through brute

force, then checked with Python we had accounted for them all. Explicitly, in terms of (E.1), they
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are

p60q tεa, ηab, γac, δdeu, where |ta, b, c, d, eu| “ 5 and d ă e,

p30q tηab, ηcd, γac, γbdu, where |ta, b, c, du| “ 4,

p15q tηab, ηcd, δab, δcdu, where |ta, b, c, du| “ 4 and a ă b and c ă d,

p15q tγab, γcd, δab, δcdu, where |ta, b, c, du| “ 4 and a ă b and c ă d,

p15q tζ, εa, δbc, δdeu, where |ta, b, c, d, eu| “ 5 and b ă c and d ă e.

E.2. The GAP verification of Proposition E.1.7
# Supply a standard system of simple roots for E_6.
E6_simple_roots := [
[1,-1,-1,-1,-1,1,1,1]/2,

-[1,1,0,0,0,0,0,0],
[1,-1,0,0,0,0,0,0],
[0,1,-1,0,0,0,0,0],
[0,0,1,-1,0,0,0,0],
[0,0,0,1,-1,0,0,0]

];;

# Simple reflections generate the Weyl group of E_6. Check the Weyl group is the right size.
simple_refl := List(E6_simple_roots,ReflectionMat);; W := Group(simple_refl); Size(W);

# Find its conjugacy classes. How big are they?
conj_raw := ConjugacyClasses(W);; List(conj_raw,x->Size(x));

# There are no elements of order 16.
Filtered(conj_raw,c->Order(Representative(c))=16);

# We find all conjugacy classes of elements of orders 2, 4, and 8.
conj_cl248 := [];;
for expon in [1..3] do

conj_cl248[expon]:= Filtered(conj_raw,c->Order(Representative(c))=2^expon);;
od;

# How big are these conjugacy classes of elements of orders 2, 4, and 8?
List(conj_cl248,x->List(x,y->Size(y)));

# There are four conjugacy classes of involutions.



Appendix E. The original classification of reflected circles in simple groups 325

# We know these are all products of four or fewer orthogonal root reflections.

# This function finds the (-1)-eigenspace of a matrix.
reflected_space := function(matrix)

local e;
for e in Eigenspaces(Rationals,matrix) do

if matrix*Representative(e) = -Representative(e) then
return e;

fi;
od;
return [];

end;;

# This function finds a reflected space of some element in a conjugacy class.
refl_sp_of_rep := class->reflected_space(Representative(class));;

# This function orders a set by its function values.
ord := fcn->(set->Concatenation(List(Set(set,fcn),x->Filtered(set,v->fcn(v)=x))));

# We reorder the conjugacy classes of involutions so that the fourth one is the
# one with the highest-dimensional reflected spaces.
conj_cl248[1] :=
ord(x->Dimension(refl_sp_of_rep(x)))(conj_cl248[1]);;

# The largest (-1)-eigenspaces of involutions have dimension 4.
# We know these contain all (-1)-eigenspaces of other involutions.
# We generate all these (45) four-dimensional (-1)-eigenspaces.
invol_refl_spaces := List(conj_cl248[1][4],x->reflected_space(x));;

# We generate one reflecting space for each conjugacy class of elements of
# of orders 2, 4, and 8.
rep248_refl_spaces := Concatenation(List(conj_cl248,y->List(y,x->refl_sp_of_rep(x))));;

# This function checks if a vector space is contained in such an eigenspace.
subset_invol_refl_space := function(vector_space)

local V, answer;
answer := "No.";
for V in invol_refl_spaces do

if IsSubset(V,vector_space) then
answer := "Yes.";

fi;
od;
return answer;

end;;
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# We run through representatives of conjugacy classes of elements of orders 4 and 8
# and check whether their (-1)-eigenspaces are contained in a four-dimensional one.
for class in [5..Size(rep248_refl_spaces)] do;

Print("Class ");
Print(class);
Print(": ");
Print(subset_invol_refl_space(rep248_refl_spaces[class]));
Print("\n");

od;

# For every class, a "Yes" shows up, demonstrating the four-dimensional (-1)-eigenspaces
# of involutions in fact contain all (-1)-eigenspaces.
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