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LOCAL TOMOGRAPHY IN ELECTRON MICROSCOPY∗
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Abstract. We present a new local tomographic algorithm applicable to electron microscope
tomography. Our algorithm applies to the standard data acquisition method, single-axis tilting, as
well as to more arbitrary acquisition methods including double axis and conical tilt. Using microlocal
analysis we put the reconstructions in a mathematical context, explaining which singularities are
stably visible from the limited data given by the data collection protocol in the electron microscope.
Finally, we provide reconstructions of real specimens from electron tomography data.
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1. Introduction. Our goal is to show how singularity detection algorithms can
be useful in electron (microscope) tomography (ET). Briefly, given transmission elec-
tron microscope (TEM) data and using principles of tomography, the goal in ET is to
reconstruct the scattering potential of the individual molecules in an in situ (in the
cellular environment) or in vitro (in aqueous environment) specimen, each of which
can be fairly arbitrary. Because the specimen extends far beyond the area exposed
to the electrons, the exposed region covers only a small subregion, which is usually
referred to as the region of interest. Again, because of the size of the whole specimen,
one can rotate it only in a limited range of angles, so the reconstruction problem
is a limited angle problem. These imply that one has nonuniqueness and severe
ill-posedness. Nonuniqueness, as illustrated in Example 3.1, means that one cannot
exactly reconstruct the scattering potential of the specimen even in cases when one
assumes exact data (no measurement errors) and disregards the discretization of the
set of lines (i.e., one deals with the corresponding continuous problem where data are
given over a continuous set of lines). Furthermore, as discussed in section 2.2, the
data are very noisy, in particular because of the dose problem—the dose needed to
get low-noise data destroys the specimen. Since the limited angle problem leads to
severe ill-posedness, the reconstruction problem is unstable and the noise in the data
is amplified.

These issues, namely nonuniqueness and ill-posedness, point to using a recon-
struction method that regularizes by reconstructing only some information about the
specimen that can be stably retrieved, in our case the shape of the boundaries of the
molecules in the specimen. Our method is a generalization of Lambda tomography
[6, 28].

The article is organized as follows. In section 2, we give the background from
physics and state the inverse problem. To provide perspective, we briefly describe
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planar Lambda tomography in section 3. Next, we provide our general algorithm
for arbitrary data sets in section 4. Then, in section 5 we give the specifics for
single-axis tilt ET. In section 6, we describe which singularities of the specimen are
stably recoverable from the limited data in ET. We put our results in the context
of microlocal analysis as done by [20] for planar CT. This is based on the theory of
Fourier integral operators, and the specific results are based on very general theorems
in [8] or [2]. Finally, in section 7, we give reconstructions from real data to illustrate the
efficiency of our algorithm and demonstrate our characterization of stably recoverable
singularities. The appendix includes proofs of our technical theorems.

2. Electron (microscope) tomography (ET). In what follows we will pro-
vide a very brief overview of ET, where our aim is to properly state the inverse problem
and show how integral geometry can be used to solve it. The reader is referred to [4]
and the references therein for a more detailed account.

2.1. Scientific application and experimental setting. The problem of re-
covering the three-dimensional structure of an individual molecule (e.g., a protein or
a macromolecular assembly) at the highest possible resolution in situ or in vitro plays
a central role in understanding biological processes in time and space. Established
approaches, such as X-ray crystallography and nuclear magnetic resonance (NMR),
for dealing with this problem cannot recover the structure of an individual molecule
in a sample. The publication of [3, 29, 11] in 1968 marked the beginning of ET, where
the idea of recovering the structure of a sample from TEM data using principles of
tomography was first outlined. ET is currently the only approach that allows one to
reconstruct the three-dimensional structure of individual molecules in in situ/in vitro
samples. The main drawback of ET when compared to NMR/X-ray crystallography,
mentioned earlier, is that it provides only a low-resolution structure due to reasons
explained in section 2.2. However, since the ability to study individual molecules is
important in order to address many biological problems, ET is nowadays enjoying an
increasing interest within life sciences as a technique for low- or medium-resolution
structure determination of individual molecules.

A specimen that is to be imaged in a TEM must first be physically immobilized
since it is imaged in a vacuum. It also needs to be thin (about 70–100 nm) if enough
electrons are to pass through to form an image. The purpose of sample preparation is
to achieve this without interfering with the structure of the specimen. Data collection
in ET is done by mounting the specimen on a holder (goniometer) that allows one to
change its positioning relative to the optical axis of the TEM. For a fixed position,
the specimen is radiated with an electron beam, and the resulting data, referred to
as a micrograph, is recorded by a detector. Hence, each fixed orientation of the spec-
imen yields one micrograph, and the procedure is then repeated for a set of different
positions. The most common data acquisition geometry is single-axis tilting, where
the specimen plane is allowed only to rotate around a fixed single axis, called the tilt
axis, which is orthogonal to the optical axis of the TEM. The rotation angle is called
the tilt angle, and its angular range is usually contained in a subset of [−60◦, 60◦].

2.2. Difficulties. Limitations in instrumentation combined with the unfortu-
nate combination of very noisy data and the severe ill-posedness of the inverse prob-
lem have been (and still are) responsible for the slow dissemination of ET as a reliable
structure determination technique in life sciences. The former issue is partly addressed
by the rapid technological development, so we focus on the latter, which is due to the
following reasons.
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The dose problem. This is the single most important problem in ET. It limits
the total number of images that can be taken and arises due to specimen damage
during electron exposure. A typical range of dose that can be tolerated by a bio-
logical specimen is about 2000–7000 e−/nm2, which translates into about a total of
500–1250 e−/pixel (at 25000× magnification with pixel size of 14 μm) distributed over
60 or 120 micrographs, so each micrograph is very noisy, and the Poisson randomness
of the data (shot noise) has to be accounted for.

Limited range of the tilt angle. Restrictions in the data acquisition geometry for
ET, especially the restriction on the range of the tilt angle in single-axis tilting, lead
to limited angle data and therefore imply that the conditions for stable reconstruction
are not fulfilled.

Region of interest problem. For a given positioning of the specimen, only a subre-
gion of it is subject to electron exposure. Thus, the region of interest then equals (or
is a subset of) the intersection of all the exposed parts of the specimen from different
positions. Since we have contribution from outside the region of interest,1 we are
dealing with the region of interest problem (local tomography), somewhat similar to
the well-known “long object problem” in three-dimensional CT.

2.3. The inverse problem in ET. We therefore confine ourselves to presenting
a very brief outline for how one arrives at the expression for the forward operator
that occurs in the standard phase contrast model used by the ET community. The
interested reader is referred to [4, 10, 23] for a more detailed exposition.

The starting point is to assume that we have perfect coherent imaging; i.e., the
incoming electron wave is a monochromatic plane wave (coherent illumination), and
electrons scatter only elastically. The scattering properties of the specimen are in
this case given by the electrostatic potential, and the electron-specimen interaction
is modeled by the scalar Schrödinger equation. The picture is completed by adding
a description of the effects of the optics and the detector of the TEM, both modeled
as convolution operators. However, inelastic scattering and incoherent illumination
introduce partial incoherence, so the basic assumption of perfect coherent imaging
must be relaxed. The incoherence that stems from inelastic scattering is accounted
for within the coherent framework by introducing an imaginary part to the scattering
potential, called the absorption potential. The incoherence that stems from inco-
herent illumination is modeled by modifying the convolution kernel that describes
the effect of the optics. Next, as shown in [4, Theorem 9.5], taking the first order
Born approximation and linearizing the intensity enables one to explicitly express the
measured intensity in terms of the propagation operator (well known from diffraction
tomography [18, p. 48]) acting on the scattering potential of the specimen convolved
with point spread functions describing the optics and detector. The standard phase
contrast model used by the ET community for the image formation in TEM is based
on replacing the propagation operator by its high energy limit as the wave number
tends to infinity. This yields a model for the image formation that is based on the
parallel beam transform (see (2.3) for a definition).

The structure of the specimen is assumed to be fully described by the scattering
potential f : R

3 → C, which is defined as

(2.1) f(x) := −2m

�2

(
V (x) + iVabs(x)

)
,

1The exposed part of the specimen is larger than the region of interest.
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where m denotes the electron mass at rest, V : R
3 → R

− is the potential energy2

that models elastic interaction, and Vabs : R
3 → R

− is the absorption potential that
models the decrease in the flux, due to inelastic scattering, of the nonscattered and
elastically scattered electrons. Under the assumptions and approximations outlined in
the previous paragraph, the expression for the intensity generated by a single electron
is given as

I(f)(z,ω) :=
1

M2

(
1 − (2π)−2

[{
PSFre(·,ω) �

ω⊥
P(f re)(·,ω)

}( z

M

)
(2.2)

+
{

PSFim(·,ω) �
ω⊥

P(f im)(·,ω)
}( z

M

)]
k−1

)

for a unit vector ω ∈ S2 and z ∈ ω⊥, where ω⊥ :=
{
x ∈ R

n
∣∣ x · ω = 0

}
. In the

above expression, f re, f im : R
3 → R

+ denotes the real and imaginary parts of f in
(2.1) and P denotes the parallel beam transform (X-ray transform), which is defined
as the operator taking the line integral of a function, i.e.,

(2.3) P(f)(y,ω) :=

∫ ∞

t=−∞
f(y + tω) dt for ω ∈ S2 and y ∈ ω⊥.

Moreover, �ω⊥ denotes the two-dimensional convolution in the ω⊥-plane, and the
point spread functions PSFre and PSFim in (2.2) model the effect of the optics and
incoherent illumination of the TEM. A precise expression for these can be found, e.g.,
in [4, section 9.1], [10, Chapter 65], or [23, section 3.3]. Finally, k is the particle wave
number3 w.r.t. the homogeneous background medium (which in our case is a vacuum)
and M denotes the magnification.

As already mentioned, (2.2) yields the expression for the intensity generated by a
single electron. The expression for the actual data measured on a micrograph needs
to account for the detector point spread function (usually a slow-scan CCD camera)
as well as the stochasticity in the data. Following [4, section 6.3], the stochasticity in
the data is captured by assuming that the actual data delivered by the detector from
a pixel should be modeled as a sample of a random variable, which in turn implies
that the inverse problem in ET must be defined in a probabilistic setting.

Definition 2.1. We have a fixed finite set S0 of directions on a smooth curve
S ⊂ S2 that defines our parallel beam data collection geometry. The scattering proper-
ties of the specimen are assumed to be fully described by the complex valued scattering
potential f defined in (2.1). For each direction ω ∈ S0, the specimen is probed by a
monochromatic wave, and the resulting data on the micrograph at pixel (i, j) is de-
noted by data[f ](ω)i,j. The forward operator in ET, denoted by T , is defined as the
expected value of data[f ](ω)i,j, i.e.,

T (f)(ω)i,j := E
[
data[f ](ω)i,j

]
for ω ∈ S2 and pixel (i, j).

The inverse problem is to determine f when a sample of data[f ](ω)i,j is known for
ω ∈ S0 and finitely many pixels (i, j).

2The potential energy is related to the electrostatic potential U : R
3 → R

+ by V = −eU , where
e is the charge of the electron.

3We use the convention that the relation between the wave number k and the wavelength λ is
given by k = 2π/λ.
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The full expression for data[f ](ω)i,j (and the corresponding forward operator T )
is given in [4, equation (29)]. We will settle for a simplified version, also given in [4,
equation (30)], which yields the following expression for the forward operator:

(2.4) T (f)(ω)i,j = gaini,j |�i,j |Dose(ω)
{

PSFdet �
ω⊥

I(f)(·,ω)
}

(zi,j) + εi,j .

In the above expression, gaini,j is a detector constant, |�i,j | is the area of the (i, j)th
pixel, Dose(ω) is the incoming dose which gives the number of electrons hitting the
specimen per area unit, PSFdet is the detector point spread function, and εi,j is the
mean value of the stochastic variable representing the additive noise introduced by the
detector.

2.4. Integral geometric approaches for solving the inverse problem.
There are two main assumptions underlying all current integral geometric approaches
for solving the inverse problem given in Definition 2.1. The first is to assume that the
forward operator yields the actual measured data; i.e., the data in pixel (i, j) in the
micrograph with tilt ω equals the expected value of the random variable data[f ](ω)i,j .
The second is to assume that the forward operator is given by (2.4). Next, we shall
see that appropriate postprocessing of the measured data allows us to obtain an ex-
pression for the values of the parallel beam transform on (zi,j ,ω) with ω ∈ S0 and
zi,j ∈ Σ ⊂ ω⊥, where Σ is a fixed finite set defined by the pixels in the detector. We
have in this way recast the inverse problem in ET (given by Definition 2.1) as the
problem of inverting the parallel beam transform.

2.4.1. Generate single electron intensity data. The first step is to generate
single electron intensity data from the actual measured data. This can be done by
deconvolving the effects of the detector point spread function PSFdet and rescaling the
measured data so that it corresponds to the intensity generated by a single electron.
Let I(ω)i,j correspond to the intensity generated by a single electron at pixel (i, j). If
the rescaling and deconvolution are appropriately4 done, then we get

I(ω)i,j ≈ I(f)(zi,j ,ω) for ω ∈ S0 and zi,j ∈ Σ.

By (2.2), for zi,j ∈ Σ we then get that{
PSFre(·,ω) �

ω⊥
P(f re)(·,ω)

}(zi,j

M

)
(2.5)

+
{

PSFim(·,ω) �
ω⊥

P(f im)(·,ω)
}(zi,j

M

)
≈ (2π)2k

(
1 −M2 I(ω)i,j

)
.

One can now proceed in a number of different ways in order to recast the inverse
problem in Definition 2.1 as the problem of inverting the parallel beam transform.

2.4.2. Amplitude contrast only. The easiest approach is to assume that we
have perfect optics (no defocus and no spherical or chromatic aberration) and ignore
all apertures. These assumptions imply that PSFre ≡ 0 and PSFim = δω⊥ (see, e.g.,
[4, section 9.3]), so (2.5) reduces to

(2.6) P(f im)
(zi,j

M
,ω

)
≈ (2π)2k

(
1 −M2 I(ω)i,j

)
for zi,j ∈ Σ.

4The deconvolution of the detector point spread function PSFdet needed to create I(ω) is an
ill-posed operation, and therefore it needs to be performed using a regularization scheme. However,
the ill-posedness is not severe since the Fourier transform of PSFdet is positive [4, Remark 6.3], so it
should be fairly straightforward to perform this regularization as exemplified in [32].
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The inverse problem in Definition 2.1 can now be reformulated as the problem of
inverting the parallel beam transform of f im when the data is given by the right-hand
side of (2.6).

Note that the real part f re of the scattering potential is absent in (2.6) and thus
cannot be recovered. This is to be expected since the phase contrast is visible only due
to the imperfections in the optics (with nonzero defocus and/or nonzero aberration).
The inability to recover f re is a serious deficiency with this approach since f re is the
part of the scattering potential that has a straightforward physical interpretation in
terms of the molecular structure of the specimen, whereas f im is a phenomenological
construction that accounts for the decrease in the flux, due to inelastic scattering,
of the nonscattered and elastically scattered electrons. Assuming only amplitude
contrast therefore works well only with strongly scattering specimens where most of
the contrast in the micrographs is from amplitude contrast.

2.4.3. Constant amplitude contrast ratio. This is the most common ap-
proach in ET. It is based on introducing an additional assumption, namely, that
f im(x) = Qf re(x), where the constant Q is called the amplitude contrast ratio. Un-
der this assumption (2.5) reduces to

(2.7)
{

PSF(·,ω) �
ω⊥

P(f re)(·,ω)
}(zi,j

M

)
≈ (2π)2k

(
1 −M2 I(ω)i,j

)
for zi,j ∈ Σ,

where

PSF(z,ω) :=
{

PSFre(·,ω) + QPSFim(·,ω)
}

(z).

An expression for P(f re)
(zi,j

M ,ω
)

can now be obtained by deconvolving the point
spread function PSF in the expression (2.7).

There are several problems with this above approach. The first is that it requires
a priori knowledge of Q. Second, deconvolving PSF is an ill-posed operation. This
ill-posedness is especially pronounced since the Fourier transform of the kernel PSF
has multiple zeroes (see, e.g., [4, section 9.1]). Thus, if one wants to use (2.7) in
order to retrieve f re (and f im with knowledge of Q), then one needs to regularize the
deconvolution operation involved in the right-hand side of (2.7). The most common
approach is to again assume perfect optics and ignore all apertures. However, in such
a case the criticism raised against the amplitude contrast model (2.6) also applies to
this case, and not much is gained.

2.4.4. Phase contrast model with low-resolution amplitude contrast.
We now propose a novel approach that does circumvent some of the difficulties raised
above. The idea is to recover f re by a hybrid approach. Begin by assuming perfect
optics (no defocus and no spherical or chromatic aberration) and ignore all apertures.
Under these assumptions we know that (2.6) is valid, which gives an expression for
P(f im)

(zi,j

M ,ω
)

with zi,j ∈ Σ. Inserting this expression into (2.5) yields an expression
for {

PSFre(·,ω) �
ω⊥

P(f re)(·,ω)
}(zi,j

M

)
.

Finally, by deconvolving the point spread function PSFre, we obtain the expression
for P(f re)

(zi,j

M ,ω
)

with zi,j ∈ Σ. This deconvolution operation is, however, ill-
posed since the Fourier transform of the corresponding kernel PSFre has multiple
zeroes. Hence, in order to use this approach, one needs to regularize this deconvolution
operation.
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2.4.5. Phase contrast model with higher order terms. The troublesome
deconvolutions with the optics point spread functions can be avoided altogether if one
makes an approximation based on the asymptotic expansion of the forward operator
that includes higher order terms. More precisely, in [4, equation (40)] it is shown that

I(f)(z,ω) =
1

M2

(
1 − (2π)−2P(f im)

( z

M
,ω

)
k−1

+ (2π)−2

{(
�z

2
+ q

)
�ω⊥

[
P(f re)(·,ω)

]( z

M

)
+ �ω⊥

[∫
R

sf re(sω + ·) ds
]( z

M

)}
k−2

)
+ O(k−3),

where �ω⊥ is the two-dimensional Laplacian in the ω⊥-plane, �z is the defocus,
and q is the shortest distance (considering all the tilts) between the specimen and
the objective lens in the idealized optical system (the value of q is determined by the
magnification M and focal length of the objective lens [4, section 8.5]). Now, note
that ∫

R

sf re(sω + z) ds ≈ qP(f re)(z,ω),

which holds simply because q is much larger than the specimen thickness (where f re

has its support). Moreover, �ω⊥
[
P(f re)(z,ω)

]
= P(�f re)(z,ω), where � is the

Laplacian in R
3, so we therefore end up with the following replacement of (2.5):

P(f im)
(zi,j

M
,ω

)
+

(
�z

2
+ 2q

)
k−1P(�f re)

(zi,j

M
,ω

)
(2.8)

≈ (2π)2k
(
1 −M2 I(ω)i,j

)
for zi,j ∈ Σ. One can now repeat the postprocessing approaches described in sections
2.4.3 and 2.4.4 but this time based on (2.8) instead of (2.5). This would yield post-
processing operations of data where one does not have to go through the ill-posed
operation of deconvolving the optics.

2.4.6. Summary. As we have seen in the previous sections, performing a num-
ber of approximations allows us to recast the inverse problem in ET (given as in
Definition 2.1) as the problem of solving (2.5) for f re and f im. This problem can then
by additional assumptions be reduced to the problem of inverting the X-ray trans-
form. Finally, bearing in mind the data collection scheme outlined in Definition 2.1,
we are reduced to inverting the parallel beam transform since the line complex where
the X-ray transform is sampled consists of lines parallel to a direction (which in turn
varies on a curve in S2).

3. Limited data local tomography. To help the reader understand our three-
dimensional local reconstruction methods, we will first outline planar Lambda tomog-
raphy and then recall the parameterization of lines for the ET data set in R

3.
Lambda tomography [6, 5, 28] is a very clever algorithm for parallel beam or fan

beam tomography in the plane. It allows one to image a function f(x) using only
line integrals of f for lines near x. It is a variant of the standard filtered backprojec-
tion inversion algorithm that replaces the standard filter (that has infinite support)
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(a) Plot of the convolution kernel
we use in place of −D2

σ (see (5.8)).
The kernel is local because it is zero
off of the interval [−0.1, 0.1].
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(b) Plot of the standard filtered
backprojection kernel with a com-
parable width.

Fig. 1. Plot of kernels in Lambda tomography and in filtered backprojection. We see that the
Lambda kernel illustrated in Figure 1(a) is local, whereas the standard filtered backprojection kernel
shown in Figure 1(b) has infinite support.

with a filter that takes a second derivative in the detector variable. Because the nu-
merical derivative filter has small support, just near the line being evaluated, this
reconstruction becomes local; see Figure 1.

The formula reads as follows:

(3.1) Λμ(f) =
1

4π
P∗(μ−D2

ω⊥

)
P(f).

In the above formula, P∗ is the standard dual parallel beam transform integrating
over all lines in the plane through the given point and D2

ω⊥ is the second derivative
in the ω⊥ direction, i.e.,

D2
ω⊥(g)(y,ω) :=

d2

ds2
g
(
y + sω⊥,ω

)∣∣∣∣
s=0

for y ∈ R
2

with ω := (sin θ, cos θ) and ω⊥ := (cos θ,− sin θ). In this section, ω⊥ is a vector, and
for the three-dimensional parallel beam transform, ω⊥ is a plane. Note that ω is the
unit vector π/2 radians counterclockwise from ω⊥.

We subtract D2
ω⊥ in (3.1) so that the Fourier transform of the kernel of Λμ

is positive. The result is a reconstruction not of f but of a function Λμ(f) that has
singularities at the same places as f but with the singularities accentuated. As has been
shown in numerous articles (e.g., [6, 16, 21]) and as we will try to show here, Lambda
reconstructions can be as useful as reconstructions from filtered backprojection if one
does not need actual density values or if one has only local data from which density
values cannot be obtained. The constant μ ≥ 0 is included in (3.1), as suggested by
Smith and coauthors [26, 6], to provide some contour to the reconstruction. That is,
the backprojected second derivative

−ΔP∗P(f) = P∗(−D2
ω⊥P

)
(f) = Λ0(f),

or “pure” Lambda, emphasizes density changes or boundaries. The μ factor provides
“contours” from the smoothed version of the original function since it results in the
convolution

μP∗P(f) = f ∗ 2μ

‖ · ‖ ,
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where ∗ denotes the convolution in R
3. The sum, (3.1), provides a reconstruction

including both contours of f and the boundaries. A more complete rationale and
analysis are given in [6, 5].

We now recall the three-dimensional parallel beam complex for ET. Let S ⊂ S2

be a smooth curve on the sphere, and for ω ∈ S let ω⊥ be the plane through the origin
perpendicular5 to ω. Then, following any of the approaches outlined in section 2.4,
the inverse problem in ET as stated in Definition 2.1 can be recast as the problem
of recovering f given values P(f)(y,ω), where P is given as in (2.3), ω ∈ S, and
y ∈ ω⊥ (or for the local problem, y is in a proper subset of ω⊥). The example below
shows that this is an intrinsically ill-posed problem in the single-axis tilting case since
the local transform is not injective even in the absence of noise. Thus, singularity
detection algorithms such as Lambda tomography are natural methods since they
regularize the problem by reconstructing only features that are stably visible (see,
e.g., [20, 16, 21]).

Example 3.1. Assume f(x) = g(x3), where the specimen is parallel to the
(x1, x2)-plane. Then, only

∫∞
−∞ g(x3) dx3 can be determined from single-axis tilt ET

data with tilt angle less than π/2. This also is a counterexample for any set of lines,
as in ET, without horizontal directions.

4. The algorithm in general. In this section, we describe our Lambda to-
mography algorithm for directions (or angles) on an arbitrary smooth curve S ⊂ S2.
Note that we follow an ET convention when we use the word “angle” to describe a
point on S2. This general setup will provide a general framework for the single-axis
tilt geometry we use in ET, which will be described in section 5. The algorithm is
general enough to take care of other tilting geometries such as dual-axis and conical
tilting, which some of the newest electron microscopes can provide. A generalization
of algorithm to slant-hole SPECT (with the same geometry as conical tilt) will be
given in [22].

The planar Lambda tomography we described in section 3 has two important ad-
vantages: it solves the region of interest problem—it is local—and it is easily adaptable
to other limited data sets in the plane [16, 21]. As noted in section 1, the inverse prob-
lem in ET (as given in Definition 2.1) can be rephrased as a three-dimensional limited
angle region of interest reconstruction problem. It is therefore natural to consider a
type of singularity detection algorithm related to Lambda tomography. Furthermore,
as shown by Example 3.1, inversion is not possible, so recovering singularities is an
appropriate goal. It also turns out that, despite the severe ill-posedness of the inverse
problem, those singularities that can be recovered are recovered stably at least in range
of Sobolev spaces.6 Such an algorithm includes two pieces, a backprojection operator
and a derivative along the lines.

Let S be a curve on the sphere. The backprojection operator is the dual parallel
beam transform for directions on the curve S,

(4.1) P∗
S(g)(x) :=

∫
ω∈S

g
(
x − (x · ω)ω,ω

)
dω for x ∈ R

3,

where the measure dω is the arc length measure on the curve S and the point
x − (x · ω)ω is the projection of x onto the plane ω⊥.

5Note that ω⊥ was a direction in S1 perpendicular to ω in the planar (two-dimensional) setting,
whereas in the three-dimensional setting it is a plane perpendicular to ω.

6A stronger type of stability would be a microlocal inverse continuity estimate, and the authors
are not aware of such a direct estimate for these operators.
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The derivative along lines is defined as follows. Assume the curve S is parame-
terized by the differentiable function ω(θ) with derivative ω′(θ) �= 0, and let

(4.2) σ(θ) :=
ω′(θ)

‖ω′(θ)‖

be a unit tangent to the curve S at ω(θ). Then, we denote the second derivative in
direction σ by

(4.3) D2
σg

(
y,ω(θ)

)
:=

d2

ds2
g
(
y + sσ(θ),ω(θ)

)∣∣∣∣
s=0

.

Our basic reconstruction operator is

(4.4) L(f) := P∗
S

(
(μ−D2

σ)P(f)
)
.

This is a natural generalization of the two-dimensional Lambda operator (3.1) since
it includes a second derivative along lines, a smoothing term, and a backprojection.
We include the factor of μ, as is done for standard Lambda tomography, to provide
contour to the reconstruction.

How L detects singularities can be understood using microlocal analysis, as we do
in section 6. We will show that L is a pseudodifferential operator (PDO) with a mildly
singular symbol (Theorem A.1). Moreover, ET data are very noisy, as discussed in
section 2.2, so to cope with that we smooth in two ways. First, we evaluate the
derivative D2

σ using a kernel that is a smoothed version of the second derivative.
Second, we smooth by averaging nearby slices; that is, we also convolve in the ω⊥-
plane in the direction perpendicular to σ. We will describe this smoothing explicitly
in the case of single-axis tilting in the next section.

5. Single-axis tilt ET. In this section, we will describe our algorithm for single-
axis tilt ET. In single-axis tilt ET, one restricts the directions to a single tilt axis.
We use a coordinate system where the electrons come in along the z-axis when ω =
(0, 0, 1), and we assume the tilt axis is the x-axis. Let us now write (4.4) in these
coordinates.

Expression for S. Because the specimen cannot be fully rotated, this means that
the curve of directions, S, is an arc of a circle in the (y, z)-plane and there is a limited
angular range of ±θmax, where θmax ≈ π/3 radians. One appropriate parameterization
for the curve S in this setting is

(5.1) ω(θ) := (0, sin θ, cos θ), θ ∈ ]−θmax, θmax[ ,

and by (4.2) we get

(5.2) σ(θ) = (0, cos θ,− sin θ).

Expression for P. Now, e1 := (1, 0, 0) and σ(θ) form an orthonormal basis of the
plane ω(θ)⊥ and thereby provide orthonormal coordinates on ω(θ)⊥:

(5.3) y = (y1, yσ) �→ y1e1 + yσσ(θ) ∈ ω(θ)⊥.

In these coordinates the set of lines is parameterized by

(5.4)
Y :=

{
(y, θ)

∣∣ y = (y1, yσ) ∈ R
2, θ ∈ ]−θmax, θmax[

}
,

(y, θ) �→ �(y, θ) :=
{
y1e1 + yσσ(θ) + tω(θ)

∣∣ t ∈ R

}
,
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and functions on lines will be written g(y, θ) = g
(
(y1, yσ), θ

)
, so in particular P has

parameterization

(5.5) P(f)(y, θ) := P(f)
(
y1e1 + yσσ(θ),ω(θ)

)
.

Expression for P∗
S . Before expressing the dual operator P∗

S in (4.1) in these
coordinates, we smooth it slightly in order to make it a classical Fourier integral
operator (FIO) and in order to increase the accuracy in the numerical integration.
This is done by choosing 0.9 θmax < θcut < θmax and defining the smooth function

(5.6) ϕ : [−π/2, π/2] → [0, 1], suppϕ = [−θcut, θcut],

where ϕ is nonzero on ]−θcut, θcut[ and equal to one on most of this interval. ϕ is then
extended R by making it π-periodic. The smoothed limited angle dual parallel beam
transform, which is the version of P∗

S that we will be using, is

(5.7) P∗
θcut

(g)(x) :=

∫ θcut

−θcut

g
(
x −

(
x · ω(θ)

)
ω(θ),ω(θ)

)
ϕ(θ) dθ for x ∈ R

3.

A simple trapezoidal rule integration, which corresponds to a specific choice of ϕ,
works well in (5.7).

Expression for D2
σ. In our coordinates (y, θ), D2

σ becomes

(5.8) D2
σ(g)(y, θ) :=

d2

ds2
g
(
(y1, s), θ

)∣∣∣∣
s=0

.

Expression for (4.4). Our expression for the Lambda operator L in (4.4) becomes

(5.9) L(f) = P∗
θcut

(
(μ−D2

σ)P(f)
)
.

This operator is a two-dimensional limited angle Lambda operator in each fixed plane
x = constant (compare with (3.1)).

Further smoothing. We actually use a smoothed version of the derivative D2
σ in

the σ direction, and we also smooth between slices in the e1 direction. This can
be understood as either a convolution/smoothing of the data in the data plane, ω⊥,
or as a convolution/smoothing of the final reconstruction, as we now explain. Let
φ1 ∈ C ∞

c (R) be even with
∫

R
φ1 = 1 and φ2 ∈ C ∞

c (R2) be radial with
∫

R2 φ2 = 1.

Moreover, let φ̃2 be the two-dimensional parallel beam transform of φ2, and note that
φ̃2 is radial and independent of direction. Let (φ1⊗φ̃2)(x1, x2, x3) = φ1(x1)φ̃2(x2, x3).
Then, for (y, θ) ∈ Y and data f with compact support,

(5.10) (φ1 ⊗ φ̃2) �
ω⊥

P(f)(y, θ) = P
(
(φ1 ⊗ φ2) ∗ f

)
(y, θ),

where ∗ denotes the convolution in R
3 and �ω⊥ is the convolution in the detector

plane, ω(θ)⊥. Equation (5.10) is valid since P integrates only over lines perpendicular
to e1 and φ1 is a function only of x1. Because L is a convolution operator (see
Theorem A.1), it commutes with the convolution with φ1 ⊗ φ2. This means that(

φ1 ⊗ φ2

)
∗ L(f) = P∗

θcut

[
(μ−D2

σ)
(
(φ1 ⊗ φ̃2) �

ω⊥
P(f)

)]
(5.11)

= P∗
θcut

[
φ1 �

e1

(
(μφ̃2 −D2

σφ̃2) �
σ
P(f)

)]
,(5.12)
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where �e1
and �σ are one-dimensional convolutions in the ω⊥-plane in the respective

directions e1 and σ(θ). So, our algorithm can be viewed as a smoothed version of
L(f) (left-hand side of (5.11)), a smoothing of the data before applying L (right-hand
side of (5.11)), or averaging over slices (the �e1 convolution in (5.12)) of a smoothed
derivative (the �σ convolution in (5.12)).

6. Microlocal analysis applied to ET. We will now use microlocal analysis
to analyze which singularities of a specimen are stably visible from single-axis tilt ET
data.

Microlocal analysis allows one to rigorously define singularities of functions such
as object boundaries. This is made precise by the wavefront set whose definition is
our first task. Next, the theory of FIOs describes which singularities of a function
are visible from its ET data. This correspondence follows from general theorems of
Greenleaf and Uhlmann [8] about geodesic Radon transforms on admissible complexes,
and the microlocal properties of this specific transform were examined by Boman and
Quinto [2]. Here we will give a basic version of the microlocal regularity theorem
which will allow us to characterize visible singularities. The complete version of the
theorem will be presented in the appendix along with characterizations of L as a
convolution PDO. In the appendix, we also introduce a generalization, L	 (A.14), of
an operator of Louis and Maaß. Our characterization will show the trade-offs between
the operators; L	 can add stronger singularities than L. At the end of the section,
we give an example that illustrates the predictions.

Before stating the formal definition of the wavefront set we need to deal with a
technicality.

Remark 6.1. The wavefront set is typically defined as a subset of the cotangent
bundle, because in this way it is invariant under diffeomorphisms. Furthermore, this
is a natural way to describe wavefronts in general. Here is the identification for R

3.
For x ∈ R

3, the cotangent space T ∗
x(Rn) is the set of linear functionals on the tangent

space Tx(R3), and dxj is the dual covector to ∂
∂xj

(j = 1, 2, 3). This gives a canonical
representation,

ξ � R
3 → ξdx := ξ1dx1 + ξ2dx2 + ξ3dx3.

The cotangent bundle, T ∗(R3), is the set T ∗(R3) :=
{
(x, ξdx)

∣∣ x ∈ R
3, ξ ∈ R

3
}
,

where (x; ξdx) = (x1, x2, x3; ξ1dx1 + ξ2dx2 + ξ3dx3).
Recall that D ′(R3) is the set of all distributions, S ′(R3) is the set of tempered

distributions (dual space of S (R3)), and E ′(R3) is the space of compactly supported
distributions. We are now ready to define the concept of a wavefront set.

Definition 6.2 (see [19, p. 259]). Let f be a distribution, x0 ∈ R
n, and ξ0 ∈

R
n \ {0}. We then define the following:

1. f is in C ∞ microlocally near (x0, ξ0dx) if and only if there is a cut-off
function ψ ∈ C ∞

c (Rn) with ψ(x0) �= 0 and a function u homogeneous of
degree zero that is smooth on R

n \ {0} with u(ξ0) �= 0 such that the product

u(·)ψ̂f(·) is rapidly decreasing at ∞.7 The C ∞ wavefront set of f , WF(f), is
the complement of the set of (x0; ξ0dx) near which f is microlocally smooth.

2. f is in H α microlocally near (x0; ξ0dx) if and only if there is a cut-off
function ψ ∈ C ∞

c (Rn) with ψ(x0) �= 0 and a function u homogeneous of

7In our context, a function h is rapidly decreasing at ∞ if for each k ∈ N there is a C > 0 such

that for all x ∈ R
n,

∣∣h(x)
∣∣ ≤ C

(
1 + ‖x‖

)−k
. Sometimes one replaces the function u by an open cone

U containing ξ0 on which ψ̂f is rapidly decreasing at ∞.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1294 ERIC TODD QUINTO AND OZAN ÖKTEM

degree zero and smooth on R
n \ {0} and with u(ξ0) �= 0 such that the product

u(·)ψ̂f(·) ∈ L 2
(
R

n,
(
1 + |ξ|2

)α)
. The H α wavefront set of f , WFα(f), is

the complement of the set of (x0, ξ0dx) near which f is microlocally in H α.
For example, if f is one inside the unit disk and zero outside, then WF(f) =

WF1(f) and they both consist of the covectors conormal to the boundary of the disk.
In general, if f : R

3 → R is C ∞ except for jump singularities along smooth surfaces,
then the C ∞ wavefront set of f consists of all the conormals to these surfaces of
discontinuity.

Having defined the necessary concept of a wavefront set, we now turn our attention
to our main theorem, which characterizes the singularities that are visible from single-
axis tilt ET data.

Theorem 6.3 (microlocal regularity theorem). Let f ∈ E ′(R3), (y1, yσ, θ0) =
y ∈ Y , and let ξ0 ∈ ω(θ)⊥ be a nonzero vector where we write ξ0 = ξ1e1 + ξσσ(θ).
Finally, let x0 ∈ �(y1, yσ, θ). If ξσ �= 0, then there is a corresponding covector in
T ∗

y (Y ) such that (x0, ξ0dx) ∈ WF(f) if and only if this covector is in WF
(
P(f)

)
(this correspondence is given in Theorem A.6). If we also assume that P(f) is C ∞

near y, then (x0, ξ0dx) /∈ WF(f).
Note that dx1 is conormal to ω(θ) (and thus conormal to the line �(y, θ) for all θ

since ω(θ) is in the (y, z)-plane). So, the restriction ξσ �= 0 just means ξ0dx defined
in the theorem above is not a multiple of dx1 (ξ0 is not parallel to e1).

In general, Radon transforms (such as the parallel beam transform in this article)
detect only singularities perpendicular to the sets of integration, so it is not surprising
that the theorem provides information only about singularities of f conormal to ω(θ)
since these are conormal to the corresponding lines in the data set. However, for this
transform, there are two conormal directions that are excluded, ξ0 = ±e1; these are
“bad” cotangent directions because they “should” be visible (they are conormal to
lines in the data set), but they cause problems. We will examine these problems in
the appendix, and in particular we will show that L can add singularities in these
directions.

Example 6.4. We now illustrate the implications of Theorem 6.3 for ET. Let
D be the unit disk in space, and let f be one inside D and zero outside. Assume
the region of interest contains D, and assume that ϕ satisfies (5.6). If x ∈ bdD,
then x is normal to bdD at x, so (x; xdx) ∈ WF(f). No matter what θcut is, the
wavefront ±e1dx is problematic. This is a conormal at the points (±1, 0, 0) on the
boundary. Singularities in other conormal directions are visible from the data as long
as the direction is perpendicular to a line in the data set. Let x = (x1, x2, x3) ∈
bdD. Because of the geometry of the single-axis tilt (5.1), this means that |x3/x2| <
tan(θcut) in order for the wavefront at x to be visible. The part of the sphere that
should be visible is illustrated in Figure 2. One would expect for numerical reasons
that the boundary would get gradually less well defined near the edge of the visible
part.

7. Applications to real data. We have tested the limited angle Lambda algo-
rithm based on the Lambda operator (5.9) on both in vitro and in situ ET data. The
Lambda reconstruction is obtained by applying the limited angle Lambda algorithm
directly on the region of interest. This reconstruction is compared to a filtered back-
projection (FBP) reconstruction that has been regularized by an additional low-pass
filtering (low-pass FBP). This latter filtering, which in our case reduces the resolution
to 10 nm, is necessary in order to gain stability, and the value for the low-pass filtering
represents the best trade-off between stability and resolution if FBP is to be used on
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Fig. 2. Part of sphere with normal vectors normal to lines in the data set with θcut = 60◦.
The x1-axis is facing out of the page.

these particular examples. The low-pass FBP is applied to the entire reconstruction
region, and the region of interest is then extracted for comparison against the limited
angle Lambda reconstruction.

The first case, shown in Figure 3, is the reconstruction of in vitro monoclonal
immunoglobulin G (IgG) molecules with a molecular weight of 150 kDa. The ET
data was collected from single-axis tilting (see section 2.1) with a uniform sampling of
the tilt angle in [−60◦, 60◦] at 1◦ step. The pixel size is 0.5241 nm and the total dose is
1820 e−/nm2. A detailed account on the background for the study, the experimental
setting, and the study objective is given in [24]. The reconstruction region is 256 ×
256× 256 pixels in size, and the local region of interest is centered in the midpoint of
the reconstruction region with a size of 128 × 128 × 128 pixels.

Figure 3 shows how the limited angle Lambda reconstruction emphasizes bound-
aries better. It also seems to somewhat suppress the background noise outside the
molecule, and the IgG molecule (which is in the center) is more visible than in the
low-pass FBP reconstruction.

The next case, shown in Figure 4, is the reconstruction of an in situ tissue sample
(could be a human, rat, or mouse kidney). The ET data was collected from single-
axis tilting (see section 2.1) with a uniform sampling of the tilt angle in [−60◦, 60◦]
at 2◦ step. The pixel size is 0.5241 nm and the total dose is 1520 e−/nm2. A detailed
account on the background for the study, the experimental setting, and the study
objective is given in [30, 27]. The reconstruction region is 300 × 300 × 150 pixels in
size, and the local region of interest is centered in the midpoint of the reconstruction
region and is of 200 × 200 × 140 pixels size.

Since the object in Figure 4 is in situ, parts of the object outside the region of
interest will affect the FBP reconstruction in the region of interest but not the Lambda
reconstruction (since it does not require data from outside the region of interest). The
reconstructions in Figure 4 clearly show that the limited angle Lambda reconstruction
defines boundaries better since the “V” shaped region containing the slit diaphragm
(in the upper right side of the object) is more clearly defined than in the low-pass
FBP reconstruction. This also illustrates the microlocal principles of section 6 since
the slabs are tangent to lines in the data set.

Appendix. The microlocal properties of P and L. In this section, we will
describe the microlocal properties of our transform P and the reconstruction operator
L (5.9). We will use this information to explain how the transform detects singularities
and show the relevance to ET. The properties of the more general operator (4.4) are
similar, and the details will be given in a subsequent article [22].

The convolution operator in R
n is denoted by ∗. For the Fourier transform on
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(a) Lambda reconstruction. (b) Low-pass FBP reconstruction.

Fig. 3. The boundaries are better defined in the Lambda reconstruction when compared to the
low-pass (10 nm-resolution) FBP reconstruction. The background noise is also suppressed. This
makes the analysis of the IgG molecule easier.

(a) Lambda reconstruction. (b) Low-pass FBP reconstruction.

Fig. 4. The “V” shaped region containing the slit diaphragm is more clearly defined in the
Lambda reconstruction than the low-pass (10 nm-resolution) FBP reconstruction.

R
n, we use the normalization

F(f)(ξ) = f̂(ξ) :=

∫
x∈Rn

e−ix·ξf(x) dx.

The two-dimensional Fourier transform on the plane ω⊥ is defined in a similar way,
and in the coordinates we chose for single axis tilt (see section 5), it is

Fω⊥(g)(η, θ) :=

∫
(y1,yσ)∈R2

e−i(y1,yσ)·(η1,ησ)g(y, θ) dy for η ∈ R
2.

Our next theorem characterizes the reconstruction operator as a convolution PDO
with a symbol that is singular all along the ξ1-axis. This has specific implications for
reconstructions based on L, as we explain in Theorem A.2 and Example A.5.

Theorem A.1. Let P∗
θcut

be defined by (5.7), where the smooth function ϕ
satisfies the assumptions given in (5.6), P is defined by (5.5), and μ ≥ 0. For
ξ = (ξ1, ξ2, ξ3) ∈ R

3, let ξ′ = (ξ2, ξ3), and for ξ′ �= 0, let arg(ξ′) be one of the
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angles in the plane from the ξ2-axis to ξ′.8 Then, for μ �= 0 the operator L is de-
fined for distributions of compact support. For μ = 0, L is a continuous map from
H α+1(R3) to H α(R3) for all α ∈ R. Moreover, in the coordinates defined above,
L(f) = f ∗ k, and its symbol is the Fourier transform of k,

(A.1) σ(x, ξ) = k̂(ξ) :=

(
ϕ
(
arg(ξ′) + π/2

)
(2π)2‖ξ′‖

)(
μ + ‖ξ′‖2

)
.

Proof. To prove Theorem A.1, we need to show that

L(f)(x) =
1

(2π)2

∫
ξ∈R3

eixξ k̂(ξ)F(f)(ξ) dξ, where k̂ is given by (A.1).

Initially, we assume f is a smooth function of compact support, but by continuity in
distribution space, the end results will be true for distributions of compact support,
as we will explain when needed. We use the convention that if x = (x1, x2, x3) ∈ R

3,
then x′ = (x2, x3), and we begin the calculations in the plane x1 = constant. It is
straightforward to show using polar coordinates in this plane that

(A.2) P∗
θcut

P(f)(x) =

∫
y′∈R2

ϕ
(
arg(y′)

)
‖y′‖ f

(
x + (0,y′)

)
dy′.

To write (A.2) as a PDO, we first fix x1 and take the Fourier transform of (A.2) in
x′. Then, we use the fact about Fourier transforms of homogeneous functions [25,
sect. 4, equation (7), p. 61] that the Fourier transform of ϕ

(
arg(y′)

)/
‖y′‖ is given by

the first expression in parentheses in (A.1). To finish the proof, we take the inverse
Fourier transform in x′ and then the Fourier transform and inverse transform in x1.
This shows that

(A.3) P∗
θcut

P(f)(x) =
1

(2π)2

∫
ξ∈R3

eixξ

(
ϕ
(
arg(ξ′) + π/2

)
‖ξ′‖

)
F(f)(ξ) dξ.

Note that P∗
θcut

: E ′(Y ) → D ′(R3) is continuous, and a cutoff 9 applied to P is
continuous from E ′(R3) to E ′(Y ) by duality. These observations explain why P∗

θcut
P

and L are defined and continuous from E ′(R3) to D ′(R3).
To write L as a PDO, we first observe that, by an integration by parts, D2

σP(f) =

P
(
Δx′f

)
, where Δx′ = ∂2

∂x2
2

+ ∂2

∂x2
3
. This is clearly true for functions and true on E ′

by continuity. Then, we note that

(A.4) L(f) = P∗
θcut

P
(
(μ− Δx′)f

)
,

so using (A.3) on (μ− Δx′)f gives (A.1).
Finally, let L0 be defined as L with μ = 0. The Sobolev continuity of L0 follows

immediately from the calculation of its symbol above since the symbol of L0 is bounded
above by (1+‖ξ‖2)1/2 since ‖ξ′‖ ≤ ‖ξ‖ and |ϕ| is bounded above by 1. This proves the
Sobolev continuity of L0. Note that L is not defined on H α because of the singularity
of 1/‖ξ′‖ at ξ′ = 0. This concludes the proof of Theorem A.1.

8Note that ϕ
(
arg(ξ′)

)
is well defined since ϕ is π-periodic.

9Let ψ be a smooth function that is one on [−θcut, θcut] and supported in (−θmax, θmax); then
ψP : E ′(R3) → E ′(Y ) is continuous, and P∗

θcut
ψP = P∗

θcut
P.
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We describe what L does to wavefront sets in our next theorem and in Exam-
ple A.5.

Theorem A.2. Let L be as in Theorem A.1, and f is a distribution of compact
support in the unit disk D. Finally, define

V :=
{(

x, ξdx
)
∈ T ∗(R3) \ 0

∣∣ ξ2 �= 0, |ξ3/ξ2| < tan θcut

}
,(A.5)

A :=
{
(x, ξ1dx1)

∣∣ x1 ∈ [−1, 1], x′ ∈ R
2, ξ1 ∈ R \ 0

}
.(A.6)

Then,

WFα
(
L(f)

)
∩ V = WFα+1(f) ∩ V,(A.7)

WFα
(
L(f)

)
⊂

(
WFα+1(f) ∩ cl(V)

)
∪ A.(A.8)

The set V in (A.5) is the set of “reliably visible” singularities. Equation (A.7)
implies that singularities of f in those codirections are visible in the reconstruction
L(f), and they are one order less smooth in Sobolev scale in the reconstruction than
the corresponding singularities of f . Recall that visible covectors have to be conormal
to lines in the data set by Theorem 6.3, and directions in V are all such covectors
except for the “bad” cotangent directions, those in the ±dx1 codirection.

Inclusion (A.8) and Example A.5 demonstrate that L can give additional singular-
ities in the set A (in the ±dx1 codirection). Therefore they do not affect singularities
in the visible directions, namely those in V. In Remark A.4, we prove that these
added singularities are really a smearing of singularities of f in planes conormal the
bad codirections, that is, planes x1 = a.

Proof. In the proof of Theorem A.2 we will follow the conventions in [13, Chap-
ter 8] and allow wavefront directions to be in R

n \ 0 rather than in the cotangent
space. Let us now give an outline of the proof. If L were a standard PDO, then the
proof would follow from standard results. Our case is complicated by the fact that L
is not a standard PDO since its symbol,

σ(x, ξ) =

(
ϕ
(
arg(ξ′) + π/2

)
‖ξ′‖

)(
μ + ‖ξ′‖2

)
,

does not satisfy the decay conditions on the derivatives in the ξ1 direction. We
introduce an operator M (A.10) that cuts off in the ξ1 direction and show that M
and L can be composed to become a standard PDO that detects singularities of f
essentially in V. Next, we show that (1 −M)L contributes to the wavefront set only
near the ξ1 direction. Finally, we put this together to show that the wavefront in
directions in V are visible and that the only added directions are in A. Theorem
8.2.9 and other results in [13, section 8.2] can be used to prove parts of this theorem
without introducing the operator M. We include that operator in order to provide
an elementary proof of the other properties of L. We begin with a useful lemma.

Lemma A.3. Let f ∈ S ′(Rn), and let U ⊂ R
n be a nonempty open cone con-

taining the vector ξ0. Assume the Fourier transform F(f) is zero on U except for a
compact set (which could be empty). Then, for all x0 ∈ R

n, (x0, ξ0) /∈ WF(f), where
WF(f) denotes the C ∞ wavefront set of f .

The proof follows from [13]. In particular, ξ0 is not in the limit cone at infinity
of suppFf , and so, by [13, Lemma 8.1.7, p. 258], for any point x0, (x0, ξ0) /∈ WF(f).

We now define the operator M such that ML is a standard PDO that detects
most singularities in V. Denote the set of second coordinates in V by

(A.9) W :=
{
ξ ∈ R

3 \ 0
∣∣ ξ2 �= 0, |ξ3/ξ2| < tan θcut

}
.
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Let U be a small conic open neighborhood of ±e1, and let U ′ be a conic open subset
of U such that ±e1 ∈ U ′ and cl(U ′) ⊂

(
U ∪ {0}

)
. Now let m(ξ) be a function that

is homogeneous of degree zero in R
3, smooth away from the origin, zero in U ′, and

equal to one off of U . Define

(A.10) M(f)(x) = F−1
(
m(·)F(f)(·)

)
(x).

Then, M is a classical PDO of order zero in Sobolev scale.
It is a straightforward justification using Fourier transforms that one can compose

L with M (or (1−M)) for distributions of compact support, and we will assume this.
ML is a classical PDO because its symbol,

m(ξ)

(
ϕ
(
arg(ξ′) + π/2

)
‖ξ′‖

)(
μ + ‖ξ′‖2

)
,

is the sum of a term homogeneous of degree (−1) and one homogeneous of degree 1.
Since the terms are smooth away from the origin (m(ξ) cuts off the near the nonsmooth
ξ1 direction), ML is a classical PDO of order one. Since its symbol is elliptic on the
open set R

3 ×
(
W \ cl(U ′)

)
, L is elliptic on that set. Furthermore, by local Sobolev

continuity, the H α+1 wavefront of f in R
3 ×

(
W \ cl(U)

)
corresponds to the H α

wavefront of ML(f) on that set,

(A.11) WFα
(
ML(f)

)
∩
(
R

3 ×
(
W \ cl(U)

))
= WFα+1(f) ∩

(
R

3 ×
(
W \ cl(U)

))
.

Because supp
(
1 − m(ξ)

)
⊂ cl(U), F

(
(1 − M)L(f)

)
has support contained in

cl(U). So, by Lemma A.3,

(A.12) WF
(
(1 −M)L(f)

)
⊂ R

3 × cl(U).

In addition, since L = ML + (1 − M)L, the H α+1 wavefront set of L(f) off of
R

3 × cl(U) is the same as that of ML(f). Using (A.11), we see that

WFα
(
L(f)

)
∩
(
R

3 ×
(
W \ cl(U)

))
= WFα+1(f) ∩

(
R

3 ×
(
W \ cl(U)

))
.

By making U arbitrarily close to e1, we establish (A.7).
To prove the containment (A.8), we fix U , U ′, and M as above. We will now

prove

(A.13) WFα
(
ML(f)

)
⊂

(
WFα+1(f) ∩

(
R

3 ×
(
cl(W) \ cl(U)

)))
∪
(
R

3 × cl(U)
)
.

First, because the symbol of ML is supported on the closed set R
3 ×

(
cl(W) \ U ′),

WFα
(
ML(f)

)
⊂ R

3 ×
(
cl(W) \ U ′).

Because of (A.11), we need only consider ξ ∈ bd(W) \ cl(U) and x0 ∈ R
3 such

that (x0, ξ) /∈ WFα+1(f). Since ML is a standard PDO of order one, (x0, ξ) /∈
WFα

(
ML(f)

)
. This shows (A.13).

Next, the wavefront set of a sum is contained in the union of the wavefront set of
the terms. Combining this fact with (A.12) and (A.13) yields

WF
(
L(f)

)
⊂

(
WFα+1(f) ∩

(
R

3 ×
(
cl(W) \ cl(U)

)))
∪
(
R

3 × cl(U)
)
.
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The inclusion in (A.8) now follows when we let U shrink to ±e1.
We claim that if f is supported in B, then suppL(f) ⊂ [−1, 1]×R

2. This is true
by a global version of the argument at the end of Remark A.4. This concludes the
proof of Theorem A.2.

Remark A.4. Note that if f ∈ E ′(R3) is smooth in the ±dx1 codirection at all
points, then, for sufficiently small U , (1 −M)(f) is smooth, and so

L(f) = ML(f) + L(1 −M)(f)

has no wavefront in the ±dξ1 codirection. In other words, for this f there are no
added singularities.

A local version of this statement is true: if a ∈ R and f is smooth in the ±dx1

codirection at all points in the plane x1 = a, i.e.,
(
(a,x′);±dx1

)
/∈ WF(f) for all

x′ ∈ R
2), then L(f) is smooth in the ±dx1 codirection above all points on the plane

x1 = a. To see this we observe that because supp f is compact and wavefront sets are
conical and closed, one can find a function g ∈ C ∞

c (R) is not zero near x1 = a and a
sufficiently small neighborhood U of e1 such that g(x1)(1 −M)(f) is smooth, and so
gL(f) is smooth in the ±dx1 codirection at all points. Thus, L(f) is smooth in this
direction at all points in the plane x1 = a.

That is, wavefront is not added if f is smooth in this codirection at all points on
the plane x1 = a. However, Example A.5 demonstrates that wavefront can be spread
in the plane x1 = a if f has wavefront in the ±dx1 direction at points in this plane.

We now introduce a new operator, L	, which is related to an operator of Louis
and Maaß for cone beam CT. Louis and Maaß adapted Lambda tomography to cone
beam tomography in a very clever way [17] by taking a Laplacian in the detector
plane before taking cone-beam backprojection. This adds extra singularities to the
reconstruction as proven in general in [8] and for the cone beam transform in R

3 in
[7, 14]. The natural generalization of the Louis–Maaß operator to our setting is

(A.14) L	(f) := P∗
θcut

(
(μ− Δω⊥)P(f)

)
,

where Δω⊥ is the Laplacian operator in the detector plane and μ ≥ 0. In Example A.5
we will show that L	 adds stronger singularities than L.

Anastasio et al. [1], Katsevich [15], and Ye, Yu, and Wang [31] have developed
refinements of Louis and Maaß’s operator for cone beam CT. They decrease the
added singularities by taking a derivative in only one direction rather than taking the
Laplacian in the detector plane. This is analogous to our operator L, in which the
derivative is D2

σ. Although these results are related, they do not apply to parallel
beam data, as our methods do.

The arguments in our proof of Theorem A.1 can be used to show that L	 is a
PDO with a singular symbol(

ϕ(arg(ξ′) + π/2)

‖ξ′‖

)(
μ + ‖ξ‖2

)
and (A.7) and (A.8) hold for L	. For fixed ξ′, the symbol of L	 is of order 2 as
ξ1 → ∞, although it is of order 1 in other directions. The symbol of L is more mildly
singular since, although it is not differentiable when ξ′ = 0 (on the ξ1-axis), it is of
order zero as ξ1 → ∞ when ξ′ is fixed.

Our next example justifies the addition of the set A in (A.8), a set on which
wavefront can be added by L and L	. The example also shows how L	 adds stronger
singularities than L.
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Example A.5. Let α ∈ R, and let ε > 0 be arbitrary. We construct a function
f ∈ H α+1(R3) supported in S := [−1/2, 1/2]3 with the following properties:

1. L	(f) /∈ H α
loc(R

3), and L	(f) has H α wavefront set in the ±dx1 direction
even though f is in H α+1 everywhere. This is true even for points outside
supp f , points at which f is smooth.

2. L(f) is in H α+1
loc (R3) but has H α+1+ε wavefront set in the ±dx1 codirection

outside of supp f . Therefore, L also spreads singularities, but, for this case,
the singularities are weaker. This weakening is suggested by the fact that L0,
which is defined as L with μ = 0, is continuous of order one in Sobolev scale.

The actual construction of f goes as follows: Let ε′ = min{ε, 1/2}, and let φ1 ∈
H α+1(R) with suppφ1 = [−1/2, 1/2] such that

(A.15) WFα+1+ε′(φ1) =
{
(x1, tdx1)

∣∣ x1 ∈ [−1/2, 1/2], t �= 0
}
.

Also, let φ2 be a nonnegative smooth function in R
2 with suppφ2 = [−1/2, 1/2]2.

For x1 ∈ R and x′ ∈ R
2 define f(x1,x

′) = φ1(x1)φ2(x
′). For g ∈ C ∞

c (R2) define

(A.16) H(g)(x′) :=

∫
y′∈R2

ϕ
(
arg(y′)

)
‖y′‖ g(x′ + y′) dy′;

then H is really P∗
θcut

P restricted to a fixed plane (compare with (A.2)). Since H is
a classical PDO, H is continuous from domain C ∞

c (S) to C ∞(R2).
It is straightforward to show that L	(f) = −φ′′

1H(φ2)+φ1H
(
(μ−Δx′)φ2

)
, where

φ′′
1 is the second derivative of φ1. Since φ1 is chosen to be in H α+1 and not H α+1+ε′ ,

the first term in the expression for L	(f) is not in H α
loc, although the other terms

are. Thus, L	(f) is not in H α
loc. Because of (A.15),

(A.17) WFα
(
L	(f)

)
=

{
(x1,x

′, tdx1)
∣∣ x1 ∈ [−1/2, 1/2], x′ ∈ suppH(φ2), t �= 0

}
.

Furthermore, since ϕ2 is nonnegative and not the zero function, H(ϕ2) has unbounded
support. Thus L	 adds Sobolev wavefront both inside and outside supp f even though
f ∈ H α+1

c (R3).
In a similar way, one shows that L(f) = φ1H

(
(μ − Δx′)φ2

)
, and so Lf is in

H α+1
loc (because φ1 is in H α+1 and the other term is smooth), but

WFα+1+ε′
(
L(f)

)
=

{
(x1,x

′, tdx1)
∣∣ x1 ∈ [−1/2, 1/2], x′ ∈ suppH

(
(μ− Δx′)φ2

)
, t �= 0

}
.

Note that suppH
(
(μ−Δx′)φ2

)
must be unbounded,10 so L spreads singularities of f ,

but they are weaker than those for L	(f).
To state Theorem 6.3, we need a little more notation. Covectors in T ∗(Y ) will

be denoted by
(
(y1, yσ, θ); ν1dy1 + ν2dyσ + ν3dθ

)
, where (ν1, νσ, νθ) ∈ R

3 and dy1 is
the covector dual to the tangent vector ∂/∂y1, dyσ is dual to ∂/∂yσ, and dθ is dual
to ∂/∂θ. Using these conventions we can state the following theorem that gives the
basic microlocal analysis of P with the limited data given in our ET problem.

Theorem A.6. Let f be a distribution of compact support on R
3, θmax ∈ ]0, π/2[ ,

and assume P(f)(y, θ) is given on an open set U ⊂ Y . Moreover, let (y1, yσ, θ0) ∈ U ,

10The two-dimensional version of the proof of (A.3) shows that the two-dimensional Fourier
transform FH(φ2) is a product including ϕ

(
arg(ξ′) + π/2

)
and so is zero on an open set. If H(φ2)

had compact support, then φ2 = 0 since FH(φ2) would be real-analytic.
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let ξ0 be a nonzero vector perpendicular to ω(θ0) written as ξ0 = ξ1e1 + ξσσ(θ0), and
assume ξσ �= 0 (i.e., ξ0 is not parallel to e1). Finally, let x0 ∈ �(y1, yσ, θ0). Then,
(x0; ξ0dx) ∈ WFα(f) if and only if

(A.18)
(
(y1, yσ, θ0); ξ1dy1 + ξσdya +

(
ξσx · ω(θ0)

)
dθ

)
∈ WFα+1/2

(
P(f)

)
.

The proof follows from the fundamental results in [9] that show that Radon trans-
forms are FIOs and also from the analysis of the general X-ray transform in [8] (see
also [2]). The proof involves first calculating the canonical relation of P, next noting
that P is elliptic, and finally using the calculus of FIOs [12] to tell what Pf does to
the wavefront set. A proof of this result is given for more general curves of directions
in S2 given in [22].
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