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Abstract 

The engineering of biological systems for industrial applications 

is a complex process. Optimization of a cellular phenotype is 

complicated by the sheer number of genetic and environmental 

variables. With regards to heterologous natural product biosynthesis, 

this is further complicated by the foreign nature of the metabolic 

pathways and structurally complex products involved. To address this 

problem, heuristic and systematic approaches were employed for the 

engineering of two heterologous natural products (a polyketide and an 

isoprenoid) in Escherichia coli. The methods developed and applied 

herein are critical to advancing the field of heterologous natural 

product biosynthesis to the scale of competitive industrial bioprocesses. 

Stoichiometric modeling was applied to survey heterologous 

hosts for supporting polyketide biosynthesis. Simulations under 

different host and environmental conditions revealed multiple gene 

knockouts that were capable of improving product titer. Work has 

shown that multiple pathways exist in nature for producing the two 

precursors necessary for polyketide production; however, E. coli does 

not possess these. These heterologous pathways were expressed, and 

with concurrent substrate feeding experiments, their effects were 

analyzed on polyketide production. Native gene over-expressions and 

deletions also improved polyketide titer. 
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Due to an inability to thoroughly search genomic space with the 

aforementioned computational method, a new algorithm was developed 

to identify knockout targets based on network topology and applied to 

isoprenoid production. By using a genetic algorithm, this method 

identified a four knockout strain capable of improved titer, while 

reducing computation time by several orders of magnitude. When 

constructed in the laboratory using an accelerated genome evolution 

method, isoprenoid yield improved nearly 3-fold in some cases. The 

aforementioned algorithm was reformulated in an attempt to identify 

over-expression targets for improving isoprenoid titer. This method 

identified four targets, three of which improved titer when 

implemented genetically, though failed to meet the predicted levels of 

improvement. Upon over-expression of the isoprenoid biosynthetic 

pathway genes, one gene improved titer to a higher extent than the 

predicted targets (almost 4-fold), showing that the rate-limiting step 

lies within the pathway itself. Applying heuristics for isoprenoid 

production, heterologous gene promoter strength, strain background, 

and process-related parameters were varied and allowed for a 240-fold 

improvement in titer. 
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Introduction 

Background & Motivation 

Metabolic engineering has been defined as “the directed 

improvement of product formation or cellular properties through the 

modification of specific biochemical reactions or introduction of new 

ones with the use of recombinant DNA technology” (Stephanopoulos 

1999). The prospect for the production of chemicals and 

(bio)pharmaceuticals through biological systems has gained immense 

interest in recent years due to the vast range of products that can be 

derived from them, as well as the ability to produce complex 

compounds with enantiomeric purity (Bailey 1991). Moreover, the 

robustness of biological systems enables the utilization of inexpensive, 

complex substrates (such as biomass hydrolysate) for catalyst and 

product synthesis. Although enzyme-catalyzed biological reactions 

offer the potential for diverse product range and excellent 

regioselectivity, these methods typically have tradeoffs in productivity 

due to the need for large-scale culture of microbial or mammalian cells. 

The requirement for a biological process is also dependent upon the 

type of final product, with large biopharmaceuticals such as proteins 

and vaccines requiring biological host systems, while many small-

molecule pharmaceuticals must compete with methods that employ 
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chemical-synthetic (or semi-synthetic) production. A key challenge in 

improving pharmaceutical production is to apply the fundamentals of 

metabolic engineering particularly towards the optimization of small-

molecule pharmaceutical production. 

Natural products are a class of small-molecule chemical 

compounds that originate from the secondary (non growth-associated) 

metabolic processes of living organisms (Clardy et al. 2006; Cragg et al. 

1997; Demain 2006; Gershenzon and Dudareva 2007; Gulder and 

Moore 2009; Handelsman et al. 1998; Harvey 2008; Jones et al. 2009; 

Lam 2007; Leeds et al. 2006; Li and Vederas 2009; Newman 2008; 

Newman and Cragg 2007; Newman et al. 2003; Paterson and Anderson 

2005; Salas and Mendez 2007; von Nussbaum et al. 2006; Walsh and 

Fischbach 2010; Zhou et al. 2008). They possess a wide range of useful 

pharmacological activities which include antibacterial, anticancer, 

immunosuppressant, immunostimulant, and hypocholesterolemic 

(Newman and Cragg 2007). Of all small-molecule new chemical 

entities (NCE‟s) between 1981 and 2006, 34% were natural products or 

semi-synthetic derivatives of such molecules (Newman and Cragg 

2007).  In fact, of the 109 antibacterial NCEs and the 83 anticancer 

NCEs, 74 and 45, respectively, were derived from natural products 

(Newman and Cragg 2007). Therefore, even with the “blockbuster 

model” adopted by current pharmaceutical companies, natural 
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products continue to provide successful drugs and drug leads (Li and 

Vederas 2009). 

Most natural products have evolved independently of their 

useful therapeutic applications, and consequently, their native hosts 

tend to produce them in relatively small quantities (Khosla and 

Keasling 2003). As a result, production of natural products from their 

original native hosts is oftentimes an expensive and slow process. 

While increasing production titers in native hosts is usually 

accomplished by random mutational strategies, this is an inherently 

slow process. To address this setback, researchers have explored the 

use of heterologous host organisms to produce such compounds, using 

similar recombinant strategies that spurred biopharmaceutical protein 

production. Through metabolic and genetic engineering of heterologous 

hosts (which is usually difficult to achieve in a native host), the 

complex natural product biosynthetic machinery can be redesigned 

with the goal of optimizing final product formation. Furthermore, the 

bioprocess engineering options with heterologous hosts may also lead 

to higher production titers or productivities that may be unachievable 

with native producers. Compared with strain improvement in native 

hosts, the upfront work involved with reconstituting heterologous 

biosynthesis will likely be overcome by the speed at which these hosts 

can be rationally engineered for improved titer. Heterologous natural 
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product biosynthesis can be broken down with the following workflow 

of natural product discovery to heterologous reconstitution to 

development (Figure 1 shows this workflow and supporting 

technologies for each step). Although the heterologous natural product 

biosynthetic field has seen ample research dedicated to discovery 

(Harvey 2008; Leeds et al. 2006; Li and Vederas 2009; Zerikly and 

Challis 2009) and reconstitution themes (Binz et al. 2008; Mutka et al. 

2006b; Pfeifer and Khosla 2001; Pfeifer et al. 2003; Wenzel et al. 2005), 

the relatively recent advent of the field has seen less emphasis placed 

on development research initiatives that are crucial for sufficient and 

economical commercialization (Wattanachaisaereekul et al. 2007). To 

emphasize this point, there are very few examples of heterologous 

production schemes resulting in product titers capable of supporting 

subsequent commercialization attempts (Boghigian and Pfeifer 2008). 

Moreover, there have been a limited number of studies using model-

driven approaches for the metabolic engineering of heterologous 

natural product biosynthesis (Alper et al. 2005b; Chemler et al. 2010; 

Fowler et al. 2009). As a result, there is a strong existing need for 

research within the development theme so as to complement the 

growing efforts in natural product discovery and heterologous 

reconstitution. When viewed comprehensively, it will be the 
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combination of these three themes that will facilitate continued access 

to a known source of therapeutic potential.  
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Figure 1 The workflow for natural product biosynthesis through a heterologous 

host. 

First, discovery of a gene cluster or product can be undertaken using metagenomic 

approaches, or can be identified from genomic sequence data using bioinformatic 

approaches. If compound material is available, a pharmacological activity can be 

screened in a high-throughput manner to warrant further investigation of the 

compound in question. Secondly, with gene sequence information available, 

biotechnological techniques can be utilized to accomplish functional expression of 

the gene(s) in question and establish metabolite production through a heterologous 

host. Lastly, if there is significant biomedical interest in a drug in question, 

metabolic, bioprocess, and protein engineering can be used for further optimization 

of the strain/cell-line in question to develop a high titer, economical production 

process. 

 

 

 

 



 

7 

 

Objectives 

To accomplish the goals set out for this dissertation, two major 

objectives were proposed: 

 Develop and evaluate the applicability of systematic approaches 

(model-based) for improving heterologous polyketide and 

isoprenoid titers in Escherichia coli 

o Evaluation of stoichiometric modeling as a means of 

surveying heterologous host capabilities 

o Evaluation of stoichiometric modeling as a means of 

identifying knockout targets 

o Evaluation of stoichiometric modeling as a means of 

identifying over-expression targets 

 Evaluate the utilization of heuristic approaches (knowledge-

based) for improving heterologous polyketide and isoprenoid 

titers in Escherichia coli 

o Application towards the metabolic scale 

o Application towards the process scale 

These objectives were formulated to address both basic 

(understanding cellular physiology and its relationship to heterologous 

natural product biosynthesis) and applied (improving titer or specific 

titer) facets of this research field.  
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Approach 

To address the problem of improving titer in heterologous 

natural product bioprocesses, this particular dissertation will be 

focused on the application of the abovementioned engineering 

strategies to generate precursors of two relevant, potent, and 

commercially successful molecules: erythromycin and Taxol (Taxol® is 

a registered trademark of Bristol-Meyers Squibb, having a generic 

name of paclitaxel, however, the first naming of this compound was of 

“Taxol”, so it will be henceforth referred to by this name (Wani et al. 

1971)). These molecules encompass numerous characteristics that 

make them attractive as targets for heterologous biosynthesis and titer 

improvement. Erythromycin is a polyketide-based antibacterial 

compound isolated from a slow growing and genetically less tractable 

soil-dwelling bacterium, while Taxol is an isoprenoid-based anticancer 

compound isolated from the Pacific yew tree. The methods developed, 

evaluated, and/or applied here are designed to aid production once 

reconstitution has been achieved in a heterologous host. However, 

more broadly, many of the methodologies described and used in this 

dissertation can be applied to other products or other host systems. 

The approaches described in this dissertation can be divided into 

two categories: systematic (driven by modeling) and heuristic (driven 

by previous knowledge), applied to metabolic and process scales. 
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Systematic methods were applied to the metabolic-scale in an effort to 

tailor the E. coli metabolic network for improved product formation. 

Heuristic methods were applied towards analysis of specific pathways 

supporting product formation, as well as process parameters thought 

to influence final product formation. 

Dissertation Architecture 

Chapter 2 presents background on polyketides and isoprenoids 

and their similar logic in biosynthesis. Information is then presented 

for the erythromycin and Taxol biosynthetic pathways, past and 

current production schemes, and challenges associated with each 

molecule. Next, a background of heterologous natural product 

biosynthesis and using Escherichia coli as a host is presented. The 

background section concludes with an extensive review of metabolic 

model development and metabolic flux analysis with respect to 

pharmaceutical production. Chapter 3 presents the use of genome-

scale metabolic models for surveying potential hosts for heterologous 

polyketide biosynthesis, as well as the identification of knockout 

targets to improve titer under varying environmental conditions. 

Chapter 4 presents the engineering of multiple metabolic pathways for 

the improvement of polyketide titer based on heuristics and static 

metabolic maps. Chapters 5 and 6 address the development of novel 

computational algorithms for indentifying knockout and over-
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expression targets (respectively) for improving isoprenoid production 

titers. Chapter 7 presents a similar multi-scale engineering strategy, 

in which genetic and process parameters were varied to improve 

isoprenoid titer. Chapter 8 presents the development of a platform E. 

coli strain and bioprocess that allows for simultaneous, high-level 

production of polyketide and isoprenoid compounds with strong 

partitioning in a two-phase bioprocess. Finally, Chapter 9 presents a 

summary of the dissertation, its main conclusions, and prospects for 

future directions of research based on this body of work. 
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Chapter 2 – Natural Products, Heterologous 

Biosynthesis, and Metabolic Modeling 

The Canonical Logic of Polyketide and Isoprenoid Natural 

Product Biosynthesis 

Polyketides and isoprenoids represent two of the largest classes 

of natural products, each with a wide range of pharmacological 

activities (Fischbach et al. 2008; Walsh 2004). Despite being derived 

from divergent portions of cellular metabolism, they are produced in a 

canonical logic: “upstream”, “elongation and cyclization”, and 

“tailoring” pathways to generate the final products (Chen and Baran 

2009; Morrone et al. 2010; Walsh 2004) (Figure 2). 
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Figure 2 A map showing the canonical logic of polyketide and isoprenoid 

biosynthesis. 

The examples shown are erythromycin and Taxol. A variety of carbon sources can 

be utilized to generate the metabolic precursors for elongation and cyclization of 

the carbon chains to the first dedicated intermediate in final product formation. 

From there, a tailoring phase decorates the macrocycle to generate the final 

product. Abbreviations: IPP = isopentenyl diphosphate; DMAPP = dimethylallyl 

diphosphate. 
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The most widely studied sub-class of polyketides are produced 

by bacterial type I polyketide synthases (PKS‟s). While there also 

exists type II and type III  PKS‟s, this dissertation only focuses on the 

heterologous biosynthesis of type I PKS‟s. These polyketides are 

constructed by successive rounds of decarboxylative Claisen 

condensation reactions between an acyl thioester and thioesterified 

malonate derivatives (and are generated by “upstream” pathways from 

primary metabolism). These molecular assembly lines undertake the 

“elongation and cyclization” portions of polyketide formation. They 

create an impressive diversity of products, which are dictated by the 

identity and order of each domain, in turn specifying: 1) the sequence 

of monomer units incorporated into the growing chain, 2) the 

chemistry at each carbon in the chain, and 3) the total chain length of 

the polyketide before cyclization (Cane et al. 1998). As a result of the 

existence of a large number of catalytic steps within a PKS, many PKS 

enzymes are often greater than 300 kDa in size, and these enzymes 

can associate into higher-order super structures which often exceed 1 

MDa in size. Release of the covalent thioester linkage of the chain most 

often occurs by the action of a thioesterase domain at the end of the 

PKS, allowing for cyclization by an intramolecular nucleophilic attack, 

and ultimately regenerations of the catalyst system (Hu et al. 2003; 

Sharma and Boddy 2007). The “tailoring” step in this logic creates: 1) 
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even greater product diversity, and 2) a product with specific and 

potential biological activity. Tailoring of the nascent polyketide can be 

O-, C-, or N-linked glycosylation (Blanchard and Thorson 2006; Salas 

and Mendez 2007), acylation, cytochrome P450-like oxygenation, O-

methylation (Gruschow et al. 2007), or even halogenation (Neumann et 

al. 2008).  

Isoprenoids are the largest class of natural products, of which 

more than 55,000 have been isolated (Ajikumar et al. 2008). The 

“upstream” pathway for isoprenoid biosynthesis generates 

dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate 

(IPP) as products. Two general pathways exist that produce these two 

intermediates, known as the mevalonate (Martin et al. 2003; Pitera et 

al. 2007) or the 1-deoxy-D-xylulose 5-phosphate (DXP) pathways 

(Eisenreich et al. 2004) (the DXP pathway can be seen in Figure 3). 

The mevalonate pathway exists in eukaryotes (mammals, plants, and 

fungi) while the DXP pathway exists in bacteria and plant plastids 

(Ajikumar et al. 2008). The mevalonate pathway begins with acetyl-

CoA, while the DXP pathway begins with the condensation of pyruvate 

and glyceraldehyde 3-phosphate. The “elongation and cyclization” step 

then occurs by head to-tail condensation  of the DMAPP and IPP 

monomers resulting in C10, C15, C20, or higher carbon chain lengths. 

Cyclization occurs through terpene synthases (or terpene cyclases) and 
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depending on the carbon chain length, isoprenoids can be acyclic, 

monocyclic, or polycyclic molecules, and are are characterized by their 

chain length (Table 1) (Wink 2010). As with polyketides, post-

cyclization terpene C-H functionalization leads to final products with 

pharmacological activity in these pathways. 



 

16 

 

 

Figure 3 The DXP-based isoprenoid biosynthetic pathway, native to E. coli. 

Abbreviations: DXS = 1-deoxy-D-xylulose-5-phosphate synthase, DXR = 1-deoxy-D-

xylulose-5-phosphate reductoisomerase, IspD = 2-C-methyl-D-erythritol 4-phosphate 

cytidylyltransferase, IspE = 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, IspF 

= 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, IspG = (E)-4-hydroxy-3-

methylbut-2-enyl-diphosphate synthase, IspH = 4-hydroxy-3-methylbut-2-enyl 

diphosphate reductase, IDI = isopentenyl-diphosphate isomerase. 
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Table 1 Characterization of isoprenoid molecules by the number of isoprene units 

they contain. 

Examples of each class are given. 

 

Isoprene Units Carbon Atoms Name Example 

1 5 Hemiterpenes Isoprene 

2 10 Monoterpenes Menthol 

3 15 Sesquiterpenes Artemisinin 

4 20 Diterpenes Taxol 

5 25 Sesterterpenes Neomangicol 

6 30 Triterpenes β-Amyrin 

8 40 Tetraterpenes β-Carotene 

9-30,000 > 40 Polyterpenes Rubber 
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Erythromycin 

Erythromycin is a broad range macrolide antibiotic which has 

had much clinical and commercial success, spawning several next 

generation antibiotics such as azithromycin . In 1952, erythromycin 

was isolated from a soil bacterium eventually designated 

Saccharopolyspora erythraea (Heilman et al. 1952; McGuire et al. 

1952).  Production processes were built around this organism (Smith et 

al. 1962) and were steadily improved over the years to allow titers of 

roughly 7 g l‒1 in a rationally engineered industrial strain (Minas et al. 

1998). Nevertheless, the titer of the erythromycin process is roughly an 

order of magnitude lower than similar classically optimized antibiotic 

fermentation processes such as penicillin (70 g l‒1), salinomycin (60 g 

l‒1), or cephalosporin C (30 g l‒1) (Adrio and Demain 2006) (Figure 4). 

Though its chemical synthesis was completed in 1981 (Woodward et al. 

1981a; Woodward et al. 1981b; Woodward et al. 1981c), the many steps 

and low yield necessitates fermentation as a primary means of 

production. 

Recent efforts have been dedicated towards improving the 

genetic technologies (Wang et al. 2007b), understanding the regulation 

of erythromycin production (Chng et al. 2008), and improving the 

erythromycin production titer (Reeves et al. 2007) and purity (Chen et 

al. 2008) of S. erythraea-based erythromycin fermentation. However, to 
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truly harness the combinatorial potential of the erythromycin modular 

biosynthetic process for the purpose of generating next-generation 

derivatives (Menzella and Reeves 2007; Menzella et al. 2005; Nguyen 

et al. 2006; Weissman and Leadlay 2005), a heterologous production 

host will likely be necessary. 
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Figure 4 Examples of product titers in classical antibiotic fermentations. 

Production titers comparing: 1) classical β-lactam antibiotic fermentations, 2) the 

industrial strain of the native erythromycin producer, as well as a an engineered 

form of this strain expressing a Vitreoscilla sp. Hemoglobin gene, and 3) the highest 

report titer of 6-dEB in lab-scale fed-batch fermentation. Data taken from: (Adrio 

and Demain 2006; Lau et al. 2004; Minas et al. 1998). 

 

 

 

 

 

 

 



 

21 

 

The 14-membered aglycone macrocyclic core (the polyketide 

precursor) of erythromycin is 6-deoxyerythronlide B (6-dEB) and is 

constructed a type I PKS called the deoxyerythronolide B synthase 

(DEBS), from one propionyl-CoA starter molecules and six (2S)-

methylmalonyl-CoA extender molecules. After identification of the 

eryA genes in the early 1990‟s (Cortes et al. 1990; Donadio et al. 1991), 

the genes and DEBS complex has been the subject of many seminal 

studies focused on modular polyketide biosynthesis (Gokhale et al. 

1999; Kao et al. 1994; Kao et al. 1996; Luo et al. 1996; Menzella et al. 

2005; Pfeifer et al. 2001; Pieper et al. 1996; Pieper et al. 1995; Tang et 

al. 2006). Three genes eryA1, eryA2, and eryA3 produce three enzymes 

DEBS1 (370 kDa), DEBS2 (380 kDa), and DEBS3 (332 kDa), which 

become covalently linked. This >1 MDa complex contains 28 catalytic 

domains organized into a loading didomain, six extension modules 

(each composed of several domains), and a terminal thioesterase (TE) 

domain that cyclizes and releases the final product. This DEBS 

complex exists as a homodimer, meaning that the entire quaternary 

structure of this complex is greater than 2 MDa. The resulting product, 

6-dEB, contains a total of 10 stereocenters, corresponding to three D-

methyl, three L-methyl, one D-hydroxy, and three L-hydroxy 

substituents (Baerga-Ortiz et al. 2006; Valenzano et al. 2009). After 

two glycosylation reactions, two hydroxylation reactions, and one 
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methylation reaction, the 6-dEB macrocycle is converted to the full 

erythromycin A molecule. This process can be seen in Figure 5. 
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Figure 5 A figure of the three DEBS enzymes and their respective catalytic domains. 

One molecule of propionyl-CoA is primed on DEBS1, while six molecules of (2S)-

methylmalonyl-CoA are used as extender units. The terminal thioesterase domain 

cyclizes and releases the polyketide, creating the macrolactone 6-dEB. Post-PKS 

tailoring creates the full erythromycin molecule. Abbreviations: AT = 

acyltransferase, ACP = acyl carrier protein, KS = ketosynthase, KR = ketoreductase, 

DH = dehydratase, ER = enoyl reductase, TE = thioesterase. 
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Taxol 

The diterpenoid natural product Taxol possesses impressive 

anticancer properties and has shown efficacy against carcinomas of the 

ovary, breast, lung, head and neck, bladder and cervix, melanomas, 

and AIDS-related Karposi‟s sarcoma (Skeel 1999). Taxol was 

discovered in the 1960s as part of an interagency program between the 

National Cancer Institute and the United States Department of 

Agriculture developed to obtain and screen the anti-proliferative 

properties of plant extracts. Extracted from the bark of Taxus 

brevifolia (the Pacific Yew tree), Taxol‟s structure was elucidated in 

1971 (Wani et al. 1971) and the compound showed promising activity 

against leukemia and melanoma models, prompting the continued 

isolation from T. brevifolia bark (Cragg et al. 1993). 

Early stage production of Taxol resulted in extremely low yields 

(Cragg et al. 1993; Cragg and Snader 1991). The sacrifice of a 100-year 

old tree generated approximately 3 kg of bark, yielding approximately 

300 mg of purified Taxol or the equivalent of approximately a single 

dose (Horwitz 1994). In 1988, a semi-synthetic method for producing 

Taxol from a common precursor (10-deacetylbaccatin III) was 

developed (Denis et al. 1988; Witherup et al. 1990). The semi-synthetic 

route offered two advantages. First, relatively higher quantities of 10-

deacetylbaccatin III could be isolated from the needles of other more 
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prevalent Taxus species (specifically Taxus baccata l, the common 

Yew) (Denis et al. 1988). Second, isolation from the renewable Yew 

needle presented an environmental friendly alternative to the 

destructive production processes dependent upon Yew bark harvest. A 

fully synthetic route to Taxol was independently accomplished in 1994 

by two groups (Holton et al. 1994a; Holton et al. 1994b; Nicolaou et al. 

1995a; Nicolaou et al. 1995b; Nicolaou et al. 1995c; Nicolaou et al. 

1995d; Nicolaou et al. 1994), and spurred much interest in the 

synthetic chemistry community (Danishefsky et al. 1996; Morihira et 

al. 1998; Mukaiyama et al. 1999; Wender et al. 1997a; Wender et al. 

1997b). In the end, the compound‟s complex molecular architecture 

containing eleven choral centers and a notably rare oxetane ring 

complicated efforts to establish an efficient and economic synthetic 

production process (Nicolaou et al. 1994). 

To date, the most efficient synthesis of Taxol resulted in a 0.4% 

overall yield after 37 steps (Kingston 2001). Taxol has been extracted 

from T. brevifolia bark at a roughly 1000 μg g biomass‒1 (Horwitz 

1994) and produced in Taxus canadensis suspension cell culture at 

roughly 120 μg g biomass‒1 (Ketchum et al. 1999). Meanwhile, 

heterologous production of the first committed step to Taxol 

biosynthesis, taxa-4(5),11(12)-diene (henceforth referred to as 

taxadiene) has only reached 600 ng g biomass‒1 for Arabidopsis 
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thaliana (Besumbes et al. 2004), 471 μg g biomass‒1 for transgenic 

tomato fruit (Kovacs et al. 2007), and 402 μg g biomass‒1 for S. 

cerevisiae (Engels et al. 2008) (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

 

 

 

 

 

 

 

Figure 6 Data comparing specific production titers of Taxol and taxadiene. 

Shown is Taxol production from native hosts (extraction from T. brevifolia tree bark 

and T. canadensis suspension cell-culture) and taxadiene production from 

heterologous hosts (A. thaliana, tomato fruit, and S. cerevisiae). Data taken from: 

(Besumbes et al. 2004; Engels et al. 2008; Horwitz 1994; Ketchum et al. 1999; Kovacs 

et al. 2007). 
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A central difference between Taxol and erythromycin is that the 

entire Taxol biosynthetic pathway has not been elucidated (Frense 

2007; Renneberg 2007). While the DXP pathway produces the two 

universal precursors for isoprenoid biosynthesis (Figure 3), Figure 7 

shows a simplified metabolic map of “elongation and cyclization” and 

“tailoring” pathways with relation to Taxol biosynthesis. In this 

pathway, there are multiple steps that are not elucidated to generate 

the intermediate 10-deacetylbaccatin III, as well as multiple tailoring 

steps after this metabolite. However, like the case for erythromycin, 

heterologous production of Taxol is viewed with great interest due to 

the potential to rationally control or alter the biosynthetic process 

towards improved titer and/or bioactivity. 
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Figure 7 The “Extension & Cyclization” phase of isoprenoid and Taxol biosynthesis. 

Dotted lines indicate partial reaction steps, while dashed lines indicate multiple 

unknown steps in Taxol biosynthesis. Enzyme abbreviations in red are heterologous 

to E. coli. The red dot next to lycopene indicates that it has a red chromophore. 

Abbreviations: IDI = isopentenyl diphosphate isomerase, IspA = prenyltransferase, 

CrtE / GGPPS = geranylgeranyl diphosphate synthase, CrtB = phytoene synthase, 

CrtI = phytoene dehydrogenase. 
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Heterologous Biosynthesis using Escherichia coli & 

Considerations 

As stated previously, many natural products are produced in 

relatively low titers in their native hosts, or the native hosts are 

uncultivable in laboratory and/or manufacturing conditions. E. coli has 

served as a model organism for basic microbiology studies as well as 

molecular biological tool development. It was also the organism that 

spurred heterologous production of biopharmaceuticals (protein) 

products, such as recombinant insulin (by Eli Lilly, approved in 1982) 

and recombinant human growth hormone (by Genentech, approved in 

1985) (Papini et al. 2010). More recently, a joint venture between 

DuPont and Tate & Lyle commercialized a process for using E. coli as a 

heterologous host (with genes from Saccharomyces cerevisiae and 

Klebsiella pneumoniae) for producing 1,3-propanediol (propylene 

glycol) at a yield of 51% (g 1,3-propanediol g glucose‒1), titer of 135 g 

l‒1, and productivity of 3.5 g l hr‒1 (Nakamura and Whited 2003), with 

an annual production of 120,000 tons. Moreover, there is an incredible 

body of work recently dedicated towards the production of E. coli-

derived natural and non-natural alcohol fuels (Atsumi et al. 2008a; 

Atsumi et al. 2008b; Atsumi and Liao 2008a; Cann and Liao 2008; 

Connor et al. 2010; Connor and Liao 2008; Hanai et al. 2007; Shen and 

Liao 2008; Zhang et al. 2008b), reviewed recently here (Alper and 
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Stephanopoulos 2009; Atsumi et al. 2008b; Atsumi and Liao 2008b; 

Connor and Liao 2009; Jarboe et al. 2010; Keasling and Chou 2008; 

Lynd et al. 2008; Mukhopadhyay et al. 2008; Savage et al. 2008; 

Stephanopoulos 2007; Wackett 2008). 

Classical heterologous hosts for secondary metabolite production 

are different than classical hosts for protein and biofuel production. 

They are actinomycetes such as Streptomyces coelicolor, Streptomyces 

lividans, and Streptomyces albus, particularly due to their existing 

ability to produce a wide variety of therapeutic natural products, and 

their developing genetic engineering technologies (Baltz 2010). More 

recently developed hosts for heterologous natural product biosynthesis 

include E. coli (Mutka et al. 2006b; Pfeifer et al. 2001), Bacillus 

subtilis (Eppelmann et al. 2001), Pseudomonas putida (Fu et al. 2008), 

Saccharomyces cerevisiae (Kealey et al. 1998), Aspergillus nidulans 

(Kennedy et al. 1999), and even a genome-minimized version 

Streptomyces avermitilis (Komatsu et al. 2010). In general, the ideal 

heterologous host should have high specific growth rates, minimal 

nutrient requirements, established genetic engineering protocols, a 

fully sequenced and well annotated genome, and easily scalable 

bioprocesses. 

Heterologous production of pharmaceuticals offers advantages 

over production in native hosts in several ways: 1) the genetic and 
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metabolic knowledge of a heterologous host is typically much greater 

than the native host, 2) as a result, the computational and 

experimental application of metabolic engineering is much easier than 

the same steps in a potentially uncharacterized native host, and 3) the 

knowledge of existing bioprocesses and scale-up protocols for 

heterologous hosts generally have been determined, leading to 

platform processes and reduced development times (Zhang et al. 

2008a). While the production of protein pharmaceuticals often relies on 

maximal forced over-expression of one to a few genes, the heterologous 

production of small-molecules often requires reconstitution of a variety 

of enzymes to catalyze the multi-step transformation of either an 

exogenously fed metabolite or a native metabolite to a more complex 

product. In this case, the enzymes should only be produced in sufficient 

quantities such that they are not rate-limiting, but also not at too high 

a level such that their production acts as major sinks of nucleotides or 

amino acids for mRNA or protein production, respectively (Keasling 

2008). At the same time, the introduction of foreign metabolites into a 

cellular environment can cause stress-responses potentially 

detrimental to both cell growth and product production. Concurrently 

with heterologous expression for catalyzing these transformation steps, 

one must attempt to tailor the metabolic network to increase carbon-

flux from native metabolism to heterologous metabolism such that 
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more product can be made (Stephanopoulos and Vallino 1991). This is 

far from trivial in that cellular systems, as opposed to engineered 

systems (such as an electrical circuit), can evolve themselves to 

overcome cellular perturbations (for example, a gene-knockout) by 

reverting its metabolism in such a way that may have been unexpected 

to the researcher. As a recent example of successful heterologous 

small-molecule biosynthesis, E. coli was utilized to produce the 

sesquiterpene amorphadiene (complex precursor to the antimalarial 

compound artemisinin) at impressive titers of nearly 30 g l–1 with an 

overall volumetric productivity of approximately 185 mg l–1 hr–1 

(Tsuruta et al. 2009). It should be noted that both the 1,3-propanediol 

and amorphadiene examples were engineered through heuristic 

methods, and as far as the author is aware, no systematic methods 

were used to aid in strain development. 

Metabolic Modeling for Driving Metabolic Engineering 

As a result of the large-scale and often unpredictable nature in 

engineering biological networks (Alm and Arkin 2003; Almaas 2007; 

Jeong et al. 2000), quantification of metabolic fluxes is of utmost 

importance to understand cellular regulation, identify bottlenecks in 

product formation, and gain insight to the fundamental processes of 

biological systems. With the development of modern “-omics” 

techniques such as genomics, transcriptomics, proteomics (Aebersold 
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and Mann 2003; Aggarwal and Lee 2003; Aldor et al. 2005; Brotz-

Oesterhelt et al. 2005; Han et al. 2001; Hancock et al. 2002; Lee and 

Reardon 2003; Lee and Lee 2003; Wang et al. 2005), and metabolomics 

(Arita 2009; Garcia et al. 2008; Lee et al. 2006; van der Werf et al. 

2007; Wishart 2007; Zamboni and Sauer 2009), along with the 

methodologies of systems biology  (Aggarwal and Lee 2003; Barrett et 

al. 2006; Church 2005; Daniels et al. 2008; Dhurjati and Mahadevan 

2008; Kell 2004; Mukhopadhyay et al. 2008; Nielsen and Jewett 2008; 

Novere et al. 2009; Otero and Nielsen 2010; Panagiotou et al. 2009; 

Papini et al. 2010; Park et al. 2008; Rochfort 2005; Rokem et al. 2007; 

Souchelnytskyi 2005; Stephanopoulos et al. 2004; Strange 2005; Wang 

et al. 2006; Westergaard et al. 2007) gaining popularity among both 

engineers and biologists, the wealth of information on an increasing 

number of organisms is advantageous for metabolic engineering (Durot 

et al. 2009; Feist et al. 2009; Medini et al. 2008). The sequencing of 

many genomes of industrially-relevant organisms (Bentley et al. 2002; 

Blattner et al. 1997; Durfee et al. 2008; Goffeau et al. 1996; Ikeda et al. 

2003; Jeffries et al. 2007; Kunst et al. 1997; Nolling et al. 2001; 

Oliynyk et al. 2007) and improved multidimensional genome 

annotation (Maillet et al. 2007; Reed et al. 2006a; Reed et al. 2006b) 

has led to a better understanding of the structure, connectivity, and 

capabilities of many metabolic networks. Contrasting with 
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metabolomics, which aims to quantitatively measure the 

concentrations of every metabolite within a cell population at a certain 

time (Kell 2004; Nielsen and Oliver 2005; van der Werf et al. 2007), 

metabolic flux analysis (MFA) aims to quantify the flow of primarily 

carbon and nitrogen throughout a metabolic network. As a result, 

metabolic fluxes are the functional output of the transcriptome, 

proteome, and metabolome.  

Within MFA, there exist data-driven studies (often using 

isotopically labeled substrates) and optimization-driven studies for the 

quantification of fluxes. In the first method, the stoichiometric matrix 

(to be introduced later) is reduced to an over-determined form (more 

independent equations than unknown variables) and then either least 

squares linear regression (in the case where isotope labeling data is 

not available) or least squares non-linear regression (in the case where 

labeling data is available) is used to determine the flux distribution 

(Tsai and Lee 1988; Vallino and Stephanopoulos 1993). In the second 

method, the stoichiometric matrix is under-determined (more variables 

than unique equations) and then optimization is used to determine the 

flux distribution (Edwards et al. 2002). The first method relies more 

heavily on experimental measurements and, therefore, often requires 

in the utilization of a smaller stoichiometric model. In contrast, the 

solution space in the second method can be constrained with relatively 
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few measurements (usually, carbon-source uptake rate and biomass 

composition), and even large models by today‟s standards (over 1,000 

reactions) can be solved quite rapidly with modern optimization 

packages on single-processor systems. The aim of this portion of 

Chapter 2 is to familiarize the reader with a variety of techniques that 

are currently used to quantify metabolic fluxes, how pharmaceutical 

and biopharmaceutical strain or cell-line development can be enhanced 

with these studies, and the recent success stories achieved thus far in 

applying MFA for pharmaceutical and biopharmaceutical production 

(Figure 8). 
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Figure 8 A schematic overview of how metabolic flux analysis fits into the 

development of pharmaceutical production processes. 

After identification of a therapeutic molecule in drug discovery, a development 

group must choose a production host organism. After which, vectors, strains, or cell-

lines are created which are able to generate the product of interest and preliminary 

culture experiments are conducted. If the product titer or quality is inferior, 

another host organism may be selected. Next, a stoichiometric model containing 

pertinent portions of metabolism can be developed, as has been described in the 

text. Metabolic flux analysis can be applied to this model to: 1) gain more 

information regarding the metabolism of the organism in question and how it 

pertains to product titer or quality; and 2) drive further metabolic or process 

engineering to improve product titer or quality. As highlighted in this review, 

metabolic flux analysis can be utilized to facilitate upstream strain and process 

development. 
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Model Development 

Although much work has been conducted on the metabolic 

regulation of microbial systems, particularly in the case for secondary 

metabolite production (Martin and Demain 1980; Smith et al. 1962), 

kinetic information is not available to sufficiently model these systems 

beyond individual compartments of the Escherichia coli cell 

(Castellanos et al. 2007; Castellanos et al. 2004) and the human 

erythrocyte (Joshi and Palsson 1989a; Joshi and Palsson 1989b; Joshi 

and Palsson 1990a; Joshi and Palsson 1990b). Conversely, knowledge 

regarding the stoichiometry of the biochemical reactions that comprise 

these microbial systems (and higher organisms as well) is well-

established and largely unambiguous. 

If it is assumed that the cells are well-mixed reaction systems, 

the dynamic mass-balance around the system leads to a non-

homogeneous system of coupled ordinary differential equations: 

Equation 1 

     

  
            

In Equation 1, Xmet is a vector of metabolite concentrations, rmet 

is a vector of the net rates of formation of those corresponding 

metabolites, μ is the specific growth rate, and t is time. It has been 

cited that there is very high turnover of pools of intracellular 

metabolites, even after significant environmental perturbations, 



 

39 

 

resulting in a pseudo-steady state approximation for these metabolites, 

as described in Equation 2: 

Equation 2 

             

Next, if it is assumed assume that there is no dilution of the 

metabolite pool due to cell growth, this term is also dropped from, 

yielding Equation 3: 

Equation 3 

       

Being that rmet is a vector expressing the net rates of production 

of all intracellular metabolites, it can be expressed as a system of 

coupled linear algebraic equations: 

Equation 4 

     

In Equation 4, S is an m by n dimensional matrix is comprised 

of m metabolites and n reactions, whereas the contents of each entry in 

the matrix represent the stoichiometric coefficient of the mth 

metabolite participating in the nth reaction. Here also, v, is a vector of 

metabolic fluxes (reaction rates) for all n reactions in the system. As 

such, the stoichiometric matrix contains chemical information 

(reaction stoichiometry) and network information (metabolite 

connectivity). Stoichiometric matrices are sparse, meaning that a large 

fraction of the matrix‟s entries are zero. Most metabolites only take 

place in a small-number of reactions, while a small number of 
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metabolites take place in many reactions, which are referred to as 

currency metabolites (such as ATP, NAD(P)(H), and H2O). 

Stoichiometric matrices vary in size and, as a result, their application. 

As will be discussed later, isotopic-labeling studies require the 

utilization of smaller-scale models (on the order of 101 to 102 reactions), 

while optimization-based analyses such as flux balance analysis can be 

quite large (over 103 reactions) and solved rapidly using either free or 

commercially-available optimization software. 

Developed genome-scale stoichiometric models of organisms of 

biotechnological or industrial importance include: E. coli (Feist et al. 

2007), Saccharomyces cerevisiae (Herrgard et al. 2008), Bacillus 

subtilis (Henry et al. 2009), Streptomyces coelicolor (Borodina et al. 

2005), Aspergillus niger (Andersen et al. 2008), Aspergillus nidulans 

(David et al. 2008), Aspergillus oryzae (Vongsangnak et al. 2008), 

Lactococcus lactis (Oliveira et al. 2005), Mannheimia 

succiniciproducens (Kim et al. 2007b), Methanosarcina barkeri (Feist 

et al. 2006), Geobacter sulfurreducens (Mahadevan et al. 2006), 

Geobacter metallireducens (Sun et al. 2009), Rhodoferax ferrireducens 

(Risso et al. 2009), Corynebacterium glutamicum (Kjeldsen and Nielsen 

2009), Clostridium acetobutylicum (Lee et al. 2008; Senger and 

Papoutsakis 2008; Shinfuku et al. 2009), Pseudomonas putida 

(Puchalka et al. 2008), Arabidopsis thaliana (de Oliveira Dal'Molin et 
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al. 2010; Poolman et al. 2009), Zymomonas mobilis (Widiastuti et al. 

2010), Mus musculus (Sigurdsson et al. 2010), Dehalococcoides sp. 

(Ahsanul Islam et al. 2010), Clostridium cellulolyticum (Salimi et al. 

2010), Pichia pastoris (Chung et al. 2010; Sohn et al. 2010), and 

Clostridium thermocellum (Roberts et al. 2010) with many currently 

being updated, expanded, and developed. In addition to these 

organisms, there have been a variety of other organisms reconstructed 

to better understand physiological, medical, and evolutionary problems 

(AbuOun et al. 2009; Baart et al. 2007; Becker and Palsson 2005; Beste 

et al. 2007; Boyle and Morgan 2009; Duarte et al. 2007; Gomes de 

Oliveira Dal'molin et al. 2010; Gonzalez et al. 2010; Heinemann et al. 

2005; Jamshidi and Palsson 2007; Kim et al. 2010; Oberhardt et al. 

2008; Pastink et al. 2009; Plata et al. 2010; Resendis-Antonio et al. 

2007; Schilling and Palsson 2000; Sheikh et al. 2005; Suthers et al. 

2009; Teusink et al. 2006; Thiele et al. 2005; Tsoka et al. 2004; Vanee 

et al. 2010). Figure 9 is a pictorial description of these models as a 

function of the year they were developed with their corresponding size 

in terms of total reaction number. As has been the case with much 

experimental work, E. coli has served as the model organism for 

stoichiometric model construction and MFA in general (Feist and 

Palsson 2008). While the use of genome-scale microbial models for 

metabolic engineering has been reviewed, genome-scale modeling of 
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mammalian cell systems is only more recently being developed 

(Selvarasu et al. 2009b). 
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Figure 9 Genome-scale stoichiometric model development. 

A figure representing all of the most updated genome-scale stoichiometric models of 

prokaryotic and eukaryotic cellular metabolism as a function of the year they were 

developed. Models that were developed concurrently have been parenthetically 

annotated with the first author’s name. The bubble size represents the relative size 

of the metabolic model in terms of reactions. A reference bubble is shown which 

corresponds to 1000 reactions. 
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Model refinement, especially at the genome-scale, is important 

to correct for inconsistencies between model predictions and 

experimental observations. This trait has most recently been examined 

at the level of cell lethality with respect to single gene-knockouts or 

alternative carbon sources. Two types of inconsistencies can arise: 1) 

the model predicts growth when no growth is observed experimentally, 

or 2) the model predicts no growth when growth is observed 

experimentally. An automated algorithm, GrowMatch (Kumar and 

Maranas 2009), has been developed to reconcile these inconsistencies 

either by removing functionalities in the model (in the first case), or by 

adding functionalities in the model (in the second case). This algorithm 

was applied to the latest genome-scale E. coli model, iAF1260 (Feist et 

al. 2007), and suggested consistency-restoring hypotheses for 69 of the 

110 single gene-knockout inconsistencies identified. This algorithm 

could be particularly useful in the development and rapid refinement 

of new genome-scale models. 

Most recently, a high-throughput method for automated 

generation, optimization, and analysis of genome-scale metabolic 

networks was developed (Henry et al. 2010). This method, called Model 

SEED, can generate a draft metabolic model in approximately 48 hr 

from an assembled genome sequence. This method was applied to 

generate 130 genome-scale metabolic models to a taxonomically 
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diverse set of bacteria. Twenty-two of the models were validated 

against available experimental gene essentiality and Biolog (growth 

phenotype arrays) data, improving the average model accuracy from 

66% to 87% after the optimization model refining method using 

GapFill and GapGen, developed previously (Satish Kumar et al. 2007). 

Constraints-Cased Methods 

Flux Balance Analysis & Constraints-Based Modeling 

Rather than measuring extracellular metabolites and their 

isotopic distributions to determine metabolic fluxes, other strategies 

have employed optimization frameworks with relatively few 

measurements (usually, the rate of carbon-source uptake) to determine 

metabolic fluxes. The most widely-used framework in this context is 

the flux balance analysis (FBA) approach (Edwards et al. 2002). FBA is 

a linear optimization problem which assumes a metabolic objective of 

biomass formation which, at steady-state, is the growth rate. This 

metabolic objective is based on the theory that a cellular system will 

maximize its resources (primarily a carbon-source) to make biomass. 

While FBA has been shown to be fairly accurate when it comes to 

predicting growth rates and exchange fluxes in numerous 

experimental settings (at steady-states), it has shown to have less 

predictive power in other settings.  
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Before FBA was introduced, linear programming was used to 

determine maximum yields for acid and solvent production in 

clostridia (Papoutsakis 1984), as well as to study aerobic overflow of 

acetate in E. coli (Majewski and Domach 1990). Their network was 

comprised mainly of the TCA cycle and used ATP and GTP production 

as the metabolic objective subject to additional constraints, as their 

stoichiometric equations did not include a reaction for biomass 

formation (Majewski and Domach 1990). Early studies utilizing FBA 

on small-scale models of E. coli metabolism were used to predict 

phenotypes such as growth-rate, byproduct formation, and amino acid 

production (Varma et al. 1993a; Varma et al. 1993b; Varma and 

Palsson 1994a) under different oxygenation rates. Drawing upon 

knowledge that RNA content increases and DNA and protein contents 

decrease with increasing growth-rate, the incorporation of growth-rate 

dependent equations of biomass formation and energy requirements 

were utilized in an E. coli model (of 300 reactions and 289 metabolites) 

(Pramanik and Keasling 1997; Pramanik and Keasling 1998). This 

importance was highlighted in the observation that, with the correct 

biomass composition, the predicted fluxes differed by 16% from 

experimental measurements, while the predicted and experimental 

fluxes differed by 80% when using the incorrect biomass composition 

(Pramanik and Keasling 1997). It has been recognized that these 
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linear programming problems will find only a single solution; whereas, 

multiple flux distributions may result in the same objective function 

value. This led researchers to develop mixed integer linear 

programming (MILP) frameworks that enumerate multiple flux 

distributions that satisfy the given constraints and result in the same 

objective function value (Lee et al. 2000). More recently, this 

framework was applied to a genome-scale model of E. coli, revealing 

that only a small subset of metabolic reactions have variable fluxes 

across optima(Reed and Palsson 2004). 

This FBA work was then extended to simulating batch and fed-

batch culture by discretizing time into finite elements (Varma and 

Palsson 1994b; Varma and Palsson 1995). The modeling results were 

then directly compared to experimental results with overall good 

accuracy (Varma and Palsson 1994b).  However, it was found that 

these models were sensitive to parameters (perhaps not surprisingly) 

such as glucose and oxygen uptake rate, while relatively insensitive to 

other constraints such as growth and non-growth associate 

maintenance energy requirements (Varma and Palsson 1995). Later, 

this problem was reformulated as dynamic flux balance analysis 

(dFBA) to better simulate and understand E. coli diauxic growth on 

glucose and acetate (Mahadevan et al. 2002). In this work, a nonlinear, 

dynamic objective function was developed to prevent the calculation of 
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physiologically unrealistic metabolite concentrations or metabolic 

fluxes. As a result, this algorithm proved to be a better predictor of the 

reutilization of acetate by E. coli in batch culture. 

While FBA and the remainder of the “constraints-based” 

modeling strategies are solely governed by stoichiometry, the inclusion 

of thermodynamic principles can further constrain solution-space of 

the optimization problem without the need for additional 

measurements. Two such methodologies have been developed to 

address the incorporation of thermodynamic calculations into 

optimization-based MFA calculations: energy balance analysis (EBA) 

(Beard et al. 2002) and thermodynamic metabolic flux analysis (TMFA) 

(Henry et al. 2007). It is recognized that FBA only generates a single 

solution given a set of constraints (for example, an FBA solution may 

be stoichiometrically feasible but not thermodynamically feasible).  

Both EBA and TMFA aim to distinguish between stoichiometrically 

and thermodynamically feasible states, allowing for only solutions that 

satisfy both to be valid. EBA is based on chemical potential differences 

associated with reactions (Beard et al. 2002), while TMFA utilizes 

group contribution theory (Mavrovouniotis 1991) to estimate the 

standard Gibbs free energy change associated with reactions (Henry et 

al. 2007). 
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Another method for reducing the solution-space of the 

optimization is to incorporate regulatory information, most often in the 

form of Boolean operators “AND”, “OR”, and “NOT” (Covert et al. 2001; 

Cox et al. 2005). While the kinetic parameterization of many of these 

processes has not been explored thoroughly, a vast amount of 

knowledge has accumulated regarding gene and regulatory networks 

in a variety of organisms. Unlike the chemical and thermodynamic 

constraints described previously, regulatory constraints are generally 

organism-specific and therefore self-imposed and perhaps explained by 

evolution (Covert et al. 2001). While gene-expression arrays can be 

used to quantify the amount of transcripts with a large-coverage of the 

genome for some organisms, those reaction fluxes associated with non-

transcribed genes can be set to zero. Regulatory information can be 

particularly applicable in simulating dynamic experiments. Interfacing 

regulatory constraints through Boolean operators with FBA has been 

used to simulate two or more carbon-sources and aerobic/anaerobic 

diauxie (Covert et al. 2001), the Arc two-component system, a cellular 

anoxic redox controller (Cox et al. 2005), and more recently, the 

quorum sensing lux system (Anesiadis et al. 2008), all in E. coli. 
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Knockout Simulation & Identifying Metabolic Engineering 

Targets 

Although traditional FBA has been quite successful at 

simulating optimal phenotypes in many different cellular systems, this 

algorithm only provides cursory information with regards to 

implementing metabolic engineering strategies to improve the 

production of a product. One of the most significant advances in this 

respect was the development of the minimization of metabolic 

adjustment (MoMA) optimization (Segre et al. 2002). It was 

hypothesized that mutant strains with single- or multiple-gene 

knockouts would not perform in an “optimal” state as the wild-type 

strain would, therefore nullifying the FBA biomass objective function. 

The basis for this hypothesis assumes evolution has accounted for 

“designing” a microbial network that makes biomass, while a mutant 

strain would not possess the same qualities. As a result, the MoMA 

algorithm uses the same stoichiometric constraints as FBA, but relaxes 

the maximization of the biomass metabolic objective (Segre et al. 

2002). The linear objective function was replaced with a nonlinear 

objective function (which is reformulated as a quadratic programming 

problem) of minimizing the Euclidean distance between the simulated 

wild-type flux vector (as calculated by an FBA of the wild-type model) 

and the knockout-strain flux vector. This algorithm was then capable 
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of improving the predictive capability of actual fluxes (over FBA) in 

carbon-limited, carbon-rich, and nitrogen-limited media in a small-

scale E. coli model. A slight alteration of the MoMA algorithm, which 

has been called linear MoMA (Becker et al. 2007), was developed with 

two distinct differences: 1) the objective to minimize the 1-norm 

distance between the wild-type flux vector and the knockout flux vector 

(rather than the Euclidean, or 2-norm distance as proposed in MoMA); 

and 2) solving the wild-type and the knockout fluxes simultaneously, 

as described below (Burgard et al. 2003). 

A variety of bi-level optimization algorithms have built upon the 

FBA and MoMA approaches (Burgard et al. 2003; Pharkya et al. 2003; 

Pharkya et al. 2004; Pharkya and Maranas 2006). It is well understood 

that there is a tradeoff between growth (biomass formation) and 

product overproduction in cellular systems. By utilizing a multilayered 

optimization structure, the OptKnock framework (Burgard et al. 2003) 

optimizes for one competing objective within another: a cellular 

objective (biomass production) within an industrial objective (chemical 

production) subject to the same stoichiometric constraints and carbon-

source uptakes rates as described earlier. The OptKnock framework 

was applied to succinate, lactate, and 1,3-propanediol production on a 

genome-scale metabolic model of E. coli (Edwards and Palsson 2000), 

and identified multiple combinations of double-, triple-, and quadruple-
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knockout strains capable of producing the three products (separately) 

while still sustaining growth. 

Expanding upon OptKnock, the OptStrain algorithm was 

developed (Pharkya et al. 2004). This framework involves: 1) 

automated curation of databases to compile a pathway or multiple 

pathways to produce a product from a substrate, 2) identification of the 

maximum-yield pathway while minimizing the use of non-native 

reactions, and 3) incorporation of the identified pathway into the 

parent-strain model followed by the OptKnock procedure to eliminate 

reactions competing with the target product formation. The authors 

examined the production of both native and non-native products, 

including hydrogen production capabilities of E. coli (Reed et al. 2003), 

Clostridium acetobutylicum (a known hydrogen producer) (Desai et al. 

1999; Papoutsakis 1984), Methylobacterium extorquens (a known 

methanol consumer) (Van Dien and Lidstrom 2002), and the 

production of vanillin from glucose in E. coli. 

Another extension of OptKnock is the OptReg framework 

(Pharkya and Maranas 2006). Rather than examining the sole 

inclusion or exclusion (“on” or “off”) of a reaction from a metabolic 

network and its impact on product formation, this framework aims at 

the modulation (“up-regulation” or “down-regulation”) of fluxes relative 

to a base case. In some cases, a proposed knockout to improve 
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production of a biochemical may be lethal to the cellular system, while 

down-regulation of the gene to a basal level of expression may allow 

the cell to function at near-wild-type ability, while still reverting flux 

towards production of the biochemical. Gene-additions and knockouts 

do not constitute the entire array of genetic engineering tools 

available. In addition, engineering promoters (Alper et al. 2005a; Cox 

et al. 2007) as well as a variety of other cloning and expression 

strategies (Chou 2007; Sorensen and Mortensen 2005) can accomplish 

the fine-tuning of both native and heterologous gene expression. 

Regulatory on/off minimization (ROOM) was developed as an 

alternative to MoMA (Shlomi et al. 2005). Rather than minimizing the 

Euclidean distance between the simulated wild-type and the knockout-

strain flux vectors, ROOM minimizes the number of flux changes.  An 

argument for this methodology is that ROOM implicitly accounts for 

regulatory changes by identifying significant flux changes of a few 

reactions, rather than identifying small flux changes in many 

reactions, of which MoMA favors. While, in many cases, fluxes 

calculated by both MoMA and ROOM correlated well (much better 

than FBA) with experimental fluxes, MoMA predicts less true-positive 

lethal knockouts than both FBA and ROOM (Shlomi et al. 2005). A 

possible explanation for this is that, for central metabolism, for which 

labeling experiments can determine flux distributions, both MoMA and 
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ROOM are accurate predictors.  Whereas, for reactions not involved in 

primary metabolism, MoMA may incorrectly predict lethality. 

Lastly, although not the subject of this review, evolutionary 

algorithms have also been applied to model cellular metabolism and 

identify knockout targets for improved product yield. Of particular 

note here is the OptGene framework (Patil et al. 2005), which 

interfaces a genetic algorithm (GA) for exploring genotypic-space with 

an optimization algorithm (FBA, MoMA, or ROOM) as a scoring 

method. As an application, the authors explored glycerol, succinate, 

and vanillin production in a genome-scale model of S. cerevisiae. They 

found that the optimal yield for succinate was obtained with a four 

gene-knockout.  This was identified by searching only 0.03% of the 

total solution space, making the OptGene framework a 

computationally tractable option (Patil et al. 2005). This framework 

was used to drive metabolic engineering of S. cerevisiae for improving 

the production of heterologous cubebol (a sesquiterpene natural 

product) by 85% (Asadollahi et al. 2009). A recent study compared the 

performance of a genetic algorithm to the performance of a simulated 

annealing algorithm (SAA) (Rocha et al. 2008). A comparison of these 

two stochastic algorithms showed that their performance in identifying 

optimal genotypes for producing lactate or succinate in S. cerevisiae or 

E. coli was quite similar. In yet another method developed to identify 
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gene knockout targets for metabolite over-production, a local search 

method was utilized (Lun et al. 2009). The optimal three-knockout 

strategy for acetate over-production was found in 2,566 seconds using a 

local search while a global search took 36,924 seconds. The MILP local 

search strategy, called Genetic Design through Local Search (GDLS) is 

based on the idea that knockouts that aid in metabolite over-

production are close to each other with respect to metabolite or 

reaction connectivity. 

Figure 10 shows a pictorial timeline of important methodological 

advances and applications for both data-driven and optimization-

driven approaches to MFA. 
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Figure 10 A timeline showing important methodological advances and applications 

for both data-driven and optimization-driven approaches to MFA. 

  



 

57 

 

 

Applications in Pharmaceutical Strain Development 

The importance of small-molecules as pharmaceuticals and 

therapeutic agents is well-recognized (Barrett 2005; Clardy et al. 2006; 

Clardy and Walsh 2004; Cragg et al. 1997; Newman 2008; Newman 

and Cragg 2007). The term “small-molecule” is typically taken to mean 

molecules of less than 1,000 daltons and of type non-protein and non-

peptide. Of the nearly 380 billion (US$) in pharmaceutical revenue in 

2007, 81% was derived from small molecule sales. Another 17.5% was 

derived from biologics, or biopharmaceuticals (therapeutic proteins and 

monoclonal antibodies) sales, and 1.1% from vaccine sales. The most 

significant growth rate in pharmaceutical sales from 2007-2012 will be 

that of the monoclonal antibody segment, at more than 11% 

(Datamonitor 2008). Natural products are small-molecules made by a 

variety of organisms that have widespread clinical relevance. 

Examples are the ß-lactam penicillin-G from P. chrysogenum, the 

macrolide erythromycin A from Saccharopolyspora erythraea, and the 

diterpenoid Taxol® from Taxus brevifolia (the Pacific yew tree). 

Between 1981 and 2002, of 1,031 FDA approvals for clinical usage, 5% 

were natural products while another 23% were natural product-

derived small-molecules (Newman et al. 2003). Although some 

therapeutic proteins were historically derived from animal or human 

sources (for example, porcine insulin, human transferrin, human 



 

58 

 

serum albumin, or cadaver-derived human growth hormone), 

contamination of such products with adventitious agents including 

viruses and prions led to the establishment of recombinant protein 

production processes based on the recombinant engineering of well-

characterized and safe microbial or mammalian host cells. 

While the production of penicillin from P. chrysogenum has 

served as the classical example for traditional strain improvement 

through medium/bioprocess optimization and random mutagenesis 

(Adrio and Demain 2006; Demain 2006), the rational engineering of 

native and heterologous strains for the production of natural products 

is becoming increasingly popular (Boghigian and Pfeifer 2008; Chemler 

and Koffas 2008; Leonard et al. 2009; Zhang et al. 2008a). The titers of 

these high-value products can often be quite low, resulting in poor 

process productivities and, therefore, high costs. In an effort to improve 

production, the application of modern metabolic engineering 

techniques is essential. As stated previously, elucidation of metabolic 

fluxes through labeling methods and simulation of fluxes and 

identification of metabolic engineering targets through optimization 

frameworks is essential for improving the production. While most of 

the efforts in this area have revolved around the production of non-

therapeutic small-molecules such as amino acids (Lee et al. 2007; Park 

et al. 2007) and organic acids (Burgard et al. 2003; Sanchez et al. 
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2006b), this review will highlight some of the successes in applying the 

previously described MFA techniques for the production of both small-

molecule and protein pharmaceuticals. 

Small-Molecule Pharmaceutics  

One of the earliest examples in applying MFA for secondary 

metabolite or complex small-molecule production was in riboflavin-

producing B. subtilis (Sauer et al. 1997; Sauer et al. 1996). Utilizing 

13C-labeling in a glucose-limited chemostat and two-dimensional 

proton detected [13C, 1H]-correlation spectroscopy (2D [13C, 1H]-COSY), 

the authors quantified fluxes throughout glycolysis, the pentose 

phosphate pathway, and the TCA cycle. Ultimately, it was concluded 

that B. subtilis has an unusually high-capacity for NADPH-

regeneration and that riboflavin biosynthesis was limited by neither 

the supply of precursors (ribose-5-phosphate and 3-phosphoglycerate) 

nor the supply of cofactors (ATP and NADPH), but more likely the 

kinetics of the riboflavin biosynthetic pathway. One of the most 

difficult problems to overcome was developing a model large enough to 

encompass the relevant secondary metabolite pathways without 

producing inaccurate flux estimates with large confidence intervals. 

Moreover, for optimization-based studies, secondary metabolite 

production presents a novel challenge in defining the objective function 

since secondary metabolites are non-growth associated. 
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Applications of the optimization frameworks of FBA and MoMA 

were used to predict knockouts that would improve heterologous 

production of the natural product lycopene through E. coli (Alper et al. 

2005b; Alper et al. 2005c). Lycopene, a C40 bright red carotenoid with 

antioxidant properties, shares precursor molecules of isopentenyl 

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) with 

a variety of other isoprenoids, such as two plant natural products: the 

anticancer-compound Taxol, and the antimalarial-compound 

artemisinin (from the plant Artemisia annua, otherwise known as 

sweet wormwood) (Keasling 2008; Klein-Marcuschamer et al. 2007; 

Withers and Keasling 2007). Lycopene‟s red color eases quantification 

through spectrophotometric methods and therefore facilitates high-

throughput screening. This property then allowed or helped verify both 

rational and combinatorial improvements to biosynthesis (Alper et al. 

2005b; Alper et al. 2005c; Alper et al. 2006a; Alper and Stephanopoulos 

2008; Farmer and Liao 2001; Jin and Stephanopoulos 2007; Kang et al. 

2005; Klein-Marcuschamer et al. 2007; Yoon et al. 2008; Yoon et al. 

2007; Yoon et al. 2006). Given that lycopene shares early pathway 

intermediates with numerous other isoprenoid natural products, it was 

assumed that the genetic modifications responsible for improved 

lycopene production would translate to these other natural product 
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systems (once the heterologous components had been transferred to E. 

coli). 

As the interplay between primary and secondary metabolism 

has not been elucidated in many cases for native natural products, 

even less is known of this relationship between primary and secondary 

metabolism in a heterologous host. To test this interaction, multiple 

knockouts were predicted and implemented, resulting in increased 

lycopene production while still sustaining growth. Starting with a 

genome-scale model of E. coli metabolism (Reed et al. 2003), the 

reactions required for lycopene biosynthesis (coded by crtEBI) were 

added before a multi-dimensional (single-, double-, and triple-

knockouts) search of genotypic-space using the MoMA framework was 

conducted. This sequential search showed knockouts that 

experimentally improved lycopene production including: ∆gdhA 

resulted in 13% increased production (above 4,400 ppm), 

∆gdhA/∆gpmB resulted in 18% increased production, and 

∆gdhA/∆aceE/∆fdhF resulted in 37% increased production (Alper et al. 

2005b). As such, this method identified a triple-knockout strain that 

would increase lycopene production with little to no a priori knowledge 

of the system, a very important characteristic when attempting to 

improve the production of heterologous products in which there is little 

to no information on biosynthetic regulation. Global transcriptional 
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machinery engineering (gTME) (Alper et al. 2006b) further improved 

production (Alper and Stephanopoulos 2007), while combining 

predicted knockouts with over-expression targets resulted in a strain 

capable of a 400% increase in production (Jin and Stephanopoulos 

2007). An important point to take away from this study is that an 

exhaustive search technique is computationally infeasible, but a 

greedy search method (a search method that aims to find the global 

optimum by iteratively searching local optima) can be successful at 

finding improved predicted phenotypes. In the time since this study, 

better search strategies (such as the GDLS and OptGene algorithms 

previously discussed) have been applied to the E. coli genome-scale 

metabolic network that allow for identification of greater than three or 

four knockout strains with improved predicted phenotypes. 

Due to the highly under-determined nature of the stoichiometric 

matrices of genome-scale metabolic models, 13C-MFA was not applied 

until recently. Production of a precursor to artemisinin, amorphadiene, 

has been accomplished in both E. coli (Martin et al. 2003) and S. 

cerevisiae (Ro et al. 2006). To determine fluxes in the amorphadiene-

producing E. coli strain, a model was reduced from a genome-scale 

model (Reed et al. 2003) to contain 238 reactions (350 fluxes) and 184 

metabolites (also including the reactions needed to make 

amorphadiene), a model at least four times larger than existing models 
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for 13C-MFA. An isotopomer model was developed and GC-MS was 

utilized to measure the amino acid mass isotopomer distributions 

(MID‟s) arising from 13C-glucose in a chemostat culture, along with 

three external flux measurements (glucose, cell-density, and 

amorphadiene). Unfortunately, due to the large scale of the model and 

the limited number of measured metabolites (thirteen amino acids), 

the authors had to reduce the model‟s size to achieve an acceptable χ2 

distribution. Even with this reduction, multiple local minima were 

statistically indistinguishable, suggesting that many flux distributions 

could have led to identical labeling patterns. As described earlier, 

utilizing the OptMeas framework on this system led to tightened 

confidence intervals of flux values.  However, much ambiguity in the 

system remained due to the choice of uniformly-labeled glucose ([U-

13C]glucose) (Chang et al. 2008). The use of a larger model needed to 

encompass the relevant cellular metabolism for complex small-

molecule (such as a natural product like amorphadiene) production 

was addressed here. However, although this effort was successful in 

utilizing a large-scale model for an isotopomer analysis, the study also 

highlights several remaining issues: 1) the model needed to be reduced 

in size, 2) the choice of isotope and its effect on flux estimation, 3) the 

significant time needed to generate a large-scale isotopomer model, 

and 4) the significant computation time needed to solve large-scale. 
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Some of the methods discussed in this paper developed more recently 

to address these issues. 

More recently, an integrated, systems-level analysis was 

performed on a phosphofructokinase (PFK)-knockout mutants of S. 

coelicolor A3(2) (this organism has three highly similar PFK-encoding 

genes) for improved production of two native pigmented antibiotics, 

actinorhodin (a polyketide) and undecylprodigiosin (Borodina et al. 

2008). Starting with a genome-scale model of S. coelicolor A3(2) 

(Borodina et al. 2005), the authors constrained fluxes through the 

NADP+-dependent glucose-6-phosphate 1-dehydrogenase, 

phosphofructokinase, and isocitrate dehydrogenase using data from 

13C-MFA (from labeled glucose) and a glucose-uptake rate from 

extracellular measurements in the wild-type strain. Next, using 

MoMA, the authors predicted new flux distributions resulting in 

decreased (or zero) flux through the PFK-mediated reaction. In 

addition to the 13C-MFA and MoMA calculations, the authors 

measured uptake and production rates of glucose, glycerol, succinate, 

ethanol, acetate, and pyruvate by cation-exchange HPLC coupled to 

refractive index (RI) and ultraviolet detectors (UV). To monitor gene-

expression, the authors used microarrays for genome-wide 

transcriptional analysis as well as quantitative reverse-transcriptase 

polymerase chain reaction (qRT-PCR) for analysis of the genes 
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responsible for actinorhodin and undecylprodigiosin biosynthesis. 

Lastly, the authors performed enzyme activity assays on PFK and 

glucose-6-dehydrogenase. With a wealth of data generated on the 

transcript and metabolic-levels, the authors concluded a variety of 

details which helped determine the relationship between primary and 

secondary metabolism in antibiotic-overproducing S. coelicolor A3(2). 

One of the three mutants, ∆pykA2, showed approximately a five-fold 

increase in both actinorhodin and undecylprodigiosin titers in both 

complex and minimal medium. The mutant also had a decreased 

maximal specific growth rate and a decreased biomass yield on glucose, 

while at the same time having an increased specific glucose uptake 

rate. At a metabolic level, deletion of pyk led to increased flux to the 

pentose phosphate pathway (7% of the imported glucose in the wild-

type as compared to 50% in the ∆pykA2 mutant). This result shows 

that even in this mutant, glycolysis was not blocked completely.  

However, metabolite quantification showed an accumulation of 

glucose-6-phosphate and fructose-6-phosphate, suggesting that 

knocking-out genes leading to glycolysis is a better way of diverting 

flux to the pentose phosphate pathway (PPP) than over-expression of 

genes leading to the PPP. While the stability of these engineered 

strains was not examined in particular, it is likely that the decreased 

growth rates is due to imbalance of intracellular metabolites (such as 
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the glucose-6-phosphate and fructose-6-phosphate discussed) and not 

toxicity of the product metabolites, due to the relatively low levels of 

antibiotics produced in general (approximately 50 μM at the highest 

levels). 
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Chapter 3 – Metabolic surveying of heterologous hosts 

for polyketide biosynthesis 

Introduction 

As cited in Chapter 2, heterologous hosts for polyketide 

biosynthesis range from classical hosts such as Streptomyces sp. to 

newer hosts such as E. coli, B. subtilis, and S. cerevisiae. Although 

these newer hosts have many advantages over the classical ones 

(faster growth rates, lack of complex morphologies), the new 

heterologous hosts may also present limitations that include an 

intracellular environment not evolutionarily optimized for polyketide 

production (Fischbach et al. 2008). Polyketide biosynthesis requires 

short-chain acyl-coenzyme A (CoA) monomers such as acetyl-CoA, 

propionyl-CoA, malonyl-CoA, methylmalonyl-CoA, and benzoyl-CoA 

(Chan et al. 2009; Walsh 2008). These monomers take part in 

sequential NADPH-dependent condensation reactions catalyzed by 

biosynthetic enzymes termed polyketide synthases (PKSs) (Khosla et 

al. 2007). Certain polyketide precursors are available from primary 

metabolism (for example, acetyl-CoA); however, when this is not the 

case, dedicated precursor metabolic pathways must be re-engineered or 

introduced to tailor to the specific polyketide product of interest. For 

example, the heterologous biosynthesis of 6-deoxyerythronolide B (6-

dEB), the 14-membered aglycone macrocyclic core of the wide-
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spectrum antibiotic erythromycin, was accomplished in E. coli by 

combining native and heterologous metabolism to supply the required 

acyl-CoA substrates needed by the similarly heterologous 

deoxyerythronolide B synthase (DEBS) polyketide synthase (Khosla et 

al. 2007; Pfeifer et al. 2001). The metabolic design allowed exogenously 

fed propionate to be converted to propionyl-CoA and (2S)-

methylmalonyl-CoA.  These substrates support DEBS-catalyzed 6-dEB 

biosynthesis and are commonly incorporated into other polyketide 

compounds; yet, they are normally present at low concentrations 

within E. coli. Though heterologous biosynthesis was achieved, only 5-

10% of propionate used to initiate intracellular precursor supply was 

eventually converted to 6-dEB; hence, just as a heterologous host may 

provide certain precursors/cofactors to aid the heterologous 

biosynthetic effort, separate metabolism can also act as a drain away 

from the desired polyketide compound (Pfeifer et al. 2002). The 

situation would be aided by a better understanding of the relationship 

between native and heterologous metabolism such that subsequent 

metabolic engineering can more effectively improve the heterologous 

production of the desired polyketide product.  

In this chapter, FBA was used to computationally characterize 

three potential heterologous hosts in the context of polyketide 

biosynthesis. More specifically, the 6-dEB pathway was chosen because 
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of its prior and current use as a model for heterologous polyketide 

biosynthesis and because biosynthesis depends on non-abundant acyl-

CoA precursors that require more effort and insight to provide during 

the heterologous metabolic engineering needed to establish 

biosynthesis. In doing so, the goal was to use well-established 

metabolic modeling methods to determine: 1) which commonly used 

heterologous host would be best suited for 6-dEB biosynthesis and 2) 

which genotypic alterations would result in improved 6-dEB 

production under certain environmental conditions. More generally, 

the study is an initial effort to better characterize polyketide 

biosynthesis within several heterologous host systems, understand the 

interplay between native and heterologous metabolism, and provide 

testable hypotheses for experimental metabolic engineering to improve 

heterologous biosynthesis.  

Materials & Methods 

Model Construction 

Genome-scale stoichiometric models were downloaded from 

Professor Bernhard Ø. Palsson‟s website (http://gcrg.ucsd.edu/); 

iAF1260 (Feist et al. 2007), iYO844 (Oh et al. 2007), and iMM904 

(Herrgard et al. 2008) were utilized as base models for E. coli, B. 

subtilis, and S. cerevisiae, respectively (Table 2). To account for the 

reactions needed to make 6-dEB, a DEBS-catalyzed biosynthetic 

http://gcrg.ucsd.edu/


 

70 

 

reaction and a 6-dEB transport reaction (assumed to be accounted for 

by diffusion) were added to the E. coli, B. subtilis, and S. cerevisiae 

models. The 6-dEB biosynthetic reaction was assumed to be 

irreversible and held the following stoichiometry: 1 propionyl-CoA + 6 

(2S)-methylmalonyl-CoA + 6 NADPH → 1 6-dEB + 6 CO2 + 7 CoA + 1 

H2O + 6 NADP+. A 6-dEB transport reaction (from the cytosolic to the 

extracellular compartments) was added as a sink to balance the 6-dEB 

metabolite and is consistent with what is observed experimentally for 

E. coli (Pfeifer et al. 2001). 
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Table 2 Information on the genome-scale models of E. coli, B. subtilis, and S. 

cerevisiae. 

 

Organism Name Genes Metabolites Reactions 
Cellular 

Compartments 
Year Citation 

E. coli iAF1260 1,261 1,668 2,382 3 2007 (Feist et al. 2007) 

B. subtilis iYO844 844 992 1,250 2 2007 (Oh et al. 2007) 

S. cerevisiae iMM904 904 713 1,402 8 2008 (Herrgard et al. 2008) 
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In addition to the biosynthetic reaction, pathways were added to 

the E. coli and S. cerevisiae networks to facilitate acyl-CoA precursor 

supply. While the B. subtilis model has the ability to synthesize (2S)-

methylmalonyl-CoA from propionyl-CoA (through the action of a 

propionyl-CoA carboxylase), E. coli does not have such ability. This 

particular pathway was chosen because it has previously been 

experimentally implemented into E. coli to support 6-dEB production 

(Pfeifer et al. 2001). A propionyl-CoA carboxylase reaction was 

therefore added to the E. coli model (and was assumed to be 

reversible(Reszko et al. 2003)) and held the following stoichiometry: 

ATP + HCO3
– + propionyl-CoA ↔ ADP + H+ + (2S)-methylmalonyl-CoA 

+ Pi. Both propionate and non-propionate pathways were introduced to 

the S. cerevisiae model, which were all assumed to occur within the 

cytoplasm. The propionate-dependent pathway required the addition of 

a propionate transport reaction in addition to the propionyl-CoA 

synthetase and carboxylase reactions. For the non-propionate 

pathway, a methylmalonyl-CoA mutase was added to convert succinyl-

CoA to (2R)-methylmalonyl-CoA. Next, a methylmalonyl-CoA 

epimerase was added to convert (2R)-methylmalonyl-CoA to (2S)-

methylmalonyl-CoA and, lastly, a methylmalonyl-CoA decarboxylase 

was added to derive propionyl-CoA from (2S)-methylmalonyl-CoA 

(Haller et al. 2000). Because succinyl-CoA only existed within the 
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mitochondrion of the base model, a transport reaction was added to the 

network to allow for the exchange of succinyl-CoA from the 

mitochondrion to the cytosol. Lastly, the lower bound of the oxygen 

uptake rate (OUR) was set to –7.4 mmol gDCW–1 hr–1, as was observed 

experimentally (Van Hoek et al. 1998). This bound was set to 25 mmol 

gDCW–1 hr–1for B. subtilis (Sauer et al. 1996). 

Calculations were made in MATLAB® 7.4 (Mathworks Inc.; 

Natick, MA) utilizing the SMBL Toolbox (version 2.0.2, 

http://sbml.org/software/sbmltoolbox/) (Keating et al. 2006; Schmidt 

and Jirstrand 2006) and the COBRA Toolbox (version 1.3.3, 

http://gcrg.ucsd.edu/) (Becker et al. 2007). Optimization was 

undertaken using the CPLEX (version 11.0) algorithm of the 

TOMLAB™ Optimization Environment (TOMLAB™/CPLEX) 

interfaced with the COBRA Toolbox and MATLAB® 7.4. 

Flux Balance Analysis 

Stoichiometric, steady-state balances on all metabolites are 

imposed as linear constraints on the basic equation (as described 

previously): 

Equation 5 

      

In Equation 5, S is an m × n matrix where m is the number of 

metabolites and n is the number of reactions in the model; while v is a 

column vector of length equal to the number of reactions (n × 1). The 

http://sbml.org/software/sbmltoolbox/
http://gcrg.ucsd.edu/
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steady-state assumption yields that the dot product of S and v is equal 

to a zero row- vector of 1 × m. As the systems dealt with here are all 

underdetermined and their relationships are linear, the problem can 

be formed as a linear optimization problem subject to a metabolic 

objective: 

Equation 6 

Maximize:       

Subject to:       

and 

             

In this optimization framework, c is a row vector containing 

weighting factors for individual fluxes on the objective function, z. ai 

and bi are the lower and upper bounds, respectively, of each flux as 

determined by either thermodynamics or experimental measurements. 

All flux units are in mmol gDCW–1 (grams of dry cell weight) hr–1, 

except for the biomass formation flux, which has units of hr–1. For 

reactions without experimental data to provide flux information, 

reversible reactions have lower bounds of ‒1000 while irreversible 

reactions have lower bounds of 0; the upper bounds for both reversible 

and irreversible reactions are 1000. Heterologous production of 6-dEB 

has not been accomplished in B. subtilis or S. cerevisiae, and there is 

no information available on chemostat cultures of E. coli engineered to 

produce 6-dEB, In an effort to choose carbon-source (either glucose or 
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glycerol) uptake rates that would allow for a fair comparison between 

hosts, the growth-rates of all three organisms were plotted as a 

function of either glucose or glycerol uptake rate. A propionate uptake 

rate (PUR) of 0.02 was chosen based upon E. coli 6-dEB fed-batch 

bioreactor data previously published (Gonzalez-Lergier et al. 2006; 

Pfeifer et al. 2002). As a result, this value was used across all three 

organisms. ATP maintenance fluxes (vATPM) were unchanged from the 

base models for all three organisms. 

In glucose-limited aerobic E. coli cultures in both batch and 

chemostat modes, the maximization of the biomass objective function 

provided high predictive fidelity of fluxes in central metabolism (as 

determined by comparison with 13C-labeling studies) without the use of 

additional constraints (Schuetz et al. 2007). Although this was 

conducted on a small-scale model of E. coli metabolism, the authors 

state that the best predictive objective functions on small-scale models 

were also the best for two older (Edwards and Palsson 2000; Reed et al. 

2003) genome-scale models of E. coli metabolism (Schuetz et al. 2007). 

Bi-level optimization frameworks have been developed to identify 

distributed metabolic objectives (to predict the weights of the objective 

function vector c) (Burgard and Maranas 2003; Gianchandani et al. 

2008; Nolan et al. 2006); however, due to the lack of flux 

measurements, this method cannot be applied here. These two reasons 
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prompted use of the biomass formation equation as the objective 

function for optimization. 

Calculations were made on an 32-bit Microsoft® Windows Vista 

Ultimate system with an Intel® Core™ 2 Duo T7300 processor running 

at 2.00 GHz with 4 GB RAM. Single FBA calculations using the 

TOMLAB™/CPLEX algorithm took approximately 70ms, 30ms, and 

40ms for E. coli, B. subtilis, and S. cerevisiae, respectively. All linear 

programming problems that did not converge were removed from 

further analysis. 

Altered Medium Formulations 

Most FBA simulations to date have relied on a “computational 

minimal medium” in an attempt to mimic an experimental minimal 

medium typically containing a variety of salts and a single carbon 

source (for example, glucose). Previous experimental studies with E. 

coli showed that using a complex medium markedly improved both 6-

dEB titers and cell-densities in shake-flask and bench-scale bioreactor 

cultures (Lau et al. 2004). Glycerol was chosen as an alternative 

carbon-source since, experimentally, many heterologous gene 

expression systems (including the one engineered for 6-dEB 

biosynthesis) rely on lac operators susceptible to catabolite repression 

by glucose. As a result, computational studies were performed in four 

types of media: minimal medium with glucose (the conventional 
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choice), minimal medium with glycerol, complex medium with glucose, 

and complex medium with glycerol. Medium composition can be 

approximated by setting uptake rates of specific chemical components 

known to exist in the medium of interest. The “computational complex 

medium” contained all twenty naturally-occurring amino acids (L-

isomers) (Oh et al. 2007). The lower bounds of the amino acid uptake 

reactions were set to –0.1 mmol gDCW–1 hr–1 and were chosen based 

upon previous literature values and because they satisfied the relative 

biomass differences experimentally observed between media (Oh et al. 

2007; Selvarasu et al. 2009a).  

Minimization of Metabolic Adjustment 

It has been shown that the minimization of metabolic 

adjustment (MoMA) framework has better predictive power than FBA 

for calculating the flux distribution of gene-knockout mutants (Segre et 

al. 2002). The basic hypothesis underlying the MoMA framework is 

that in perturbed metabolic networks such as a network with a deleted 

reaction, the strain will perform in a suboptimal state because it has 

not evolved its perturbed network, therefore, nullifying the biomass 

maximization assumption. Though this method is similar to FBA, it 

replaces the objective function with one of minimizing the Euclidean 

distance between the wild-type strain flux vector and the flux vector of 
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the single-gene knockout mutant, and can be formulated as a standard 

quadratic programming problem: 

Equation 7 

Minimize:               

Subject to:  

and 

          

Here, w is the wild-type flux vector, and x is the knockout 

strain‟s flux vector. The remaining variables are as described 

previously. For both single- and double-knockout MoMA calculations, 

first-dimension knockouts that led to no growth-rate were removed 

from the next dimension of knockouts to avoid trivial solutions (where 

the growth-rate would again be zero) and reduce computation time. All 

quadratic programming problems that did not converge were removed 

from further analysis. MoMA was chosen over other knockout 

identification frameworks such as regulatory on/off minimization 

(ROOM, which aims to minimize the number of flux changes) due to its 

ability to more accurately predict phenotypes shortly after mutation 

(Shlomi et al. 2005). 

Multiple knockout flux distributions were also calculated using 

the MoMA framework. With the newest E. coli reconstruction, an 

exhaustive library of only double-knockout mutants would result in 

over one million mutants, which would be difficult to conduct in a 
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timely manner on a single-processor computer. Even as such, previous 

studies have demonstrated the value of computationally evaluating the 

impact of double-knockout mutants on cellular phenotypes (Alper and 

Stephanopoulos 2007; Alper and Stephanopoulos 2008). Due to the size 

of the models used in this study, a greedy search method was employed 

as opposed to an exhaustive search. In this respect, the global optimum 

hopefully found by iteratively searching local optima. At each iteration, 

a full knockout search was conducted, and the top performing strains 

were identified (as determined by the phenotype fraction, to be 

described later) and those genetic backgrounds were used to conduct 

an exhaustive search to identify possible synergistic effects of multiple 

gene-knockouts. This greedy search proved to be effective at finding 

the optimum at each stage in a timely manner (as supported by 

conducting an exhaustive double-knockout search and comparing 

results in one case). 

Results 

Model Construction 

In addition to the heterologous metabolism needed for 6-dEB 

production, the models were analyzed for native pathways that could 

provide the needed substrates for biosynthesis. Our model showed that 

E. coli succinate metabolism could synthesize propionyl-CoA from 

succinate through the action of an adenosylcobalamin-dependent 
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pathway coded by the ygf operon (Haller et al. 2000). Alternatively, the 

E. coli network (Figure 11a) could produce propionyl-CoA through 

exogenously fed propionate, and (2S)-methylmalonyl-CoA through the 

heterologous propionyl-CoA carboxylase. The B. subtilis network 

(Figure 11b) is capable of natively producing both propionyl-CoA and 

(2S)-methylmalonyl-CoA from exogenously fed propionate.  

Native S. cerevisiae is not known to have extensive propionate 

metabolism. When glucose limited, the cell cannot integrate 

monocarboxylic acids such as propionate into primary metabolism 

through conversion to propionyl-CoA (Mollapour et al. 2008). At 

neutral intracellular pH, these acids become charged and impermeable 

to internal membranes, invoking a “weak organic acid stress” response 

because they are left unmetabolized (Mollapour et al. 2008). However, 

computationally, it is possible to introduce precursor pathways to S. 

cerevisiae to enable 6-dEB production, and both propionate and non-

propionate pathways were added to facilitate precursor supply.   

In both E. coli and B. subtilis, an irreversible methylcitrate 

pathway can consume propionate and produce succinate for biomass 

production through the TCA cycle. Suspecting that this would be a 

considerable sink of propionate from 6-dEB production, the operon 

coding for the methylcitrate pathway (prpRBCD) was experimentally 

deleted from the E. coli chromosome in an effort to improve 6-dEB 
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production (Pfeifer et al. 2001). In calculations with the methylcitrate 

synthase gene present, all exogenously fed propionate was directed 

through this pathway and utilized for cell-growth; the resulting DEBS 

flux was zero. In the absence of the methylcitrate pathway, propionate 

is channeled towards 6-dEB production. To better mimic the E. coli 

experimental system currently utilized and to avoid computational 

results with zero DEBS flux, the methylcitrate synthase reaction was 

removed from both the E. coli and B. subtilis models. While it is not 

entirely certain that B. subtilis has a dedicated propionyl-CoA 

synthase, two gene products have been shown to catalyze this reaction 

(ytcI and acsA).  
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Figure 11 Metabolic networks of propionate metabolism and 6-dEB biosynthesis. 

Networks shown are for (a) B. subtilis and (b) E. coli. The relevant portion of the S. 

cerevisiae metabolic network is entirely heterologous and is described in the text. 

Metabolites are labeled in dark red and cellular compartments are labeled in green. 

Heterologous reactions are shown with long-dashed lines, while the deletion of the 

methylcitrate synthase is shown with a blue “X”. 
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Flux Balance Analysis 

All FBA simulations were conducted with the biomass equation 

as the objective function with the logic that the cell would still attempt 

to maximize biomass formation during 6-dEB biosynthesis. To identify 

carbon source uptake rates that would allow for direct comparison of 

phenotypes between the three organisms, the growth-rate was plotted 

as a function of substrate uptake rate for either glucose or glycerol. 

The simulations utilized to identify substrate uptake rates suitable for 

comparisons between hosts revealed that the biomass yield on moles of 

glucose is higher than the biomass yield on moles of glycerol for all 

three organisms (Figure 12). This is due to the higher molecular 

weight of glucose relative to glycerol, however, the mass yield of cell-

mass on glucose (for E. coli) is 0.472 gDCW g glucose–1 while it is 

slightly higher for glycerol (at 0.480 gDCW g glycerol–1). It is also 

apparent that B. subtilis has the ability to actively utilize both glucose 

and glycerol at higher uptake rates than both E. coli and S. cerevisiae 

due to its relatively higher maximum specific OUR. The simulations 

revealed that an uptake rate of 3 mmol gDCW–1 hr–1 for both glucose 

and glycerol would allow for comparisons to be drawn across host 

species due to the fact that all three organisms are carbon-source 

limited under these conditions (as can be seen by the constant slope of 

the growth-rate for these regions). As a result, for simulations on both 
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minimal and complex medium, carbon source uptake rates were set at 

either 3 mmol glucose gDCW–1 hr–1or 3 mmol glycerol gDCW–1 hr–1. All 

of these simulations were undertaken using the “wild-type” models 

(which did not include any of the engineered reactions or propionate as 

an additional carbon source). 
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Figure 12 Growth phenotypes under glucose and glycerol simulations. 

Plots of the growth rate as a function of carbon-source uptake rate in parent strains 

of E. coli, B. subtilis, and S. cerevisiae. All simulations were performed with either 

(a) glucose or (b) glycerol in minimal medium. 
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After utilizing the given conditions identified through the 

simulations in Figure 12, all of the additional reactions were included 

in the model (as described previously). Single FBA simulations were 

performed on all three hosts under the four different medium 

compositions (Table 3). As can be seen, the DEBS flux (and therefore 

the 6-dEB production rate) is the same for all three organisms under 

all medium compositions, a consequence of the identically imposed 

propionate uptake rates. Also, 6-dEB production rate observed 

represents the theoretical yield of 6-dEB on propionate. This shows 

that there are no catabolic pathways for propionate besides the 

methylcitrate series of reactions (which were removed as previously 

described). Although the production rates are higher than what is 

observed experimentally, going forward, knockouts that increase this 

flux would likely increase 6-dEB titers experimentally. 
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Table 3 Growth and 6-dEB production phenotypes under varying conditions. 

Host comparison for parent models growing on either a minimal or complex medium 

with either glucose or glycerol as the primary carbon source (at an uptake rate of 

3.0 mmol gDCW–1 hr–1). The PUR was set at 0.02 mmol gDCW–1 hr–1. All flux units are 

in mmol gDCW–1 hr–1, while growth-rate has units of hr–1. 

 

Host Carbon-Source Medium Growth-Rate vDEBS 

E. coli Glucose Minimal 0.250 0.0029 

B. subtilis Glucose Minimal 0.233 0.0029 

S. cerevisiae Glucose Minimal 0.287 0.0029 

E. coli Glycerol Minimal 0.132 0.0029 

B. subtilis Glycerol Minimal 0.119 0.0029 

S. cerevisiae Glycerol Minimal 0.158 0.0029 

E. coli Glucose Complex 0.503 0.0029 

B. subtilis Glucose Complex 0.438 0.0029 

S. cerevisiae Glucose Complex 0.323 0.0029 

E. coli Glycerol Complex 0.358 0.0029 

B. subtilis Glycerol Complex 0.310 0.0029 

S. cerevisiae Glycerol Complex 0.267 0.0029 
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Single-Gene Knockouts 

The MoMA framework was applied to the E. coli and B. subtilis 

models to identify single-gene knockouts that increased 6-dEB 

production. The models used here have gene-protein-reaction (GPR) 

associations, such that the removal of a gene coding for a portion of an 

enzyme complex will render the entire reaction inactive (for example, 

the succinate dehydrogenase complex to be discussed later). At the 

same time, removal of a gene coding for an enzyme that has an 

isozyme will result in no difference in flux distribution, as a result, the 

isozyme will acquire the flux held by the removed reaction. 

Calculations were again conducted for minimal and complex medium 

formulations with either glucose or glycerol as the primary carbon-

source. To aid in the analysis of the multi-dimensional data generated, 

the phenotype fraction, fph is defined: 

Equation 8 

                       
                 

               
  

              
            

  

The phenotype fraction equally weights both the biomass flux 

and the DEBS reaction flux. Knockouts that have the highest fph are 

the best performing strains in terms of both biomass and 6-dEB 

production and are the top candidates of knockouts to perform 

experimentally. This parameter filters out knockout strains that have 

low growth-rates, even if the strain‟s production of 6-dEB is higher. As 
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can be seen in Figure 13, many knockouts (of the entire genome) had 

no effect on the growth-rate or the DEBS flux (when fph = 1) or led to 

no growth-rate or DEBS flux (when fph = 0). 
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Figure 13 Single gene-knockout simulations. 

Summary of single-gene knockouts using minimal or complex medium with glucose 

or glycerol as carbon sources for (a-d) E. coli, (e-h) B. subtilis, and (i-l) S. cerevisiae. 

Plotted on the y-axes is the phenotype fraction fph as a function of the x-axes gene 

number. 
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E. coli 

The most marked improvements across all media compositions 

revolved around the succinate metabolite node. In all four cases, 

deletion of any of the genes coding for a portion of the succinate 

dehydrogenase complex (sdhABCD: catalyzing UQ + succinate → 

fumarate + UQH2) and succinyl-CoA synthetase (sucCD: catalyzing 

ATP + CoA + succinate ↔ ADP + Pi + succinyl-CoA) led to the highest 

fph. The glutamate dehydrogenase gene (gdhA: catalyzing L-glutamate 

+ H2O + NADP+ ↔ α-ketoglutarate + ammonia + NADPH) was also 

identified as a top candidate knockout across all four media. 

Glutamate dehydrogenase was previously identified as the best single-

gene knockout for improving lycopene production in E. coli, both 

computationally and experimentally (Alper et al. 2005b; Alper et al. 

2005c). The suggested explanation was that this mutant significantly 

increased the availability of NADPH for lycopene biosynthesis, which 

requires sixteen molecules of NADPH per molecule of lycopene (Alper 

2006). A similar argument could be made for the improvement 

observed here since 6-dEB biosynthesis requires the reducing power of 

six molecules of NADPH. 

Another notable identified target was a subunit of E. coli‟s 

phosphotransferase system (PTS, ptsH), which phosphorylates 

imported sugars by producing pyruvate from phosphoenolpyruvate. 

http://biocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=GLUTDEHYD-RXN
http://biocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=GLUTDEHYD-RXN
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Under minimal medium with glucose, the cell overcomes the lack of a 

PTS system by uptaking glucose through two mechanisms: 1) an ABC 

transporter system, and 2) a proton symport system, both of which 

acquire no flux in the ptsH+ strain. Glucose then becomes 

phosphorylated by hexokinase (utilizing ATP), rather than the PTS 

system. In addition to the periplasmic sugar transport reactions being 

inactivated by the deletion of ptsH, the dihydroxyacetone 

phosphotransferase (dihydroxyacetone + phosphoenolpyruvate → 

dihydroxyacetone phosphate + pyruvate) is also inactivated as a result 

of this deletion. Numerous reactions in glycolysis and the TCA cycle 

are down-regulated (in the case of fructose-6-phosphate aldolase, 

succinate dehydrogenase, and succinyl-CoA synthetase among others) 

or silenced (in the case of fumarate reductase). Pyruvate is generated 

through activation of oxaloacetate decarboxylase, driven by up-

regulation of phosphoenolpyruvate carboxylase. It is therefore 

apparent that down-regulating succinate dehydrogenase or succinyl-

CoA synthetase has a similar effect on improving 6-dEB production as 

the succinate dehydrogenase or succinyl-CoA synthetase mutants, 

albeit less pronounced.  

Interestingly, this knockout improves the fph even when glycerol 

was the main carbon-source. Even though no sugars are being 

imported by the PTS system with glycerol as the carbon-source, the 
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inactivation of the dihydroxyacetone phosphotransferase has a more 

pronounced effect. The dihydroxyacetone phosphotransferase acquires 

a flux of 1.938 mmol gDCW–1 hr–1 when glycerol is used as the carbon 

source, whereas it has a flux of 0.677 mmol gDCW–1 hr–1 when glucose 

is the carbon source. Though, the overall effect is quite similar in this 

case further downstream in metabolism, where down-regulation of 

succinyl-CoA synthase (although not succinate dehydrogenase) allows 

for increased 6-dEB production. In the case for glycerol as the carbon 

source, glycerol kinase is up-regulated to phosphor late the imported 

carbon-source, up-regulating phosphofructokinase I and fructose 

bisphosphatase. Down-regulation of pyruvate dehydrogenase allows for 

up-regulation of both pyruvate kinase and phosphoenolpyruvate 

carboxylase. Taken together, these results suggest that there are 

multiple routes to improving 6-dEB production: reverting precursor 

supply, improving cofactor availability, and engineering a cellular 

regulatory system (such as the PTS system). 

B. subtilis  

As was the case for the succinate dehydrogenase and succinyl-

CoA synthetase genes in E. coli, the top five-performing single gene-

knockouts are consistent across all four medium compositions for B. 

subtilis. The α-ketoglutarate dehydrogenase (citK: catalyzing α-

ketoglutarate + CoA + NAD+ → CO2 + NADH + succinyl-CoA) leads to 
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fph values between 4.57 and 13.61 (depending on the medium 

formulation). The second best single gene-knockout was the succinyl-

CoA synthetase (sucCD: catalyzing ATP + CoA + succinate ↔ ADP + Pi 

+ succinyl-CoA) exhibiting fph values between 3.22 and 5.97. Next, 

pyruvate dehydrogenase (pdhABC: catalyzing CoA + NAD+ + pyruvate 

→ acetyl-CoA + CO2 + NADH) yields fph values between 2.40 and 5.00. 

The fourth best single gene-knockout across the medium formulations 

was aconitase (citB: catalyzing: citrate ↔ isocitrate) leading to fph 

values between 1.86 and 4.38. Lastly, the isocitrate dehydrogenase 

(citC: catalyzing isocitrate + NADP+ ↔ α-ketoglutarate + CO2 + 

NADPH) leads to fph values between 1.76 and 4.29. 

As is evident from these results, engineering primary 

metabolism (the TCA cycle, specifically) has a significant influence on 

6-dEB production. Reverting even a portion of carbon flow from a high 

flux pathway (such as the TCA cycle), to a low flux secondary 

metabolite pathway (such as the 6-dEB biosynthetic pathway) could 

have a significant positive effect on the secondary metabolite pathway. 

Interestingly, four of the five top performing single gene-knockouts 

occur in series in the TCA cycle (aconitase → isocitrate dehydrogenase 

→ α-ketoglutarate dehydrogenase → succinyl-CoA synthetase), while 

the other, the pyruvate dehydrogenase complex, is responsible for 
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priming the TCA cycle with an acetyl-CoA molecule to react with an 

equivalent of oxaloacetate through the action of the citrate synthase. 

S. cerevisiae 

As compared to E. coli and B. subtilis, the exhaustive single 

gene-knockout analysis revealed far fewer knockouts that would 

improve 6-dEB production in S. cerevisiae. Not counting genes coding 

for individual subunits of an enzyme complex, only twelve knockouts 

showed fph values greater than 1.1 across all media conditions. This is 

likely due to the highly “engineered” nature of the substrate pathways 

needed to provide for the precursors for 6-dEB. However, the single 

gene-knockout of the succinyl-CoA ligase (LCS1, LCS2: catalyzing ATP 

+ CoA + succinate ↔ ADP + Pi + succinyl-CoA) did produce the highest 

fph values (between 13.87 and 32.82) observed after the exhaustive 

single gene-knockout analysis for all three organisms. Fumarate 

hydratase (FUM1: catalyzing fumarase + H2O ↔ malate) was the next 

best knockout for three of the four medium compositions; however, the 

same knockout was lethal for complex medium with glycerol as the 

main carbon source. Interestingly, it has been shown that a S. 

cerevisiae strain in which FUM1 replaced with a thienylalanine-

resistance gene was able to aerobically grow on a glucose complex 

medium (2% peptone, 1% yeast extract, 2% glucose), while it was not 
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able to aerobically grow on glycerol complex medium (2% peptone, 1% 

yeast extract, 4% glycerol) (Arikawa et al. 1999). 

Multiple-Gene Knockouts 

Utilizing the same MoMA framework used in the genome-wide 

single-gene deletions, it was extended to conduct a search of the 

genotypic space to find double gene-knockout mutants which increased 

6-dEB production. The QP MoMA algorithm and a greedy search, could 

identify multiple gene knockouts that increased fph further than the 

single dimension of knockouts. MoMA for a double-knockout first relies 

on solving the FBA of the parent strain, then the first-dimension of 

MoMA on a small set of knockouts (as determined from the top 

performing strains in the previous section), and finally a second-

dimension of MoMA on the entire genome. Here, fph is defined relative 

to the parent strain and not the previous knockout. The results are 

shown in Figure 14. The first round of knockouts made a much larger 

impact on the fph than the second-round of knockouts; however, there 

were several second-round knockouts that improved fph. 
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Figure 14 Double gene-knockout simulations. 

fph is plotted as a function of two dimensions of knockouts. The simulated conditions 

were growing on minimal or complex medium with glucose or glycerol as carbon 

sources for (a-d) E. coli, (e-h) B. subtilis, and (i-l) S. cerevisiae. The first series of 

knockouts which had the highest fph are plotted on the left-hand axis, while the 

second series of knockouts are sorted from lowest to highest and plotted on the 

right-hand axis. 
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The addition, modulation, or deletion of more than two or three 

genes is often required to reach the theoretical yield of a particular 

intermediary or secondary metabolite (Alper and Stephanopoulos 

2008). Unfortunately, an exhaustive or even greedy multi-dimensional 

knockout search beyond three genes becomes a very time consuming 

operation on a single-processor system.  

Discussion 

In this study, flux analysis was utilized in an attempt to better 

understand the interaction between cellular metabolism and 

heterologous polyketide biosynthesis in three common heterologous 

hosts, with the goal of identifying genotypic and bioprocess alterations 

which can be implemented experimentally to improve heterologous 

polyketide production. Although variable space for bioprocess 

conditions (for example, medium composition) can be explored fairly 

efficiently with the use of automated liquid-handling systems and 

microplate cultures or miniature bioreactors, it is more difficult to 

thoroughly explore genotypic space. Genetic techniques such as λ-Red 

mediated homologous recombination have improved the speed and 

efficiency of removing genes from the E. coli chromosome (Datsenko 

and Wanner 2000); however, genome-wide applications of this 

approach have not been studied beyond single gene-knockouts (Baba et 

al. 2006) and have not been applied for the improvement of complex 
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natural product production. In general, a comprehensive, experimental 

evaluation of single gene-knockouts generated to improve cellular 

phenotypes is not undertaken due to the cost, time, and labor 

associated with such an effort. This is certainly true in the case of 

improving 6-dEB production, and therefore, computational analyses 

offer a cost- and time-effective way to probe the metabolic network 

prior to undertaking experimental changes predicted to improve a 

phenotypic outcome. 

To this end, three common heterologous hosts were examined, 

the Gram-negative bacterium E. coli, the Gram-positive bacterium B. 

subtilis, and the simple eukaryote S. cerevisiae, and their abilities to 

produce 6-dEB, a complex polyketide precursor to the antibiotic 

erythromycin. In addition to annotated genome sequences which 

allowed for model construction, these host systems were chosen 

because of their relatively simple and extensive molecular biology 

protocols, their established metabolic and bioprocess engineering 

strategies, and consequently, their future potential as hosts to support 

complex natural product biosynthesis. At the same time, 6-dEB 

production was chosen because of the intracellular requirements for 

propionyl- and (2S)-methylmalonyl-CoA and because it has been 

studied as a model PKS system for heterologous biosynthesis. The 

required substrates are common precursors to a number of polyketide 
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products but are typically not found in abundant quantities in E. coli, 

while they may be so in B. subtilis. Therefore, 6-dEB biosynthesis is a 

better test of a heterologous host‟s capabilities to more broadly support 

polyketide biosynthesis.  

When applying FBA to compare the E. coli, B. subtilis, and S. 

cerevisiae hosts, results suggest that S. cerevisiae may be inferior for 

heterologous 6-dEB polyketide biosynthesis, given that it does not 

natively make the short-chain acyl-CoA monomers needed as 

substrates. Nonetheless, efforts have been directed towards the 

heterologous production of polyketides in S. cerevisiae. In an early 

effort, the 6-methylsalicylic acid synthase (6-MSAS) gene was cloned 

from Penicillium patulum and inserted into S. cerevisiae which 

enabled the production of the polyketide, 6-methylsalicylic acid (6-

MSA) (Kealey et al. 1998).The titers observed with S. cerevisiae 

(approximately 1.7 g l‒1) were approximately an order of magnitude 

higher than those produced from a similar heterologous production 

effort using E. coli. The precursors required for 6-MSA are one 

molecule of acetyl-CoA and three of malonyl-CoA. Such impressive 

results for S. cerevisiae suggest the relative, if not unexpected, cellular 

abundance of these substrates for biosynthesis, pointing to potential 

success for similar compounds with the same precursor requirements. 

More recently, two separate pathways for (2S)-methylmalonyl-CoA 
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production (a propionate-dependent and independent pathways similar 

to those described in this modeling work) were introduced to S. 

cerevisiae for production of the polyketide triketide lactone (TKL) 

(Mutka et al. 2006a). Though impressive in demonstrating proof of 

principle production, uptake rates of propionate and methylmalonate 

were not measured and low TKL levels forced LC-MS/MS detection for 

semi-quantification of titers. It is acknowledged, however, that S. 

cerevisiae may indeed offer advantages for heterologous biosynthesis of 

polyketide compounds from other eukaryotic hosts. However, when 

focusing the study to a polyketide product dependent on propionyl- and 

(2S)-methylmalonyl-CoA substrates, our results support the use of E. 

coli and B. subtilis as better host choices. While these two organisms 

are similar from a metabolic standpoint, they are genetically quite 

different. For example, B. subtilis does not support the use of multi-

copy extra-chromosomal plasmids, which are often used for 

heterologous gene-expression in E. coli and S. cerevisiae. However, 

being that B. subtilis does natively produce polyketides and non-

ribosomal peptides, it has an active phosphopantetheinyl transferase 

(required for catalytically functional polyketide and non-ribosomal 

peptide synthase clusters). 

Given that the initial FBA results supported E. coli and B. 

subtilis as better heterologous hosts for 6-dEB biosynthesis, these two 
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hosts were studied using: 1) simulations of growth on complex medium 

formulations and 2) an exhaustive single-gene knockout search and a 

greedy double-gene knockout search to identify gene deletions that 

would improve 6-dEB production. The use of complex medium (with 

either glucose or glycerol as a carbon source) increases the growth-rate 

and DEBS flux in all three hosts, a result that has been similarly 

observed experimentally in E. coli. Not surprisingly, this result occurs 

because the cell does not have to generate its own amino acids and, 

instead, gathers these nutrients from the medium, allowing more 

metabolic resources to be dedicated to cell growth and 6-dEB 

production.  

The MoMA results identified single- and double-gene knockout 

strains with improved capacity for 6-dEB biosynthesis. Many 

knockouts had no effect on the growth-rate or the DEBS flux; however, 

several knockouts had a positive effect on DEBS flux while still 

sustaining cellular viability. Knockouts associated with the succinate 

and succinyl-CoA metabolite nodes serve as highly-connected 

metabolites located between the TCA cycle and the heterologous 6-dEB 

biosynthetic pathway (Table 4). Two separate studies have shown that 

E. coli exhibits robust behavior despite perturbations to genes in the 

TCA cycle (Ishii et al. 2007; Kim et al. 2007a). Therefore, engineering 

even a small portion of native, high-flux pathways such as the TCA 
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cycle to a low-flux heterologous pathway has the potential, as 

demonstrated here computationally, to increase heterologous pathway 

flux while only impacting the growth-rate moderately. In such a 

situation, a reduced growth-rate can often be overcome through the use 

of adaptive evolution strategies (Fong et al. 2003; Fong and Palsson 

2004). 
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Table 4 Summary of the succinate dehydrogenase (sdhABCD) and succinyl-CoA 

synthetase (sucCD) reaction removal in E. coli and the effect on growth-rate and 6-

dEB biosynthesis. 

 

Carbon-Source Medium Gene(s) Removed fph 

Glucose Minimal 
sdhABCD 5.23 

sucCD 13.01 

Glycerol Minimal 
sdhABCD 1.81 

sucCD 7.25 

Glucose Complex 
sdhABCD 14.90 

sucCD 24.14 

Glycerol Complex 
sdhABCD 9.77 

sucCD 16.94 
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Many of the top-performing double-knockout strains were 

combinations of the top-performing single-knockouts. For E. coli grown 

on minimal medium with glucose, the fph for the single-knockouts of 

sucCD and sdhABCD were 13.01 and 5.23, respectively, while the 

double-knockout of both of these operons led to an fph of 13.45. While 

these values appear to be quite high, if experimental results follow the 

simulations, culture titers will increase to over 1 g 6-dEB l‒1, levels 

only previously accomplished with optimized bench-scale bioreactors 

(Lau et al. 2004).  

To our knowledge, the first to use these computational 

approaches to study polyketide biosynthesis was Hatzimanikatis‟s 

group, in both combinatorial biosynthetic (Gonzalez-Lergier et al. 

2005) and metabolic (Gonzalez-Lergier et al. 2006) aspects. The prior 

research examined the theoretical yield of 6-dEB on both glucose and 

propionate in E. coli, and while pioneering in applying flux analysis to 

heterologous polyketide biosynthesis, the work was different in several 

regards to the study conducted in this report. First, the prior study 

assumed a metabolic objective of 6-dEB biosynthesis rather than 

growth-rate, justified since the goal was to determine the maximum 

theoretical yield of 6-dEB under different imposed constraints. In 

contrast, our approach maintains growth-rate as the objective function 

since, experimentally, cell growth is still observed during 6-dEB 
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biosynthesis implying that the cell does not revert all of its resources to 

producing 6-dEB and instead biomass formation may be a more 

accurate depiction of the experimental setting. The previous study also 

did not account for the methylcitrate pathway being deleted from the 

6-dEB producing strain. As calculated here, when the methylcitrate 

pathway was present, all exogenously fed propionate was shuttled 

through this pathway to the TCA cycle and used for biomass 

production. Finally, the previous study separately examined glucose 

and propionate as precursors for 6-dEB biosynthesis; whereas, fed-

batch experiments indicate that both substrates are taken up 

simultaneously and, therefore, our approach attempted to account for 

this dual substrate uptake. 

Although the application of metabolic flux analysis for 

improving heterologous polyketide biosynthesis has only just begun, 

the approach has been successful for heterologous isoprenoid 

biosynthesis (Alper et al. 2005b; Alper et al. 2005c) and a variety of 

other non-therapeutic small-molecules (Lee et al. 2007; Park et al. 

2007). The same FBA/MoMA optimization approaches utilized in this 

study were combined with experimental validation to improve lycopene 

production in E. coli (Alper et al. 2005b). Though the lycopene report 

utilized a smaller genome-scale model (iJE660a) (Edwards and Palsson 

2000), it was found that most of the knockout targets predicted to 
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improve lycopene flux could have been identified using a much smaller 

network based generally around primary metabolism (Alper et al. 

2005b). While it was found that this was the case for growth on 

minimal media with glucose, the same situation did not hold for 

growth on complex medium where a fair fraction of the knockouts 

predicted to improve production do not appear to significantly alter 

primary metabolism but instead affect the metabolism of the 

exogenously fed metabolites or the redox environment. For example, 

inactivation of E. coli‟s branched-chain amino acid transferase (ilvE) 

leads to fph values of 1.74 and 1.50 for complex medium with glucose 

and glycerol, respective, whereas inactivation of these genes is lethal 

in minimal medium. 

Although in both the complex and minimal media cases, 

reactions surrounding the highly-connected succinyl-CoA metabolite 

node proved to be important. These parallels to previous efforts and 

the prior success in other metabolic engineering scenarios support the 

continued use of computational analyses to improve the understanding 

of intracellular environments for heterologous polyketide biosynthesis 

towards the eventual improved production of therapeutic polyketide 

compounds. 

Though recognized as a powerful tool for exploring the cellular 

metabolism of selected host organisms, there are also limitations to 
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using the previously described computational techniques for predicting 

intracellular flux distributions. Primarily, neither the stoichiometric 

model nor the FBA or MoMA frameworks account for genetic 

regulatory mechanisms such as feedback inhibition or quorum sensing, 

which can account for regulation at a variety of levels (translational, 

transcriptional, and metabolic). Secondly, due to the steady-state 

nature of the model and simulations, cellular adjustments to overcome 

gene-deletions (for example, intracellular accumulation of a particular 

metabolite or decreasing a specific carbon-source uptake rate) cannot 

be reflected in this type of modeling. 

In summary, FBA and MoMA frameworks were used to simulate 

the interaction between native and heterologous metabolism as it 

relates to heterologous polyketide biosynthesis. This task was 

undertaken in three well-characterized hosts previously recognized as 

experimental options for heterologous polyketide biosynthesis with the 

goal of identifying genotypic alterations which would improve 

production titers. Results obtained now present new hypotheses to be 

tested experimentally. Such potential reveals yet another facet of 

heterologous polyketide biosynthesis: the range of metabolic 

engineering tools available with well-characterized hosts such as E. 

coli, B. subtilis, and S. cerevisiae. Now, the same experimental tools 

available for introducing and reconstituting heterologous polyketide 
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pathways can be used to implement genetic changes computationally 

predicted to improve polyketide production. This next level of 

metabolic engineering is an attempt to move beyond the heterologous 

introduction of a polyketide pathway and to start engineering the 

optimal activity of the new pathway within the new host. By combining 

approaches that include metabolic modeling, genetic engineering, and 

systems-level analyses (transcriptomics, proteomics, and 

metabolomics) (Askenazi et al. 2003; Bailey 2001; Barrett et al. 2006; 

Jewett et al. 2006; Kell 2004; Kim et al. 2008; Koffas and 

Stephanopoulos 2005; Nielsen and Jewett 2008; Nielsen and Oliver 

2005; Rokem et al. 2007; Stafford et al. 2002; Stephanopoulos et al. 

2004; Wang et al. 2006), the goal will be to match the cellular 

production of the new host to that of the native host. Yet, with the 

added availability of bioprocess and emerging metabolic engineering 

tools such as global transcriptional machinery engineering (gTME) 

(Alper et al. 2006b; Alper and Stephanopoulos 2007) and signal 

pathway engineering (Wang et al. 2007a), the eventual goal of 

heterologous natural product biosynthesis will be to surpass the 

cellular production titers of native host systems (Lee et al. 2005; Tyo et 

al. 2007). 
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Chapter 4 – Multi-scale engineering of 6-dEB 

production 

Introduction 

The PKS responsible for synthesizing the erythromycin 

macrocycle, the deoxyerythronolide B synthase (DEBS), has been the 

study of numerous seminal efforts in producing polyketides and 

understanding their biosynthesis including: cell-free synthesis (Pieper 

et al. 1995), heterologous biosynthesis (Kao et al. 1994; Pfeifer et al. 

2001), the analysis of intermodular communication (Gokhale et al. 

1999), combinatorial biosynthesis (Menzella et al. 2005), and 

structural analyses (Tang et al. 2006). The product of DEBS, 6-

deoxyerythronolide B (6-dEB), has been produced in three different 

heterologous hosts, Streptomyces coelicolor (Kao et al. 1994), 

Streptomyces lividans (Xue et al. 1999), and Escherichia coli (Pfeifer et 

al. 2001), as well as a functional portion of the DEBS PKS in 

Saccharomyces cerevisiae (Mutka et al. 2006a).  E. coli strain BAP1 has 

been developed previously for the heterologous production of polyketide 

and nonribosomal peptide natural products (Pfeifer et al. 2001) and is 

used as the base production system in this study. To generate BAP1, 

the Bacillus subtilis surfactin phosphopantetheinyl transferase gene 

(sfp) (Quadri et al. 1998) was inserted into the prpRBCD location of the 

BL21(DE3) chromosome (removing E. coli‟s primary propionate 
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catabolic pathway (Haller et al. 2000; Textor et al. 1997)), under the 

control of an inducible T7 promoter (Pfeifer et al. 2001; Studier and 

Moffatt 1986). During this same genetic insertion, a T7 promoter was 

inserted before the native prpE gene (coding for a propionyl-CoA 

synthetase) to increase flux towards the production of propionyl-CoA, a 

direct precursor of 6-dEB. 

There have been a number of studies focused on improving the 

stability of the large plasmids harboring the PKS genes (Murli et al. 

2003), utilizing alternative substrate pathways for production (Dayem 

et al. 2002), and high-cell density bioprocess optimization (Lau et al. 

2004) towards improving 6-dEB BAP1 production. Previously in our 

laboratory, metabolic modeling strategies were utilized for surveying 

heterologous hosts and medium compositions with respect to 

improving 6-dEB biosynthesis (Boghigian et al. 2010). Further, the ygf 

operon was analyzed by systematically deleting and over-expressing 

individual operon genes to understand their effect on 6-dEB 

biosynthesis (Zhang et al. 2010a). While most of the individual 

deletions and over-expressions led to either the same or decreased 6-

dEB production titers under the conditions tested, deletion of ygfH 

(propionyl-CoA:succinate CoA transferase), led to an approximately 

two-fold increase in production titer. In an effort to further understand 

the effect of these pathways on polyketide formation, and examine the 
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interactions between these pathways, a multi-scale engineering 

strategy was applied to incorporate metabolic pathway engineering 

along with different bioprocess-related conditions (substrate feeding 

strategies, temperature). The results have implications for improving 

titers of both 6-dEB and other polyketides which utilize one or both of 

the acyl-CoA precursors examined here. 

Materials & Methods 

Background Strains & Plasmids 

E. coli BAP1 was used as previously described (Pfeifer et al. 

2001). TB3 is a derivative of BAP1 (Zhang et al. 2010a) constructed by 

P1 transduction with a ΔygfH::kan (propionyl-CoA:succinate CoA 

transferase) mutant of BW25113 as a donor (Baba et al. 2006). 

The genes required for the production of 6-dEB from propionate 

were cloned into plasmids pBP130 and pBP144, constructed previously 

(Pfeifer et al. 2001). Briefly, pBP130 (approximately 26kb) contains the 

eryA2 and eryA3 genes (coding for the DEBS2 and DEBS3 enzymes) 

under a single T7 promoter, on a pET21c background. Plasmid pBP144 

(approximately 19kb) contains eryA1 under a T7 promoter and genes 

coding for the two subunits of the Streptomyces coelicolor propionyl-

CoA carboxylase enzyme (accA1 and pccB) (Rodriguez and Gramajo 

1999) under the control of second T7 promoter, on a pET28 

background. All three eryA genes were cloned from the native 
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erythromycin producer, Saccharopolyspora erythraea (Cortes et al. 

1990; Donadio et al. 1991). pYW7317 is a derivative of pBP144 without 

the accA1 and pccB genes (Zhang et al. 2009). 

Plasmid pACYCDuet-matBC was kindly provided by Prof. 

Mattheos A.G. Koffas and contains matB (coding for a malonyl-CoA 

synthetase) and matC (coding for a dicarboxylate carrier protein) from 

the nitrogen fixing soil bacterium Rhizobium trifolii, under the control 

of two separate T7 promoters (An and Kim 1998; An et al. 1999; 

Leonard et al. 2008). 

Plasmid Construction 

Standard molecular biology protocols were conducted according 

to Sambrook (Sambrook and Russell 2001). GeneHogs (Invitrogen) or 

XL-1 Blue (Stratagene) strains were used depending on the resistance 

marker of the plasmid to be constructed. The endonucleases used in 

this study were all purchased from New England Biolabs (Ipswich, 

MA, USA). All genes native to E. coli were PCR amplified from the 

BL21(DE3) (Novagen) genome. Oligonucueltoides were purchased from 

Eurofins MWG Operon (Table 5). 
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Table 5 Oligonucleotide primers utilized in this chapter. 

All sequences are 5’→3’ and restriction sites are denoted with an underline. 

 

Name Sequence (5’→3’) 

BamHI_prpE_for GGGGGATCCATGTCTTTTAGCGAATTTTATCAGCGTTC 

HindIII_prpE_rev GGGAAGCTTACCTACGGTTCAGGTCC 

NdeI_atoC_for GGGCATATGACTGCTATTAATCGCATCC 

XhoI_atoC_rev GGGCTCGAGTTATACATCCGCCGGATCG 

NdeI_sbm_for GGGCATATGTCTAACGTGCAGGAGTG 

XhoI_sbm_rev GGGGTCGAGTTAATCATGATGCTGGCTTATCAG 

pKD13_operon_for 
AATACCCTCATTTTGATTGCGTTTTACGGA 

     GCAAATAATGATTCCGGGGATCCGTCGACC 

pKD13_operon_rev 
ATTGCTGAAGATCGTGACGGGACGAGTCAT 

     TAACCCAGCATGTAGGCTGGAGCTGCTTCG 

k2 CGGTGCCCTGAATGAACTGC 

ver_operon_rev CGCCCAGCCAGTTGAGTTCA 
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The propionyl-CoA synthetase (prpE) was amplified and cloned 

into MCS1 of pACYCDuet-1 utilizing BamHI and HindIII restriction 

sites, generating pACYCDuet-prpE. The transcriptional activator of 

the ATO system (atoC) was amplified and cloned into MCS2 of 

pACYCDuet-1 and pACYCDuet-prpE utilizing NdeI and XhoI 

restriction sites, generating pACYCDuet-atoC and pACYCDuet-prpE-

atoC, respectively. An E. coli codon-optimized version of the 

Streptomyces coelicolor A3(2) methylmalonyl-CoA epimerase gene 

(mce) was synthesized by Operon (Huntsville, AL, USA) designed with 

flanking EcoRI and HindIII sites. This construct was blunt-cloned with 

SmaI into a modified pBluescript-II vector and inserted between the 

EcoRI and HindIII sites in MCS1 of pCDFDuet-1, generating 

pCDFDuet-mce. The methylmalonyl-CoA mutase gene (sbm, encoding 

a “sleeping beauty mutase”) was PCR amplified from E. coli 

BL21(DE3) and cloned into MCS2 of pCDFDuet-mce utilizing NdeI and 

XhoI restriction sites, generating pCDFDuet-mce-sbm. All plasmids 

were verified by Sanger sequencing at the Tufts University Core 

Facility. All the plasmids used in this study are listed in Table 6. 
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Table 6 Plasmids constructed or used in this chapter. 

 

Name Description Source 

pACYCDuet-1 cat; P15A ori lacI T7lac Novagen 

pCDFDuet-1 aadA; CloDF13 ori lacI 

T7lac 

Novagen 

pBP130 bla; T7prom-eryA2-eryA3-

T7term 

(Pfeifer et al. 2001) 

pBP144 kan; T7prom-pccB-accA1-

T7prom-eryA1-T7term 

(Pfeifer et al. 2001) 

pYW7317 kan; T7prom-eryA1-T7term (Zhang et al. 2009) 

pACYCDuet-matBC cat; T7prom-matB-T7term-

T7prom-matC-T7term 

(Leonard et al. 2008) 

pACYCDuet-prpE cat; T7prom-prpE-T7term This chapter 

pACYCDuet-atoC cat; T7prom-atoC-T7term This chapter 

pACYCDuet-prpE-atoC cat; T7prom-prpE-T7prom-

atoC-T7term 

This chapter 

pCDFDuet-mce aadA; T7prom-mce-T7term This chapter 

pCDFDuet-mce-sbm aadA; T7prom-mce-

T7prom-sbm-T7term 

This chapter 

pKD13 bla, cat; template for 

chloramphenicol cassette 

amplification 

(Datsenko and 

Wanner 2000) 

pKD46 bla; encodes γ, β, and exo 

under the control of a 

pBAD promoter 

(Datsenko and 

Wanner 2000) 
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Strain Construction 

The entire ygf operon (sbm-ygfDGH) was deleted from the 

BAP1(araBAD:tet) chromosome by λ-Red recombination. First, 

BAP1(araBAD:tet) was transformed with plasmid pKD46 and 

expression of the γ, β, and exo genes was induced with 10 mM L-

arabinose at 30°C. A kanamycin resistance gene (kan) flanked by two 

flipase recognition target (FRT) sites was PCR amplified from pKD13 

(using the pKD13_operon_for and pKD13_operon_rev primer pair) 

containing 50bp of homology arms upstream of sbm and downstream of 

ygfH. This PCR reaction was digested with DpnI, gel purified, and 

approximately 100 ng of DNA was transformed into induced cells. 

Cells were then plated on LB-agar supplemented with 25 mg l‒1 

kanamycin. Successful recombinants were verified by PCR (using the 

k2 and ver_operon_rev primer pair). This strain was stored as a 

glycerol stock, prepared electrocompetent, and transformed with 

pCP20 (Cherepanov and Wackernagel 1995) to excise the kan gene 

between the FRT sites, generating a kanamycin sensitive strain, BAB2 

(all strains are listed in Table 7). 
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Table 7 Strains constructed or used in this chapter. 

 

Name Description Source 

BL21(DE3) F– ompT hsdSB (rB
–, mB

–) gal dcm 

(DE3) 

Novagen 

GeneHogs F– mcrA Δ(mrr-hsdRMS-mcrBC) 

φ80lacZΔM15 ΔlacX74 recA1 

araD139 Δ(ara-leu)7697 galU galK 

rpsL (StrR) endA1 nupG fhuA::IS2 

Invitrogen 

XL-1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac [F´ proAB 

lacIqZΔM15 Tn10 (TetR)] 

Stratagene 

BAP1 BL21(DE3); ΔprpRBCD::T7prom-

sfp-T7prom-prpE 

(Pfeifer et al. 2001) 

TB3 BAP1; ΔygfH::FRT (Zhang et al. 2010a) 

BAB2 BAP1; Δsbm-ygfDGH::FRT This chapter 
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Initial Screening Cultures 

All production cultures contained 5 g l‒1 yeast extract, 10 g l‒1 

tryptone, 10 g l‒1 sodium chloride, 15 g l‒1 glycerol, 3 ml l‒1 50% (v v‒1) 

Antifoam B, 100 mM HEPES, and were adjusted to pH 7.60 with 5 M 

sodium hydroxide. For the initial screening study and the temperature 

modulation study, 3 ml cultures were conducted in 16 × 100 mm 

culture tubes. 

For the initial screening study, the culture medium previously 

described was prepared supplemented with 60 mM sodium propionate, 

60 mM disodium malonate, or 60 mM disodium methylmalonate. These 

were mixed with the production medium lacking the additional carbon 

source to create the various substrate concentrations desired. For 

precultures, a stab of glycerol stock was inoculated into 2 ml LB 

medium with appropriate antibiotics and grown overnight at 37°C and 

250 rpm. For production cultures, 3 ml production medium was 

inoculated into 16 × 100 mm culture tubes with the precultures to an 

OD600nm = 0.1. These production cultures were grown for 72 hr at 22°C 

and 250 rpm. At the end of the culture period, cell-density was 

measured spectrophotometrically at 600 nm and a single, 1 ml aliquot 

was stored at ‒20°C for subsequent analyses. When needed, antibiotics 

were supplemented at concentrations of 100 mg l‒1 for carbenicillin, 50 

mg l‒1 for kanamycin, and 34 mg l‒1 for chloramphenicol. Induction of 
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heterologous gene-expression was accomplished by supplementing 100 

μM isopropyl β-D-1-thiogalactopyranoside (IPTG) to the culture 

medium. 

Shake-Flask Production Cultures 

Shake-flask cultures (15 ml in 125 ml Erlenmeyer flasks) 

containing production medium were used for subsequent production 

tests. Single colonies were picked from freshly streaked plates and 

inoculated into 1 ml production medium containing necessary 

antibiotics. These cultures were grown at 37°C and 250 rpm until 

OD600nm ≈ 0.6 and were used to inoculate 15 ml production medium 

with necessary antibiotics and 100 μM IPTG at a volumetric ratio of 

5%. Cultures were then incubated at 22°C and 250 rpm for 120 hr. At 

the end of the culture period, cell-density was measured 

spectrophotometrically at 600 nm and a single 1 ml aliquot was stored 

at ‒20°C for subsequent analyses. As before, antibiotics were 

supplemented at concentrations of 100 mg l‒1 for carbenicillin, 50 mg 

l‒1 for kanamycin, 34 mg l‒1 for chloramphenicol, and 5 mg l‒1 for 

tetracycline. 

6-dEB Quantification by RP-HPLC-ELSD 

The HPLC method for 6-dEB separation and quantification has 

been described previously (Wang et al. 2007a). Briefly, quantification 

of 6-dEB was carried out on an Agilent 1100 series HPLC coupled with 
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an Alltech 800 series evaporative light-scattering detector (ELSD). The 

guard column used was an Inertsil ODS3 C18 5 µm, 4.6 mm × 10 mm 

while the analytical column used was an Inertsil ODS3 C18 5 µm, 4.6 

mm × 150 mm (GL Sciences). Ultra-high purity grade nitrogen gas 

(AirGas East) was used as the mobile phase for the ELSD at a 

pressure of 3.00 ± 0.05 bar, while the ELSD drift tube temperature was 

maintained at 55°C and the gain setting was set at 16. Culture 

samples were first centrifuged for 10 min at 10,000 × g to remove 

insolubles. A 20 µl supernatant injection volume was then applied to 

the column. The mobile flow rate was 1 ml min−1 and 6-dEB was eluted 

at 7.92 ± 0.05 min. Quantification was carried out against a five-point 

calibration curve of purified 6-dEB (kindly provided by Kosan 

Biosciences). 

6-dEB Quantification by Mass Spectrometry 

When 6-dEB was not detectable by RP-HPLC-ELSD (with a 

limit of detection of approximately 5 mg l−1), the production titer was 

quantified by mass spectrometry. Erythromycin was used as an 

internal standard during the MS analysis to account for internal 

measurement drift of the instrument. Clarified culture medium (750 

μl) was extracted with an equal volume ethyl acetate and dried. The 

extract was dissolved in 50 μl of HPLC-grade methanol containing 5 

mg l−1 erythromycin for analysis. To prepare a suitable calibration 
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curve, the culturing procedure was repeated using E. coli BAP1 

without any plasmids and 6-dEB standards added at different 

concentrations at the end of the culture period prior to ethyl acetate 

extraction. The standard samples were then used to prepare the 

calibration curve to correlate 6-dEB MS peak intensity with 6-dEB 

concentration. The calibration curve was generated for every sample 

set and experiments were repeated three separate times using a 

Thermo Electron Corporation LTQ XL Linear Ion Trap Mass 

Spectrometer (Waltham, MA, USA). 

Metabolite Quantification 

Medium and byproduct organic acids were quantified by the 

previously mentioned HPLC system coupled to a Refractive Index 

Detector (RID). Clarified culture supernatant (20 μl) was applied to a 

Bio-Rad Aminex® HPX-87H Ion Exchange (300 mm × 7.8 mm, 9 µm) 

column, preceded by a 30 mm guard column of the same resin. The 

isocratic analysis used a 9.5 mM H2SO4 solvent held at a flow rate of 

0.3 ml min–1. These conditions were identified by using an iterative 

stochastic search HPLC optimization program based on the compounds 

anticipated to be present in the culture medium (Dharmadi and 

Gonzalez 2005). A five-point standard calibration curve was created 

and used for quantification of propionate, malonate, methylmalonate, 

glycerol, pyruvate, acetate, ethanol, succinate, formate, and lactate. 
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The elution order was as follows: pyruvate (16.7 min), malonate (18.9 

min), methylmalonate (20.9 min), succinate (22.7 min), lactate (24.2 

min), glycerol (25.1 min), formate (26.8 min), acetate (29.1 min), 

propionate (34.5 min), and ethanol (41.3 min). All specific production 

or consumption rates presented are averaged over the course of the 

culture period. 

Results 

Initial Screening Study 

Upon inspection of generalized metabolic maps, and given the 

DEBS (2S)-methylmalonyl-CoA requirement, constructed of a 

metabolic pathway capable of converting exogenous methylmalonate to 

(2S)-methylmalonyl-CoA (Figure 15) was undertaken. This pathway 

would include E. coli‟s native YgfG or the heterologous reversible PCC 

to provide propionyl-CoA. The MatB-MatC pathway responsible for 

methylmalonate-methylmalonyl-CoA conversion from R. trifolii was 

then reconstructed in E. coli. While these MatB and MatC synthases 

have a preference for malonate as a substrate, it has been shown that 

they can also activate methylmalonate at 20.4% the in vitro rate of 

malonate (An and Kim 1998). 
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Figure 15 Propionate, methylmalonate, and succinate metabolism and their relation 

to 6-dEB production in E. coli. 

Heterologous enzymes are shown in red text. Abbreviations: SucCD = succinyl-CoA 

synthetase; Sbm = sleeping beauty mutase = methylmalonyl-CoA mutase; MatB = 

malonyl-CoA synthetase; MatC = R. trifolii dicarboxylate carrier protein; MCE = 

methylmalonyl-CoA epimerase; PCC = propionyl-CoA carboxylase; YgfG = 

methylmalonyl-CoA decarboxylase; PrpE = propionyl-CoA synthetase; YgfH = 

propionyl-CoA:succinate CoA transferase; DEBS123 = deoxyerythronolide B 

synthase; AtoC = transcriptional activator of the ATO system; AtoAD = acetyl-

CoA:acetoacetyl-CoA transferase; DctA E. coli dicarboxylate carrier protein. 
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A three-variable (propionate, malonate, and methylmalonate), 

two-level (0 mM or 20 mM) full-factorial supplementation experiment 

across nine strains was designed over a variety of plasmid 

combinations (containing the propionate pathway, the malonate 

pathway, and the 6-dEB biosynthetic pathway). No 6-dEB (<5 mg l‒1) 

was made in the absence of propionate supplementation (Figure 16). 

The addition of malonate did not improve 6-dEB titers under any 

conditions tested. When propionate and methylmalonate were both 

supplied, 6-dEB production increased approximately two-fold 

compared to propionate supplementation alone. However, the overall 

6-dEB titers were lower in the presence of the MatBC pathway, 

presumably due to the increased metabolic burden of maintaining the 

third plasmid and any resulting undesired effects caused by gene-

expression and enzymatic activity. 
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Figure 16 Initial screening study, 6-dEB production. 

Data from the three variable (propionate, malonate, and methylmalonate) two-level 

(0 mM or 20 mM) full-factorial supplementation experiment across nine strains with 

a variety of plasmid combinations. For all figures, on the left-hand axis ‒’s and +’s 

indicate whether the propionate pathway, the methylmalonate pathway, or the 

DEBS complex is included, respectively. On the right hand axis, ‒’s and +’s indicate 

whether propionate, malonate, or methylmalonate is supplemented in the medium 

at a concentration of 0 or 20mM, respectively. The y-axis shows 6-dEB titer as a 

function of these two parameters. 
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In terms of precursor consumption, propionate was favored in 

the strains that did not contain the MatBC pathway; whereas when 

MatBC was present, malonate consumption was preferred and 

increased dramatically even in the presence of multiple substrates 

(Figure 17a, Figure 17b, and Figure 17c). This is most likely due to the 

MatBC possessing a natural preference for malonate. Propionate 

uptake did not change dramatically in any of the conditions tested, 

even in the cases where 6-dEB production was observed (Figure 17a). 

As can be seen in Figure 17c, in general, methylmalonate consumption 

was minimal (often <2 mM consumed) in all cases, although the 

MatBC pathway did stimulate consumption slightly (to approximately 

4 mM in some cases). Acetate overflow was significant, reaching 

approximately 80 mM in some cases; however, this overflow 

metabolism was retarded with the addition of propionate, malonate, 

and methylmalonate (Figure 17e). 
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Figure 17 Initial screening study, metabolite profiling. 

Data from the three variable (propionate, malonate, and methylmalonate) two-level 

(0 mM or 20 mM) full-factorial supplementation experiment across nine strains with 

a variety of plasmid combinations. For all figures, on the left-hand axis ‒’s and +’s 

indicate whether the propionate pathway, the methylmalonate pathway, or the 

DEBS complex is included, respectively. On the right hand axis, ‒’s and +’s indicate 

whether propionate, malonate, or methylmalonate is supplemented in the medium 

at a concentration of 0 or 20mM, respectively. The y-axis shows (a) fraction of 

propionate utilized, (b) fraction of malonate utilized, (c) fraction of methylmalonate 

utilized, and (d) amount of acetate produced as a function of these two parameters. 
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Temperature Influence on 6-dEB Production 

Temperature has a significant influence on E. coli 6-dEB 

biosynthesis, particularly with respect to the active production of the 

DEBS enzymatic complex (Pfeifer et al. 2001; Wang and Pfeifer 2008). 

As a result, 6-dEB production was analyzed at 5°C intervals between 

12°C and 37°C. Figure 18a presents cell-density after 72 hr of culture 

as a function of temperature. The lowest cell-density achieved was at 

12°C, and due to the very low specific growth rate at that temperature, 

stationary phase was never reached (data not shown). Cell-density is 

also low after 72 hr at 37°C. The cell-densities are not significantly 

different between 22°C, 27°C, or 32°C (ANOVA p = 0.611), while it is 

slightly lower at 17°C (p < 0.001 when compared to 22°C). 

Under the temperatures tested, 6-dEB was only produced at 

22°C, 27°C, and 32°C. While the titers were not different between 22°C 

and 27°C (p = 0.333), they were lower at 32°C (p < 0.001 when 

compared to 22°C). The 6-dEB production titers had no correlation to 

the specific propionate uptake rates (Figure 18b) which show a nearly 

linear decrease with respect to increasing temperature.  

Byproduct production rates are shown as a function of 

temperature in Figure 18c. Acetate was produced at all temperatures; 

however, the production rate was highest at 37°C. Lactate has not 

been previously observed at detectable levels (>1 mM) in the culture 
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medium for 6-dEB production through E. coli (Wu et al. 2010); 

however, at the higher temperatures tested here (27°C, 32°C, and 

37°C) this byproduct was generated. The specific production rate of 

lactate was also higher at 37°C. Formate, succinate, pyruvate, and 

ethanol were not observed at significant quantities (<1 mM) in the 

medium at the end of the culture period (data not shown). 
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Figure 18 Temperature modulation study. 

The y-axes show (a) cell-density (left y-axis) and 6-dEB titer (right y-axis), (b) specific 

uptake rate of propionate, and (c) specific production rates of acetate and lactate as 

a function of temperature between 17°C and 37°C at intervals of 5°C. Error bars 

represent ± one standard deviation of four replicates. For panel (a), * indicates 

statistically significant results (p < 0.05, as determined by paired Student’s t-test) 

when compared to the 22°C data set. ** indicates that 6-dEB was not detectable (<5 

mg l‒1). For panel (c), ** indicates that the metabolite was not detectable (<1 mM). 

 



 

132 

 

Propionate Pathway Engineering 

The propionate pathway has previously been designed to provide 

the precursors for 6-dEB production in E. coli (Wang et al. 2007a; 

Zhang et al. 2010a). In the current production system, atoC, encoding 

an activator of E. coli short-chain fatty acid metabolism, is natively 

expressed from the chromosome. Whereas, prpE, encoding a propionyl-

CoA synthetase, is inducibly expressed from the chromosome and the 

pcc genes, encoding a propionyl-CoA carboxylase, are expressed from a 

multi-copy plasmid (15-20 copies per cell). As a result of the variation 

in expression design, this pathway is likely „unbalanced‟ for 6-dEB 

heterologous production as prpE and atoC are expected to be expressed 

to a smaller extent than the pcc genes. Balancing of expression levels 

may then improve production. Three different vectors were generated 

to over-express E. coli‟s native prpE and atoC separately and in 

combination. These constructs were then co-transformed with the 6-

dEB production plasmids (pBP130 and pBP144) in two strains (BAP1 

and TB3). 
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Figure 19 Propionate pathway engineering. 

Data from the propionate pathway engineering study, as a function of two strains 

(BAP1 and TB3) and four plasmid systems (a control with only pBP130 and pBP144, 

an additional pACYCDuet-prpE, an additional pACYCDuet-atoC, and an additional 

pACYCDuet-prpE-atoC). Panel (a) shows the 6-dEB titer while panel (b) shows the 

fraction of propionate uptake as a function of these cellular parameters. Error bars 

represent ± one standard deviation of three replicates. 
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In BAP1, over-expression of prpE by itself had no effect on 6-dEB 

production (p = 0.214). Over-expression of atoC improved 6-dEB 

production 1.44-fold (Figure 19a). Similar titers were observed when 

both prpE and atoC were over-expressed. Compared to BAP1, TB3 

improved titer approximately 1.5-fold (a slightly lower improvement 

than observed previously (Zhang et al. 2010a), which is likely due to a 

different inoculation method). In TB3, all three plasmid constructs 

improved 6-dEB production similarly (ANOVA p = 0.416). In this case, 

the over-expression of prpE alone did not help improve the 6-dEB 

production in strain TB3 when compared to the co-expression of prpE 

and atoC. This is probably because the deletion of ygfH in TB3 resulted 

in sufficient propionyl-CoA and further accumulation through PrpE 

activity did not aid 6-dEB biosynthesis. The 6-dEB titers presented 

here increased from 75.6 ± 3.2 mg l‒1 to 134.1 ± 6.6 mg l‒1 after varying 

these plasmid and strain systems.  

Figure 19b shows the fraction of propionate consumed by the 

strains after 120 hr of shake-flask culture across all of the conditions 

tested. The atoC gene encodes for the regulatory controller of the ATO 

operon (responsible for short-chain fatty acid degradation (Jenkins and 

Nunn 1987)), and prpE expression is needed for the production of 

propionyl-CoA, a direct precursor for 6-dEB biosynthesis. It was shown 
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that over-expression of prpE and atoC both stimulate propionate 

uptake to the same effect. For both BAP1 and TB3, regardless of 

whether prpE and atoC were over-expressed separately or together, 

the fraction of propionate utilized increased between 3-4 fold (ANOVA 

p = 0.653). In all plasmid systems, propionate uptake between BAP1 

and TB3 was the same (p > 0.05), meaning that the yield of 6-dEB on 

propionate was higher in the TB3 strain as TB3 produced higher 6-

dEB titers.  

Methylmalonate Pathway Engineering in the Presence of 

Propionate 

The initial screening study revealed that methylmalonate 

supplementation could improve 6-dEB production in the presence of 

propionate, prompting us to further investigate this interaction. It was 

first hypothesized that the lack of improvement upon incorporation of 

the MatBC pathway (even with the improved methylmalonate uptake) 

was because the malonyl-CoA synthase generated the (2R) 

stereoisomer of methylmalonyl-CoA; whereas, the DEBS complex only 

accepts the (2S) isomer of methylmalonyl-CoA. Because a 

methylmalonyl-CoA epimerase has not been previously identified in E. 

coli, a heterologous methylmalonyl-CoA epimerase gene was used to 

allow for the interconversion between isomers and to determine its 

effect on 6-dEB production. 
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Figure 20 Methylmalonate pathway engineering in the presence of propionate for 

BAP1. 

Cultures were fed either 20 mM propionate or 20 mM propionate and 20 mM 

methylmalonate. Three different plasmid systems were analyzed (a control with 

only pBP130 and pBP144, an additional pCDFDuet-mce, and pACYCDuet-

matBC/pCDFDuet-mce). Panel (a) shows the 6-dEB titer, (b) shows the fraction of 

propionate uptake, and (c) shows the fraction of methylmalonate uptake as a 

function of these parameters. Error bars represent ± one standard deviation of three 

replicates. * indicates statistically significant results (p < 0.05, as determined by 

paired Student’s t-test), while † indicates statistically insignificant results (p > 0.05) 

between the comparisons shown.  
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First, the effects of propionate and methylmalonate 

supplementation were tested in BAP1 in the presence of: 1) no extra 

plasmids, 2) a plasmid over-expressing the S. coelicolor A3(2) 

methylmalonyl-CoA epimerase gene (mce), and 3) a plasmid over-

expressing mce and the matBC genes. Consistent with the small-scale 

cultures in the initial screening study, methylmalonate 

supplementation improves 6-dEB production in the presence of 

propionate in the shake-flasks from 71.7 ± 3.74 mg l‒1 to 97.9 ± 7.32 mg 

l‒1 (Figure 20a). However, 6-dEB production decreases to 61.1 ± 2.18 

mg l‒1 and 60.9 ± 2.43 mg l‒1 when both carbon sources are used in the 

presence of mce and matBC-mce, respectively. As shown in Figure 20b, 

propionate uptake is decreased when mce is used. When matBC is 

included, propionate uptake is stimulated, indicating that this MatC 

carrier is not specific and may facilitate propionate transport as well. 

Compared to the control, methylmalonate uptake was not different 

when mce was included. However, methylmalonate uptake did increase 

after the inclusion of matBC-mce (Figure 20c). 

The same expression and production studies were then 

conducted in TB3, yielding different results. As established previously, 

TB3 showed higher titers of 6-dEB from propionate (101.0 ± 7.5 mg l‒1), 

however, when methylmalonate was supplemented, the titer was 

unchanged (p = 0.730; Figure 21a). When over-expressing mce or both 
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matBC-mce, the titers decrease significantly to 58.6 ± 1.19 mg l‒1 and 

33.1 ± 7.4 mg l‒1 with only propionate, and to 75.2 ± 3.9 mg l‒1 and 52.1 

± 2.4 mg l‒1 with both substrates present. This departs from the trends 

observed in BAP1, where when either mce or matBC-mce was 

expressed, 6-dEB production decreased in the presence of 

methylmalonate. As can be seen in Figure 21b and Figure 21c, 

propionate and methylmalonate uptake was not drastically different 

than what was observed in BAP1. Again, expression of matBC-mce 

stimulated methylmalonate uptake, while expression of mce alone did 

not.  
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Figure 21 Methylmalonate pathway engineering in the presence of propionate for 

TB3. 
Cultures were fed either 20 mM propionate or 20 mM propionate and 20 mM 

methylmalonate. Three different plasmid systems were analyzed (a control with 

only pBP130 and pBP144, an additional pCDFDuet-mce, and pACYCDuet-

matBC/pCDFDuet-mce). Panel (a) shows the 6-dEB titer, (b) shows the fraction of 

propionate uptake, and (c) shows the fraction of methylmalonate uptake as a 

function of these parameters. Error bars represent ± one standard deviation of three 

replicates. * indicates statistically significant results (p < 0.05, as determined by 

paired Student’s t-test), while † indicates statistically insignificant results (p > 0.05) 

between the comparisons shown. 
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Methylmalonate Pathway Engineering in the Absence of 

Propionate 

It has been found that BAP1 could produce 6-dEB in the absence 

of propionate and methylmalonate (Zhang et al. 2010a). While it still 

remains unclear as to why methylmalonate supplementation in the 

presence of propionate improves 6-dEB production, the effects of these 

strains and plasmids in the absence of propionate were analyzed. With 

the utilization of mass spectrometry, the limit of detection of 6-dEB in 

the culture is approximately 0.1 mg l‒1, allowing 6-dEB production to 

be quantified in the absence of propionate supplementation. BAP1 

produced 6-dEB at a titer of 0.32 ± 0.11 mg l‒1 from 20 mM 

methylmalonate (Figure 22a). However, the uptake of methylmalonate 

was still minimal at 3.0 ± 0.2 mM (Figure 22b). The inclusion of the 

mce pathway had no effect on 6-dEB titer (p = 0.636) or 

methylmalonate uptake (p = 0.142). However, when the MatBC 

pathway was also expressed, 6-dEB titer improved to 1.27 ± 0.29 mg l‒1 

(p = 0.037) but methylmalonate uptake was not significantly different 

(p = 0.261). 



 

141 

 

 

 

 

Figure 22 Methylmalonate pathway engineering in the absence of propionate. 

Data from engineering the methylmalonate pathway in the absence of propionate, 

as a function of three strains (BAP1, TB3, and BAB2) and three plasmid systems (a 

control with only pBP130 and pBP144, an additional pCDFDuet-mce, and 

pACYCDuet-matBC/pCDFDuet-mce). Panel (a) shows the 6-dEB titer, while panel (b) 

shows the fraction of methylmalonate utilized as a function of these cellular 

parameters. Error bars represent ± one standard deviation of three replicates. 
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In an effort to understand the effect of mce and matBC-mce on 6-

dEB production from methylmalonate, strain was constructed that 

lacked the ability to convert polyketide precursors to metabolites to be 

used for growth (encoded by the ygf operon). In the ygf operon mutant 

of BAP1 (BAB2), 6-dEB production from methylmalonate was not 

significantly different when compared to BAP1 (p = 0.350) or BAP1 

with mce (p = 0.770). Methylmalonate uptake was the lowest in BAB2 

in all cases. Interestingly, with the inclusion of the MatB-MatC 

pathway, 6-dEB titer improved almost 8-fold to 3.39 ± 0.74 mg l‒1, even 

with decreased methylmalonate uptake.  

Methylmalonyl-CoA Mutase-Epimerase Pathway Engineering 

Last, this portion of the study aimed to further understand the 

role of Sbm and E. coli‟s native succinate-to-propionate conversion 

cycle in 6-dEB production. Previously, sbm was over-expressed and 

deleted in BAP1 in separate experiments, to find that neither genetic 

modification had an influence on 6-dEB production (Zhang et al. 

2010a). It was hypothesized the lack of effect of these sbm expression 

studies on 6-dEB production was due to a lack of methylmalonyl-CoA 

epimerase activity, since Sbm has been shown to generate the (2R) 

isomer of methylmalonyl-CoA; whereas, DEBS accepts only the (2S) 

isomer (see Figure 15). In this set of experiments, sbm and the mce 

gene previously described were over-expressed, thereby fully 
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connecting the succinate pathway with the 6-dEB production pathway. 

This combination was then tested in four different medium 

compositions which included 20 mM propionate, 20 mM succinate, 20 

mM both substrates, and no substrates. 
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Figure 23 Methylmalonyl-CoA mutase-epimerase pathway engineering. 

Data from engineering the methylmalonyl-CoA mutase-epimerase pathway as a 

function of two plasmid systems (a control with only pBP130 and pBP144, and 

pCDFDuet-mce-sbm) and four medium formulations (no substrates, 20 mM 

propionate, 20 mM succinate, or 20 mM both substrates). Panel (a) shows the 6-dEB 

titer, panel (b) shows the fraction of propionate utilized, and panel (c) shows the 

fraction of succinate utilized as a function of these cellular parameters. Error bars 

represent ± one standard deviation of three replicates. * indicates statistically 

significant results (p < 0.05, as determined by paired Student’s t-test), while † 

indicates statistically insignificant results (p > 0.05) between the comparisons 

shown. 

  



 

145 

 

 

In the absence of either substrate, the titers with and without 

the Sbm-MCE were roughly 0.1 mg l‒1, consistent with what was 

observed previously (Zhang et al. 2010a) (Figure 23a). When 

propionate was utilized as the sole substrate, the inclusion of the Sbm-

MCE pathway slightly decreased 6-dEB titer (p = 0.046). When 

succinate was utilized as the sole substrate, 6-dEB production 

decreased to levels observed in absence of a substrate; the Sbm-MCE 

pathway had no effect (p = 0.280). When both propionate and succinate 

were utilized, the titer without the Sbm-MCE pathway increased to 

73.4 ± 2.0 mg l‒1, while the inclusion of the Sbm-MCE pathway further 

increased titer to 96.4 ± 5.6 mg l‒1.  As can be seen in Figure 23b, the 

provision of succinate in the medium decreased propionate uptake in 

both the control and with expression of sbm-mce. In all cases, succinate 

was absent in the medium at the end of the culture period (Figure 23c). 

Discussion 

Heterologous polyketide biosynthesis presents a significant 

challenge in recombinant protein production and metabolic pathway 

engineering. Polyketides, being significant sources of therapeutic 

compounds, and PKS‟s, being complex enzymes, are attractive systems 

for chemists, biologists, and engineers. This study focused on the 

metabolic engineering of multiple pathways for substrate provision for 

heterologous polyketide biosynthesis in E. coli. The ultimate goals of 



 

146 

 

which are to 1) understand the interactions of these pathways, 2) 

identify the rate-limiting steps in polyketide biosynthesis, and 3) 

rationally engineer a system with improved titer. A multi-scale 

engineering strategy was applied through heuristic gene over-

expression and deletion experiments and feeding experiments to better 

understand the interplay of native propionyl-CoA and methylmalonyl-

CoA metabolism as well as heterologous methylmalonate and native 

succinate metabolism. While 6-dEB was used as a means of examining 

the effect of these pathways and substrates, similar strategies could be 

applied to improving the titer of other polyketides which use the same 

starter or extended acyl-CoA units. For example, Streptomyces 

hygroscopicus uses seven (2S)-methylmalonyl-CoA extender units for 

making the immunosuppressant rapamycin, while Mycobacterium 

tuberculosis uses (2S)-methylmalonyl-CoA for the biosynthesis of 

mycolic acids (Chan et al. 2009). 

Our initial screen was comprised of a three variable (propionate, 

malonate, and methylmalonate), two-level (0 mM or 20 mM) full-

factorial supplementation experiment across nine different plasmid 

systems, all in the base strain of BAP1. Because propionate and 

methylmalonate are the deactivated forms of the direct precursors for 

6-dEB biosynthesis, it is expected that increased intracellular levels 

would improve 6-dEB biosynthesis. Malonate was used to serve as a 
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frame of reference for analyzing the MatBC pathway. As expected, the 

MatBC pathway had a stronger preference for malonate than for 

methylmalonate, as indicated by dramatic improvements in uptake 

when matBC was over-expressed. Malonate uptake was preferred over 

methylmalonate in general, presumably due to malonate being used a 

precursor for malonyl-CoA, the first committed step to essential fatty 

acid biosynthesis. However, no 6-dEB production was observed when 

malonate was used alone. The combination of malonate and 

propionate/methylmalonate did not improve production, leading us to 

believe that malonyl-CoA levels have no effect on propionyl-CoA or 

methylmalonyl-CoA levels. 

The analysis of temperature influence on 6-dEB titer raises 

some interesting questions regarding the mechanisms of improvement. 

The lack of detectable 6-dEB production at 12°C and 17°C is likely a 

result of low cell-density, due to extremely low specific growth rates at 

these temperatures. (It has been previously shown that E. coli K-12‟s 

exponential-phase specific growth rate drops to roughly 0.01 hr‒1 at 

10°C (Ferrer et al. 2003).) Whereas, lack of production at 37°C could be 

due to temperature-induced protein misfolding or associated problems 

such as plasmid stability, which could also explain the observation of 

decreased 6-dEB titer at 32°C compared with 22 and 27°C. Over-

expression of E. coli‟s native chaperone systems (GroEL-GroES and 
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DnaK-DnaJ-GrpE (Nishihara et al. 1998; Nishihara et al. 2000)) did 

not improve 6-dEB production at 22°C or higher temperatures, but did 

slightly improve DEBS levels in some cases (data not shown). To this 

end, a trade-off between gene dosage, DEBS levels, and temperature 

appears to be critical to 6-dEB production. It has previously been 

shown that codon optimization of the eryA genes resulted in 

significantly increased levels of the DEBS enzymes; however, this 

same step decreased 6-dEB production from 19.8 ± 1.8 mg l‒1 to 

undetectable (<0.1 mg l‒1) levels (Menzella et al. 2006).  Alternatively, 

when the DEBS genes were integrated into the chromosome of BAP1 

under the control of T7 promoters, 6-dEB production also decreased 

from 12.06 ± 4.42 mg l‒1 to 0.47 ± 0.26 mg l‒1 (Wang and Pfeifer 2008). 

The significant drain of free amino acids for heterologous protein 

production can cause deleterious effects during pathway engineering, a 

problem highlighted previously (Jones et al. 2000). Over-expression of 

cold-adapted chaperonins (such as the Cpn60-Cpn10 system from 

Oleispira antartica (Ferrer et al. 2003; Strocchi et al. 2006)) may 

improve 6-dEB production at these lower temperatures where the 

native E. coli chaperone system could not. 

Increasing the expression of prpE and/or atoC was identified as 

a metabolic engineering target considering that deletion of ygfH was 

implemented to improve 6-dEB production (Zhang et al. 2010a) and 
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both of these enzymes are connected to this metabolite node. It has 

been previously demonstrated that a constitutive mutation in E. coli‟s 

atoC allowed for transcription of the ATO genes (Jenkins and Nunn 

1987) and improved the propionate uptake roughly 10-fold in M9 

minimal medium supplemented with 1% (wt vol‒1) glucose and 10 mM 

propionate (Rhie and Dennis 1995). In our study, when prpE and/or 

atoC were over-expressed, propionate uptake increased roughly 4-fold, 

yet 6-dEB production only increased roughly 30%. This indicates that 

there is another significant sink of propionyl-CoA that is responsible 

for drawing from this metabolite pool, even in the absence of YgfH and 

PrpBCD. Possible sources could be enzymes that have preference for 

acetyl-CoA but are also promiscuous for propionyl-CoA (Man et al. 

1995). 

This study presents the first production of 6-dEB solely from 

methylmalonate. Inclusion of the MatBC pathway in BAP1 increased 

the 6-dEB titer from 0.32 ± 0.11 mg l‒1 to 1.27 ± 0.29 mg l‒1, while 

deletion of the entire ygf operon further improved production to 3.39 ± 

0.74 mg l‒1. Previously, 6-dEB had been produced in only trace 

quantities (0.85 ± 0.2  mg l‒1) from methylmalonate using matB and 

the Streptomyces coelicolor methylmalonyl-CoA mutase (mutAB), 

however 10 mM propionate was also added to the medium (Murli et al. 

2003). The extremely low uptake rates of methylmalonate appear to be 
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a barrier in improved 6-dEB production from this substrate. Even in 

the absence of propionate and in the presence of MatBC, 

methylmalonate uptake was never above 20% of the fed substrate (a 

total of 4 mM).Whereas other substrates, more commonly used carbon 

sources (propionate, succinate, and malonate), were imported at 

significantly higher rates. Interestingly, the rate of methylmalonate 

uptake was 21.8% that for malonate (as determined in the initial 

screening study), which is strikingly similar to a previous in vitro 

analysis of MatB, which demonstrated 20.4% activity utilizing 

methylmalonate when compared to malonate (An and Kim 1998). 

There is no known transporter dedicated to methylmalonate uptake, 

nor is there a known methylmalonyl-CoA synthetase or CoA-ligase 

specific for utilizing methylmalonate as a substrate. This specificity 

issue may be overcome by protein engineering of the R. trifolii matBC 

system to make it specific or strongly preferential for 

methylmalonate/methylmalonyl-CoA. In a slightly different manner, 

methylmalonate uptake could be improved by a laboratory evolution 

experiment utilizing methylmalonate as a sole carbon substrate. 

Finally, another commonly utilized cellular metabolite, 

succinate, could be engineered into the 6-dEB backbone through the 

functional expression of a methylmalonyl-CoA mutase-epimerase 

pathway. In all the studied cases, propionate addition was needed for 
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high-level production, indication that propionate was the most 

favorable substrate for 6dEB biosynthesis in E. coli. When 20 mM 

succinate was fed (in addition to 20 mM propionate) without the 

introduced Sbm-MCE pathway, 6-dEB titer decreased. However, when 

the methylmalonyl-CoA mutase-epimerase pathway was expressed, 6-

dEB titer increased, indicating that basal levels of Sbm (and lack of an 

epimerase) could not incorporate succinate into (2S)-methylmalonyl-

CoA. This appears to contrast previous work where 6-dEB was only 

produced at roughly 1 mg l‒1 from 5 mM propionate, 50 mM succinate, 

and 50 mM glutamate using a Propionibacterium shermanii 

methylmalonyl-CoA mutase and the same Streptomyces coelicolor 

methylmalonyl-CoA epimerase (Dayem et al. 2002). Combining this 

new information with previous information from computational 

modeling (Boghigian et al. 2010), leads us to believe that metabolic 

engineering of the succinate and succinyl-CoA metabolite nodes could 

be critical to further improve 6-dEB production (and production of 

other propionate-dependent polyketide products) by providing access to 

primary metabolism. 
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Chapter 5 – Identification of knockout targets 

through elementary mode analysis and a genetic 

algorithm, and experimental implementation for 

improving lycopene production 

Introduction 

As stated in Chapter 2, there currently exists a variety of 

algorithms exist for identifying knockout targets such as OptKnock 

(Burgard et al. 2003), OptStrain (Pharkya et al. 2004), OptGene (Patil 

et al. 2005), and OptReg (Pharkya and Maranas 2006). However, these 

methods rely on optimization frameworks for determining metabolic 

fluxes, such as FBA (Edwards et al. 2002), MoMA (Segre et al. 2002), 

ROOM (Shlomi et al. 2005), or some variation of these techniques. 

Although these optimization approaches can accurately predict optimal 

growth and production fluxes in some cases (Edwards et al. 2001), 

other experimental settings produce inaccurate predictions (Schuetz et 

al. 2007). In this chapter, the primary objective was to predict an over-

producing phenotype strictly from the wild-type organism‟s metabolic 

network topology (similar to the notion of a “minimal cell” (Trinh et al. 

2008)), therefore alleviating the need to quantify fluxes using an 

optimization methodology. 
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In chemical process design, process operability has been defined 

as the extent to which there is an adequate amount of equipment over-

design so that the process constraints can be satisfied (Vinson DR, 

personal communication). Industrial processes are often designed to 

incorporate a level of robustness, in which fluctuations or alterations 

in input variable(s) (such as a stream flow-rate, temperature, or 

pressure) do not affect the output variable(s) (such as a conversion, 

reaction rate, or purity). Drawing an analogy to the metabolic 

pathways of cellular systems, they are incredibly robust (Behre et al. 

2008; Daniels et al. 2008; Kim et al. 2007a). In varying environmental 

and genetic situations (the input variables), they can still grow and 

produce a product of interest (Kitano 2004; Kitano 2007). For a 

metabolic engineer‟s purposes, this robustness can often be a 

hindrance. Unlike chemical systems, cellular systems are evolved 

systems, and will choose to operate at some point within their 

available genetic means, as a result of the cell‟s desire to survive in a 

given environment. While many methods have been utilized for 

simulating flux distributions (such as FBA and MoMA used in this 

dissertation), they require an optimality assumption (maximize growth 

rate), which may or may not be valid in some cases. Moreover, during a 

batch (or fed-batch) bioreactor process, the cell‟s operating point will 

move depending on the state of the overall process (for example, 
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exponential growth phase versus stationary phase). Rather than 

identify genetic targets based on single flux distributions, the goal of 

the presented algorithm was to simply reduce the robustness of the 

cellular system in question, and inevitably couple product synthesis 

with growth. In essence, the aim is to control the operability of the 

metabolic network. 

In cellular systems, the operating space is governed by a 

polytopic flux cone (Figure 24), which is governed by the reactions 

(genes) in the system. By systematically tuning the bounds of the flux 

cone (which are the strain‟s elementary modes, or EM‟s), the cell‟s 

operating space can be constrained. An actual flux distribution can be 

represented as a linear combination of the EM‟s. Next, the question of 

how to define the desired operating space becomes important. 

Generally speaking, the desired operating space should be 

characterized by a high-yield of product on substrate, while not 

significantly sacrificing growth-rate of the organism. As such, the 

algorithm presented here aims to constrain the desired operating space 

to allow the organism to (1) grow and (2) produce a high-yield of a 

product from a given carbon-source. In this chapter, this was 

accomplished through the development of an algorithm called 

ConstrainStrain that couples elementary mode analysis (EMA) and a 

genetic algorithm for optimizing metabolic network structure. As a 
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surrogate for taxadiene production, lycopene, was used as a target 

molecule. As cited in Chapter 2, lycopene is a C40 bright red carotenoid 

with antioxidant properties, shares precursor molecules of isopentenyl 

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) with 

a variety of other isoprenoids, and facilitates screening procedures in 

this case.  
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Figure 24 An overview of the ConstrainStrain algorithm. 

Here, the polytopic flux cone is represented in a simplified three-dimensional space 

(three reactions). Elementary modes are represented by green arrows. Sample 

genetic algorithm fitness curves are shown as a function of generation number on 

the bottom. 
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Materials & Methods 

Model Construction  

The two small-scale E. coli stoichiometric models utilized in this 

study were based on one previously developed (Trinh et al. 2008). 

Briefly, because the previous model was developed for the utilization of 

multiple five- and six-carbon sugars, all of the carbon-source utilization 

reactions besides the glucose utilization reaction were removed; 

glucose was assumed to be actively imported by the 

phosphoenolpyruvate sugar transferase system. In the original model, 

an additional reaction was included due to a heterologous pyruvate 

decarboxylase from Zymomonas mobilis; this reaction is not native to 

E. coli and was therefore also removed. 

Taxadiene biosynthesis was introduced into the model and 

coupled to the non-mevalonate pathway (native to E. coli) previously 

used to support heterologous carotenoid production (Das et al. 2007; 

Yuan et al. 2006). Whenever possible, linear pathways were combined 

into a single reaction to reduce the size of the model (see Figure 3 for 

the pathway). The first reaction (encoded by dxs, dxr, and ispDEFGH) 

held the stoichiometry: glyceraldehyde-3-phosphate + pyruvate + 2 

NADPH + ATP → dimethylallyl diphosphate (DMAPP) + CO2 + 2 

NADP+ + ADP. The second reaction was for the reversible 
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isomerization of DMAPP and isopentenyl diphosphate (IPP), encoded 

by idi. The third reaction held the stoichiometry 4 IPP → 

geranylgeranyl diphosphate (GGPP) and is encoded by ispA and crtE. 

The last reaction was for taxadiene biosynthesis and held the 

stoichiometry GGPP → taxadiene and is encoded by txs (Koepp et al. 

1995). To avoid the inclusion of a specific transport reaction, taxadiene 

was not balanced in this reaction. For the glycerol model, the glucose 

uptake reaction was added and replaced with two reactions to enable 

glycerol metabolism. The first, encoded by glpK, holds the 

stoichiometry of: glycerol + ATP → glycerol-3-phosphate + ADP. The 

second, encoded by glpABCD, holds the stoichiometry of: glycerol-3-

phosphate ↔ dihydroxyacetone 3-phosphate. 

Elementary Mode Analysis 

Elementary mode analysis (EMA) was undertaken utilizing the 

bit pattern tree method (Terzer and Stelling 2008). Developed recently, 

this algorithm is capable of enumerating 2,450,787 EMs over ten-times 

faster (on a four-thread system) than the latest release of METATOOL 

(Pfeiffer et al. 1999; von Kamp and Schuster 2006), and is therefore 

currently the fastest method for EM enumeration. The mathematical 

rigor associated with the bit pattern tree method and other EMA 

algorithms has been described previously (Haus et al. 2008; 

Jevremovic et al. 2010; Terzer and Stelling 2008; Urbanczik and 
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Wagner 2005). The code was acquired from Professor Jörg Stelling‟s 

website (http://www.csb.ethz.ch/tools/efmtool) and interfaced with The 

MathWorks™ MATLAB software (version 7.6.0.324). 

Genetic Algorithm 

Chromosomal representation of the metabolic genotype for 

passing to the genetic algorithm is binary in nature where a “1” 

indicates the reaction is included in the individual and “0” indicates 

that the reaction is not present. For simplicity‟s sake, a one-to-one 

association between reactions in the network and genes in the GA‟s 

population was assumed. This one-to-one association decreases 

computation time by utilizing fewer variables for optimization and 

does not present a significant problem experimentally, for the gene-

associations with the enzymes catalyzing the reactions are well-known 

for E. coli due to the organism‟s biochemical knowledge and sequenced 

genome (Blattner et al. 1997; Durfee et al. 2008; Hayashi et al. 2006).  

A binary vector of length n therefore represents a single individual in 

the GA population. 

Initialization of a population is a critical step for determining 

the success of the algorithm to find the global optimum. An initial 

population of fifty individuals containing between two and six 

knockouts was seeded to the algorithm (using MATLAB‟s “randerr” 

function). This was arrived at empirically as randomly seeding 

http://www.csb.ethz.ch/tools/efmtool
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individuals with approximately 50% 0‟s resulted in mostly non-viable 

strains and did not allow for the GA to reach the optimal solution. 

Next, each individual in the population is evaluated and given a fitness 

score. A previous study on using GAs to optimize genotypic space for 

succinate, glycerol, and vanillin production used product flux 

determined by optimization (FBA and MoMA) as a scoring function 

(Patil et al. 2005). As stated before, this approach relies on 

assumptions that may or may not be valid. Here, EMA was used as the 

method for scoring the individuals with fitness functions as described 

in Equation 9 and Equation 10. 

Genetic algorithms use crossover of the chromosomes (mixing of 

two individuals in a population to create a new individual) and 

mutation (change a “0” to “1” and vice-versa with a specified frequency) 

to evolve the solution population. The implementation here was 

interfaced with The MathWorks™ MATLAB software and its Genetic 

Algorithm & Direct Search Toolbox. For crossover, mutation, and 

selection of individuals, two-point, uniform, and tournament-based 

methods were used, respectively. These parameters were not optimized 

in this study. As stated, the population size was chosen as fifty 

individuals, with five of the top performing individuals automatically 

passed to the next generation of the GA. The selection function used in 

the GA was either roulette- or tournament-based. The GA always 
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terminated as a result of being below the tolerance (of the MATLAB 

default, 10‒6) which was always between 50 and 100 generations. 

Figure 25 shows the overall schematic of the genetic algorithm and 

fitness calculation. 
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Figure 25 Schematic overview of the framework. 
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As a method to reduce the computation time of the GA 

optimization, the GA was forced to always include (through fixed 

inclusion of a “1” in the individual genotype) reactions that were 

determined to either 1) reduce maximal product yield to zero, or 2) 

reduce maximal biomass yield to zero (indicating a lethal knockout). 

The first step of the algorithm was designed to tailor the metabolic 

network to contain only elementary modes that produced the product 

of interest (either taxadiene or lycopene). As a result, the fitness score 

is as described in Equation 9: 

Equation 9 

               
                                 

                     
 

The solution of this first round of the genetic algorithm was used 

to seed the second round of the genetic algorithm, in which the 

population was evolved to the following fitness score in Equation 10: 

Equation 10 

                
    
   

    
           

  
    
   

    
           

  

Both steps of the algorithm are represented in Figure 24. 

Strain Construction by MAGE 

Multiplex automated genome engineering (MAGE) is a 

technique for allelic replacement, designed originally for use with E. 

coli and the λ-Red recombination system (Wang et al. 2009). Briefly, 

this system allows climate-regulated growth of cells with real-time cell-
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density monitors, fluidic systems for transfer of cells from growth 

chambers with different environmental conditions, fluidic systems for 

buffer exchange and electrocompetent cell preparation, and a system 

for electrotransformation of a population of cells with either single 

stranded (ssDNA) or double stranded DNA (dsDNA). This process can 

be repeated for multiple cycles to evolve a population of cells to contain 

multiple genetic modifications. Genetic mismatches, insertions, or 

deletions can be performed with this system. Oligonucleotides designed 

for deletion of identified were designed to be 90 bp long, contain four 

terminal 5‟ phosphorothiorated bases, and to target the lagging strand 

of chromosomal DNA. With this oligonucleotide design strategy at 

these parameters, the replacement efficiency can exceed 30% (Wang et 

al. 2009). 

The parent strain for MAGE cycling was E. coli EcHW2e. 

Briefly, the λ prophage was obtained from DY330 (Novere et al. 2009; 

Sharan et al. 2009; Swingle et al. 2010; Yu et al. 2000). A carbenicillin 

resistance gene (bla) was inserted before the λ-Red genes in DY330. 

This region was introduced into E. coli MG155 mediated by P1 

transduction (Masters 1977). To enable mismatch base pairings to 

stably exist within the E. coli chromosome, the MutHLS complex (the 

methyl-directed mismatch repair system) must be disrupted. A 

kanamycin resistance gene (kan) was inserted into the mutS locus 
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using λ-Red recombination. The constructed strain was designated 

EcHW1. Transformation of pAC-LYC (containing crtEBI genes from 

Erwinia herbicola (Cunningham et al. 1994), required to produce 

lycopene in E. coli) into EcHW1 generated EcHW2, a carbenicillin, 

kanamycin, and chloramphenicol resistant strain of E. coli capable of 

producing lycopene. After MAGE cycling, a strain with optimized 

ribosome binding site sequences for dxs and idi (to to be more similar 

to the canonical Shine-Dalgarno sequence, giving rise to enhanced 

translation efficiency) was identified as a top producer of lycopene. 

This strain was identified after randomly implementing any number of 

24 genetic modifications (twenty over-expression targets and four 

knockout targets), and MAGE cycling for between 5-35 cycles. This 

strain produced 9,000 ppm (μg gDCW‒1) of lycopene after 24 hr of 

culture in LB-minimal salt medium (also known as LB-Lennox 

medium, containing 5 g NaCl l‒1 instead of 10 g l‒1) at 30°C. Lycopene 

was used as a surrogate for taxadiene being that lycopene is produced 

from two molecules of GGPP, while taxadiene is produced from one 

molecule of GGPP and is colored, easing analysis. 

MAGE cycling experiments were cycled for a total of twelve 

rounds. Selection was undertaken on LB-min  plates supplemented 

with 34 mg l‒1 chloramphenicol after 24 hr at 30°C and then for 48 hr 

at room temperature. At this point, colonies showed a red phenotype 
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corresponding to lycopene production. 48 clones were randomly picked 

from each of the three pools of knockouts and diagnostic PCR was 

conducted for each of the knockout targets to determine the genotype. 

Verification primers were designed upstream of the target gene‟s start 

codon and downstream of its stop codon, such that the PCR product 

would be substantially smaller if the gene was successfully removed 

(data not shown). 

Shake-Flask Production Cultures 

Shake-flask cultures (15 ml in 125 ml Erlenmeyer flasks) 

containing production medium were used for lycopene production tests. 

The medium used was comprised of 5 g l‒1 yeast extract, 10 g l‒1 

tryptone, 10 g l‒1 sodium chloride, 3 ml l‒1 50% (v v‒1) Antifoam B, 100 

mM HEPES, and pH 7.60. Carbon sources were added at a final 

concentration of 15 g l‒1. Glucose was added post-sterilization from a 

filter sterilized stock solution, while glycerol was added before 

autoclaving. Single colonies were picked from freshly streaked plates 

and inoculated into 1 ml production medium containing necessary 

antibiotics. These cultures were grown at 30°C and 250 rpm until 

OD600nm ≈ 0.6 and were used to inoculate 15 ml production medium 

with necessary antibiotics and 100 μM IPTG at a volumetric ratio of 

5%. Cultures were then incubated at 22°C and 250 rpm for 72 hr. After 

24 hr and 72 hr of culture, 1 ml aliquots were taken, cell-density was 
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measured spectrophotometrically at 600 nm, and the lycopene 

concentration was assayed as to be described. At all steps, antibiotics 

were supplemented at concentrations of 100 mg l‒1 for carbenicillin, 50 

mg l‒1 for kanamycin, and 34 mg l‒1 for chloramphenicol. 

Lycopene Quantification 

Lycopene quantification was undertaken as described previously 

(Yoon et al. 2006). A frozen aliquot of cells were thawed at room 

temperature and then centrifuged at 13,000×g for 3 min. The 

supernatant was decanted and the pellet was re-suspended in an equal 

volume of sterile water to wash once. The cells were centrifuged again 

at 13,000×g for 3 min and the supernatant was decanted. The pellet 

was then re-suspended in an equal volume of HPLC-grade acetone, 

vortexed for 5 s, and incubated at 50°C for 15 min in the dark. The 

samples were then centrifuged 13,000×g for 10 min, diluted 10-fold in 

HPLC-grade acetone, and the absorbance was measured 

spectrophotometrically at 474 nm. The concentration of lycopene was 

determined against a five-point calibration curve generated using 

authentic lycopene derived from tomato (purchased from Sigma-

Aldrich, >90% purity). 

Metabolite Quantification 

Medium and byproduct organic acids were quantified by the 

previously mentioned HPLC system coupled to a Refractive Index 
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Detector (RID). Clarified culture supernatant (20 μl) was applied to a 

Bio-Rad Aminex® HPX-87H Ion Exchange (300 mm × 7.8 mm, 9 µm) 

column, preceded by a 30 mm guard column of the same resin. The 

column temperatures were maintained at 42°C throughout the 

analysis. The isocratic analysis used a 9.5 mM H2SO4 solvent held at a 

flow rate of 0.3 ml min–1. These conditions were identified by using an 

iterative stochastic search HPLC optimization program based on the 

compounds anticipated to be present in the culture medium (Dharmadi 

and Gonzalez 2005). A five-point standard calibration curve was 

created and used for quantification of glucose, glycerol, and acetate. 

The elution order was as follows: glucose (16.7 min), glycerol (25.1 

min), and acetate (29.1 min). All specific production or consumption 

rates presented are averaged over the course of the culture period. 

Microplate Growth Assay 

To more accurately determine the intrinsic growth properties of 

the strains constructed in this study, cultures were undertaken in a 96 

well-plate format. Sterile, flat-bottom 96 well-plates were inoculated 

with 200 μl medium containing appropriate antibiotics. A defined, 

minimal medium (M9; containing 12.8 g l–1 Na2HPO4·7H2O, 3 g l–1 

KH2PO4, 0.5 g l–1 NaCl, 1 g l–1 NH4Cl, 2 mM MgSO4, and 0.1 mM 

CaCl2) with 15 g l–1 glucose or 15 g l–1 glycerol and a complex medium 

(production medium, as described previously) with 15 g l–1 glucose or 



 

169 

 

15 g l–1 glycerol were used in this study. A stab of glycerol stock was 

inoculated into LB medium supplemented with appropriate antibiotics 

and grown overnight at 30C and 250 rpm. Cell-density was measured 

spectrophotometrically at 600nm, and the wells were inoculated to OD 

= 0.05. Well plates were inserted into a Molecular Devices VERSAmax 

microplate spectrophotometer preheated to 30°C and incubated for 16 

hr with mixing. Every 10 min, mixing stopped and the absorbance at 

600 nm was measured for all wells. 

Growth Parameter Determination 

Data was exported to Microsoft Excel 2007, and then to 

MATLAB® version 7.10.0.499 R1010a (The Mathworks). Background 

absorbance was subtracted from the raw data, and then fit to a logistic 

population model (Bailey and Ollis 1986). 

Equation 11 

     
   

  

  
  

    
       

 

 

Equation 11 describes the cell-density, X, as a function of time, t, 

with the following constant parameters (X0, the initial cell-density; 

Xsat, the stationary phase cell-density; and μ, the specific growth rate). 

A non-linear least-squares regression of the data with the logistic 

population equation was undertaken in MATLAB (using the “nlinfit” 

function) to determine the X0, Xsat, and μ parameters. 95% confidence 
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intervals for the cell-density estimates, and the estimated parameters 

were examined for accuracy. 

Results 

Model Construction & Elementary Mode Analysis 

Information on the models and their characteristics can be found 

below (Table 8). 
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Table 8 Model information. 

Model information (metabolites and reactions) for the production of taxadiene from 

glucose or glycerol in E. coli. The total number of elementary modes are given, as 

well as the number and percentage biomass-producing EM’s, taxadiene-producing 

EM’s, and biomass- and taxadiene-producing EM’s. Lastly, the computation time for 

the enumeration of the EM’s for each network is given in seconds (± one standard 

deviation, from ten simulations). 

 

 Glucose Glycerol 

Metabolites 50 51 

Reactions 64 65 

Total Number of Elementary 

Modes 
40,425 15,010 

Biomass-Producing EM’s (%) 31,354 (77.56%) 11,144 (74.24%) 

Taxadiene-Producing EM’s (%) 7,205 (17.82%) 2835 (18.89%) 

Biomass- and Taxadiene-

Producing EM’s (%) 
3,018 (7.47%) 954 (6.36%) 

Computation Time (n = 10) 7.4144 ± 0.2191 s 2.7117 ± 0.1011 s 
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Figure 26 shows a scatter plot of all of the glycerol model‟s 

elementary modes and their corresponding yields of biomass on 

glycerol, and taxadiene on glycerol (normalized to the fraction of the 

theoretical yield). 
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Figure 26 EM’s of the parent strain. 

A scatter plot of all of the parent glycerol model’s 15,010 EM’s and their 

corresponding yields of biomass on glycerol, and taxadiene on glycerol (normalized 

to the fraction of the theoretical yield). In some cases, one point will correspond to 

multiple elementary modes with the same yields. 
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ConstrainStrain Algorithm 

ConstrainStrain was then applied to both models and repeated 

thirty times in an attempt to sample a significant fraction of the design 

space (Table 9). 
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Table 9 Information on the solutions of thirty simulations of first step the 

ConstrainStrain algorithm as applied towards taxadiene production from glycerol. 

The range of solution fitness scores, mean and median of these fitness scores, as well 

as the average computation time (± one standard deviation, from thirty simulations). 

The range of the solution strain’s genotypes (in number of knockouts and 

corresponding elementary modes) are shown. 

 

Range of Fitness Scores 0.577-0.992 

Mean Fitness Score 0.947 

Median Fitness Score 0.992 

Average Computation Time (n = 30) 3,509.5 ± 788.8 s 

Range of Number of Total Modes 39-352 

Range of Number of Knockouts 2-7 
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The majority of the solution genotypes were almost optimal, 

many of which contained the same exact genotype. Figure 27a shows a 

summary of these strains with their corresponding total number of 

modes, biomass-producing modes, taxadiene-producing modes, and 

biomass- and taxadiene-producing modes. Figure 27b shows the 

minimum taxadiene yield of all of the strain‟s modes, and the 

maximum biomass yield of all of the strain‟s modes. As can be seen in 

this figure, most of these strains evolved to contain all modes that 

could produce taxadiene, however, this came at a cost of producing 

biomass, as many strains can now only produce, at maximum, 70% of 

the original yield of biomass on substrate. The same algorithm was 

applied to the glucose model, however, the results are not shown. 
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Figure 27 Results of the thirty simulations of the first step of ConstrainStrain. 

(a) shows the total number of EM’s (dark blue), biomass-producing EM’s (light blue), 

taxadiene-producing EM’s (yellow), and biomass- and taxadiene-producing EM’s 

(maroon). (b) shows the minimum taxadiene yields and maximum biomass yields of 

all of the strains EM’s (normalized to the fraction of the theoretical yield) 
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The strain chosen to proceed onto the next step of the algorithm 

was one that had relatively few knockouts, and the maximal fitness 

score. This strain had two reaction removals, corresponding to three 

genes (pntAB, gapA), coding for pyridine nucleotide transhydrogenase 

(NAD + NADPH ↔ NADP + NADH) and glyceraldehyde 3-phosphate 

dehydrogenase (glyceraldehyde 3-phosphate + NAD+ ↔ 1,3-

diphosphateglycerate + NADH). This strain contained 305 elementary 

modes. This was fed into the second round of the algorithm and run 30 

times. Figure 28 again shows the distribution of elementary modes and 

their corresponding yields before the second step of the algorithm. It 

should be noted that no elementary modes correspond to zero yield of 

taxadiene on biomass, however, the maximum yield of biomass on 

substrate is roughly 72% of the original maximal yield. 
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Figure 28 EM’s of the ΔpntAB ΔgapA strain. 

A scatter plot of the 305 EM’s in the ΔpntAB ΔgapA genotype and their 

corresponding yields of biomass on glycerol, and taxadiene on glycerol (normalized 

to the fraction of the theoretical yield). In some cases, one point will correspond to 

multiple elementary modes with the same yields. 
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Table 10 shows statistics on thirty simulations on the second 

step of the ConstrainStrain algorithm. 
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Table 10 Information on the solutions of thirty simulations of second step the 

ConstrainStrain algorithm as applied towards taxadiene production from glycerol. 

The range of solution fitness scores, mean and median of these fitness scores, as well 

as the average computation time (± one standard deviation, from thirty simulations). 

The range of the solution strain’s genotypes (in number of knockouts and 

corresponding elementary modes) as well as phenotype (range of minimum 

taxadiene and maximum biomass yields) are shown. 

 

Range of Fitness Scores 0.140-0.196 

Mean Fitness Score 0.176 

Median Fitness Score 0.185 

Average Computation Time (n = 30) 349.3 ± 40.7 s 

Range of Number of Total Modes 21-212 

Range of Number of Knockouts 4-10 

Range of Minimum Taxadiene Yield 0.281-0.520 

Range of Maximum Biomass Yield 0.268-0.580 
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The computation time of this second step in the algorithm was 

significantly shorter due to the smaller model size of the seeded 

population. This strain contained another two reaction removals, 

corresponding again to three genes (adhE and tktAB), coding for 

acetaldehyde dehydrogenase (acetyl-CoA + NADH → acetaldehyde + 

NAD+ + CoASH) and transketolase (erythrose-4-phospate + xylose-5-

phosphate ↔ glyceraldehyde-3-phosphate + fructose-6-phosphate). 

This strain contained 208 elementary modes. Figure 29 again shows 

this strain‟s EM characteristics. 
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Figure 29 EM’s of the ΔpntAB, ΔadhE, ΔgapA, ΔtktAB strain. 

A scatter plot of the 305 EM’s in the ΔpntAB, ΔadhE, ΔgapA, ΔtktAB  genotype and 

their corresponding yields of biomass on glycerol, and taxadiene on glycerol 

(normalized to the fraction of the theoretical yield). In some cases, one point will 

correspond to multiple elementary modes with the same yields. 
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A total of three strains were computationally identified as 

strains to be constructed by MAGE cycling. Two strains designed for 

taxadiene production from glucose and one designed for production 

from glycerol (Table 11). 
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Table 11 Information on the three solution sets to be constructed in the laboratory. 

The maximum biomass yield and minimum taxadiene yield (as a percentage of the 

theoretical yield) are shown. 

 

 Glucose 1 (“Set 1”) Glucose 2 (“Set 2”) Glycerol (“Set 3”) 

Genotype 
ΔpntAB,ΔpykAF,ΔaceA, 

ΔadhP, ΔadhE, Δpgk 
ΔpntAB,ΔlpdA, ΔaceEF, Δpgk 

ΔpntAB,ΔadhE,ΔgapA, 

ΔtktAB 

Maximum 

Biomass Yield 
15.0% 33.3% 45.8% 

Minimum 

Taxadiene Yield 
75.4% 46.7% 42.7% 
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Strain Construction by MAGE 

This portion of the study was undertaken at Harvard Medical 

School. Oligonucleotides were designed to knockout all of the genes 

described previously and MAGE cycled in separate pools of EcHW2e. 

48 clones were picked from each of the three pools to query the 

knockouts by diagnostic PCR. The number of knockouts were 

abnormally low as determined by experience (Wang HH, personal 

communication). The experiment was designed such that at least one 

of the 48 clones for both “Set 2” and “Set 3” would contain all 

knockouts. For “Set 1”, one strain was identified as having knockouts 

at ΔpykF (pyruvate kinase: pyruvate + ATP ↔ ADP + 

phosphoenolpyruvate + 2 H+), ΔaceA (isocitrate lyase: isocitrate ↔ 

glyoxylate + succinate), and ΔadhP (ethanol dehydrogenase: 

acetaldehyde + NADH + H+ ↔ ethanol + NAD+) loci. For “Set 2”, none 

of the 48 strains selected had any of the knockouts designed. For “Set 

3”, multiple colonies had a knockout at the ΔtktA locus (transketolase 

I: D-erythrose-4-phosphate + D-xylulose-5-phosphate ↔ D-fructose-6-

phosphate + D-glyceraldehyde-3-phosphate; and D-sedoheptulose-7-

phosphate + D-glyceraldehyde-3-phosphate ↔ D-ribose-5-phosphate + 

D-xylulose-5-phosphate, however, this was the only strain identified. 

As a result, two strains were generated, called EcHW2e(ΔpykF, ΔaceA, 

ΔadhP) and EcHW2e(ΔtktA), and stored as glycerol stocks with and 
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without pAC-LYC at ‒80°C. As the strains constructed do not have the 

exact genotype as the computationally predicted strains, it is assumed 

that the product yields predicted by the model do not correlate to the 

experimentally observed yields. 

Shake-Flask Production Cultures 

Lycopene production experiments were undertaken in four 

strains (EcHW2, EcHW2e, EcHW2e(ΔpykF, ΔaceA, ΔadhP), and 

EcHW2e(ΔtktA)) and two medium formulations (production medium 

with either glucose or glycerol as the principle carbon source). Cultures 

lasted 72 hr at 22°C and 250 rpm, where sampling occurred at 24 hr 

and 72 hr. Cell-density was measured spectrophotometrically at 

600nm, lycopene was extracted and measured spectrophotometrically 

at 474nm, and substrates and byproducts were measured by CEX-

HPLC-RID. 

The cell-densities after both 24 hr and 72 hr were higher when 

growing on glycerol than that of growing on glucose for all strains 

except for ΔtktA (Figure 30a). Moreover, the cell-densities continued to 

increase significantly after 24 hr when growing on glycerol, except for 

the parent strain, EcHW2. This contrasts when growing on glucose, 

where the cell-densities were the same or slightly lower after 72 hr 

than they were at 24 hr (Figure 30b). 
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Figure 30 Cell-density of MAGE-constructed strains. 

Cell-density of the four strains tested after 24hr and 72hr of culture in production 

medium supplemented with either (a) glycerol or (b) glucose. Error bars designate ± 

one standard deviation of three replicates.  
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Figure 31 shows the lycopene production titer after 24 and 72 hr 

for the four strains growing on glycerol and glucose. As expected, 

EcHW2e shows improved lycopene titer (as compared to EcHW2), 

when growing on both glycerol and glucose, due to the optimized 

expression of dxs and idi. Again, the lycopene titer increases 

significantly after 24 hr when growing on glycerol, but does not 

increase significantly when growing on glucose, except for 

EcHW2e(ΔpykF, ΔaceA, ΔadhP). Both of the knockout strains 

generated show titer improvements when growing on glycerol. After 72 

hr, EcHW2e(ΔpykF, ΔaceA, ΔadhP) has a titer of 72.7 ± 1.6 mg l‒1 (25.5 

± 1.0 mg gDCW‒1) while EcHW2e(ΔtktA) has 62.6 ± 6.2 mg l‒1 (24.2 ± 

2.2 mg gDCW‒1) as compared to 47.9 ± 2.8 mg l‒1 (17.2 ± 0.7 mg 

gDCW‒1) for EcHW2e. Interestingly, while the general trends in 

improvement for the four strains hold somewhat constant, the raw 

titers are significantly lower for growth on glucose than on glycerol. 

Even when normalized by cell-density, the specific lycopene titers are 

higher for all strains when growing on glycerol than glucose (Figure 

32). 
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Figure 31 Lycopene titer of the MAGE-constructed strains. 

Lycopene titer of the four strains tested after 24hr and 72hr of culture in production 

medium supplemented with either (a) glycerol or (b) glucose. Error bars designate ± 

one standard deviation of three replicates. 
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Figure 32 Specific lycopene titer of the MAGE-constructed strains. 

Specific lycopene titer of the four strains tested after 24hr and 72hr of culture in 

production medium supplemented with either (a) glycerol or (b) glucose. Error bars 

designate ± one standard deviation of three replicates. 
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At the end of the 72 hr, the principle carbon sources had not yet 

been depleted (Figure 33). In general, glucose consumption was very 

similar between the strains, however, varied more for when glycerol 

was the principle carbon source. While significant amounts (<1 mM) of 

pyruvate, ethanol, or lactate were not detected in the culture medium 

after 72 hr of culture, significant amounts of acetate were observed. 

After 24 hr, the acetate production was between 64% and 268% higher 

for growth on glucose than on glycerol, while after 72 hr, it was 

between 68% and 305% higher (Figure 34). A scatter plot of this data 

(lycopene production versus acetate production) showed that after 24 

hr, the ratio of lycopene produced to acetate produced was quite 

similar (Figure 60, in Appendix). However, after 72 hr, the trajectory 

for the glycerol cultures was much more favorable to lycopene 

production, while the trajectory for the glucose cultures was much 

more favorable to acetate production (Figure 60, in Appendix). In the 

absence of pyk, acetate could be produced from glucose or glycerol by 

the oxidation of pyruvate (through the action of the poxB gene 

product). 
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Figure 33 Carbon source consumption of the MAGE-constructed strains. 

Carbon source consumption of the four strains tested after 24hr and 72hr of culture 

in production medium supplemented with either (a) glycerol or (b) glucose. 

Percentage imported of the amount fed (15 g l
‒1 in each case) is shown. Error bars 

designate ± one standard deviation of three replicates. 
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Figure 34 Acetate production of the MAGE-constructed strains. 

Acetate production the four strains tested after 24hr and 72hr of culture in 

production medium supplemented with either (a) glycerol or (b) glucose. Error bars 

designate ± one standard deviation of three replicates. 
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Lastly, as a means to show direct comparison with the modeling 

data generated, the lycopene yields were measured on their respective 

carbon source. Although, it is clear that the minimum yields predicted 

(Table 11) were not met, most likely because all of the genetic targets 

were implemented. For example, EcHW2e(ΔtktA) had a yield of 18.9 

mg lycopene g glycerol‒1 (roughly 6% of the theoretical yield), while 

EcHW2 and EcHW2e had yields of 3.4 mg g‒1 and 6.4 mg g‒1, 

respectively. While predicted yields were not met, this corresponded to 

a 2.95-fold improvement in lycopene yield over the already “optimized” 

EcHW2e strain, owing to the power of using this modeling strategy. 
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Figure 35 Lycopene yields on carbon sources of the MAGE-constructed strains. 

Lycopene yields on the carbon sources of the four strains tested after 24hr and 72hr 

of culture in production medium supplemented with either (a) glycerol or (b) 

glucose. Error bars designate ± one standard deviation of three replicates. 
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Microplate Growth Assay 

While the production cultures described in the previous section 

yielded a significant amount of information regarding overall cellular 

phenotype, high resolution growth profiles could be utilized to further 

examine the growth phenotypes under different genotypes and 

environmental conditions. Five strains (EcHW1, EcHW2, EcHW2e, 

EcHW2e(ΔpykF, ΔaceA, ΔadhP), and EcHW2e(ΔtktA)) were grown 

under four medium formulations and growth parameters were 

determined by a non-linear least-squares regression of the OD600nm vs. 

time data to a logistic population model equation. As a frame of 

comparison, Figure 36 shows the growth profiles of the parent 

(EcHW1) in all four medium formulations. Figure 61 (in Appendix) 

shows OD600nm vs. time (average ± one standard devotion, n = 4) for the 

five strains on M9 + glucose. Figure 62, Figure 63, and Figure 64 show 

the same data for M9 + glycerol, PM + glucose, and PM + glycerol, 

respectively (PM is the abbreviation for the “production medium” used 

in previous studies). Figure 37 shows a summary of this data: the 

specific growth rates as a function of these strains and medium 

formulations. Only one strain/medium combination showed no 

significant growth, EcHW2e(ΔtktA) in M9 supplemented with glycerol. 

In some cases, the specific growth rate exceeded 1.0 hr‒1. Generally, 

the specific growth rates were higher for glucose than that for glycerol 
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and the complex medium showed faster specific growth rates than the 

minimal medium.  
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Figure 36 Microplate growth assay. 

OD600nm vs. time for EcHW1 growing in 96-well plate format at 30°C. Error bars 

represent ± one standard deviation of four replicates. 
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Figure 37 Specific growth rates of MAGE-constructed strains. 

The exponential phase specific growth rates at 30°C for the five strains used in this 

study as determined by a non-linear regression of the OD600nm vs. time data to 

Equation 11. Error bars represent ± one standard deviation of four replicates. 
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Discussion 

Elementary mode analysis is a powerful tool for pathway 

decomposition in and topological studies of metabolic networks (de 

Figueiredo et al. 2009; Papin et al. 2004; Schilling et al. 2000; Schuster 

et al. 1999), and can be utilized for metabolic engineering (Trinh et al. 

2009). Elementary mode analysis has been utilized to design strains of 

E. coli that are efficient at producing biomass from glucose (Trinh et al. 

2006), ethanol from five- and six-carbon sugars (Trinh et al. 2008), 

diapolycopendioic acid from glucose (Unrean et al. 2010), ethanol from 

glycerol (Trinh and Srienc 2009), and succinate from glycerol (Chen et 

al. 2010). In two cutting-edge applications, EMA was combined with 

linear programming to determine flux distributions from external 

measurements in lysine-producing Corynebacterium glutamicum 

(Gayen and Venkatesh 2006), and to determine the metabolic fluxes of 

Lactobacillus rhamnosus growing on medium containing mixed 

substrates (Gayen et al. 2007). EMA has also been utilized to 

determine flux distributions in polyhydroxybutyrate-producing E. coli, 

mediated by a thermodynamic analysis of the EMs (Wlaschin et al. 

2006). Due to the issues regarding the applicability of the optimality 

assumptions of FBA and MoMA in engineered systems, this goal of this 

chapter was to develop an algorithm for identifying knockout targets 

based strictly upon network topology. 
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Randomized mutational strategies have long been employed for 

“classical strain development”, one notable example being penicillin 

production from Penicillium chrysogeum (Demain 2006). During each 

cycle of classical strain development, a mutation is introduced, 

screened for a phenotype, mutated again, and so on (known as asexual 

recursive mutagenesis) (Zhang et al. 2002). Genome shuffling emerged 

as a tool in which, after mutagenesis and screening, multiple top 

performers in a progeny would then be shuffled further mixing the 

genomes and screening. This was applied to Streptomyces fradiae for 

improving tylosin (a complex polyketide antibiotic) production roughly 

6-fold in roughly 1 year and 24,000 assays. A similar improvement in 

titer was undertaken at Eli Lilly over the course of 20 years and 

requiring roughly 1,000,000 assays (Zhang et al. 2002), therefore 

demonstrating the power of this strategy (Stephanopoulos 2002). The 

same methodology was applied towards improving lactic acid tolerance 

in an unspecified industrial Lactobacillus species (Patnaik 2008). 

While gene shuffling relies simply on mutation and protoplast 

fusion, the advent of advanced DNA synthesis and sequencing 

technologies has provided for a strong underpinning for massively 

parallel genome engineering and evolution. Protein engineering 

techniques such as directed evolution and gene shuffling have allowed 

for the randomized, but targeted improvement of a specific enzyme 
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function (such as broadened or reduced substrate specificity, or 

improved turnover rates). However, it is clear that to truly “maximize” 

or “optimize” flux through a pathway of interest, one must modulate 

the expression of multiple genes, both within and outside the pathway, 

in a time efficient manner. Global transcription machinery engineering 

(gTME) emerged as an extremely powerful tool to rapidly tune the 

expression of many genes by using error-prone PCR to mutate a 

transcription factor, therefore effecting the expression of a large 

number of genes (rather than one or a few). This technique was first 

applied to S. cerevisiae‟s TATA-binding protein (SPT15 and TAF25) for 

improving tolerance to high glucose and ethanol concentrations in the 

culture medium (Alper et al. 2006b). This technique was successfully 

applied to E. coli‟s rpoD gene (encoding for its main sigma factor, σ70) 

for improving ethanol tolerance, SDS tolerance, and lycopene 

production (Alper and Stephanopoulos 2007), as well as the α subunit 

of its RNA polymerase for improving tolerance to short chain alcohols 

and production of hyaluronic acid and L-tyrosine (Klein-Marcuschamer 

et al. 2009). 

MAGE differs from gTME in that it is: 1) automated such that 

multiple rounds of mutagenesis/evolution can be undertaken in 

operational cycles; and 2) it targets deletion or over-expression of 

specific genes. The high efficiency of allelic replacement (up to 30% 
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under some conditions without selection) allows for the searching of a 

significant fraction of genomic space. In the end, a central difference 

between MAGE and gTME is that, with enough rounds of MAGE, the 

population will converge to a specific genotype (see in the Appendix), 

whereas gTME should never converge to a single, specific genotype. 

The question now becomes, is this a good thing? The answer to this 

question may be reduced to the ability to actually assess a phenotype 

(or, more importantly, multiple phenotypes). For phenotypes that can 

be measured in a high-throughput manner, gTME might be a better 

option to better explore. The convergent trajectory of the fitness 

landscape generated with MAGE might allow for “low-throughput” 

screening of mutants generated. 

This particular study decided to use elementary mode analysis 

coupled with a genetic algorithm as a means of more efficiently 

searching genomic space for targets for improving taxadiene 

production. As a means of comparison, an exhaustive search of all four-

knockout strains would have required evaluating roughly 1.17 × 107 

individuals, and assuming an average computation time of 2.7117 s (as 

determined earlier), would take roughly a year (367.2 days) to compute 

on the current platform. The genetic algorithm allowed for the 

identification of a four knockout mutant after evaluating 5,000 

individuals, taking roughly one hour. In the end, the utilization of the 
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genetic algorithm allowed for roughly a five order of magnitude 

decrease in computation time. 

Further, using a high-throughput phenotype (lycopene 

production, or colony red color) as a surrogate for another phenotype 

(taxadiene production, a similar isoprenoid molecule) combined with 

MAGE, these strains were created. Three sets of knockouts were 

identified: Glucose 1 ΔpntAB, ΔpykAF, ΔaceA, ΔadhP, ΔadhE, Δpgk, 

Glucose 2: ΔpntAB, ΔlpdA, ΔaceEF, Δpgk, Glycerol: ΔpntAB, ΔadhE, 

ΔgapA, ΔtktAB. A central component to MAGE is λ-Red recombination, 

which requires phage Gam, Exo, and Beta (Muniyappa and Radding 

1986) functions but does not require E. coli RecA function (Ellis et al. 

2001). After the utilization of λ-Red recombination to construct precise 

alterations of the E. coli chromosome with PCR products (that is, 

dsDNA) and a resistance marker, it was discovered that ssDNA could 

recombine at higher efficiency with even as small as 30 bp 

chromosomal homology (Ellis et al. 2001). As a result, this was used as 

the basis for these MAGE experiments.  

The clear issue with the study as presented was that the full 

genotypes were not constructed in EcHW2e using MAGE. One gene in 

each set (pgk for set 1 and 2, and gapA for set 3) was determined to be 

essential in E. coli as identified through the process of creating the 

Keio collection (a genome wide single-gene knockout collection of E. 
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coli). However, these mutants were constructed by selecting on LB 

plates, as was MAGE cycling. It has been often cited of the conditional 

dependence of certain genes in many organisms such as E. coli, 

mycobacteria (Sassetti et al. 2001), Pseudomonas putida KT2440 

(Molina-Henares et al. 2010). For example, a gene might be non-

essential under aerobic growth, but might be under anaerobic growth. 

While these are most often identified by genome-wide single or double 

gene deletions, they can also be identified computationally (Joyce and 

Palsson 2008) with excellent accuracy in some cases (Joyce et al. 2006). 

For example, out of 3,888 single-deletion mutants tested, 119 mutants 

were unable to grow on glycerol minimal medium. These conditionally 

essential genes were then evaluated using a genome scale metabolic 

model and the correct phenotype was identified in approximately 91% 

of the cases (Joyce et al. 2006). 

In the case of E. coli here, while gapA has been cited to be 

essential for growth on rich media (as in the Keio collection) (Baba et 

al. 2006; Yamamoto et al. 2009), it has been verified both 

computationally and experimentally that it is not essential when 

glycerol is the principle carbon source (Joyce et al. 2006). This is a 

simple explanation for why this knockout was not observed to have 

been constructed, and further exemplifies the importance of context 

when it comes to randomized mutagenesis and screening. The case for 
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why the pgk knockout was not observed in the glucose strains is a 

more difficult one to explain. When this gene was attempted to be 

replaced with a kanamycin resistance gene in strain E. coli BW25113 

using λ-Red recombination, it could not be constructed. As a result, 

this group determined to be essential (Baba et al. 2006; Yamamoto et 

al. 2009). However, shortly before this study was published, another 

group reported the construction of this mutant in MG1655 (a close 

parent of BW25113) using an method based on in vitro transposition of 

a modified Tn5 element (also containing a kanamycin resistance gene) 

(Kang et al. 2004). This construct was also selected on a rich medium 

supplemented with kanamycin. The conflicting evidence of the 

essentiality of this gene promoted a further analysis of this operon and 

its essentiality. There could be multiple explanations for why this 

knockout was not found to be present. First, it could be due to subtle 

differences between the BW25113 and MG1655 genomes. However, 

strain EcHW2e is a derivative of MG1655 containing the λ-Red genes 

in the bioAB locus (Wang et al. 2009). Second, it could be the 

directionality or position of the kanamycin resistance gene. The Keio 

collection aimed to replace the pgk gene with a FRT-site flanked 

kanamycin resistance gene upstream of the start codon and 

downstream of the stop codon (Baba et al. 2006). The strategy was also 

used to remove the entire gene from before the start codon to after the 
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stop codon. Whereas, the modified Tn5 element will insert itself 

randomly within the gene. The expression of the downstream gene, 

fbaA could be effected by the removal of the upstream gene, pgk, which 

have been shown to be are coordinatively transcribed (Charpentier et 

al. 1998). Interestingly, fbaA was determined to be essential by the 

Keio group (Baba et al. 2006). As a result, removal of the entire pgk 

gene, which may contain promoter elements for the fbaA gene, would 

be lethal to the cell. To verify that these could really not be 

constructed, they should have been attempted to be constructed 

individually and not with other gene targets. 

Even though the MAGE cycling in this study was not able to 

fully generate the computationally designed strains, the results most 

definitely support the utility of this computational method for 

designing strains for metabolite over-production. Both MAGE-

generated strains improved lycopene production titers and yields in 

both glycerol- and glucose-based complex medium. Figure 38 shows the 

comparison between the modeling results and the experimental 

results. It can be clearly seen that, without constructing all of the 

knockouts, lycopene (or taxadiene) production cannot be fully coupled 

to biomass production. As a result, the overall yields are quite low: 

18.9 mg g‒1 and 3.4 mg g‒1 for the glycerol and glucose designed 
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strains, respectively. These correspond to 6.1% and 1.1% of the 

theoretical yield of lycopene on the respective carbon sources. 

 

 

 

 

Figure 38 Comparison of the modeling results with the experimental results. 

(a) A scatter plot of the lycopene model and their corresponding yields of biomass 

on glycerol, and lycopene on glycerol (normalized to the fraction of the theoretical 

yield). Shown is the parent model in blue points and the constructed ΔtktA model in 

red points. (b) A zoomed-in portion of (a) and the experimental biomass and 

lycopene yields of the MAGE-constructed strains. (c) A scatter plot of the lycopene 

model and their corresponding yields of biomass on glucose, and lycopene on 

glucose (normalized to the fraction of the theoretical yield). Shown is the parent 

model in blue points and the constructed ΔpykF ΔaceA ΔadhP model in red points. 

(d) A zoomed-in portion of (c) and the experimental biomass and lycopene yields of 

the MAGE-constructed strains. Δ indicates the MAGE constructed strains and the 

dotted, arrowed lines indicates the evolutionary paths of these strains. 
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A few significant differences between the glycerol- and glucose-

based media were observed across all strains: 1) cell-densities were 

consistently lower for growth on glucose, 2) lycopene production was 

significantly higher for growth on glycerol, and 3) acetate production 

was significantly higher for growth on glucose. Acetate is the main 

fermentative product of E. coli, and it‟s reduction has been a target for 

improving recombinant protein production (Wong et al. 2008) and 

succinate production (Jantama et al. 2008), of many others. It has been 

recently shown that controlling glycerol supplementation in a fed-

batch fermentation of taxadiene production in E. coli could reduce 

acetate levels to less than 1 g l‒1 and dramatically improve taxadiene 

production (Ajikumar et al. 2010). Previous studies have shown that 

exogenous feeding of pyruvate (one of the two precursors for the non-

mevalonate isoprenoid pathway) in addition to glycerol, did not 

improve lycopene production in E. coli (Farmer and Liao 2001). This 

was also observed when feeding pyruvate in addition to glycerol for 

taxadiene production in E. coli (see Chapter 8). Moreover, over-

expression of the gluconeogenic PEP carboxykinase (pck) improved 

lycopene titer, while over-expression of the glycolytic PEP carboxylase 

(ppc) had the opposite effect. These all support the utilization of a 

gluconeogenic carbon source for production of isoprenoid natural 

products, likely enabling the balancing of pyruvate and 
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glyceraldehydes-3-phopshate levels, and decreasing overflow 

metabolism and therefore acetate production. 
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Chapter 6 – Identification of over-expression targets 

using optimization, and experimental implementation 

for improving taxadiene production 

Introduction 

Two previous chapters of this dissertation have been devoted to 

using stoichiometric modeling to identify gene knockouts to improve 

product titer. This chapter presents the development and application of 

an algorithm for identifying over-expression targets to improve product 

titer. For identifying knockout targets, the binary nature of the 

problem (the gene and therefore reaction either exists or does not exist) 

simplifies its mathematical abstraction. For identifying over-

expression targets, the problem is now non-binary, meaning that 

describing gene over-expression in this context is more difficult. Over-

expressing a gene on a five-copy plasmid does not necessarily correlate 

to five times the amount of transcript, which does not necessarily 

correlate to five times the amount of soluble protein, which does not 

necessarily correlate to five times the amount of metabolic flux through 

that reaction. Nonetheless, this chapter aims to formulate a 

mathematical abstraction for modeling gene over-expression, as well as 

utilize it to simulate metabolic fluxes and identify over-expression 

targets for improving heterologous isoprenoid titer. Taxadiene was 
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selected for the over-expression study because of the low titers 

currently observed (see Chapter 7). 

Materials & Methods 

Model Construction 

As was the case in Chapter 2, the E. coli genome-scale metabolic 

model iAF1260 was used as a base for the model used in this study 

(Feist et al. 2007). This model contains 2,077 reactions, 1,039 

metabolites, and 1,261 genes (Feist et al. 2007). Reactions then had to 

be added to account for the reactions catalyzed by the two heterologous 

enzymes introduced to produce taxadiene through E. coli. These 

reactions are: 1) a geranylgeranyl-diphosphate synthase (to catalyze: 

farnesyl-diphosphate + isopentenyl-diphosphate → geranylgeranyl-

diphosphate + diphosphate), 2) a cyclizing taxadiene synthase (to 

catalyze: geranylgeranyl-diphosphate → taxa-4,11-diene + 

diphosphate), and 3) a taxadiene transport reaction (taxadiene → 

[nothing]) (Ajikumar et al. 2008; Ajikumar et al. 2010). 

Calculations were made in MATLAB® 7.4 (Mathworks Inc.; 

Natick, MA) utilizing the SMBL Toolbox (version 2.0.2, 

http://sbml.org/software/sbmltoolbox/) (Keating et al. 2006; Schmidt 

and Jirstrand 2006) and the COBRA Toolbox (version 1.3.3, 

http://gcrg.ucsd.edu/) (Becker et al. 2007). Optimization was 

undertaken using the CPLEX (version 11.0) algorithm of the 

http://sbml.org/software/sbmltoolbox/
http://gcrg.ucsd.edu/
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TOMLAB™ Optimization Environment (TOMLAB™/CPLEX) 

interfaced with the COBRA Toolbox and MATLAB® 7.4. 

Over-Expression Target Identification 

The over-expression algorithm involves: 1) imposing a taxadiene 

production rate (as determined experimentally), 2) solving a FBA 

problem, 3) imposing an amplification in individual reaction fluxes (to 

simulate the effect of gene over-expression, 4) solving a MoMA 

problem, and 5) identifying over-expressions that led to a phenotype 

fraction value, fph, greater than unity (an overflow of this algorithm 

can be seen in Figure 39). The overall algorithm is very similar to the 

knockout identification section in Chapter 2, however, instead of 

setting a reaction value to zero, individual reaction values are 

amplified five-fold. Steps “3” and “4” were iterated for every reaction 

within the network. 
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Figure 39 An overview of the proposed algorithm for identifying over-expression 

targets to improve product titer. 
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As was conducted in Chapter 3, calculations were made under 

conditions to simulate complex medium. Medium composition can be 

approximated by setting uptake rates of specific chemical components 

known to exist in the medium of interest. The “computational complex 

medium” contained all twenty naturally-occurring amino acids (L-

isomers) (Oh et al. 2007). The lower bounds of the amino acid transport 

reactions were set to –0.1 mmol gDCW–1 hr–1 (negative sign indicates 

metabolite uptake into the cell) and were chosen based upon previous 

literature values and because they satisfied the relative biomass 

differences experimentally observed between media (Oh et al. 2007; 

Selvarasu et al. 2009a). Glycerol transport rates were set to –3.0 mmol 

gDCW–1 hr–1, as in Chapter 3. 

Strains & Plasmids 

Strain YW22(pTrcHis2B-TXS-GGPPs) was used as the base 

strain for taxadiene production in this study (see Chapter 7). This 

strain is a derivative of JM109(DE3) containing a T7prom-dxs-idi-ispB-

ispDF-T7term operon in the araA of its chromosome. Plasmid 

pTrcHis2B-TXS-GGPPs is a carbenicillin resistant plasmid with a 

pBR322 origin of replication, containing synthetic txs and crtE genes 

under the control of an IPTG-inducible Trc promoter (also described in 

Chapter 7). 
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Plasmids containing over-expression targets were obtained from 

the ASKA(-) library of the National Institute of Genetics in Japan, 

containing each gene of interest as identified by the algorithm (and 

controls) (Kitagawa et al. 2005). The genes are cloned into a derivative 

of pQE31 (called pCA24N) under the control of an IPTG-inducible T5 

promoter and with an N-terminal 6× histidine tag (Kitagawa et al. 

2005). These plasmids are chloramphenicol resistant and have a ColE1 

origin of replication, and are therefore compatible with 

YW22(pTrcHis2B-TXS-GGPPs). 

Small-Scale Production Cultures 

A stab of glycerol stock was inoculated into 2 ml LB medium 

with appropriate antibiotics and grown overnight at 37°C and 250 rpm. 

For production cultures, 3 ml production medium (5 g l‒1 yeast extract, 

10 g l‒1 tryptone, 10 g l‒1 sodium chloride, 15 g l‒1 glycerol, 3 ml l‒1 50% 

(v v‒1) Antifoam B, 100 mM HEPES, and were adjusted to pH 7.60 with 

5 M sodium hydroxide) was inoculated into 16 × 100 mm culture tubes 

with the precultures to an OD600nm = 0.1. These production cultures 

were grown for 120 hr at 22°C and 250 rpm. At the end of the culture 

period, cell-density was measured spectrophotometrically at 600 nm 

and a single, 1 ml aliquot was stored at ‒20°C for subsequent analyses. 

When needed, antibiotics were supplemented at concentrations of 100 
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mg l‒1 for carbenicillin, 34 mg l‒1 for chloramphenicol and IPTG was 

supplemented at a concentration of 100 μM. 

Taxadiene Quantification 

For taxadiene quantification, a culture aliquot (750 μl) was 

supplemented with (-)-trans-caryophyllene (TC) at a final 

concentration of 1 μg l‒1 to serve as an internal standard for 

quantification. The samples were then extracted with an equal volume 

of hexane, followed by 20 s of vortexing and centrifugation for 10 min 

at 10,000 × g. The hexane layer (150 μl) was removed and stored in 

glass vials at ‒20°C until analysis with gas chromatography-mass 

spectroscopy (GC-MS) could be conducted. 

Samples were analyzed on a Shimadzu QP5050A GC-MS using 

splitless injection. Gas chromatography was run on a non-polar Rxi®-

XLB column (30 m x 0.25 mm ID, 0.25μm). The inlet pressure for the 

column was set at 120 kPa and column flow velocity was 1.6 ml min‒1. 

The flow rate of the ultra high purity helium carrier gas was 20 ml 

min‒1. Temperature of the column was initially set and maintained at 

100°C for 2 min and was then increased to 235°C at a rate of 15.0°C 

min‒1. The column was then maintained at this temperature for 1 min. 

Mass spectrometry was performed in Single Ion Monitoring (SIM) 

mode scanning for mass to charge ratios of 107 m z‒1, 122 m z‒1, and 

272 m z‒1, corresponding to principle daughter ions and parent ion of 
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taxadiene, respectively (Koepp et al. 1995). Under these conditions, TC 

and taxadiene eluted at approximately 6.8 min and 11.4 min, 

respectively. Quantification of taxadiene was accomplished based on a 

calibration curve of taxadiene concentration (kindly provided by Drs. 

Ajikumar Parayil and Gregory Stephanopoulos) versus the peak area 

ratio of TC to taxadiene. 

Results 

Over-Expression Target Identification 

The first demonstration of the over-expression algorithm was 

undertaken in glycerol-based complex medium (to mimic the 

“production medium” used in previous chapters). The experimental 

specific production rate of YW22(pTrcHis2B-TXS-GGPPs) was 

determined to be 1.53 × 10‒4 mmol gDCW‒1 hr‒1 and was set as the 

lower bound for taxadiene transport flux. The specific uptake rate of 

glycerol was 3.0 mmol gDCW‒1 hr‒1 while the specific uptake rates of 

all twenty L-amino acids were set to 0.1 mmol gDCW‒1 hr‒1. Under 

these carbon limited conditions, the specific growth rate was 

determined by FBA to be 0.2671 hr‒1. Next, for all reactions that had a 

non-zero flux value in the FBA simulations, were over-expressed 

computationally. Once all reactions had been cycled, reactions that 

produced an fph value of greater than one were chosen as potential 
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over-expression targets. Figure 40 shows all of these genes and their 

corresponding fph values. 
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Figure 40 Calculated taxadiene production flux (left y-axis) and fPH (right y-axis) as a 

function of gene over-expressed. 
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Of the twelve targets identified, four of them were outside of the 

isoprenoid biosynthetic pathway (ppk, sthA, purN, and folD). The other 

eight (dxs, ispE, dxr, ispG, ispF, ispD, ispH, and ispA) were within the 

biosynthetic pathway (Figure 3). While these targets produced an fph 

greater than one, it was expected that amplifying a reaction within the 

linear isoprenoid biosynthetic pathway would improve taxadiene flux, 

and therefore provided an internal control for verification of the 

algorithm itself. As a result, the four targets for experimental 

implementation were ppk, sthA, purN, and folD, as summarized in 

Table 12. 
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Table 12 Genetic targets identified by the over-expression algorithm to implement 

in the laboratory. 

* indicates that the folD gene product is a bifunctional enzyme. The net reaction is 

shown below. 

Gene Reaction Name Reaction Predicted  

fph 

ppk Polyphosphate kinase ATP + Pi ↔ ADP + PPi 66.7 

sthA Pyridine nucleotide 

transhydrogenase 

NAD+ + NADPH ↔ 

NADH + NADP+ 

18.9 

 

purN Phosphoribosylglycinamide 

formyltransferase 

5-phospho-ribosyl-

glycineamide + 10-

formyl-tetrahydrofolate 

↔ 5'-phosphoribosyl-N-

formylglycineamide + 

tetrahydrofolate + 3 H+ 

10.6 

folD 5,10-methylene-

tetrahydrofolate 

dehydrogenase / 

cyclohydrolase* 

NADP+ + 5,10-

methylene-THF + H2O 

↔ NADPH + 10-formyl-

tetrahydrofolate + H+ 

8.1 
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As another means of implementing a control for the algorithm, 

the same algorithm was run with glucose as the principle carbon 

source instead of glycerol. Targets that were identified in the glucose 

case that were not identified in the glycerol case were also included in 

the analysis (determined to be fumA, fumB, fumC, and mdh). 

Experimentally, these targets should not be able to improve titer. 

Experimental Implementation 

The four positive targets (ppk, sthA, purN, and folD), the four 

algorithm controls (fumA, fumB, fumC, and mdh) were combined with 

two experimental controls encoding for only a subunit of a functional 

enzyme (sucC and pntA) to ensure that other experimental factors 

associated with plasmid-based over-expression inadvertently improved 

taxadiene titer. The genes were over-expressed using a T5 promoter 

from a chloramphenicol-resistant ColE1-based plasmid in YW22 also 

co-expressing GGPPs and TXS to produce taxadiene. At the end of the 

culture period (120 hr), taxadiene was extracted and quantified using 

GC-MS. Cell-density was also measured spectrophotometrically at 600 

nm. Another aliquot of the culture was stored for SDS-PAGE analysis 

to verify gene-expression of TXS, GGPPs, and the other gene. Raw 

taxadiene titer was normalized by cell-density, creating a specific 

taxadiene titer (Figure 41). 
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Figure 41 Specific taxadiene titer data for the computationally identified gene over-

expression targets and corresponding controls. 

The “Control” sample is YW22(pTrcHis2B-TXS-GGPPs). Error bars represent ± one 

standard deviation of three independent replicates. * indicates a statistically 

significant (p < 0.05, as determined by paired Student’s t-test) difference from the 

YW22(pTrcHis2B-TXS-GGPPs) control. 
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Three of the four (ppk, sthA, purN) experimental targets 

improved titer (p < 0.05 when compared to YW22(pTrcHis2B-TXS-

GGPPs) control), however, the improvements were well below what 

was predicted by the algorithm. The over-expression of ppk, sthA, and 

purN improved specific production of taxadiene 1.66-, 1.48-, and 1.31-

fold, respectively. The fourth target, folD, appears to decrease titer but 

the difference is statistically insignificant from the control (p = 0.400). 

Except for folD, showed the same trend of improvement as predicted by 

the model (ppk > sthA > purN). The three fumarase isozymes (fumA, 

fumB, and fumC) all decreased titer, while mdh decreased titer even 

more significantly. For the two experimental controls, over-expression 

of sucC had no effect on specific taxadiene titer (p = 0.119), while over-

expression of pntA decreased specific taxadiene titer to roughly half of 

the control (p = 0.010). As a result, all six of the chosen computational 

and experimental controls were verified as having no positive effect on 

taxadiene titer. The over-expression of the control genes likely 

increases metabolic burden to the host, which may partially account 

for the decrease in taxadiene production. While this is certainly not an 

exhaustive analysis of potential control targets, no previous knowledge 

was used to inherently bias the choice of these targets.  

Gene-expression was verified in the soluble portion of the whole 

cell protein by SDS-PAGE (Figure 42). The GGPPs is quite strong is all 
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lanes, while TXS is faintly visible slightly under the 97.6 kDa 

molecular weight marker. While the majority of the proteins can be 

easily visualized, it is questionable whether FumC is visible on the gel. 

Although all of the genes were over-expressed on the same copy 

number plasmid and using the same promoter, their expression level 

did vary, perhaps due to codon bias or gene/protein size. 
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Figure 42 Gene-expression is qualitatively visualized by SDS-PAGE. 

The proteins and their size are shown in the table to the left. 
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Over-Expression of the Isoprenoid Biosynthetic Genes 

The lack of dramatic improvement in specific taxadiene titer 

prompted us to investigate the role of a potential bottleneck in the 

isoprenoids biosynthetic pathway. It has been shown that there is an 

incredibly complex response (isoprenoids production titer) when it 

comes to modulating the expression of the upstream and downstream 

portions of the isoprenoid biosynthetic pathway (Ajikumar et al. 2010). 

Even though YW22 already contains over-expressed versions of the 

dxs, idi, ispB, ispD, and ispF genes from its chromosome, higher levels 

of some of these or other isoprenoid pathway genes might be needed to 

fully access potential improved precursor flux and debottleneck this 

pathway. As a result, all of the upstream pathway genes were over-

expressed, individually, from the same plasmid. Six of these genes 

produced less taxadiene: dxs, ispE, ispF, ispG, ispH, and ispA (p < 

0.05) Oddly, the dxr plasmid could not be stably transformed (multiple 

trials) into YW22(pTrcHis2B-TXS-GGPPs). Over-expression of ispD did 

not produce any taxadiene, but did produce a viable strain. One target, 

idi, improved specific production of taxadiene 3.77-fold (p = 0.008) 

(Figure 43). 
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Figure 43 Specific taxadiene titer data for the isoprenoid pathway gene over-

expression targets. 

The “Control” sample is YW22(pTrcHis2B-TXS-GGPPs). Error bars represent ± one 

standard deviation of three independent replicates. * indicates a statistically 

significant (p < 0.05, as determined by paired Student’s t-test) difference from the 

YW22(pTrcHis2B-TXS-GGPPs) control. † indicates that taxadiene was not detected 

by GC-MS. 
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Discussion 

The use of systematic methods for identifying over-expression 

targets, at the start of this study, had only been explored once 

theoretically (Pharkya and Maranas 2006) and never been 

implemented experimentally. The goal of this chapter was to use a 

previously developed optimization strategy and modify it for usage in 

identifying over-expression targets, and implement it in the laboratory 

for improving taxadiene production. A variation of the MoMA 

algorithm was used as an extension to indentifying gene over-

expression targets to improve a product titer. As cited in Chapter 3, 

MoMA was proposed as an alternative to FBA as a means of 

quantifying metabolic fluxes in networks that had been perturbed, 

originally by gene knockouts. In a similar sense, forced over-expression 

of a particular gene could also be considered a genetic perturbation, so 

this computational framework was extended for identifying genetic 

over-expression targets. Unfortunately, there is almost no 

experimental data available on global flux distributions upon over-

expression of single genes in E. coli, so there was no means of verifying 

this algorithm short of testing it in our case study of improving 

taxadiene production.  

Four targets were identified by the algorithm as candidates to 

implement in the laboratory. While an in depth examination of the 
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physiological effects of over-expression of these four targets was 

outside of the scope of this chapter‟s work, it would appear that all four 

targets improve cofactor availability. The over-expression of ppk allows 

for the reversible generation of ATP and Pi from ADP and the PPi 

generated by the IspA and GGPPS reactions in “elongation and 

cyclization” pathway of isoprenoid biosynthesis. The next three targets 

are involved with improving NADPH supply for isoprenoid 

biosynthesis. Transhydrogenases are responsible for the reversible 

NAD+ + NADPH ↔ NADP+ NADH reaction, and can therefore 

theoretically be used to modulate the level of reduction within the cell. 

Over-expression of sthA led to improved production of poly(3-

hydroxybutyrate) in Escherichia coli (requiring NADPH reducing 

equivalents) (Sanchez et al. 2006a). The same function appears to be 

the case here, as one molecule of taxadiene requires four molecules of 

NADPH (at the DXR reaction step). Lastly, purN and folD is a two-

step linear pathway in tetrahydrofolate biosynthesis. While it appears 

that tetrahydrofolate has no immediate metabolic relation to the 

isoprenoid biosynthetic pathway, this step also produces an equivalent 

of NADPH. Moreover, because this is a linear pathway, perhaps both 

genes would need to be over-expressed in series to observe the full 

benefits of this pathway. 



 

233 

 

Nonetheless, of the four targets identified, three of the four 

improved specific production titer. All six controls implemented 

showed either no change or a decrease in specific taxadiene titer. 

However, the improvements did not exceed 2-fold, and failed to 

reproduce the flux improvements as predicted by the algorithm. At the 

same time, all of the controls failed to improve titer. It would be 

advantageous to further investigate some factors that might improve 

the predictability of this algorithm. Particularly, the amplification 

factor could be varied to observe whether other targets appears at 

different flux levels. For better validation of this algorithm, strains 

with various single over-expressions should be cultured under different 

carbon sources. Then, 13C-MFA should be used to quantify fluxes in 

central metabolism and observe how well the predicted fluxes compare 

with the measured fluxes under these varying environmental and 

genetic conditions. 

It has been shown and readily recognized that the first step in 

the DXP-based isoprenoid biosynthetic pathway (Figure 3) is the rate-

limiting step in the pathway (Begley et al. 1999; Lawhorn et al. 2004; 

Matthews and Wurtzel 2000). Bacterial D-1-deoxyxylulose 5-phosphate 

synthase (encoded by dxs), catalyzing the condensation of pyruvate and 

D-glyceraldehyde-3-phosphate to D-1-deoxyxylulose 5-phosphate 

(requiring thiamine diphosphate as a cofactor and Mg2+ as a metal 
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adduct) has a turnover rate of 1.9 s‒1 (the reported value for the E. coli 

enzyme has not been reported) (Eubanks and Poulter 2003). While that 

of the next step in the pathway, the 1-deoxy-D-xylulose-5-phosphate 

reductoisomerase (encoded by dxr) has been reported to be between 29 

s‒1 and 38 s‒1 for E. coli (Fox and Poulter 2005a; Fox and Poulter 

2005b) (a kcat/KM value of 2.2 × 107 M‒1 s‒1), providing in vitro evidence 

that DXS activity may bottleneck the pathway from the beginning. In 

vivo, it has been shown in numerous cases that over-expression of dxs 

improves isoprenoid or carotenoid titer in native and heterologous 

hosts (Alper et al. 2005b; Alper et al. 2005c; Brown et al. 2010; Chiang 

et al. 2008; Choi et al. 2009; Leonard et al. 2010; Morrone et al. 2010; 

Tyo et al. 2009; Yuan et al. 2006). However, the lack of effect in this 

case could be due to the fact that increased expression of one rate-

limiting enzyme (dxs) may result in shifting the control of pathway 

flux to another enzyme in the pathway (perhaps idi) (Kacser and 

Burns 1973). While it seems odd that an isomerization reaction would 

be limiting the pathway, the turnover number for IDI has been 

reported to be 0.33 s‒1 (also having a much smaller kcat/KM value of 4.2 

× 104 M‒1 s‒1) (Hahn et al. 1999). A highly complex phenotype has been 

observed recently with respect to the downstream and upstream 

isoprenoid biosynthetic pathways (Ajikumar et al. 2010), but it appears 

that IDI could be the rate-limiting step after even both dxs and dxr 
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over-expression. As a result, over-expression of the other genes in this 

pathway would only lead to further unbalancing of this pathway, and 

lead to decreased or no taxadiene production. 

During the course of this dissertation research, an algorithm 

was developed for identifying over-expression targets and applied 

towards heterologous lycopene production in E. coli (Choi et al. 2010). 

This algorithm, called Flux Scanning based on Enforced Objective Flux 

(FSEOF), is based on simulating cellular metabolism by maximizing 

biomass formation (utilizing FBA), and then imposing specific 

production rates of a product of interest. Fluxes that increase through 

a reaction step as the product flux increases are considered to be over-

expression targets. Interestingly, both fumarase (encoded by the 

homologous fumA, fumB, and fumC genes) and malate dehydrogenase 

(encoded by mdh) were identified as targets in this method for 

producing lycopene from glucose, as were identified as targets for 

producing taxadiene from glucose in this chapter. Numerous targets 

were implemented in the laboratory (pfkA, pgi, fbaA, tpiA, icdA, and 

mdh), however, only with plasmid-based dxs and idi over-expression as 

well. Three of the six targets (pfkA, pgi, and icdA) decreased or did not 

change lycopene titer, while the other three (fbaA, tpiA, mdh) 

improved titer between 3- and 4-fold. The top over-expression only 

(dxs, idi, and mdh) strain improved titer from 2.52 mg l‒1 to 12.85 mg 
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l‒1. Upon combining with MoMA deletion targets, this titer increased to 

26.77 mg l‒1 (with a ΔlacI, ΔgdhA, and ΔgpmB strain) (Choi et al. 

2010). 

This algorithm has been patented (and therefore the code is 

unavailable), such that these two methods could not be directly 

compared, however, there is significant evidence that could be both be 

used to accomplish the same task. Computationally, this strategy can 

be much less intensive than our method described, as it allows for the 

identification of multiple gene targets through solving only a small 

number of linear optimization problems. This method also has the 

advantage of not imposing an artificial amplification factor that 

corresponds to every reaction, allowing for the actual flux values to 

dictate this factor, which can change for enzyme to enzyme. 
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Chapter 7 – Multi-scale engineering of  taxadiene 

biosynthesis 

Introduction 

This chapter presents similar heuristic engineering of taxadiene 

biosynthesis in E. coli, in a similar manner as Chapter 4 was for 6-dEB 

biosynthesis. In the broader context of heterologous isoprenoid 

production, more recent work has focused on engineering and 

optimizing the precursor pathways that support biosynthesis (Martin 

et al. 2003; Yuan et al. 2006). Of particular relevance to the present 

study, the DXP pathway (Figure 3) native to E. coli was engineered to 

boost production of the carotenoid compound lycopene (Yuan et al. 

2006). More specifically, the dxs, idi, and various isp genes of the DXP 

pathway were placed under inducible T5 promoters with concomitant 

improvement in lycopene biosynthesis (Alper et al. 2005c; Jin and 

Stephanopoulos 2007). Further improvement was observed in a ∆gdhA, 

∆aceE, and ∆fdhF mutant genotype as identified using stoichiometric 

modeling (Alper et al. 2005b). High-cell density bioreactor cultivations 

resulted in 220 mg l–1 lycopene (roughly 21 mg gDCW–1) (Alper et al. 

2006a), while a replicon-free E. coli system harboring chromosomal 

over-expressions produced approximately 100 mg l–1 lycopene (roughly 

36 mg gDCW–1) (Chiang et al. 2008). More recently, multiplexed 

automated genome engineering (MAGE) was used to construct a 



 

238 

 

lycopene over-producing E. coli strain (almost 9 mg gDCW–1) in only 

three days time (Wang et al. 2009). 

The newly engineered strains then lend themselves to the 

heterologous production of related compounds dependent upon the 

same precursors (see Figure 7). However, while previous efforts 

identified crucial precursor pathway genes for engineered over-

expression, there are still many aspects of the heterologous systems 

that remain to be explored. These elements include both recombinant 

parameters in addition to alternative cellular systems available to 

house heterologous production. Bioprocess engineering offers a second 

option to improve heterologous natural product biosynthesis from hosts 

like E. coli. As opposed to directly targeting the cellular and molecular 

components responsible for biosynthesis, process optimization focuses 

on the surrounding environment affecting both growth and 

heterologous biosynthesis. Just as with recombinant parameters, there 

are several options to be explored within process engineering towards 

improved heterologous production: medium composition, temperature, 

aeration, pH, and so forth. 

In this chapter, strain backgrounds, promoter systems, and 

bioprocess conditions were varied to compare and improve the 

production of taxadiene from E. coli. To begin, a transcriptomic study 

was conducted to provide a systems-level profile of gene-expression 
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between the strains tested for production.  The differences at the 

transcript level between the K and B strains were analyzed to 

understand expression differences that could account for the cellular 

differences in taxadiene production, and more generally, to provide a 

basis of comparison between the JM109(DE3) and BL21(DE3) strains. 

In addition, bioprocess improvements in the form of statistical medium 

optimization, an in situ product capture system, and a temperature 

modulation study was used to further boost production. The 

cumulative specific titer improvement exhibited in this study is 240-

fold (from 0.05 mg gDCW–1 to 12 mg gDCW–1). 

Materials & Methods 

Reagents & Chemicals  

The reagents and chemicals used in this study were purchased 

from ThermoFisher Scientific (Waltham, MA, USA) or Sigma-Aldrich 

(St. Louis, MO, USA). PCR primers were synthesized by Eurofins 

MWG Operon (Ebersberg, Germany). TaKaRa LA Taq™ DNA 

polymerase was from Clontech Laboratories/Takara Mirus Bio 

(Madison, WI, USA).  

Gene, Plasmid, & Strain Construction  

The geranylgeranyl diphosphate synthase (crtE) and taxadiene 

synthase (txs) genes were synthesized using the method of Kodumal et 
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al. (Kodumal et al. 2004). The original template sequences were a crtE 

gene from Taxus canadensis (GenBank accession code AF081514) 

(Hefner et al. 1998) and a txs gene from Taxus brevifolia (GenBank 

accession code U48796) (Wildung and Croteau 1996). The synthesized 

products were optimized for codon usage in E. coli and sequenced to 

confirm gene design. Standard molecular biology techniques were then 

used to generate the plasmids presented in (Table 13) (Sambrook and 

Russell 2001) (constructed by Dr. Yong Wang). 
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Table 13 Plasmids constructed in this chapter. 

 

Plasmid Name Description 

pQE-TXS-GGPPS T5prom-txssyn-crtEsyn-T5term; both txs and crtE synthetic; 

background plasmid pQE30 (Qiagen) 

pTrc-TXS-GGPPS Trcprom-txssyn-crtEsyn-Trcterm; both txs and crtE synthetic; 

background plasmid pTrcHis2B (Invitrogen) 

pACYCDuet-TXS-

GGPPS 

T7prom-txssyn-crtEsyn-T7term; both txs and crtE synthetic; 

background plasmid pACYCDuet-1 (Novagen) 
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Table 14 also presents the strains constructed to support 

taxadiene biosynthesis. E. coli strains MG1655, JM109(DE3), and 

BL21(DE3) were used as the original hosts for YW140, YW22, and 

YW23, respectively (constructed by Dr. Yong Wang). Strains YWS140 

and YWGAF were re-constructed as described previously (Yuan et al. 

2006). For the construction of YW22 and YW23, a polycistronic operon 

containing T7prom-dxs-idi-ispB-ispDF-T7term was constructed in a 

pET21c expression plasmid. Next, λ-Red mediated homologous 

recombination (Datsenko and Wanner 2000) was used to insert the 

operon into the araA location of JM109(DE3) and BL21(DE3), 

respectively, as described previously (Wang and Pfeifer 2008). All 

integrants and knockouts were verified by PCR. All strains were stored 

at –80°C in LB medium supplemented with 10% (v v−1) glycerol. 
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Table 14 Strains constructed in this chapter. 

 

Strain Name Description 

YW22 JM109(DE3); araA::T7prom-dxs-idi-ispB-ispDF-T7term 

YW23 BL21(DE3); araA::T7prom-dxs-idi-ispB-ispDF-T7term 

YWS140 MC1061; dxs, idi, and ispDF genes over-expressed through T5 

promoter replacement 

YWGAF YWS140; gdhA::FRT, aceE::FRT, fdhF::FRT 
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Small-Scale Production Cultures 

The strains were inoculated in 2 ml of production medium in 16 

× 100 mm culture tubes to an OD600nm = 0.1 and cultured for five days 

at 22°C and 250 rpm. Initial experiments testing recombinant 

parameters were conducted using production medium (described 

below). Selection was maintained with 100 mg l–1 carbenicillin, 50 mg 

l–1 kanamycin, or 34 mg l–1 chloramphenicol when necessary. 

Expression of lacI-repressed genes was accomplished by induction with 

100 µM isopropyl β-D-1-thiogalactopyranoside (IPTG). For the two-

phase in situ extraction, n-dodecane was added to the cultures in 10, 

20, 30, 40, and 50% volume ratios. Control cultures of each strain 

without n-dodecane or without IPTG induction were also tested. For 

the temperature modulation studies, YW22 and YW23 were cultured 

in the same manner at 12, 17, 22, 27, 32, and 37°C. 

Transcript Preparation & Analysis 

YW22(pACYCDuet-TXS-GGPPs) and YW23(pACYCDuet-TXS-

GGPPs) were grown as described below in the “Small-Scale Cultures” 

section. At 72hr, total RNA was first prepared with the RNeasy Protect 

Bacteria Mini Kit (QIAGEN) and then purified by spin column with 

the RNeasy Mini Kit (QIAGEN). Extracted total RNA (in triplicate) 

was sent to the Tufts University Computational Genomics Core 

Facility for analysis, amplification, labeling, hybridization to the 
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GeneChip® E. coli Genome 2.0 Array (Affymetrix; Santa Clara, CA, 

USA), and scanning. The GeneChip® E. coli Genome 2.0 Array 

contains 10,208 probe sets for E. coli strains K-12 MG1655, CFT073, 

O157:H7-EDL933, and O157:H7-Sakai. The six Affymetrix CEL files 

containing intensity information for each probe were exported to the 

MATLAB (The MathWorks™; Natick, MA, USA) Bioinformatics 

Toolbox. Microarray data was processed using the RMA procedure for 

background adjustment (Irizarry et al. 2003). Normalized intensities 

for each probe set and each strain were averaged and t-tests were 

conducted in the log2 values to calculate the p-value between the YW22 

and YW23 strains. Probe data were then filtered to contain only probes 

specific for E. coli K-12 MG1655. Statistically significant differences 

between the two strains were considered for cases with p < 0.01, while 

differentially expressed genes were considered for cases with a greater 

than 2-fold difference in log2 values. 

Plackett-Burman Screening 

A Plackett-Burman screening methodology was used to identify 

media components significantly influencing taxadiene production. 

Briefly, the components of two media were used within the Plackett-

Burman screening scheme (Plackett and Burman 1946). Defined 

medium consisted of 6.3 g l–1 KH2PO4, 18.1 g l–1 K2HPO4, 0.6 g l–1 

(NH4)2SO4, 15 g l–1 glycerol, 0.47 g l–1 MgSO4∙7H2O, 1.875 ml l–1 trace 
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metal solution (per liter deionized water: 27 g FeCl3∙6H2O, 2 g 

CaCl2∙6H2O, 2 g NaMoO4∙2H2O, 1.9 g CuSO4∙5H2O, 1.3 g ZnCl2, 0.5 g 

H3BO3, and 1.21 mol HCl), and 1.875 ml l–1 vitamin solution (per liter 

deionized water: 6 g niacin, 5.42 g D-pantothenic acid, 1.4 g pyroxidine, 

0.42 g riboflavin, 0.06 g biotin, and 0.04 g folic acid). Production 

medium was composed of 5 g l–1 yeast extract, 10 g l–1 tryptone, 10 g l–1 

NaCl with 15 g l–1 glycerol, 3 ml l–1 50% (v v–1) Antifoam B Emulsion, 

and 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) sodium salt, adjusted to pH 7.6 with 5 M NaOH (Lau et al. 

2004; Pfeifer et al. 2002). Using an experimental rationale based on 

balanced incomplete blocks, two-level sample matrices that utilize 4n 

experimental cases to simultaneously evaluate the effect of 4n-1 

parameters were defined (Stanbury et al. 1995). In this study, eight 

experimental conditions were utilized to evaluate seven medium 

components. As a comparison, a two-level full factorial to evaluate 

seven components would have required 2n (or 128) experiments. 

Experiments were repeated in order to account for variability of the 

process (including medium formulation, cell growth, and GC-MS 

analysis). The effect of each component was calculated using the sum 

of the four positive conditions compared to the sum of the four negative 

conditions normalized to the net effect of each experimental condition.  
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The control limits (CL) were calculated as CL = t∙σ∙2√N, where N 

is the total number of responses (16 in our case), σ is the average 

standard deviation derived from the day-to-day variability of the 

method calculated from probability tables, and t is the Student‟s t-

distribution value at a 95% confidence interval. Any value greater than 

this control limit indicates a statistically significant positive effect on 

taxadiene production. Conversely, any value less than the negative 

value of the control limit indicates a significant inhibitory response.  

Bioreactor Production Cultures 

YW22 was inoculated in 1.5 l of production medium (as 

described above but containing 45 g l–1 glycerol) in a 3 l bioreactor 

(New Brunswick Scientific BioFlo 110) to an OD600nm = 0.1 and 

cultured at 22°C for five days at 400 rpm. Air was supplied at 0.5 VVM 

(1.5 l min–1). Selection was maintained with 34 mg l–1 chloramphenicol. 

The cultures where induced with 100 µM IPTG at the beginning of 

each bioreactor run. Dodecane was added to the culture at 20% 

volumetric ratio. Duplicate samples from the bioreactor were collected 

periodically over the course of the culture. 

Taxadiene Quantification 

The aqueous phase of a culture aliquot was extracted with equal 

volume of ethyl acetate, followed by vortexing for 20 s and centrifuging 

at 10,000 rpm for 10 min. In cultures grown with n-dodecane, the 
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samples were first centrifuged at 10,000 rpm for 10 min and then the 

organic phase was diluted 100× in ethyl acetate. Taxadiene analysis 

was performed on a Shimadzu (Kyoto, Japan) QP5050A GC-MS using 

splitless injection. Gas chromatography was performed on a Restek 

(Bellefonte, PA, USA) Rtx®-XLB column (30 m × 0.25 mm ID, 0.25 

μm). The column was initially held at 50°C for 1 min, then it was 

heated to 320°C using a gradient of 8°C min–1, and it was finally held 

at that temperature for 2 min. Mass spectrometry was conducted in 

Single Ion Monitoring (SIM) mode scanning for mass to charge ratios 

of 107 m z–1, 122 m z–1 and 272 m z–1, as determined previously 

(Jennewein et al. 2001). Taxadiene eluted at 22.21 min and 

quantification was accomplished by using a six-point calibration curve 

(0 mg l–1, 5 mg l–1, 10 mg l–1, 25 mg l–1, 50 mg l–1, and 100 mg l–1) 

created with a purified taxadiene standard (kindly provided by Drs. 

Ajikumar Parayil and Gregory Stephanopoulos). 

Metabolite Quantification 

The aqueous phase of a culture aliquot was analyzed by HPLC 

(Agilent 1100 Series) coupled to a Refractive Index Detector (RID). 20 

µl of the clarified culture supernatant (by 10,000 rpm for 10 minutes) 

was applied to a Bio-Rad Aminex® HPX-87H Ion Exchange (300 mm × 

7.8 mm, 9 μm) column. The isocratic analysis used a solvent of 

composition of 9.5 mM H2SO4 held at a flow rate of 0.3 ml min–1. These 
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conditions were identified by using an iterative stochastic search 

HPLC optimization program based on the compounds anticipated to be 

present in the culture medium (Dharmadi and Gonzalez 2005). A five-

point standard calibration curve was created and used for 

quantification of glycerol, pyruvate, acetate, ethanol, succinate, 

formate, and lactate. The elution order was as follows: pyruvate (16.7 

min), succinate (22.7 min), lactate (24.2 min), glycerol (25.1 min), 

formate (26.8 min), acetate (29.1 min), and ethanol (41.3 min). 

Results & Discussion 

In this study, taxadiene production through E. coli was initiated 

with K and B strains designed to support isoprenoid precursor supply. 

In addition, the crtE and txs genes needed for taxadiene biosynthesis 

were both designed and synthesized to optimize codon usage within E. 

coli. Having taken these initial steps, two routes were then pursued to 

further improve taxadiene production. First, different promoter/strain 

combinations were used to test expression of the chromosomal genes 

supporting precursor supply and the heterologous genes needed for 

taxadiene biosynthesis. Strain design was based upon the genotype 

described previously for E. coli carotenoid biosynthesis (Yuan et al. 

2006). Because carotenoid and isoprenoids derive from the same 

substrate precursors, this initial strain design was chosen as a 

template for subsequent variation. Hence, the same genes targeted for 
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T5 promoter over-expression in the original strain were also altered for 

expression from a stronger T7 promoter. Besides promoter variation 

between the genes responsible for taxadiene precursor supply, other 

chromosomal modifications included specific knockouts (ΔgdhA, ΔaceA, 

and ΔfdhF) predicted to improve carotenoid production (Alper et al. 

2005b) and JM109(DE3) versus BL21(DE3) pertaining to T7-based 

gene-expression. Modifications were made to both JM109(DE3) and 

BL21(DE3) strains harboring the required T7 RNA polymerase. Of 

particular interest were any differences in taxadiene production 

between these two hosts given differences previously observed with 

these strains for heterologous polyketide biosynthesis (Wu et al. 2010). 

The situation therefore provided a range of strains supporting 

taxadiene precursor supply. Plasmid-borne expression of the codon 

optimized crtE and txs genes was tested across Trc, T5, and T7 

promoter systems. 
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Figure 44 Modulation of heterologous gene promoter and strain background. 

T5, Trc, and T7 promoters were tested for biosynthetic genes expressed in strains 

designed for either T5 (YWS140 and YWGAF) or T7 gene expression (YW22 and 

YW23). Plasmids with T7 promoters were not tested in strains YWS140 and YWGAF 

and therefore show no taxadiene production. (b) SDS-PAGE analysis of heterologous 

protein levels for the three promoter systems tested in YW22 and YW23). 
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Figure 44a presents E. coli taxadiene production as a function of 

strain and recombinant parameter variation. Taxadiene production in 

YWS140 and YWGAF show similar trends for both the T5 and Trc 

promoter systems. Strain YWS140 was designed to replicate the 

original modifications used to better support carotenoid biosynthesis. 

As such, this was considered baseline production with respect to 

comparisons between the remaining strain and plasmid combinations. 

The YWGAF strain contained gene deletions (∆gdhA, ∆aceE, and 

∆fdhF) found capable of improving carotenoid production within E. 

coli. This triple knockout strain was rationally predicted from 

stoichiometric modeling and experimentally verified for lycopene 

(Alper et al. 2005b). Interestingly, when the native crtE gene is 

expressed, production is improved and matches those levels seen when 

strain YW23 serves as the background host. Though the reason for this 

is unclear, others have noticed an imbalance in heterologous 

expression when using synthesized genes, implying that coupling 

native crtE and synthesized txs genes may provide a more optimal 

expression profile and/or precursor supply (Menzella et al. 2006). For 

those synthetically derived genes, the YW23 host shows an increase in 

production compared to counterparts from YWS140 and YWGAF. 

Given the precursor network shared between carotenoid and 

isoprenoids compounds, it was reasonable to expect that the 
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∆gdhA∆aceE∆fdhF genotype would similarly aid taxadiene production. 

However, in this study, only slight but non-significant improvements 

resulted from strain YWGAF, implying that the improvements 

observed were specific for lycopene production or the culture conditions 

used. This could have been due to the fact that the triple knockout 

improved titer in minimal medium with glucose; whereas, the medium 

used here was a complex medium with glycerol. Maximum taxadiene 

production was associated with YW22. Of the improvements observed, 

strain YW22(pACYCDuet-TXS-GGPPS) showed the best production 

with an 18.5-fold improvement in specific production from the lowest 

strain-plasmid combination (of those comparing synthetically derived 

biosynthetic genes). Both strains carrying the T7 RNA polymerase 

showed a noticeably reduced production when the native crtE gene was 

expressed, in comparison to expression from the YWS140 and YWGAF 

strains. 

The T7 strains led to a pronounced improvement in taxadiene 

biosynthesis, but improvement varied across B (YW23) and K (YW22) 

genotypes. These differences prompted us to analyze the K and B E. 

coli hosts using DNA microarray technology. A transcriptomics study 

(global transcript profiling) was undertaken to better understand why 

the K strain produces roughly twice as much taxadiene with 

qualitative lower expression of the heterologous genes (as seen in 
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Figure 44b, particularly for the pTrc plasmid) . Total RNA was 

extracted from YW22 and YW23 during late-stage exponential growth 

(approximately 48 hr) in the production medium preciously described 

and analyzed using the GeneChip® E. coli Genome 2.0 Array. After 

adjustment, normalization, and filtering, 348 of the 4070 MG1655 

genes were differentially expressed (log2(YW22/YW23) > ± 2) at a 

statistically significant level (p-value < 0.01) (as can be seen in the 

scatter plot in Figure 45a). Of these 348 genes, 243 were up-regulated 

in YW22 while 105 were up-regulated in YW23. Although a large 

number of the identified genes had no clearly assigned function 

(hypothetical proteins), a number of enzymes involved in central 

metabolic pathways were identified. In YW23, both pyruvate kinase I 

(pykF) and phosphoenolpyruvate carboxykinase (pck) were up-

regulated, indicating that phosphoenolpyruvate is being produced from 

both pyruvate (through the action of pykF) and oxaloacetate (through 

the action of pck). Because pyruvate is one of the direct precursors 

(along with glyceraldehyde-3-phosphate) for the DXP pathway, 

decreasing pyruvate flux from this pathway by up-regulation of these 

two enzymes is a likely explanation for why the taxadiene production 

titer in YW23 is roughly half that of YW22. In addition, pykF was a 

main target identified through a novel modeling algorithm developed 
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in our laboratory (unpublished work) as one that, when deleted, 

predicted improved taxadiene titer. 
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Figure 45 Microarray data comparing late-stage exponential growth gene-

expression between YW22(pACYCDuet-TXS-GGPPS) and YW23(pACYCDuet-TXS-

GGPPS). 

(a) A volcano plot shows the relationship between p-value and differential 

expression. Points in the upper right quadrant correspond to genes up-regulated 

greater than two-fold in YW22(pACYCDuet-TXS-GGPPS) at a statistically significant 

level (p < 0.01) while points in the upper left quadrant correspond to genes that are 

up-regulated greater than two-fold in YW23(pACYCDuet-TXS-GGPPS) at p < 0.01 (as 

determined by paired Student’s t-test). (b) A plot showing the relative expression 

level of the genes in the isoprenoid biosynthetic pathway for both 

YW22(pACYCDuet-TXS-GGPPS) and YW23(pACYCDuet-TXS-GGPPS). * indicates p < 

0.05 between the two strains, while † indicates p < 0.01. All data shown are from 

three replicates (n = 3). 
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Another key difference between these two strains was the 

activity around the fructose-6-phoshate metabolite node. YW22 

significantly up-regulated phosphofructokinase I (pfkA) which 

catalyzes the conversion of fructose-6-phosphate to fructose-1,6-

bisphosphate. At the same time, YW23 significantly up-regulated 

fructose-1,6-bisphosphatase (fbp), which catalyzes the opposite 

reaction. Although both of these enzymes are inhibited by 

phosphoenolpyruvate, it would appear that the expression of the 

glycolytic pfkA would be preferable over the gluconeogenic fbp, 

especially being that fructose-1,6-bisphosphate is degraded during 

glycolysis to yield glyceraldehyde-3-phosphate, the other direct 

precursor for the isoprenoid biosynthetic pathway. Over-expression of 

pfkA and/or deletion of fbp would likely increase cellular pool of 

glycerol-3-phosphate and would therefore increase flux toward the 

isoprenoid biosynthetic pathway and improve taxadiene production. 

As an attempt to identify an overall bottleneck in the isoprenoid 

biosynthetic pathway and to identify differences between YW22 and 

YW23, the expression of the genes in the isoprenoid biosynthetic 

pathway (dxs, dxr, ispDEFGH, idi, ispA, ispB, and ispU) (Figure 45b) 

were directly compared. Of the eleven genes, four (dxs, ispE, ispF, and 

ispA) were expressed higher (p < 0.05) in YW23 and one (ispU) was 

expressed higher in YW22 (p < 0.01). It should be noted that ispB and 
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ispU occur further downstream in the isoprenoid biosynthetic pathway 

required for production of octaprenyl diphosphate (required for 

menaquinol and ubiquinol biosynthesis) and undecaprenyl 

diphosphate (used in peptidoglycan biosynthesis), respectively. It is 

clear that slight increased expression of certain genes in the isoprenoid 

biosynthetic pathway by YW23 does not result in improved taxadiene 

production, leading us to believe the main difference in taxadiene 

phenotype between the K and B strains lies within central carbon 

metabolism. More generally, it is interesting to note that ispA 

expression is approximately an order of magnitude lower than that of 

the next lowest expressed gene in this pathway, indicating a potential 

candidate for over-expression to alleviate a biosynthetic bottleneck and 

further improve taxadiene production. 

The study also featured a second route to improved E. coli 

taxadiene production through bioprocess engineering. This involved 

improving three subcomponents: 1) medium composition, 2) an in situ 

extraction technique, and 3) a temperature modulation study. Because 

strain YW22(pACYCDuet-TXS-GGPPS) demonstrated the highest 

taxadiene levels from the recombinant parameter analysis, it was 

chosen for use during media optimization. To expeditiously identify 

media components having a significant impact on taxadiene 

biosynthesis, a Plackett-Burman screening methodology was employed. 
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The Plackett-Burman method aims at minimizing the number of 

experiments in order to determine the effects of main variables, in this 

case, media components. Hence, a two-dimensional analysis between 

these components was completed to identify maximum taxadiene 

production. Here, components of the production medium, used for the 

recombinant parameter study outlined above, were tested with other 

media components from a defined medium commonly used by our 

group (Wang et al. 2007a). The Plackett-Burman method allows a 

rapid screening of media components and provides quantifiable basis 

for identifying which components impact biosynthesis. In this case, 

glycerol and yeast extract showed significant positive impact on 

taxadiene biosynthesis. Glycerol‟s positive effect has been observed 

before for closely related carotenoids and sesquiterpenes also produced 

through E. coli (Lee et al. 2004; Martin et al. 2003). Antifoam solution 

was also identified as a medium component positively influencing 

titers; however, the remainder of the study focused on glycerol and 

yeast extract since these were considered more likely to influence both 

cellular biomass and taxadiene biosynthesis. 

  



 

260 

 

 

 

 

 

 

 

 

Figure 46 Medium component modulation study. 

Strain YW22(pACYCDuet-TXS-GGPPS) was tested across different glycerol and yeast 

extract concentrations to identify production maxima as a function of media. Data 

are presented for specific (mg gDCW–1) production and are averaged between two 

separate experiments. Original production medium is denoted with a yellow * at the 

base of the production column. 
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Glycerol and the yeast extract were therefore varied so as to 

provide a surface response curve with the z-axis as taxadiene 

production (Figure 46). Holding the remaining components of the 

production media constant, glycerol and yeast extract were varied to 

survey the production landscape as a function of these two 

components. Figure 46 presents this data as specific production titers 

(mg gDCW–1), highlighting maxima beyond those provided by the 

original medium formulation. It can be seen that the specific 

production in the quadrant of the surface response encompassing 

increased glycerol and reduced yeast extract content presents new 

media compositions for maximum taxadiene production. Maximum 

production from the media screen shows an additional 10-fold 

improvement in specific production beyond that provided by 

recombinant parameter/strain combinations. 
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Figure 47 Temperature modulation study, specific taxadiene titer. 

Specific taxadiene titer (mg gDCW‒1) is shown as a function of temperature between 

12°C and 37°C at 5°C intervals for YW22(pACYCDuet-TXS-GGPPS) and 

YW23(pACYCDuet-TXS-GGPPS). Error bars designate ± one standard deviation of 

four replicates. 
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Next, a study was undertaken to determine the optimal 

temperature for taxadiene production. Here, a temperature down-shift 

from 37°C to between 12°C and 32°C (at 5°C intervals), concurrently 

with induction of gene-expression, at OD600nm = 0.6 was utilized to 

observe the differences in cell-density attained, taxadiene titer, 

substrate uptake, and by-product formation for both 

YW22(pACYCDuet-TXS-GGPPS) and YW23(pACYCDuet-TXS-

GGPPS). Taxadiene production was observed at all temperatures 

except 37°C for both YW22 and YW23. Interestingly, for each strain, 

the specific taxadiene titers did not vary significantly between 12°C 

and 27°C, with a slight decrease observed at 32°C.It has been shown 

previously that BL21(DE3) grows to a higher cell-density than JM107 

(a close relative to JM109(DE3)) (Yau et al. 2008). However, there have 

not been many side-to-side comparisons of E. coli strains and their 

physiology (Phue et al. 2008; Phue et al. 2005; Phue and Shiloach 

2004), much less in terms of metabolic engineering applications (Tseng 

et al. 2009; Wu et al. 2010). Here, it was also observed that YW23 (the 

B derivative) grew to higher cell-densities than YW22 (the K 

derivative); however, the cell-densities achieved were not statistically 

significantly different at 22°C, 27°C, and 32°C (Figure 48a). Also as 

expected, the specific uptake rate of glycerol was higher at higher 

temperatures (Figure 48b). Interestingly, YW23 showed lower specific 
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uptake rates of glycerol than YW22 but grew to a higher cell-density, 

lending itself to better utilization of the initial carbon source. Across 

all strains and culture temperatures, acetate was the primary by-

product (Figure 48c). Ethanol was only observed in the residual culture 

medium at temperatures of and between 22°C and 37°C for both YW22 

and YW23 (Figure 48d). Lactate, succinate, formate, or pyruvate were 

not observed (less than 0.5 mM) in the residual culture medium for all 

strains and culture temperatures. 
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Figure 48 Temperature modulation study, cell-density and metabolite production 

rates. 

Data shown for YW22(pACYCDuet-TXS-GGPPS) and YW23(pACYCDuet-TXS-

GGPPS), as a function of temperature between 12°C and 37°C in 5°C increments, the 

(a) specific uptake rate of glycerol, (b) specific production rate of acetate, (c) 

specific production rate of ethanol, (d) and specific taxadiene titer are plotted. 

Error bars designate ± one standard deviation of four replicates. 
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Finally, bioreactor studies were conducted to test whether the 

optimal conditions as determined in the previous sections would hold 

at increased scale. Like other isoprenoid compounds recently produced 

heterologously (Newman et al. 2006), taxadiene is highly volatile. 

Preliminary studies revealed that taxadiene titer sharply decreased 

approximately half way through a standard bioreactor process. 

Whereas, in 100 ml shake-flask cultures, the maximal taxadiene titer 

was higher than that in the 1.5 l bioreactor, and the decrease in titer 

was attenuated. The inverse relationship between culture aeration and 

taxadiene titer emphasized taxadiene loss through evaporation. Given 

this condition and the fact that taxadiene has a log P value (an 

octanol:water partition coefficient, as calculated by ChemDraw Ultra 

using Crippen‟s fragmentation method) of 5.74, cultures were first 

conducted at 2 ml and n-dodecane (the non-volatile twelve-membered 

alkane) was overlaid to prevent taxadiene loss. The dodecane overlay 

was tested at volume percentages of 10% to 50% in increments of 10% 

(Figure 49a and Figure 49b). Figure 49c shows the specific taxadiene 

titer as a function of n-dodecane concentration, indicating that n-

dodecane concentrations between 20% and 50% lead to similar specific 

titers. Overall, the specific taxadiene titer increased from 0.5 mg 

gDCW–1 to 5.0 mg gDCW–1 with the use of 50% n-dodecane. It is 

interesting to note that taxadiene volatility may have been indicated 
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during the Plackett-Burman media optimization study. The antifoam 

solution was included as a media component within the analysis and 

exhibited a statistically significant influence upon taxadiene levels, 

possibly because of air-water interface effects and influence upon 

taxadiene volatilization. 
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Figure 49 In situ extraction of taxadiene with n-dodecane. 

For YW22(pACYCDuet-TXS-GGPPS), (a) Taxadiene titer in the aqueous phase and 

(b) in the dodecane phase is plotted as a function of volume percentage of dodecane. 

(c) Overall specific taxadiene titer. Error bars designate ± one standard deviation of 

three or four replicates. 
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As a result, the batch bioreactor process was redesigned in three 

respects to aid in the in situ capture of taxadiene: 1) n-dodecane was 

added to the culture at 20% (v v–1), 2) the air flow-rate was decreased 

from 1 VVM to 0.5 VVM, and 3) the agitation was decreased from 1000 

RPM to 400 RPM. The latter two adjustments were to minimize mixing 

of the abiotic organic phase and the aqueous culture medium. The 

specific taxadiene titer increased ten-fold from approximately 1.2 mg 

gDCW–1 to approximately 12 mg gDCW–1 without significant 

differences in the cell-density achieved (approximately 5 gDCW l–1) 

(Figure 50a). Glycerol was exhausted at the end of the culture period 

(127 hr), with large amounts of acetate (almost 200 mM in the later 

stages of the bioprocess) generated throughout the batch bioprocess 

(Figure 50b). As the glycerol became exhausted, the culture started 

utilizing the acetate generated earlier in the bioprocess as a secondary 

carbon source. Presumably, if taxadiene is stable in the organic phase, 

continual usage of the remainder of the acetate would likely further 

improve taxadiene production. As was the case with the small-scale 

cultures, pyruvate, formate, and succinate were not observed (less than 

0.5 mM) in the culture medium. Expression of the heterologous genes 

appears to be strong throughout the entire bioprocess (Figure 7c). 
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Figure 50 Bioreactor cultivation of YW22(pACYCDuet-TXS-GGPPS with 20% (v v‒1) 

dodecane. 

(a) Specific taxadiene titer (in the aqueous and organic phases combined) and cell-

density are plotted as a function of time. (b) Glycerol and acetate concentration in 

the culture medium are plotted as a function of time. (c) Gene-expression by SDS-

PAGE is shown as a function of time. Bands corresponding to the taxadiene 

synthase (TXS) and the geranylgeranyl diphosphate synthase (GGPPS) are marked. 
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In summary, this study featured efforts to improve and compare 

taxadiene biosynthesis through a range of recombinant/process 

parameters and K- and B-based E. coli strains. Highest specific 

production levels were observed at 22°C for K-based E. coli strains 

utilizing the T7 expression system. A transcript analysis between the 

K and B strains identified several interesting variations that provided 

insight into potential mechanisms for the differences observed. This 

insight provides future metabolic engineering targets to further 

overproduce taxadiene, or other isoprenoids, heterologously through E. 

coli. Expression of txs and crtEsyn was qualitatively verified by SDS-

PAGE throughout the process (Figure 50c).  
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Chapter 8 – Development of a platform system for 

simultaneous production and partitioning of 

polyketide and isoprenoid natural products in a two-

phase bioprocess 

Introduction 

Heterologous production of erythromycin and Taxol 

intermediates has now been established using E. coli. In the previous 

chapters of this dissertation, the engineering of E. coli designed to 

support the production of 6-dEB and taxadiene was reported, in 

separate systems. In this chapter, the potential of producing both 

compounds simultaneously was explored. E. coli was first genetically 

modified based upon the known requirements for polyketide and 

isoprenoid biosynthesis (Figure 51). A co-production process was then 

assessed, aided greatly by the ability to readily partition the two 

nascently formed products. The implications of this study range from a 

consolidated bioprocess for producing multiple therapeutic natural 

compounds to an E. coli host now capable of supporting continual drug 

discovery and development opportunities. 
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Figure 51 An overview of E. coli metabolism and its relation to polyketide and 

isoprenoid biosynthesis. 

Abbreviations: G3P = glyceraldehyde-3-phosphate, DHAP = dihydroxyacetone 

phosphate. 
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Materials & Methods 

Background Strains & Plasmids 

E. coli, strain BAP1 has been developed previously for the 

heterologous production of polyketide and nonribosomal peptide 

natural products (Pfeifer et al. 2001). The Bacillus subtilis surfactin 

phosphopantetheinyl transferase gene (sfp) (Quadri et al. 1998) was 

inserted into the prpRBCD location of the BL21(DE3) chromosome, 

under the control of an inducible T7 promoter (Pfeifer et al. 2001). The 

sfp gene is required to post-translationally activate PKS‟s by 

transferring the 4'-phosphopantetheinyl moiety from coenzyme A to a 

conserved, reactive serine residue within each acyl carrier protein 

(ACP) domain of polyketide synthases (or the peptidyl carrier protein 

(PCP) domains of nonribosomal peptide synthetases) (Quadri et al. 

1998). E. coli‟s native holo-acyl carrier protein synthase (ACPS, 

required for activation of fatty acid synthases) does not recognize the 

apo-forms of many ACP and PCP domains (Quadri et al. 1998). Thus, 

without sfp, 6-dEB cannot be produced through E. coli. During this 

genetic insertion, a T7 promoter was also inserted before the native 

prpE gene to increase metabolic flux towards propionyl-CoA, a direct 

precursor of 6-dEB. This strain was termed BAP1 (Pfeifer et al. 2001) 

and is used as the base production system in this study. Strain JW1 

was derived from BAP1 (Wu et al. 2010), and contains a Flippase 
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Recognition Target (FRT)-(Cherepanov and Wackernagel 1995) flanked 

cat gene (coding for chloramphenicol acyl transferase, derived from 

pKD3 (Datsenko and Wanner 2000)) in the chromosome before the sfp 

gene. Strain YW23 was derived from BL21(DE3), and contains an 

additional copy of the native dxs, idi, ispB, ispD, and ispF genes under 

the control of a single T7 promoter in the araA location of the 

chromosome (see Chapter 7). 

The genes required for the production of 6-dEB from propionate 

were previously inserted into plasmids pBP130 and pBP144 (Pfeifer et 

al. 2001). Briefly, pBP130 (approximately 26kb and derived from 

pET21c (Novagen)) contains the eryA2 and eryA3 genes (coding for the 

DEBS2 and DEBS3 enzymes) under a single T7 promoter. Plasmid 

pBP144 (approximately 19kb and derived from pET28 (Novagen)) 

contains eryA1 (coding for the DEBS1 enzyme) under a T7 promoter 

and genes coding for the two subunits of the S. coelicolor propionyl-

CoA carboxylase enzyme (accA1 and pccB) (Rodriguez and Gramajo 

1999) under another T7 promoter. All three eryA genes are from the 

native erythromycin producer, S. erythraea (Cortes et al. 1990; 

Donadio et al. 1991). 

Two heterologous enzymes are needed to produce taxadiene 

through E. coli: 1) a geranylgeranyl-diphosphate synthase (to catalyze: 

farnesyl-diphosphate + isopentenyl-diphosphate → geranylgeranyl-
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diphosphate + diphosphate) and 2) a cyclizing taxadiene synthase (to 

catalyze: geranylgeranyl-diphosphate → taxa-4,11-diene + 

diphosphate). The original template sequences were crtE (for the 

geranylgeranyl-diphosphate synthase) from Erwinia herbicola (also 

known as Enterobacter agglomerans) (Cunningham et al. 1994) and txs 

(for the taxadiene synthase) from Taxus baccata (Besumbes et al. 

2004). The sequences were codon optimized for E. coli, constructed 

synthetically (Kodumal et al. 2004), and cloned into the MCS1 of 

pACYCDuet-1 (Novagen) between NcoI and SalI sites (under the 

control of a single T7 promoter) (see Chapter 7). This plasmid was 

named pACYCDuet-TXS-GGPPS (approximately 7.5 kb). 

Strain Construction 

YW23sfp was generated through P1 bacteriophage transduction 

(Masters 1977) in which JW1 was used as the donor strain and YW23 

was the recipient. The resulting strain would then be able to support 

isoprenoid, polyketide, and nonribosomal peptide biosynthesis. The 

infected YW23 was plated on LB agar containing 20 mg l‒1 

chloramphenicol, incubated overnight at 37°C, and successful 

recombinants were verified by PCR, as described previously (Wu et al. 

2010). This strain was stored as a glycerol stock, prepared 

electrocompetent, and transformed with pCP20 (Cherepanov and 

Wackernagel 1995). This plasmid contains the gene coding for the 
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Saccharomyces cerevisiae Flp recombinase (Cherepanov and 

Wackernagel 1995), used to excise the cat gene between the FRT sites. 

The ultimate result was a chloramphenicol sensitive strain, YW23sfp. 

This strain was stored a glycerol stock, prepared electrocompetent, and 

transformed with 1) pBP130 and pBP144, 2) pACYCDuet-TXS-GGPPS, 

or 3) all three plasmids. 

Shake-Flask Production Cultures 

Glycerol stocks were used to inoculate 2 ml Luria-Bertani (LB) 

medium cultures with appropriate antibiotics for overnight incubation 

at 37°C and 250 rpm. Production cultures were conducted in 125 ml 

non-baffled Erlenmeyer flasks in a rich medium containing 5 g l‒1 yeast 

extract, 10 g l‒1 tryptone, 10 g l‒1 sodium chloride, 15 g l‒1 glycerol, 3 ml 

l‒1 50% (v v‒1) Antifoam B, 100 mM HEPES, and pH 7.60. Production 

cultures (15 ml) were inoculated with the precultures to an OD600nm = 

0.1 and supplemented with 20 mM appropriate precursors (propionate, 

pyruvate, both, or neither), appropriate antibiotics, and 100 μM 

isopropyl β-D-1-thiogalactopyranoside (IPTG). When n-dodecane was 

used as the organic phase, 12 ml culture medium was supplemented 

with 3 ml n-dodecane (for 20% v v‒1). Cultures were incubated for 120 

hr at 22°C and 250 rpm. At the end of the culture period, cell-density 

was measured spectrophotometrically at 600 nm, and 1 ml aliquots 

were stored at ‒20°C for subsequent analyses. Cell-density in gram dry 
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cell weight per liter (gDCW l‒1) was calculated using an experimentally 

determined correlation of 1 OD600nm = 0.52 gDCW l‒1 (data not shown). 

When needed, antibiotics were supplemented at concentrations of 100 

mg l‒1 for carbenicillin, 50 mg l‒1 for kanamycin, and 34 mg l‒1 for 

chloramphenicol. 

Two-Phase Batch Bioprocess 

Strain YW23sfp(pBP130/pBP144/pACYCDuet-TXS-GGPPS) was 

first inoculated in 2 ml of selective LB medium and grown for 

approximately 8 hr at 37°C and 250 rpm. This culture was then used to 

inoculate a larger culture containing 100 ml of LB medium with 

appropriate antibiotics. After an overnight incubation at 37°C and 250 

rpm, 1.2 l of medium (as described above) was inoculated with this 

starter culture in a 3 l bioreactor (New Brunswick Scientific BioFlo 

110) to an OD600nm = 0.1. The system was then charged with 300 ml of -

n-dodecane, bringing the final volume to 1.5 l. Air was supplied at 0.5 

vessel volumes per minute (VVM), temperature was controlled with a 

water bath at 22°C, and pH was controlled at 7.60 with the addition of 

5 M NH4OH. The bioprocess was run for 5 days at 22oC and 500 rpm. 

The medium also contained 100 mg l‒1 carbenicillin, 50 mg l‒1 

kanamycin, and 34 mg l‒1 chloramphenicol to maintain plasmid 

selection and 100 μM IPTG to induce gene-expression. Sample aliquots 
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(1 ml) were taken from the bioreactor every 6-12 hr over the course of 

the culture period and stored at ‒20oC until subsequent analysis. 

6-dEB Quantification 

The HPLC method for 6-dEB separation and quantification has 

been described previously (Wang et al. 2007a). Briefly, quantification 

of 6-dEB was carried out on an Agilent 1100 series HPLC coupled with 

an Alltech 800 series evaporative light-scattering detector (ELSD). The 

guard column used was an Inertsil ODS3 C18 5 µm, 4.6 mm × 10 mm 

while the analytical column used was an Inertsil ODS3 C18 5 µm, 4.6 

mm × 150 mm (GL Sciences). Column temperature was maintained at 

25°C while the autosampler was maintained at 4°C. Ultra-high purity 

grade nitrogen gas (AirGas East) was used as the mobile phase for the 

ELSD at a pressure of 3.00 ± 0.05 bar, while the ELSD drift tube 

temperature was maintained at 55°C and the gain setting was set at 

16.  

Culture samples were first centrifuged for 10 min at 10,000 × g 

to remove insolubles. A 20.0 µl supernatant injection volume was then 

used with a solvent system of 100% distilled, deionized water (ddH2O) 

from 0-2.0 min as the mobile phase passed through the guard column 

and to a waste collection. A six-port switching valve then directed the 

mobile phase to the analytical column as a gradient to 100% HPLC-

grade acetonitrile (Sigma-Aldrich) began from 2.0-5.0 min followed by 
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100% acetonitrile from 5.0-8.0 min, a quick gradient back to 100% 

ddH2O from 8.0-8.1 min, and finally 100% ddH2O maintained from 8.1-

9.5 min. The mobile-phase flow-rate was 1 ml min−1. Under these 

conditions, 6-dEB eluted at 7.92 ± 0.05 min. Quantification was carried 

out against a five-point calibration curve of purified 6-dEB (kindly 

provided by Kosan Biosciences). 

Taxadiene Quantification 

For taxadiene quantification from the aqueous phase, samples 

were first centrifuged for 10 min at 10,000 × g to remove insolubles. 

Aqueous supernatant (750 μl) was supplemented with (-)-trans-

caryophyllene (TC) at a final concentration of 1 μg l‒1 to serve as an 

internal standard for quantification. The samples were then extracted 

with an equal volume of hexane, followed by 20 s of vortexing and 

centrifugation for 10 min at 10,000 × g. The hexane layer (150 μl) was 

removed and stored in glass vials at ‒20°C until analysis with gas 

chromatography-mass spectroscopy (GC-MS) could be conducted. For 

quantification of taxadiene in the organic phase, an aliquot of the n-

dodecane was diluted 100-fold in hexane containing 1 μg l‒1 TC. 

Samples were placed in glass vials stored at ‒20°C until GC-MS 

analysis was conducted. 

Samples were analyzed on a Shimadzu QP5050A GC-MS using 

splitless injection. Gas chromatography was run on a non-polar Rxi®-
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XLB column (30 m x 0.25 mm ID, 0.25μm). The inlet pressure for the 

column was set at 120 kPa and column flow velocity was 1.6 ml min‒1. 

The flow rate of the ultra high purity helium carrier gas was 20 ml 

min‒1. Temperature of the column was initially set and maintained at 

100°C for 2 min and was then increased to 235°C at a rate of 15.0°C 

min‒1. The column was then maintained at this temperature for 1 min. 

Mass spectrometry was performed in Single Ion Monitoring (SIM) 

mode scanning for mass to charge ratios of 107 m z‒1, 122 m z‒1, and 

272 m z‒1, corresponding to principle daughter ions and parent ion of 

taxadiene, respectively (Koepp et al. 1995). Under these conditions, TC 

and taxadiene eluted at approximately 6.8 min and 11.4 min, 

respectively. Quantification of taxadiene was accomplished based on a 

calibration curve of taxadiene (kindly provided by Drs. Ajikumar 

Parayil and Gregory Stephanopoulos) concentration versus the peak 

area ratio of TC to taxadiene. 

Metabolite Quantification 

The clarified aqueous phase was also analyzed for quantities of 

precursor and byproduct metabolites. This analysis was conducted 

with HPLC (Agilent 1100 Series) coupled with a Refractive Index 

Detector (RID). Clarified culture supernatant (20 μl) was applied to a 

Bio-Rad Aminex® HPX-87H Ion Exchange (300 mm × 7.8 mm, 9 µm) 

column, preceded by a 30 mm guard column of the same resin. The 
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isocratic analysis used a 9.5 mM H2SO4 solvent held at a flow rate of 

0.3 ml min–1. Under these conditions, the elution order of the analyzed 

compounds was pyruvate (16.7 min), glycerol (25.1 min), acetate (29.1 

min), and propionate (36.6 min). Quantification of these compounds 

was conducted against a five-point calibration curve of purchased 

standards (Sigma-Aldrich). 

Results 

Strain Construction 

Production of 6-dEB and Taxadiene Separately and Together 

The production of 6-dEB and taxadiene, both separately and 

together, was first analyzed in the newly constructed YW23sfp. Both 6-

dEB and taxadiene were quantified in the culture medium after 120 hr 

of shake-flask cultivation at 22°C and 250 rpm. As can be seen in 

Figure 52a, YW23sfp(pBP130/pBP144) produced 48.8 ± 7.1 mg l‒1 6-dEB 

while the titer decreased to 17.9 ± 7.3 mg l‒1 (p < 0.001) with the 

addition of the pACYCDuet-TXS-GGPPS plasmid. The taxadiene titers 

were approximately an order of magnitude lower than that of 6-dEB 

(Figure 52b); however, the titers are similar to those previously 

reported in the parent to YW23sfp (Chapter 7). The 

YW23sfp(pACYCDuet-TXS-GGPPS) strain produced taxadiene at 1.53 ± 
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0.27 mg l‒1, and there was no statistically significant difference when 

pBP130 and pBP144 was added to the system (p = 0.772).  
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Figure 52 Co-production of 6-dEB and taxadiene in a single-phase system. 

Production of (a) 6-dEB and (b) taxadiene in YW23sfp containing either the plasmids 

required for 6-dEB biosynthesis (pBP130/pBP144), the plasmid required for 

taxadiene biosynthesis (pACYCDuet-TXS-GGPPS), or all three plasmids together. 

Error bars represent ± one standard deviation of three replicates. * indicates 

statistically significant results at p < 0.05. 
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Co-Production of 6-dEB and Taxadiene in a Two-Phase System 

It was previously reported that taxadiene has a strong 

preference for partitioning into organic environments in situ, 

improving titer dramatically, as can be seen in Chapter 7 and 

(Ajikumar et al. 2010). In these studies, n-dodecane was chosen as an 

organic phase based upon its successful use in sequestering E. coli-

produced amorpha-4,11-diene (a sesquiterpene) (Newman et al. 2006). 

A concentration of 20% n-dodecane (v v‒1) was previously determined 

to be the optimal concentration for improving specific titer (see 

previoius work). As a result, the two-phase systems reported here 

contain an aqueous medium for cell growth and 20% n-dodecane (v v‒1) 

to capture secreted taxadiene. 

Figure 53a presents 6-dEB titer from 

YW23sfp(pBP130/pBP144/pACYCDuet-TXS-GGPPS) with the inclusion 

of n-dodecane in the production medium. Of note, 6-dEB was not found 

in the n-dodecane phase (<1 mg l‒1) though this compound also exhibits 

non-polar properties and is readily extracted by ethyl acetate. The two-

phase 6-dEB titers for YW23sfp(pBP130/pBP144) and 

YW23sfp(pBP130/pBP144/pACYCDuet-TXS-GGPPS) were similar to 

single-phase production, indicating that the addition of n-dodecane had 

no effect on polyketide levels. As in the single phase system, 6-dEB 
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production decreased approximately two-fold with the addition of the 

pACYCDuet-TXS-GGPPS plasmid (p = 0.023). 

Figure 53b presents taxadiene titer in the same three scenarios. 

As expected, the addition of n-dodecane to the shake-flask cultures 

increased the titer of taxadiene significantly to 40.8 ± 6.9 mg l‒1. There 

was residual taxadiene found in the aqueous phase (0.40 ± 0.21 mg l‒1). 

As before, there was no statistically significant difference (p = 0.588 for 

the dodecane phase and p = 0.374 in the aqueous phase) in taxadiene 

titer when the 6-dEB plasmids were included. The organic:aqueous 

partitioning coefficient for taxadiene (KPtaxadiene) is roughly 102, while 

the same partitioning coefficient for 6-dEB (KP6-dEB) is at most 10‒1.65. 

This separation factor (KPtaxadiene/KP6-dEB) of over 5000 is a conservative 

estimate due to the roughly 1 mg l‒1 detection limit for 6-dEB in the 

HPLC-ELSD system used here. 
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Figure 53 Co-production of 6-dEB and taxadiene in a dual-phase system. 

Production of (a) 6-dEB and (b) taxadiene in YW23sfp in the two-phase shake flask 

cultures under the same plasmid combinations as before. The concentration in both 

the aqueous and the organic phases are shown. Error bars represent ± one standard 

deviation of three replicates. * indicates statistically significant results at p < 0.05 

(as determined by paired Student’s t-tests. † indicates not detectable at a limit of 

detection of 1 mg l‒1. †† indicates not detectable at a limit of detection of 0.1 mg l‒1. 
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Effect of Precursor Supplementation on 6-dEB and Taxadiene 

Production 

The exogenous feeding of propionate is required for >1 mg l‒1 

production of 6-dEB. It was reasoned that this was one of the reasons 

why the 6-dEB titer was much higher than that of taxadiene in the 

single phase system (Figure 52). As a result, the effect of the addition 

of 20 mM propionate, 20 mM pyruvate, or 20 mM propionate and 

pyruvate was tested on 6-dEB and taxadiene titers. Pyruvate, as 

illustrated in Figure 51, can be considered a precursor of the DXP-

based isoprenoid biosynthetic pathway. The dual producer 

YW23sfp(pBP130/pBP144/pACYCDuet-TXS-GGPPS) was solely used in 

this study. As shown in Figure 54a, the addition of pyruvate had no 

effect on 6-dEB titer, while the sole feeding of pyruvate was not able to 

produce 6-dEB >1 mg l‒1. The addition of the precursors in the medium 

in any combination had no effect on taxadiene titer (ANOVA p = 0.782, 

Figure 54b). 
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Figure 54 Precursor supplementation effect on 6-dEB and taxadiene production. 

(a) Production of 6-dEB with the supplementation of 20 mM propionate, 20 mM 

pyruvate, or 20 mM propionate and 20 mM pyruvate. (b) Production of taxadiene 

with the supplementation of nothing, 20 mM propionate, 20 mM pyruvate, or 20 mM 

propionate and 20 mM pyruvate. Error bars represent ± one standard deviation of 

three replicates. † indicates not detectable at a limit of detection of 1 mg l‒1. 
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Propionate consumption was next analyzed between the single- 

and two-phase production systems across the three different plasmid 

combinations (Figure 55a). Interestingly, regardless of whether the 6-

dEB production plasmids were used or not, propionate uptake was 

unaffected. This indicates that the production of 6-dEB has no 

influence on propionate uptake, at least in the production scenarios 

here. Across all three single-phase systems, propionate consumption 

did not vary (ANOVA p = 0.139). This same result was observed in the 

dual phase system as well (ANOVA p = 0.688). Pyruvate was 

completely consumed at the end of the culture period (Figure 55b). 

Neither propionate nor pyruvate consumption was affected by the 

presence of the other compound in the culture medium. 



 

291 

 

 

 

 

Figure 55 Precursor consumption. 

(a) Consumption of propionate in YW23sfp across the three plasmid systems 

described previously and in the single- vs. dual-phase culture systems. (b) 

Consumption of propionate and pyruvate by themselves or together in 

YW23sfp(pBP130/pBP144/pACYCDuet-TXS-GGPPS). Error bars represent ± one 

standard deviation of three replicates. 
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Co-Production of 6-dEB and Taxadiene in a Two-Phase 

Bioreactor 

To further test our polyketide and isoprenoid co-production 

platform, the culture was scaled to a 3 l bioreactor system. In this 

setting, aeration, temperature, and pH were all controlled, and 1.2 l of 

culture medium was again charged with 20% n-dodecane. A batch run 

was conducted over the course of 120 hr and sampled every 6-12 hr. 

Figure 56a presents cell density and specific product titers as a 

function of time. Not surprisingly, with better aeration (0.5 VVM) and 

a higher charge of principle carbon source (45 g l‒1 glycerol), the cell-

density increased from approximately 4 gDCW l‒1 in the shake-flask 

(data not shown) to approximately 20 gDCW l‒1 in stationary phase 

growth. The specific titers of 6-dEB and taxadiene reached 2.73 and 

4.90 mg gDCW‒1, resulting in raw titers of 32.8 and 94.2 mg l‒1, 

respectively. Figure 56b presents the consumption of glycerol and 

propionate, as well as the production of acetate, as a function of time. 

By 100 hr, the glycerol had been completely consumed, resulting in an 

averaged specific uptake rate of 0.28 mmol gDCW‒1 hr‒1. Interestingly, 

propionate consumption stalled around 50 hr at approximately 5 mM. 

This corresponded to an accompanying plateau in 6-dEB production 

titer. Oddly, this occurred during the middle of exponential growth 

phase and no changes were observed in glycerol consumption, 
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taxadiene production, or acetate production. However, in general, the 

acetate by product titers were quite low increasing to approximately 22 

mM when glycerol was still present in the medium and then consumed 

by the culture after glycerol was exhausted. 
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Figure 56 Bioreactor cultivation. 

Two-phase bioreactor culture of YW23sfp(pBP130/pBP144/pACYCDuet-TXS-GGPPS) 

supplemented with 20 mM propionate. (a) Cell-density, specific taxadiene titer, and 

specific 6-dEB titer are shown as a function of time. (b) Propionate, acetate, and 

glycerol concentrations in the medium are shown as a function of time) 
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Discussion 

Due to the immense therapeutic potential of natural products, 

there has been a growing interest in developing efficient and scalable 

heterologous production processes. Here, it was reported the co-

production of a polyketide and an isoprenoid in mg l‒1 quantities with a 

two-phase bioreactor. First, a strain of E. coli was constructed with a 

chromosomally over-expressed isoprenoid biosynthetic pathway and a 

separate chromosomal modification to allow PKS (and NRPS) 

posttranslational modification and precursor supply. This strain, 

YW23sfp, was tested for the production of a polyketide (6-dEB) and an 

isoprenoid (taxadiene) separately and together. While the 6-dEB titer 

decreased during co-production, the taxadiene titer was unchanged. 

Then, the production capabilities of this strain in a two-phase culture 

system was tested. It was previously reported that amorpha-4,11-diene 

titers were reduced due to compound volatilization in a highly aerated 

bioreactor (Newman et al. 2006). After confirming the same result for 

taxadiene, a similar two-phase culture strategy was used here. The 6-

dEB titer was unchanged with the addition of the second phase, while 

the taxadiene titer was greatly improved. The substantial difference in 

the organic:aqueous partitioning coefficients for taxadiene and 6-dEB 

resulted in a separation factor (KPtaxadiene/KP6-dEB) of greater than 5,000 
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and allowed the simultaneously production and separation of these two 

complex natural products. 

Next, the effects of exogenous precursors on the simultaneous 

production of 6-dEB and taxadiene in E. coli were tested. Results 

showed that addition of either pyruvate or propionate, alone or 

together, had no significant effect on either 6-dEB or taxadiene 

production. Results did, however, verify that an exogenous supply of 

propionate is essential for 6-dEB production. Equal amounts of 

propionate and pyruvate were consumed regardless of the product(s) 

produced or the quantities in which they were being generated. This 

phenomenon is particularly noteworthy because it suggests other 

metabolic pathways for propionate consumption. Scenarios 

characterized by less production of 6-dEB but equal consumption of 

propionate clearly suggest that the bacteria are utilizing the substrate 

for purposes other than 6-dEB production.  

Finally, a scaled production scenario was conducted in a 

bioreactor with a working volume of 1.5 l and consisting of 20% n-

dodecane. Results verified that production trends observed in the 

smaller-scale 15-ml shake flasks. Final specific product titers in the 15 

ml shake flasks were nearly equivalent to those achieved in the 

bioreactor for 6-dEB and slightly higher for taxadiene. Drawing 

parallels to other dual-purpose bioprocesses, the polyketide/isoprenoid 



 

297 

 

co-production system could be considered a type of consolidated 

production process. Similar terminology has been coined to describe 

the efficient conversion of biomass to useful biofuels. In this example, 

the goal is to simultaneously combine cellulosic biomass degradation 

with subsequent biofuel fermentation using S. cerevisiae as a host 

(Lynd et al. 2005; van Zyl et al. 2007). While co-production of two 

compounds of interests may not be suitable in all cases, an economic 

analysis of the compounds of interest would have to be conducted and 

assessed for co-production based on drug cost and annual demand. 

The concept of co-production could also be extended to other 

heterologous systems. For example, a genome-minimized strain of S. 

avermitilis was recently constructed and reported for the heterologous 

production of streptomycin (from S. griseus) and cephamycin C (from 

S. clavuligerus) (Komatsu et al. 2010). These titers reached nearly 200 

mg l‒1 and 120 mg l‒1 for streptomycin and cephamycin C, respectively. 

The strain was then used to express a codon optimized amorpha-4,11-

diene synthase gene (ads, from Artemisia annua) under the control of 

the rpsJ promoter to produce amorpha-4,11-diene at an estimated titer 

of 10-30 mg l‒1 (Komatsu et al. 2010). While this genome-minimized 

strain was able to produce approximately 101-102 mg l‒1 of an 

aminoglycoside, a β-lactam, and a sesquiterpene, the co-production of 
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these compounds was not explored, though presumably this would be 

feasible. 

In addition to a bioprocess production platform, a strain capable 

of supporting multiple classes of natural products could also be of great 

utility in drug discovery efforts. It has long been known that 

actinomycetes (particularly from the soil-dwelling Streptomyces genus) 

produce a vast number of secondary metabolites and that drug 

discovery through isolating and culturing actinomycetes has proven 

successful. Daptomycin (marketed as Cubicin® by Cubist 

Pharmaceuticals) (Baltz 2008) was isolated from an extended search of 

almost 107 actinomycetes. Once isolated, advances in genome-

sequencing technologies and bioinformatic approaches have aided the 

identification of secondary metabolite gene clusters from those 

organisms characterized by genome sequencing. For example, the 

native erythromycin producer, S. erythraea, contains sequence 

information for a predicted 25 polyketide, nonribosomal peptide, and 

terpene compounds (Oliynyk et al. 2007), even though no products 

derived from these clusters (besides erythromycin) were indentified on 

50 different types of solid and liquid media (Boakes et al. 2004). 

Similar phenomena have been observed for S. avermitilis (Ikeda et al. 

2003) and S. griseus (Ohnishi et al. 2008). Accessing this potential may 

involve innovative culturing techniques, which have been used as a 
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means to stimulate expression of dormant secondary metabolite 

pathways (Pettit 2009), and this is not necessarily a high-throughput, 

process-friendly approach. Furthermore, it has been cited that 99% of 

all microorganisms cannot be cultured with conventional laboratory 

methods (Li and Vederas 2009)), thus severely limiting current drug 

screening approaches through these methods. To address these 

concerns, the concept of metagenomics was introduced (Handelsman et 

al. 1998). This approach generally consists of the following steps: 1) 

collection of environmental samples, 2) isolation of genomic DNA from 

these samples, 3) cloning of the environmental DNA into bacterial 

artificial chromosome (BAC) vectors, 4) transformation into a 

heterologous host, and 5) screening for biological activity. This 

workflow, which can be designed in a high-throughput manner, has 

been successfully utilized to screen soil DNA for new antimicrobial 

natural products (MacNeil et al. 2001). Even though E. coli is a 

primary choice for the heterologous host used in metagenomic efforts, a 

significant shortcoming is the lack of native metabolism needed to 

support many complex secondary metabolites. For example, even if an 

entire PKS cluster was captured in a single BAC, a host lacking a 

functional phosphopantetheinyl transferase (PPTase) would be unable 

to support subsequent biosynthesis.  In addition, wild-type E. coli hosts 

will typically not provide the needed acyl-CoA precursors, such as the 
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(2S)-ethylmalonyl-CoA, and chloroethylmalonyl-CoA extender units 

described previously, to support complex natural product biosynthesis.  

Although not the particular focus of this study, the strain 

developed here could be used for metagenomic studies, having the 

ability to now support the production of three classes of natural 

products (polyketides, non-ribosomal peptides, and isoprenoids). The 

over-expression of a promiscuous PPTase gene and numerous genes to 

support PKS and isoprenoid precursor supply should facilitate the 

production of a wide range of natural products. From a development 

standpoint, a single strain capable of discovery and production has the 

potential to greatly decrease strain and process development time. 
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Chapter 9 – Conclusions & Future Directions 

Summary 

This dissertation presents the use of systematic and heuristic 

methods for the engineering of heterologous polyketide (6-dEB) and 

isoprenoid (taxadiene, lycopene) natural products in Escherichia coli. 

Upon reconstruction of the pathways to produce these molecules, the 

development and application of these methods were used to probe and 

understand both basic and applied aspects of the development of 

heterologous natural product systems. These methods and molecules 

were investigated in parallel. For polyketide production, initially, 

genome-scale stoichiometric models were used to evaluate three 

commonly used heterologous hosts and their ability to support 

heterologous polyketide biosynthesis under varying environmental 

conditions (Chapter 3). Further, targets were identified for gene-

deletion to improve specific polyketide production, in some cases over 

25-fold. Throughout this process, examination of the relevant 

metabolism surrounding polyketide biosynthesis in E. coli revealed 

that multiple short-chain organic acids could be utilized to support 

polyketide production. The varying of substrate feeding strategies, the 

incorporation of pathway over-expressions, heterologous pathways, 

and/or pathway deletions, revealed an extremely complex phenotype. 
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In the end, some cases led to improvement in titer around two-fold 

(Chapter 4). 

For isoprenoid production, another type of stoichiometric 

modeling was used (elementary mode analysis) to identify knockout 

targets to improve taxadiene titer (Chapter 5). A central limitation 

identified in Chapter 3 was the inability to thoroughly search 

genotypic space in a time efficient manner. To address this problem, a 

genetic algorithm was used as an efficient means to arriving at a 

global phenotypic optima, which reduced computation time roughly 

five orders of magnitude. Coupling the genetic algorithm to the 

elementary mode analysis algorithm allowed for the identification 

multiple strains capable of producing a high yield of isoprenoid, which 

were then partially constructed in a high-throughput manner utilizing 

multiplex automated genome engineering. The two strains constructed 

showed significant improvements in titer to nearly 80 mg l‒1 in shake-

flask cultures, providing partial experimental verification of the 

modeling algorithm. The original E. coli stoichiometric model and 

MoMA was reformulated in an effort to identify over-expression 

targets. Four over-expressions were identified computationally and 

implemented in the laboratory in a previously engineered strain. While 

three of the over-expressions showed improvements in titer, the titer 

improvements were lower than predicted. However, the trend of the 
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improvement is the same with prediction (ppk > sthA > purN), showing 

the potential of this modeling methodology for predicating the effect of 

gene over-expression. Over-expressing individual genes in the 

isoprenoid biosynthetic pathway revealed that, under tested 

conditions, the rate-limiting step towards improving titer may lie 

within the pathway itself, and not upstream of the pathway. While this 

was being examined, similar heuristic approaches for polyketide 

production were used for isoprenoid production. By varying promoters 

of the heterologous genes, strain background, medium formulation, 

and other bioprocess related conditions (temperature, aeration, in situ 

extraction), heterologous isoprenoid specific titer was improved over 

240-fold. Transcriptomic profiling of two high-producing strains 

identified differences between these two strains, and identified more 

metabolic engineering targets that could be exploited for further 

improvement in titer. Figure 57 shows a summary of all of the 

improvements observed for taxadiene production. In general, the 

heuristic methods have been more successful at improving titer than 

the systematic method applied. 
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Figure 57 A summary of the methods applied to improving specific taxadiene titer in 

E. coli and their respective means of improvement. 
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The last chapter of this dissertation presents the integration of 

these two natural products. A strain capable of simultaneously 

producing > 10 mg l‒1 of both polyketide and isoprenoid natural 

products was developed. In a two-phase bioreactor, the products 

strongly partitioned in the two phases, theoretically allowing for 

simplification of downstream purification processes. Given the 

metabolic and process engineering approaches available to E. coli, it is 

reasonable to believe that these techniques could be utilized to further 

improve the production titers. This strain presents the first attempt to 

create a platform strain for producing both polyketide and isoprenoid 

natural products through a single heterologous host, and could be used 

for natural product discovery efforts. 

Conclusions 

The optimization of biological systems for pharmaceutical 

production is an extremely daunting task. Metabolic networks can 

exhibit non-linear phenotypic landscape which can produce multiple 

local optima. The sheer number of variables when it comes to 

optimizing even simple metabolic networks is computationally 

intensive, much less experimentally. While using systematic 

approaches for improving cellular phenotype has been shown to work 

in some cases, the improvements observed experimentally are 

significantly smaller than the improvements predicted computationally 
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(from this dissertation and other cases). The many genome-scale 

stoichiometric models developed in recent years have been able to 

predict growth phenotypes fairly well, however, their accuracy tends to 

decrease the further the strain becomes from the wild-type (as in 

engineered strains in this dissertation). These models are also strictly 

stoichiometric in nature, failing to account for genetic, transcriptional, 

or metabolic regulation. Additionally, to solve these models, a pseudo-

steady state assumption has been applied. Most industrial 

fermentations are conducted in batch (or fed-batch) schemes, which do 

exhibit steady-states but are transient. As such, these models only 

describe a portion of an industrial fermentation. The development of 

genome-scale kinetic models would require an exorbitant number of 

parameters, and would be extremely difficult to solve. In the end, the 

directed engineering of biological systems based strictly on systematic 

methods is significantly hampered by the current inability to formalize 

or accurately describe some cellular phenomena that can directly 

control metabolic flux. 

In general, the use of systematic and heuristic methods can both 

be used to improve heterologous natural product biosynthesis. In this 

particular dissertation, heuristic methods outperformed systematic 

methods. However, it is clear that a combination of systematic, 

heuristic, and combinatorial methods could be utilized for improving 
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cellular phenotype. While ingenious methods such as gTME and 

directed evolution have been utilized to great results at improving 

cellular phenotypes such as growth inhibitor tolerance and product 

formation, they come at a cost of needing a high-throughput screen. At 

the same time, combinatorial methods such as MAGE still required 

inputs that were both systematic and heuristic in nature (that is, the 

genes to be knocked out and over-expressed). Although the first 

MAGE-consturcted strain was identified also using a phenotypic 

screen, by decreasing this search space and using statistical 

calculations, these methods could be applied towards systems that 

would require a chromatography-based quantification method, such as 

6-dEB and taxadiene reported in this dissertation. While MAGE is still 

considered to be a method that can create combinatorial diversity, as 

cited previously, a central difference between MAGE and gTME is 

that, with enough rounds of MAGE, the population will converge to a 

specific genotype, whereas gTME should never converge to a single, 

specific genotype (as can be seen pictorially in Figure 58). MAGE can 

be used for future genome evolution, whereas gTME is suitable for 

randomized evolution to achieve a wider array of genotypic changes. 

The method of choice should be used depending on the purpose of 

specific studies, however, could most certainly be utilized in series for 

strain development. One might envision using MAGE to remove a 
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number of genes known to decrease product synthesis, and then use 

gTME to further tune expression levels across a broader range of genes 

and improve product titer further. 

  



 

309 

 

 

 

 

 

 

 

 

Figure 58 Pictorial fitness trajectories for combinatorial methods. 

A pictorial representation of fitness trajectories with respect to evolution time for 

(a) MAGE and (b) other combinatorial methods such as gTME, directed evolution, or 

genome shuffling. The green line is meant to signify the trajectory of the individual 

with  the highest fitness value in the population, while the red line is meant to 

signify that of the lowest fitness value in the population. 
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Summary of findings: 

 Genome-scale metabolic models can be used as a means of 

investigating cellular phenotype, as well as give insights into 

genetic deletions as for candidates to removal with respect to 

heterologous natural product biosynthesis 

 For polyketide biosynthesis, many of the identified targets 

revolved around the same metabolic nodes and were 

consistent across hosts, principle carbon source, and medium 

formulation 

 Engineering substrate pathways provided as a feasible 

means to improve titer, however, the effect of engineered 

substrate pathways is extremely context-specific 

 Coupling a genetic algorithm for efficient searching of 

cellular genotype allows for the high-throughput 

identification of knockout targets in central metabolic 

pathways 

 MAGE cycling is also highly context-dependent and failed to 

produce numerous knockout targets, however, partial strain 

constructions improved isoprenoid titer and yield 

 Utilizing MoMA for over-expression target identification 

appears to be feasible, however, the effect of the over-

expressed targets is diminished by pathway bottlenecking 
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 Culture temperature has a significant effect on cellular 

phenotype as it relates to heterologous polyketide and 

isoprenoid production 

 Model heterologous polyketides and isoprenoids can be 

simultaneously produced and partitioned in a two-phase 

bioreactor 

 Heuristic methods are generally more powerful at improving 

heterologous natural product biosynthesis. However, utilizing 

systematic methods can provide insight into genetic targets to 

be implemented for engineering. 

Recommendations for Future Work 

There are several arenas of future work that could be extended 

from the results and findings presented in this dissertation. While 6-

dEB and DEBS have served as the model polyketide and PKS, 

respectively, the prospects for E. coli-derived erythromycin A 

production remains limited. The true potential for harnessing E. coli-

derived production is more likely in the rapid production of 

erythromycin derivatives for potential next-generation antibiotics. The 

genetic strategies available to E. coli have allowed for production of the 

full erythromycin A molecule, as well as glyco-randomized versions of 

this molecule (Zhang et al. 2010b). Of course, there are many other 

polyketide natural products which have prospects for industrialized 
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production through E. coli. Particularly, the emerging area of marine 

natural products have produced some interesting evidence that are 

well suited for heterologous production in E. coli. An example of this is 

salinosporamide, a potent proteasome inhibitor used as an anticancer 

agent, originally produced by Salinispora tropica (Gulder and Moore 

2009). While S. tropica can produce salinosporamide on the order of 70-

100 mg l‒1, its potential for usage as a drug has been highly touted (it 

is in phase I clinical trials only three years after discovery) (Eustaquio 

et al. 2009; Liu et al. 2009). The investigation of the scalability of 

bioreactor processes based on marine actinomycetes has been fairly 

limited as compared to more conventional microbes, and with complete 

genetic information available on salinosporamide biosynthesis, it 

seems ideally suited for heterologous production. 

In terms of utilizing FBA and MoMA based stoichiometric 

modeling, there are certainly questions to be addressed in terms of its 

applicability to batch cultures and perhaps growth in complex media. 

The knockout and over-expression targets identified in this study are 

growth-associated, meaning that they were identified as improving 

product titer while the cells are growing. However, most industrial 

batch fermentations run beyond the exponential growth phase into a 

stationary phase where the net specific growth rate is zero. How these 

results are impacted by the change in steady state is yet to be known, 
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and may be complicated by the optimality assumptions used by FBA 

and MoMA. The development of genome-scale dynamic models has 

been addressed in a largely theoretical manner (Jamshidi and Palsson 

2008), while smaller-scale dynamic models have been developed and 

applied to industrial antibody production from CHO cells (Nolan and 

Lee 2010). However, they have not been used for the identification of 

genetic modifications for improving cellular phenotype. 

Extension of these methods to other heterologous host systems 

is also entirely plausible. While E. coli shows many advantages when 

serving as a heterologous host, it is likely not a universal solution to 

heterologous biosynthesis (for natural products or otherwise). Cellular 

transport of certain substrate or product metabolites may not be a 

rate-limiting step for a native producer (due to specific enzymatic 

transporters), however, could be for E. coli. Functional expression of 

cytochrome P450 enzymes is also particularly challenging in E. coli, 

often requiring significant engineering. First, the absence of 

cytochrome P450 reductases (required for electron transfer in these 

reactions) in E. coli, and secondly, the absence of an endoplasmic 

reticulum for these membrane-bound cytochrome P450‟s, both make 

this a daunting task. While they have been used to produce roughly 

100 mg l‒1 titers of functionalized isoprenoids in E. coli (Ajikumar et al. 

2010; Chang et al. 2007), it has been shown that (after GGPP) eight of 
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the roughly twenty enzymatic steps needed to produce Taxol are 

catalyzed by cytochrome P450 enzymes. To overcome this limitation, 

some groups have utilized yeast systems due to the fact that they 

possess the aforementioned requirements for successful P450 

expression and functionality (Ro et al. 2006). Otherwise, engineering 

an oxygen transport system, such as expression of the Vitreoscilla sp. 

hemoglobin gene, has been shown to improve the titer of a variety of 

products in both native and heterologous systems (Andersson et al. 

2000; Bollinger et al. 2001; Chen et al. 2007; Farres et al. 2005; Frey et 

al. 2000; Frey and Kallio 2003; Hart et al. 1994; Hofmann et al. 2009; 

Kallio et al. 2008; Khosla and Bailey 1988; Khosla and Bailey 1989a; 

Khosla and Bailey 1989b; Khosla et al. 1990; Koskenkorva et al. 2006; 

Villarreal et al. 2008), and has been sometimes attributed to improved 

cytochrome P450 activity. 

A central tenet to a chemical engineer, or more specifically a 

chemical reaction engineer, is that an overall process (or overall 

reaction rate) is dictated by the slowest step (or single reaction) in the 

overall process. While biological systems are amazing chemical 

reactors, their inherent impressive robustness can often lead to 

problems in accurate prediction of phenotype with regards to genetic 

and environmental perturbations. With the numerous cellular 

components and spatial and temporal scales, identifying a rate-
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limiting step with respect to product formation in a biological system is 

an extremely daunting task. For example, the knockout target 

simulations inherently assume that product flux is substrate limited, 

such that any improvement in flux to this pathway would improve 

titer. While the modeling results implemented saw small, incremental 

improvements in titer, the systems in question could perhaps be 

kinetically-limited, such that protein engineering strategies might 

improve product titer to a greater extent. Speaking more generally, 

future work in this field should be dedicated to more thorough systems 

biological analyses (integrated transcriptomics, proteomics, and 

metabolomics studies) to generate more information to either integrate 

into cellular models or serve as a means for further engineering. 
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Appendix 

 

 

 

 

 

Figure 59 Predicted genetic distribution of a population of cells that have 

undergone 10 simultaneous genetic manipulations by MAGE. 

This assumes a 30% replacement efficiency and follows Equation 12. 

  

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Genetic Modifications

Fr
eq

ue
n

cy
 in

 P
op

u
la

ti
on

 (
%

)

 

 

1 Cycle

2 Cycles

5 Cycles

10 Cycles



 

317 

 

 

 

 

 

 

 

 

 

Equation 12 

       
  

        
                       

 

Equation 12 describes the probability (P) of number of genetic 

modifications (j) as a function of the total number of modifications (K), 

replacement efficiency (M = 0.3), and number of MAGE cycles (N). 

Described in (Wang et al. 2009). 
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Figure 60 Scatter plot of the lycopene produced versus acetate produced for all 

cultures after 24hr and 72hr. 
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Figure 61 Microplate growth data. 

Cell-density (OD600nm) vs. time plots for the MAGE-cycled strains grown in 300 μl 

microplate format in M9 medium with 15 g l‒1 glucose. Error bars represent ± one 

standard deviation of four replicates. 
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Figure 62 Microplate growth data. 

Cell-density (OD600nm) vs. time plots for the MAGE-cycled strains grown in 300 μl 

microplate format in M9 medium with 15 g l‒1 glycerol. Error bars represent ± one 

standard deviation of four replicates. 
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Figure 63 Microplate growth data. 

Cell-density (OD600nm) vs. time plots for the MAGE-cycled strains grown in 300 μl 

microplate format in production medium with 15 g l‒1 glucose. Error bars represent 

± one standard deviation of four replicates. 
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Figure 64 Microplate growth data. 

Cell-density (OD600nm) vs. time plots for the MAGE-cycled strains grown in 300 μl 

microplate format in production medium with 15 g l‒1 glycerol. Error bars represent 

± one standard deviation of four replicates. 
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