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Introduction 13 

 14 

Nutrients are essential to the growth and reproduction of all organisms. As such, the 15 

distribution, health, and behavior of organisms are often dictated by the availability of nutrients. 16 

In the tropics, nutrients are heterogeneously distributed in both space and time (Silva, Souza, & 17 

Abreu, 2015). Across the tropical landscape, dissolved ions from bedrock, or animal feces and 18 

urine, are rarely found in soils due to high rates of weathering and leaching (Oesker, Homeier, 19 

Dalitz, & Bruijnzeel, 2011; Yavitt et al., 2009). Temporally, some tropical regions experience 20 

distinct seasons of rainfall throughout the year, whereas others are more aseasonal with respect 21 

to precipitation (Oesker et al., 2011). Therefore, nutrient availability can vary greatly throughout 22 

a year.  23 

 24 

When dietary nutrients are scarce, herbivores often seek alternative nutrient sources to 25 

supplement their plant-based diet (Denton, 1982). This phenomenon is found across a wide 26 

diversity of taxa: mountain goats in British Columbia seek out natural salt licks (D. M. Herbert, 27 

1971); African elephants make their own salt licks by digging in the soil during the dry season 28 

(Weir, 1969); and Amazonian frugivorous bats supplement their diets with mineral-enriched 29 

water (Ghanem, Ruppert, Kunz, & Voigt, 2013). This nutrient-specific foraging is particularly 30 

prevalent in social insects that simultaneously sustain several different life stages in the colony 31 

(Lihoreau et al., 2015). For example, leaf-cutting Atta ants will choose to forage on sodium 32 

treated baits (Kaspari, Yanoviak, & Dudley, 2008; Pizarro, McCreery, Lawson, Winston, & 33 

O’Donnell, 2012), Reticulitermes termites are attracted to potassium-rich nest sites (Botch & 34 

Judd, 2011; Judd & Fasnacht, 2007), and halictid bees (also known as “sweat bees”) prefer a 35 

sodium solution over pure water (Barrows, 1974; Roubik, 1996). 36 

 37 

Neotropical stingless bees likely exhibit a similar behavior. Their primarily floral diet 38 

contains trace amounts of essential minerals such as sodium (Na), potassium (K), magnesium 39 

(Mg), and calcium (Ca) (Cohen, 2004) however, floral quantities are likely not enough to sustain 40 

multi-generational, perennial colonies (Lihoreau et al., 2015). These nutrients are essential for 41 

physiological processes such as neurotransmission, immunity, and muscle movement (Cohen, 42 

2004). To cope, colonies are thought to supplement their floral diet with non-floral resources 43 

such as resin, muddy water, ash, sweat, and even carrion (Lorenzon & Matrangolo, 2005; Wille, 44 

1983). Indeed, Roubik (1996) found that Trigona and Apis spp. in Brunei preferentially sought 45 

sodium, potassium, and magnesium salt solutions at artificial feeders. Little is known, however, 46 

regarding whether stingless bees in the neotropics exhibit this behavior.  47 

 48 

In this study, we investigate the salt foraging behavior of stingless bees (Trigona 49 

silvestriana) at La Selva Biological Station (hereafter, “La Selva”) in Puerto Viejo de Sarapiquí, 50 

Costa Rica (Figure 1). Specifically, we asked: do neotropical stingless bees prefer certain 51 

minerals when foraging for non-floral resources (i.e. water)? We predicted that stingless bees 52 

would show strong preference for sodium (compared to deionized water); the aboveground parts 53 

of land plants rarely contain much of this important micronutrient (Cohen, 2004; Oates, 1978) 54 

and herbivores are consistently limited by sodium (Denton, 1982). We expected stingless bees to 55 

show weaker preferences for potassium, calcium, and magnesium. Although they are equally 56 

physiologically important as sodium, they are more prevalent in floral resources (namely pollen) 57 
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(E. W. J. Herbert & Miller-Ihli, 1987) and therefore unlikely to be sought when foraging for non-58 

floral resources. 59 

 60 

 61 

Materials and Methods 62 

 63 

Study Site 64 

La Selva receives an annual average of 3,993 mm of rain and experiences weak 65 

seasonality (Wet = May-December, 395.6 mm/month; Dry = January-April, 197.5 mm/month) 66 

(McDade, Bawa, Hespenheide, & Hartshorn, 1994). La Selva’s soil fertility is variable and salt-67 

laden winds off the Caribbean Sea (50 km away) are important for maintaining soil ion 68 

abundance (McDade et al., 1994). Rainfall is highly dilute in the wet season, however, and ion 69 

concentrations can be inversely related to the amount of precipitation during the preceding 70 

period. Thus, at the start of the dry season in early January, rainfall at La Selva should still be 71 

fairly dilute with nutrients. 72 

        73 

Study Species 74 

Trigona silvestriana is an abundant stingless bee species in Costa Rica (Breed et al. 75 

1999) (Figure 2). It builds perennial eusocial colonies around a queen and typically nests in 76 

cavities or at the base of mature trees (Hubbell & Johnson, 1977). Like all social insects, T. 77 

silvestriana raise dependent larvae that need to be fed both macro (protein and carbohydrate) and 78 

micronutrients (vitamins and minerals) for proper development.  79 

  80 

Preference Assays 81 

Preference assays were conducted from January 1-4, 2016 at La Selva. Stingless bee 82 

foragers were attracted to an elevated feeding station (a stool) using a 30 % sucrose solution and 83 

a fresh banana peel (Butler, 1940; Roubik, 1996). The feeding station was placed at the center of 84 

a gazebo (Figure 1a) which overlooked La Selva’s arboretum (Figure 1b). Bees arrived within 36 85 

hours. The feeding station offered six different mineral solutions in inverted petri dishes 86 

(diameter = 50 mm) (Figure 3a): 1 M sucrose (positive control) (Roubik, 1996), four chloride 87 

(Cl) solutions including 0.5 M NaCl, 0.5 M KCl, 0.5 M CaCl2, 0.5 M MgCl2, and deionized 88 

water (negative control) (Pizarro et al., 2012). These concentrations were used to attract 89 

congeneric bees in Brunei (Roubik, 1996), therefore we assume them to be biologically relevant 90 

for stingless bees. Solutions were randomly allocated to one of six equal areas on the circular 91 

feeding station at the start of each day (Figure 3b). Trials started around 0800 and ended around 92 

1600, when bee activity and recruitment began to decline. Actively feeding bees were counted 93 

every 15 minutes for one minute. If competitors (i.e. wasps, ants) were present, we removed 94 

them from the feeder. To discourage presence of competitors in the first place, we placed the 95 

feeder base in moats of water. 96 

  97 

Results 98 

 99 

Stingless bees visited salt solutions (54 combined visits) almost as often as they visited 100 

the sucrose solution (59 visits) (Figure 4). Throughout the course of the preference assays, 101 

deionized water was visited the least (9 visits) (Figure 4). 102 

 103 



4 
 

In comparison to deionized water, stingless bees tended to prefer CaCl2 the most (+10 104 

visits), and MgCl2 the least (-2 visits) (Figure 5). Stingless bees did not show a strong preference 105 

for NaCl (+6 visits) or KCl (+4 visits) (Figure 5).  106 

 107 

 108 

Discussion 109 

 110 

         In general, stingless bees preferred mineralized water over deionized water (Figure 3). 111 

These results corroborate findings in halictid bees (Barrows, 1974; Roubik, 1996). Also, 112 

preference strength tended to differ between salt solutions (Figure 5). 113 

 114 

Stingless bees were attracted to CaCl2 and KCl solutions, which could highlight a scarcity 115 

of these essential nutrients in the environment (Figure 5). The strong preference for CaCl2 was 116 

interesting since in excess, calcium can cause paralysis in bees (Somerville, 2005). In 117 

invertebrates, potassium is a component in the structure of lipids and some proteins (Cohen, 118 

2004). Unexpectedly, stingless bees had no interest in sodium (Figure 5). In insects, when 119 

coupled with potassium, sodium aids in the regulation of pH in cells and body fluid (Cohen, 120 

2004). Although herbivores tend to be limited by sodium (Denton, 1982; Oates, 1978), sea-spray 121 

from the coast (only 50km away) may have a larger effect on available nutrients than we had 122 

anticipated.  123 

 124 

MgCl2 was avoided by bees at La Selva, however, it was favored by stingless bees in old 125 

world tropics (Roubik, 1996) (Figure 5). Although the physiological requirement of magnesium 126 

is unknown in stingless bees, the discrepancy in results highlights a likely geographic variation 127 

in nutrient preferences. Another explanation for this finding is that stingless bees already get 128 

enough of these micronutrients from both floral and non-floral resources in the environment. We 129 

may have provided solutions that were too dilute to be worth foraging effort, and it is possible 130 

that bees in the dry season are not as nutrient-limited as bees in the wet season when nectar and 131 

water sources are more dilute (Monteverde : Ecology and Conservation of a Tropical Cloud 132 

Forest, 2000). Indeed, apart from our feeders, the only non-floral resource we observed stingless 133 

bees visiting was prepared fruit (i.e., watermelon) near the field station kitchen. It is likely bees 134 

were seeking out sucrose, as there remained unvisited sources of salt ions nearby (i.e., muddy 135 

water; pers. obs). In addition, samples of rainwater, fruit, or nectar could be analyzed for specific 136 

ions to understand whether our solution concentrations were truly ecologically relevant.  137 

 138 

This exploratory study has implications in both basic and applied science. While there is 139 

much known regarding insect nutrition and foraging in general, insect micronutrient 140 

requirements remain poorly understood (Cohen, 2004). Understanding micronutrient 141 

requirements in social insects is particularly interesting as social insects are not only foraging for 142 

themselves but for the colony as a whole (Lihoreau et al., 2015). Future manipulative studies can 143 

be used to understand the fitness consequences of nutrient-limitation at the level of the 144 

individual, the level of the colony, or both (Lihoreau et al., 2015).  145 

 146 

On the applied side, understanding the nutritional requirements of stingless bees in the 147 

tropics is of particular economic value to meliponiculturists, people who raise stingless bee 148 

colonies and harvest honey. Meliponiculture holds tremendous historical and cultural value to 149 



5 
 

indigenous groups in Costa Rica. With the loss of many stingless bee populations due to 150 

urbanization and deforestation, meliponiculturists in certain sites may have to adopt practices 151 

such as diet supplementation with mineral solutions to keep their colonies healthy and productive 152 

(Pot-honey: A Legacy of Stingless Bees, 2013). 153 

  154 
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Fig. 1 (a) Distribution of Trigona silvestriana centered on Costa Rica, map created at 232 

discoverlife.org (b) Our study system, T. silvestriana. Photo: Rachael E. Bonoan 233 

 234 

Fig. 2 (a) Trigona silvestriana foraging at an inverted petri dish. (b) Preference assay set-up with 235 

T. silvestriana foraging at artificial feeders. Photos: Rachael E. Bonoan 236 

 237 

Figure 3.  Total number visits Trigona silvestriana made to deionized water, all the salt 238 

solutions combined, and the sucrose solution. 239 

 240 

Figure 4. Total number visits Trigona silvestriana made to each experimental mineral solution 241 

in comparison to deionized water. Bars above 0 indicate solutions that were visited more often 242 

than deionized water, bars below 0 indicate solutions that were visited less often than water. 243 


