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Abstract. Motivated by classical identities of Euler, Schur, and Rogers and Ramanujan,
Alder investigated qd(n) and Qd(n), the number of partitions of n into d-distinct parts and
into parts which are ±1 (mod d + 3), respectively. He conjectured that qd(n) ≥ Qd(n).
Andrews and Yee proved the conjecture for d = 2s − 1 and also for d ≥ 32. We complete
the proof of Andrews’s refinement of Alder’s conjecture by determining effective asymptotic
estimates for these partition functions (correcting and refining earlier work of Meinardus),
thereby reducing the conjecture to a finite computation.

1. Introduction and Statement of Results

The famous identity of Euler states that the number of partitions into odd parts equals
the number of partitions into distinct parts, and the first Rogers-Ramanujan identity tells us
that the number of partitions into parts which are ±1 (mod 5) equals the number of partitions
into parts which are 2-distinct (a d-distinct partition is one where the difference between any
two parts is at least d). Another related identity is a theorem of Schur which states that
the partitions of n into parts which are ±1 (mod 6) are in bijection with the partitions of n
into 3-distinct parts where no consecutive multiples of 3 appear. In 1956, these three facts
encouraged H.L. Alder to consider the partition functions qd(n) := p(n|d-distinct parts) and
Qd(n) := p(n|parts± 1 (mod d+ 3)).

Conjecture (Alder). If ∆d(n) = qd(n) − Qd(n), then, for any d, n ≥ 1, we have that
∆d(n) ≥ 0.

By the above discussion, the conjecture is true for d ≤ 3, and the inequality can be
replaced by an equality for d = 1 and 2. Large tables of values seem to suggest, however,
that qd(n) and Qd(n) are rarely equal. Andrews [1] refined Alder’s conjecture (see [3] for
more information on this conjecture):

Conjecture (Alder-Andrews). For 4 ≤ d ≤ 7 and n ≥ 2d + 9, or d ≥ 8 and n ≥ d + 6,
∆d(n) > 0.

Remark. For any given d, there are only finitely many n not covered by the Alder-Andrews
conjecture, and a simple argument shows that ∆d(n) ≥ 0 for these n.

In essence, Alder’s conjecture asks us to relate the coefficients of
∞∑
n=0

Qd(n)qn =
∞∏
n=1

1

(1− qn(d+3)−(d+2))(1− qn(d+3)−1)

and
∞∑
n=0

qd(n)qn =
∞∑
n=0

qd(
n
2)+n

(1− q)(1− q2) · · · (1− qn)
.

1
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Although the first generating function is essentially a weight 0 modular form, the second is
generally not modular (except in the cases d = 1 and 2). This is the root of the difficulty
in proving Alder’s conjecture, since the task is to relate Fourier coefficients of two functions
which have different analytic properties.

However, there have been several significant advances toward proving Alder’s conjecture.
Using combinatorial methods, Andrews [1] proved that Alder’s conjecture holds for all values
of d which are of the form 2s−1, s ≥ 4. In addition, Yee ([9], [10]) proved that the conjecture
holds for d = 7 and for all d ≥ 32. These results are of great importance because they resolve
the conjecture except for 4 ≤ d ≤ 30, d 6= 7, 15.

In addition, Andrews [1] deduced that limn→∞∆d(n) = +∞ using powerful results of
Meinardus ([6], [7]) which give asymptotic expressions for the coefficients qd(n) and Qd(n).
Unfortunately, a mistake in [7] implies that one must argue further to establish this limit.
We correct the proof of Meinardus’s main theorem (see the discussion after (3.11)) and show
that the statement of the theorem remains unchanged. We first prove the following result,
which can be made explicit:

Theorem 1.1. Let d ≥ 4 and let α ∈ [0, 1] be the root of αd + α − 1 = 0. If A :=
d
2

log2 α +
∑∞

r=1
αrd

r2
, then for every positive integer n we have

∆d(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + Ed(n),

where Ed(n) = O
(
n−

5
6 exp(2

√
nA)

)
.

Remark. The main term of ∆d(n) is the same as the main term for qd(n) (cf. Theorem 3.1).

In the course of proving Theorem 1.1, we derive explicit approximations for Qd(n) and
qd(n) (see Theorems 2.1 and 3.1, respectively). Using these results, we obtain the following:

Theorem 1.2. The Alder-Andrews Conjecture is true.

In order to prove Theorems 1.1 and 1.2, we consider qd(n) and Qd(n) independently and
then compare the resulting effective estimates. Accordingly, in Section 2, we give explicit
asymptotics for Qd(n), culminating in Theorem 2.1. Next, in Section 3, we laboriously make
Meinardus’s argument effective (and correct) in order to give an explicit asymptotic formula
for qd(n) in Theorem 3.1. In Section 4 we use the results from Sections 2 and 3 to prove
Theorems 1.1 and 1.2.
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2. Estimate of Qd(n) with explicit error bound

As before, let Qd(n) denote the number of partitions of n whose parts are ±1 (mod d+ 3).
From the work of Meinardus, we have that

Qd(n) ∼ (3d+ 9)−
1
4

4 sin
(

π
d+3

)n− 3
4 exp

(
n

1
2

2π√
3(d+ 3)

)
.
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In this formula, only the order of the error is known. We will bound the error explicitly,
following closely the method of Meinardus [6] as it is presented by Andrews in Chapter 6 of
[2]. This allows us to prove the following theorem:

Theorem 2.1. If d ≥ 4 and n is a positive integer, then

Qd(n) =
(3d+ 9)−

1
4

4 sin
(

π
d+3

)n− 3
4 exp

(
n

1
2

2π√
3(d+ 3)

)
+R(n),

where R(n) is an explicitly bounded function (see (2.10) at the end of this section).

Remark. An exact formula for Qd(n) is known due to the work of Subrahmanyasastri [8]. In
addition, by using Maass-Poincaré series, Bringmann and Ono [5] obtained exact formulas
in a much more general setting. However, we do not employ these results since the formulas
are extremely complicated, and Theorems 1.1 and 1.2 do not require this level of precision.

2.1. Preliminary Facts. Consider the generating function f associated to Qd(n),

f(τ) :=
∏

n≡±1(d+3)
n≥0

(1− qn)−1 = 1 +
∞∑
n=1

Qd(n)qn,

where q = e−τ and <(τ) > 0. Let τ = y + 2πix. We can then obtain a formula for Qd(n) by
integrating f(τ) against enτ . Consequently, we require an approximation of f(τ) so that we
may make use of this integral formula. To do this, we need an additional function,

g(τ) :=
∑

n≡±1(d+3)
n≥0

qn.

Lemma 2.2. If arg τ > π
4

and |x| ≤ 1
2
, then <(g(τ)) − g(y) ≤ −c2y−1, where c2 is an

explicitly given constant depending only on d.

Proof. For notational convenience, we will consider the expression −y (<(g(τ))− g(y)). Ex-
panding, we find that

−y (<(g(τ))− g(y)) = S1 + S2 + S3,

where

S1 :=

(
1− cos(2πx)

) (
e(3d+8)y − e(2d+5)y − e(d+4)y + ey

)(
e(d+3)y−1

y

)
(e(2d+6)y − 2e(d+3)y cos(2π(d+ 3)x) + 1)

,

S2 :=

(
1− cos(2π(d+ 2)x)

) (
e(2d+7)y − e(2d+5)y − e(d+4)y + e(d+2)y

)(
e(d+3)y−1

y

)
(e(2d+6)y − 2e(d+3)y cos(2π(d+ 3)x) + 1)

,

and

S3 :=

(
1− cos(2π(d+ 3)x)

) (
2e(2d+5)y + 2e(d+4)y

)(
e(d+3)y−1

y

)
(e(2d+6)y − 2e(d+3)y cos(2π(d+ 3)x) + 1)

.

When y = 0, each of S1, S2, and S3 is defined. Namely, S1 = 0, S2 = 0, and S3 = 2
d+3

.

Since these functions are even in x, we may assume x ≥ 0. Further, the condition arg τ > π
4

implies that y < 2πx. To find c2, we note that each Si ≥ 0 and so it suffices to bound one
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away from 0. We do this in three different cases.

Case 1 : Suppose that y ≥ 1
2
. Since 1

2
> x > 1

2π
y, it follows that 1− cos(2πx) > 1− cos 1

2
and that S1 is bounded away from 0. In particular,

(2.1) S1 ≥
π
(
1− cos 1

2

) (
e

3d+8
2 − e 2d+5

2 − e d+4
2 + e

1
2

)
(eπ(d+3) − 1) (eπ(d+3) + 1)

2 .

Case 2 : Suppose that y < 1
2

and
∣∣x− k

d+3

∣∣ < y
d+3

for some positive integer k. Although
less obvious than in Case 1, S1 will again be bounded away from 0:

S1 ≥
π
(
1− cos π

d+3

)
eπ(d+3) − 1

e(3d+8)y − e(2d+5)y − e(d+4)y + ey

(e(d+3)y − 1)
2

+ 8π2y2e(d+3)y
,

and so

(2.2) S1 ≥
2π3

(
1− cos π

d+3

)
(d+ 2)(d+ 3)

(eπ(d+3) − 1)
(

(e(d+3)π + 1)
2

+ 8π4e(d+3)π
) .

Case 3 : Suppose that y < 1
2

and
∣∣x− k

d+3

∣∣ ≥ y
d+3

for some non-negative integer k. We

additionally assume
∣∣x− k

d+3

∣∣ ≤ 1
2(d+3)

. This is permitted since every x is covered as we vary

k. It will be S3 that is bounded away from 0.

Let u := 2π(d+ 3)
∣∣x− k

d+3

∣∣ and note that 0 ≤ u ≤ π, y ≤ u
2π

, and cosu = cos 2π(d+ 3)x.
Now, we have that

S3 ≥
4π

e(d+3)π − 1

1− cosu(
e

(d+3)u
2π − 1

)2
+ 2e

(d+3)u
2π (1− cosu)

,

and a tedious analysis of the derivative of this function implies for d ≥ 4 that

(2.3) S3 ≥
8π

(e(d+3)π − 1)

((
e
d+3
2 − 1

)2
+ 4e

d+3
2

) .

Obviously, we may take c2 to be the minimum of the bounds (2.1), (2.2), and (2.3). �

Using Lemma 2.2, we now obtain an approximation for f(τ).

Lemma 2.3. If |arg τ | ≤ π
4

and |x| ≤ 1
2
, then

f(τ) = exp

(
π2

3(d+ 3)
τ−1 + log

(
1

2 sin π
d+3

)
+ f2(τ)

)
,

where f2(τ) = O
(
y

1
2

)
is an explicitly bounded function. Furthermore, if y ≤ ymax is

sufficiently small, 0 < δ < 2
3
, 0 < ε1 <

δ
2
, β := 3

2
− δ

4
, and yβ ≤ |x| ≤ 1

2
, then there is a
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constant c3 depending on d, ε1 and δ such that

f(y + 2πix) ≤ exp

(
π2

3(d+ 3)
y−1 − c3y−ε1

)
.

Remark. The discussion of the size of ymax will follow (2.4).

Proof. From page 91 of Andrews [2], we have that

log f(τ) = τ−1
π2

3(d+ 3)
+ log

(
1

2 sin π
d+3

)
+

1

2πi

− 1
2
+i∞∫

− 1
2
−i∞

τ−sΓ(s)ζ(s+ 1)D(s)ds,

where D(s) is the Dirichlet series

D(s) :=
∑

n≡±1(d+3)
n≥0

1

ns

which converges for <(s) > 1. Writing

D(s) = (d+ 3)−s
(
ζ

(
s,

1

d+ 3

)
+ ζ

(
s,
d+ 2

d+ 3

))
,

where ζ(s, a) is the Hurwitz zeta function, we see that D(s) can be analytically continued
to the entire complex plane except for a pole of order 1 and residue 2

d+3
at s = 1 (see, for

example, page 255 of Apostol’s book [4]).
We bound the integral by noting that |D(s)| ≤ |ζ(s)|, obtaining∣∣∣∣∣∣∣

1

2πi

− 1
2
+i∞∫

− 1
2
−i∞

τ−sΓ(s)ζ(s+ 1)D(s)ds

∣∣∣∣∣∣∣ ≤ ξ
√
y,

where

ξ :=

√
2

2π

∫ ∞
−∞

∣∣∣∣ζ (1

2
+ it

)
ζ

(
−1

2
+ it

)
Γ

(
−1

2
+ it

)∣∣∣∣ dt.
The first statement of the lemma follows.

Remark. Numerical estimates show that ξ < .224.

To prove the second statement, we again follow the method of Andrews [2]. We consider
two cases: (1) yβ ≤ |x| ≤ y

2π
and (2) y

2π
≤ |x| ≤ 1

2
. In the first, we see that |arg τ | ≤ π

4
, so

we apply the first statement of the lemma, getting

log |f(y + 2πix)| ≤ π2y−1

3(d+ 3)
+

π2y−1

3(d+ 3)

((
1 + 4π2x2y−2

)− 1
2 − 1

)
+ log

(
1

2 sin π
d+3

)
+ ξ
√
y

≤ π2

3(d+ 3)
y−1 − c4y−

δ
2 ,

where

c4 :=
π4

3(d+ 3)

(
2− 3

2
y
1− δ

2
max

)
− log

(
1

2 sin π
d+3

)
y
δ
2
max − ξy

1+δ
2

max.
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In the second case, we have that

log |f(y + 2πix)| = log f(y) + < (g(τ))− g(y),

and using Lemma 2.2, we obtain

log |f(y + 2πix)| ≤ π2

3(d+ 3)
y−1 − c5y−1

where

(2.4) c5 := c2 − ymax log

(
1

2 sin π
d+3

)
− ξy

3
2
max.

We let c3:=min
(
c4(ymax)

ε1− δ2 , c5(ymax)
ε1−1)and take ymax to be small enough so that c3>0. �

Remark. In the proof of Theorem 1.1, we need only bound Qd(n) since it is of lower order
than qd(n). We shall ignore the restriction on ymax for convenience.

2.2. Proof of Theorem 2.1. From the Cauchy integral theorem, we have

Qd(n) =
1

2πi

∫ τ0+2πi

τ0

f(τ) exp(nτ) dτ =

∫ 1
2

− 1
2

f(y + 2πix) exp(ny + 2nπix) dx.

Applying the saddle point method, we take y = n−
1
2π/
√

3(d+ 3) and we let m := ny for no-

tational simplicity. Assuming the notation in Lemma 2.3, for n ≥ 6, we have ymax ≤
(

1
2π

) 1
β−1 ,

so that both cases in the proof of the second statement of Lemma 2.3 are nonvacuous. We
have that

Qd(n) = em
∫ yβ

−yβ
f(y + 2πix) exp(2πinx) dx+ emR1,

where

R1 :=

(∫ −yβ
− 1

2

+

∫ 1
2

yβ

)
f(y + 2πix) exp(2πinx) dx.

By Lemma 2.3,

|R1| ≤ exp

[
π2

3(d+ 3)

(m
n

)−1
− c3

(m
n

)−ε1]
,

so

(2.5) |emR1| ≤ exp

(
2m− c3mε1

(
π2

3(d+ 3)

)−ε1)
.

Using Lemma 2.3, write

Qd(n) = exp
(

2m− log
(

2 sin
π

d+ 3

))∫ (m/n)β

−(m/n)β
exp(ϕ1(x)) dx+ exp(m)R1,

where

ϕ1(x) := m

[(
1 +

2πixn

m

)−1
− 1

]
+ 2πinx+ g1(x)
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and |g1(x)| ≤ ξ
√

π2

3m(d+3)
.

After making the change of variables 2πx = (m/n)ω, we obtain

Qd(n) = exp

(
2m+ log

m

n
+ log

(
1

2 sin π
d+3

)
− log 2π

)
I + exp(m)R1,

where

I :=

∫ c10m1−β

−c10m1−β
exp(ϕ2(ω)) dω, c10 := 2π

(
π2

3(d+ 3)

)β−1
,

and

ϕ2(ω) := m

(
1

1 + iω
− 1 + iω

)
+ g1(ω).

We must now find an asymptotic expression for I. Write

(2.6) I =

∫ c10m1−β

−c10m1−β
exp

(
−mω2

)
dω +R2,

where

R2 :=

∫ c10m1−β

−c10m1−β
exp

(
−mω2

)
(exp(ϕ3(ω))− 1) dω,

with

ϕ3(ω) := m

(
1

1 + iω
− 1 + iω + ω2

)
+ g1(ω).

Simplifying, we find that

(2.7) |ϕ3(ω)| ≤ c310m
3δ−2

4 + ξ

√
π2

3m(d+ 3)
.

Substituting mmin = 2
2−δ
4 π

10−δ
4 (3(d+ 3))−1 for m in (2.7), it follows that

|ϕ3(ω)| ≤ 2
44+8δ−3δ2

16 π
76+8δ−3δ2

16

3(d+ 3)
+ ξ(2π)

δ−2
8 =: ϕ3,max.

Thus, letting c6 := exp(ϕ3,max)−1
ϕ3,max

, we have

|exp(ϕ3(ω))− 1| ≤ m−
1
2
+ 3δ

4

(
c6c

3
10 + ξc6m

− 3δ
4

min

√
π2

3(d+ 3)

)
=: m−

1
2
+ 3δ

4 c7.

Hence, we conclude that |R2| ≤ 2c10c7m
δ−1.

Computing the integral in (2.6), we see that

(2.8)

∫ −c10m1−β

−c10m1−β
exp

(
−mω2

)
dω =

( π
m

) 1
2

+ g2(m),

where |g2(m)| ≤ 2m−
1
2 exp

(
−c10m

δ
4

)
. Thus, we find that I =

(
π
m

) 1
2 +g2(m)+R2. Combining

these results, we obtain the desired expression for Qd(n),

(2.9) Qd(n) =

(
n−

3
4 (3(d+ 3))−

1
4

4 sin
(

π
d+3

) )
exp

(
n

1
2

2π√
3(d+ 3)

)
+R(n),
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where
(2.10)

|R(n)| ≤ n−
1
4

(
π

1
2 (3(d+3))−

3
4

2 sin( π
d+3)

)
exp

(
n

1
2

2π√
3(d+3)

− n δ
8 2π2− δ

4 (3(d+ 3))−2+
3δ
8

)
+

n−1+
δ
2

(
c7π

1+ δ2

(3(d+3))2 sin( π
d+3)

)
exp

(
n

1
2

2π√
3(d+3)

)
+ exp

(
n

1
2

2π√
3(d+3)

− c3n
ε1
2

(
π2

3(d+3)

)− 3ε1
2

)
.

3. Estimate of qd(n) with explicit error bound

Theorem 2 of [7] (with k = m = 1 and ` = d) gives

qd(n) ∼ A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA),

where α and A depend only on d (see their definitions below in Theorem 3.1). We will bound
the error explicitly, following closely the paper of Meinardus [7]. We make his calculations
effective, and we obtain the following theorem.

Theorem 3.1. Let α be the unique real number in [0, 1] satisfying αd + α− 1 = 0, and let

A := d
2

log2 α +
∑∞

r=1
αrd

r2
. If n is a positive integer, then

qd(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + rd(n)

where |rd(n)| can be bounded explicitly (see the end of this section).

3.1. Preliminary Facts. For fixed d ≥ 4, we have the generating function

(3.1) f(z) :=
∞∑
n=0

qd(n)e−nz

with z = x+ iy. Hence, we obviously have that

(3.2) qd(n) =
1

2π

∫ π

−π
f(z)enz dy.

Therefore to estimate qd(n) we require strong approximations for f(z).

Lemma 3.2. Assuming the notation above, for |y| ≤ x1+ε and x < β, where

β := min

(
− π

log ρ
ξ,

2α2−d

πd
,

1

2d
+ ρ

(
1

2
− π2

24

)) 1
ε

and 0 < ξ < 1 is a constant, we have that

f(z) =
(
αd−1

(
dαd−1 + 1

))− 1
2 e

A
z (1 + ferr(z)),

where ferr(z) = o(1) is an explicitly bounded function.

Lemma 3.3. Assuming the notation above, for x < β and x1+ε < |y| ≤ π, we have that

|f(x+ iy)| ≤
√

2π

dx
e−ηρx

2ε−1

(1 + f2(ρ, x)) exp

(
A

x
+

1− d
2

logα + f1(ρ, x)

)
,

where f1, f2 are functions given in Lemma 3.4, and η is an explicitly given constant.

Remark. Although ε = 11
24

in [7], we will benefit by varying ε in our work.
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To prove Lemmas 3.2 and 3.3, we follow [7] and write, by the Cauchy Integral Theorem,

(3.3) f(z) =
1

2πi

∫
C
H(w, z)Θ(w, z)

dw

w

where C is a circle of radius ρ := 1− α centered at the origin,

(3.4) H(w, z) :=
∞∏
n=1

(1− we−nz)−1, and Θ(w, z) :=
∞∑

n=−∞

e−
d
2
n(n−1)zw−n.

Therefore, we estimate H(w, z) and Θ(w, z).

Lemma 3.4. Let ρ = αd = 1 − α and suppose w = ρeiϕ with −π ≤ ϕ < π. Then for
|y| ≤ x1+ε and x < β,

(3.5) H(w, z) = exp

(
1

z

∞∑
r=1

wr

r2
+

1

2
log(1− w) + f1(w, z)

)
and

(3.6) Θ(w, z) =

√
2π

dz
exp

(
log2w

2dz
− 1

2
logw

)
(1 + f2(w, z)),

where, as x→ 0, f1(w, z) = O
(
x

1
2

)
and f2(w, z) = O

(
x+ exp

[
− c0

x
(π − |ϕ|) + c1x

ε−1]) are

explicitly bounded functions.

Proof. First, (3.4) and the inverse Mellin transform yield

(3.7) logH(w, z) =
1

2πi

∫ 2+i∞

2−i∞
z−sΓ(s)ζ(s)D(s+ 1, w) ds,

where ζ(s) is the Riemann zeta function, Γ(s) is the Gamma function, and D(s, w) :=∑
r≥1

wr

rs
, which is defined as a function of s for all fixed w with |w| < 1.

Note that if θ0 := arctanxε, then

|z1/2−it| ≤ |z|1/2eθ0|t| ≤
(
1 + x2ε

) 1
4 x1/2eθ0|t|.

By changing the curve of integration and accounting for the poles at s = 0 and 1, we have

logH(w, z) =
1

z

∑
r≥1

wr

r2
+

log(1− w)

2
+ f1(w, z),

where

|f1(w, z)| =

∣∣∣∣ 1

2πi

∫ ∞
−∞

z1/2−itΓ

(
−1

2
+ it

)
ζ

(
−1

2
+ it

)
D

(
1

2
+ it, w

)
dt

∣∣∣∣
≤

(
1 + x2ε

) 1
4 2−

5
2π−

3
2 ζ

(
3

2

)
ρ

1− ρ
4

π
2
− θ0

x
1
2 =: f1(x)

This proves the first statement as x2ε and θ0 = arctanxε both tend toward 0 as x→ 0.
The transformation properties of theta functions functions give

(3.8) Θ(w, z) =

√
2π

dz
e

(logw−dz/2)2
2dz

∞∑
µ=−∞

e
−2π2µ2

dz
− 2πiµ

dz
(logw−dz/2).
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The argument on page 295 of [7] completes the proof of the lemma, with
(3.9)

|f2(w, z)| ≤ e
d|z|
8

[
e
dx
√

1+x2ε

8 − 1 + 2
exp

(
− 4π2(1−ξ)
dx(1+x2ε)

)
1−exp

(
− 2π2(1−ξ)
dx(1+x2ε)

)
]
+ 2 exp

(
2π(|ϕ|−π)
dx(1+x2ε)

− 2π log ρ
d

xε−1 + d|z|
8

)
=: f2(ϕ, z) = f 0

2 (z) + fϕ2 (z) exp

(
2π|ϕ|

dx (1 + x2ε)

)
.

�

We now prove Lemmas 3.2 and 3.3 using Lemma 3.4.

Proof of Lemma 3.2. Recall from (3.3) that

f(z) =
1

2πi

∫
C
H(w, z)Θ(w, z)

dw

w
.

Let ϕ0 = xc with 3
8
< c < 1

2
. Then

(3.10) f(z) =
1

2πi

∫ ρeiϕ0

ρe−iϕ0
H(w, z)Θ(w, z)

dw

w
+

1

2πi

∫
B
H(w, z)Θ(w, z)

dw

w
,

where B is the circle C without the arc ρe−iϕ0 to ρeiϕ0 .
We first estimate the second integral in (3.10). We note the error of Meinardus [7] in the

bound of Θ(w, z) provided between (25) and (26). From Lemma 3.4, we have that
(3.11)

|Θ(w, z)| ≤

√
2π

d|z|
ρ−

1
2 exp

(
x log2 ρ

2d(x2 + y2)
− ϕ2x

2d(x2 + y2)
+

yϕ log ρ

d(x2 + y2)

)
(1 + |f2(w, z)|) .

The term yϕ log ρ
d(x2+y2)

does not appear in [7] and tends to infinity if yϕ < 0. This term arises

from the main term of Θ(w, z), so its contribution cannot be ignored. Furthermore, it
is O (xε−1), and hence cannot be combined into the negative O (x2c−1) term arising from

ϕ2x
2d(x2+y2)

. However, the bound Meinardus claims on the product |H(w, z)Θ(w, z)| is correct.

To see this, we need more than the bound |H(w, z)| ≤ H(ρ, x) that was originally thought
to be sufficient.

From Lemma 3.4, we have that

(3.12) |H(w, z)| ≤ exp (|f1(w, z)|) (1 + ρ)
1
2 exp

(
<

(
1

z

∞∑
r=1

wr

r2

))
,

and

<

(
1

z

∞∑
r=1

wr

r2

)
=

x

x2 + y2

∞∑
r=1

ρr cos(rϕ)

r2
+

y

x2 + y2

∞∑
r=1

ρr sin(rϕ)

r2

=
x

x2 + y2

∞∑
r=1

ρr

r2
+

x

x2 + y2

∞∑
r=1

ρr

r2
(cos(rϕ)− 1)− yϕ log(1− ρ)

x2 + y2

+
y

x2 + y2

∞∑
r=1

ρr

r2
(sin(rϕ)− rϕ).
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Since ρ = αd and 1− ρ = α, combining this with (3.12) and (3.11), we see that

|H(w, z)Θ(w, z)| ≤

√
2π

d|z|

(
1 + ρ

ρ

) 1
2

exp

(
|f1(w, z)|+

Ax

x2 + y2
− ϕ2x

x2 + y2

·

[
1

2d
+

1

ϕ2

∞∑
r=1

ρr

r2
(1− cos(rϕ))− y

ϕ2x

∞∑
r=1

ρr

r2
(sin(rϕ)− rϕ)

])
·(1 + |f2(w, z)|).

Hence, as x→ 0 we recover Meinardus’s bound on |H(w, z)Θ(w, z)|.
Using the notation of Lemma 3.4,

(3.13)∣∣∣∣∫
B
H(w, z)Θ(w, z)

dw

w

∣∣∣∣ ≤
√

2π

d|z|

(
1 + ρ

ρ

) 1
2

exp

(
f1(x) +

Ax

x2 + y2

)[ (
1 + f 0

2 (z)
)

·
∫
B
e−ψ(ϕ,z)dϕ +fϕ2 (z)

∫
B

exp

(
−ψ(ϕ, z) +

2π|ϕ|
dx (1 + x2ε)

)
dϕ

]
,

where

(3.14) ψ(ϕ, z) :=
ϕ2x

2d(x2 + y2)
+

x

x2 + y2

∞∑
r=1

ρr

r2
(1−cos(rϕ))− y

x2 + y2

∞∑
r=1

ρr

r2
(sin(rϕ)−rϕ).

We evaluate the two integrals of (3.13) separately.
For the integral

∫
B exp (−ψ(ϕ, z)) dϕ, we consider two parts based on the sign of yϕ. We

assume that y > 0. When ϕ > 0, sin(rϕ)− rϕ < 0 for all r, and so ψ(ϕ, z) > 0. Then

(3.15)

∫ π

ϕ0

exp (−ψ(ϕ, z)) dϕ ≤ 1

ψϕ(ϕ0, z)
[exp (−ψ(ϕ0, z))− exp (−ψ(νϕ0, z))]

+
1

ψϕ(νϕ0, z)
[exp (−ψ(νϕ0, z))− exp (−ψ(π, z))] ,

where ν > 1 is a constant.
When ϕ < 0, we note that sin(rϕ)− rϕ > 0, and so

(3.16)

ψ(ϕ, z) ≥ ϕ2x

2d(x2 + y2)
+

x

x2 + y2

∞∑
r=1

ρr

r2
(1− cos(rϕ))− x1+ε

x2 + y2

∞∑
r=1

ρr

r2

(
r3ϕ3

6

)
=

ϕ2x

2d(x2 + y2)
+

x

x2 + y2

∞∑
r=1

ρr

r2
(1− cos(rϕ)) +

ϕ3x1+εαd−2

6(x2 + y2)

=: ψ̂(ϕ, z),

whence, using that π2

2
αd−2xε ≤ π

d
,

(3.17)∫ π

ϕ0

exp(−ψ(−ϕ, z))dϕ ≤ 1

ψ̂ϕ(−ϕ0, z)

[
exp

(
−ψ̂(−ϕ0, z)

)
− exp

(
−ψ̂(−νϕ0, z)

)]
+

+
1

ψ̂ϕ(−νϕ0, z)

[
exp

(
−ψ̂(−νϕ0, z)

)
− exp

(
−ψ̂(−π, z)

)]
.
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We now consider the second integral in (3.13). A weaker bound on ψ(ϕ, z) suffices. In
particular, we have ψ(ϕ, z) ≥ kϕ2, where

k :=
x

x2 + y2

(
1

2d
− παd−2

6

∣∣∣y
x

∣∣∣+ ρ

(
1

2
− π2

24

))
,

which is positive since x < β.
Hence, we have that

(3.18)∫
B

exp

(
−ψ(ϕ, z) +

2π|ϕ|
dx (1 + x2ε)

)
dϕ ≤ dx (1 + x2ε)

π − kdx (1 + x2ε)

[
exp

(
−kπ2 +

2π2

dx (1 + x2ε)

)
− exp

(
−kϕ2

0 +
2πϕ0

dx (1 + x2ε)

)]
.

Using (3.15), (3.17), and (3.18) in (3.13) gives an explicit bound for the second integral of
(3.10), say EB(z).

Following page 297 of [7], the first integral of (3.10) is given by

I :=
1

2πi

∫ ρeiϕ0

ρe−iϕ0
H(w, z)Θ(w, z)

dw

w
=

1√
2πdz

exp

(
A

z
+

1− d
2

logα

)
(Imain + Ierror) ,

where

(3.19) Imain :=

∫ ϕ0

−ϕ0

exp

(
− ϕ2

2dz

(
dαd−1 + 1

))
dϕ

and

(3.20)
Ierror :=

∫ ϕ0

−ϕ0

(
exp

(
log

(
1− ρeiϕ

1− ρ

)
+ f3(w, z) + f1(w, z)

)
(1 + f2(w, z))− 1

)
· exp

(
− ϕ2

2dz

(
dαd−1 + 1

))
dϕ,

where |f3(w, z)| ≤ ρe
6(1−ρe)2ϕ

3. Then we have

(3.21) |Ierror| ≤ 2ϕ0

(
1− ρ cosϕ0

1− ρ
exp

(
f1(x) +

ρe

6(1− ρe)2
ϕ3
0

)
(1 + f2(ϕ0, z))− 1

)
,

and

(3.22) Imain =

√
πzd

dαd−1 + 1
− 2

∫ ∞
ϕ0

exp

(
− ϕ2

2dz

(
dαd−1 + 1

))
dϕ.

Hence, it follows that

(3.23) I =
α

1−d
2

√
dαd−1 + 1

exp

(
A

z

)
+ Êϕ0(w, z),

where
(3.24)

|Êϕ0(w, z)| ≤
α
d−1
2√

2πd|z|
exp

(
Ax

x2 + y2

)[
(2d|z|) 1

2

ϕ0 (dαd−1 + 1)
1
2

exp

(
−
ϕ2
0x
(
dαd−1 + 1

)
2d (x2 + y2)

)
+ 2ϕ0

(
1− ρ cosϕ0

1− ρ
exp

(
f1(x) +

ρe

6(1− ρe)2
ϕ3
0

)
(1 + f2(ϕ0, z))− 1

)]
=: Eϕ0(z).
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Hence, we finally see that

|ferr(z)| ≤ (Eϕ0(z) + EB(z))
(
αd−1

(
dαd−1 + 1

)) 1
2 exp

(
−Ax
x2 + y2

)
.

�

Proof of Lemma 3.3. In order to bound f for x1+ε < |y| ≤ π, note that |Θ(w, z)| ≤ Θ(ρ, x)
by (3.4), which also yields that

log |H(w, z)| = <{logH(w, z)} ≤ logH(ρ, x) + <

{
w
∑
n≥1

e−nz

}
− ρ

∑
n≥1

e−nx.

On the other hand, we have that

<

{
w
∑
n≥1

e−nz

}
−ρ
∑
n≥1

e−nx≤−ρx2ε−1
(
β1−2εe−β

)( 1

1− e−β
− 1√

1− 2e−β cos β1+ε + e−2β

)
.

To see this, note that

<

{
w
∑
n≥1

e−nz

}
− ρ

∑
n≥1

e−nx ≤ −ρe−x
(

1

1− e−x
− 1√

1− 2e−x cosx1+ε + e−2x

)
.

This then gives

<
{
w
∑

n≥1 e
−nz}− ρ∑n≥1 e

−nx

−ρx2ε−1
≥ x1−2εe−x

(
1

1− e−x
− 1√

1− 2e−x cosx1+ε + e−2x

)
≥ β1−2εe−β

(
1

1− e−β
− 1√

1− 2e−β cos β1+ε + e−2β

)
=: η.

The statement of Lemma 3.3 now follows from (3.3) and Lemma 3.4. �

3.2. Proof of Theorem 3.1. From (3.2), it follows that qd(n) = I1 + I2, where

I1 :=
1

2π

∫ x1+ε

−x1+ε
f(z)enz dy and I2 :=

1

2π

(∫ −x1+ε
−π

+

∫ π

x1+ε

)
f(z)enz dy.

In this proof, we let x =
√

A
n
. Following the idea of page 291 of [7], we split I1 as

(3.25) I1 = γe
2A
x

∫ x1+ε

−x1+ε
e−

y2A

x3 dy + E2 + E3,

where

γ :=
1

2π
√
αd−1 (dαd−1 + 1)

, E2 := γe
2A
x

∫ x1+ε

−x1+ε
e−

y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy,

and

E3 := γe
2A
x

∫ x1+ε

−x1+ε
e
−xy2+iy3

x2(x2+y2)ferr(z) dy.
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The first integral in (3.25) can be written

(3.26) γe
2A
x

∫ x1+ε

−x1+ε
e−

y2A

x3 dy = γe
2A
x

√
πx3

A
+ E1

where

(3.27) |E1| ≤
γ

A
√

2
x2−εe

2A
x
−Ax2ε−1

.

For E2, we further split the integral:

E2 = γe
2A
x

∫
|y|≤x1+ε2

e−
y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

+γe
2A
x

∫
x1+ε2≤|y|≤x1+ε

e−
y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy,

with ε2 > ε, ε2 >
1
3
. Then

(3.28)

∣∣∣∣∣γe 2A
x

∫
|y|≤x1+ε2

e−
y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

∣∣∣∣∣ ≤ γe
2A
x

(
exp

(
Ax3ε2−1

)
− 1
)√πx3

A

and
(3.29)∣∣∣∣∣γe 2A

x

∫
x1+ε2≤|y|≤x1+ε

e−
y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

∣∣∣∣∣ ≤ γ exp
(

2A
x
− Axε2−2

1+x2ε

)
x3 (1 + x2ε)

+γx3

A
exp

(
2A
x
− Axε2−2

)
.

Finally, for E3, we have

(3.30) |E3| ≤ γe
2A
x |fmax

err |
(
πx3

(
1 + x2ε

)) 1
2 .

To bound I2, we apply Lemma 3.3 to find that

(3.31) |I2| ≤
√

2π

dx
e−ηρx

2ε−1

(1 + f2(ρ, x)) exp

(
nx+

A

x
+

1− d
2

logα + f1(ρ, x)

)
.

Finally, we obtain

qd(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + E1 + E2 + E3 + I2,

where |E1 + E2 + E3 + I2| is bounded using the expressions in (3.27) - (3.31). The result
follows with |rd(n)| ≤ |E1|+ |E2|+ |E3|+ |I2|.

4. Proof of Alder’s Conjecture

Using Theorems 2.1 and 3.1, we are now able to prove our main results.

Proof of Theorem 1.1. Applying the results of Sections 2 and 3, we have that

∆d(n) = qd(n)−Qd(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + Ed(n),
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where Ed(n) = rd(n) − Qd(n). In the proof of Lemma 2.3, we relax the restriction on ymax.

Thus, Theorem 2.1 implies Qd(n) = O
(

exp
(

2π√
3d+9

n1/2 + c0n
1
6

))
, where c0 is some positive

constant.
By Theorem 3.1, |rd(n)| ≤ |E1| + |E2| + |E3| + |I2|, and a careful examination of each of

these terms shows that E1 = O
(
n−

5
6 e2
√
An
)

, E2 = O
(
n−

3
2
ε2− 1

4 e2
√
An
)

, E3 = O
(
n−

15
16 e2

√
An
)

,

and I2 = O
(
n

1
4 e2
√
An−ηρx2ε−1

)
. Hence, by choosing ε2 ≥ 7

18
, the result follows. �

Proof of Theorem 1.2. The works of Yee ([9],[10]) and Andrews [1] show that ∆d(n) ≥ 0
when d ≥ 31 and can be easily modified to show that the inequality is strict when n ≥ d+ 6.
For each remaining 4 ≤ d ≤ 30, we use Theorems 2.1 and 3.1 to compute the smallest n
such that our bounds imply ∆d(n) > 0. We denote this n by Ω(d), and a C++ program
computed the values of ∆d(n) ≤ Ωd(n), which then confirmed the remaining cases of the
Alder-Andrews Conjecture. As an example, we find that when d = 30, Ω(30) ≤ 9.77 · 106.
To get this, we take δ = 10−10 and ε1 = 5 · 10−11 in Theorem 2.1 and, in Theorem 3.1,
ε = .16906, ε2 = .499999, ξ = .99, c = .375000001, and ν = 1. Other d are similar, and all
satisfy Ω(d) ≤ Ω(30). �
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