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Abstract	

Prediction	or	expectancy	is	thought	to	play	an	important	role	in	both	music	and	

language	processing.	However,	prediction	is	currently	studied	independently	in	the	two	

domains,	limiting	research	on	relations	between	predictive	mechanisms	in	music	and	

language.	In	Study	1,	I	developed	a	melodic	cloze	probability	task	(modeled	on	the	standard	

linguistic	cloze	probability	task),	in	which	listeners	are	presented	with	the	beginning	of	a	

novel	tonal	melody	and	asked	to	sing	the	note	they	expect	to	continue	the	melody.	

Participants’	responses	varied	in	consistency	across	melodies	with	different	underlying	

harmonic	structures.	In	Study	2,	a	sentence	comprehension	paradigm	was	used	to	explore	

lexical	prediction	strength	in	individuals	with	and	without	musical	training,	as	indexed	by	

the	amplitude	of	the	ERP	component	known	as	the	frontal	positivity;	no	relationship	was	

observed	between	this	component	and	participants’	degree	of	musical	training.		
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General	Introduction	

Recent	years	have	seen	growing	interest	in	cognitive	and	neural	relations	between	

music	and	language.	Although	there	are	clear	differences	between	the	two—	for	example,	

language	can	convey	specific	semantic	concepts	and	propositions	in	a	way	that	

instrumental	music	cannot	(Slevc	&	Patel,	2011)—	they	share	several	features.	For	

example,	both	language	and	music	involve	the	generation	and	comprehension	of	complex,	

hierarchically-structured	sequences	made	from	discrete	elements	combined	in	principled	

ways	(Koelsch,	Rohrmeier,	Torrecuso,	&	Jentschke,	2013;	Patel,	2003),	and	both	rely	

heavily	on	implicit	learning	during	development	(Barbara	Tillmann,	Bharucha,	&	Bigand,	

2000).	

While	neuropsychology	has	provided	clear	cases	of	selective	deficits	in	linguistic	or	

musical	processing	following	brain	damage	(e.g.,	Peretz,	1993),	several	neuroimaging	

studies	of	healthy	individuals	suggest	overlap	in	the	brain	mechanisms	involved	in	

processing	linguistic	and	musical	structure.	One	early	demonstration	of	this	overlap	came	

from	event-related	potential	(ERP)	research,	which	revealed	that	a	component	known	as	

the	P600	is	observed	in	response	to	syntactically	challenging	or	anomalous	events	in	both	

domains	(Patel,	Gibson,	Ratner,	Besson,	&	Holcomb,	1998).	Later	research	using	MEG	and	

fMRI	provided	further	suggestions	of	neural	overlap	in	structural	processing,	e.g.,	by	

implicating	Broca’s	region	in	the	processing	tonal-harmonic	structure	(e.g.,	LaCroix,	Diaz,	&	

Rogalsky,	2015;	Maess,	Koelsch,	Gunter,	&	Friederici,	2001;	Musso	et	al.,	2015;	Tillmann,	

Janata,	&	Bharucha,	2003;	though	see	Fedorenko,	McDermott,	Norman-Haignere,	&	

Kanwisher,	2012).	To	resolve	the	apparent	contradiction	between	evidence	from	

neuropsychology	and	neuroimaging,	Patel	(2003)	proposed	the	Shared	Syntactic	
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Integration	Resource	Hypothesis	(SSIRH).	The	SSIRH	posits	a	distinction	between	domain-

specific	representations	in	long-term	memory	(e.g.,	stored	knowledge	of	words	and	their	

syntactic	features,	and	of	chords	and	their	harmonic	features),	which	can	be	separately	

damaged,	and	shared	neural	resources	which	act	upon	these	representations	as	part	of	

structural	processing.	This	“dual-system”	model	proposes	that	syntactic	integration	of	

incoming	elements	in	language	and	music	involves	the	interaction	(via	long-distance	neural	

connections)	of	shared	“resource	networks”	and	domain-specific	“representation	

networks”	(see	Patel	(2012)	for	a	detailed	discussion,	including	relations	between	the	

SSIRH	and	Hagoort	(2005)’s	“memory,	unification,	and	control”	model	of	language	

processing).	

The	SSIRH	predicted	that	simultaneous	demands	on	linguistic	and	musical	

structural	integration	should	produce	interference.	This	prediction	has	been	supported	by	

behavioral	and	neural	research	(for	a	review,	see	Kunert	&	Slevc,	2015).	For	example,	

behavioral	studies	by	Fedorenko,	Patel,	Casasanto,	Winawer,	&	Gibson	(2009)	and	Slevc,	

Rosenberg,	&	Patel	(2009)	have	shown	that	it	is	particularly	difficult	for	participants	to	

process	complex	syntactic	structures	in	both	language	and	music	simultaneously	(see	also	

Carrus,	Pearce,	&	Bhattacharya,	2012;	Hoch,	Poulin-Charronnat,	&	Tillmann,	2011;	though	

cf.	Perruchet	&	Poulin-Charronnat,	2013).	Additionally,	Koelsch,	Gunter,	Wittfoth,	&	

Sammler	(2005)	conducted	an	ERP	study	that	observed	an	interaction	between	structural	

processing	in	language	and	music,	as	reflected	by	effects	of	music	processing	on	the	left	

anterior	negativity	(LAN,	associated	with	processing	syntax	in	language)	and	effects	of	

language	processing	on	the	early	right	anterior	negativity	(ERAN,	associated	with	

processing	musical	syntax).	
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In	addition	to	structural	integration,	it	has	been	suggested	that	prediction	may	be	

another	process	that	operates	similarly	in	language	and	music	(Koelsch,	2012a,	2012b;	

Patel,	2012).	Prediction	is	increasingly	thought	to	be	a	fundamental	aspect	of	human	

cognition	(Clark,	2013),	and	is	a	growing	topic	of	research	in	psycholinguistics	(Van	Petten	

&	Luka,	2012;	see	Kuperberg	&	Jaeger,	2016	for	a	recent	review).	It	has	become	clear	that	

we	regularly	use	context	to	predict	upcoming	words	when	comprehending	language	

(Altmann	&	Kamide,	1999;	DeLong,	Urbach,	&	Kutas,	2005;	Tanenhaus	et	al.,	2016;	Wicha,	

Moreno,	&	Kutas,	2004).	This	has	been	demonstrated	using	event-related	potentials	(ERP),	

a	brain	measure	with	millisecond-level	temporal	resolution	that	allows	one	to	study	

cognitive	processing	during	language	comprehension.	Recent	evidence	from	ERP	research	

has	suggested	that	prediction	in	language	processing	occurs	at	multiple	distinguishable	

levels	(e.g.,	syntactic,	semantic,	phonological)	(Kuperberg	&	Jaeger,	2016;	Pickering	&	

Garrod,	2007).	

Strong	lexical	predictions	for	a	specific	word	occur	when	multiple	types	of	

information	within	a	linguistic	context	constrain	strongly	for	the	semantic	features,	the	

syntactic	properties,	and	the	phonological	form	of	a	specific	word.	For	example,	the	

sentence	“The	piano	is	out	of	____”	leads	to	a	strong	expectation	for	the	word	“tune”,	so	one	

can	refer	to	this	as	a	high	lexical	constraint	sentence.	It	is	well	established	that	unexpected	

words	following	these	contexts	evoke	a	larger	N400	ERP	component	(occurring	300-500	

ms	after	the	presentation	of	the	final	word)	than	expected	words	(Kutas	&	Hillyard,	1984,	

1980;	Kutas	&	Federmeier,	2011).	Such	unexpected	words	do	not	necessarily	need	to	be	

anomalous	to	produce	an	N400:	predictions	can	also	be	violated	with	words	that	are	

perfectly	coherent	and	non-anomalous.	For	example,	if	the	final	word	delivered	in	the	
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above	sentence	is	“place”	(i.e.,	“The	piano	is	out	of	place”)	this	word	still	violates	a	lexical	

prediction	for	the	highly	expected	word	“tune”.	As	in	the	previous	example,	the	N400	

elicited	by	“place”	would	be	larger	than	that	elicited	by	“tune,”	as	it	is	less	expected.	

Moreover,	in	recent	ERP	research,	violations	of	specific	lexical	predictions	with	other	

plausible	words	have	also	been	observed	to	elicit	a	late	anteriorly	distributed	positive	

component.	This	late	frontal	positivity	has	been	observed	at	various	time	points	after	the	

N400,	often	peaking	around	500-900	ms	after	the	presentation	of	a	critical	item	

(Federmeier,	Wlotko,	De	Ochoa-Dewald,	&	Kutas,	2007;	Van	Petten	&	Luka,	2012).	

Importantly,	unlike	the	N400,	the	late	frontal	positivity	is	not	produced	by	words	that	

follow	non-constraining	contexts,	when	comprehenders	have	no	strong	prediction	for	a	

particular	word	(e.g.	“place”	following	the	context,	“After	a	while,	the	boy	saw	the...”.		

Predictions	in	language	are	not	always	at	the	level	of	specific	lexical	items:	they	can	

also	be	generated	at	the	level	of	semantic-syntactic	statistical	contingencies	that	determine	

the	structure	of	an	event	(‘who	does	what	to	whom’)	(Kuperberg,	2013).	For	example,	at	a	

certain	point	in	a	sentence	we	might	expect	a	certain	syntactic	category	of	word,	like	a	

noun-phrase,	with	certain	coarse	conceptual	features,	such	as	animacy.	For	example,	in	the	

sentence	“Mary	went	outside	to	talk	to	the	____”	there	is	no	strong	indication	of	which	word	

will	come	next,	but	it	is	clear	that	it	must	be	an	animate	noun-phrase	(Mary	would	likely	

not	talk	to	an	inanimate	object	like	a	truck).	Violations	of	these	semantic-syntactic	

structural	predictions	have	been	observed	to	elicit	a	different	neural	response	from	the	

anterior	positivity	discussed	above,	namely	the	P600	(a	late	posterior	positivity,	peaking	

from	around	600	ms	after	onset	of	the	violating	word;	see	Kuperberg,	2007	for	a	review).	

This	provides	evidence	that	distinct	neural	signatures	may	be	associated	with	violations	of	
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strong	predictions	at	different	representational	levels	(e.g.,	a	late	anterior	positivity	evoked	

by	violations	of	strong	lexical	predictions,	Federmeier	et	al.,	2007;	a	late	posterior	

positivity	evoked	by	violations	of	strong	semantic-syntactic	predictions,	Kuperberg,	2007;	

see	Kuperberg,	2013	for	discussion).	The	functional	significance	of	these	late	positivites	

(both	frontal	and	posterior)	evoked	by	strong	prediction	violations	remains	unclear.	One	

possibility,	however,	is	that	they	reflect	the	neural	consequences	of	suppressing	the	

predicted	(but	not	presented)	information	and	adapting	one’s	internal	representation	of	

context	in	order	to	generate	more	accurate	predictions	in	the	future	(e.g.	see	Kuperberg,	

2013;	Kuperberg	&	Jaeger,	2016	for	discussion).		

Turning	to	music,	expectation	has	long	been	a	major	theme	of	music	cognition	

research.	Meyer,	1956	first	suggested	a	strong	connection	between	the	thwarting	of	

musical	expectations	and	the	arousal	of	emotion	in	listeners.	In	recent	years,	theories	of	

musical	expectation	have	been	brought	into	a	modern	cognitive	science	framework	(e.g.,	

Huron	&	Margulis,	2010;	Huron,	2006;	Margulis,	2005;	Pearce,	Ruiz,	Kapasi,	Wiggins,	&	

Bhattacharya,	2010),	and	expectation	has	been	studied	empirically	with	both	behavioral	

and	neural	methods	(e.g.,	Steinbeis,	Koelsch,	&	Sloboda,	2006).	It	is	increasingly	recognized	

that	multiple	sub-processes	are	involved	in	musical	expectation	(see	Huron,	2006,	for	one	

theoretical	treatment).	Empirical	research	has	shown	that	predictions	are	generated	for	

multiple	aspects	of	music,	such	as	harmony,	rhythm,	timbre,	and	meter	(Rohrmeier	&	

Koelsch,	2012).	Such	expectations	are	thought	to	be	automatically	generated	by	

enculturated	listeners	(Koelsch,	2012a;	Koelsch,	Gunter,	Friederici,	&	Schroger,	2000).	

Here,	we	focus	on	melodic	prediction,	and	specifically	on	expectations	for	upcoming	

notes	in	monophonic	(single-voice)	melodies	based	on	implicit	knowledge	of	the	melodic	
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and	harmonic	structures	of	Western	tonal	music	(Barbara	Tillmann	et	al.,	2000).	For	those	

interested	in	relations	between	predictive	mechanisms	in	music	and	language,	melodic	

expectancy	provides	an	interesting	analog	to	linguistic	expectancy	in	sentence	processing.	

Like	sentences,	monophonic	melodies	consist	of	a	single	series	of	events	created	by	

combining	perceptually	discrete	elements	in	principled	ways	to	create	hierarchically	

structured	sequences	(Jackendoff	&	Lerdahl,	2006).	Sentences	and	melodies	have	

regularities	at	multiple	levels,	including	local	relations	between	neighboring	elements	and	

larger-scale	patterns,	e.g.,	due	to	underlying	linguistic-grammatical	or	tonal	structure.		

Like	in	language,	comprehenders	may	generate	predictions	on	these	discrete	levels	

in	music.	However,	studies	of	expectation	in	music	have	not	made	this	distinction,	instead	

discussing	“expectation”	as	a	single	overarching	concept	.	Here,	we	describe	a	new	method	

of	quantifying	melodic	expectation	that	can	be	used	to	design	studies	of	melodic	expectancy	

that	are	comparable	to	the	methods	that	have	been	used	in	psycholinguistic	research.		

Individual	differences	

Individual	differences	in	prediction	tendencies	across	domains	present	another	way	

to	study	the	relationship	between	prediction	in	language	and	in	music	(Patel	&	Morgan,	

2016).	Individuals	with	musical	training	have	been	shown	to	have	enhanced	abilities	in	

certain	aspects	of	language	processing.	For	example,	it	has	been	demonstrated	that	adults	

with	musical	training	are	better	at	recognizing	speech	prosody	and	emotion	(Lima	&	

Castro,	2011;	W.	F.	Thompson,	Schellenberg,	&	Husain,	2004;	Zioga,	Di	Bernardi	Luft,	&	

Bhattacharya,	2016)	and	identifying	speech	in	noise	(Slater	et	al.,	2015;	Swaminathan	et	al.,	

2015).	Studies	where	children	are	randomly	assigned	to	participate	in	music	or	some	

control	activity	have	also	demonstrated	enhancements	in	language	processing	that	can	be	
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attributed	to	musical	training	(Chobert,	Francois,	Velay,	&	Besson,	2014;	Moreno	et	al.,	

2009).	Jentschke	&	Koelsch	(2009)	found	that	children	with	musical	training	had	larger	

amplitudes	of	the	ELAN,	an	ERP	component	associated	with	syntactic	processing	in	

language,	suggesting	that	musical	training	may	have	strengthened	this	aspect	of	language	

processing.	

Because	prediction	is	vital	for	successful	music	processing,	it	is	possible	that	musical	

training	may	be	associated	with	a	greater	tendency	to	predict	upcoming	sequential	

information	in	general.	Both	music	and	language	are	implicitly	acquired	via	statistical	

learning,	the	domain-general	ability	to	extract	regularities	from	the	statistics	of	the	

environment	(Saffran,	Aslin,	&	Newport,	1996).	Statistical	learning	is	a	core	mechanism	at	

work	in	learning	music	and	language	and	vital	to	forming	predictions	in	both	domains	

(Dienes	&	Longuet-Higgins,	2004;	Clement	Francois	&	Schon,	2014;	Loui,	Wessel,	&	Kam,	

2010;	Rohrmeier	&	Rebuschat,	2012).	

Adult	musicians	have	been	demonstrated	to	perform	better	than	non-musicians	at	

auditory	statistical	learning,	learning	the	statistical	probabilities	of	novel	sequences	faster	

or	more	accurately	(Shook,	Marian,	Bartolotti,	&	Schroeder,	2013;	Skoe,	Krizman,	Spitzer,	&	

Kraus,	2013).	Francois,	Chobert,	Besson,	&	Schon	(2013)	randomly	assigned	children	to	

training	in	either	music	or	painting	and	found	that	only	the	music	group	improved	on	a	

statistical	learning	task	based	on	speech	segmentation.	Similarly,	a	number	of	studies	have	

found	increased	neural	indices	of	learning	statistical	regularities	in	adult	musicians	

compared	to	non-musicians,	even	in	the	absence	of	behavioral	differences;	neural	

measures	may	be	more	sensitive	to	early	learning	effects	(Francois,	Jaillet,	Takerkar,	&	

Schon,	2014;	Francois	&	Schön,	2011;	Paraskevopoulos,	Kuchenbuch,	Herholz,	&	Pantev,	
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2012).	While	these	studies	have	focused	on	auditory	statistical	learning,	it	is	possible	that	

this	ability	may	transfer	to	other	domains.	Evidence	of	this	effect	is	currently	limited	and	

mixed.	Vasuki,	Sharma,	Demuth,	&	Arciuli	(2016)	found	a	musician	advantage	in	auditory	

but	not	visual	statistical	learning.	However,	Vassena,	Kochman,	Latomme,	&	Verguts	(2016)	

have	demonstrated	enhanced	cross-modal	prediction	in	musicians,	who	showed	increased	

sensitivity	to	statistical	structure	in	both	auditory	and	visual	modalities.	

The	musician	advantage	in	language	processing	could	also	be	attributable	to	

changes	in	other	aspects	of	cognition	that	in	turn	impact	predictive	tendencies	in	language.	

Cognitive	control	has	been	suggested	as	one	possible	domain-general	mechanism	involved	

in	processing	both	music	and	language	(Fedorenko,	2014;	Slevc	&	Okada,	2015).	Cognitive	

control	may	be	involved	in	prediction	in	language	as	part	of	resolving	conflicts	between	a	

predicted	structure	and	conflicting	input,	and	enhanced	cognitive	control	has	been	

demonstrated	in	musicians	(Bialystok	&	Depape,	2009).	Musicians	have	also	been	shown	to	

have	enhanced	verbal	short	term	memory	(Hansen,	Wallentin,	&	Vuust,	2013;	Wallentin,	

Nielsen,	Friis-Olivarius,	Vuust,	&	Vuust,	2010)	and	verbal	working	memory	(Clayton	et	al.,	

2016;	Franklin	et	al.,	2008;	Zuk,	Benjamin,	Kenyon,	&	Gaab,	2014).	Working	memory	may	

then	impact	language	processing	and	prediction	tendencies	(Boudewyn,	Long,	&	Swaab,	

2013;	Traxler,	Williams,	Blozis,	&	Morris,	2005;	Van	Petten,	Weckerly,	McIsaac,	&	Kutas,	

1997).	

While	many	links	have	been	suggested	between	musicianship	and	language	

processing	abilities,	the	impact	of	musical	training	on	predictive	tendencies	in	language	has	

not	been	well	explored.	In	Study	2,	we	used	a	paradigm	that	has	previously	been	used	to	
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index	individual	differences	in	prediction	in	language	to	examine	the	relationship	between	

musical	training	and	prediction.		

	

Study	1:	Studying	musical	and	linguistic	prediction	in	comparable	ways:	

the	melodic	cloze	probability	method1	

Introduction	

In	order	to	study	relations	between	the	cognitive	mechanisms	of	prediction	in	

sentences	and	melodies,	it	is	necessary	to	measure	prediction	in	these	two	types	of	

sequences	in	comparable	ways.	In	sentence	processing,	one	typical	method	of	measuring	

lexical	expectancy	is	the	cloze	probability	task,	in	which	participants	are	asked	to	complete	

a	sentence	fragment	with	the	first	word	that	comes	to	mind	(Taylor,	1953).	For	a	given	

context,	the	percentage	of	participants	providing	a	given	continuation	is	taken	as	the	“cloze	

probability”	of	that	response.	The	cloze	probability	of	an	item	is	therefore	a	

straightforward	measure	of	how	expected	or	probable	it	is.	In	addition	to	measuring	the	

cloze	probability	of	a	particular	word	in	relation	to	its	context,	it	is	also	possible	to	use	the	

cloze	task	to	measure	the	‘lexical	constraint’	of	a	particular	context	by	calculating	the	

proportion	of	participants	who	produce	a	given	word	(see	Federmeier	et	al.,	2007).	For	

example,	a	sentence	such	as	“The	day	was	breezy	so	the	boy	went	outside	to	fly	a	…”	would	

likely	elicit	the	highly-expected	continuation	“kite”	from	most	participants,	and	thus	be	a	

‘strongly	lexically	constraining’	context.	In	contrast,	a	sentence	such	as	“Carol	always	

wished	that	she’d	had	a	…”	would	elicit	a	more	varied	set	of	responses,	and	thus	be	a	

‘weakly	lexically	constraining’	context.	
																																																								
1	Previously	published	as	Fogel,	Rosenberg,	Lehman,	Kuperberg,	&	Patel	(2015)	
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While	expectancy	in	music	has	been	measured	in	various	ways	over	the	years,	to	

date	there	has	been	nothing	comparable	to	the	cloze	probability	method	in	language,	i.e.,	a	

production-based	task	in	which	a	person	is	presented	with	the	beginning	of	a	short	

coherent	sequence	and	then	asked	to	produce	the	event	she	thinks	comes	next.2	Most	

behavioral	studies	of	expectancy	in	music	have	used	perceptual	paradigms,	such	as	

harmonic	priming	paradigms	or	ratings	of	how	well	a	tone	continues	an	initial	melodic	

fragment.	Harmonic	priming	paradigms	consist	of	a	prime	context	followed	by	a	target	

event,	in	which	the	degree	of	tonal	relatedness	between	the	two	is	manipulated.	Typically,	

harmonically	related	targets	are	processed	faster	and	more	accurately	than	unrelated	

targets	(Tillmann,	Poulin-Charronnat,	&	Bigand,	2013).	These	studies	have	shown	that	

chords	that	are	more	harmonically	related	to	the	preceding	context	are	easier	to	process,	

while	there	is	a	cost	of	processing	chords	that	are	less	related	or	unrelated	to	the	context	

(Tillmann,	Janata,	Birk,	&	Bharucha,	2003).	Another	genre	of	priming	studies	has	shown	

that	timbre	identification	is	improved	when	a	pitch	is	close	in	frequency	to	the	preceding	

pitch	and	harmonically	congruent	with	the	preceding	context	(Margulis	&	Levine,	2006).	In	

studies	using	explicit	ratings	of	expectancy,	listeners	are	asked	to	rate	how	well	a	target	

note	continues	a	melodic	opening,	e.g.,	on	a	scale	of	1	(very	bad	continuation)	to	7	(very	

good	continuation)	(e.g.,	Schellenberg,	1996).	More	recently,	a	betting	paradigm	has	been	

used	in	which	participants	place	bets	on	a	set	of	possible	continuations	for	a	musical	

passage,	and	bets	can	be	distributed	across	multiple	possible	outcomes	(Huron,	2006).	The	

betting	paradigm	has	the	advantage	of	providing	a	measure	of	the	strength	of	an	

																																																								
2	Waters,	Townsend,	and	Underwood	(1998)	used	what	they	refer	to	as	a	“musical	‘cloze’	
task,”	but	theirs	was	a	multiple-choice	task	where	participants	selected	one	of	several	pre-
composed	sections	of	musical	notation.	
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expectation	for	a	specific	item.	However,	like	the	“continuation	rating”	task,	this	task	

requires	post	hoc	judgments,	and	is	therefore	is	not	an	online	measure	of	participants’	real-

time	expectations.	ERPs	and	measures	of	neural	oscillatory	activity	can	provide	online	

measures	of	expectation	in	musical	sequences	(e.g.,	Fujioka,	Ween,	Jamali,	Stuss,	&	Ross,	

2012;	Pearce	et	al.,	2010),	but	such	studies	have	focused	on	perception,	not	production.		

A	handful	of	studies	have	used	production	tasks	to	measure	musical	expectancy,	but	

they	differ	in	important	ways	from	the	standard	linguistic	cloze	probability	task.	Some	

studies	have	used	extremely	short	contexts,	in	which	participants	are	asked	to	sing	a	

continuation	after	hearing	only	a	single	two-note	interval,	or	even	a	single	note	(Carlsen,	

1981;	Povel,	1996;	Schellenberg,	Adachi,	Purdy,	&	McKinnon,	2002;	Thompson,	Cuddy,	&	

Plaus,	1997;	Unyk	&	Carlsen,	1987).	(Lake,	1987)	presented	two-note	intervals	after	

establishing	a	tonal	context	consisting	of	major	chords	and	a	musical	scale.	However,	no	

prior	singing-based	study	of	melodic	expectation	has	used	coherent	melodies	as	the	

context	(Some	studies	using	piano	performance	have	used	very	long	contexts,	in	which	

pianists	have	been	asked	to	improvise	extended	continuations	for	entire	piano	passages,	

Schmuckler,	1989,	1990).	Also,	in	all	of	these	studies	(and	unlike	in	the	linguistic	cloze	

probability	task),	participants	were	asked	to	produce	continuations	of	whatever	length	

they	chose	in	response	to	brief	stimuli.	The	closest	analog	to	a	musical	cloze	task	comes	

from	a	study	of	implicit	memory	for	melody,	in	which	listeners	first	heard	a	set	of	novel	

tonal	melodies	and	then	heard	melodic	stems	of	several	notes	and	were	asked	to	“sing	the	

note	that	they	thought	would	come	next	musically”	(Warker	&	Halpern,	2005).	However,	

the	structure	of	the	melodic	stems	was	not	manipulated,	and	the	focus	of	the	study	was	on	

implicit	memory,	not	on	expectation.	
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In	order	to	advance	the	comparative	study	of	prediction	in	language	and	music,	it	is	

necessary	to	develop	comparable	methods	for	studying	prediction	in	the	two	domains.	To	

this	end,	we	have	developed	a	melodic	cloze	probability	task.	In	this	task,	participants	are	

played	short	melodic	openings	drawn	from	novel	coherent	tonal	melodies,	and	are	asked	to	

sing	a	single-note	continuation.	In	an	attempt	to	manipulate	the	predictive	constraint	of	the	

melodies,	the	underlying	harmonic	structure	of	each	opening	(henceforth,	‘melodic	stem’)	

was	designed	to	either	lead	to	a	strong	expectancy	for	a	particular	note,	or	not	(see	

Methods	for	details).	For	each	melodic	stem,	the	cloze	probability	of	a	given	note	is	

calculated	as	the	percentage	of	participants	producing	that	note.	The	predictive	constraint	

of	a	melodic	stem	is	determined	by	examining	the	degree	of	agreement	between	

participants’	responses.	For	example,	if	all	participants	sing	the	same	note	after	a	particular	

stem,	the	stem	has	100%	constraint.	On	the	other	hand,	if	the	most	commonly	sung	note	is	

produced	by	40%	of	the	participants,	then	the	stem	has	40%	constraint.		

The	melodic	cloze	probability	method	allows	the	cloze	probabilities	of	notes	to	be	

quantitatively	measured,	and	thus	provides	a	novel	way	to	study	how	different	structural	

factors	(e.g.,	local	melodic	interval	patterns	vs.	larger-scale	harmonic	structure)	interact	in	

shaping	melodic	expectation.	The	method	can	also	be	used	to	test	quantitative	models	of	

melodic	expectation,	such	as	Narmour's	(1990)	“Implication-Realization”	model,	using	

naturalistic	musical	materials.	In	the	future,	the	method	can	facilitate	the	design	of	studies	

comparing	predictive	mechanisms	in	language	and	music,	e.g.,	by	systematically	

manipulating	constraint	and	cloze	probabilities	across	linguistic	and	musical	stimuli	in	

behavioral	or	ERP	studies	of	expectancy	(cf.	Tillmann	&	Bigand,	2015).		



	 13	

Methods	

Participants	

50	participants	(29	female,	21	male,	age	range	18-25	years,	mean	age	20.3	years)	

took	part	in	the	experiment	and	were	included	in	the	data	analysis	(eight	further	

participants	were	excluded	due	to	difficulties	with	singing	on	pitch;	see	“Data	Analysis”).	

All	participants	were	self-identified	musicians	with	no	hearing	impairment	who	had	a	

minimum	of	5	years	of	musical	experience	within	the	past	10	years	(playing	an	instrument,	

singing,	or	musical	training);	22	(44%)	reported	“voice”	as	one	of	their	instruments.	

Participants	had	received	a	mean	of	9.0	years	of	formal	musical	training	on	Western	

musical	instruments	(SD	=	4.8)	and	reported	no	significant	exposure	to	non-Western	music.	

Participants	were	compensated	for	their	participation	and	provided	informed	consent	in	

accordance	with	the	procedures	of	the	Institutional	Review	Board	of	Tufts	University.	

Materials	

The	stimuli	consisted	of	45	pairs	of	short	novel	tonal	melodies	created	by	Jason	

Rosenberg,	a	professional	composer.	Stimuli	were	truncated	in	the	middle,	creating	

“melodic	stems.”	The	melodies	ranged	across	all	12	major	keys	and	employed	variety	of	

meters	(3/4,	4/4	and	6/8	time	signatures).	Each	stem	was	5-9	notes	long	(M	=	8.38	notes,	

SD	=	0.83),	and	was	played	at	a	tempo	of	120	beats	per	minute	(bpm).	Note	durations	

varied	from	eighth	notes	(250	ms)	to	half	notes	(1000	ms).	Stems	contained	no	rests,	

articulation	indications,	dynamic	variability,	or	non-diatonic	pitches.	All	stimuli	were	

created	using	Finale	software	with	sampled	grand	piano	sounds.	Across	all	melodies,	the	

highest	and	lowest	pitch	were	A5	(880.0	Hz)	and	D3	(146.8	Hz),	respectively,	and	the	mean	

pitch	was	near	E4	(329.6	Hz).	On	average,	stems	had	a	pitch	range	of	11.4	semitones	
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(distance	between	the	highest	and	lowest	pitch	in	the	stem,	SD	=	3.2	st).	Male	participants	

heard	the	melodic	stems	transposed	down	one	octave.	The	average	stem	duration	was	5.02	

seconds	(SD	=	1.23).	

Each	stimulus	pair	consisted	of	two	stems	in	the	same	musical	key:	one	was	an	

“authentic	cadence”	(AC)	version,	which	was	designed	to	create	a	strong	expectation	for	a	

particular	note,	and	the	other	was	a	“non	cadence”	(NC)	version,	which	was	designed	to	not	

generate	a	strong	expectation	for	a	particular	note.	AC	stems	ended	preceding	a	strong	beat	

within	the	meter	on	the	2nd,	5th,	or	7th	scale	degree	and	with	an	implied	authentic	cadence	

that	would	typically	be	expected	to	resolve	to	a	tonic	function.	NC	stems	ended	with	an	

implied	IV,	iv,	or	ii	harmony,	with	the	last	presented	note	never	on	the	2nd	or	7th	scale	

degree	and	rarely	on	the	5th.	The	two	stems	in	each	pair	were	identical	in	length,	rhythm,	

and	melodic	contour;	they	differed	only	in	the	pitch	of	some	of	their	notes,	which	

influenced	their	underlying	harmonic	structure	(see	Figure	1	for	an	example).	On	average,	

the	two	stems	of	an	AC-NC	melodic	pair	differed	in	48.3%	of	their	notes	(SD	=	28.5%).	

When	notes	of	an	AC-NC	pair	differed,	they	remained	close	in	overall	pitch	height,	on	

average	1.90	semitones	apart	(SD	=	0.38).
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Figure	1.	(a)	Authentic	cadence	(AC)	and	(b)	Non	cadence	(NC)	versions	of	one	melodic	pair	(see	
text	for	explanation).	The	figure	shows	the	AC	and	NC	stems	in	Western	music	notation.	Shown	
beneath	each	stem	is	a	possible	interpretation	of	the	underlying	implied	harmonic	progression	(e.g.,	
D,	G,	D,	A	chords	in	the	AC	stem),	and	harmonic	functions	(I,	or	tonic	chord;	IV,	or	subdominant	
chord;	V,	or	dominant	chord,	vi	or	submediant	chord).	The	stems	of	a	pair	are	identical	in	length,	
key,	rhythm,	and	melodic	contour,	and	each	consists	of	single	stream	of	notes	with	no	
accompaniment.	In	this	pair	the	stems	differ	only	in	the	identity	of	the	final	two	notes,	which	are	
slightly	lower	in	the	second	stem.	Crucially,	this	small	physical	change	alters	the	underlying	
harmonic	progression.	

The	extent	to	which	the	two	groups	of	stems	projected	a	sense	of	key	was	compared	

using	the	Krumhansl-Schmuckler	key-finding	algorithm	(Krumhansl,	1990).	This	model	is	

based	on	“key-profiles”	of	each	potential	key,	which	represent	the	stability	of	each	pitch	in	

the	key,	i.e.,	how	well	it	fits	in	a	tonal	context	(Krumhansl	&	Kessler,	1982).	The	pitch	

distribution	of	a	given	melody,	weighted	by	duration,	is	compared	to	the	key-profile	of	each	

key,	and	a	correlation	value	is	calculated.	When	correlations	with	the	profiles	of	each	

potential	key	were	calculated	for	each	stem,	the	mean	correlation	with	the	correct	key	for	

AC	stems	(r(22)	=	.70)	did	not	differ	significantly	from	the	mean	correlation	with	the	

correct	key	of	NC	stems	(r(22)	=	.73),	t(44)	=	1.24,	p	=	0.22	(averaging	and	statistics	were	

performed	on	Fisher	transformed	correlation	coefficients).	The	two	groups	of	stems	

therefore	did	not	differ	in	the	degree	to	which	they	projected	a	sense	of	key.	

Procedure	

Stimuli	were	played	to	participants	over	Logitech	Z200	computer	speakers	at	a	

comfortable	listening	volume	within	a	sound	attenuated	room.	The	experiment	was	

presented	using	PsychoPy	(v1.79.01)	on	a	MacBook	Pro	laptop,	and	sung	responses	were	

recorded	as	.wav	files	using	the	computer’s	built-in	microphone.	

Each	participant	was	instructed	that	s/he	would	hear	the	beginnings	of	some	

unfamiliar	melodies	and	would	need	to	“sing	the	note	you	think	comes	next.”	Participants	

were	asked	to	continue	the	melody—not	necessarily	complete	it—on	the	syllable	“la.”	Each	
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trial	began	when	the	participant	pressed	a	button	to	hear	a	melodic	stem.	Immediately	

after	the	end	of	the	last	note	of	each	stem,	the	word	“Sing”	appeared	on	the	screen	and	

participants	were	given	five	seconds	to	sing	the	continuation,	after	which	they	rated	their	

confidence	in	their	response	on	a	7-point	Likert	scale	(1	=	low,	7	=	high).	

Each	participant	was	presented	with	24	AC	and	24	NC	melodic	stems	(only	one	

version	from	each	AC-NC	pair)	in	one	of	eight	randomized	presentation	orders.	(Three	

pairs	were	removed	from	analysis	due	to	differences	in	the	melodic	contours	of	the	two	

stems,	hence	data	from	45	pairs	was	analyzed.)	At	the	beginning	of	the	experiment,	each	

participant	completed	a	pitch-matching	task	in	which	they	heard	and	were	asked	to	sing	

back	a	series	of	individual	tones	(F4,	A4,	B3,	G#4,	A#3,	D4,	C#4,	and	E♭4	[corresponding	to	

349.2,	440.0,	246.9,	415.3,	233.1,	293.7,	277.2,	311.1	Hz,	respectively];	one	octave	lower	for	

male	participants).	This	was	used	to	evaluate	participants’	singing	accuracy.	Before	the	

experimental	trials	began,	participants	were	familiarized	with	the	experimental	procedure	

with	a	block	of	practice	items,	which	ranged	from	simple	scales	and	familiar	melodies	to	

unfamiliar	melodies.		

Data	Analysis	

We	extracted	the	mean	fundamental	frequency	of	the	sung	note	using	Praat	

(Boersma,	2001).	The	pitch	of	the	sung	note	was	determined	by	rounding	the	measured	

mean	fundamental	frequency	to	the	closest	semitone	in	the	Western	chromatic	scale	(e.g.,	

A4	=	440	Hz),	with	the	deviation	from	the	frequency	of	this	chromatic	scale	tone	recorded	

(in	cents,	i.e.,	in	hundredths	of	a	semitone).	The	sung	response	was	also	represented	in	

terms	of	its	scale	degree	within	the	key	of	the	stem	in	question.	Responses	were	

generalized	across	octaves	for	the	purpose	of	this	study.	Participants’	responses	to	the	
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pitch-matching	portion	of	the	experiment	were	also	analyzed;	if	any	participant’s	pitch-

matching	responses	did	not	round	to	the	same	note	that	was	presented,	or	if	their	

responses	to	at	least	25%	of	the	experimental	trials	were	more	than	40	cents	away	from	

the	nearest	semitone,	the	participant’s	responses	were	excluded	from	further	analysis	(8	

participants	were	omitted	for	these	reasons).	Additionally,	reaction	times	were	measured	

using	a	sound	onset	measurement	script	in	Praat	(a	sound’s	onset	was	detected	when	the	

sound	reached	a	level	-25	dB	below	its	maximum	intensity	for	a	minimum	of	50	ms)	to	

determine	how	quickly	the	continuation	was	sung	after	the	offset	of	the	last	note	of	the	

stem.	

Results	

Participants	found	the	task	intuitive	and	uncomplicated,	suggesting	that	the	melodic	

cloze	probability	task	provides	a	naturalistic	way	to	measure	melodic	expectations.	On	

average,	participants	sang	a	continuation	note	with	a	reaction	time	of	899	ms	(SD	=	604	

ms),	and	their	sung	notes	were	an	average	of	1896	ms	long	(SD	=	808	ms).	Given	that	that	

the	melodies	had	a	tempo	of	120	BPM,	this	corresponds	to	an	average	time	interval	of	1.80	

beats	after	the	offset	of	the	stem,	and	a	sung	note	duration	of	3.79	beats.	

Constraint	

The	primary	dependent	variable	in	our	study	was	the	predictive	constraint	of	a	

melodic	stem,	as	measured	by	the	percentage	of	participants	that	sang	the	most	common	

note	after	the	stem.	Figure	2	illustrates	how	this	was	computed,	based	on	the	AC-NC	

melodic	pair	in	Figure	1.	Figure	2a	and	2b	show	the	distributions	of	sung	notes	after	the	AC	

and	NC	stems	in	Figure	1,	respectively.	Figure	2a	shows	that	92%	of	participants	that	heard	

the	AC	stem	produced	the	most	commonly	sung	note	(the	tonic,	D),	while	Figure	2b	shows	
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that	no	more	than	24%	of	participants	that	heard	the	NC	stem	produced	any	one	note	(in	

this	case,	there	was	a	tie	between	C#	and	A,	but	in	most	cases,	one	pitch	class	was	most	

common).	Thus	the	constraint	of	this	melodic	pair	was	92%	(or	0.92)	for	the	AC	melody	

and	24%	(or	0.24)	for	the	NC	melody.	For	this	pair,	the	AC	melody	was	indeed	far	more	

constraining	than	the	NC	melody,	as	predicted.		

	

Figure	2.	Histograms	showing	the	relative	frequency	of	different	notes	sung	by	participants	at	the	
end	of	the	AC	and	NC	stems	in	Figure	1.	After	the	AC	stem,	most	participants	(92%)	sang	the	pitch	
D,	which	is	the	1st	scale	degree	or	tonic	of	the	prevailing	key	of	D	major.	After	the	NC	stem,	the	note	
sung	varied	much	more	between	participants:	only	20%	sang	the	pitch	D,	and	no	more	than	24%	of	
participants	sang	the	same	note	(a	tie	between	A	and	C#	in	this	case).	

For	each	AC	and	NC	stem,	we	computed	the	constraint	as	described	above.	After	AC	

stems,	the	average	constraint	was	69%	(i.e.,	on	average,	69%	of	participants	sang	the	same	

note	after	hearing	an	AC	stem),	while	after	NC	stems,	the	average	constraint	was	42%	(i.e.,	

on	average,	only	42%	of	participants	sang	the	same	note	after	hearing	an	NC	stem).	Thus	

on	average,	melodic	stems	in	the	AC	condition	did	prove	to	be	more	constraining	than	NC	

stems	(AC	M	=	0.692,	SD	=	0.171;	NC	M	=	0.415,	SD	=	0.153),	t(44)	=	7.79,	p	<	.001.).	This	

pattern	of	higher	constraint	for	the	AC	vs.	NC	stem	was	observed	in	38	of	the	45	item	pairs		

(Figure	3).	
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Figure	3.	Constraint	of	AC	and	NC	stems,	as	calculated	by	the	percentage	of	participants	providing	
the	most	common	response	for	each	stem.	Stem	pairs	are	ranked	in	order	of	decreasing	constraint	
for	AC	stems.	The	melodic	pair	shown	in	Figure	1	corresponds	to	stem	pair	3	in	this	graph.	Dotted	
horizontal	lines	show	the	mean	constraint	across	all	AC	and	NC	stems.	

On	average,	participants	responded	significantly	more	quickly	after	AC	stems	(mean	

RT	=	767	ms,	SD	=	265	ms)	than	after	the	NC	stems	(mean	RT	=	1033	ms,	SD	=	302	ms),	

t(49)	=	9.78,	p	<	.001.	Additionally,	on	average	participants	were	significantly	more	

confident	in	their	responses	to	AC	stems	(M	=	5.14,	SD	=	0.95)	than	to	NC	stems	(M	=	4.36,	

SD	=	1.04),	t(49)	=	9.60,	p	<	.001.	

Scale	Degree	

When	responses	were	represented	in	terms	of	their	scale	degree	in	the	key	of	the	

stem	in	question,	and	compiled	across	all	items	in	each	condition,	the	distributions	for	AC	

and	NC	items	were	strikingly	different.	For	6	of	the	7	diatonic	scale	degrees,	the	frequency	

of	response	differed	significantly	between	AC	and	NC	items	based	on	t-tests	of	each	scale	
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degree	with	a	Bonferroni	correction	applied	(see	Figure	4	for	p-values).	For	AC	items,	

responses	were	heavily	weighted	around	the	first	note	of	the	scale,	or	tonic	(known	as	'do'	

in	solfege).	For	NC	items,	responses	were	more	widely	distributed;	however,	they	were	

mainly	restricted	to	in-key	diatonic	scale	degrees.	

	

Figure	4.	Average	of	all	response	distributions	to	AC	and	NC	stems,	shown	as	scale	degrees.	
Numbers	represent	diatonic	(major)	scale	degrees	(e.g.,	1	=	tonic,	7	=	leading	tone,	etc.),	with	
asterisks	indicating	scale	degrees	with	significantly	different	frequencies	between	the	two	
conditions.	
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Figure	5.	Examples	of	two	melodic	stem	pairs	with	an	authentic	cadence	(AC)	stem	that	was	much	
more	constraining	than	the	non-cadence	(NC)	stem.	Stems	are	shown	in	black	and	white,	and	for	
each	stem	the	most	frequently	sung	note	is	shown	as	a	red	note	head	at	the	end	of	the	stem.	The	
pitch	class	name	of	this	note	and	the	proportion	of	listeners	who	sang	the	note	(i.e.,	the	measured	
melodic	constraint	of	the	stem)	are	printed	next	to	the	red	note.	These	two	pairs	correspond	to	
stem	pairs	4	and	3	in	Figure	3	(the	stems	in	panel	(b)	are	the	same	as	in	Figure	1).	

Variability	

While	AC	stems	were	on	average	significantly	more	constraining	than	their	matched	

NC	stems,	there	was	considerable	variability	across	AC-NC	pairs	in	the	degree	of	difference	

in	constraint	between	members	of	a	pair	(see	Figure	3).	38	out	of	45	pairs	demonstrated	

the	expected	pattern,	with	the	AC	stem	proving	more	constraining	than	the	NC	stem.	For	

instance,	the	stem	pair	in	Figure	5a	has	a	highly	constraining	AC	stem,	with	92%	of	

participants	singing	the	same	note,	the	melody’s	tonic	pitch,	C	(in	Figures	5	and	6,	the	most	

commonly	sung	note	is	shown	as	a	red	note	head	after	the	end	of	each	stem).	Why	might	

this	be?	This	stem	is	short,	contains	only	one	rhythmic	value,	and	has	very	clear	harmonic	

implications,	beginning	with	an	unambiguously	arpeggiated	tonic	triad	(C-E-G)	and	

concluding	with	a	similarly	outlined	complete	dominant	triad	(G-B-D).	This	stem	also	ends	
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on	the	leading	tone	of	B,	i.e.,	the	seventh	scale	degree	of	the	diatonic	major	scale,	which	

customarily	resolves	to	the	tonic	scale	degree,	particularly	near	the	end	of	a	phrase.	

Further	structural	factors	that	may	contribute	to	the	high	degree	of	agreement	on	the	final	

pitch	are	1)	the	melody’s	consistent	downwards	contour,	which	seems	to	close	in	on	

middle	C,	and	2)	the	fact	that	the	tonic	note	is	heard	very	close	to	the	end	of	the	phrase,	

which	may	make	it	more	likely	to	be	replicated.	Turning	to	the	NC	stem	in	Figure	5b,	it	is	

similar	in	many	respects	to	the	AC	stem,	yet	very	different	in	constraint,	with	the	most	

commonly	sung	note	(F)	being	produced	by	just	24%	of	participants	who	heard	this	stem.	

What	might	account	for	this?	The	NC	stem	does	not	have	any	resolution-demanding	

dominant	pitches	at	its	conclusion,	and	as	a	result	lacks	a	clear	sense	of	harmonic	direction.	

Instead,	the	melody	follows	a	downwards	pattern	of	melodic	thirds	(E-G,	C-E,	A-C)	whose	

continuation	is	ambiguous.	The	most	commonly	chosen	completion	of	F	could	be	explained	

as	the	next	logical	pitch	in	the	chain	of	descending	thirds,	after	A-C.	Thus,	when	faced	with	a	

stem	where	harmonic	direction	is	underdetermined,	subjects	may	have	recruited	an	

alternative	strategy	of	melodic	pattern	continuation.		

Another	example	of	an	AC	stem	that	proved	to	be	highly	constraining	is	shown	in	

Figure	5b	(same	melodic	pair	as	in	Figure	1).	As	with	the	melody	in	Figure	5a,	the	AC	stem	

begins	on	the	tonic	note	and	returns	to	it	as	the	most	expected	continuation,	with	an	

overall	melodic	range	that	emphasizes	the	octave	generated	above	the	first	scale	degree.	

The	melody’s	interior	arpeggiates	two	chords,	first	the	tonic	(D-F#-A)	in	measure	1,	then	

the	subdominant	(G-B-D)	in	measure	2.	The	subdominant	chord	frequently	serves	a	

syntactic	role	of	“predominant,”	a	harmonic	function	that	signals	the	initiation	of	a	cadence.	

This	is	indeed	how	measure	3	is	structured,	with	a	heavily	implied	dominant	harmony	via	
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scale	degrees	2	and	7,	and	a	melodic	contour	that	insures	D	as	a	plausible	completion	due	

to	an	implied	F#-E-D	melodic	descent	and	a	unresolved	leading	tone	of	C#.	The	less	

constraining	NC	stem	in	Figure	5b,	by	contrast,	ends	on	the	sixth	scale	degree	(the	

submediant).	Unlike	the	leading	tone,	this	note	lacks	a	strong	tendency	to	resolve	in	a	

particular	way.	It	may	plausibly	serve	as	part	of	a	stepwise	motion	to	or	away	from	the	

dominant,	or	as	part	of	an	arpeggiation	of	a	predominant	harmony;	in	either	case,	it	negates	

the	cadential	function	of	the	third	measure	and	points	to	no	obvious	melodic	completion.	

	

Figure	6.	Examples	of	two	melodic	stem	pairs	with	an	authentic	cadence	(AC)	stem	that	was	less	
constraining	than	the	non-cadence	(NC)	stem.	Stems	are	shown	in	black	and	white,	and	for	each	
stem	the	most	frequently	sung	note	is	shown	as	a	red	note	head	at	the	end	of	the	stem.	The	pitch	
class	name	of	this	note	and	the	proportion	of	listeners	who	sang	the	note	(i.e.,	the	measured	
melodic	constraint	of	the	stem)	are	printed	next	to	the	red	note.	These	two	pairs	correspond	to	
stem	pairs	40	and	45	in	Figure	3.	

Contrasting	with	these	stems,	where	subjects’	responses	to	stems	adhered	to	the	

AC/NC	designations,	there	were	several	items	where	the	constraint	of	the	NC	stem	

unexpectedly	exceeded	that	of	the	AC	stem.	For	example,	after	the	NC	stem	in	Figure	6a,	
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80%	of	participants	sang	the	same	note	(F#,	the	5th	scale	degree).	In	this	particular	melody,	

we	believe	this	reflects	the	tendency	for	a	large	melodic	interval	to	be	followed	by	stepwise	

motion	in	the	opposite	direction.	This	“gap-fill”	pattern	(Meyer,	1956;	Narmour,	1990)	

likely	strongly	influenced	the	continuation	most	participants	chose,	which	involved	singing	

a	note	(F#)	one	step	down	from	the	last	note	of	the	stem	(G#),	following	a	large	leap	of	a	

sixth	to	an	already	contextually	unstable	note	(scale	degree	six).	Additionally,	this	stem	has	

a	strongly	implied	compound	melody,	wherein	most	of	the	topmost	notes	form	a	rising,	

stepwise	pattern	of	B-C#-D#-E,	which	leads	to	an	F#	if	this	pattern	is	continued.	

Meanwhile,	the	unexpectedly	low	constraint	of	the	AC	stem	in	Figure	6a	was	perhaps	due	

to	the	lack	of	a	strong	tendency	note	(like	the	leading	tone)	as	its	last	pitch,	and	the	

obscuring	of	the	underlying	harmonic	implications	by	the	relative	rhythmic	complexity	of	

the	melody.	That	is,	the	unpredictable	and	syncopated	rhythm	may	have	reduced	the	

strength	of	the	expectancy	for	the	tonic	scale	degree	(Schmuckler	&	Boltz,	1994).	Similarly,	

in	the	stem	pair	in	Figure	6b,	the	most	common	continuation	for	the	NC	stem	was	a	gap-

filling	motion	to	fill	the	exceptionally	wide	upward	leap	of	an	octave	from	Bb4	to	Bb5.	

Landing	on	Ab,	which	56%	of	subjects	agreed	on,	helps	close	that	gap	with	a	downwards	

step	and	continues	the	melody	on	the	more	stable	pitch	of	scale	degree	5.	This	note	also	has	

the	advantage	of	mirroring	the	first	note	of	the	melody,	thus	promoting	melodic	symmetry.	

The	AC	stem	of	this	melodic	pair	presented	no	such	clearly	determined	ending.	If	subjects	

opted	to	fill	in	the	large	upwards	octave	gap	to	Ab	with	a	downwards	step,	they	would	land	

on	the	unstable	fourth	scale	degree	(Gb).	On	the	other	hand,	if	they	were	to	resolve	the	

melody	with	a	cadence	on	the	tonic	note	(Db),	they	would	land	far	from	the	final	note	of	the	
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stem,	going	against	a	general	tendency	in	melodic	expectation	for	pitches	that	are	

proximate	in	frequency	to	the	previous	note	(see	section	on	modeling	below).		

Based	on	the	above	observations,	it	is	clear	that	underlying	harmonic	structure,	

which	was	manipulated	in	the	AC	vs.	NC	stems,	does	not	alone	determine	melodic	

expectation.	Melodic	factors	that	likely	contributed	to	increased	constraint	in	our	melodies	

include	(but	are	not	limited	to)	rhythmic	simplicity,	gap-fill	pattern,	compound-line	

implication,	leading-tone	resolution,	and	pattern	completion.	In	this	way,	stems	in	which	

linear,	contrapuntal,	rhythmic	and	harmonic	parameters	were	closely	coordinated	

produced	reliable	agreement	on	melodic	completions,	while	examples	with	a	conflict	or	

ambiguity	between	those	factors	were	prone	to	considerably	less	consensus.	

Musical	Experience	

Prior	research	suggests	that	musical	training	enhances	sensitivity	to	underlying	

harmonic	structure	(Koelsch,	Schmidt,	&	Kansok,	2002).	Since	implicit	harmony	was	used	

to	guide	the	listeners’	expectation	for	a	tonic	note	after	AC	stems,	we	sought	to	determine	if	

participants	with	greater	degrees	of	musical	training	were	more	likely	to	sing	the	tonic	

after	AC	stems.	Thus	across	AC	stems,	we	correlated	each	participant’s	total	years	of	formal	

musical	training	with	their	frequency	of	responding	with	the	tonic.	(Thus	for	example,	if	a	

participant	sang	the	tonic	after	half	of	the	AC	stems	they	heard,	their	frequency	of	

responding	with	the	tonic	to	an	AC	stem	would	be	0.5)	When	all	AC	items	were	included	in	

the	analysis,	there	was	no	significant	correlation	with	years	of	formal	musical	training,	

r(48)	=	0.035,	p	=	0.812.	However,	when	we	divided	AC	stems	according	to	the	scale	degree	

of	their	final	note,	an	interesting	pattern	emerged.	On	average,	after	AC	stems	that	ended	

on	the	7th	scale	degree,	participants	sang	the	tonic	81%	of	the	time,	and	in	these	melodies,	
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there	was	a	significant	correlation	between	participants’	years	of	formal	training	and	their	

frequency	of	responding	with	the	tonic,	r(48)	=	.45,	p	=	.001	(see	Figure	7).	This	relationship	

with	musical	training	was	also	observed	with	AC	stems	that	ended	on	the	5th	scale	degree,	

where	participants	sang	the	tonic	55%	of	the	time	on	average,	r(48)	=	.33,	p	=	.02.	(The	

relationship	was	not	seen	for	AC	stems	that	ended	on	the	2nd	scale	degree,	where	

participants	sang	the	tonic	57%	of	the	time	on	average.)	

	

Figure	7.	Relationship	between	participants’	years	of	formal	musical	training	and	how	often	they	
sung	the	tonic	after	melodic	stems	that	ended	on	the	7th	scale	degree.	On	average,	participants	sang	
the	tonic	81%	of	the	time	after	these	stems	(data	for	all	50	participants	are	shown:	due	to	some	
data	points	lying	directly	on	top	of	each	other,	fewer	than	50	data	points	are	visible	on	the	graph).	

Discussion	

We	introduce	the	melodic	cloze	probability	task,	in	which	participants	hear	the	

opening	of	a	short,	novel	tonal	melody	and	sing	the	note	they	expect	to	come	next.	This	

task,	which	is	modeled	on	the	well-known	cloze	probability	task	in	psycholinguistics,	has	

not	previously	been	used	to	study	expectancy	in	the	field	of	music	cognition.	Participants	
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found	the	melodic	cloze	task	easy	to	do,	demonstrating	that	expectancy	can	be	measured	in	

a	comparable	way	across	linguistic	and	musical	domains.		

Prior	work	using	singing	to	study	melodic	expectancy	has	focused	on	responses	to	

two-note	intervals	(see	introduction	for	references).	Of	these	studies,	the	closest	task	to	

ours	is	Lake	(1987),	who	had	participants	sing	extended	continuations	in	response	to	a	

two-note	interval	preceded	by	a	tonal	context.	Unlike	the	current	study,	the	tonal	context	

was	not	the	opening	of	a	novel	coherent	melody,	but	a	sequence	of	notes	consisting	of	a	

major	chord,	a	scale,	and	another	major	chord,	which	served	to	establish	a	strong	sense	of	

key	before	the	two-note	interval.	One	might	ask	how	our	results	compare	to	those	of	Lake,	

since	one	can	conceive	of	our	stimuli	as	also	consisting	of	a	key-inducing	context	followed	

by	a	final	two-tone	interval	(i.e.,	the	final	two	tones	of	the	melodic	stem).	

While	the	last	two	notes	of	our	stems	clearly	contribute	to	our	results,	our	findings	

cannot	be	attributed	to	only	hearing	this	final	interval	in	a	generic	tonal	context.	A	number	

of	our	stems	are	identical	in	the	scale	degrees	of	their	final	two	notes,	yet	they	elicit	very	

different	patterns	of	results	from	participants	(see	Figure	8	for	an	example).	This	different	

pattern	of	responding	to	the	same	final	interval	reflects	differences	in	the	structure	of	the	

preceding	notes.	Thus	our	paradigm	and	results	are	not	simply	a	replication	of	Lake	

(1987),	and	show	the	relevance	of	using	melodically	coherent	materials	as	contexts	for	

production-based	studies	of	melodic	expectation.	Similarly,	we	note	that	our	results	are	not	

simply	a	replication	of	the	well-known	probe-tone	results	of	Krumhansl	&	Kessler	(1982),	

since	the	pattern	of	responding	was	not	just	a	reflection	of	the	tonal	hierarchy,	and	

depended	on	the	structure	of	the	heard	melody	(e.g.	Figures	1	and	2).	
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In	addition	to	being	the	first	study	to	obtain	cloze	probabilities	for	musical	notes,	to	

our	knowledge	the	current	study	is	the	also	the	first	to	manipulate	the	predictive	constraint	

of	musical	sequences	as	part	of	research	on	melodic	expectation.	By	using	pairs	of	

monophonic	melodic	openings	(or	‘stems’)	matched	in	length,	rhythm,	and	melodic	

contour,	but	differing	in	implied	harmonic	structure,	we	show	that	underlying	harmonic	

progressions	can	strongly	guide	melodic	expectations.	Specifically,	there	was	significantly	

more	consistency	in	participants’	responses	to	melodic	stems	ending	on	an	implied	

authentic	cadence	(AC	condition)	than	in	their	responses	to	stems	ending	non-cadentially	

(NC	condition),	as	reflected	by	a	higher	percentage	of	participants	singing	the	most	

common	continuation	for	items	in	the	AC	condition.	In	other	words,	AC	stems	were	more	

highly	constraining	than	NC	stems	on	average.		

However,	our	data	also	clearly	indicate	that	expectations	based	on	larger-scale	

implied	harmony	interact	with	expectations	based	on	melodic	structure.	That	is,	despite	

Figure	8.	Example	of	stems	that	have	the	same	final	two	notes	but	elicit	different	patterns	of	
responses	from	participants.	Stems	have	been	transposed	from	their	original	keys	to	C	major	in	
order	to	facilitate	comparison.	Both	stems	end	with	scale	degrees	7	and	2.	The	distribution	of	sung	
responses	(expressed	as	scale	degrees)	is	shown	to	the	right	of	each	stem.	
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the	fact	that	the	harmonic	differences	between	the	AC	and	NC	melodies	in	each	pair	were	

similar,	we	observed	considerable	variability	in	the	constraint	of	melodies.	In	some	pairs,	

the	AC	stem	was	considerably	more	constraining	than	the	NC	stem,	but	in	other	pairs	the	

difference	in	constraint	was	mild,	and	in	seven	pairs	the	NC	stem	was	actually	equal	to	or	

more	constraining	than	the	AC	stem	(Figure	3).	Analysis	of	two	such	‘reversed	constraint’	

pairs	(Figure	6)	suggested	that	factors	related	to	rhythmic	simplicity,	gap-fill	pattern,	

compound	line	implication,	and	pattern	completion	may	have	been	involved	in	

overwhelming	harmonic	expectations.	Further	investigation	of	the	factors	driving	the	

observed	large	variation	in	constraint	among	melodies	is	clearly	warranted.	From	our	

results	it	is	clear	that	expectancies	related	to	melodic	patterns	(e.g.,	gap-fill)	may	

sometimes	trump	those	related	to	tonality.		

Indeed,	the	variability	in	constraint	observed	in	our	data	(Figure	3)	suggests	that	the	

melodic	cloze	task	is	well	suited	for	use	in	future	studies	aimed	at	exploring	the	relative	

contributions	of	melodic	and	harmonic	patterns	in	shaping	melodic	expectation.	Such	

studies	can	help	test	and	improve	quantitative	models	of	melodic	expectation	(e.g.,	Eerola	

&	Toiviainen,	2004;	Krumhansl,	Louhivuori,	Toiviainen,	&	Eerola,	1999;	Margulis,	2005;	

Pearce,	2005;	Pearce	&	Wiggins,	2006;	Schellenberg,	1996,	1997).	

The	musical	cloze	probability	task	has	further	uses	in	the	field	of	music	cognition.	

For	example,	this	paradigm	can	be	used	to	investigate	how	different	factors	influence	

melodic	expectancy.	While	we	manipulated	only	the	harmonic	structure	of	melodies	in	the	

present	experiment,	the	influence	of	any	other	factor	(e.g.,	melodic	contour,	rhythm,	

dynamics,	etc.)	on	musical	expectations	could	be	explored	in	subsequent	studies	by	

composing	melodies	in	pairs	and	manipulating	the	one	factor	while	keeping	other	factors	
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constant.	Additionally,	the	task	could	be	varied	to	have	participants	sing	multiple-note	

continuations,	as	has	been	done	in	previous	studies	(Carlsen,	1981;	Lake,	1987;	Glenn	

Schellenberg	et	al.,	2002;	Thompson	et	al.,	1997;	Unyk	&	Carlsen,	1987).	This	would	allow	

responses	to	be	examined	on	longer	timescales	than	just	the	first	sung	note.	In	addition,	it	

would	reduce	the	possibility	that	participants	are	responding	by	completing	the	melodic	

sequences	with	the	sung	note,	instead	of	continuing	them	(as	instructed).	This	is	an	

important	issue,	as	the	note	sung	after	the	stem	may	differ	depending	on	whether	listeners	

treat	it	as	a	continuation	or	a	completion	(Aarden,	2003,	cf.	Huron,	2006).		

Of	course,	the	melodic	cloze	paradigm	does	have	its	limitations.	By	focusing	on	what	

pitch	a	person	sings,	it	cannot	give	independent	measures	of	all	the	different	types	of	

expectations	which	may	be	at	play	at	a	given	point	in	a	melody,	such	as	timbral	

expectations	(if	listening	to	complex	textures)	or	rhythmic	expectations.	To	study	these	

sorts	of	expectations,	modifications	of	the	paradigm	presented	here	would	be	necessary.	

For	example,	if	studying	rhythmic	expectations,	at	the	end	of	each	stem	one	could	ask	

participants	to	press	a	bar	for	as	long	as	they	thing	the	next	note	will	last.	

The	melodic	cloze	task	can	also	be	used	to	examine	musical	expectations	in	different	

populations.	We	observed	a	significant	correlation	between	formal	musical	training	and	a	

tendency	to	sing	the	tonic	after	AC	stems	that	ended	on	the	7th	or	5th	scale	degrees.	It	has	

been	suggested	that	having	more	musical	experience	leads	to	greater	sensitivity	to	

harmonic	cues,	which	is	consistent	with	our	finding	and	with	neural	research	on	harmonic	

processing	(Koelsch	et	al.,	2002).	Future	studies	could	use	the	melodic	cloze	method	to	

investigate	how	different	kinds	of	musical	experience	might	impact	expectancy	formation.	

For	example,	expectations	may	differ	between	musicians	who	have	been	educated	in	music	
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theory	vs.	those	who	have	experience	singing	or	improvising	without	reading	music.	

Additionally,	the	melodic	cloze	paradigm	could	be	used	in	studies	with	children,	to	

investigate	how	melodic	expectations	develop	(cf.	Corrigall	&	Trainor,	2014).		

Obtaining	melodic	cloze	probabilities	is	crucial	for	future	research	comparing	

predictive	processing	in	music	and	language,	as	it	allows	for	the	comparison	of	the	effects	

of	violating	predictions	of	comparable	strength	in	the	two	domains	(cf.	Tillmann	&	Bigand,	

2015).	Previous	studies	comparing	expectancy	violations	in	music	and	language	have	

typically	chosen	violations	that	are	intuitively	thought	to	be	comparable	in	the	two	

domains.	By	using	a	cloze	paradigm	to	quantify	cloze	probabilities	for	possible	

continuations	in	both	domains,	it	is	possible	to	compare	effects	of	violations	of	the	same	

degree,	using	normed	stimuli	(cf.	Featherstone,	Waterman,	&	Morrison,	2012).	For	

example,	this	will	allow	comparison	of	brain	responses	to	plausible	violations	of	

expectations,	instead	of	to	frank	structural	violations	(which	rarely	occur	in	naturalistic	

sequences).	Also,	studies	that	probe	interactions	between	simultaneously	presented	music	

and	language	expectancy	violations	can	be	more	precisely	calibrated,	in	order	to	further	

elucidate	cognitive	and	neural	relations	between	language	and	music	processing.	
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Study	2:	Comparing	linguistic	prediction	in	musicians	and		

non-musicians	

Introduction	

Given	the	importance	of	prediction	in	music	processing,	it	has	been	suggested	that	

musical	training	may	be	associated	with	a	greater	tendency	to	predict	upcoming	sequential	

information	in	general.	In	Study	1,	we	found	that	musical	training	was	associated	with	a	

higher	tendency	to	form	predictions	for	notes	based	on	hierarchical	structure,	as	measured	

by	participants’	sung	responses.	As	discussed	above,	it	is	possible	musical	training	may	be	

associated	with	prediction	in	language	as	well.	

In	psycholinguistic	research,	ERPs	have	recently	been	used	to	quantify	individual	

differences	in	prediction.	Wlotko,	Federmeier,	&	Kutas	(2012)	examined	individual	

differences	in	predictive	tendencies	between	older	and	younger	adults	as	indexed	by	the	

amplitude	of	the	late	anterior	positivity,	a	component	that	has	been	observed	after	the	

N400,	often	peaking	around	500-900	ms	after	the	presentation	of	a	critical	item	

(Federmeier	et	al.,	2007;	Van	Petten	&	Luka,	2012).	This	component	is	elicited	by	violations	

of	predictions	for	specific	lexical	items;	unexpected	but	plausible	words	in	constraining	

contexts	elicit	an	increased	late	frontal	positivity	compared	to	cloze	matched	unexpected	

words	in	nonconstraining	contexts.	Wlotko	et	al.	(2012)	found	that	younger	adults	showed	

a	greater	tendency	to	predict;	most	younger	adults	showed	a	late	frontal	positivity,	while	

only	a	minority	of	older	adults	showed	this	effect.		

Here,	we	used	a	similar	sentence	comprehension	paradigm	to	explore	language	

prediction	strength	in	individuals	with	and	without	musical	training,	using	a	design	in	
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which	target	nouns	fulfilled	or	violated	contextual	predictions	for	specific	lexical	items	or	

verb-argument	event	structure.	

Methods	

Participants	

Participants	were	recruited	from	online	postings.	Thirty-three	volunteers	(19	men,	

14	women)	participated	in	the	ERP	experiment.	All	were	right-handed	native	English	

speakers	(with	no	exposure	to	any	other	language	before	age	5)	between	ages	18	and	32	

(M	=	21.8,	SD	=	3.8).	Participants	had	normal	or	corrected-to-normal	vision	and	reported	

no	history	of	psychiatric	or	neurological	disorders.	They	provided	informed	consent	in	

accordance	with	the	procedures	of	the	Institutional	Review	Board	of	Tufts	University	and	

were	compensated	for	their	time.		

Twenty-one	of	these	participants	indicated	that	they	had	taken	part	in	some	amount	

of	formal	musical	training	(such	as	private	lessons	on	an	instrument)	in	their	lifetimes,	and	

15	had	at	least	five	years	of	musical	training.	Sixteen	participants	reported	having	at	least	

five	years	of	musical	experience	within	the	past	10	years.	Three	participants	majored	in	

music,	but	none	were	professional	musicians.	

Materials	

Verbs	that	were	not	highly	predictive	of	any	particular	upcoming	direct	object	(as	

measured	by	cloze	probability)	were	selected.	For	each	verb,	two	scenarios	were	created.	

One	was	a	high	constraint	context,	designed	to	create	an	expectation	for	a	particular	

upcoming	word	(for	example,	the	constraining	context	in	Figure	9	constrains	for	the	

specific	word	“swimmers”).	The	other	was	a	low	constraint	context	that	did	not	lead	to	an	

expectation	for	any	particular	word	(the	non-constraining	context	in	Figure	9	could	be	
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completed	by	multiple	possible	words).	Each	scenario	consisted	of	two	context	sentences	

(matched	for	length	across	constraining	and	non-constraining	contexts)	and	a	third	

sentence	containing	the	critical	word.	The	third	sentence	was	identical	across	constraining	

and	non-constraining	scenarios	aside	of	the	critical	word	itself,	which	was	always	four	

words	from	the	end	of	the	sentence	(e.g.,	“Hence,	they	cautioned	the	____	to	be	wary.”	for	the	

example	item	in	Figure	9).	Cloze	probability	norming	was	conducted	for	these	scenarios;	

each	participant	saw	only	one	of	the	two	contexts	for	a	given	verb.	For	the	set	of	items	

included	in	the	experiment,	high	constraint	contexts	had	a	mean	lexical	constraint	of	79%	

(SD	=	10.1%)	and	low	constraint	contexts	had	a	mean	lexical	constraint	of	26%	(SD	=	

10.1%).	

Critical	words	were	counterbalanced	such	that	the	same	critical	words	appeared	in	

both	constraining	and	non-constraining	contexts	(see	examples	in	Figure	9).	In	lexically	

constraining	contexts,	critical	words	were:	(1)	lexically	predictable	(the	“right”	word	

predicted	from	the	preceding	context),	(2)	lexical	prediction	violations	(fully	plausible	in	

the	scenario,	but	violating	a	prediction	for	the	“right”	word),	or	(3)	violations	of	the	

semantic-thematic	constraints	of	the	preceding	context,	operationalized	here	as	inanimate	

words	in	contexts	that	predict	animate	continuations	or	vice	versa.	In	lexically	non-

constraining	contexts,	critical	words	were	were:	(4)	lexically	unpredictable	(coherent	

continuations	that	are	not	particularly	predicted,	as	non-constraining	contexts	do	not	

create	any	particular	expectation)	or	(5)	semantic-thematic	(i.e.,	animacy)	violations.	

Critical	words	in	conditions	2-5	all	had	zero	cloze	probability	and	were	also	matched	on	

semantic	relatedness	to	their	preceding	contexts	by	Latent	Semantic	Analysis;	all	were	

equally	unpredictable	from	the	prior	context.	



	 35	

Each	participant	saw	100	critical	items	(20	in	each	condition,	counterbalanced	

across	participants)	as	well	as	60	filler	trials	(20	constraining,	40	non-constraining).		

Figure	9.	Sample	stimuli	for	Experiment	2.	

	
Nineteen	participants	also	took	part	in	a	separate	cognitive	testing	session.	This	

session	included	measures	of	working	memory	(Reading	Span,	Listening	Span,	Subtract	2	

Span,	and	Operation	Span;	Unsworth,	Heitz,	Schrock,	&	Engle,	2005;	Daneman	&	Carpenter,	

1980)	as	well	as	a	Visual	Statistical	Learning	Task	(Fiser	&	Aslin,	2002).	The	Visual	

Statistical	Learning	(VSL)	task	requires	participants	to	learn	and	remember	implicitly	

grouped	triplets	of	static	images.	Participants	are	first	passively	exposed	to	twelve	images,	

displayed	in	groups	of	three.	During	the	test	phase	of	the	task,	each	triplet	of	images	is	

presented	with	an	“impossible”	foil	triplet	that	was	never	presented	during	the	exposure	

phase,	and	participants	must	identify	which	of	the	pair	of	triplets	is	more	familiar	(see	

Figure	10	for	an	example).	

Lexically)constraining)contexts))
(average'constraint:'79%)'
'

The$lifeguards$received$a$report$of$sharks$right$near$the$
beach.$Their$immediate$concern$was$to$prevent$any$
incidents$in$the$sea.$Hence,$they$cau<oned$the…$

$$$$swimmers ' '(1)'lexically'predictable'

$$$$trainees ' '(2)'lexical'predic;on'viola;on'

$$$$drawer $ $(3)'lexical'+'animacy'viola;on'
'

Lexically)non0constraining)contexts))
(average'constraint:'26%)'
'

Eric$and$Grant$received$the$news$late$in$the$day.$They$
decided$it$was$be@er$to$act$sooner$than$later.$Hence,$they$
cau<oned$the…$

$

''''trainees '(4)'lexically'unpredictable'(nonBviola;on)'

$$$$drawer $(5)'animacy'viola;on'
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Figure	10.	Example	of	the	exposure	and	test	portions	of	the	Visual	Statistical	Learning	Task	
(Fiser	&	Aslin,	2002).	

Procedure	

	 Trials	were	self-paced;	participants	pressed	a	button	to	begin	each	trial.	The	first	

sentence	of	the	trial	appeared	in	full,	then	the	participant	pressed	a	button	to	advance	to	

the	second	sentence.	When	the	participant	pressed	to	advance	to	the	third	(experimental)	

sentence,	each	word	was	displayed	individually	for	450	ms	with	an	ISI	of	100	ms.	32	of	the	

60	filler	trials	were	followed	by	yes-or-no	comprehension	questions	to	ensure	that	

participants	were	attending	to	the	scenarios.	

ERP	acquisition	and	processing	

Data	was	collected	using	a	BioSemi	ActiveTwo	EEG	

system	and	ActiView	v7.05	EEG	acquisition	software.	EEG	

was	recorded	from	32	Ag/AgCl	electrodes	in	an	elastic	

cap	placed	according	to	the	international	10-20	system	

(see	Figure	11	for	electrode	placement).	Electrodes	on	

each	mastoid	were	recorded	to	serve	as	the	reference,	

and	electrodes	below	the	left	eye	and	beside	the	right	eye	

were	recorded	to	monitor	for	blinks	and	eye	movements.	 Figure	11.	Electrode	placement.	
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The	EEG	signal	was	amplified	and	continuously	sampled	at	512	Hz	and	digitally	filtered	

online	with	a	5th	order	sinc	response	filter	with	a	half-amplitude	cutoff	at	102.4	Hz.	

EEG	and	ERP	data	processing	was	conducted	in	EEGLAB	v13.5.4	

(sccn.ucsd.edu/eeglab;	Delorme	&	Makeig,	2004)	and	ERPLAB	v5.0.0.0	(erpinfo.org/erplab;	

Lopez-Calderon	&	Luck,	2014).	The	EEG	was	referenced	to	the	left	mastoid	electrode,	the	

DC	offset	was	removed	by	subtracting	the	average	voltage	of	the	entire	segment,	and	a	

high-pass	2nd-order	Butterworth	infinite	impulse	response	filter	with	a	half-amplitude	cut-

off	of	0.01	Hz	was	applied.	Algorithms	in	ERPLAB	were	used	to	detect	blinks,	eye	

movements,	and	other	artifacts.	Averages	were	calculated	for	each	condition	from	trials	

free	of	artifact	(14.1%	of	trials	were	removed)	after	subtraction	of	the	200	ms	prestimulus	

baseline.		

Results	

ERPs	

In	line	with	prior	studies	(Federmeier	et	al.,	2007),	the	N400	was	measured	as	the	

mean	amplitude	between	300	and	500	ms	at	nine	central-posterior	electrode	sites	(C3,	

CP1,	P3,	Pz,	P4,	CP2,	CPz,	Cz,	C4).	As	seen	in	Figure	12,	the	N400	was	reduced	for	lexically	

predictable	items	compared	to	all	other	(cloze-matched)	conditions,	regardless	of	lexical	

constraint;	within	constraining	contexts,	the	differences	in	amplitude	between	lexically	

predictable	items	(1)	and	lexically	unexpected	items	(2)	and	between	lexically	predictable	

items	(1)	and	animacy	violations	(3)	were	both	significant,	t(32)	=	6.20,	p	<	.001;	t(32)	=	

8.29,	p	<	.001.		

The	late	anterior	positivity	was	measured	as	the	mean	amplitude	between	600	and	

900	ms	at	ten	anterior	electrode	sites	(FP1,	FPz,	AF3,	F7,	F3,	Fz,	F4,	F8,	AF4,	FP2).	In	this	
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time	window,	lexical	prediction	violations	(in	constraining	contexts)	elicited	a	larger	

positivity	than	all	other	items	(Figure	13).	Lexical	prediction	violations	(2)	(in	constraining	

contexts)	differed	significantly	from	items	that	were	lexically	unpredictable	(4)	(in	non-

constraining	contexts),	t(32)	=	3.21,	p	=	.003.	

The	P600	was	defined	as	the	mean	amplitude	between	600	and	900	ms	at	six	

posterior	electrode	sites	(P3,	Pz,	O1,	Oz,	O2,	P4).	Animacy	violations	elicited	a	larger	P600	

than	the	remaining	conditions,	with	animacy	violations	(3)	differing	significantly	from	

lexically	predictable	items	(1)	in	constraining	contexts,	t(32)	=	6.27,	p	<	.001	(see		

Figure	14).	

	

	

Figure	12.	N400:	the	N400	is	reduced	in	response	to	lexically	predictable	items	compared	to	all	
other	conditions.	The	central	electrode	Cz	is	shown	as	an	example.	Voltage	map	shows	the	N400	
effect	as	the	difference	between	the	constraining,	lexical	prediction	violation	and	constraining,	
lexically	predictable	conditions	from	300-500	ms.	

lexical	prediction	violations	
minus	lexically	predictable	

300-500	ms	
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Figure	13.	Late	anterior	positivity.	The	late	anterior	positivity	is	elicited	by	lexical	prediction	
violations	compared	to	other	conditions.	The	frontal	electrode	AF3	is	shown	as	an	example.	Voltage	
map	shows	the	frontal	positivity	effect	as	the	difference	between	the	constraining,	lexical	prediction	
violation	and	non-constraining,	lexically	unpredictable	conditions	from	600-900	ms.	

	
	
Figure	14.	P600.	The	P600	is	elicited	by	animacy	violations	as	compared	to	other	conditions.	The	
posterior	electrode	Pz	is	shown	as	an	example.	Voltage	map	shows	the	frontal	positivity	effect	as	
the	difference	between	the	constraining,	lexical	and	animacy	violation	and	constraining,	lexically	
predictable	conditions	from	600-900	ms.	

	

	

lexical	prediction	violations	
minus	lexically	unpredictable	

lexical	and	animacy	violations	
minus	lexically	predictable	

600-900	ms	

600-900	ms	
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Figure	15.	The	relationship	between	the	mean	amplitude	of	the	frontal	positivity	and	years	of	
musical	training.	No	significant	relationship	was	observed.	

	

Individual	differences	

Contrary	to	our	predictions,	no	relationship	was	observed	between	the	amplitude	of	

the	late	anterior	positivity	and	participants’	years	of	formal	musical	training,	r	=	-.15,	p	=	

.41	(Figure	15).	Similarly,	there	was	no	relationship	between	years	of	formal	training	and	

the	amplitude	of	the	N400	(as	measured	as	the	difference	between	lexically	expected	and	

unexpected	items	in	constraining	contexts)	or	P600,	r	=	.19,	p	=	.29;	r	=	-.04,	p	=	.83.		

There	were	no	significant	relationships	observed	between	participants’	years	of	

formal	musical	training	and	any	of	the	working	memory	measures	(all	ps	>	.30).	However,	

there	was	a	significant	relationship	between	participants’	years	of	musical	training	and	

visual	statistical	learning	performance,	r	=	.500,	p	=	.035	(Figure	16).		
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Figure	16.	The	relationship	between	performance	on	the	test	portion	of	the	Visual	Statistical	
Learning	Task	and	years	of	formal	musical	training.	A	significant	relationship	was	observed,	r	=	.50.	

	

	

Discussion	

All	expected	ERP	effects	of	language	stimuli	were	observed	in	this	study;	however,	

we	did	not	find	a	relationship	between	musical	training	and	the	amplitude	of	any	ERP	

component.	Contrary	to	our	predictions,	musical	training	does	not	seem	to	be	associated	

with	the	strength	of	an	individual’s	lexical	predictions	in	language	as	indexed	by	the	

amplitude	of	the	late	frontal	positivity.	

We	previously	found	that	musical	training	was	associated	with	a	higher	tendency	to	

predict	based	on	hierarchical	structure	(Figure	7).	In	contrast,	the	late	frontal	positivity	is	

elicited	by	disconfirmed	lexical	predictions.	If	prediction	occurs	on	multiple	discrete	levels	

in	music,	as	it	does	in	language,	it	is	entirely	possible	that	musicians’	greater	experience	
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with	one	level	of	prediction	might	not	be	related	to	another.	As	music	does	not	contain	

specific	“lexical”	content	to	the	same	degree	as	language,	this	particular	type	of	prediction	

might	not	be	enhanced	in	musicians.	Instead,	predictions	related	to	hierarchical	structure	

(such	as	grammatical	categories)	may	be	strengthened.		

However,	we	did	observe	a	relationship	between	musical	training	and	Visual	

Statistical	Learning	task	performance;	while	causality	cannot	be	determined	from	this	

association,	it	is	possible	that	musical	training	may	enhance	an	individual’s	ability	to	learn	

statistical	regularities	and	form	predictions	from	the	environment.	As	most	previous	

studies	have	only	demonstrated	enhanced	auditory	statistical	learning	performance	in	

musicians,	it	is	notable	that	we	found	cross-modal	effects	in	the	visual	domain	(Shook	et	al.,	

2013;	Skoe	et	al.,	2013;	Francois	et	al.,	2014).		

We	did	not	find	any	relationships	between	musical	training	and	any	test	of	working	

memory.	This	null	result	is	potentially	attributable	to	our	population	of	participants;	while	

we	used	a	correlational	approach,	most	studies	of	the	effects	of	musical	training	have	

compared	discrete	groups	of	musicians	and	nonmusicians.	For	example,	Franklin	et	al.	

(2008)	recruited	trained	musicians	who	had	at	least	nine	years	of	continuous	training,	

played	at	least	15	hours	a	week,	and	were	enrolled	in	an	undergraduate	or	graduate	music	

program;	their	nonmusician	control	participants	had	no	history	of	playing	an	instrument	

before	age	10	and	had	never	played	an	instrument	for	longer	than	one	year.	In	contrast,	our	

participants	were	all	amateurs	with	a	wide	range	of	experiences.	Even	most	

“nonmusicians”	reported	at	least	a	little	musical	training	at	some	point	in	their	lives,	and	

only	three	“musicians”	majored	in	music.	While	this	design	has	the	advantage	of	measuring	

the	impact	of	musical	training	incrementally	and	therefore	potentially	reducing	confounds	
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that	might	emerge	by	recruiting	entirely	dissimilar	groups,	we	could	have	failed	to	recruit	

participants	with	the	level	of	musical	training	or	experience	necessary	to	show	effects	on	

working	memory	or	language	processing.	

Of	course,	it	is	also	possible	that	musical	training	does	not	in	fact	impact	prediction	

in	language.	Some	studies	that	have	observed	differences	between	musicians	and	

nonmusicians	on	language-related	or	cognitive	tasks	have	found	that	these	“effects”	are	in	

fact	accounted	for	by	some	other	correlated	factor	(such	as	IQ	or	socio-economic	status)	

that	differs	between	the	groups.	For	example,	Boebinger	et	al.	(2015)	found	that	non-verbal	

IQ	(not	music	experience)	predicted	the	ability	to	recognize	speech	in	noise,	and	Okada	&	

Slevc	(2016)	similarly	observed	that	the	relationship	they	observed	between	musicianship	

and	a	number	of	cognitive	tasks	did	not	persist	after	controlling	for	general	intelligence,	

SES,	and	handedness.	

General	Discussion	

In	Study	1,	we	introduced	the	melodic	cloze	probability	task,	in	which	participants	

hear	the	opening	of	a	short,	novel	tonal	melody	and	sing	the	note	they	expect	to	come	next.	

This	task	has	not	previously	been	used	to	study	expectancy	in	the	field	of	music	cognition;	

previous	methods	of	measuring	melodic	expectancy	have	not	used	participant-generated	

continuations.	We	also	successfully	manipulated	the	predictive	constraint	of	short	melodic	

sequences,	demonstrating	that	this	aspect	of	expectancy	can	be	manipulated	in	a	

comparable	way	across	linguistic	and	musical	domains.		

This	paradigm	is	crucial	for	future	research	comparing	predictive	processing	in	

music	and	language,	as	it	allows	for	the	comparison	of	the	effects	of	violating	predictions	of	

comparable	nature	and	strength	in	the	two	modalities.	In	contrast	to	previous	studies	
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comparing	expectancy	violations	in	music	and	language,	which	have	typically	chosen	

violations	that	are	simply	intuitively	thought	to	be	comparable	in	the	two	domains,	the	

melodic	cloze	paradigm	can	be	used	to	develop	studies	of	the	effects	of	plausible	violations	

of	musical	expectations	(analogous	to	coherent	words	that	violate	lexical	predictions)	

instead	of	frank	violations	of	musical	structure.	Hsu,	Bars,	&	Ha	(2015)	have	recently	found	

ERP	evidence	for	differential	processing	of	mispredicted	and	unpredicted	tones	in	simple	

sequences;	this	paradigm	could	be	extended	to	naturalistic	melodies	using	stimuli	

developed	with	the	cloze	paradigm.	

The	melodic	cloze	probability	task	can	also	be	used	to	evaluate	computational	

models	of	melodic	expectancy.	We	have	recently	used	this	task	to	compare	participants’	

expectations	to	the	simplified	version	of	the	implication-realization	(IR)	model	of	melodic	

expectancy	(Narmour,	1990;	Schellenberg,	1997).	This	model	uses	melodic	factors	based	

on	local	note-to-note	relationships	to	predict	the	probability	of	each	possible	continuation.	

The	IR	model	was	able	to	capture	some	of	the	variance	in	participants’	expectations,	but	

left	much	unexplained	(Fogel,	Morgan,	&	Patel,	2016).	In	future	work,	melodic	cloze	results	

can	be	used	to	compare	additional	quantitative	models	such	as	simple	probabilistic	models	

(Temperley,	2008),	the	IDyOM	model	(Pearce,	2005),	and	hierarchical	models	(Koelsch	et	

al.,	2013;	Margulis,	2005).	By	taking	into	account	more	(and	different)	sources	of	context,	

these	models	may	better	be	able	to	account	for	participants’	expectations.	

In	Study	2,	we	failed	to	observe	an	effect	of	musical	training	on	the	late	anterior	

positivity,	an	ERP	response	associated	with	lexical	prediction	in	language.	However,	we	did	

observe	a	relationship	between	musical	training	and	visual	statistical	learning	

performance,	demonstrating	a	cross-domain	transfer	effect	of	musical	training	on	general	
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predictive	tendencies.	As	our	participants	were	amateur	musicians	or	nonmusicians	with	

varying	levels	of	experience,	it	is	possible	that	an	effect	of	musical	training	on	the	

amplitude	of	ERP	components	associated	with	prediction	or	on	working	memory	

performance	might	be	seen	in	more	musically	sophisticated	participants	(such	as	

professional	musicians).		

If	the	processes	of	prediction	in	music	and	language	are	intrinsically	linked	beyond	

domain-general	prediction	as	a	whole,	any	relationship	could	be	limited	to	specific	types	of	

prediction	that	are	shared	by	both	domains.	As	discussed	above,	lexical	prediction	in	

language	has	no	clear	analogue	in	music	and	may	therefore	be	a	poor	candidate	to	observe	

an	association	between	musical	training	and	language	processing;	there	may	be	effects	of	

musical	training	on	other	specific	types	of	predictions.	For	example,	it	could	be	fruitful	to	

investigate	syntactic	prediction	in	musicians	and	non	musicians;	Jentschke	&	Koelsch	

(2009)	have	previously	found	that	children	with	musical	training	had	larger	amplitudes	of	

the	ELAN,	an	ERP	component	associated	with	syntactic	processing	in	language,	and	it	has	

frequently	been	suggested	that	syntax	processing	resources	may	be	shared	between	music	

and	language	(Kunert,	Willems,	&	Hagoort,	2016;	Patel,	2012).	Future	work	using	these	

approaches	has	the	potential	to	provide	insight	into	the	cognitive	and	neural	relations	

between	prediction	in	music	and	language.	
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