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Highlights for Revised Submission PHYSA-171891R1

• We demonstrate duality in the phase behavior of an asset-exchange model of wealth distribu-
tion.

• The duality is associated with a second-order phase transition between a classical wealth
distribution and a partially wealth-condensed state.

• The solution to the model is derived analytically, both from the microscopic statistical pro-
cess describing the model, and from the Fokker-Planck equation governing the agent density
function.
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Abstract

Asset exchange models are agent-based economic models with binary transactions. Previ-
ous investigations have augmented these models with mechanisms for wealth redistribution,
quantified by a parameter χ, and for trading bias favoring wealthier agents, quantified by
a parameter ζ . By deriving and analyzing a Fokker-Planck equation for a particular asset
exchange model thus augmented, it has been shown that it exhibits a second-order phase
transition at ζ/χ = 1, between regimes with and without partial wealth condensation. In
the “subcritical” regime with ζ/χ < 1, all of the wealth is classically distributed; in the “su-
percritical” regime with ζ/χ > 1, a fraction 1 − χ/ζ of the wealth is condensed. Intuitively,
one may associate the supercritical, wealth-condensed regime as reflecting the presence of
“oligarchy,” by which we mean that an infinitesimal fraction of the total agents hold a finite
fraction of the total wealth in the continuum limit.

In this paper, we further elucidate the phase behavior of this model – and hence of the
generalized solutions of the Fokker-Planck equation that describes it – by demonstrating
the existence of a remarkable symmetry between its supercritical and subcritical regimes
in the steady-state. Noting that the replacement {ζ → χ, χ → ζ}, which clearly has the
effect of inverting the order parameter ζ/χ, provides a one-to-one correspondence between
the subcritical and supercritical states, we demonstrate that the wealth distribution of the
subcritical state is identical to that of the corresponding supercritical state when the oli-
garchy is removed from the latter. We demonstrate this result analytically, both from the
microscopic agent-level model and from its macroscopic Fokker-Planck description, as well
as numerically. We argue that this symmetry is a kind of duality, analogous to the famous
Kramers-Wannier duality between the subcritical and supercritical states of the Ising model,
and to the Maldacena duality that underlies AdS/CFT theory.

Keywords: Fokker-Planck equation, Asset Exchange Model, Yard-Sale Model, phase
transitions, phase coexistence, wealth condensation
PACS: 89.65.Gh, 05.20.Dd

1. Introduction

1.1. Background and prior work

Asset-exchange models are agent-based models of economies with binary transactions
amongst agents, first proposed by Angle [1]. In the late 1990s, it was demonstrated that
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Boltzmann equations can be derived to describe such models [2], and this was an impor-
tant step toward the realization that macroeconomic behavior can be derived by kinetic-
theoretical analysis of agent-based models [3].

A particularly useful asset-exchange model of agent transaction was proposed by Chakraborti
in 2002 [4], in which each of N agents has a single positive scalar attribute, which we call
wealth w. In each transaction, a certain amount of wealth is moved from one transacting
agent to another. The amount of wealth moved is proportional to the wealth of the poorer
of the two agents, with positive proportionality constant β < 1. The direction in which it
moves is decided by the flip of a fair coin.

In 2014, Chakraborti’s model generated renewed interest when a Boltzmann equation was
derived for it, and it was additionally demonstrated that when β scales like the square root of
the transaction time ∆t, and when the latter tends to zero, that Boltzmann equation reduces
to a certain nonlinear, integrodifferential Fokker-Planck equation [5]. A year later, it was
furthermore shown that the Gini coefficient is a Lyapunov functional of both the Boltzmann
and the Fokker-Planck equations for this model, and hence that the time-asymptotic state of
the model will be one of total concentration of wealth to a single agent, regardless of initial
condition and of the value of β used [6].

We may define an “oligarchical” wealth distribution to be one in which a vanishingly small
number of agents hold a finite fraction of the total wealth, even in the continuum limit 2. If
that finite fraction is equal to one, the state is said to be a “total oligarchy.” The phase tran-
sition from a classical to an oligarchical wealth distribution is called “wealth condensation.”
This transition was first described in a 2000 paper by Bouchaud and Mézard [7], and ana-
lyzed further in subsequent work [8], always in the context of a first-order phase transition.
The above considerations show that Chakraborti’s model results in a total oligarchy.

Because the complete concentration of wealth is unrealistic, and because the suggestion
that the direction of wealth movement in a transaction between two agents is independent
of their relative wealths is also questionable to say the least, recent efforts have focused on
modifying Chakraborti’s model to make it more realistic. In 2017, two new features were
added to the model [9]:

(i) First, redistribution was accounted for by imposing a flat “wealth tax” at rate χ∆t on
all agents on a per-transaction basis, and redistributing the revenues thereby collected
to all agents uniformly. A similar model of redistribution had been employed in earlier
studies of asset-exchange models [7], and it can be shown to result in the appearance
of an Ornstein-Uhlenbeck [10] term in the Fokker-Planck equation [9]. This has the
effect of arresting the concentration of wealth, resulting in a steady-state distribution
with a depleted region near the origin, approximate power-law behavior for very low χ,
and a gaussian cutoff at very large values of wealth [9]. The first two of these features
(but not the third) may be recognized as consistent with the famous Pareto Law of
wealth distribution.

(ii) Second, motivated by the substantial evidence that wealthier economic agents have an
advantage over poorer agents in real economic activities, the direction of wealth move-

2In the continuum limit, one is forced to consider the concentration of wealth to an infinitesimal “fraction
of an agent” – a concept that can be made rigorous using standard methods of functional analysis.
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ment was biased in favor of the wealthier agent. This “Wealth-Attained Advantage”
(WAA) was accomplished by biasing the coin flip by an amount proportional to the
difference in wealth between the richer and the poorer agents, times ζ

√
∆t, where ζ

is a coefficient that quantifies the level of WAA present [9]. Because the bias is pro-
portional to the wealth difference, it naturally reduces to zero when the transacting
agents have equal wealth.

When the Fokker-Planck equation for this extended model was derived and its steady-
state solutions were analyzed using both analytic arguments and numerical evidence [9], it
was shown that the new model exhibits a second-order version of the wealth condensation
phase transition to a partial oligarchy, with criticality occurring when the order parameter
ζ/χ is equal to unity. More specifically, when the redistribution coefficient exceeds the WAA
coefficient, we have a “subcritical” regime where ζ/χ < 1 and wealth is classically distributed.
Conversely, when the WAA coefficient exceeds the redistribution coefficient, we have a “su-
percritical” regime where ζ/χ > 1 and a fraction 1 − χ/ζ of the population’s total wealth is
“condensed to the oligarchy,” while the remainder of the wealth is classically distributed.

1.2. Purpose of this paper

In this paper, we shall demonstrate the existence of a remarkable symmetry between the
supercritical and subcritical regimes of the above-described model in the steady state. This
symmetry has to do with the replacement {ζ → χ, χ → ζ}, which obviously has the effect
of inverting the order parameter ζ/χ, and thereby providing a one-to-one correspondence
between subcritical and supercritical states. We shall show that the wealth distribution of
the subcritical state is identical to that of the corresponding supercritical state when the
oligarchy is removed from the latter. We shall argue that this symmetry is an example of
the notion of duality, which appears in other subfields of the physics of critical phenomena.

The first and perhaps best known example of duality in physics is that which was discov-
ered by Kramers and Wannier in 1941 in the context of the two-dimensional square-lattice
Ising model of ferromagnetism, and which they used to make the first prediction of the
critical temperature of that model [11]. They did this by comparing the high-temperature
and low-temperature expansions of the partition function of the model, and supposing that
the partition function has a singularity at the critical point and nowhere else. This forces a
mathematical identity from which one can back out the critical temperature. When Onsager
presented an exact solution for the two-dimensional Ising model in 1944 [12], Kramers’ and
Wannier’s prediction for the critical temperature was verified, and moreover it became clear
that their approach could be understood as establishing a deep one-to-one correspondence
between the subcritical and supercritical states of the model [13]. If the temperature is scaled
so that the critical temperature is equal to unity, the associated subcritical and supercritical
temperatures are multiplicative inverses of one another, just as they are in our economic
model. This correspondence is not the least bit obvious, especially because it associates
highly disordered states with highly ordered ones.

The notion of duality in physics exploded in importance after Maldacena’s 1997 con-
jecture that there is a duality between the anti-de Sitter (AdS) spaces used in theories
of quantum gravity, and conformal field theories (CFT) which are quantum field theoreti-
cal descriptions of elementary particles on the boundaries of those AdS spaces [14]. This
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conjectured association is sometimes called the AdS/CFT correspondence. Because this as-
sociation relates strongly coupled field theories which can not be treated perturbatively with
weakly coupled field theories which can, the methodology has the potential to enhance our
understanding of strongly coupled field theories.

Given the importance attached to duality in modern physics, we find it fascinating that
the very same concept appears in a simple agent-based model of the economy. In the following
sections, we shall demonstrate this duality analytically, both from the microscopic agent-level
model and from its macroscopic Fokker-Planck description, as well as numerically, using both
Monte Carlo simulations and numerical solutions of the Fokker-Planck equation.

2. Mathematical description of model

2.1. Microscopic, agent-level description

We suppose that we have a population of N economic agents, each possessing a single
positive scalar attribute, which we call wealth. The sum of the wealth of all the agents will
be denoted by W . The average wealth of an agent in the population is then W/N .

We first consider the agent-level transaction between one agent A who has wealth w,
and another agent B who has wealth x. We suppose that this interaction takes place in a
time increment ∆t and results in the transfer of wealth ∆w from B to A 3. Hence, after the
transaction, the wealth of A will be w +∆w, while that of B will be x−∆w.

In what follows, we shall write

∆w = ∆wt +∆wr, (1)

where ∆wt is the contribution to ∆w due to the basic transaction model, and ∆wr is that
due to the redistribution model. We consider these two contributions separately.

In the basic transaction model proposed by Chakraborti in 2002 [4] and described in the
Introduction to this paper, the magnitude of the wealth increment is proportional to the
minimum of the wealths of the two agents, and so we write

∆wt =
√

γ∆t min(w, x)η. (2)

Here the quantity
√
γ∆t is what was called β in the Introduction, and we allow the constant

γ to control the proportionality between β and
√
∆t. Then the quantity η ∈ {−1,+1} is a

binary random variable that models the coin flip. In Chakraborti’s original model [4], the
coin was fair so E[η] = 0, where we have used E to denote the expectation value of functions
of the random variable η.

To model WAA, we will need to modify E[η] so that it is no longer zero, but rather favors
the wealthier of the two agents. Again following the discussion presented in the Introduction,
and in much more detail in reference [9], we suppose that E[η] is proportional to w−x. Hence
E[η] > 0, which favors agent A, if w > x; likewise E[η] < 0, which favors agent B, if x > w.
We normalize the difference w−x by dividing it by the average wealth W/N , so that it does

3Note that ∆w is a signed quantity, so in the event that it is negative, an amount of wealth |∆w| actually
moves from agent A to agent B.
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not depend on the units chosen for wealth. If we then multiply by
√
∆t, as mentioned in the

Introduction, and introduce a new parameter ζ to quantify WAA, we have

E[η] = ζ

√
∆t

γ

(
w − x

W/N

)
. (3)

Here, with forethought given to simplifying the resulting Fokker-Planck equation, and with-
out any loss of generality, we have divided ∆t under the square root by the parameter γ
introduced earlier.

We next consider the redistribution model. We apply a flat tax rate χ∆t to every agent
at each time step, combine all of the tax thereby collected, and redistribute an equal share
of this total to each of the N agents. So an agent with wealth w would pay tax χw∆t.
Hence the total tax collected from the entire society would be χW∆t, and each agent would
receive a share equal to χW∆t/N . The net amount added to the wealth of agent A from
this redistribution process is then

∆wr = χ

(
W

N
− w

)
∆t. (4)

Note that agents with wealth less than the average experience a net benefit from the redis-
tribution, while those with wealth greater than the average experience a net loss.

The full microscopic model is then given by inserting Eqs. (2) and (4) into Eq. (1) to
obtain

∆w =
√

γ∆t min(w, x)η + χ

(
W

N
− w

)
∆t, (5)

which, along with Eq. (3), defines the microscopic agent-level model. Henceforth, we shall
refer to χ as the redistribution coefficient and ζ as the WAA coefficient, respectively. In the
steady-state, these are the only two relevant parameters of the model; as we shall show, the
other parameter γ can be absorbed into the time scale, which is irrelevant in the steady
state [9].

2.2. Macroscopic, Fokker-Planck description

We denote the agent density function by P (w, t), so the total number of agents and the
total amount of wealth are given by

N :=

∫ ∞

0

dx P (x, t) (6)

and

W :=

∫ ∞

0

dx P (x, t)x, (7)

respectively. For the dynamics described by Eq. (5), we expect N and W to be constants of
the motion.

In the limit as ∆t → 0, for which we suppose that there are many small transactions,
the dynamics of P (w, t) can be described by a Fokker-Planck equation [15, 16, 17] which has
the general form

∂P

∂t
= − ∂

∂w
(σP ) +

1

2

∂2

∂w2
(DP ), (8)
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where σ and D are called the drift coefficient and the diffusivity, respectively, and are given
by:

σ = lim
∆t→0

E
[
∆w

∆t

]
(9)

and

D = lim
∆t→0

E
[
(∆w)2

∆t

]
. (10)

Here we have used E [f ] to denote the expected value of a bivariate function f(η, x) of the
two random variables η and x over the distribution P (x, t), which is given by:

E [f ] = 1

N

∫ ∞

0

dx P (x, t)E[f(η, x)]. (11)

Using ∆w given by Eq. (5), and applying Eqs. (3), (9), (10) and (11), we find

σ = χ

(
W

N
− w

)
− 2ζ

[
N

W

(
B − w2

2
A

)
+

(
1

2
− L

)
w

]
(12)

and

D = 2γ

(
B +

w2

2
A

)
, (13)

where we have defined the Pareto-Lorenz potentials,

A(w, t) :=
1

N

∫ ∞

w

dx P (x, t), (14)

L(w, t) :=
1

W

∫ w

0

dx P (x, t)x, (15)

and

B(w, t) :=
1

N

∫ w

0

dx P (x, t)
x2

2
. (16)

Inserting our results for the drift coefficient and diffusivity, Eqs. (12) and (13), into
Eq. (8), we obtain the Fokker-Planck equation for the agent density distribution P (w, t),

∂P

∂t
= − ∂

∂w

[
χ

(
W

N
− w

)
P

]

+
∂

∂w

{
2ζ

[
N

W

(
B − w2

2
A

)
+

(
1

2
− L

)
w

]
P

}

+
∂2

∂w2

[
γ

(
B +

w2

2
A

)
P

]
. (17)

Note that this is a nonlinear, integrodifferential equation, because the Pareto-Lorenz poten-
tials, Eqs. (14), (15) and (16), depend on the unknown function P (w, t), and do so in an
essentially nonlocal way.

6



The microscopic model can never change the sign of the wealth of an agent, and this
property is inherited by the macroscopic Fokker-Planck description, so if the initial condition
P (w, 0) has support only for w > 0, that will remain true at later times. Hence we suppose
that the appropriate domain for an initial-value problem is w ∈ R+ and t ∈ R+.

We can now adopt natural “transactional” units of time t, by absorbing the constant γ
into the time scale t, the redistribution coefficient χ, and the WAA coefficient ζ . Physically,
if we imagine that γ is the transaction rate, then our new time units for t are measured in
“transactions,” while χ becomes the redistribution rate per transaction, and ζ becomes the
WAA per transaction. Mathematically, the net effect of adopting these units is to set γ = 1,
and that is what we shall do henceforth.

To analyze the distribution in steady-state, we set the time derivative to zero in Eq. (17),
and integrate once with respect to w to obtain the nonlinear, integrodifferential, ordinary
differential equation

d

dw

[(
B +

w2

2
A

)
P

]
= χ

(
W

N
− w

)
P − 2ζ

[
N

W

(
B − w2

2
A

)
+

(
1

2
− L

)
w

]
P. (18)

Henceforth, we focus on discussing the weak solutions of this equation, and we ignore time
dependence throughout, writing P (w) instead of P (w, t), etc.

3. Wealth condensation

3.1. Oligarchical distributions

In prior work [9, 18, 19], solutions to Eq. (18) with the boundary conditions

P (0) = 0 (19)

and
lim
w→∞

A(w) = 1 (20)

have been studied. From Eqs. (14) and (15), it is clear that Eq. (20) implies that

lim
w→∞

P (w) = 0, (21)

but remarkably it does not imply that limw→∞ L(w) = 1. In fact, it has been shown that
Eq. (18), with boundary conditions given by Eqs. (19) and (20), admits distributional solu-
tions of the form:

P (w) = p(w) + c∞WΞ(w), (22)

where p(w) is a classical function defined on w ∈ [0,∞), where c∞ ∈ [0, 1], and where Ξ(w)
is a distribution with vanishing zeroth moment and unit first moment,

∫ ∞

0

Ξ(w) = 0 (23)

∫ ∞

0

Ξ(w)w = 1, (24)
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and divergent higher moments. While a formal definition of Ξ(w) can be provided using
Sobolev-Schwarz distribution theory [9] or by distribution theory [19], it can be envisioned
more intuitively as, for example, the limit of a sequence of functions,

Ξ(w) = lim
ǫ→0

Ξǫ(w), (25)

where we have defined

Ξǫ(w) =

{
1 for 1

ǫ
− ǫ

2
≤ w ≤ 1

ǫ
+ ǫ

2

0 otherwise.
(26)

It is not difficult to see that this definition is consistent with Eqs. (23) and (24). This
definition also makes clear that any incomplete moment of Ξ vanishes, i.e.,

∫ w

0

Ξ(x)xk = 0, for k = 0, 1, 2, . . . (27)

for any finite w ∈ R. Further intuition for and a more detailed mathematical treatment of
the distribution Ξ(w) is provided in Appendix A of [9].

Intuitively, we may think of the second term of Eq. (22) as corresponding to the presence
of an “oligarchy” – a vanishingly small fraction of the total number of economic agents
who nevertheless possess a finite fraction of the total wealth. To see this, note that the
second term of Eq. (22) contributes nothing to N because of Eq. (23), whereas it contributes
WΞ := c∞W to the total wealth W because of Eq. (24). We may therefore surmise that the
zeroth and first moments of the classical part of the distribution are given by

∫
dw p(w) = N (28)

∫
dw p(w)w = (1− c∞)W. (29)

A distribution with the form of Eq. (22) with c∞ 6= 0 will be called an oligarchical distribution.
To summarize, the contributions of the classical and oligarchical terms to N and W can

be written

N =

∫ ∞

0

dw P (w) =

∫ ∞

0

dw p(w)

︸ ︷︷ ︸
Np:=N

+ c∞W

∫ ∞

0

dw Ξ(w)

︸ ︷︷ ︸
NΞ:=0

(30)

and

W =

∫ ∞

0

dw P (w)w =

∫ ∞

0

dw p(w)w

︸ ︷︷ ︸
Wp:=(1−c∞)W

+ c∞W

∫ ∞

0

dw Ξ(w)w

︸ ︷︷ ︸
WΞ:=c∞W

, (31)

where we have used Eqs. (23) and (24) to evaluate the integrals over Ξ.
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3.2. The Lorenz curve

It is important to note that in any graph of P (w) versus w, the second, oligarchical term
in Eq. (22) will be essentially invisible – an imperceptible, measure-zero adjustment to the
extreme tail of the distribution. This is because this term contributes nothing to the total
amount of economic agents present, which is, after all, the zeroth moment of the distribution.
This term can not be neglected, however, because it contributes significantly to the total
amount of wealth present, which is the first moment of the distribution.

If you had a way of knowing N andW in advance, you might be able to infer the presence
of the oligarchical term from the portion of the distribution p that you can see as follows:
If you take the zeroth moment of p, and you confirm that the result is N , you can be sure
that you have accounted for the full measure of the classical distribution p. If you then take
the first moment of p and find that the result is Wp < W , you can infer the existence of a
second, oligarchical term in Eq. (22) with c∞ = 1− Wp/W .

A more direct way of recognizing the presence of an oligarchical term in Eq. (22) is
to employ the Lorenz curve, first introduced by Max O. Lorenz in 1905 [20] as a way to
represent inequality in wealth (or income). For a given distribution, the Lorenz curve plots
the cumulative share of wealth against the cumulative share of economic agents. Hence a
point (x, y) on Lorenz curve can be interpreted as the bottom x% of the population of the
society possessing y% of the total wealth of the society.

The culmulative share of economic agents is given by

F (w) :=
1

N

∫ w

0

dx P (x) = 1− A(w), (32)

while the cumulative share of wealth is just the function L(w) introduced in Eq. (15). Hence,
the Lorenz curve is a parametric plot of L(w) versus F (w), where the parameter w runs from
zero to infinity. Going forward, we shall refer to this functional form as L(F), defined so
that L(F) = L(w) when F = F (w) ∈ [0, 1]. Three important properties of the function
L(F) follow from this definition:

1. It is easy to see that the graph of L(F) must include the points (0, 0) and (1, 1), and
must necessarily lie below the straight diagonal line connecting those two points. In
fact, twice the area between the Lorenz curve and the diagonal is a commonly used
measure of wealth (or income) inequality called the Gini coefficient [21], introduced by
Corrado Gini in 1912 [22].

2. It is also clear that if one is given the distribution P (w), one can straightforwardly
compute N , W and the Lorenz curve L(F). It is less clear that the opposite is true: If
one knows N , W and L(F), one can recover the distribution P (w). To see this, note
that the slope of the Lorenz curve is

L′(F) =
L′(w)

F ′(w)
=

w

W/N
, (33)

which is the wealth, normalized to the average wealth. If you are given the Lorenz
curve, you can suppose that you know L′(F) as a function of F , and hence this function
of F must be equal to w/(W/N). Knowing W/N , you can invert this relation to obtain
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F as a function of w. Differentiating that, recalling that F ′(w) = P (w)/N , and knowing
N , you can recover P (w). Hence the triplet {N,W,L(F)} is equivalent in information
content to P (w).

3. Finally, by examining the second derivative L′′(F) is possible to show that the graph
of L(F) must be concave up.

From the above observations, it follows that Lorenz curves corresponding to subcritical
solutions are continuous and concave up, extending from point (0, 0) to point (1, 1). In the
supercritical case, however, when the oligarchical term c∞Ξ(w) is present, the graph of the
Lorenz curve on the clopen domain F ∈ [0, 1), though still concave up, approaches the point
(1, 1−c∞) on the right-hand boundary of its domain, instead of (1, 1); it then discontinuously
jumps to the point (1, 1) when F = 1.

A property of Lorenz curves closely related to Property 2 above is that they are invariant
under scaling of both the abscissa and the ordinate of P (w). Both F (w) and L(w) are
invariant under scaling of the ordinate of P , because their definitions in Eqs. (32) and (15)
include division by N and W , respectively. Scaling of the abscissa involves a scaling of w,
which changes the parametrization of the Lorenz curve, but not the functional form of the
curve itself. This scale invariance is reflected in the fact that W and N are needed along with
the Lorenz curve L(F) to recover the distribution P (w). This means that to each Lorenz
curve there corresponds an entire equivalence class of possible distributions, and that this
equivalence class is isomorphic to (R+)

2
(since N and W are both positive). Conversely,

each equivalence class can be specified by a single representative distribution, obtained by
taking W = N = 1, which we refer to as the canonical form.

It has been shown [9] that the Fokker-Planck equation, Eq. (18), is invariant under this
equivalence relation. That is, for any agent density function P (w) that is a solution to
Eq. (18) with W = N = 1, the distribution P (w) is also a solution with total wealth W and
total number of agents N , given by the transformation:

P (w) =
N

2

W
P

(
w

W/N

)
, (34)

where W and N can be any positive real numbers. Eq. (34) is therefore a two-parameter
relation between every member of the equivalence class and its canonical form representative.
Because P and P are in the same equivalence class, in the sense described above, they will
have exactly the same Lorenz curve. The Lorenz curve may thus be thought of as a property
of the entire equivalence class, rather than any single representative thereof, which makes it
the most appropriate metric for comparison with empirical results.

In the following section, we shall investigate the Lorenz curves for a subcritical solution
with parameters χ and ζ , with ζ < χ, and that of its dual supercritical solution with the
two parameters swapped. We shall demonstrate that the two Lorenz curves are identical to
within an overall scale factor. Specifically, the supercritical Lorenz curve is ζ

χ
< 1 times the

subcritical Lorenz curve. The proof of this assertion will involve using Eqs. (44) and (46) to
show that for a specific supercritical solution, P (w) with total wealth W , its non-oligarchical
population p(w) corresponds to its dual subcritical solution with total wealth Wp, and the
Lorenz curve of the previous one is just a scaling of the latter. Together with the above-
described invariance property of the Lorenz curve, this will establish that it is true between all
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dual solution pairs, even though their total wealths, W and Wp, may differ. This establishes
the one-to-one correspondence between the subcritical and supercritical solutions that is the
hallmark of duality. After establishing this for the macroscopic Fokker-Planck description,
we shall trace the origin of the duality back to the underlying microscopic process, where it
is slightly more difficult to recognize.

4. Duality

4.1. Duality in the macroscopic, Fokker-Planck description

It has been demonstrated [9] that Eq. (18) exhibits a second-order phase transition, in
that the character of its solutions abruptly changes at the critical value ζ = χ. When ζ < χ,
the solutions are subcritical, and when ζ > χ they are supercritical. In the framework of
Eq. (22), we can write these two types of solutions in a unified way by writing c∞ as follows:

c∞ =

{
0 for χ ≥ ζ(
1− χ

ζ

)
W for χ < ζ.

(35)

This phase transition corresponding to the sudden appearance of oligarchy as ζ is increased
is an example of a phenomenon sometimes known as wealth condensation [7].

To investigate the duality between the supercritical and subcritical solutions, we begin
by considering the supercritical case (i.e. ζ > χ). Then, as shown in Eq. (31), the total
wealth of the society W can be written

W = Wp +WΞ, (36)

then by applying Eq. (31) and Eq. (35) to the above equation in the supercritical case, we
have the wealth of the classical part of the distribution,

Wp =
χ

ζ
W, (37)

and that of the oligarchical part,

WΞ =

(
1− χ

ζ

)
W. (38)

That is, a fraction of 1− χ/ζ of the total wealth of the entire society is held by the oligarchy,
while the rest of the population holds the remaining fraction χ/ζ. In the subcritical case, by
contrast, the oligarchy vanishes and the non-oligarchical population holds the entire wealth
of the society, i.e., Wp = W .

Now, let us focus on p(w), the non-oligarchical population part of a supercritical solution,
and see if we can write an integrodifferential equation for it alone. Analogous to Wp, we can
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define variants of the Pareto potentials in Eqs. (14) through (15), for p(w) alone,

Np =

∫ ∞

0

dx p(x) (39)

Ap =
1

Np

∫ ∞

w

dx p(x) (40)

Bp =
1

Np

∫ w

0

dx p(x)
x2

2
(41)

Lp =
1

Wp

∫ w

0

dx p(x)x. (42)

Using Eqs. (23) through (27), we can insert Eq. (22) back into Eqs. (14) through (15) and
derive the relationships between the Pareto potentials for p(w) and those for P (w) as follows,

Np = N (43)

Ap = A (44)

Bp = B (45)

Lp =
ζ

χ
L (46)

Now, with the above equations established, we can insert Eq. (22) back into Eq. (18) and
rewrite the steady-state equation of the Fokker-Planck equation as:

d

dw

[(
Bp +

w2

2
Ap

)
p

]
+ c∞

d

dw

[(
Bp +

w2

2
Ap

)
Ξ

]

︸ ︷︷ ︸
I

(47)

= ζ

(
Wp

Np
− w

)
p+ c∞ζ

(
Wp

Np
− w

)
Ξ

︸ ︷︷ ︸
II

−2χ

[
Np

Wp

(
Bp −

w2

2
Ap

)
+ w

(
1

2
− Lp

)]
p

+2c∞χ

[
Np

Wp

(
Bp −

w2

2
Ap

)
+ w

(
1

2
− Lp

)]
Ξ

︸ ︷︷ ︸
III

. (48)

When considering distributional solutions to the above equation, we can choose any
smooth test function φα(w) with compact support. By multiplying both sides of Eq. (48) by
φα(w), and integrating with respect to w, the contribution of the terms I, II and III are
all zero, leaving the equation:

d

dw

[(
Bp +

w2

2
Ap

)
p

]
= ζ

(
Wp

Np
− w

)
p− 2χ

[
Np

Wp

(
Bp −

w2

2
Ap

)
+ w

(
1

2
− Lp

)]
p (49)

The principal observation of this paper can be seen in the above equation. Notice that
Eq. (49) is of exactly the same form as the original Fokker-Planck equation in steady-state
Eq. (18), but with the redistribution and the WAA coefficients swapped. Recalling that p(w)
is the non-oligarchical part of a supercritical solution P (w), we know from Eq. (49) that
p(w) would correspond to a subcritical solution of Eq. (18). Hence we have established the
promised one-to-one correspondence between subcritical and supercritical solutions, which
we recognize as the key feature of duality.
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4.2. Duality in the microscopic random process

The duality between the supercritical and the subcritical solutions can be also understood
at the microscopic process level. Again, we begin by considering the supercritical case when
χ < ζ , and we return to the random walk process described in Eqs. (5) and (3). We rewrite
these two equations in terms of Wp instead of W by applying Eq. (37),

∆w =
√

γ∆tmin(w, x)η + ζ

(
Wp

N
− w

)
∆t + (ζ − χ)w∆t (50)

E[η] = χ

√
∆t

γ

N

Wp

(w − x) (51)

Notice that the above two equations are of the very same form as Eqs. (5) and (3), aside from
redefinitions of parameters. If we were to apply Eqs. (9) through (11) to compute the drift
coefficient and diffusivity of the corresponding Fokker-Planck equation, we would again end
up with Eq. (17). To gain some insight into the relationship between the non-oligarchical
population and the oligarchy, however, instead of directly averaging over P (w), we apply
Eq. (22) to break up the average defined in Eq. (11) into two contributions,

E [f(η, x)] =
1

N

∫ ∞

0

dx P (x, t)E[f(η, x)]

=
1

N

∫ ∞

0

dx p(x, t)E[f(η, x)]

︸ ︷︷ ︸
Ep[f(η,x)]

+
1

N

∫ ∞

0

dx c∞Ξ(x)E[f(η, x)]

︸ ︷︷ ︸
EΞ[f(η,x)]

. (52)

By breaking up the averages over the non-oligarchical population p(w) and the oligarchy Ξ(w)
in this way, we can likewise break up the drift coefficient and the diffusivity into contributions
from the non-oligarchical population and the oligarchy separately, i.e., D = Dp + DΞ and
σ = σp + σΞ, respectively. Straightforward calculation yields

Dp = lim
∆t→0

Ep
[
∆w2

∆t

]
= 2

(
Bp +

w2

2
Ap

)
(53)

DΞ = lim
∆t→0

EΞ
[
∆w2

∆t

]
= 0 (54)

σp = lim
∆t→0

Ep
[
∆w

∆t

]
= ζ

(
Wp

N
− w

)
+ (ζ − χ)w

−2χ

[
N

Wp

(
Bp −

w2

2
Ap

)
+ w

(
1

2
− Lp

)]
(55)

σΞ = lim
∆t→0

EΞ
[
∆w

∆t

]
= (χ− ζ)w (56)

If we write the Fokker-Planck equation in steady state using Eqs. (53) through Eq. (56), we
obtain Eq. (49) exactly.

From the above derivation, we can see that the random process within the non-oligarchical
population p(w) is equivalent to a subcritical random process with redistribution coefficient
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χ and WAA coefficient ζ swapped, plus an extra term (ζ − χ)w. Remembering that we are
considering the case ζ > χ, we see that this extra term is positive. This extra term is the
wealth flow into the non-oligarchical population due to the tax on the oligarchy. To see this,
we can compute the Ep average of the extra term (χ− ζ)w, obtaining χ(ζ/χ− 1)Wp, which
is exactly the amount of the tax per unit time paid by the oligarchy at tax rate χ.

Conversely, when we compute the EΞ average of the extra term, we obtain a negative term
(χ − ζ)w, balancing the above-described wealth flow into the non-oligarchical population.
This is due to the transaction between the non-oligarchical population and the oligarchy.
Because the oligarchy is a vanishingly small fraction of an agent possessing infinite wealth in
the continuum limit, the WAA model guarantees that the oligarchy wins in every such trans-
action. Therefore, the WAA acts like a “effective tax” on the non-oligarchical population
which is balanced only by the actual redistributive tax on the oligarchy.

The above argument provides a heuristic explanation of why there exists a symmetry be-
tween the redistribution and WAA coefficients. When the wealth flow between the two sys-
tems balance each other, the steady-state is reached. The distribution of the non-oligarchical
population p(w) would then satisfy Eq. (49), and would correspond to a subcritical solution
of Eq. (18).

5. Numerical Results

Figure 1 confirms the presence of the duality by comparing two numerical solutions of
Eq. (18) with different parameters, corresponding subcritical and supercritical cases. These
numerical solutions are found using a shooting method, as described in Appendix B of [9].
We can see that the wealth distribution of a subcritical solution when χ = 0.03, ζ = 0.02
and W = 1 (plotted in green) is identical to the wealth distribution for the non-oligarchical
population of a supercritical solution when χ = 0.02, ζ = 0.03 and W = 1.5 (plotted in red).

0 0.2 0.4 0.6 0.8 1
w

0

1

2

3

4

5

6

P
(w

)

Duality between supercritical solution and subcritical solution

p(w) with χ = 0.03, ζ = 0.02, W = 1, N = 1
P(w) with χ = 0.02, ζ = 0.03, W = 1.5, N = 1

Figure 1: Comparison of the wealth distribution of a subcritical solution P (w) and the wealth distribution
of the non-oligarchical population of a supercritical solution p(w), with the swapping of the redistribution
coefficient and WAA coefficient.

From a practical point of view, the duality provides an effective way to solve for a
supercritical distributional solution to Eq. (18). If we want to solve for a supercritical
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distributional solution with redistribution coefficient χ and WAA coefficient ζ and total
wealth W , we can instead solve for the dual subcritical classical solution with the two
parameters swapped and with total wealth equal to χ

ζ
W . Then we can simply augment this

solution by the addition of an oligarchy with wealth (1− χ
ζ
)W .

Figure 2 shows the Lorenz curves between the subcritical solution and the supercritical
solution by swapping the two parameters. We can see that while the Lorenz curve for the
subcritical solution is a curve from (0, 0) to (1, 1), the Lorenz curve for the supercritical
solution is just a scaling of the previous one by a factor of χ

ζ
and hence intersecting the right

boundary at (1, χ
ζ
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2
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0.4
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0.8

0.9

1
Duality in Lorenz curve

χ

ζ
= 0.667

Sub-critical χ = 0.03 and ζ = 0.02
Super-critical χ = 0.02 and ζ = 0.03

Figure 2: Comparison of the Lorenz curves of a subcritical solution (solid curve) and its dual supercritical
solution (dotted curve). When scaled vertically, the curves perfectly coincide.

From a practical point of view, the duality provides a numerical advantage in solving for
the Lorenz curve. To compute the Lorenz curve for a supercritical distributional solution,
we can just compute that for its dual subcritical classical solution and scale it appropriately.

6. Discussion and Conclusion

We have demonstrated a very non-trivial one-to-one correspondence between two classes
of steady-state solutions of the agent-based asset-exchange model considered in [9]. The first
are distributional solutions of the corresponding Fokker-Planck equation, which are charac-
terized by wealth condensation and oligarchy, and which we refer to as supercritical solutions.
The second are classical solutions of the corresponding Fokker-Planck equation, which exhibit
neither wealth condensation nor oligarchy, and which we refer to as subcritical solutions. We
have identified this one-to-one correspondence as an example of the phenomenon of duality.

More specifically, we have shown that the wealth distribution of the non-oligarchical
part of a supercritical distribution is precisely equal to the subcritical solution obtained by
swapping the redistribution and WAA coefficients. If we think of the ratio of these two
coefficients as the order parameter z = ζ/χ, then the swapping of the two coefficients is
equivalent to taking the inverse of z. As noted earlier, this is very similar to the Krammer-
Wannier duality where the free energy of an Ising model with a high temperature is “dual”
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to an Ising model with the inverse of the temperature of the previous one. Hence, the order
parameter z in this context plays the role of temperature in the Ising model.

We presented two mathematical arguments explaining the origin of the above-described
duality, one based on the macroscopic Fokker-Planck description of the agent steady state,
and the other based on the microscopic process-level description thereof. From the micro-
scopic description, we were able to identify the crucial balance between the effects of taxation
and redistribution on the oligarchy on one hand, and those of biased transaction outcomes
on the non-oligarchical population on the other.

It should be noted that hints of the existence of this duality were present in earlier work.
In [9], for example, it was noted that for very large values of w, the distribution exhibits an
asymptotic Gaussian tail of the form:

exp
(
−a|ζ − χ|w2 − bw

)
. (57)

With hindsight, it is evident that the above equation is indicative of the symmetry described
in this paper – if you swap χ and ζ , the Gaussian tail would decay at exactly the same rate 4.
From the result of this paper, however, we can see this symmetry is indicative of a much
deeper exact symmetry between the subcritical and supercritical steady-state solutions to
the model.

As noted above, the presence of duality has already had practical benefit in reducing
the numerical work involved in finding supercritical solutions of the model. We hope that it
will also have theoretical benefit in allowing us to understand and analyze the mathematical
properties of this fascinating model of wealth distribution.
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[7] J.-P. Bouchaud and M. Mézard, “Wealth condensation in a simple model of the econ-
omy,” Physica A 282 (2000) 536–545.

[8] Z. Burda, D. Johnston, J. Jurkiewicz, M. Kamiński, M.A. Nowak, G. Papp, I. Zahed,
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