
 

 

 





Abstract

Convection Heat Transfer in the Presence of Apparent Slip

by

Lisa Steigerwalt Lam

Chair: Dr. Marc Hodes

Structured surfaces, e.g., superhydrophobic surfaces or superoleophobic surfaces are a

class of surfaces engineered on the micro- and nano-scale that resist wetting and decrease

hydrodynamic drag. The capacity to design these surfaces with a variety of textures and

coatings continues to develop and they are being considered for a wide variety of applica-

tion areas ranging from retarding frost formation on airplane wings to drag reduction in

microchannel flows. This dissertation addresses four problems related to heat transfer to

flows over structured surfaces.

We first investigate the problem of heat transfer in a thermally developing, steady, laminar

Couette flow in the presence of hydrodynamic and thermal slip. Fluid temperature at the

inlet to a parallel plate channel is prescribed, as are various combinations of isothermal

and adiabatic boundary conditions along its surfaces. Analytical expressions incorporating

arbitrary slip are developed for temperature profiles, and developing and fully developed

Nusselt numbers. Representative results show the presence of thermal slip lowers the Nusselt

number relative to the no-slip value.

The second problem we consider is liquid cooling in a microgap lined with microscale
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ridges oriented parallel to the flow. Using available expressions for Nusselt number and

Poiseuille number as a function of hydrodynamic and thermal slip length, thermal resistance

expressions for a Poiseuille flow in a parallel plate channel are developed in order at assess

the relative contributions of convection and caloric heat transfer. Water and a liquid metal,

galinstan, are considered as the working fluids. Notably heat transfer is enhanced with the

use of structured surfaces in the selected geometry. We develop a dimensionless expression

to evaluate the tradeoff between the pressure stability of a liquid-solid-gas system and hy-

drodynamic slip. Finally, we consider entrance effects and the temperature dependence of

thermophysical properties and quantify their the effect on thermal resistance.

The third problem we consider is evaporation and condensation across menisci between

ridge structures. We assume that the gaps between ridges, where the vapor phase resides, are

closed systems; therefore, the net rate of heat transfer across menisci is zero. The reduction

in apparent thermal slip length due to evaporation and condensation relative to the limiting

case of an adiabatic meniscus is quantified. Results suggest that interfacial evaporation

and condensation need be considered in the design of microchannels lined with structured

surfaces for direct liquid cooling of electronics applications. A quantitative means to do so

is elucidated.

The final problem we consider is the effect of meniscus curvature on thermal slip length.

Perturbation theory is used to develop expressions that account for the change to temperature

that occurs in the limit of small deflections to an adiabatic meniscus. Constant heat flux

boundary conditions are considered at the tips of the ridges. Results show that slip length

is sensitive to meniscus protrusion angle at low solid fractions. When liquid pressure is

higher than that of the gas, a negative protrusion angle exists and heat transfer is enhanced.

Conversely, the presence of bubble mattresses formed because the pressure in the gas is

higher than that of the liquid reduces heat transfer to the liquid at low protrusion angles.
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Chapter I

Introduction

The ability to manipulate surface structure and chemistry at the micro- and nanoscale

allows the designer to tailor the wetting interactions between liquids and solids in unprece-

dented ways [1]. Understanding the details of these interactions is of importance in the

design of micro- and nanofluidic platforms for use in a variety of application areas includ-

ing: biotechnology [2], thermal management of electronics [3] and energy applications [4].

Structured surfaces, e.g., superhydrophobic surfaces or superoleophobic surfaces, are a class

of engineered surfaces on the micro- and nanoscale, that resist wetting and decrease hydro-

dynamic drag.

In the so-called Cassie-Baxter state [5], interfacial forces along triple contact lines prevent

wetting of the surface, and a vapor phase1 is trapped between the base of the surface and a

liquid-vapor interface (or meniscus) as per Fig. 1.1. This introduces a composite boundary

condition on the flow composed of no-slip liquid-solid and low-shear menisci [1]. Additionally,

heat transfer to the liquid is affected by the details of the composite interface. It occurs

primarily across the liquid-solid interface and is restricted at the meniscus due to the low

conductivity of the vapor phase. When a channel scale point of view is adopted for flows

over structured surfaces, the liquid is observed to slip at the composite interface and the

temperature at the surface exhibits a discontinuity with that of the flow.

1The cavities may contain a combination of vapor and noncondensable gas depending on the application.
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Figure 1.1: Sketch of a composite surface. Liquid is suspended on the tips of the structures and
vapor fills the space below.

1.1 Slip in Rarefied Gases

In the study of transport in rarefied gases, slip expressions are used to account for the

discontinuities of velocity and temperature at the surface of a tube or duct which result

from interactions at the molecular level in the Knudsen layer. The Knudsen number, Kn,

is used as the criterion for determining whether corrections for temperature and velocity

are required. Kn = λ/Lc, where λ is the molecular mean free path length and Lc is the

characteristic length of the channel. Gad-el Hak provides criteria for classifying gas flows

[6].2

The correction for velocity employs Navier’s slip boundary condition [7], u = b(∂u/∂n),

where u is the streamwise velocity, n is the direction normal to the surface pointing into

the flow and b is the hydrodynamic slip length. A similar relationship proposed by Poisson3

corrects for the temperature discontinuity such that Tk−Tw = g(∂T/∂n), where Tk is the fluid

temperature at the surface, Tw is the surface temperature, and g is called the temperature

jump distance. Maxwell [9] developed an expression for the hydrodynamic slip length based

on the mean free path, thermophysical properties of the gas and a tangential momentum

2For Kn < 0.001 the continuum state applies. For 0.001 < Kn < 0.1, the gas is treated as a continuum;
however, slip conditions for temperature and velocity exist in the Knudsen layer adjacent to the boundary.
At Kn = 0.1, transition to free molecular flow begins and neither the Navier-Stokes-Fourier equations nor
slip boundary conditions apply.

3According to Kennard [8].
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accommodation coefficient that captures the interaction of the gas molecules with a particular

surface. Similarly, Kennard [8] developed an expression for the temperature jump distance

based on the same properties of the gas and a thermal accommodation coefficient, i.e., the

fractional extent to which gas molecules colliding with the boundary have their mean energy

adjusted as a result of the collision.

Sparrow and Lin [10] used the aforementioned slip expressions in the analysis of low

density gas flows in tubes. They computed Nusselt numbers for fully developed Poiseuille

flow in tubes subjected to constant heat flux and constant temperature boundary conditions.

They showed that hydrodynamic slip increases the Nusselt number and thermal slip decreases

it, but the net effect is always a reduction. Their results are applicable for microchannel

gas flows. Jiji [11] provided several analytical solutions for both Couette and Poiseuille

gas flow through various microchannel geometries with both hydrodynamic and thermal

slip. In two cases, velocity and Nusselt number expressions were derived for Couette flows

where viscous dissipation is considered. In the case of pressure-driven flows, the effects of

increasing mean free path in the streamwise direction were considered, resulting in increasing

Knudsen number, axial velocity variation and pressure gradient variation along the channel

length. Colin [12] provided a comprehensive review of heat transfer in pressure-driven slip

flows of gases in microchannels. He outlined various first-order and second-order forms for

velocity and temperature slip expressions. He summarized work which considers viscous

heating, axial conduction, viscosity and thermal conductivity which vary as a function of

temperature, and thermally developing flow.

1.2 Structured Surfaces

Significantly, molecular slip in rarefied gases and apparent slip on structured surfaces are

equivalent mathematically under many conditions. In the case of liquid flows over structured

surfaces, the phenomenon of slip can be represented as a surface effect [13]. The liquid in

contact with the composite surface exhibits velocity slip and temperature jump, henceforth
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referred to as apparent slip and apparent thermal slip, respectively. The slip boundary

conditions take the same form as those used in rarefied gases; in structured surfaces an

apparent hydrodynamic slip length, b, and an apparent thermal slip length, bt, are used.

1.2.1 Hydrodynamics

There is a significant body of theoretical and experimental work which validates Navier’s

[7] slip model for flow over structured surfaces. Rothstein [14] provided a review of slip on

structured surfaces citing the available literature as of 2010, and some of the more relevant

studies are discussed here. An idealized surface was considered by Philip [15, 16], who derived

velocity profiles for eight cases with flow subject to mixed no-slip and no-shear conditions.

He addressed two cases of interest: one with a periodic array of longitudinal no-shear slots

and one with a periodic array of transverse no-shear slots. In the first case, he presents

an expression for the amount the flow velocity increases far from the surface due to the

presence of the no-shear slots. In the second, he presents a modification to the stream

function that results from the presence the no-shear slots. Slip lengths can be extracted

from both expressions. Building upon the work of Philip [15, 16], Lauga and Stone [17]

analytically studied Poiseuille flow in a circular pipe with an idealized surface with two

geometries: alternating no-slip/no-shear regions transverse to the flow, and alternating no-

slip/no-shear regions parallel to the flow, i.e., ridges oriented perpendicular and parallel

to the flow, respectively. They derived slip length expressions for both geometries show

dependencies on surface topology and length scale.

Ou et al. [18] and Ou and Rothstein [19] were among the first to experimentally demon-

strate drag reduction in the laminar flow of water over a structured surface with a pillar

geometry. They visualized the meniscus and showed that meniscus deflection also affected

drag reduction. Both studies showed that decreasing solid fraction and/or increasing spacing

between structures resulted in drag reduction. Priezjev et al. [20] computed velocity profiles

and effective slip lengths for liquid films in a plane Couette flow subject to mixed boundary
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conditions where the moving surface is no slip and the stationary surface is patterned with

no-slip/no-shear regions. Truesdell et al. [21] experimentally demonstrated drag reduction

in a Couette flow between two surfaces, one of which was superhydrophobic with parallel

ridges. They reported effective slip lengths extracted from torque data. Lee et al. [22] used

a rheometer system to investigate a variety of surfaces structured with pillar and ridge pat-

terns. They reported that gas fraction (1−φs) and pitch are the key parameters influencing

slip length; slip length increases exponentially with gas fraction and linearly with pitch in

agreement with previous work [17].

Ybert et al. [23] provided scaling laws for effective slip length based on surface topology

and reported the dependence of slip length on solid fraction showing that expressions for

slip length have different dependence on solid fraction based on geometry. Using scaling

and a numerical method, Ybert et al. [23] were the first to compute a slip expression for a

two-dimensional array of pillars in the limit of small solid fraction.

Salamon et al. [24] numerically modeled a 3-dimensional periodically fully developed

Poiseuille flow over a structured surface comprised of an array of square pillars. They showed

a velocity profile with a slip length derived from numerical data in close agreement to Navier’s

slip model except in the immediate vicinity of the pillars. Notably, the macroscopic flow

behavior is adequately characterized using an apparent slip model. Analytical and numerical

work has addressed the validity of the shear-free boundary condition at the meniscus for

pressure driven flow over parallel ridges [25] and transverse ridges [26]. The effect of curvature

of the meniscus on slip length has also been studied numerically by Teo and Khoo [27] and

experimentally by Steinberger et al. [28].

1.2.2 Thermal Transport over Structured Surfaces

While structured surfaces can significantly increase volumetric flow rates for a given

pumping power, these surfaces can have a significant and potentially detrimental impact on

convective heat transfer. When the flow near the structures is in the low Peclet number,
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Pec,
4 limit, as is the case in the studies presented here, the local heat transfer can be consid-

ered purely diffusive. The primary heat transfer occurs across the limited area of the tips of

the structures and the meniscus is considered to have low or no thermal conductivity. This

diffusion-dominated heat transfer from the liquid-solid area into the flow near the composite

interface represents a thermal spreading resistance. In the low Pec limit, the thermal slip

length can be treated as a redefined conduction spreading resistance that provides a rela-

tionship between the mean temperature of the source, which is the solid-liquid interface, the

mean temperature of the composite interface and mean heat flux at the composite interface

as discussed by Enright et al. [29].

Such diffusive transport only occurs near the surface in a region whose depth into the

flow is on the order of the characteristic length scale of the structures. The discontinuity

in temperature between the mean temperature of the solid-liquid and composite interfaces

may be treated analytically as a boundary condition on the macroscopic flow. This boundary

condition takes the same form as Poisson’s temperature jump boundary condition for rarefied

gases, Tsl− T = −bt(∂T/∂n), where Tsl and T are the mean temperatures of the solid-liquid

and composite interfaces, respectively, and bt is the apparent thermal slip length based on

surface geometry.

The presence of thermal slip was not considered in early studies of heat transfer across

SSs. Enright et al. [30] studied the effect of hydrodynamic slip on heat transfer reporting a

positive correlation. Maynes et al. [31] numerically studied a fully developed Poiseuille flow

in a parallel plate channel with transverse ridges. Their simulations demonstrated a reduction

in the Nusselt number, Nu, as the relative size of the meniscus is increased. They report a

benefit in heat transfer with respect to pumping power for a certain Reynolds number range.

Also Maynes et al. [32] modeled a thermally developing and hydrodynamically periodic fully

developed flow over transverse ridges with a constant heat flux boundary condition at the

4The Peclet number referred to here is Pec = RecPr where Rec = ρūcl/µ is the Reynolds number at the
composite interface, ūc is the mean velocity at the composite interface, l is the pitch of the structures and
Pr is the Prandtl number of the liquid.
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liquid-solid interface. They treated the meniscus as adiabatic and assumed a one-dimensional

velocity profile to compute a two-dimensional temperature profile using Duhamel’s integral.

They reported Nusselt numbers and temperature profiles as a function of Peclet number and

ridge/cavity geometry.

Recently, Maynes and Crockett [33] analytically modeled Poiseuille flow between parallel

plates lined with ridges oriented parallel to the flow, and they present an expression for

apparent thermal slip length as a function of Nusselt number and slip velocity in agreement

with Inman [34] who derived the same expression in a rarefied gas flow. Notably, in their

analysis they found a nearly one-to-one correspondence between hydrodynamic and thermal

slip lengths of parallel ridges for a constant heat flux boundary condition. Enright et al.

[29] analytically and numerically evaluated a fully developed Poiseuille flow over structured

surfaces in a parallel plate channel. They provide expressions for thermal slip lengths for

isoflux and isothermal solid-liquid interfaces and adiabatic menisci for ridge- and pillar-

type structures based upon expressions for thermal spreading resistances [35]. Numerical

simulations validate the use of the thermal spreading resistance based slip lengths when

the length scale of the structures is much smaller than the channel height. They derive a

relationship between thermal and hydrodynamic slip lengths for parallel ridges, transverse

ridges and pillars where bt/b ≈ 1.0, 2.0 and 1.5, respectively, for a constant temperature

boundary condition. Notably, they derive Poiseuille, Po,5and Nusselt number expressions

for a pressure-driven flow in the presence of hydrodynamic and thermal slip with arbitrary

asymmetric constant heat flux boundary conditions.

Ng and Wang [36] semi-analytically computed thermal slip lengths for isothermal, ridge-

type structures as a function of vapor-phase to liquid-phase thermal conductivity and cavity

depth when isothermal surfaces bounded the vapor phase. When the cavity depth is shallow

compared to structure spacing, conduction through the vapor phase can reduce the thermal

slip length relative to the case of an adiabatic meniscus. For cavity depths on the order of

5Po = fReDh
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the spacing of the structures and larger, conduction through the gas has negligible impact on

slip length. Ng and Wang [36] also semi-analytically computed slip lengths for an isothermal

surface with adiabatic circular or square holes.

1.3 Secondary Effects at the Meniscus

In order to simplify modeling, secondary effects at the meniscus are often considered

negligible. However, in the presence of heat transfer, phase change at the interface and

meniscus curvature will alter thermal slip lengths.

1.3.1 Phase Change

A common assumption that is made regarding the meniscus is that it is adiabatic. How-

ever, e.g., in the case of water, evaporation and condensation will produce heat and mass

transfer across the meniscus. Carey [37] and Schrage [38] provide expressions for mass, mo-

mentum and energy transport across an interface which separates a liquid and its vapor;

these will be discussed in Chapter 4. Evaporation and condensation of droplets on superhy-

drophobic surfaces have been studied [39–41], but the effect of evaporation and condensation

on apparent slip has not been addressed.

1.3.2 Meniscus Curvature

A number of studies have shown that the shape of the meniscus and the degree of pro-

trusion significantly affect drag. Ybert et al. [23] derived expressions for secondary effects

such as a finite shear force at the meniscus and pressure-induced curvature of the meniscus.

They assumed a meniscus with a positive protrusion angle, i.e., positive pressure in the gas.

In the limit of large solid fraction, the correction to slip length is negatively proportional to

the cavity fraction and the height of the meniscus. In the limit of small solid fraction, the

correction to slip length varies inversely with curvature such that for high curvature the slip

length is negatively impacted. They note for small pressure differences or low curvatures,
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slip lengths are less sensitive to curvature effects. Bocquet and Barrat [42] discuss the anal-

ogy between thermal slip and hydrodynamic slip. We note that these scaling laws are also

applicable to thermal slip in the presence of curvature.

Sbragaglia and Prosperetti [43] used perturbation theory to study the effect of small

deflections in the meniscus as a function of shear free fraction. They identify two significant

effects that result. The first is the effect on the change in the cross-sectional area of the flow

due to the deformation at the meniscus, and the second is the change in the velocity field.

They provide hydrodynamic slip length expressions for parallel ridges for a pressure driven

flow with a finite channel height and for shear flow with an infinite channel height. They use

a small parameter ε in their expressions but they do not account for the fact the ε changes

with shear-free fraction.

Steinberger et al. [28] studied menisci formed on a surface composed of a square lattice of

cylindrical holes. They used a dynamic surface force apparatus to measure viscous damping

forces which they correlated to slip lengths. They experimentally studied two cases, liquid

in the Cassie and Wenzel states. When the liquid was in the Cassie state, gas bubbles were

trapped in the holes with menisci protruding upward in the shape of spherical caps. In the

Wenzel state, the surface and cavities were fully wetted. They found a lower effective slip

length in the presence of microbubbles than in the wetted state. Notably, roughness caused

by the presence of these bubbles increased friction at the surface. They also performed

numerical simulations of a Couette flow over menisci with the same geometry at various

contact angles. They found that the shape and protrusion angle of the meniscus significantly

affected slip length. For negative protrusion angles slip length increased with protrusion

angle. The maximum value of slip length was reached at angle of zero. For positive protrusion

angles, slip length was degraded as protrusion angle increased and became negative above a

critical value.

Hyvaluoma and Harting [44] used a mesoscopic lattice Boltzmann simulation to study

Couette flow over structured surfaces with attached gas bubbles. They accounted for de-
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formation of the bubbles due to viscous forces. They found slip length had a shear rate

dependence. Increasing the shear rate decreased the height of the bubbles therefore reducing

the roughness caused by the bubbles. They report slip length as a function of protrusion

angle of the bubbles and found the same qualitative relationship between protrusion angle

and slip length in agreement with Steinberger et al. [28].

Two analytical studies have addressed the effect of meniscus curvature in the limit of

low shear-free fraction. Crowdy [45] used a series of conformal maps to model a meniscus

between parallel ridges. He derived an expression for slip length as a function of solid fraction

and protrusion angle which is applicable for a periodic distribution of ridges in the limit of

large solid fractions. Davis and Lauga [46] used a two-dimensional model of shear flow past

an array of bubbles trapped between transverse ridges and provide an expression to calculate

the critical protrusion angle. Their results also show the asymmetry between the effects of

negative and positive protrusion angles.

Teo and Khoo performed numerical studies of the effect of meniscus curvature on drag

for menisci formed between parallel ridges for both Poiseuille and Couette flows [27] and in

Poiseuille flow between transverse ridges [47]. For transverse ridges, they report a critical

protrusion angle θc ≈ 62 − 65◦ at which the slip length becomes zero that is independent

of shear-free fraction, geometry and flow type but which decreases as channel height is

reduced for a given shear-free fraction. Above θc, friction was enhanced. For parallel ridges,

slip length displayed asymmetry with respect to positive and negative protrusion angles;

however, there was no critical angle at which drag reduction became zero. Instead the

slip length exhibited a monotonic increase with protrusion angle even for large angle values

up to 90◦. They also found that the ratio of parallel ridge slip length to transverse ridge

slip length did not remain constant as protrusion angle was varied. Notably, their results

showed a more positive benefit in drag reduction for menisci between parallel ridges than

for transverse ridges holding shear-free fraction, protrusion angle and normalized rib spacing

constant. Teo and Khoo [47] correlated their results with those of Davis and Lauga [46],
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Crowdy [45] and Ng and Wang [48] showing good agreement between the numerical results

and the analytical models.

1.4 Liquid Cooling of Electronics

Structured surfaces are being considered for a a variety of applications. We focus here

on internal flows across these surfaces where they would line the walls of a microgap or

minichannel embedded in an electronic device. As power density and heat load requirements

for electronic devices continue to rise, the need for effective cooling alternatives increases.

Single-phase direct liquid cooling of electronics in a microchannel configuration was first

investigated by Tuckerman and Pease [49] in 1981. Numerous studies have followed, e.g.,

[50–53].

In mini- and micro- channels friction forces play a more significant deterrent to liquid

flow due to the higher ratio of surface area to cross-sectional area. The addition of structured

surfaces has the potential to compensate for the added friction by reducing drag. However,

heat transfer will also be impacted and as we show in the following chapters, the type of

impact and magnitude will be determined by a variety of factors e.g., wetting interactions

of the liquid-gas-solid system, the geometry of the channel, the thermophysical properties

of the working fluid, boundary conditions on the flow as well effects at the interface such as

meniscus curvature and phase change.

1.5 Organization of Thesis

This dissertation contains six chapters, including four journal papers, and addresses heat

transfer on two scales. Chapters 2 and 3 address heat transfer to Couette and Poiseuille

flows, respectively, on the scale of a microchannel where structured surfaces are assumed on

the channel walls. Chapters 4 and 5 address heat transfer near the structures on a scale

on the order of the pitch of the structures. They address topics which have heretofore been
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considered negligible: evaporation and condensation across the meniscus and curvature of

the meniscus. Chapter 6 summarizes results and conclusions.
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Chapter II

Nusselt Numbers for Thermally Developing Couette

Flow with Hydrodynamic and Thermal Slip1

Abstract

The effects of hydrodynamic and thermal slip on heat transfer in a thermally developing,

steady, laminar Couette flow are investigated. Fluid temperature at the inlet to a parallel

plate channel is prescribed, as are various combinations of isothermal and adiabatic bound-

ary conditions along its surfaces. Analytical expressions incorporating arbitrary slip are

developed for temperature profiles, and developing and fully developed Nusselt numbers.

The results are relevant to liquid and gas flows in the presence of apparent and molecular

slip, respectively.

2.1 Introduction

Developing temperature profiles for Couette flow were first computed in 1951 by Vo-

gelpohl [54], who calculated those generated by viscous dissipation in flow between two

insulated parallel plates. Several studies on plane Couette flow and Poiseuille-Couette flow

followed and provided Nusselt numbers for various thermal boundary conditions [55–58].

1This work has appeared in ”Nusselt Numbers for Thermally Developing Couette Flow With Hydrody-
namic and Thermal Slip,” L. Steigerwalt Lam, C. Melnick, M. Hodes, G. Ziskind, and R. Enright, Journal
Heat Transfer 136(5), 2014.
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Insight into the entrance behavior was limited by the number of eigenvalues computed.

S̆esták and Rieger [59] developed temperature profiles and Nusselt number expressions with

a sufficient number of eigenvalues to capture entrance behavior for the four sets of thermal

boundary conditions considered here in the presence of slip. Couette flow has also been

studied in rarefied gas flow by, e.g., [60–64], but to the authors’ knowledge, Nusselt numbers

which account for arbitrary slip at the boundaries in a Couette flow do not exist in the

literature.

In the context of apparent slip flows, where slip can be tailored independently on the

respective boundaries, several combinations of boundary conditions are possible that are not

typically considered in the study of molecular slip. These effects on convective heat transfer

have not been considered and this point motivates this chapter.

In section 2, we present the governing equations for an structured surface-enhanced steady

laminar plane Couette flow that is thermally developing [56, 59]. In section 3, a general infi-

nite series solution is developed that accounts for hydrodynamic and thermal slip. Analytical

expressions in terms of Airy functions for the temperature field, bulk temperature and Nus-

selt numbers are derived for four sets of thermal boundary conditions. Each case is analyzed

with four representative sets of hydrodynamic and thermal slip lengths. In section 4, temper-

ature profiles and Nusselt number plots are presented. Finally, the impact of hydrodynamic

and thermal slip on thermally developing transport in a Couette flow is discussed. The main

contribution of this work is to provide Nusselt number expressions for a Couette flow which

account for arbitrary hydrodynamic and thermal slip.

2.2 Problem Formulation

2.2.1 Hydrodynamics

The relevant form of the x -momentum equation for hydrodynamically fully developed

Couette flow is

d2u

dy2
= 0, (2.1)
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where u is the streamwise velocity, and y is the spanwise coordinate originating at the sta-

tionary surface. In the presence of hydrodynamic slip, both the stationary and the moving

surfaces are taken to be composite interfaces comprised of liquid-solid and liquid-vapor re-

gions, and the respective boundary conditions are

u = bs
du

dy

∣∣∣∣
y=0

(2.2)

u = Uo − bm
du

dy

∣∣∣∣
y=H

, (2.3)

where H is the distance between surfaces, bs and bm are the hydrodynamic slip lengths at

the stationary and moving surfaces, respectively, and Uo is the velocity of the liquid-solid

interface at the moving surface. The liquid-vapor interface is assumed to be flat and shear

free.
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Figure 2.1: Representative fluid velocity profiles for a Couette flow with 4 possible combinations of
hydrodynamic slip.

The streamwise velocity profile is

u =
Uo

H + bs + bm
(y + bs), (2.4)
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and the mean velocity is

um =
Uo

H + bs + bm

(
H

2
+ bs

)
. (2.5)

Figure 2.1 shows the velocity profiles associated with the four possible combinations of zero

and finite slip at each surface.

2.2.2 Heat Transfer

The thermal energy equation in the absence of viscous dissipation and axial conduction

in the case of the thermally developing flow considered here is

u
∂T

∂x
= α

∂2T

∂y2
, (2.6)

where α is the thermal diffusivity, T is the liquid temperature and x is the streamwise

coordinate originating at the channel entrance, where uniform inlet temperature, Tin, is

assumed.

Thermophysical properties are considered constant. The possibility of Marangoni stresses

and thermal creep caused by the temperature field at the wall are neglected, as are potential

evaporation and condensation effects along the liquid-vapor interface. We consider the four

combinations of thermal boundary conditions at the stationary and moving surfaces studied

by S̆esták and Rieger [59] and depicted in Fig. 2.2 in the absence of slip. This provides a

baseline for validating our analytical solutions.

In Case A, the temperatures of the liquid-solid interfaces on both surfaces are maintained

at equal and constant temperature, Tp. Case B is the same as Case A with the exception

that the temperature of the liquid-solid interface on the moving surface is maintained at the

inlet temperature, Tin. For Case C, the liquid-solid interface on the stationary surface is

maintained at Tp, and the moving surface is adiabatic. Finally, for Case D, the liquid-solid

interface on the moving surface is maintained at Tp, and the stationary surface is adiabatic.
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Figure 2.2: Sketch of temperature profiles for four thermal boundary conditions for Cases A - D in
the absence of slip.

Schematic temperature profiles in the presence of thermal slip are shown in Fig. 2.3 for

each case. When thermal slip is present, it is manifested as a temperature discontinuity

between the temperature of the liquid-solid interface and that of the liquid evaluated at the

composite interface. The thermal boundary conditions which account for thermal slip are

Ts − T = −bt,s
∂T

∂y

∣∣∣∣
y=0

for x > 0 (2.7)

Tm − T = bt,m
∂T

∂y

∣∣∣∣
y=H

for x > 0, (2.8)

where Ts and Tm are the temperatures of the liquid-solid interfaces at each surface, and, when

evaluated at the surface, the liquid temperature, T , equals the area-averaged temperature

of the composite interface. bt,s and bt,m are the thermal slip lengths at the stationary and

moving surfaces, respectively.

Temperature profiles for each thermal case are evaluated with four combinations of slip

conditions which are itemized in sub-cases. Sub-case 1 is the no slip case where the surface

may be assumed to be a uniform liquid-solid interface across the entire boundary. Sub-case

2 has slip present at the stationary surface and zero slip at the moving surface. Sub-case

3 has slip present at the moving surface and zero slip at the stationary surface. Finally, in
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sub-case 4, slip is present at both surfaces.
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Figure 2.3: Sketch of temperature profiles for four thermal boundary conditions for Cases A - D in
the presence of slip.

We have chosen to model the particular case where the thermal slip length and hydro-

dynamic slip length are equal, b = bt, corresponding to flow over parallel ridges subject to a

constant temperature boundary condition. Velocity slip and temperature jump are present

concurrently; near the surface both hydrodynamic and thermal behavior are strictly diffusive

with the same effective boundary condition in this case. The choice of slip length is arbitrary;

however, a hydrodynamic slip length on the order of the height of the channel is requisite to

influence the flow. The magnitude of the dimensionless slip length is set to half the channel

dimension, b∗ = H/2. This value is in the range which is commonly used in analytical and

numerical studies [13, 65]
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2.3 Analytical Solution

2.3.1 Non-dimensionalization

The preceding equations are rendered dimensionless by

x∗ =
2x/H

ReDh
Pr

(2.9)

y∗ = y/H (2.10)

T ∗ =
Tp − T
Tp − Tin

(2.11)

u∗ = u/Uo (2.12)

u∗m = um/Uo (2.13)

b∗s = bs/H (2.14)

b∗m = bm/H (2.15)

b∗t,s = bt,s/H (2.16)

b∗t,m = bt,m/H (2.17)

H∗ = H/(H + bs + bm), (2.18)

where ReDh
= 2Hum/ν.2 The dimensionless streamwise velocity profile and the dimension-

less mean velocity become

u∗ =
y∗ + b∗s

1 + b∗s + b∗m
(2.19)

u∗m =
1/2 + b∗s

1 + b∗s + b∗m
. (2.20)

2We use um rather than Uo in the Reynolds number. This has the effect of normalizing the mass flow
rate for various hydrodynamic slip boundary conditions and allows one to compare temperature profiles at
a given dimensionless channel length to determine the relative amount of thermal energy absorbed by the
fluid for different boundary conditions.
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The dimensionless thermal energy equation is

∂2T ∗

∂y∗2
=

2(y∗ + b∗s)

1 + 2b∗s

∂T ∗

∂x∗
. (2.21)

Table 2.1 provides the dimensionless thermal boundary conditions for the four thermal cases

considered.

2.3.2 General Solution

The dimensionless thermal energy equation is solved for the dimensionless temperature

field by using the method of separation of variables. Assuming a solution of the form

T ∗(x∗, y∗) = X(x∗)Y (y∗) and a separation constant of -λ2, it becomes

dX

dx∗
+ λ2X = 0 (2.22)

d2Y

dy∗2
+

2(y∗ + b∗s)

1 + 2b∗s
λ2Y = 0. (2.23)

Treating the cases of λ = 0 and λ 6= 0 separately, the solution to Eq. (2.22) is

X(x∗) =

 A, λ = 0

Be−λ
2x∗ , λ 6= 0.

(2.24)

For λ = 0, the solution to Eq. (2.23) is Y (y∗) = C+Dy∗. By defining z(y∗) = −21/3λ2/3(y∗+

b∗s)/(1 + 2b∗s)
1/3, Eq. (2.23) is transformed into the Airy equation,

d2Y

dz2
− z(y∗)Y = 0 (2.25)

and the solution becomes:

Y (y∗) =

 C +Dy∗, λ = 0

EAi[z(y∗)] + FBi[z(y∗)], λ 6= 0.
(2.26)
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where Ai and Bi are Airy functions of the first and second kind, respectively.

Defining G = AC, I = AD, Jn = BC, Kn = F/E, and

zn(y∗) = −21/3λ2/3n (y∗ + b∗s)/(1 + 2b∗s)
1/3 (2.27)

where λn are an infinite number of eigenvalues found from the eigencondition given for each

case. The dimensionless temperature solution is of the form

T ∗ = G+ Iy∗ +
∞∑
n=1

Jne
−λ2nx∗

{
Ai[zn(y∗)]+

KnBi[zn(y∗)]
}
. (2.28)

By applying specific boundary conditions and choosing hydrodynamic and thermal slip

lengths, a temperature solution follows.

Bulk temperature, Tb, equals
∫ H
0
uTdy/

∫ H
0
udy. In dimensionless form it becomes

T ∗b =
2

2b∗s + 1

∫ 1

0

(y∗ + b∗s)T
∗dy∗, (2.29)

and it may be found by integrating Eq. (2.28) term by term. A surface energy balance at

each composite interface yields the succeeding equations [66]

hs(Ts − Tb) = −k∂T
∂y

∣∣∣
y=0

, (2.30)

hm(Tm − Tb) = k
∂T

∂y

∣∣∣
y=H

, (2.31)

where hs and hm are the local heat transfer coefficients at the stationary and moving surfaces,

respectively, and k is the fluid thermal conductivity. Substituting dimensionless variables

and rearranging, the local Nusselt numbers, Nu = hH/k, at the stationary and moving
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surfaces become, respectively,

Nus =
(∂T ∗

/
∂y∗)y∗=0

T ∗b − T ∗s
, (2.32)

Num = −
(∂T ∗

/
∂y∗)y∗=1

T ∗b − T ∗m
. (2.33)

The total Nusselt number is defined as

NuT = Nus + Num, (2.34)

for Case A only. Nusselt numbers are unique for each case and must be determined based

on the choice of thermal boundary conditions, hydrodynamic and thermal slip lengths.

2.3.3 Case A

Substituting Eq. (2.28) into the boundary condition at the stationary surface yields

G = b∗t,sI (2.35)

and

Kn = −
Ai[zn(0)]− b∗t,sz′n(y∗)Ai′[zn(0)]

Bi[zn(0)]− b∗t,sz′n(y∗)Bi′[zn(0)]
. (2.36)

Substituting Eq. (2.28) into the boundary condition at the moving surface yields G = I = 0

and the eigencondition for Case A,

Ai [zn(1)] +KnBi [zn(1)] (2.37)

+ b∗t,mz
′
n(y∗) {Ai′ [zn(1)] +KnBi

′ [zn(1)]} = 0.

Each eigenvalue must have one corresponding linearly independent eigenfunction. For an

arbitrary set of hydrodynamic and thermal slip lengths, the left-hand side of Eq. (2.37)

23



is an even function of λn. Thus, negative eigenvalues produce a set of linearly dependent

eigenfunctions and are discarded.

Applying the boundary condition at the channel entrance, Eq. (2.28) becomes

∞∑
n=1

Jn {Ai[zn(y∗)] +KnBi[zn(y∗)]} = 1. (2.38)

Equation (2.23) and the boundary conditions in the y∗ direction constitute the Sturm-

Liouville system [67]. The property of orthogonality is used to find Jn. Both sides of Eq.

(2.38) are multiplied by the mth eigenfunction and the weighting factor, 2(y∗+ b∗s)/(1 + 2b∗s)

from Eq. (2.23), and integrated across the domain with respect to y∗. Since the mth and

nth terms are orthogonal with respect to the weighting function, all terms in the summation

integrate to zero except when m = n, and Jn becomes

Jn =

∫ 1

0

{
Ai[zn(y∗)] +KnBi[zn(y∗)]

}
(y∗ + b∗s)dy

∗
/∫ 1

0

{
Ai[zn(y∗)]+

KnBi[zn(y∗)]
}2

(y∗ + b∗s)dy
∗. (2.39)

The symbolic form of Jn is rather cumbersome; therefore, it is not shown. Equation (2.39)

is evaluated in Mathematica 8.0.1.0 which produces values for Jn corresponding to each

eigenvalue. The dimensionless temperature for Case A is

T ∗ =
∞∑
n=1

Jne
−λ2nx∗ {Ai [zn(y∗)] +KnBi [zn(y∗)]} . (2.40)

The corresponding dimensionless bulk temperature is

T ∗b =
21/3

(1 + 2b∗s)
1/3

∞∑
n=1

Jnλ
−4/3
n e−λ

2
nx
∗
{
Ai′ [zn(1)]−

Ai′ [zn(0)] +Kn (Bi′ [zn(1)]−Bi′ [zn(0)])
}
. (2.41)
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The local Nusselt number at the stationary surface becomes

Nus =

−
∞∑
n=1

Lne
−λ2nx∗

∞∑
n=1

Mne
−λ2nx∗

, (2.42)

where

Ln = Jnλn
2/3 {Ai′ [zn(0)] +KnBi

′ [zn(0)]} (2.43)

Mn = Jnλ
−4/3
n

{
Ai′ [zn(1)]− Ai′ [zn(0)]

+Kn (Bi′ [zn(1)]−Bi′ [zn(0)])
}
. (2.44)

The local Nusselt number at the moving surface becomes

Num =

∞∑
n=1

Nne
−λ2nx∗

∞∑
n=1

Mne
−λ2nx∗

, (2.45)

where

Nn = Jnλn
2/3Ai′ [zn(1)] +KnBi

′ [zn(1)]. (2.46)

The fully developed values of Nusselt numbers are equal to the ratio of the leading coefficients

of the numerator and denominator and can be computed for selected slip lengths with one

eigenvalue.

2.3.4 Case B

Case B is the same as Case A, except the moving surface is maintained at the inlet

temperature, Tin, rather than Tp. This results in a non-homogeneous boundary condition at

the moving surface which is accommodated by the use of the terms associated with λ = 0.
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Applying the boundary conditions in the y∗ direction, the dimensionless temperature

profile for Case B becomes

T ∗ =
b∗t,s + y∗

1 + b∗t,s + b∗t,m
+
∞∑
n=1

Jne
−λ2nx∗

{Ai [zn(y∗)] +KnBi [zn(y∗)]} , (2.47)

where Kn and the eigencondition are the same as for Case A. The Sturm-Liouville system

requirement that the boundary conditions be homogeneous is satisfied by the second term

in Eq. (2.47) [68]. The orthogonality relation corresponding to the Sturm-Liouville system

is used to find Jn,

Jn =

∫ 1

0

(
1 + b∗t,m − y∗

1 + b∗t,s + b∗t,m

){
Ai [zn(y∗)] +

KnBi [zn(y∗)]
}

(y∗ + b∗s)dy
∗
/∫ 1

0

{
Ai [zn(y∗)] +

KnBi [zn(y∗)]
}2

(y∗ + b∗s)dy
∗. (2.48)

The dimensionless bulk temperature is

T ∗b =
2 + 3b∗s + 3b∗t,s + 6b∗sb

∗
t,s

3(1 + 2b∗s)(1 + b∗t,s + b∗t,m)
+

21/3

(1 + 2b∗s)
1/3

∞∑
n=1

Jnλ
−4/3
n e−λ

2
nx
∗
{
Ai′ [zn(1)]−

Ai′ [zn(0)] +Kn (Bi′ [zn(1)]−Bi′ [zn(0)])
}
. (2.49)

The local Nusselt number at the stationary surface becomes

Nus =

1
1 + b∗t,s + b∗t,m

−
∞∑
n=1

One
−λ2nx∗

2 + 3b∗s + 3b∗t,s + 6b∗sb
∗
t,s

3(1 + 2b∗s)(1 + b∗t,s + b∗t,m)
+
∞∑
n=1

Pne
−λ2nx∗

, (2.50)
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where

On = −Jnz′n(y∗) {Ai′ [zn(0)] +KnBi
′ [zn(0)]} (2.51)

Pn = Jn
21/3λ−4/3n

(1 + 2b∗s)
1/3

{
Ai′ [zn(1)]

− Ai′ [zn(0)] +Kn

(
Bi′ [zn(1)]−Bi′ [zn(0)]

)}
. (2.52)

The local Nusselt number at the moving surface becomes

Num =

1
1 + b∗t,s + b∗t,m

−
∞∑
n=1

Qne
−λ2nx∗

1 + 3b∗s + 3b∗t,m + 6b∗sb
∗
t,m

3(1 + 2b∗s)(1 + b∗t,s + b∗t,m)
−
∞∑
n=1

Pne
−λ2nx∗

, (2.53)

where

Qn = −Jnz′n(y∗) {Ai′ [zn(1)] +KnBi
′ [zn(1)]} . (2.54)

2.3.5 Case C

In Case C, the stationary surface is maintained at Tp, and the moving surface is adiabatic.

The eigencondition for Case C is

Ai′ [zn(1)] +KnBi
′ [zn(1)] = 0. (2.55)

Expressions for the dimensionless temperature and associated constants, Eqs. 2.36, 2.39 and

2.40 are the same as those of Case A. The Nusselt number at the moving surface is 0, and

the Nusselt number at the stationary surface is found with Eq. (2.42). Eigenvalues are found

based on selected slip lengths which result in distinct solutions for Eqs. 2.36, 2.39, 2.40 and

2.42.
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2.3.6 Case D

In Case D, the stationary surface is adiabatic, and the moving surface is maintained at

Tp. Application of the boundary condition on the stationary surface yields I = 0 and

Kn = −Ai
′[zn(0)]

Bi′[zn(0)]
. (2.56)

Application of the boundary condition at the moving surface yields G = 0, and Eq. (2.37)

does not change. Substituting Eq. (2.56) into Eq. (2.37) yields the eigencondition for Case

D,

Ai [zn(1)] +KnBi [zn(1)]

+ b∗t,mz
′
n(y∗) {Ai′ [zn(1)] +KnBi

′ [zn(1)]} = 0. (2.57)

The dimensionless temperature expression, Jn, and Nusselt number expressions are the

same as for Case A. There is no heat transfer at the stationary surface; the Nusselt number

at the moving surface is found from Eq. (2.45). Eigenvalues are found based on selected slip

lengths which result in distinct solutions for Eqs. 2.36, 2.39, 2.40, and 2.45.

2.4 Results and Discussion

Representative results are presented in the form of a tabulation of fully developed Nusselt

numbers, plots of dimensionless temperature versus dimensionless channel height at a fixed

dimensionless channel length, and plots of Nusselt numbers versus dimensionless channel

length. In cases where dimensionless hydrodynamic and thermal slip lengths are finite, they

are set equal to 0.5.
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2.4.1 Model Validation

We note that our results for Cases A.1, B.1, C.1 and D.1, where slip is not present, are

in full agreement with those of S̆esták and Rieger [59].3’4 Figure 2.4 shows individual and

total Nusselt numbers plotted versus the dimensionless channel length for Case A.1. The

Nusselt number is highest at the entrance and, in most cases, decreases monotonically to a

horizontal asymptote. However, the Nus curve behaves non-monotonically in the region of

x∗ = 0.03. This is documented in the literature [59].
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Figure 2.4: Nusselt number versus dimensionless channel length, x∗, for Case A.1, symmetric
constant temperature boundary conditions with no slip.

While the fully developed Nusselt number can be calculated with only one eigenvalue,

additional terms are needed to compute entrance behavior. Moreover, as x∗ approaches very

small values, more terms are required to achieve convergence. At x∗ = 0.0001 the value of

the seventy-first term is 0.02% of the value of NuT with seventy terms. We have used one

3We computed a value of 3.918 for the fully developed Nusselt number for Case D.1, 0.7% below that
reported by S̆esták and Rieger. If one solves for the eigenvalue using the eigenfunction provided by S̆esták
and Rieger and then uses their equation for Nusselt number, the same value of 3.918 is obtained.

4Several studies replicated the S̆esták and Rieger results. The Case A.1 dimensionless temperature profile
is replicated by Hudson et al. [55]; Bruin [56] shows the Case B.1 dimensionless temperature profile and
Num,fd in agreement with S̆esták and Rieger, and Davis [57] replicates Nus,fd for Case B.1.
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hundred terms in all our computations, which for Case A.1 adds less than 0.09% to the value

computed with seventy terms at x∗ = 0.0001.

2.4.2 Fully Developed Nusselt Numbers

The key results of this analysis are expressions for the Nusselt numbers at the stationary

and moving surfaces. In the limit as x∗ → ∞, the Nusselt numbers converge to constant

fully developed values.

The fully developed Nusselt number values for Cases A, C and D are equal to the ratio of

the leading coefficients of the numerator and denominator and can be computed with only

one eigenvalue. The fully developed Nusselt number values for Case B depend solely on the

prescribed slip lengths as per

Nus,fd =
3(1 + 2b∗s)

2 + 3b∗s + 3b∗t,s + 6b∗sb
∗
t,s

(2.58)

Num,fd =
3(1 + 2b∗s)

1 + 3b∗s + 3b∗t,m + 6b∗sb
∗
t,m

(2.59)

which, for no slip, reduce to 1.5 and 3.0, respectively, the values in the literature [56, 59] for

the limiting case.

Representative values of Nus,fd and Num,fd have been tabulated in Table 2.2. The no slip

Cases A.1, B.1, C.1 and D.1, elucidate the nature of transport in Couette flow. The flow is

asymmetric, and when present, the heat flux from the moving surface is much greater than

that from the stationary surface. Figure 2.4 shows higher developing and fully developed

Nusselt numbers at the moving surface than for the stationary surface. Consequently, when

thermal slip is present at the moving surface, the reduction in Nusselt number is more

pronounced than for thermal slip at the stationary surface.

The fully developed Nusselt numbers at the stationary surface are the same for Cases

B.1 and B.3. Mathematically bt,m, thermal slip on the moving surface, is not in the equation

for Nus,fd. Similarly, Nus,fd is the same for Cases B.2 and B.4.
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Case Slip Condition Nus,fd Num,fd

A.1 No Slip 3.63 5.85

A.2 b∗s = b∗t,s = 0.5 2.05 3.91

A.3 b∗t,m = 0.5 2.13 1.90

A.4 b∗s = b∗t,s = b∗t,m = 0.5 1.33 1.59

B.1 No Slip 1.50 3.00

B.2 b∗s = b∗t,s = 0.5 0.92 2.40

B.3 b∗t,m = 0.5 1.50 1.20

B.4 b∗s = b∗t,s = b∗t,m = 0.5 0.92 1.09

C.1 No Slip 1.74 0

C.2 b∗s = b∗t,s = 0.5 1.05 0

D.1 No Slip 0 3.92

D.2 b∗s = b∗t,s = 0.5 0 3.07

D.3 b∗t,m = 0.5 0 1.40

D.4 b∗s = b∗t,s = b∗t,m = 0.5 0 1.28

Table 2.2: Fully developed Nusselt numbers for selected slip lengths.

The moving surface is adiabatic for Case C and Num is 0. Hydrodynamic and thermal

slip on the moving surface have no effect on the flow, and Cases C.3 and C.4 would see

identical flow conditions as Cases C.1 and C.2. Consequently there are only two distinct slip

cases, C.1 and C.2.

Similarly for Case D, the stationary plate is adiabatic; however, unlike Case C hydrody-

namic slip at the adiabatic surface does influence the flow and the flow sees four distinct slip

conditions.

Case A fully developed values of Nusselt numbers at each surface have been evaluated

for incremental changes to thermal and hydrodynamic slip and are plotted in Figs. 2.5 and

2.6. In both graphs, when thermal slip is zero, hydrodynamic slip at the stationary surface

enhances heat transfer. Also in both graphs, Nus,fd increases with increasing bs, and the
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Figure 2.5: Fully developed Nusselt numbers at the stationary and moving plates, Nus,fd and
Num,fd, versus thermal slip at the stationary plate, bt,s, for incremental values of hydrodynamic
slip at the stationary plate, bs, for Case A, symmetric constant temperature boundary conditions.

effect of thermal slip is to decrease the Nusselt number below its no slip value. In Fig. 2.6

Num,fd shows little variation with changes in bs. Notably, Num,fd shows a high sensitivity

to changes in bt,m. Since, in Couette flow, heat flux is higher at the moving surface, thermal

slip at that surface plays a dominant role in heat transfer.

2.4.3 Effect of Hydrodynamic Slip

Hydrodynamic slip on the moving surface, b∗m, is mathematically eliminated from the

thermal energy equation, Eq. (2.6). Consequently, it has no effect on convective heat

transfer.

When hydrodynamic slip is present at the stationary surface, the result is an increase

in heat transfer at the stationary surface and a decrease at the moving surface as reflected

in the Nusselt numbers per Table 3.5. For Case A, there is a net increase in the total

Nusselt number. However, when the stationary surface is adiabatic, as in Case D, the
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Figure 2.6: Fully developed Nusselt numbers at the stationary and moving plates, Nus,fd and
Num,fd, versus thermal slip at the moving plate, bt,m, for incremental values of hydrodynamic slip
at the stationary plate, bs, for Case A, symmetric constant temperature boundary conditions.

presence of hydrodynamic slip at the stationary surface decreases Num,fd. Notably, the

effect of hydrodynamic slip in Couette flow is significantly different from findings involving

heat transfer with hydrodynamic slip in Poiseuille flow [10, 29].

b∗s b∗t,s b∗t,m Nus,fd

Change from
No Slip

Value [%]

Num,fd

Change from
No Slip

Value [%]

NuT,fd

0 0 0 3.63 0 5.85 0 9.48

0.1 0 0 3.84 5.8 5.75 -1.7 9.59

0.3 0 0 4.11 13.4 5.59 -4.4 9.71

0.5 0 0 4.28 18.0 5.48 -6.3 9.77

Table 2.3: Case A Nusselt numbers for selected values of b∗s.
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Figure 2.7: Dimensionless temperature profiles at x∗ = 0.1, for Cases A.1-4, symmetric constant
temperature boundary conditions with no slip and various values of hydrodynamic and thermal
slip, bs, bt,s and bt,m.
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Figure 2.8: Dimensionless temperature profiles for Case A.4, symmetric constant temperature
boundary conditions with hydrodynamic and thermal slip on both surfaces when b∗s = b∗t,s = b∗t,m =
0.5 for various values of x∗.
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Figure 2.9: Dimensionless temperature profiles for Case B.4, asymmetric constant temperature
boundary conditions with hydrodynamic and thermal slip at both surfaces when b∗s = b∗t,s = b∗t,m = 0
for various values of x∗.

2.4.4 Temperature Profiles

Figure 2.7 presents dimensionless temperature profiles at x∗ = 0.1 for Cases A.1-4. T ∗ = 1

at the entrance and asymptotically approaches 0 as x∗ →∞. The no slip Case A.1 exhibits

the largest change in dimensionless bulk temperature, whereas the case with slip on both

surfaces, Case A.4, exhibits the smallest change. Since the heat flux at the moving surface

makes a larger contribution to heat transfer, Case A.3 with thermal slip at the moving

surface shows less change in dimensionless temperature than Case A.2 which has thermal

slip at the stationary surface.

Figure 2.8 shows dimensionless temperature profiles for various values of x∗ for Case

A.4, hydrodynamic and thermal slip on both surfaces. When slip is present, not only is the

gradient changing as the flow develops, but also the temperature of the fluid adjacent to the

surface approaches the temperature of the liquid-solid interface.

Case B, with asymmetric constant temperature boundary conditions, demonstrates unique
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behavior as x∗ → ∞. The dimensionless temperature profile at large x∗ is defined by the

first term of Eq. (2.47). For no slip, the dimensionless temperature profile asymptotically

approaches T ∗ = y∗. In the presence of slip, it approaches

T ∗ =
b∗t,s + y∗

1 + b∗t,s + b∗t,m
, (2.60)

as shown in Fig. 2.9.

2.4.5 Nusselt Number Plots

Total Nusselt numbers are plotted versus the dimensionless channel length in Fig. 2.10

for Cases A.1-4. For Case A.1, the total Nusselt number has the highest value both in the

developing portion and the fully developed portion of the flow. The total Nusselt number

for Case A.2 is greater than the total Nusselt number for Case A.3. A comparison of Case

A.2 and Case A.3 highlights the different influence thermal slip has at each surface. The

dimensionless bulk temperatures have comparable values in both cases; however, the heat

transfer at the moving surface is much greater for Case A.2 than for Case A.3. The resulting

Num term dominates the heat transfer for Case A.2.

Nusselt numbers are plotted versus the dimensionless channel length in Fig. 2.11 for

Case B.1. Note that Num is negligible until x∗ > 0.06. Since the boundary condition at

the moving surface is prescribed as the inlet temperature, the temperature at the stationary

surface diffuses through the flow to the moving surface and a noticeable gradient at the

moving surface does not appear until x∗ = 0.06 when Num begins to increase and surpasses

the value of Nus. Similar behavior is seen in all Case B Num curves as shown in Fig. 2.12.

However, for Case B.3, when thermal slip is present only at the moving surface, Num remains

lower than Nus. Notably, for Cases B.1 and B.3 and also for B.2 and B.4, the Nus curves

overlap except in a small region near x∗ = 0.3 where the presence of thermal slip on the

moving surface influences the convection at the stationary surface slightly. Thermal entrance
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Figure 2.10: Nusselt number versus dimensionless channel length, x∗, Case A.1-4, symmetric con-
stant temperature boundary conditions with no slip and varying values of hydrodynamic and ther-
mal slip, bs, bt,s and bt,m.

lengths for Case B.1 are longer than those of Case A.1, and the presence of slip extends the

thermal entrance lengths in Case B particularly for thermal slip on the moving surface.

The adiabatic boundary conditions in Cases C and D isolate the individual effects of

hydrodynamic and thermal slip at each surface. Developing values of Nu for Cases C.1 and

C.2 are similar to Nus of Cases B.1 and B.2. Developing values of Nu for Cases D.1-4 are

similar to Num of Cases A.1-4. All Case D fully developed values are lower than those of

Cases A.1-4. Case D isolates the effect of hydrodynamic slip at the stationary surface which

has a detrimental effect on the heat transfer and is more pronounced than in Case A.

2.5 Conclusion

Convective heat transfer in the presence of hydrodynamic and thermal slip is studied in a

steady laminar plane Couette flow between parallel plates. We provide analytical expressions

for temperature, bulk temperature and Nusselt number which incorporate arbitrary slip at
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Figure 2.11: Nusselt number versus dimensionless channel length, x∗, for Case B.1, asymmetric
constant temperature boundary conditions with no slip when b∗s = b∗s = b∗t,s = b∗t,m = 0.

the boundaries for a thermally developing flow. Fully developed values for Nus and Num

can be calculated with only one eigenvalue for given values of thermal and hydrodynamic

slip at each surface, and for Case B the fully developed values can be calculated solely

from slip values. Representative results show that the presence of hydrodynamic slip at the

moving surface has no influence on convection, and the presence of hydrodynamic slip at the

stationary surface enhances heat transfer at the stationary surface but decreases heat transfer

at the moving surface. In all cases, the presence of thermal slip lowers the Nusselt number

from the no slip value. When thermal slip is present at the moving surface in Couette flow,

the reduction in heat transfer is more pronounced than for thermal slip at the stationary

surface.

We also note that within the viscous sublayer of a turbulent flow, the viscous shear rate

is approximated as constant as in the case of the Couette flow considered here. Since flow

and heat transfer in the viscous sublayer play major roles in turbulent flows, our results may

be relevant in elucidating the physics of turbulent flows over structured surfaces.
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Figure 2.12: Nusselt number versus dimensionless channel length, x∗, for Case B.1-4, asymmetric
constant temperature boundary conditions with no slip and varying values of hydrodynamic and
thermal slip, bs, bt,s and bt,m.

While convective heat transfer has been studied here, it is important to note that other

mechanisms such as caloric heating may be enhanced by the presence of hydrodynamic slip

and merit further study.

Nomenclature

Ai Airy function of the first kind

b hydrodynamic slip length

bt thermal slip length

Bi Airy function of the second kind

h local heat transfer coefficient

H distance between surfaces

k fluid thermal conductivity

Kn Knudsen number
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Lc characteristic dimension of the channel

n direction orthogonal to the surface

Nu Nusselt number

Pe Peclet number

Pr Prandtl number

Po Poiseuille number

Re Reynolds number

T temperature of the fluid

Tm temperature of the liquid-solid interface

at the moving surface

Ts temperature of the liquid-solid interface

at the stationary surface

Tp prescribed temperature of the liquid-solid

interface at the surface

u streamwise velocity

um mean velocity in the streamwise direction

Uo velocity of the liquid-solid interface

at the moving surface

x streamwise coordinate originating at

the channel entrance

xfd thermal entrance length

y spanwise coordinate originating at the stationary surface

z(y∗) substitution function

Greek Symbols

α thermal diffusivity

λ molecular mean free path length, eigenvalue

λ2 separation constant
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λn eigenvalues

ν kinematic viscosity

φs solid fraction

Subscripts

b mean value

fd fully developed

in inlet

m moving surface

n index

s stationary surface

p prescribed value

t thermal

T total

Superscripts

∗ dimensionless quantity
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Chapter III

Analysis of Galinstan-Based Microgap Cooling

Enhancement Using Structured Surfaces1

Abstract

Analyses of microchannel and microgap cooling show that galinstan, a recently developed

non-toxic liquid metal that melts at -19◦C, may be more effective than water for direct

liquid cooling of electronics. The thermal conductivity of galinstan is nearly 28 times that

of water. However, since the volumetric specific heat of galinstan is about half that of water

and its viscosity is 2.5 times that of water, caloric, rather than convective, resistance is

dominant. We analytically investigate the effect of using structured surfaces to reduce the

overall thermal resistance of galinstan-based microgap cooling in the laminar flow regime.

Significantly, the high surface tension of galinstan, i.e., 7 times that of water, implies that it

can be stable in the non-wetting Cassie state at the requisite pressure differences for driving

flow through microgaps. The flow over the structured surface encounters a limited liquid-

solid contact area and a low viscosity gas layer interposed between the channel walls and

galinstan. Consequent reductions in friction factor result in decreased caloric resistance,

but accompanying reductions in Nusselt number increase convective resistance. These are

1This work is under review in Analysis of Galinstan-Based Microgap Cooling Enhancement Using Struc-
tured Surfaces, L. Steigerwalt Lam, M. Hodes, and R. Enright, Journal Heat Transfer, Special Issue on
Micro/Nanoscale Heat Mass Transfer, 2014.
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accounted for by expressions in the literature for apparent hydrodynamic and thermal slip.

We develop a dimensionless expression to evaluate the tradeoff between the pressure stability

of the liquid-solid-gas system and hydrodynamic slip. We also consider secondary effects

including entrance effects and temperature dependence of thermophysical properties. Results

show that the addition of structured surfaces enhances heat transfer.

3.1 Introduction

Single-phase direct liquid cooling of electronics in a microchannel configuration was first

investigated by Tuckerman and Pease [49] in 1981 and, subsequently, has received remarkable

attention [50, 53]. Recently, Hodes et al. [69] have shown that galinstan is a more effective

coolant than water under the pressure drop and form factor constraints imposed by Tucker-

man and Pease [49]. This is because the thermal conductivity of galinstan is approximately

28 times that of water and despite its lower volumetric heat capacity (ρcp), approximately

0.45 times that of water [69], and its higher viscosity, 2.5 times that of water [70]. Overall,

the increase in heat transfer coefficient more than offsets the increased caloric resistance

of the system when galinstan rather than water is the coolant. Caloric thermal resistance,

sometimes referred to as bulk thermal resistance, is the thermal resistance associated the

bulk temperature rise of the fluid and is a function of volumetric heat capacity of the fluid,

and mass flow rate [50]. It is relevant that the caloric rather than convective resistance to

heat transfer is the dominant component of total thermal resistance in the case of galinstan,

an observation that motivates the present study.

When a channel is textured with surfaces structured to resist wetting, a composite in-

terface is introduced at the boundary of the flow which is comprised of liquid-solid regions

where the classic boundary conditions apply and liquid-gas regions that are approximated

as shear free and adiabatic. When heat is transferred to the liquid flowing over such a sur-

face, the limited liquid-solid contact area and the lubricating gas layer between the liquid

and channel wall increase convection resistance, but decrease caloric resistance relative to a
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smooth channel due to apparent hydrodynamic and thermal slip referred to henceforth as

slip. We show this to be of net benefit in the case of microgap cooling using galinstan when

the available pressure difference to drive the flow is dictated by structure topography.

Galinstan is a eutectic alloy of gallium, indium and tin developed by Geratherm Medical

AG (Geschwenda, Germany) [70]. It is 66.0% Ga, 20.5% In and 13.5% Sn by mass [71, 72].

Liu et al. [73] have measured the contact angle of galinstan with various materials. For the

galinstan-silicon dioxide-nitrogen system, the advancing contact angle under non-oxidizing

conditions has been experimentally determined to be θA = 146.8◦. This makes it possible to

characterize the wetting interactions of galinstan with a structured surface, SS. Expressions

for hydrodynamic and thermal slip length which are available in the literature [17, 29] allow us

to characterize the slip at the composite interface. Additionally, Poiseuille number (fReDh
)

and Nusselt number as function of arbitrary hydrodynamic and thermal slip lengths in a

parallel plate channel have recently been developed [29, 34]. Consequently, it is possible to

evaluate the enhancement to heat transfer in a flow with slip in a microgap geometry.

3.2 Previous Work

3.2.1 Structured Surfaces

The flow enhancing properties of SSs are well known. Quere [74] discusses the wetting

interactions at these surfaces and the various wetting proprieties that can be induced such

as superhydrophobicity or superoleophobicity. Hydrodynamic slip length expressions are

used to model the velocity slip boundary condition at the surface and are available in the

literature [16, 17, 23, 29, 75]. Rothstein [14] provides a review of the experimental and

theoretical hydrodynamic work as of 2010.

Thermal transport over SSs has been addressed by e.g. [31, 33, 76]. In the context of

rarefied gases, in 1964, Inman [34] analytically studied slip regime flow in a parallel plate

channel with uniform heat flux and provided expressions for Nusselt number as function of
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slip velocity and temperature jump. Enright et al. [29] studied Poiseuille flow in a parallel

plate channel and developed the aforementioned Poiseuille number (fReDh
) and Nusselt

number expressions; the expression for Nu reduces to those of Inman [34] and Maynes and

Crockett [33] for the symmetric case.

While the main body of this paper assumes fully developed flow, the presence of an

entrance region is also considered. The slip boundary conditions for SSs take the same

mathematical form as the boundary conditions for rarefied gas flow in the slip regime. Several

studies [77–80] have addressed entrance effects in rarefied gas flow between parallel plates.

Following the work of Sparrow et al. [77], Duan and Muzychka [80] studied slip flow in

the entrance region of circular and noncircular microchannels. They provide expressions for

entrance length and apparent friction factor for a slip regime in a parallel plate channel which

we adapt to flow over SSs in order to assess the effect of entrance length on the enhancement

to heat transfer.

3.2.2 Non-constant Thermophysical Properties

Temperature [oC]

S
u

rf
ac

e 
T

en
si

o
n

 [
N

/m
]

D
yn

am
ic

 V
is

co
si

ty
 [

P
a 

s]

50 100 150 200

0

0.2

0.4

0.6

0

0.001

0.002

0.003

Figure 3.1: Surface tension and viscosity for water and Ga-In-Sn ternary alloy. Saturated water
properties from [81]. Ga-In-Sn alloy properties from [82].

To the authors’ knowledge, the effect of temperature on the thermophysical properties
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of galinstan has not been studied; however, Prokhorenko et al. [82] have studied a ternary

alloy of gallium, indium and tin with a similar composition, i.e., a eutectic alloy that is 67%

gallium, 20.5% indium and 12% tin by mass with a melting point of 263.5 K [82]. They

report expressions for the temperature dependence of viscosity, density and surface tension.

Viscosity and surface tension versus temperature are shown for the Ga-In-Sn alloy and water

in Fig. 3.1. The change in viscosity over this temperature range is large enough to affect

caloric resistance. Prokhorenko et al. found no temperature dependence of contact angle at

temperatures below 800K for contact angles of this alloy on stainless steel.

3.3 Problem Formulation

Figure 3.2: Schematic of SS microgap with height H, width w and length L. The walls of the channel
are structured with ridges of width wr and spacing wc + wr arranged parallel to the flow in the
x-direction.

The geometry under consideration here is a microgap as per Fig. 3.2. We assume the

aspect ratio is high enough to model it as a parallel plate channel. Its spanwise cross-sectional

area is w x H, where w is the channel width and H is the channel height. Its length in the

streamwise direction is L. Channel dimensions of L = 1 cm and w = 1 cm are chosen to

represent that of a silicon die, typical of thermal management applications. The top and

bottom of the channel are assumed to be SSs comprised of ridges oriented parallel to the

flow. The widths of the cavities and ridges of the SSs are wc and wr, respectively.
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The coolants considered are galinstan and water. In the case of galinstan, the substrate

of the channel is assumed to be silicon coated with a thin layer of silicon dioxide. To

prevent the formation of a solid oxide film on the galinstan, an inert gas such as argon or

nitrogen is assumed to fill the cavities below the liquid-gas interface. In the case of water,

the silicon would be coated with a fluoropolymer and air would fill the cavities between the

ridges. The advancing contact angle for water, fluoropolymer and air is taken to be 110◦. A

pressure difference across the channel, ∆pch, is applied to drive the flow. A constant heat flux

boundary condition is imposed along the tips of the ridges on the top and bottom surfaces of

the channel. We assume hydrodynamically and thermally fully developed flow. The channel

heights, which reflect realistic values for thermal management applications, have been set to

maintain laminar flow as expressions are unavailable for friction factor and Nusselt number

as a function of slip lengths in a turbulent regime. The SS channel heights are reduced to

account for the addition of ridges with different ridge heights for galinstan and water as

discussed later in this section.

Thermophysical properties of both galinstan and water are considered constant. We

neglect the spanwise thermocapillary stress generated along the liquid-gas interface that

would pull the liquid away from the solid-liquid interface towards the middle of the cavities

and the streamwise thermocapillary stress that would pull the liquid upstream. We also

assume that the evaporation and condensation along the liquid-gas interface are negligible

due to the extremely low vapor pressure of galinstan (pv < 10−6 Pa at 500◦C) [70]. In

the case of water, evaporation and condensation may have a more significant effect on slip

lengths. We further assume that for the purposes of calculating hydrodynamic and thermal

slip lengths the liquid-gas interface is flat.

We also note that the solubility of inert gases in galinstan should be considered in the

design of a galinstan SS channel which would be a closed system. Data on the gas solubility

of inert gases in galinstan are unavailable. An inert gas such as nitrogen or argon would

likely be absorbed by the galinstan at low temperatures and released at higher temperatures.
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Allowance for this effect would need to be made in the system design, perhaps in the form

of a gas reservoir adjacent to the cooled area of the galinstan loop that would be connected

to the gas cavities allowing the galinstan and gas to equilibrate.

3.3.1 Structured Surface Design

The presence of SSs introduces a composite interface composed of a liquid-solid interface

on the top surface of each ridge and a liquid-gas interface between them. The apparent

discontinuity in velocity at the composite interface is modeled using Navier’s slip boundary

condition

ūc = b
du

dn

∣∣∣∣
c

, (3.1)

where ūc is the apparent velocity at the composite interface, b is the apparent hydrodynamic

slip length and n is the direction normal to the composite interface pointing into the liquid

flow.

Analogous to the hydrodynamic conditions at the composite interface, temperature con-

tinuity is maintained at the liquid-solid interface while the liquid-gas interface is considered

adiabatic. The resulting temperature at the composite interface is an area-averaged temper-

ature which is modeled with a thermal slip boundary condition

T̄ls − T̄c = −bt
∂T

∂n

∣∣∣∣
c

, (3.2)

where T̄ls is the mean temperature of the liquid-solid interface, T̄c is the apparent temperature

of the composite interface, and bt is the apparent thermal slip length.

3.3.1.1 Selection of Structure Geometry

A precondition for generating an apparent slip over an SS is maintaining the liquid in

the Cassie state. An important failure mode is the onset of wetting due to an applied pres-
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sure difference across the liquid-gas interface exceeding that corresponding to the maximum

contact angle, ∆pmaxlg , causing the contact line to depin. A low ∆pmaxlg implies a restricted

operating regime. In practice, we wish ∆pmaxlg to be large to mitigate against wetting due

to applied pressure differences, i.e., under pressure-driven flow conditions, and/or environ-

mental fluctuations, such as mechanical and acoustic vibration. However, we also wish to

maximize the magnitude of the hydrodynamic slip length, this being the primary goal. To

understand this trade-off, we recognize that both slip and pressure stability are functionally

dependent on geometry. We neglect the influence of partial wetting and interface curvature

on slip. By necessity, however, we account for curvature in computing ∆pmaxlg . As such this

analysis offers a first order estimate for comparing the performance of different SS geometries.

By balancing the pressure difference across the liquid-gas interface with the upward force of

Figure 3.3: Schematic of a single unit cell of a parallel ridge structured surface in a channel. The
ridges have a thickness, wr, spacing, wc, and height, h. The maximum deflection of the interface,
d, and the advancing contact angle on the wall of the ridge are also shown.

the surface tension along the triple contact line, an expression for the maximum pressure

stability for any generic geometry can be derived [83–85]. The ratio of the perimeter of the

triple contact line, S, to the liquid-gas interfacial area, A, as a function of the maximum

pressure and the wetting properties of a given three phase system, i.e., the surface tension
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Geometry NL
Applicable

Range

Pillars [29] 6√
πφs(1− φ)

∞∑
n=1

J1 (δn) sin
(
δn
√
φs

)
δ3nJ

2
0 (δn)

φs ≤ 0.25

Parallel
Ridges [17]

2 ln
[
sec
(π

2
(1− φs)

)]
π(1− φs)

0 < φs < 1

Transverse
Ridges [17]

ln
[
sec
(π

2
(1− φs)

)]
π(1− φs)

0 < φs < 1

Square
Holes [75]

4 [−0.014− 0.115 ln(φs)]√
1− φs

φs < 0.75

Table 3.1: Navier-Laplace parameter as a function of surface solid fraction,φs, for various geometries
(δn are the positive, real roots of J1(δn) = 0).

and contact angle,

S

A
=

∆pmaxlg

σlg (cos π − θA)
. (3.3)

where σlg is the liquid-gas surface tension as shown in Fig. 5.1 for a ridge geometry. Note

that this expression captures the correct scaling for pillar structures, but is only exact in the

limit as φs → 0 where φs is the solid fraction, i.e., the ratio of the liquid-solid interface area

to the total projected interface area. We define a dimensionless parameter describing the

relationship between the slip behavior and wetting state stability, which we call the Navier-

Laplace parameter, NL. This number is solely dependent on the surface solid fraction φs and

is

NL = b
S

A
=

b∆pmaxlg

σlg cos(π − θA)
, (3.4)

where b is the hydrodynamic slip length. Equation (3.4) indicates that, for a given three

phase system and structure geometry, there is an inversely proportional relationship between

slip and pressure stability. Table 3.1 provides expressions for NL for pillar, parallel ridge,

transverse ridge and square hole geometries. These expressions employ the nominal Stokes-

flow geometric slip relations found in the literature [17, 23, 29, 75].
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Figure 3.4: Navier-Laplace parameter as a function of surface solid fraction, φs.

In Fig. 3.4, the expressions given in Table 3.1 are plotted as a function of the surface solid

fraction for φs ≤ 0.25. We observe that parallel ridges always demonstrate a larger nominal

slip length for the same ∆pmaxlg . This is consistent with the experimental observations of

Lee et al. [22] who demonstrated larger slip lengths for parallel ridges versus pillars, while

maintaining a stable Cassie wetting state at a fixed Laplace pressure of ∆p ≈ 250 Pa. For

square holes we find that they, too, perform better than pillars, though only marginally so

at larger solid fractions. Transverse ridges outperform pillars once φs ≤ 0.03. For the case

of circular holes (not plotted), we expect a trend similar to that of pillars due to the fact

that they become disconnected for φs ≤ 0.21 and demonstrate slip characteristics similar to

pillars as φs → 0 [75]. Furthermore, if we explore the limit as φs → 0, we see that pillars

are outperformed by all of the other geometry types considered here. This is not surprising

considering that as the solid fraction goes to zero, the contact line perimeter for pillars also

approaches zero. However, for the other geometries, which are connected, a finite length of

contact line remains as φs → 0.

Both the hydrodynamic and thermal slip associated with a given surface geometry will
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impact heat transfer. The NL parameter gives us the optimum geometry from a hydrody-

namic perspective. Additionally, thermal slip should be minimized. Taking into account the

thermal slip that arises due to various geometries, the ratio of hydrodynamic slip length to

thermal slip length is also of interest. Enright et al. [29] show that b/bt for pillars, transverse

ridges and parallel ridges, is 3/4, 1/2 and 1, respectively. Thus, for the same reduction in heat

transfer coefficient, flow across parallel ridges will see a larger drag reduction. Consequently,

the aforementioned hydrodynamic and thermal considerations indicate a parallel ridge ge-

ometry will provide optimum heat transfer. Henceforth, the analysis focuses exclusively on

parallel ridges.

The hydrodynamic slip length for parallel ridges is provided for low Reynolds number

flows by Lauga and Stone [17] as

b

l
=

1

π
ln [sec ((1− φs) (π/2))] , (3.5)

where φs = wr/(wr +wc), and l = wc +wr is the pitch of the ridges. The thermal slip length

for parallel ridges with a constant heat flux boundary condition is provided by Enright et

al. [29] as

bt
l

=
1

π3φ2
s

∞∑
n=1

sin2 (nπφs)

n3
. (3.6)

The choice of surface parameters, φs and l, determines the amount of hydrodynamic and

thermal slip that the flow exhibits with corresponding reductions in frictional drag and heat

transfer coefficient, respectively.

3.3.1.2 Determination of Ridge Height

Several factors must be considered when determining the ridge height. First, there is the

minimum ridge height required for the liquid to be in a thermodynamically stable Cassie

state, i.e., the free energy of the system must be lower than that corresponding to the Wenzel
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(wetted) state for the given geometry and liquid properties [1]. This is satisfied when [86]:

cos θ∗c
cos θ∗w

< 1, (3.7)

where θ∗c is the apparent contact angle given by Cassie’s relation [87], i.e.,

cos θ∗c = −1 + φs (cos θA + 1) , (3.8)

and θ∗w is that given by Wenzel’s relation [88], i.e.,

cos θ∗w = r cos θA. (3.9)

The roughness factor, r [88], is the ratio of the actual area of liquid-solid contact in the

Wenzel state to the projected area in the horizontal plane. For parallel ridges, r = 1+2hr/l,

where hr is the ridge height. It follows that the minimum ridge height required for stability

of the Cassie state is,

hr >
lφs cos θA + l(φs − 1)

2 cos θA
− l

2
. (3.10)

The second consideration for determining the minimum ridge height is the maximum

depth which the liquid-gas interface will protrude below the top surface of the ridges. In

the case of galinstan, which has a larger contact angle than water, this becomes the critical

requirement. The presence of a pressure gradient in the channel produces a meniscus with

an essentially constant radius of curvature in the x-y plane and a streamwise gradient.

Assuming a constant pressure in the gas phase equal to the liquid outlet pressure, po, the

maximum meniscus curvature and therefore maximum meniscus depth will occur at the point

of maximum channel pressure, i.e., the liquid inlet pressure, pi. The triple contact line is

pinned at the corner of the ridge, and the contact angle is made between the meniscus and
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the vertical projection of the side of the ridge into the liquid. The depth of the meniscus

can be found from geometric considerations as shown in Fig. 2,

d =
wc

2 cos θA
(sin θA − 1) . (3.11)

The magnitude of the advancing contact angle of the liquid determines whether Eq. (3.10)

or Eq. (3.11) is of greater magnitude thus becoming the criterion for the minimum height

for the ridges. For the selected geometry of l = 10µm and φs = 0.025 with galinstan, the

depth of the meniscus, dg = 2.64µm is larger than the height required for Cassie stability,

hr,g = 1.10µm. Notably for water, due to its smaller contact angle, the opposite is true,

hr,w = 9.74µm> dw = 0.86µm.

Finally, to assess the shear free nature of the liquid-gas interface, the shear stress in

the liquid at the interface, τl = µldul/dy, is compared to the shear stress in the gas, τg =

µgdug/dy, where dul/dy ≈ ūc/b and dug/dy ≈ ūc/d. The viscosities at 20◦C for nitrogen

and galinstan are 0.000018 kg/(m s) and 0.0024 kg/(m s), respectively. The ratio of shear

stresses, τg/τl = 0.018 such that τg is small compared to τl.

Additionally, the Knudsen number of the gas cavity system, Kn, should be considered

to determine if the gas is in the slip regime. Kn = λ/Lc, where λ is the molecular mean

free path length and Lc is the characteristic length scale of the gas cavity, in this case the

hydraulic diameter. For Kn > 0.001, the slip regime applies, and the gas will exhibit velocity

slip which would contribute to shear free behavior at the interface. For nitrogen at 0◦C and

1 atm, the mean free path length is 58.8 nm, so for a solid fraction of 0.025 and pitch of

10µm, Kn = 0.01.

3.3.2 Thermal Resistance

Caloric and convective thermal resistances are determined based on expressions for Po

and Nu provided by Enright et al. [29] and Inman [34] which are functions of hydrodynamic
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and thermal slip lengths. The thermal conductivity of the surfaces at the base of the ridges is

assumed to be infinite in the spanwise direction and zero in the streamwise direction. Hence,

the maximum temperature of the channel occurs along the trailing edge of the parallel plate

surfaces. The total thermal resistance of the microgap for a prescribed heat flux supplied to

both its surfaces based upon the difference in temperature between the trailing edge of the

surface at the tip of the ridge and the inlet liquid is

RTotal = RCal +RConv, (3.12)

where the caloric thermal resistance, RCal = 1/(ṁcp), the convective thermal resistance,

RConv = 1/(2wLh), ṁ is mass flow rate, cp is heat capacity and h is heat transfer coefficient

at the trailing edge.

Computing caloric resistance requires an expression for the mass flow rate. In a classic

channel, the mass flow rate is a function of the pressure gradient along the channel, friction

factor, channel dimensions and liquid properties. In an SS channel, wetting interactions of

the liquid with the surface must also be considered. Using Eq. (3.3), ∆pmaxlg for ridges is

∆pmaxlg =
2σ cos (π − θA)

l(1− φs)
. (3.13)

Enright et al. [29], e.g., have provided an expression for the Poiseuille number in a parallel

plate channel with symmetric surfaces as a function the dimensionless hydrodynamic slip

length, b̃,

Po = fReDh
=

96

1 + 6b̃
(3.14)

where ReDh
= ρumDh/µ, b̃ = b/H, ρ is the density of the liquid, um is the mean velocity of

the flow, Dh = 2H is the hydraulic diameter of the channel and µ is the dynamic viscosity of

the liquid. The inlet pressure to the channel is limited by the maximum pressure that can be

supported by the meniscus such that ∆pch ≤ ∆pmaxlg , where ∆pch, the pressure drop in the
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channel, is the difference between the inlet pressure and the outlet pressure. An expression

for the mass flow rate, ṁ = ρHwum, is found by substituting Eq. (3.13) into the definition

of the Darcy friction factor, f = ∆pch2Dh/(Lρu
2
m) to find the maximum mean velocity. The

mass flow rate follows,

ṁ =
(6b+H)H2wρσ cos(π − θo)

6Lµl(1− φs)
. (3.15)

The caloric resistance as a function of hydrodynamic slip length follows as

RCal =
6Lµl(1− φs)

cpwρσH2(6b+H) cos(π − θA)
. (3.16)

The convective thermal resistance is found by determining an expression for the heat transfer

coefficient h from h = Nuk/Dh, where Nu is the Nusselt number, k is the thermal conduc-

tivity of the liquid. Nu is the expression from Inman [34] for symmetric hydrodynamic and

thermal slip and constant heat flux at both surfaces.

Nu =140H(6b+H)2/

(17H3 + 168bH2 + +420b2H

+ 70btH
2 + 840bbtH + 2520b2bt). (3.17)

The convective resistance follows as

RConv =
[
168bH(5bt +H) + 420b2(6bt +H)

+H2(70bt + 17H)
]/[

140wLk(6b+H)2
]
. (3.18)

Since the channel pressure difference used to calculate RCal is based on ∆plg, we develop

an expression for the thermal resistance in the classic channel using the same one for com-

parison. The total thermal resistance for a classic channel, with the SS pressure definition

57



and the classic values for Po and Nu is

RTotalClassic =
6Lµl(1− φs)

cpwρσH3 cos(π − θA)
+

17H

140Lwk
. (3.19)

3.3.2.1 Extension to an Asymmetric Channel

In order for there to be enhancement to heat transfer from the use of SSs, the thermal

resistance of the SS channel must be less than that of the classic channel per the following

Rss

Rcl

< 1. (3.20)

For a parallel plate channel with height, H, and for arbitrary heat flux supplied to its surfaces

[89], the total thermal resistance is based upon the difference in temperature between the

trailing edge of the surface at the tip of the ridge and the inlet liquid. Using the analysis of

Nield [89] to account for asymmetric heat flux, the total thermal resistance can be expressed

in the same form as Eq. (3.12) where RConv = 2H/Nu. For the classic channel the Nusselt

number which accounts for arbitrary prescribed heat flux is available from [89].

In the presence of slip Eq. (3.20) is expressed in terms of Nusselt number and Poiseuille

numbers for the SS channel,

35∆pclH
3(kL2NussPossν + 8cp∆pss(2d+H)4)

2∆pss(2d+H)3Nuss(1680kL2ν + 17cp∆pclH4)
< 1, (3.21)

where ∆pss and ∆pcl are the pressure differences across the SS and classic channels, respec-

tively.

Expressions for Poss and Nuss as functions of arbitrary hydrodynamic and thermal slip

are available from Enright et al. [29].
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3.4 Results and Discussion

In order to exercise our model, we have chosen a geometry which allows us to examine

the fluid flow in a laminar regime with the intent of attaining a high mass flow rate in order

to minimize the thermal resistance. Heat transfer in an SS channel is compared to that in a

classic channel and results for galinstan and water are listed in Table 3.2.

Galinstan
SS

Channel

Galinstan
Classic

Channel

Water
Classic

Channel

Water SS
Channel

H (µm) 88 96 96 76

b̃ 0.117 N/A N/A 0.135

b̃t 0.121 N/A N/A 0.140

Nu 6.06 8.24 8.24 5.77

Po 56.4 96 96 52.9

∆pch (kPa) 92 92 92 5.1

hr (µm) 4 N/A N/A 10

ReDh 1984 1512 1348 68

ṁ (kg/sec) 0.0238 0.0181 0.0067 0.00034

RConv (◦C/W) 0.009 0.007 0.194 0.219

RCal (
◦C/W) 0.142 0.186 0.035 0.705

RTotal (
◦C/W) 0.148 0.177 0.229 0.924

Table 3.2: Thermal resistances for galinstan and water in an SS channel and a classic channel for
l = 10µm and φs = 0.025. The pressure gradient for water and galinstan in the classic channel is
set equal to that of galinstan in the SS channel which is limited by the Cassie stability requirement
for the galinstan-nitrogen-silicon oxide system. The pressure gradient in the water SS channel is
set to that which maintains Cassie stability for the water-fluoropolymer-air system at this pitch
and solid fraction.

The thermophysical properties for galinstan and water used in this study are given in

Table 3.3. The channel and surface dimensions are listed in Table 3.4. The SS channel height

is narrower to allow the requisite space for the structures. Twice the ridge height has been
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added to the dimension of the classic channel height, Hcl, such that Hcl = 2hr + Hss where

hr is the ridge height and Hss is the SS channel height. The water channel ridge height is

larger to maintain Cassie stability.

Property Galinstan Water

Tm (◦C ) -19 0

Tb (◦C) >1300 100

ρ (kg/m3) 6440 998

µ (kg/ms) 0.0024 0.001

θA 146.8◦ [73] 110◦

σ (N/m) 0.5346 at 28(◦C) [73] 0.073

cp (J/kgK) 296 [69] 4184

k (W/mK) 16.5 0.60

Table 3.3: Properties of galinstan and water. Properties of galinstan evaluated at 20◦C or temper-
ature indicated and atmospheric pressure from [70] and saturated properties for water from [81].

Dimension Value

Galinstan SS channel height, Hss,g (µm) 88

Water SS channel height, Hss,w (µm) 76

Classic channel height, Hcl (µm) 96

Channel length, L (m) 0.01

Channel width, w (m) 0.01

Galinstan SS ridge height, hr,g (µm) 4

Water SS ridge height, hr,w (µm) 10

Solid fraction, φs 0.025

Pitch, l (µm) 10

Table 3.4: Dimensions for channels and surfaces.

The total thermal resistance of galinstan in a parallel plate SS channel was calculated
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Figure 3.5: Percent change in thermal resistance of a galinstan SS channel from that of a galinstan
classic channel as a function of ridge pitch and solid fraction.

and compared to that in a classic channel with the same pressure drop. Figure 3.5 shows

the percent reduction in thermal resistance corresponding to the geometry of the channel

surfaces in terms of pitch and solid fraction. This suggests that significant enhancement to

heat transfer can be achieved by using an SS channel over a classic channel when galinstan

is the heat transfer fluid.

The pressure drop in the channel is chosen to be the maximum which can be supported

across the liquid-gas interface for a given pitch as per Eq. (3.13). This varies inversely with

the cavity width such that it decreases as pitch increases. Fig. 3.6 shows the pressure drop

corresponding to pitch in the galinstan SS channel for a fixed value of φs = 0.025 which

applies to Figs. 3.7 and 3.8.

Even though the calculations for mass flow rate take the slip into account, for all cases

the mass flow rates decrease with pitch.

Figure 3.7 shows the caloric, convective and total thermal resistances versus pitch for

the galinstan-based SS and classic channels with a solid fraction of φs = 0.025. As the
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Figure 3.6: Pressure drop versus pitch in the galinstan SS channel, φs = 0.025 also used for galinstan
and water in the classic channel for comparison.

mass flow rate commensurate with the pressure drop decreases, caloric resistance rises. For

lower pressure drops, the relative advantages gained by using an SS channel increase over

the classic channel. However, the lowest thermal resistances of the galinstan-based system

are achieved at high mass flow rates. As pitch is sufficiently decreased, hydrodynamic and

thermal slip lengths approach zero and the classic and structured channels yield the same

performance.

The total thermal resistances versus pitch for galinstan-based SS and classic channels and

water-based SS and classic channels is shown in Fig. 3.8 for a solid fraction of φs = 0.025.

The water-based classic channel uses the same pressure drop as the galinstan-based channels.

The water-based SS channel pressure drop is equal to ∆pmaxlg and is the limited by the lower

surface tension and lower contact angle of water; the resulting flow rate is too small to effect

comparable heat transfer with the other channel scenarios. For low values of pitch, both

galinstan-based channels show a lower thermal resistance than that of the water-based classic

channel. At higher values of pitch, the galinstan mass flow rate drops and the resistance of

the galinstan classic channel exceeds that of the water-based classic channel reflecting the
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Figure 3.7: Thermal resistance versus pitch for galinstan in SS channel, φs = 0.025 and in classic
channel.

dominance of the caloric component of galinstan thermal resistance. In the galinstan-based

SS channel the flow rate drops less with increased pitch and also sees less friction such that

the thermal resistance remains lower.

3.4.1 Volumetric Flow Rate Advantage

The addition of ridges decreases the available channel cross-sectional area through which

the liquid flows, potentially offsetting the gains from hydrodynamic slip. In order to deter-

mine the range of values of b that result in a net increase to the flow rate, the mass flow

rate in the SS channel is set to be greater than the mass flow rate in the classic channel

ṁss > ṁcl,
D3
h,ss

PossµL
>

D3
h,cl

PoclµL
. (3.22)

Poss is taken from Eq. (3.14) and the hydraulic diameter of the classic channel is Dhcl =

2(H + 2d). It follows that

H3(H + 6b) > (H + 2d)3. (3.23)
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Figure 3.8: Thermal resistance versus pitch for galinstan and water in SS channel, φs = 0.025 and
in classic channel. Pressure drop corresponds to Fig. 3.6 except for that of water in the SS channel.

Eliminating the third order term on the right hand side this reduces to

b >
2d2 + dH

H
. (3.24)

For galinstan, d must be greater than the depth of the meniscus, from Eq. (3.11) and θA is

approximated as 150◦. It follows that

b >
1

3

(
wc +

2w2
c

3H

)
, (3.25)

which for the chosen geometry implies that b > 3.49µm or b̃ > 0.04 is the range of slip length

values for which the flow will see an advantage from slip. Notably when wc � H, b ≈ wc/3

for galinstan. The slip length used here exceeds the minimum by a factor of 2. For water, on

the other hand, the minimum ridge height required for Cassie stability would be used in Eq.

(3.24) which results in a value of b/H ≥ 0.161, a value larger than that obtained from Eq.

(3.5). Consequently, there would be no volumetric advantage for water with the geometry

considered here per Table 3.4.
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3.4.2 Thermal Resistance through Ridges

The addition of ridges to the channel surfaces adds thermal resistance to the heat transfer

path between the base of the channel and the liquid.

The total thermal resistance through the ridges is

RRidge = Rcons +Rcond +Rcoat (3.26)

where Rcons is the constriction resistance that results from the sudden area change that the

heat flow undergoes, Rcond is thermal conduction resistance through the the height of ridge

and Rcoat is the thermal resistance of the thin coating on top of the ridge.

Smythe [90] developed a closed form expression for current flow through a long strip

with an abrupt change in width. This was adapted by Yovanovich and Marotta [91] for

a thermal spreading resistance for steady conduction in a two-dimensional channel whose

width decreases from 2b to 2a.

Rcons =
1

2πkL

[(
ε+

1

ε

)
ln

(
1 + ε

1− ε

)

+ 2 ln

(
1− ε2

4ε

)]
(3.27)

where ε = a/b = φs. The above expression assumes that a and b are very small compared to

the length of their respective sections which is the case here. For the selected galinstan SS

geometry per Table 3.4 and assuming the thermal conductivity of silicon, the constriction

resistance through the ridges for both surfaces, Rcons = 0.00028 ◦C/W.

The 1D conduction resistance due to the ridge height is Rcond = hr/(2krφswL) where

kr is the thermal conductivity of the ridge, and the conduction resistance through the coat-

ing is Rcoat = hc/(2kcφswL) where hc is the thickness of the coating and kc is the thermal

conductivity of the coating. The thermal resistance through the coating can be a signifi-

cant component of the total depending on the material choice as many coatings commonly
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used on SSs have low thermal conductivities. The silicon dioxide coating used here has

kc = 1.2W/mK. For the galinstan SS channel selected geometry in Table 3.4 the thermal

resistance through the silicon ridges is 0.0049 ◦C/W and the thermal resistance through the

20 nm silicon dioxide coating is 0.0031 ◦C/W. For a water channel, using a 20 nm fluoropoly-

mer coating with a thermal conductivity of kc = 0.25W/mK, Rcoat = 0.0148 ◦C/W.

The total thermal resistance through the ridges for the galinstan SS channel is RRidge =

0.0083 ◦C/W.

3.4.3 Entrance Length Effects

The analysis thus far has made the assumption of fully developed flow in the SS and

classic channels. The presence of hydrodynamic slip on the channel surfaces increases the

entrance length and reduces the magnitude of the pressure gradient in the entrance region.

If the entrance length of the channel is a significant portion of the channel length, this region

must be taken into account.

The apparent Fanning friction factor, fapp, is used to represent the total friction in the

channel including the entrance region and is based on the total flow resistance from x+ =

0 to x+. It is used in the dimensionless quantity, apparent friction factor-Reynolds number

product, fappReDh
. The additional pressure drop in the entrance region has two components:

the pressure drop due to the change in momentum of the flow and the pressure drop due to

the incrementally higher friction in the developing flow. In comparison to the fully developed

assumption, when entrance effects are considered, the velocity of the flow will decrease and

the caloric resistance will increase for a prescribed pressure drop. Additionally, the presence

of a hydrodynamically developing boundary layer in the entrance region will cause an increase

in the local Nusselt number in that region. However, this is not considered in the convective

resistance in the current analysis which uses the heat transfer coefficient calculated at the

trailing edge of the channel surface.

Expressions for entrance length, Lhy, and apparent friction factor, fappReDh
, are available
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in the literature for classic channels [92]. Shah and London [93] provide an expression for

fappReDh
as a function of dimensionless channel length, x+ which accounts for the momentum

change and skin friction in the entrance region for a parallel plate channel.

Duan and Muzychka [80] provide an expression for entrance length which accounts for

hydrodynamic slip,

Lhy
Dh

=
0.315

0.0175Re + 1
+

0.0112Re(1 + 6.7Kn′ − 37(Kn′)2), (3.28)

where Kn′ = Kn(2− σ)/σ is the dimensionless slip length. They also provide an expression

for the apparent friction factor Reynolds number product, fappRe, for parallel plate channel

in a slip flow regime.

fappReDh
=

24

1 + 12Kn′
+

1

5x+(1 + 12Kn′)
2−

∞∑
i=1

(3− e(−16α2
i x

+))e(−16α
2
i x

+)

α2
ix

+(1 + (12Kn′) + 16(α2
iKn′)

2
)

(3.29)

where x+ = (x/Dh) / (umDh/υ) is the dimensionless channel length and αi are eigenvalues

found from the eigencondition,

tan (αi) =
αi

1 + 4α2
iKn′

. (3.30)

Because the analytical models for rarefied gas flow in the slip regime use slip boundary

conditions and continuum flow equations analogous to those of SSs, these expressions can be

used with an equivalent slip length to estimate the entrance length and fappRe for galinstan

in a channel lined with SSs. It is noted that these expressions only apply to parallel plate

channels with symmetric slip.

The expression for equivalent slip length can be extracted from the slip boundary condi-
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SS
chan-
nel

Classic
chan-
nel

Entrance length [m] 0.0042 0.0032

fRe for fully developed
flow assumption

56.4 96

4fappRe [80] 64.7 113

Rcaloric based on fully de-
veloped flow fRe [◦C/W]

0.142 0.186

Rcaloric based on fappRe
[◦C/W]

0.163 0.218

Change from fully devel-
oped assumption [%]

14.8 17.2

Table 3.5: Entrance length and fappReDh
values from Eq. (3.29) for galinstan-based SS and classic

channel with dimensions from Table 3.4.

tion of Duan and Muzychka [80], which is used to derive their expressions,

U(1, x+) = −2− σ
σ

4Kn
∂U

∂η

∣∣∣∣
η=1

. (3.31)

Eq. (3.31) is equivalent to the slip boundary condition in the SS channel as defined by Eq.

(3.1) rewritten here in terms of u(x, y),

u(x,H) = −b̃ ∂u
∂y

∣∣∣∣
y=H

. (3.32)

By converting from the dimensionless coordinates, η = y/h, U(η, x+) = u(η, x+)/ū, and

H = 2h, Kn’ can be expressed in terms of the apparent dimensionless hydrodynamic slip

length, b̃ as:

Kn′ =
b̃

2
. (3.33)

Substituting Eq. (3.33) into Eq. (3.29), a value for the apparent friction factor can be

found by iterating. Taking into account that the Fanning friction factor is 1/4 of the Darcy
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friction factor, the mean velocity then is found from

um =
∆plgDh

2

2fappReDh
µL

(3.34)

and the caloric resistance in terms of the apparent friction factor becomes,

Rcaloric =
fappReDh

Lµl(1− φs)
4cpH3wσρ cos (π − θA)

. (3.35)

Equation (3.35) can be used to calculate the caloric resistance in a classic channel using

Eq. (3.29) where Kn′ = 0. Values for the caloric resistance with a fully developed flow

assumption and with an apparent friction factor assumption are listed in Table 3.5 for flow

in an SS channel and classic channel. Channel and surface dimensions are taken from Table

3.4.

In the present geometry, the length of the entrance region is significant in the both

channels, and the presence of slip extends the length of the entrance regions. Since the

flow is calorically dominated, the effect on caloric resistance is an important one. Since the

contribution to total resistance from convective resistance is small, the analysis here can be

considered a conservative estimate of the impact on total thermal resistance.

3.4.4 Temperature Dependence of Thermophysical Properties

To approximate the changes to thermal resistance that would occur as a result of temper-

ature change, the thermophysical properties of the Ga-In-Sn alloy studied by Prokhorenko

et al. [82] were used to calculate the thermal resistance at 20◦C and 40 ◦C. To maintain lam-

inar flow, the pitch of the structures was altered. Table 3.6 shows the changes to caloric and

total resistance for a water-based classic channel and the Ga-In-Sn alloy-based SS channel

that result from changes in viscosity, surface tension and density due to temperature. The

changes in viscosity both in water and the liquid metal alloy significantly impact the flow

rate and thus caloric resistance. The magnitude of the change is higher for water. However,
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Water Classic Channel Ga-In-Sn Alloy SS Channel

Temperature (◦C ) 20 40
%

Change
20 40

%
Change

µ (kg/ms) 0.001 0.0006 -40.00 0.0022 0.002 -9.09

ρ (kg/m3) 998 992 -0.60 6363 6354 -0.14

σ (N/m) 0.073 0.0695 -4.79 0.5331 0.5306 -0.47

Po 96 96 55.3 55.3

Nu 8.24 8.24 5.97 5.97

∆pch 50.8 50.6 -0.39 50.8 50.6 0.39

ReDh 748 2056 175 1719 2067 20.27

RConv (◦C/W) 0.194 0.194 0 0.011 0.011 0

RCal (
◦C/W) 0.064 0.039 -39.35 0.179 0.163 -8.53

RTotal (
◦C/W) 0.258 0.233 -9.74 0.190 0.174 -8.03

Table 3.6: Thermal resistance change with temperature change for Ga-In-Sn Alloy-based SS channel
and water classic channel for l = 18µm considering temperature dependence of viscosity, density
and surface tension. Properties of Ga-In-Sn Alloy from [82] and saturated properties for water from
[81].

since caloric resistance is a lower percentage of the total thermal resistance for water, the

changes in the resistance for both channels are on the same order.

3.5 Conclusion

We provide a methodology for assessing heat transfer enhancement resulting from ap-

parent slip. Galinstan cooling in a microgap geometry lined with SSs has been studied

and compared to galinstan in a classic channel and water in both classic and SS channels.

Substantial reductions in thermal resistance can be achieved by incorporating SSs into the

microgap surface, and the extent of the reduction depends on channel and surface geome-

try. Results show that the convective thermal resistance in galinstan is a small percentage

of the total thermal resistance and that galinstan-based cooling is calorically dominated.
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Convective resistance is 6.34% and 3.95% of total thermal resistance for the galinstan-based

SS channel and the classic channel, respectively. Notably, the enhancement to heat trans-

fer gained from drag reduction in the galinstan-based system outweighs the reduction in

convective heat transfer resulting in a net improvement.

Galinstan-based micro/minigap coolers are a promising alternative to water-based single

phase cooling. We have demonstrated for fully developed laminar flows with constant slip

coefficients, that significant reductions in thermal resistance are possible particularly for

systems that are pumping pressure limited. The presence of an entrance length is also

considered, and while caloric resistance is increased by comparison to a fully developed

flow, SSs still show significant enhancement to heat transfer. The caloric resistance is 25%

lower in the SS channel than in the classic channel when the entrance length is taken into

account. The temperature dependence of thermophysical properties of a comparable liquid

metal alloy are used to estimate the effect of temperature on heat transfer in galinstan flow

demonstrating a positive correlation. The percent change in both coolants with a 20◦C

increase is comparable; notably, the caloric resistance in galinstan is 22% lower than water

at the higher temperature.

We discuss several methods to assess the effect on transport due to the addition of

SSs. The NL parameter allows the comparison of surface geometries to optimize the trade

off between pressure stability and hydrodynamic slip. The additional height of structures

reduces the available channel cross-sectional area and adds an additional resistance to the

heat transfer path. This is taken onto account in an analysis of impact to the volumetric

flow which estimates a minimum value of 0.04 for b̃ for velocity enhancement in the galinstan

system. Analysis of the thermal resistance through the surface structures shows RRidge =

0.0083 ◦C/W which is small compared to the total and on the same order as the convective

resistance for the galinstan system.

Future work will examine the effect of evaporation and condensation on thermal slip

length and the effect of meniscus curvature on thermal slip length. While laminar flow has
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been studied here, it is important to note that thermal resistance of galinstan flow could

potentially be further reduced in a turbulent regime, and merits further study.

Nomenclature

b apparent hydrodynamic slip length [m]

bt apparent thermal slip length [m]

b̃ dimensionless apparent hydrodynamic slip length

b̃t dimensionless apparent thermal slip length

cp specific heat at constant pressure [J/(kgK)]

Dh hydraulic diameter [m]

f Darcy friction factor

h heat transfer coefficient [W/(m2K)]

h structure height [m]

H channel height [m]

k thermal conductivity [W/(mK)]

Kn Knudsen number

l ridge pitch [µm]

L channel length [m]

Lc characteristic length [µm]

ṁ mass flow rate [kg/s]

n direction normal to channel surface, index

Nu Nusselt number

p pressure [Pa]

pv vapor pressure [Pa]

Po Poiseuille number (fReDh
)

r roughness factor

R radius of curvature [m]

72



R thermal resistance [◦C/W]

ReDh
Reynolds number

T temperature [◦C]

u velocity [m/s]

w interior channel width [m]

Greek Symbols

λ molecular mean free path length [µm]

µ viscosity [kg/(ms)]

φs solid fraction

ρ density [kg/m3]

θA advancing contact angle [radians]

θ∗c apparent Cassie contact angle [radians]

θ∗w apparent Wenzel contact angle [radians]

Subscripts

c composite interface, coating, cavity

i inlet

lg liquid-gas

ls liquid-solid

m mean value

o outlet

r ridge
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Chapter IV

Effect of Evaporation and Condensation at Menisci on

Apparent Thermal Slip 1

Abstract

We semi-analytically capture the effects of evaporation and condensation at menisci on

apparent thermal slip lengths for liquids suspended in the Cassie state on ridge-type struc-

tured surfaces using a conformal map and convolution theory. An isoflux boundary condition

is prescribed at solid-liquid interfaces and a constant heat transfer coefficient or isothermal

one at menisci. We assume that the gaps between ridges, where the vapor phase resides, are

closed systems; therefore, the net rates of heat and mass transfer across menisci are zero. The

reduction in apparent thermal slip length due to evaporation and condensation relative to

the limiting case of an adiabatic meniscus as a function of solid fraction and interfacial heat

transfer coefficient is quantified in a single plot that is validated by numerical simulations.

Results suggest that interfacial evaporation and condensation need to be considered in the

design of microchannels lined with structured surfaces for direct liquid cooling of electronics

applications, and a quantitative means to do so is elucidated. The result is a decrease in

thermal resistance relative to the predictions of existing analyses which neglect them.

1This work is under review in ”Effect of Evaporation and Condensation at Menisci on Apparent Thermal
Slip,” M. Hodes, L. Steigerwalt Lam, S. MacLachlan, and R. Enright, Journal Heat Transfer, 2014.
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4.1 Introduction

A sessile droplet on a structured surface characterized by periodic length scales that

are small compared to the capillary length may be stable in the Cassie state, where solid-

liquid contact is confined to the tips of the structures [1]. A liquid flowing over a structured

surface may also be in this state, which we assume here and depict in Fig. 4.1 for ridge-type

structures. The necessary criteria are provided elsewhere [3]. The solid-liquid interface is

subjected to the no-slip boundary condition, but lubrication is achievable because low shear

stress may be maintained at the meniscus (liquid-vapor interface). Heat is supplied to the

liquid primarily through the solid-liquid interface.

Figure 4.1: Liquid in Cassie state on ridge-type structures.

Trapping a flowing liquid in the Cassie state is envisioned for enhanced microchannel

cooling of electronics [3, 94]. This reduces the caloric resistance, 1/ (ṁcp), to heat transfer,

but, simultaneously, degrades the effective heat transfer coefficient. To evaluate the efficacy

of the enhancement it is necessary to capture the beneficial effects of condensation and

evaporation along menisci on apparent thermal slip length when a volatile coolant such as

water is utilized.

We consider a periodic array of ridges of width 2a, of pitch 2d and centered about the

origin and assume that menisci are flat as per the semi-infinite domain shown in Fig. 4.2.

The composite interface corresponds to the y = 0 boundary of the domain and includes
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the solid-liquid interface and the meniscus. Solid fraction (φ) equals the area fraction of

the solid-liquid portion of the composite interface, a/d. The temperature field is symmetric

about x = 0 and x = d. We assume that the gaps between ridges, where the vapor phase

resides, are closed systems2. This is true, when, e.g., ridges reside in a trench on a substrate

over which liquid flows. We consider steady-state conditions; therefore, the net rates of heat

and mass transfer into the meniscus are zero. Thermophysical properties are assumed to

be constant.

x

y

a
d

solid-liquid
interface

meniscus
symmetry
boundary

symmetry
boundary

liquid 
domain

vapor + 
gas

ridge

Figure 4.2: Liquid domain and ridge and vapor region beneath it.

The Reynolds number characterizing flow near a composite interface in the limit as solid

fraction approaches zero is Rec = ρw̄ca/µ, where w is streamwise velocity, the overbar

denotes a mean quantity, the subscript c denotes the composite interface, and ρ and µ

are liquid density and viscosity, respectively. More generally, Rec can’t exceed ρw̄cd/µ. The

corresponding Pclet number is Pec = RecPr, where Pr is the Prandtl number of the liquid. At

pitches characterizing structured surfaces, Rec and Pec approach zero in most applications.

Thus, as we assume here, transport is diffusive, neglecting viscous dissipation, and the

temperature field is governed by Laplace’s equation for the ”inner problem.”

There is a distinction between the true temperature profiles, T (x, y, z) and T (x, y) for

ridges oriented parallel and transverse to the streamwise direction, respectively, and those

averaged over the width of the domain, d, T̄ (x, z) and T̄ (x) for parallel and transverse

2The “vapor” phase normally has vapor and noncondensable gas components.
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ridges, respectively. However, the (maximum) length scale for the distance normal to the

composite interface to which it applies is d. We assume that length scales characterizing the

“outer problem,” e.g., boundary layer thickness in an external flow, are large compared to d.

Then, heat flux is constant as y →∞ in the inner problem, as it is within the linear region

of the temperature profile of the outer one. We further assume that ∂2T/∂x2 ∼ ∂2T/∂y2 �

∂2T/∂z2 in the inner problem such that it is governed by the two-dimensional form of the

Laplace equation. This is precisely true for a fully-developed internal flow over parallel

ridges subjected to a constant heat flux at the solid-liquid interface (q′′sl) and for transverse

ridges. However, our analysis assumes symmetry boundary conditions in x ; therefore, it

only applies to flow over transverse ridges when the linear component of the streamwise

temperature change may be ignored. The preceding discussion is restricted to laminar flows

due to the minute length scales associated with viscous sublayers in turbulent flows.

Apparent slip results from the interaction of liquid flow with regions of solid-liquid con-

tact and menisci. The no-slip boundary condition applies at solid-liquid interfaces, but not

along menisci; therefore, lubrication may be realized in microfluidic conduits. The apparent

hydrodynamic slip length (b), subsequently referred to as the slip length, relates the stream-

wise velocity averaged over the width of the domain to its gradient at the composite interface

as per [7]

w̄c = b
∂w̄

∂y

∣∣∣∣
c

. (4.1)

Analogously, the apparent thermal slip length (bt), also referred to as the temperature jump

length and subsequently referred to as the thermal slip length, relates the difference between

the mean temperatures of the solid-liquid and composite interfaces to the gradient of T̄ (y)

at the composite interface as per

T̄sl − T̄c = −bt
∂T̄

∂y

∣∣∣∣
c

, (4.2)

where the subscript sl denotes the solid-liquid interface, where a constant heat flux is pre-
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scribed. (Thermal slip length may also be based upon the maximum temperature of the

solid-liquid interface.) We note that as per the Leibniz Rule ∂T̄ /∂y
∣∣
c

equals the mean heat

flux at the composite interface which, in turn, as per an energy balance on the domain equals

dT/dy|y→∞.

Slip lengths and thermal slip lengths follow from the solution to the inner problems

and capture perturbations to the velocity and temperature fields due to structured surfaces.

Assuming a flat and shear-free meniscus, expressions for slip length were developed by Lauga

and Stone [17] for parallel and transverse ridges and by Davis and Lauga [95] and Enright

et al. [29] for pillars3. More generally, Ybert et al. [23] developed scaling laws that consider

meniscus curvature and viscous dissipation in the gas phase.

Analytical results for thermal slip length for isoflux and isothermal solid-liquid inter-

faces and adiabatic menisci were developed by Enright et al. [29] for ridge- and pillar-type

structures based upon expressions for thermal spreading resistances [35]. Ng and Wang

[36] semi-analytically computed thermal slip lengths for isothermal, ridge-type structures

as a function of vapor-phase to liquid-phase thermal conductivity and ridge depth when

isothermal surfaces bounded the vapor phase. When the cavity depth is shallow compared

to structure spacing, conduction through the vapor phase can reduce the thermal slip length

relative to the case of an adiabatic meniscus. For cavity depths on the order of the spacing

of the structures and larger, conduction through the gas has negligible impact on slip length.

No effort is made to account for this effect here. Ng and Wang [36] also semi-analytically

computed slip lengths for an isothermal surface with adiabatic circular or square holes. The

preceding results are based on pure diffusion in the aforementioned inner problem. Maynes

and Crockett [33] analytically studied Poiseuille flow in a parallel plate channel lined with

parallel ridges subjected to a constant heat flux by solving the thermal energy equation rather

than the Laplace equation, thereby accounting for advection. They developed a closed form

3For pillar-geometry structures, the velocity and temperature fields in the inner problems are three-
dimensional; therefore, velocities and temperatures are averaged over areas rather than line segments to
compute slip lengths.
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solution for the local Nusselt number in agreement with [29] and provide an expression for

thermal slip length based on it. Finally, Cowley et al.[96] account for the effects of axial

conduction in a numerical study of Poiseuille flow in a parallel plate channel lined with

transverse ridges. Their results elucidate when axial conduction is important and when

diffusion-based analyses apply as a function of the relevant dimensionless parameters.

We capture the effects of evaporation and condensation along the meniscus on thermal

slip length when the tips of ridge-type structures are isoflux. Significantly, when heat is trans-

ferred from the solid-liquid interface into the liquid, evaporation occurs along the relatively

hot portion of the meniscus adjacent to the triple contact line and condensation elsewhere.

Therefore, a fraction of the heat entering the domain conducts through the liquid to the

relatively hot portion of the meniscus, drives evaporation, convects through the vapor-phase

and is transported back into the liquid by condensation. This decreases thermal slip length

relative to the limiting case of an adiabatic meniscus, except in the case of a non-volatile

liquid, e.g., galinstan. This has ramifications to the efficacy of using structured surfaces to

reduce the thermal resistance of microchannel cooling of microelectronics [3].

In the general case, we prescribe solid fraction and the dimensionless interfacial heat

transfer coefficient at the meniscus, h̃. Then, the limiting case of an isothermal meniscus

(h̃→∞) is addressed. We note that thermal slip lengths are geometric parameters only in

the limits of an adiabatic or isothermal meniscus.

Macroscopic parameters, e.g., Poiseuille and Nusselt numbers, follow by imposing the

boundary conditions given by Eqs. 4.1 and 4.2 on the convective transfer equations gov-

erning the outer problem. These govern the velocity and temperature fields averaged over

the appropriate length (e.g., ridge pitch) or area (e.g., that bounded by symmetry lines

surrounding a pillar); see, e.g., Lam et al. [3]. By implication, the Nusselt number is a

function of the thermal slip length, and its value computed from the analysis herein rather

than that for an adiabatic meniscus should be utilized. Subsequently, a microchannel heat

sink exploiting the favorable effects of liquid flowing over textured surfaces may be optimized
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as per the analysis of Lam et. al [3].

We note that when the Knudsen number characterizing an internal gas flow is between

about 0.001 and 0.01 the continuum forms of the convective transfer equations apply, but

the wall boundary conditions which account for molecular slip are of the same form as Eqs.

4.1 and 4.2 [11]. Therefore, expressions in the rarefied gas and microflow literature for

Poiseuille number (see, e.g., Duan and Muzychka [80]) and Nusselt number (see, e.g., Colin

[12]) apply to liquid flows exhibiting apparent slip. In both classes of problems the effects of

slip vanish as the ratio of the slip length to the length scale for the outer problem approaches

zero. Hence, since apparent slip lengths scale with structure pitch [23], itself on the order of

microns, apparent slip is relevant in laminar microchannel flows and turbulent flows [14].

4.2 Analysis

We organize this section according to the type of boundary condition imposed at the

meniscus. First, we consider it adiabatic. Then, we prescribe a finite heat transfer coefficient.

Finally, we consider it isothermal. The solid-liquid interface is isoflux.

4.2.1 Adiabatic Meniscus

As per the result of Enright et al. [29], for an adiabatic meniscus, dimensionless thermal

slip length, b̃t = bt/ (2d), is

b̃t =
1

π3φ2

∞∑
n=1

sin2 (nπφ)

n3
. (4.3)

4.2.2 Finite Heat Transfer Coefficient at Meniscus

The two-dimensional temperature field is governed by Laplace’s equation,

∇2T = 0, (4.4)
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subjected to

∂T

∂y
= −q

′′
sl

k
for 0 < x < a, y = 0 (4.5)

dT

dy
= −a

d

q′′sl
k

for 0 < x < d, y →∞ (4.6)

∂T

∂y
=
h

k

(
T − T̄lv

)
for a < x < d, y = 0 (4.7)

∂T

∂x
= 0 for x = 0, y > 0 (4.8)

∂T

∂x
= 0 for x = d, y > 0. (4.9)

where T̄lv is the mean temperature of the meniscus and k is the thermal conductivity of the

liquid. Implicit in the assignment of Eq. 4.7 to the meniscus is the assumption of a uniform

pressure on the vapor side of it that corresponds to the saturation pressure associated with

T̄lv. While local evaporation and condensation occur, the net heat and mass flows across the

meniscus are zero. Hence, all of the heat entering the domain at the solid-liquid interface

is removed by the sensible temperature rise of the liquid, and the rate of heat leaving the

domain as ỹ →∞ equals that through the solid-liquid interface as per Eq. 4.6.

Equation 4.6 implies that the rate of heat entering the domain at the solid-liquid interface

equals that leaving it by conduction as y → ∞. We develop the dimensionless parameter

that must be small compared to unity to justify ignoring the heat advected out of the

domain. Accordingly, we consider the domain shown in Fig. 4.2, with the exception that it

is finite rather than semi-infinite. Its height is d, the maximum length scale required for the

temperature field to become uniform in x in the inner problem, and it is of depth dz. For

fully-developed flow, the rate of heat advected out of the domain is

qadv = ṁinnercp
dTm
dz

dz, (4.10)

where ṁinner is the mass flow rate of liquid through the aforementioned (finite) inner domain,

cp is the specific heat of the liquid at constant pressure and Tm is the bulk temperature of
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the liquid. The characteristic velocity in the inner problem is that at y = 0, which equals

w̄c as per Eq. 4.1 and is readily computed from available expressions for b. Hence, ṁinner

is of order ρw̄cd
2. Moreover, because the boundary condition at y = 0 is one of constant

heat input, a macroscopic energy balance on a domain that extends across a parallel plate

channel. This yields dTm/dz = 2q
′′

sla/(ṁcp), where the factor of 2 implies the channel is

symmetrically heated and ṁ is the total mass flow rate of liquid through the channel, which

may be computed based upon available friction factors which account for hydrodynamic slip.

It follows that

qadv =
2ρw̄cd

2q′′sla

ṁ
dz. (4.11)

The rate of heat conducted into the domain is q′′sladz such that the criterion for negligible

advection out of the domain becomes

2ρw̄cd
2

ṁ
. 0.1 (4.12)

Physically, this implies that the mass flow rate of liquid through the inner portion(s) of the

domain is small compared to the total mass flow rate.

In dimensionless form, Laplace’s equation becomes,

∂2θ

∂x̃2
+
∂2θ

∂ỹ2
= 0, (4.13)

where θ =
(
T − T̄lv

)
k/ (q′′sld). Throughout this paper variables with units of length are

non-dimensionalized by half of the pitch of the ridges (d) when a tilde symbol is placed over

them. The exception is bt, which is non-dimensionalized by structure pitch to be consistent
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with most of the previous literature. The boundary conditions become

∂θ

∂x̃
= 0 for x̃ = 0, ỹ > 0 (4.14)

∂θ

∂x̃
= 0 for x̃ = 1, ỹ > 0 (4.15)

∂θ

∂ỹ
= −1 for 0 < x̃ < φ, ỹ = 0 (4.16)

∂θ

∂ỹ
= h̃θ for φ < x̃ < 1, ỹ = 0 (4.17)

dθ

dỹ
= −φ for 0 < x̃ < 1, ỹ →∞, (4.18)

where h̃ = hd/k. The symmetry boundary conditions in Eqs. 4.14 and 4.15 always apply,

but are only explicitly stated here.

We homogenize the boundary condition given by Eq. 4.16 by defining ũ (x̃, ỹ) = θ̃ (x̃, ỹ)+

ỹ. Then, we conformally map the problem to the complex plane according to [15]

ṽ =
2

π
cos−1

[
cos (πz̃/2)

cos (πφ/2)

]
, (4.19)

where ṽ = r̃ (x̃, ỹ)+ is̃ (x̃, ỹ) and z̃ = x̃+ iỹ. Equation 4.13 is preserved, but the independent

variables become r̃ and s̃. The map sends the points (0,∞), (0,0), (φ,0), (1,0) and (1,∞)

in the real (x̃,ỹ) plane to (0,∞), (0,D̃), (0,0), (1,0) and (1,∞), respectively, in the complex

(r̃,s̃) plane, where

D̃ =
2

π
ln

[
cos (πφ/2)

1− sin (πφ/2)

]
. (4.20)

Because D̃ is a finite, positive constant, the problem in the complex plane has a ho-

mogeneous Neumann boundary condition along r̃ = 0 for s̃ > 0. Also, the homogeneous

Neumann boundary condition along x̃ = 1 for ỹ > 0 becomes one of the same type along r̃

= 1 for s̃ > 0. The nonhomogeneous Robin boundary condition along ỹ = 0 for ã < x̃ < 1 is

stretched to one of the same type along s̃ = 0 for 0 < r̃ < 1. Finally, the nonhomogeneous

Neumann boundary condition as ỹ →∞ for 0 < x̃ < 1 corresponds to one of the same type
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as s̃→∞ for 0 < r̃ < 1. When ũ is expressed in terms of (r̃,s̃) rather than (x̃,ỹ), we denote

it by U (r̃, s̃).

The effect of the conformal map on the derivatives within the nonhomogeneous bound-

ary conditions may be evaluated from ∂ũ/∂ỹ = ∂Ũ/∂r̃ × ∂r̃/∂ỹ + ∂Ũ/∂s̃ × ∂s̃/∂ỹ. After

manipulation it follows that, along s̃ = 0 for 0 < r̃ < 1, ∂Ũ/∂s̃ = ∂ũ/∂ỹ × f (r̃), where

f (r̃) =
cos
(
πφ
2

)
sin
(
πr̃
2

)[
1− cos2

(
πφ
2

)
cos2

(
πr̃
2

)]1/2 for 0 < r̃ < 1, (4.21)

and, as s̃→∞, ∂Ũ/∂s̃ = ∂ũ/∂ỹ. Eliminating a mixed boundary condition from the problem

is of net benefit, but causes f (r̃) to appear in the Robin boundary condition. Finally,

defining w̃ (r̃, s̃) = Ũ (r̃, s̃) + (φ− 1) s̃, renders the Neumann boundary condition as s̃→∞

homogeneous such that ∇2w̃ = 0 is subjected to

∂w̃

∂r̃
= 0 for r̃ = 0, s̃ > 0 (4.22)

∂w̃

∂r̃
= 0 for r̃ = 1, s̃ > 0. (4.23)

∂w̃

∂s̃
+ 1− φ = h̃

(
w̃ +

1

h̃

)
f (r̃) (4.24)

for 0 < r̃ < 1, s̃ = 0

∂w̃

∂s̃
= 0 for 0 < r̃ < 1, s̃→∞ (4.25)

Solving Eq. 4.13 by the method of separation of variables and applying the three homo-

geneous boundary conditions yields

w̃ =
∞∑
j=0

dj cos (jπr̃) e−jπs̃ (4.26)

Inserting this result into the nonhomogeneous boundary condition, Eq. 4.24, multiplying

by the jth eigenfunction and integrating across the homogeneous direction, does not yield

an expression for dj. However, by expressing the left- and right-hand sides of Eq. 4.24 by
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Fourier series, we can utilize orthogonality to numerically compute dj.

The function f (r̃) is odd and has a dimensionless period of 4. However, since only its

value for 0 < r̃ < 1 is relevant, we choose to express it in a Fourier cosine series as

f (r̃) =
∞∑
k=0

ek cos (kπr̃) , (4.27)

where standard orthogonality relations yield,

e0 =

∫ 1

0

cos
(
πφ
2

)
sin
(
πr̃
2

)[
1− cos2

(
πφ
2

)
cos2

(
πr̃
2

)]1/2dr̃ (4.28)

ek = 2

∫ 1

0

cos
(
πφ
2

)
sin
(
πr̃
2

)[
1− cos2

(
πφ
2

)
cos2

(
πr̃
2

)]1/2 cos (kπr̃) dr̃ (4.29)

for k > 0.

Analytical results for the preceding integrals are cumbersome. Hence, we compute them

numerically.

Utilizing the expression for w̃ (Eq. 4.26), the left-hand side of the nonhomogeneous

boundary condition (Eq. 4.24) may be expressed as

∂w̃

∂s̃

∣∣∣∣
s̃=0

+ 1− φ =
∞∑
l=0

fl cos (lπr̃) , (4.30)

where

f0 = 1− φ (4.31)

fl = −lπdl for l > 0. (4.32)

Moreover, excluding the scaling factor, the right-hand side of this boundary condition may

be expressed as

h̃

[
w̃ (r̃, 0) +

1

h̃

]
=

∞∑
m=0

gm cos (mπr̃) , (4.33)
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where

g0 = h̃

(
d0 +

1

h̃

)
(4.34)

gm = dmh̃ for m > 0. (4.35)

The product of this Fourier series and that representing the scaling factor (Eq. 4.21) equals

the Fourier-series representation of the left-hand side of the nonhomogeneous boundary con-

dition as per
∞∑
l=0

fl cos (lπr̃) =
∞∑
m=0

gm cos (mπr̃)
∞∑
k=0

ek cos (kπr̃) . (4.36)

Multiplying this expression by cos (pπr̃), where p is an integer between 0 and ∞, and inte-

grating across the homogeneous direction yields

∞∑
l=0

fl

∫ 1

0

cos (lπr̃) cos (pπr̃) dr̃ =
∞∑
m=0

∞∑
k=0

gmek· (4.37)∫ 1

0

cos (mπr̃) cos (kπr̃) cos (pπr̃) dr̃.

Performing the integration yields a linear system of equations valid between p = 0 and p =

∞ as per

∞∑
l=0

flt (l, p) =
∞∑
m=0

∞∑
k=0

gmek [a (m, k, p) + b (m, k, p) (4.38)

+c (m, k, p) + d (m, k, p)] ,

where

t (l, p) =


1 if l = p = 0

1/2 if l = p > 0

0 otherwise

(4.39)
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a (m, k, p) =


1/4 if m = k = p = 0

0 otherwise

(4.40)

b (m, k, p) =


1/4 if k −m = p

0 otherwise

(4.41)

c (m, k, p) =


1/4 if m+ k = p

0 otherwise

(4.42)

d (m, k, p) =


1/4 if m− k = p

0 otherwise.

(4.43)

Upon removal of the terms equal to zero in the sum and double sum in Eq. 4.38, it

becomes

f0 = e0g0 +
1

2

∞∑
m=1

emgm (p = 0) (4.44)

2fp =

p∑
m=0

ep−mgm +
∞∑
m=0

emgm+p + em+pgm (p ≥ 1) . (4.45)

The unknown column vector in the linear system, dj, appears in fl (for l ≥ 1) and gm (for all

m). We impose P + 1 unknowns (d0 through dP ) on a truncated form of the linear system

with P + 1 equations (those for p = 0 through p = P ) by truncating the sums therein
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according to

f0 = g0e0 +
1

2

P∑
m=1

emgm (p = 0) (4.46)

2fp =

p∑
m=0

ep−mgm +

P−p∑
m=0

emgm+p +
P∑

m=0

em+pgm (4.47)

(p ≥ 1) .

The linear systems were solved using the built-in LU factorization from MATLAB to find the

coefficents, dj, although we note that an indirect method, using a few steps of Gauss-Seidel

iteration gave effectively the same results. Evaluation of the thermal slip length requires

an expression for θ (x̃, 0) along ỹ = 0. Upon transforming from w̃ back to θ, it follows that

θ (x̃, 0) =
P∑
j=0

dj cos [jπr̃ (x̃, 0)] e−jπs̃(x̃,0) + (1− φ) s̃ (x̃, 0) , (4.48)

where it follows from Eq. 4.19 and the requirement that s̃ (x̃, 0) ≥ 0 that for 0 ≤ x̃ ≤ 1

r̃ (x̃, 0) =
2

π
cos−1

[
cos
(
π
2
x̃
)

cos
(
π
2
φ
)]H (x̃− φ) (4.49)

s̃ (x̃, 0) = − 2

π
ln

[
cos
(
π
2
x̃
)

cos
(
π
2
φ
) − ∣∣∣∣∣

√
cos2

(
π
2
x̃
)

cos2
(
π
2
φ
) − 1

∣∣∣∣∣
]

(4.50)

H (φ− x̃) ,

where H is the Heaviside step function, which equals 0 and 1 when its argument is < 0 and

≥ 0, respectively. Noting that

φ = −∂θ̄
∂ỹ

∣∣∣∣
c

, (4.51)

the definition of thermal slip length implies that

b̃t =
1− φ
2φ2

∫ φ

0

θ (x̃, 0) dx̃− 1

2φ

∫ 1

φ

θ (x̃, 0) dx̃. (4.52)
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We compute b̃t for prescribed values of φ and h̃ by setting P = 200 and increasing it by 200

until no change is observed in the result to six digits.

4.2.3 Isothermal Meniscus

The boundary conditions for an isoflux solid-liquid interface and isothermal meniscus are

those given by Eqs. 4.14-4.18, except that Eq. 4.7 is replaced by θ = 0 for φ < x̃ < 1 and

ỹ = 0. The solution is the superposition of those to a one-dimensional background problem

and a two-dimensional perturbation problem. The former is governed by d2θ1D/dỹ
2 = 0

subjected to θ1D = 0 at ỹ = 0 and dθ1D/dỹ = −φ as ỹ → ∞ such that θ1D = −φỹ. The

latter is governed by ∇2θp = 0 subjected to the symmetry boundary conditions and

∂θp
∂ỹ

= φ− 1 for 0 < x̃ < ã, ỹ = 0 (4.53)

θp = 0 for ã < x̃ < 1, ỹ = 0 (4.54)

dθp
dỹ

= 0, for 0 < x̃ < 1, ỹ →∞. (4.55)

We note that θ̄sl − θỹ→∞ = (θ1D,ỹ=0 − θ1D,ỹ→∞) +
(
θ̄p,sl − θp,ỹ→∞

)
and that θ1D,ỹ=0 −

θ1D,ỹ→∞ = θ̄c − θỹ→∞. Then, it follows from Eq. 4.2 that the thermal slip length is

b̃t =
θ̄p,sl − θp,ỹ→∞
2 (∂θ/∂ỹ)|c

. (4.56)

Philip [15] solved a mathematically equivalent perturbation problem in the context of shear

flow over a plate with a regular array of shear-free slots parallel to the flow direction. Utilizing

his results in Eq. 4.56, the thermal slip length becomes

b̃t =
(1− φ)

πφ

{
1

φ

∫ φ

0

cosh−1
[
sec

(
πφ

2

)
cos

(
πx̃

2

)]
dx̃

− ln

[
sec

(
πφ

2

)]}
. (4.57)
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4.3 Model Validation

To validate the analytical results, STAR-CCM+ R version 7.04 (double precision) was

used to solve the problem for an adiabatic meniscus, an isothermal meniscus, and three finite

non-dimensional heat transfer coefficient values at the meniscus h̃ = 1, 100, and 1000, all at

solid fractions of 0.01 and 0.1. The height of the computational domain was set to 25 times

the structure pitch to well approximate a semi-infinite domain. A finite volume approach with

an algebraic multigrid iterative solver was employed. The meshes utilized featured increasing

levels of refinement near the solid-liquid interface where steep temperature gradients were

present. Meshes were generated for both solid fractions and were subsequently refined until

the thermal slip length for the isothermal meniscus case was within 1% of the analytical

value given by Eq. 4.57. To further verify the validity of the meshes, the meniscus was also

subjected to the adiabatic condition and the resulting thermal slip lengths agreed with the

analytical predictions to within 0.04%. The meshes used for φ = 0.1 and 0.01 contained

nominally 200k and 370k cells, respectively. Further refinement to the smaller solid fraction

mesh for the adiabatic meniscus case yielded a change in thermal slip length of less than

0.02%. The solutions were deemed converged when the discretized Laplace equation residuals

asymptoted to nominally 10−13 and, within numerical precision, the thermal slip length

ceased to change.

4.4 Results

The semi-analytically computed thermal slip length is plotted versus solid fraction for

an adiabatic meniscus, selected finite values of dimensionless heat transfer coefficient and an

isothermal meniscus in Fig. 4.3. The corresponding numerical results for the aforementioned

discrete values of φ and h̃ are shown by the solid triangles. The mean of the absolute value

of the discrepancy between the analytical and numerical results is 1.61% .

As discussed by Carey [37], Schrage [38] derived an expression for the interfacial heat
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Figure 4.3: Dimensionless thermal slip length versus solid fraction for adiabatic meniscus, finite
dimensionless heat transfer coefficient at meniscus and isothermal meniscus when the boundary
condition at the solid-liquid interface is constant heat flux. Triangles correspond to numerical
validation of semi-analytical results.

transfer coefficient as per

h =
2σ̂

2− σ̂
h2lv
T̄lvvlv

(
M

2πRT̄lv

)1/2(
1− pvvlv

2hlv

)
, (4.58)

where properties are evaluated at T̄lv and σ̂ is the accommodation coefficient, hlv is the

latent heat of evaporation, vlv is the difference between saturated vapor and saturated liquid

specific volumes, M is the molecular weight of the liquid, R is the universal gas constant

and pv is saturation pressure. Eq. 4.58 is valid when

q′′lv
ρvhlv

(
2RT̄lv
M

)1/2

≤ 0.01, (4.59)

where ρv is the vapor density. When the right-hand side of this equation equals 0.01, the

corresponding interfacial heat flux is denoted by q′′lv,max. Eq. 4.58 imposes a linear relation-

ship between the (local) heat flow and the (local) temperature difference between the phases.

This implies that conditions are sufficiently close to equilibrium such that the Boltzmann
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distribution describes the velocity distribution of vapor molecules leaving and approaching

the meniscus. In the case of water, assuming an accommodation coefficient of unity, the

extremely-high interfacial heat transfer coefficient and corresponding q′′lv,max are plotted ver-

sus temperature in Fig. 4.4 based upon the properties of water in Reference [81]. When Eq.

4.59 is invalid, Schrage [38] provides a more cumbersome relation to compute the interfacial

heat transfer coefficient.
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Figure 4.4: Interfacial heat transfer coefficient and maximum interfacial heat flux to which it applies
as a function of temperature for water.

Thermal slip length is computed by prescribing φ and T̄lv, using Fig. 4.4 to determine

the corresponding value of h̃ and finding b̃t from Fig. 4.3. For example, for φ = 0.01 and

T̄lv = 100oC, in the case of water, h = 7.55×106 W/(m2·K) and q′′lv,max = 792 W/cm2.

Assuming a ridge pitch of 2 µm (d = 1 µm), h̃ = 11.12, and b̃t = 0.94, which is a 30%

reduction relative to the case of an adiabatic meniscus and 2.44 times the limiting value for

an isothermal meniscus. Macroscopically, the Nusselt number is a function of the thermal

slip length [29] and its value computed from the analysis herein rather than that for an

adiabatic meniscus should be utilized.
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4.5 Conclusions

We developed expressions for the dimensionless (apparent) thermal slip length for liquid

flow in the Cassie state over ridge-type structured surfaces in the presence of local evapo-

ration and condensation along the meniscus subject to the constraint that the net rate of

phase change is zero. An isoflux boundary condition was imposed at the solid-liquid inter-

face. In the limiting case of an isothermal meniscus, analytical results provide thermal slip

length as a function of solid fraction. In the case of a finite heat transfer coefficient along

the meniscus, semi-analytical results provide thermal slip length as a function of solid frac-

tion and dimensionless interfacial heat transfer coefficient. Evaporation and condensation

substantially reduce thermal slip lengths at conditions relevant to water-based thermal man-

agement of electronics. The reduction in thermal resistance of a microchannel heat sink may

be quantified by using apparent thermal slip lengths computed from the present analysis in

relevant Nusselt number expressions. Future work should consider the effect of evaporation

and condensation on the hydrodynamic slip length as they induce a non-zero velocity nor-

mal to the meniscus. More rigorous expressions for both slip lengths in diabatic flows must

simultaneously account for the effects of curvature, thermocapillary stress and evaporation

and condensation along the meniscus and, as per the study by Ng and Wang [36], relax the

assumption that heat is supplied to the fluids exclusively at the solid-liquid interface.
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Chapter V

Effect of Meniscus Curvature on Apparent Thermal

Slip

Abstract

We analytically consider the effect of meniscus curvature on heat transfer to laminar flow

across structured surfaces. The surfaces considered are composed of ridges oriented parallel

to the flow. The curved meniscus separating liquid in the Cassie state and gas trapped in

cavities between the ridges, results from the pressure difference between the liquid and the

gas. Perturbation theory is used to develop expressions that account for the change in the

temperature field that occurs in the limit of small deflections to the meniscus. The meniscus

is considered adiabatic. A constant heat flux boundary condition is prescribed at the tips

of the ridges. We provide approximate expressions for the apparent thermal slip length

as function of solid-fraction over a range of small meniscus protrusion angles. Numerical

results show good agreement with perturbation results for protrusion angles less than +/-

20 degrees.

5.1 Introduction

Micro and nano-structured surfaces, SSs, are engineered to reduce drag by using a combi-

nation of roughness and hydrophobic coatings. They are being considered for microchannel
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flows where surface friction forces dominate in such applications as electronics cooling and

lab-on-a-chip technologies. Liquid in the Cassie (unwetted) state on a micro- or nano-

structured surface forms a meniscus along the liquid-gas interface as shown in Fig. 5.1.

Meniscus curvature is often considered a secondary effect and neglected in analysis of flow

and heat transfer along these surfaces. Recent work has shown that the effect of curvature on

hydrodynamic slip length is not necessarily small and depends on the geometry of the struc-

tures, the solid-fraction and magnitude of protrusion angle. We use a perturbation approach

to assess the change to apparent thermal slip across parallel ridges due to the presence of

meniscus curvature.

In the presence of a pressure gradient along the channel, the radius of curvature of the

meniscus increases in the streamwise direction. The angle made by the meniscus at any

point follows from the Young-Laplace equation. The maximum protrusion downward into

the gas phase is limited by the maximum advancing contact angle of the solid-liquid-gas

system. Above this angle the liquid will begin to advance down the sides of the structures

compromising the Cassie state. Conversely, if the pressure in the gas phase is greater than

that of the liquid, the meniscus will extend upward into the liquid. This is limited by the

receding contact angle of the solid-liquid-gas system, above which the meniscus will depin

from the structures.

When the liquid is thermodynamically stable in the so-called Cassie state, it encounters a

mixed-boundary condition at the surface. The classic no-slip boundary condition exits at the

liquid-solid interface where the primary heat transfer occurs. At the liquid-vapor interface,

i.e., the meniscus, the flow boundary condition is low to no shear, and the thermal boundary

condition is low heat transfer to adiabatic.

When considering channel flow, the hydrodynamic and thermal boundary conditions on

these surfaces are treated similarly to the boundary conditions in the slip regime of rarefied

gas flows using Navier’s [7] and Poison’s1 slip conditions, respectively. For velocity, the

1According to Kennard [8]

96



Figure 5.1: Schematic of a curved meniscus between the ridges. The protrusion angle, α is made
between the line tangent to the meniscus at the corner of the ridge and the horizontal. The pitch
of the strucures is 2d.

boundary condition is

ū|c = b
du

dn

∣∣∣∣
c

(5.1)

where ū|c is the apparent velocity at the composite interface, b is the the apparent hydrody-

namic slip length, henceforth referred to as slip length, and n is the direction normal to the

composite interface pointing into the liquid flow. The thermal boundary condition is

T̄sl − T̄c = −bt
∂T̄

∂n

∣∣∣∣
c

(5.2)

where bt is the apparent thermal slip length, henceforth referred to as thermal slip length.

Slip and thermal slip length expressions are available from [17, 29, 97]

In the presence of meniscus curvature, finding an average for apparent velocity and

temperature across the interface becomes problematic. Instead, the slip velocity that is

added to the flow is equivalent to ū|c and the slip length can be found from it subsequent

to solving the channel level flow [16, 17, 98].

For the thermal case, the left hand side of Eq. 5.2 is the temperature jump which results

from the added thermal resistance at the composite boundary. The inner problem is solved

to find the change to the thermal resistance between the solid-liquid interface and the outer
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flow that results from the presence of a curved meniscus. Near the tips of the structures,

the flow and heat transfer are governed by Rec and Pec, where c is the length scale of

the structures. The flow is considered Stokes flow and heat transfer is considered purely

diffusive. When the channel height is large compared with the length scale of the structures,

the temperature field becomes uniform at a vertical distance that is on the order of the

pitch of the structures. This is compared to that of the one dimensional case, T1D, where

there is no meniscus in a domain with the same width and the same heat rate. The thermal

resistance can then be found from the difference between the two cases, i.e. the change

in thermal resistance due to the meniscus. This approach was used by, e.g., Mikic and

Rohsenow [99] and Smythe [90] in the context of thermal contact resistance and electrical

resistance, respectively. Taking Tp as the change to the temperature field which results from

the presence of the meniscus, i.e., T1D+Tp = T and requiring that the heat rate in the T and

T1D domains be the same. The temperature jump can be expressed as T̄p,sl − Tp,∞. Noting

that T̄sl − T∞ =
(
T̄p,sl − Tp,∞

)
+ (T1D,sl − T1D,∞). The thermal boundary condition for the

outer problem can be rewritten

T̄p,sl − T̄p,∞ = −bt
∂T̄

∂y

∣∣∣∣
y=0

. (5.3)

The slip length captures not only the spreading resistance but also the change to the one

dimensional resistance that results from the presence of the irregular boundary.

5.2 Previous work

The effect of hydrodynamic slip on drag reduction across structured surfaces is well

documented in the literature [13, 25, 26, 65]. Heat transfer to such flows has only recently

received attention [29, 33, 100, 101].

A number of studies have shown that the shape of the meniscus and the degree of pro-

trusion significantly affect drag. Ybert et al. [23] developed scaling laws for hydrodynamic
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slip. They derive expressions for secondary effects such as a finite shear force at the meniscus

and pressure-induced curvature of the meniscus. They assumed a meniscus with a positive

protrusion angle, i.e., positive pressure in the gas. In the limit of large solid fraction, the

correction to slip length is negatively proportional to the cavity fraction and the height of

the meniscus. In the limit of small solid fraction, the correction to slip length varies inversely

with curvature such that for high curvature the slip length is negatively impacted. Bocquet

and Barrat [42] discuss the analogy between thermal slip and hydrodynamic slip. We note

that these scaling laws are also applicable to thermal slip in the presence of curvature.

Sbragaglia and Prosperetti [43] used perturbation theory to study the effect of small

deflections in the meniscus as a function of shear free fraction for parallel ridges. They

identify two significant effects that result. The first is the effect on the change in the cross-

sectional area of the flow due to the deformation at the liquid-gas interface, and the second

is the change in the velocity field. They provide hydrodynamic slip length expressions for

parallel ridges for a pressure driven flow with a finite channel height and for shear flow with

an infinite channel height. They use a small parameter ε in their expressions but they do

not account for the fact the ε changes with shear-free fraction.

Steinberger et al. [28] studied menisci formed on a surface composed of a square lattice of

cylindrical holes. They used a dynamic surface force apparatus to measure viscous damping

forces which they correlated to slip lengths. They experimentally studied two cases, liquid

in the Cassie and Wenzel states. When the liquid was in the Cassie state, gas bubbles were

trapped in the holes with menisci protruding upward in the shape of spherical caps. In the

Wenzel state, the surface and cavities were fully wetted. They found a lower effective slip

length in the presence of microbubbles than in the wetted state. Notably, roughness caused

by the presence of these bubbles increased friction at the surface. They also performed

numerical simulations of a Couette flow over menisci with the same geometry at various

contact angles. They found that the shape and protrusion angle of the meniscus significantly

affected slip length. For negative protrusion angles slip length increased with protrusion
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angle. The maximum value of slip length was reached at angle of zero. For positive protrusion

angles, slip length was degraded as protrusion angle increased and became negative above a

critical value.

Hyvaluoma and Harting [44] used a mesoscopic lattice Boltzmann simulation to study

Couette flow over structured surfaces with attached gas bubbles. They accounted for de-

formation of the bubbles due to viscous forces. They found slip length had a shear rate

dependence. Increasing the shear rate decreased the height of the bubbles. They report

slip length as a function of protrusion angle of the bubbles and found the same qualitative

relationship between protrusion angle and slip length in agreement with Steinberger et al.

[28].

Two analytical studies have addressed the effect of meniscus curvature in the limit of

low shear-free fraction. Crowdy [45] used a series of conformal maps to model a meniscus

between parallel ridges. He derived an expression for slip length as a function of solid fraction

and protrusion angle which is applicable for a periodic distribution of ridges in the limit of

large solid fractions. Davis and Lauga [46] used a two-dimensional model of shear flow past

an array of bubbles trapped between transverse ridges and provide an expression to calculate

the critical protrusion angle. Their results also show the asymmetry between the effects of

negative and positive protrusion angles.

Teo and Khoo performed numerical studies of the effect of meniscus curvature on drag

for menisci formed between parallel ridges for both Poiseuille and Couette flows [27] and in

Poiseuille flow between transverse ridges [47]. For transverse ridges, they report a critical

protrusion angle θc ≈ 62 − 65◦ at which the slip length becomes zero that is independent

of shear-free fraction, geometry and flow type but which decreases as channel height is

reduced for a given shear-free fraction. Above θc friction was enhanced. For parallel ridges,

slip length displayed asymmetry with respect to positive and negative protrusion angles;

however, there was no critical angle at which drag reduction became zero. Instead the

slip length exhibited a monotonic increase with protrusion angle even for large angle values
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up to 90◦. They also found that the ratio of parallel ridge slip length to transverse ridge

slip length did not remain constant as protrusion angle was varied. Notably, their results

showed a more positive benefit in drag reduction for menisci between parallel ridges than

for transverse ridges holding shear-free fraction, protrusion angle and normalized rib spacing

constant. Teo and Khoo [47] correlated their results with those of Davis and Lauga [46],

Crowdy [45] and Ng and Wang [48] showing good agreement between the numerical results

and the analytical models. To the authors’ knowledge the effect of meniscus curvature on

thermal slip has not been studied. This motivates the present work.

5.3 Problem Formulation

The geometry under consideration is that of a concave or convex meniscus formed between

two ridges of a structured surface with solid-fraction, φ. The center-to-center spacing of the

ridges is 2d, the width of the ridge is 2a, the width of the cavity is 2c, and (d − c)/d = φ.

The flow in the outer problem is assumed hydrodynamically and thermally fully developed

and thermophysical properties are assumed constant. We address the inner problem where

the Reynolds and Peclet numbers, Rea and Pea, based on the ridge width, a, are very small.

The hydrodynamic condition is considered to be Stokes flow, and heat transfer is considered

to be purely diffusive. Secondary effects such as evaporation and condensation across the

meniscus [97] and thermocapillary stress are not considered here.

We consider a unit cell of width, d and infinite height. Symmetry boundary conditions

exist at the midpoint of the meniscus and the midpoint of the ridge such that

∂T

∂x
= 0 for x = 0, d and y > 0. (5.4)

We consider a constant heat flux boundary condition at the solid-liquid interface

∂T

∂y
= −q

′′
sl

k
for c < x < d, y = 0. (5.5)
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Constant heat flux leaves the domain as y →∞.

∂T

∂y
= −q

′′
∞
k

for 0 < x < d, y →∞. (5.6)

The adiabatic condition along the meniscus is

n̂ · ∇T = 0 (5.7)

where n̂ is the vector normal to the meniscus. The problem is rendered dimensionless by

using T̃ = Tk/(q′′sld), x̃ = x/d and ỹ = y/d. The analytical domain is shown in Fig. 5.2.

Figure 5.2: Schematic of a single unit cell of a parallel ridge structured surface with meniscus
between the ridges. Dimensions are normalized with respect to half the pitch of the structures.

5.3.1 Perturbation Approach

In the limit of a small protrusion angle, as would potentially be the case with water, the

deflection of the meniscus is taken to be small and we follow the approach of Sbragaglia and
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Prosperetti [43] defining the meniscus shape as

ỹ + ε̃η̃(x̃) = 0 (5.8)

where η̃ and ε̃ are dimensionless quantities and ε� 1. Expressing the temperature field as

a Taylor series in ε̃ it takes the form

T̃ (x̃, ỹ) = T̃0 + ε̃T̃1 + o(ε̃) (5.9)

where T̃0 is the temperature profile assuming a flat adiabatic meniscus between the structures,

and T̃1 is the addition to temperature that would result from the deflection of the meniscus.

5.3.1.1 Boundary Condition at Meniscus

Taking the normal vector as n̂ = ε̃dη̃/dx̃î+ ĵ, the adiabatic condition along the meniscus

is

ε̃
dη̃

dx̃

∂T̃

∂x̃
+
∂T̃

∂ỹ
= 0 for 0 < |x̃| < 1− φ. (5.10)

Substituting Eq. 5.9 into the above

ε̃
dη̃

dx̃

(
∂T̃0
∂x̃

+ ε̃
∂T̃1
∂x̃

)
+
∂T̃0
∂ỹ

+ ε̃
∂T̃1
∂ỹ

= 0 for 0 < |x̃| < 1− φ (5.11)

Matching terms the boundary condition along the meniscus for T̃0 becomes,

∂T̃0
∂ỹ

∣∣∣∣∣
ỹ=0

= 0, (5.12)

and for T̃1
∂T̃1
∂ỹ

∣∣∣∣∣
ỹ=0

= −dη̃
dx̃

∂T̃0
∂x̃

∣∣∣∣∣
ỹ=0

. (5.13)

We approximate the shape of the meniscus by considering an arc of radius, R, which
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results from a pressure difference across the meniscus, ∆plg between the pressure in the liquid

above the composite interface and the pressure of the gas in the cavities. It is governed by

the Laplace-Young equation

∆plg =
σlg
R

(5.14)

where σlg is the liquid-gas surface tension. This arc would extend upward if the pressure in

the gas exceeded the pressure in the liquid. We note that, for a pressure-driven flow, there

would be a pressure gradient in the channel causing R to change in the streamwise direction.

A circular arc pinned at the corners of the ridges and extending downward is of the form

x2 +
(
y −

∣∣∣√R2 − c2
∣∣∣)2 = R2 (5.15)

or

y =
(∣∣∣√R2 − c2

∣∣∣− ∣∣∣√R2 − x2
∣∣∣) . (5.16)

Rewriting and using binomial series approximations

y ' R

[
1− 1

2

( c
R

)2]
−R

[
1− 1

2

( x
R

)2]
, (5.17)

results in

y ' 1

2R

(
c2 − x2

)
. (5.18)

Expressing Eq. 5.14 in terms of ε

ε ' 1

2R
' ∆plg

2σlg
(5.19)

where ε = ε̃/d. Using the relation in Eq. 5.8 in dimensionless terms

ỹ = −ε̃η̃ (x) ' −ε̃
(
(1− φ)2 − (x̃)2

)
. (5.20)
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It follows that

ε̃ ' ∆plgd

2σlg
, (5.21)

and the shape of the meniscus is

η̃ (x̃) '
[
(1− φ)2 − (x̃)2

]
. (5.22)

From geometry, Eq. 5.21 can be stated in terms of solid-fraction and meniscus protrusion

angle, α.

ε̃ ' − sinα

2(1− φ)
(5.23)

The protrusion angle is measured from the horizontal to the line tangent to the meniscus at

the triple contact line at the corner of the ridge. A positive protrusion angle corresponds to

the meniscus projecting upward into the liquid, and a negative protrusion angle corresponds

to the meniscus extending downward into the cavity.

For water in the Cassie state with maximum contact angle of θA = 110◦ on a surface

with solid fraction, φ = .01, ε̃ = −0.17.

5.3.2 Isoflux Ridge, Flat Meniscus

In this section we solve the temperature profile in the presence of a flat meniscus, T̃0.

Assuming constant heat flux q′′sl at the ridge and symmetry boundary conditions at x = 0

and x = d, the temperature profile takes the following form.

T̃0[x̃, ỹ] = −φỹ + ũ[x̃, ỹ]. (5.24)

The first term on the RHS is the temperature profile in the absence of a meniscus and ũ

is the change to the temperature field that results from the presence of an adiabatic, flat
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meniscus. The two-dimensional temperature field is governed by Laplaces equation,

∇2T̃0 = 0 (5.25)

subjected to

∂T̃0
∂ỹ

= 0 0 < x̃ < 1− φ, ỹ = 0 (5.26)

∂T̃0
∂ỹ

= −1 1− φ < x̃ < 1, ỹ = 0 (5.27)

∂T̃0
∂ỹ

= −φ 0 < x̃ < 1, ỹ →∞ (5.28)

∂T̃0
∂x

= 0 x̃ = 0, ỹ > 0 (5.29)

∂T̃0
∂x

= 0 x̃ = 1, ỹ > 0 (5.30)

Taking ũ(x̃, ỹ) = T̃0 + φỹ the system becomes

∇2ũ = 0 (5.31)

subjected to

∂ũ

∂ỹ
= φ 0 < x̃ < 1− φ, ỹ = 0 (5.32)

∂ũ

∂ỹ
= φ− 1 1− φ < x̃ < 1, ỹ = 0 (5.33)

∂ũ

∂ỹ
= 0 0 < x̃ < 1, y →∞ (5.34)

∂ũ

∂x̃
= 0 x̃ = 0, ỹ > 0 (5.35)

∂ũ

∂x̃
= 0 x̃ = 1, ỹ > 0 (5.36)
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Applying the last three boundary conditions the solution takes the form

ũ =
∞∑
n=0

ane
−nπỹ cos (nπx̃) . (5.37)

Applying the boundary conditions at the composite interface, results in

∞∑
n=1

− nπan cos (nπx̃) = φ 0 < x̃, 1− φ (5.38)

∞∑
n=1

− nπan cos (nπx̃) = φ− 1 1− φ < x̃ < 1. (5.39)

Applying orthogonality and adding the equations together results in

∫ 1

0

−nπancos2 (nπx̃)dx̃ =

φ

∫ 1

0

cos (nπx̃) dx̃−
∫ 1

1−φ
cos (nπx̃) dx̃ (5.40)

which is solved to find the coefficients

an = −2
sin (nπ(1− φ))

n2π2
(5.41)

The temperature profile is

T̃0 = −φỹ − 2

π2

∞∑
n=1

1

n2
e−nπỹ sin (nπ(1− φ)) cos (nπx̃) . (5.42)

Enright et al. [29] provide an expression for apparent thermal slip length which is adapted

from Mikic and Rohsenow [99] who solved the system of Eq. 5.25 in the context of a thermal

spreading resistance. The apparent thermal slip length associated with T0 is found from

b̃t,0 =
(̄̃T 0,sl −¯̃T 0,∞)

2 ∂T̃ /∂ỹ
∣∣∣
y=0

. (5.43)
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It follows that

b̃t,0 =
∞∑
n=1

sin2 (nπ (φ− 1))

φ2n3π3
. (5.44)

5.3.3 Isoflux Ridge ”Curved” Meniscus

The correction to the temperature field in the presence of deflection of the meniscus is

T̃1. Noting from Eq. 5.9 earlier that T̃ = T̃0 + ε̃T̃1. It is the solution of the following system

∇2T̃1 = 0 (5.45)

subjected to Eq. 5.13 and the following

∂T̃1
∂ỹ

= 0 1− φ < x̃ < 1,ỹ = 0 (5.46)

∂T̃1
∂ỹ

= 0 0 < x̃ < 1, ỹ →∞ (5.47)

∂T̃1
∂x̃

= 0 x̃ = 0, ỹ > 0 (5.48)

∂T̃1
∂x̃

= 0 x̃ = 1, ỹ > 0. (5.49)

Applying the last three boundary conditions leads to

T̃1 =
∞∑
n=0

gne
−nπỹ cos (nπx̃.) (5.50)

Applying Eqs. 5.13 and 5.46 results in the dual series

∞∑
n=1

−nπgn cos (nπx̃) = f(x̃) 0 < x̃ < 1− φ (5.51)

∞∑
n=1

nπgn cos (nπx̃) = 0 1− φ < x̃ < 1 (5.52)
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where

f(x̃) =
∞∑
n=1

{
4

nπ
x̃ sin[nπx̃] sin[nπ(1− φ)]

}
. (5.53)

Using orthogonality and combining Eqs. 5.51 and 5.52 results in

∫ 1

0

−mπgmcos2 (mπx̃)dx̃ =

+
∞∑
n=1

4

nπ
sin(nπ(1− φ))

∫ 1−φ

0

x̃ sin (nπx̃) cos (mπx̃) dx̃ (5.54)

The coefficients, gm, are found from the above. For m 6= n

gm =
∞∑
n=1

− 4

mnπ4
sin[nπ(1− φ)

{
π(φ− 1) cos[(m+ n)π(φ− 1)]

(m+ n)

+
sin[(m+ n)π(1− φ)]

(m+ n)2

+
π(1− φ) cos[(m− n)π(φ− 1)]

(m− n)

+
sin[(m− n)π(φ− 1)]

(m− n)2

}
. (5.55)

When m = n the following term is used in the above sum

gm =
4

mn(m+ n)2π4
sin[nπ(1− φ)]

{

+ (m+ n)π(1− φ) cos[(m+ n)π(φ− 1)]

+ sin[(m+ n)π(φ− 1)]

}
. (5.56)

The contribution to thermal slip length associated with the deflection of the meniscus is

found from

ε̃b̃t,1 =
ε̃(̄̃T 1,sl −¯̃T 1,∞)

2∂T̃ /∂ỹ
∣∣∣
y=0

. (5.57)
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It follows that

b̃t,1 =
∞∑
m=1

gm sin(mπ(−1 + φ))

2mπφ2
. (5.58)

The total apparent thermal slip associated with a small deflection of the meniscus in an

infinite domain with a constant heat flux boundary condition is

b̃t = b̃t,0 + ε̃b̃t,1 (5.59)

which yields

b̃t =
∞∑
m=1

sin2 (mπ (φ− 1))

φ2m3π3
+
gmε̃ sin(mπ(−1 + φ))

2mπφ2
. (5.60)

5.4 Results

Figure 5.3: Dimensionless thermal slip length versus solid fraction, φ, for selected protrusion angles,
α.

Thermal slip length versus solid fraction is plotted in Fig. 5.3 for a flat meniscus and

for a range of positive and negative protrusion angles. Negative angles reduce the thermal

slip length resulting in enhancement to heat transfer. Positive protrusion angles increase the

thermal slip length resulting in reductions to heat transfer. Figure 5.4 shows thermal slip
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Figure 5.4: Dimensionless thermal slip length versus protrusion angle, α, for selected solid fractions,
φ.

length as a function of protrusion angle for selected solid fractions. Notably, the slip length

is more sensitive to protrusion angle for low solid fractions. This highlights the importance

of accounting for the effect of curvature on heat transfer in at low solid fractions which are

typical of many applications.

Model Validation

The Partial Differential Equation (PDE) Toolbox in MATLAB was used to validate the

results. The Laplace equation with relevant boundary conditions was solved with a finite

element solver. The flow domain was discretized on average with 440,000 elements. Slip

length results from this model were first compared to the analytical slip length for the flat

meniscus and to comparable FLUENT simulations. The slip length from the PDE Toolbox

was found to match the known flat meniscus slip length to 5 decimal places; therefore, it was

used to evaluate the analytical values in order to determine the range of angles and solid

fractions over which the analytical results are valid. The mesh at each case was adapted and

refined multiple times for both the MATLAB and the FLUENT simulations to ensure mesh

independence.
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Solid
Fraction

Protrusion
Angle [◦]

Perturbation
Thermal

Slip length

Numerical
Thermal

Slip
length

Percent
Error

0.1 -20 0.567806 0.575841 -1.395

0.1 -10 0.593614 0.598399 -0.800

0.1 -5 0.609875 0.611573 -0.278

0.1 0 0.626259 0.626254 0.001

0.1 5 0.642645 0.642654 -0.001

0.1 10 0.658906 0.661039 -0.323

0.1 20 0.684714 0.705070 -2.887

Table 5.1: Comparison of perturbation method values with numerical values.

Table 5.1 compares slip length values obtained from the perturbation method with those

obtained from the PDE Toolbox. The perturbation results for negative angles have lower

error than those with corresponding positive angles. This highlights the asymmetry of the

thermal slip length between positive and negative angles which is not captured in the per-

turbation method. For angles between ±20◦, and solid fractions below 0.1, values that are

typical for water-based cooling, the error is less than 3%. Figure 5.5 shows the validated

data points on the slip length curves. As |α| increases, ε̃ increases and ε̃ is an indication

of the magnitude of error to be expected. As φ decreases, ε̃ decreases; therefore the error

associated with lower values of φ will be lower.

5.5 Conclusions

A thermal slip length expression has been developed for flow across parallel ridges which

accounts for the change in thermal resistance associated with the presence of a curved menis-

cus. It is applicable for a range of small protrusion angles and solid fractions which are typical

of water-based cooling in a microchannel. When liquid pressure is higher than that of the
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Figure 5.5: Dimensionsless slip length versus solid fraction. Solid lines correspond to perturbation
method results, X’s correspond to numerical validation results from MATLAB.

gas, a negative protrusion angle exists and heat transfer is enhanced. Conversely, the pres-

ence of bubble mattresses formed because the pressure in the gas is higher than that of the

liquid will reduce heat transfer to the liquid at low protrusion angles.

Future work will develop thermal slip lengths for constant temperature boundary condi-

tions and over a wider range of protrusion angles and solid fractions.
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Chapter VI

Conclusions and Future Work

6.1 Conclusions

In this work we have developed expressions and methods to assess heat transfer across

structured surfaces. In Chapters 2 and 3, we present results for shear-driven and pressure-

driven channel flows. In Chapters 4 and 5, we develop slip length expressions which account

for secondary effects. We find that the secondary effects studied here significantly impact the

temperature field. Thus, they change the thermal resistance between the structured surface

and the outer flow and should be accounted for in the calculation of heat transfer to the

flow.

6.1.1 Apparent slip in Couette flow

In Chapter 2, we provide expressions for temperature, bulk temperature and Nusselt

number as a function of arbitrary apparent slip at the boundaries for a thermally developing

steady laminar plane Couette flow with four sets of thermal boundary conditions. Fully

developed Nusselt numbers can be calculated with only one eigenvalue for given values of

apparent thermal and hydrodynamic slip and in one case, only the apparent slip values are

needed.

For a Couette flow, we find that the presence of apparent hydrodynamic slip at the moving

surface has no influence on Nusselt number, and the presence of apparent hydrodynamic slip
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at the stationary surface enhances heat transfer at the stationary surface but decreases heat

transfer at the moving surface. In all cases, the presence of apparent thermal slip lowers the

Nusselt number relative to the no slip case. When apparent thermal slip is present at the

moving surface in Couette flow, the reduction in heat transfer is more pronounced than for

apparent thermal slip at the stationary surface.

6.1.2 Liquid cooling in a microgap

In Chapter 3, we show that galinstan-based micro/minigap coolers are a promising alter-

native to water-based single phase cooling. We have demonstrated that, for fully developed

laminar flows with constant slip coefficients, significant reductions in thermal resistance are

possible, particularly for systems that are pressure limited.

We provide a methodology for assessing heat transfer enhancement resulting from ap-

parent slip. We show that by considering both the caloric and convection contributions to

heat transfer, substantial reductions in thermal resistance can be achieved by incorporating

structured surfaces into a microgap surface, and the extent of the reduction depends on

channel and surface geometry.

We also find that when the working fluid is galinstan, the convective thermal resistance

is a small percentage of the total thermal resistance and that galinstan-based cooling is

calorically dominated both in a classic channel and a channel lined with structured surfaces.

Notably, the enhancement to heat transfer gained from drag reduction in the galinstan-based

system outweighs the reduction in convective heat transfer resulting in a net improvement.

We also consider the presence of an entrance length, and while caloric resistance is in-

creased by comparison to a fully developed flow, structured surfaces still show significant

enhancement to heat transfer. The caloric resistance is 25% lower in the structured surface

channel than in the classic channel when the entrance length is taken into account. Addi-

tionally, we consider the effect of non-constant thermophysical properties. Since the effect

of temperature on the thermophysical properties of galinstan has not been studied, we use
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the properties of a terniary alloy whose composition is comparable to galinstan to assess the

the effect of the temperature dependence of thermophysical properties on heat transfer. The

percent change in both the alloy and water for a 20◦C increase is comparable; notably, the

caloric resistance in galinstan is 22% lower than water at the higher temperature.

We discuss several methods to assess the effect on transport due to the addition of

structured surfaces. First, we develop a dimensionless expression called the Navier-Laplace

parameter which allows the comparison of surface geometries to optimize the trade-off be-

tween pressure stability and hydrodynamic slip. Using this we show that parallel ridges have

the best performance with regard to drag reduction. Second, the additional height of struc-

tures reduces the available channel cross-sectional area and adds an additional resistance

to the heat transfer path. This is taken into account, first, in an analysis of the impact to

the volumetric flow. A minimum value of b̃ ≥ 0.04 is required for velocity enhancement in

the galinstan system constraining both the classic and structured-surface channels to fit into

the same available height. Subsequently, an analysis of the thermal resistance through the

surface structures shows RRidge = 0.0083 ◦C/W which is small compared to the total and on

the same order as the convective resistance for the galinstan system.

6.1.3 Effect of Evaporation and Condensation at Menisci on Apparent Thermal

Slip

In Chapter 4, we develop expressions for the dimensionless apparent thermal slip length

for liquid flow in the Cassie state over ridge-type structured surfaces in the presence of local

evaporation and condensation. The net rate of phase change along the meniscus is con-

strained to be zero. An isoflux boundary condition is imposed at the solid-liquid interface.

In the limiting case of an isothermal meniscus, analytical results provide thermal slip length

as a function of solid fraction. In the case of a finite heat transfer coefficient along the menis-

cus, semi-analytical results provide thermal slip length as a function of solid fraction and

dimensionless interfacial heat transfer coefficient. Evaporation and condensation substan-
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tially reduce thermal slip lengths at conditions relevant to water-based thermal management

of electronics. The reduction in thermal resistance of a microchannel heat sink may be quan-

tified by using apparent thermal slip lengths computed from the present analysis in relevant

Nusselt number expressions.

6.1.4 Effect of Meniscus Curvature on Apparent Thermal Slip

In Chapter 5, we develop a thermal slip length expression for flow across parallel ridges

which accounts for the change in thermal resistance associated with the presence of a curved

meniscus. Although an approximate method (perturbation) is used, the results are quite

accurate for a range of protrusion angles, −20◦ ≤ α ≤ 20◦ and solid fractions, φs ≤ 0.1, which

are typical of water-based cooling in a microchannel. When liquid pressure is higher than

that of the gas, a negative protrusion angle exists and heat transfer is enhanced. Conversely,

the presence of bubble mattresses formed because the pressure in the gas is higher than that

of the liquid will reduce heat transfer to the liquid at low protrusion angles.

6.2 Future Work

Building on the results presented here, there are open questions and many opportunities

for further analytical, numerical and experimental studies.

6.2.1 Apparent slip in Couette flow

An experimental investigation of Couette flow could be conducted to find Nusselt number

values. Case C, where the stationary surface is patterned with ridges and held at constant

temperature and the moving surface is adiabatic, would likely be the most tractable exper-

imentally. Also, within the viscous sublayer of a turbulent flow, the viscous shear rate is

approximated as constant as in the case of the Couette flow considered here. Since flow

and heat transfer in the viscous sublayer play major roles in turbulent flows, the results

of Chapter 2 may be relevant in elucidating the physics of turbulent flows over structured
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surfaces. An analytical study of the heat transfer in the viscous sublayer where the wall is

lined with parallel ridges could be undertaken. Lastly, numerical modeling of a plane steady

Couette flow where the walls are lined with structured surfaces could be undertaken and

Nusselt number values could be compared to analytical results.

6.2.2 Liquid cooling in a microgap

Future studies of microgap cooling should focus on running experiments in pressure-

driven galinstan flows in channels lined with parallel ridges. The present work found that

conditions favoring the Cassie state could be maintained when the channel was widened and

the galinstan flow transitioned to a turbulent regime. Experimental studies could be done

to quantify heat transfer both in the laminar and turbulent regimes and determine if the

Cassie state can be maintained in a turbulent regime and to what extent.

Also the methodology presented here could be extended to explore an optimum geometry

for water-based cooling of a microchannel lines with structured surfaces. The approach

should quantify conjugate heat transfer as was done by Hodes et al. [69] in combination

with the analysis which includes the wetting interactions required to maintain the Cassie

state.

6.2.3 Secondary Effects at Menisci

There are several directions which could be taken for further analytical study of effects

of evaporation and condensation. First, channel level modeling of heat transfer to the flow

should be done to include a liquid-vapor interface temperature that changes with the stream-

wise coordinate. The heat transfer coefficient used for slip length calculation is a function of

liquid-vapor interface temperature and the slip length could be calculated accordingly. Sec-

ond, consideration of higher rates of interfacial heat flux than allowed by Eq. 4.59 could be

incorporated into the analysis done here. This would further complicate the Robin boundary

condition due to the use of an h̃ which varies along the meniscus and a method to handle this
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would need to be developed. Third, the mass transfer which occurs during evaporation and

condensation implies a non-zero velocity normal to the meniscus, its effect on hydrodynamic

slip should be explored. Finally, a study of an open system where net heat transfer across

the meniscus exists would be a valuable contribution to the understanding of heat transfer

across structured surfaces.

There are also several opportunities for further analytical work regarding the effect of

meniscus curvature. Future work should develop thermal slip lengths for constant temper-

ature boundary conditions and over a wider range of protrusion angles and solid fractions.

Additionally, the radius of curvature of the meniscus will vary with the pressure drop along

the channel. A channel level study which accounts for this change in curvature should be

undertaken.

The effect of thermocapillary stress was not considered here and may potentially alter

hydrodynamic slip lengths. Thermocapillary stresses arise due to the dependence of surface

tension on temperature. Consequently, the temperature field affects the flow field adjacent

to the liquid-gas interface. Additionally, the effect of temperature dependence of the sur-

face tension on the shape of the meniscus could be studied as this may potentially change

hydrodynamic and thermal slip lengths.

Future work should consider extending the slip length results for secondary effects to

other geometries.

A numerical study which incorporates the three secondary effects mentioned above could

be done on the scale of the microstructures or on the level of a channel flow. Additionally,

future work should also consider addressing heat transfer in the presence of apparent slip

in a turbulent regime. This would be applicable to using galinstan as a working fluid in a

microgap and also facilitate the evaluation of the effect of apparent slip in large channels.
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[44] J. Hyväluoma and J. Harting, “Slip Flow Over Structured Surfaces with Entrapped Mi-
crobubbles,” Physical Review Letters, vol. 100, no. 24, p. 246001, 2008.

123



[45] D. Crowdy, “Slip length for longitudinal shear flow over a dilute periodic mattress of pro-
truding bubbles,” Physics of Fluids, vol. 22, no. 12, p. 121703, 2010.

[46] A. M. J. Davis and E. Lauga, “Geometric transition in friction for flow over a bubble mat-
tress,” Physics of Fluids, vol. 21, no. 1, p. 011701, 2009.

[47] C. J. Teo and B. C. Khoo, “Effects of interface curvature on Poiseuille flow through mi-
crochannels and microtubes containing superhydrophobic surfaces with transverse grooves
and ribs,” Microfluidics and Nanofluidics, 2014.

[48] C.-O. Ng and C. Y. Wang, “Stokes shear flow over a grating: Implications for superhydropho-
bic slip,” Physics of Fluids, vol. 21, no. 1, p. 013602, 2009.

[49] D. Tuckerman and R. Pease, “High-performance heat sinking for vlsi,” Electron Device Let-
ters, IEEE, vol. 2, no. 5, pp. 126–129, 1981.

[50] R. J. Phillips, “Microchannel Heat Sinks,” The Lincoln Laboratory Journal, vol. 1, no. 1,
pp. 31–48, 1988.

[51] D. Liu and S. V. Garimella, “Investigation of Liquid Flow in Microchannels,” Journal of
Thermophysics and Heat Transfer, vol. 18, no. 1, pp. 65–72, 2004.

[52] P.-S. Lee, S. V. Garimella, and D. Liu, “Investigation of heat transfer in rectangular mi-
crochannels,” International Journal of Heat and Mass Transfer, vol. 48, no. 9, pp. 1688–1704,
2005.

[53] J. Li and G. Peterson, “3-Dimensional numerical optimization of silicon-based high perfor-
mance parallel microchannel heat sink with liquid flow,” International Journal of Heat and
Mass Transfer, vol. 50, no. 15-16, pp. 2895–2904, 2007.

[54] G. Vogelpohl, “Die Temperaturverteilung in Schmierschichten zwishen parallen warmen-
durchlassigen Wanden,” Zeitschrift fur angewandte Mathematik und Mechanik, vol. 31,
pp. 349–356, 1951.

[55] J. Hudson and S. Bankoff, “Heat transfer to a steady Couette flow with pressure gradient,”
Chemical Engineering Science, vol. 20, no. 5, pp. 415–423, 1965.

[56] S. Bruin, “Temperature distributions in Couette flow with and without additional pressure,”
Int. Journal Heat and Mass Transfer, vol. 15, pp. 341–349, 1972.

[57] E. J. Davis, “Exact Solutions for a Class of Heat and Mass transfer problems,” Canadian
Journal of Chemical Engineering, vol. 51, pp. 562–572, 1973.

[58] A. El-Ariny and A. Aziz, “A numerical solution of entrance region heat transfer in plane
Couette flow,” Journal of Heat Transfer, no. 76, pp. 427–431, 1976.

[59] J. S̆esták and F. Rieger, “Laminar heat transfer to a steady Couette flow between parallel
plates,” Int. Journal of Heat and Mass Transfer, vol. 12, pp. 71–80, 1969.

[60] R. Schamberg, The fundamental differential equations and the boundary conditions for high
speed slip-flow, and their application to several specific problems. PhD thesis, 1947.

124



[61] W. Marques Jr., G. Kremer, and F. Sharipov, “Couette flow with slip and jump boundary
conditions,” Continuum Mechanics and Thermodynamics, vol. 12, no. 6, pp. 379–386, 2000.

[62] Y. Fang and W. Liou, “Computations of the flow and heat transfer in microdevices using dsmc
with implicit boundary conditions,” Journal of Heat Transfer-Transactions of the ASME,
vol. 124, pp. 338–345, 2002.

[63] F. Sharipov and J. L. Strapasson, “Benchmark problems for mixtures of rarefied gases. I.
Couette flow,” Physics of Fluids, vol. 25, no. 2, p. 027101, 2013.

[64] S. S. Milicev and N. D. Stevanovic, “A non-isothermal Couette slip gas flow,” Science China
Physics, Mechanics and Astronomy, vol. 56, no. 9, pp. 1782–1797, 2013.

[65] C. J. Teo and B. C. Khoo, “Analysis of Stokes flow in microchannels with superhydrophobic
surfaces containing a periodic array of micro-grooves,” Microfluidics and Nanofluidics, vol. 7,
no. 3, pp. 353–382, 2008.

[66] B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow Problems. Springer, 2004.

[67] R. Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value
Problems. Pearson Prentice Hall, 4th ed., 2004.

[68] M. Greenberg, Advanced Engineering Mathematics. Prentice Hall, second ed., 1998.

[69] M. Hodes, R. Zhang, L. S. Lam, R. Wilcoxon, and N. Lower, “On the Potential of Galinstan-
Based Minichannel and Minigap Cooling,” IEEE Transactions on Components, Packaging
and Manufacturing Technology, vol. 4, no. 1, pp. 46 – 56, 2014.

[70] R. M. Diagnostics, “Material safety data sheet for galinstan,” 2006.

[71] L. C. Cadwallader, Gallium safety in the laboratory. Idaho National Laboratory, 2003.

[72] D. Evans and A. Prince, “Thermal analysis of ga-in-sn system,” Metal Science, vol. 12, no. 9,
pp. 411–414, 1978.

[73] T. Liu, P. Sen, C.-j. C. J. Kim, and A. C. A. Measurements, “Characterization of Nontoxic
Liquid-Metal Alloy Galinstan for Applications in Microdevices,” Journal OF Microelectrome-
chanical Systems, vol. 21, no. 2, pp. 443–450, 2012.
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