
A Novel Algebraic Framework for Processing

Multidimensional Data: Theory and Application

A dissertation submitted by

Zemin Zhang

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Department of Electrical Engineering

Tufts University

February 2017

c© Copyright 2017 by Zemin Zhang

This dissertation by Zemin Zhang is accepted in its present form by

the Department of Electrical Engineering as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Shuchin Aeron, Ph.D., Advisor

Department of Electrical and Computer Engineering

Recommended to the Graduate Council

Date
Eric Miller, Ph.D., Reader

Date
Misha Kilmer, Ph.D., Reader

Date
Dehong Liu, Ph.D., Reader

Approved by the Graduate Council

iii

Date

Dean of the Graduate School

iv

Abstract

Tensor related analysis and applications are more and more popular in computer

vision, machine learning, data mining, psychometrics, signal processing and other ar-

eas. In this thesis, we first discuss, then build on a recently proposed tensor algebraic

framework[1, 2, 3, 4], in which one can obtain a factorization for multidimensional

data, referred to as the tensor-SVD (t-SVD) as similar to the Singular Value De-

composition (SVD) for matrices.t-SVD results in a notion of rank referred to as the

tubal-rank.

Using this approach we consider the problem of sampling and recovery of 3-D

arrays with what we will call low tubal-rank. We show that by solving a convex op-

timization problem, which minimizes a convex surrogate to the tubal-rank, one can

guarantee exact recovery with high probability as long as number of samples is of

the order O(rnk log(nk)) given a tensor of size n × n × k with tubal-rank r. The

conditions under which this result holds are similar to the incoherence conditions for

low-rank matrix completion under random sampling. The difference is that we define

iv

incoherence under the algebraic set-up of the t-SVD, which is different from the stan-

dard matrix incoherence conditions. We also compare the numerical performance of

the proposed algorithm with some state-of-the-art approaches on real-world datasets.

After that, we discuss t-SVD-based robust PCA methods, in both the batch and

the online manner. Applications in image denoising and fusing cloud-contaminated

satellite images demonstrate that the proposed method shows superiority in both

convergence speed and performance compared to the state-of-the-art approaches.

In the end, a new dictionary learning algorithm for multidimensional data is pro-

posed. Unlike most conventional dictionary learning methods which are derived for

dealing with vectors or matrices, our algorithm, named K-TSVD, learns a multidi-

mensional dictionary directly based on t-SVD. We propose to extend the K-SVD

algorithm used for 1-D data to a K-TSVD algorithm for handling 2-D and 3-D data.

Our algorithm, based on the idea of sparse coding (using group-sparsity over multi-

dimensional coefficient vectors), alternates between estimating a compact represen-

tation and dictionary learning. We analyze our K-TSVD algorithm and demonstrate

its result on video completion and video/multispectral image denoising.

v

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof. Shuchin

Aeron. Without his guidance and support in the research, I would not be where I

am right now. I consider that all I have achieved during my doctorate, and the fun I

have had would not have been possible without his support and patience. During my

last year in Tufts, which is also the hardest year of my entire life, Shuchin fully held

my back and helped me through those dark days. No words will express how much I

appreciate it.

I would like to thank my thesis committee: Prof. Eric Miller, Prof. Misha Kilmer

and Dr. Dehong Liu, for their insightful comments and suggestions. I thank Prof.

Eric Miller for his great courses and research advice, I have benefited immensely from

them. I’m grateful to Prof. Misha Kilmer for her technical crucial support in my

research. I also thank Dr. Dehong Liu for his guidance and great work during my

summer internship in Mitsubishi Electrical Research Lab.

I owe my beloved wife Jiaqi Cai a lot. Thank you for your love, patience, encour-

agement and support. I know it is also very hard for you during those days. I can’t

vi

make all these happen without you. I love you, and thank you for everything you

have done for me.

At last, my deepest love to my parents, Guangrui Zhang and Meiying Zhang, for

their unconditional love. Even in the last days of her life, my mom Meiying Zhang

was always caring about my work and life. Mom I love you. I’m so sad for losing you

and not letting you see me graduate. Hope you rest peacefully in heaven.

vii

Contents

List of Tables xi

List of Figures xii

1 Introduction to Tensors 1

1.1 What are tensors? . 2

1.2 CANDECOMP/PARAFAC Decomposition 5

1.3 Tucker Decomposition . 8

2 Notations and preliminaries 12

2.1 Outline of This Thesis . 25

3 Tensor Completion 26

3.1 Introduction . 26

3.1.1 Related Work . 29

3.1.1.1 Tensor Completion Based on CP decomposition . . . 31

3.1.1.2 Tensor Completion Based on Tucker Decomposition . 32

viii

3.1.1.3 Tensor Completion under Gaussian Measurements . . 33

3.1.1.4 Tensor Completion via Adaptive Sampling 33

3.2 Tensor Completion via T-SVD . 34

3.2.1 Tensor Completion with Random Sampling 34

3.2.2 Tensor Completion with Random Tubal Sampling 38

3.3 Main proof . 42

3.4 Algorithms For Tensor completion . 48

3.5 Experiments . 52

3.5.1 Video Completion . 52

3.5.2 Cellular Data Completion . 53

3.5.3 Numerical Experiments . 58

4 Tensor Robust PCA 62

4.1 Batch Tensor Robust PCA . 62

4.1.1 Problem Formulation and Algorithm 62

4.1.2 Experimental Results . 64

4.2 Online Tensor Robust PCA . 67

4.2.1 Problem Formulation and Algorithm 67

4.2.2 Experimental Results . 73

5 Tensor Dictionary Learning 77

5.1 Introduction . 77

ix

5.2 Problem Formulation . 79

5.2.1 t-linear Combination of Tensor Dictionaries and Coefficients . 79

5.2.2 From Matrix to Tensor Dictionary Learning 81

5.2.3 K-TSVD . 83

5.3 Experiment Results . 87

5.3.1 Filling Missing Pixels in Tensors 87

5.3.2 Multispectral Image and Video Denoising 88

6 Conclusions and Future Work 94

7 Appendix 96

7.1 Proof of Proposition 3.3.1 Condition 1 96

7.2 Proof of Lemma 3.3.1 . 101

7.3 Proof of Proposition 3.3.1 Condition 2 103

7.4 Proofs of supporting Lemmas . 108

Bibliography 114

x

List of Tables

3.1 A summary of existing tensor completion methods 30

5.1 PSNR(dB) of chart and stuffed toy images. 93

xi

List of Figures

1.1 First order tensor, second order tensor and third order tensor. 2

1.2 Mode-1, mode-2 and mode-3 fibers. 3

1.3 Mode-1, mode-2 and mode-3 slices. 3

1.4 Tensor X of size 3× 4× 2 . 4

1.5 CP decomposition of a third-order tensor. 6

1.6 Tucker decomposition of a third-order tensor. 9

2.1 General third-order tensor, tensor tube and tensor column. 13

2.2 T-product of a third-order tensor and mode-2 slice. 14

2.3 The t-SVD of an n1 × n2 × n3 tensor. 16

xii

2.4 Some videos and their compression performance using the SVD and

the t-SVD. The left figures show one frame of each video and the right

figures are the compression performance comparisons of the SVD and

t-SVD. The relative square error (RSE) is defined in dB as RSE =

20 log10(‖Xcom −X‖F/‖X‖F), where X is the original video and Xcom

is the compressed video, and tensor Frobenius norm ‖ · ‖F is defined in

Definition 1.1.14. 20

2.5 The column basis ~e3 and tube basis e̊5. The black cubes are 1, gray

and white cubes are 0. In the tensor column basis ~ei and row basis ~e>j ,

only the entries in the frontal slice can be 1 (white cubes). 22

3.1 Comparison of tensor and matrix incoherent condition on 50× 50× 20

tensor. 41

3.2 Tensor completion results for MERL video. Upper left: Sampled

video(20%). Upper right: Nuclear norm minimization (vectorization

and SVD based) result. Lower left: LRTC result. Lower right:

TNN minimization result. 54

3.3 Tensor completion results for basketball video. Upper left: Sampled

video(20%). Upper right: Nuclear norm minimization (vectorization

and SVD based) result. Lower left: LRTC result. Lower right:

TNN minimization result. 55

xiii

3.4 RSE (dB) plot against sampling rate Left: MERL video. Right:

Basketball video . 55

3.5 Recovery for color basketball video: Left: Sampled Video(10%). Mid-

dle: LRTC recovery. Right: Tensor-nuclear-norm minimization re-

covery . 56

3.6 Completing the 3D tensor with varying sampled data with/without

aggregate linear constraints. 57

3.7 Completing the 4D tensor with varying sampled data on the 68% avail-

able data. 59

3.8 Recovery of third order tensors from their entries. In the left

figures of both cases, each cell’s value reflects the empirical recovery

rate. Black denotes failure and white denotes success in recovery in all

simulations. In the right figures of both cases, each cell’s value is the

RSE of the recovery under the corresponding sampling rate and tubal

rank. Black denotes 1 and white denotes 0. 61

4.1 Upper left: Original video. Upper right: Noisy tensor. For 10

consecutive frames the locations of noisy pixels are the same and then

selected randomly for the next 10 frames. Lower left 21st frame of

the original video. Lower right 21st frame of the noisy video. 65

xiv

4.2 (21st frame shown) Upper Left: Low tensor multi-rank part recovered

from tensor robust PCA. Upper Right: Sparse reconstruction from

tensor robust PCA. Lower left: Low matrix rank part recovered from

matrix robust PCA. Lower right: Sparse reconstruction from matrix

robust PCA. 66

4.3 Online manner: data samples observed sequentially. Note that here

each data sample is an n1 × 1× n3 lateral slice (tensor column). . . 68

4.4 Example images of the same location taken by Landsat 7 ETM+ and

Landsat 8 OLI on different days. A total of 24 images are used in our

experiments. 73

4.5 Tensor online Robust PCA results on the images shown in Fig. 4.4.

The top row shows the low tubal rank components and the bottom

row shows the sparse components. 74

4.6 Comparison of tensor online robust PCA, matrix online robust PCA,

and Grasta streaming version. 76

4.7 Convergence speed comparison when the sparsity of Gaussian noise is

0.2. 76

5.1 A tensor signal represented by a t-linear combination of K tensor dic-

tionary atoms. 80

xv

5.2 Data in the form of tensor columns represented by the t-product of

tensor dictioanry and tubal-sparse coefficient tensors. The red tubes

in the coefficient tensors stand for the non-zero tubes and white ones

are zero tubes. 82

5.3 (a) The overcomplete DCT dictionary. (b) Dictionary learned on the

first frame of the basketball video using K-SVD. (c) The first frontal

slice D(:, :, 1) of the learned dictionary of the tensor. (d) The 3rd

frontal slice D(:, :, 3) of the learned dictionary of the tensor. 89

5.4 The reconstruction result from missing pixels on the basketball video.

The different rows are for 50% and 70% of missing pixels respectively. 90

5.5 Denoised image at the 610nm band of chart and stuffed toy. The

sparsity of the noisy pixels is 10% and the locations of noisy pixels are

consistent on image of each band. The additive noise is Gaussian with

σ = 100. 92

5.6 Video denoising result. The sparsity is 10% and σ = 100. 93

xvi

Chapter 1

Introduction to Tensors

For the past 4 decades there have been a lot active research on tensor representations

and decompositions, which are used to analyze the data, extract and explain their

properties. The goal of this chapter is to provide an overview of high-order tensors

and their decompositions.

In 1927, tensor decompositions were originally proposed in [5, 6], but did not re-

ceived a lot attention. Later in the 1960s, the work of Tucker [7, 8, 9], Carroll &

Chang [10] and Harshman [11] appeared in psychometrics literature and attracted

more research attention since then. In recent years, tensor decomposition has drawn

more interests in various fields, such as signal processing [12, 13, 14], numerical linear

algebra [15, 16, 17], data mining [18, 19, 20] and computer vision [21, 22, 23, 24] and

so on. In various applications, it is appropriate to store the data in multidimensional

1

2

arrays, rather than matrices, to apply some advantages and useful properties of ten-

sors in solving different problems [2, 22, 25, 26]. Therefore, tensor related research is

very important and worth studying.

In the following we will give a brief introduction to some classic tensor decom-

positions and models, summarize their advantages and drawbacks, and survey some

related applications.

1.1 What are tensors?

Figure 1.1: First order tensor, second order tensor and third order tensor.

Tensors are multidimensional arrays. The “order” of a tensor is simply the number

of dimensions of this array. For instance, a vector is a first-order tensor, a matrix is

a second-order tensor, and a d-dimensional array is a d-th order tensor. Figure 1.1

illustrates them. In general, a tensor of order 3 or higher is called a higher-order

tensor. In this thesis, matrices are represented by uppercase boldface letters and

vectors by lower case boldface letters. Tensors are represented in bold script font.

For instance, a third-order tensor is represented as A, and its (i, j, k)th entry is

3

represented as Aijk.

Figure 1.2: Mode-1, mode-2 and mode-3 fibers.

A fiber is a one-dimensional section, which is defined by fixing all the indices

but one. A third-order tensor example is shown in Figure 1.2. Often we will use

the following notation to extract the tensor fibers. A(i, j, :) denotes a tube/fiber

oriented into the board obtained by fixing the first two indices and varying the third.

The mode-1, mode-2 and mode-3 fibers of a third-order tensor A are represented as

A(:, j1, k1), A(i2, :, k2) and A(i3, j3, :).

Figure 1.3: Mode-1, mode-2 and mode-3 slices.

Like fibers, in third-order tensors the slices also have different directions. A slice

of a tensor is defined by fixing all indices but two. Figure 1.3 shows horizontal (mode-

1), lateral (mode-2) and frontal (mode-3) slices of a third order tensor A. They are

4

denoted by A(i, :, :), A(:, j, :) and A(:, :, k), respectively. For the frontal slices, we

will frequently use a more compact notation A(i) , A(:, :, i) ∈ Rn1×n2 .

Matricization is the process of reordering the elements of an N -way array into

matrix. It is also know as flattening and unfolding. For instance, a tensor of order-N

has N different matricizations along different directions. Given a 3× 4× 2 tensor X

as follows,

Figure 1.4: Tensor X of size 3× 4× 2

Then the mode-1, mode-2 and mode-3 matricization of X is given as,

X(1) =

1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 (1.1)

X(2) =

1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24

(1.2)

5

X(3) =

 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

 (1.3)

When the data is stored in multidimensional tensors, we will need different tensor

manipulation of the data according to the applications. In many problems, a very

important step is to compress the high-order tensors to guarantee that the compressed

representation of the tensor retains certain properties. Therefore, a lot of research

interests are focusing on developing new tensor decompositions in the literature, such

as CANDECOMP/PARAFAC decomposition [5, 6], Tucker decomposition [7, 8, 9],

Hierarchical Tucker [27], Tensor Train [28] and so on.

In the following, we will go over two famous tensor decompositions: CP decom-

positon and Tucker decomposition.

1.2 CANDECOMP/PARAFAC Decomposition

In this section, we will briefly introduce the CANDECOMP/PARAFAC decomposi-

tion, which expresses a tensor as the sum of a finite number of vector outer-products.

In details, given a third-order tensor X ∈ RI×J×K , the CP decomposition is written

as follows

X =
R∑
r=1

ar ◦ br ◦ cr (1.4)

where R is a positive integer, the symbol “◦” represents the vector outer products,

6

ar ∈ RI , br ∈ RJ and cr ∈ RK for r = 1, ..., R. Each term ar ◦ br ◦ cr, r = 1, 2, ..., R is

called a CP-rank 1 tensor.The smallest number of R is called the tensor CP rank.

Elementwise, (1.4) is equivalent to

Xijk =
R∑
r=1

airbjrckr (1.5)

for i = 1, ..., I, j = 1, ..., J and k = 1, ..., K. Figure 1.5 shows the CP decomposition

of a third-order tensor.

Figure 1.5: CP decomposition of a third-order tensor.

The CP rank of a tensor X, is defined as the smallest number of CP rank-1

tensors that generates X as their sum. In other words, it is the smallest number of

components in the CP decomposition. There are two important properties of this

CP rank. First, the rank of a real-valued tensor may be different over R and C. For

example, let X be a tensor with frontal slices be

X(:, :, 1) =

 1 0

0 1

 , X(:, :, 2) =

 0 1

−1 0

 (1.6)

7

This is a tensor of CP rank 3 over R and CP rank 2 over C [29]. For detailed proof

and the methodology for computing the factors, please see [30].

Second, given a specific tensor, there is no straightforward algorithm to determine

the CP rank. Moreover, it is proved to be NP-hard [31]. This actually prevents the

CP decomposition from some theoretical guarantees on certain bounds. In practice,

the CP rank of a tensor is estimated numerically by fitting various rank-R CP models,

and choose the best one with respect to the Frobenius norm.

Another property of the CP decomposition is the rank-R decomposition is unique.

Let X ∈ RI×J×K be a third-order tensor of rank-R. Then its CP decomposition

X =
R∑
r=1

ar ◦ br ◦ cr = JA,B,CK

is unique, with the exception of the elementary indeterminacies of scaling and per-

mutation. The last inequality is a shorthand introduced by [32]. There are many

algorithms to compute a CP decomposition given a CP-rank R, among which the

most frequently used one is the alternating least square (ALS) algorithm [10].

There are a lot of applications based on CP. In the 1970s, it was originally used

in psychometrics [10]. Appellof and Davidson [33] pioneered the use of CP in chemo-

metrics in 1981. There is also some research in neuroscience [34, 35], data mining

[18, 36]. In computer vision, the CP decomposition is used in in image compres-

sion and classification [37]. The authors of [38] applied CP to bidirectional texture

functions in order to build a compressed texture database. In the following chapters,

8

we will see some CP decomposition related algorithms comparing to our methods on

different problems [39, 40, 41].

1.3 Tucker Decomposition

In 1963, the Tucker Decomposition was proposed by Tucker [7, 8, 9]. It decompose a

tensor into a core tensor multiplied by a matrix along each mode. For a third-order

tensor X ∈ RI×J×K , we have

X = G×1 A×2 B ×3 C =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr = [G;A,B,C] (1.7)

where A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R. The symbol ×k is the n-mode (matrix)

product defined as follows: Given a tensor X ∈ RI1×I2×...×IN and a matrix U ∈ RJ×In ,

the n-mode (matrix) product of X and u is an I1 × ... × In−1 × J × In+1 × ... × IN

tensor. Elementwise, we have

(X×n U)i1...in−1jin+1...iN =
In∑
in=1

xi1i2...iNujin

and this could also be expressed using the mode-n matricization:

Y = X×n U ⇔ Y(n) = UX(n)

where the mode-n matricization is defined in (1.1) to (1.3) . The Tucker Decompo-

sition of a third-order tensor is shown in Figure 1.6. In (1.7), if P < I, Q < J and

9

R < K, the core tensor G can be regarded as a compression of tensor X.

Figure 1.6: Tucker decomposition of a third-order tensor.

The Tucker n-rank of a tensor X ∈ RI1×I2×...×IN , denoted as rankn(X), is the

column rank of its mode-n matricization X(n). If Rn = rankn(X) for n = 1, ..., N ,

then we can say the Tucker rank of tensor X is (R1, R2, ..., RN).

To compute an orthogonal Tucker decomposition, a well-known method is called

higher-order SVD (HOSVD) from [15]. The idea is to find the decomposition compo-

nents of the tensor in each mode, independent of the other modes. If for at least one

Rn < rankn(X), the decomposition is called the truncated HOSVD. Note that the

truncated HOSVD is not optimal in terms of the best approximation with respect to

to the norm of difference. As we will see later, the t-SVD, which we will talk about

and use throughout this thesis, has this optimality condition in the sense that the

tubal rank-k approximation is the “best fit” to the original tensor under Frobenius

10

norm of the difference.

Aside from this non-optimality intruncation, the Tucker decomposition is also not

unique [29]. Consider the decomposition of a third-order tensor X in (1.7). Let

U ∈ RP×P , V ∈ RQ×Q and W ∈ RR×R be nonsingular matrices. Then the Tucker

decomposition could also be

JG;A,B,CK = JG×1 U ×2 V ×3 W ;AU−1, BV −1, CW−1K

which means we are able to modify the core tensor G with multiplying inverse modi-

fications to the factor matrices.

There are various applications in which the Tucker decomposition is used. In

[42] and [43], the authors applied Tucker decomposition in signal processing. In

computer vision, [21] is the first one to use Tucker decomposition in TensorFaces

to apply facial recognition. The authors of [44] showed that the facial recognition

results using TensorFaces is much more accurate than the standard PCA techniques.

In [45], Tucker decomposition is applied to human motions, while in [46, 47] Tucker

decomposition is used to model facial expressions and compress images.

Even though CP and Tucker decomposition have various applications in multiple

fields, in this thesis, we will use an entirely different approach which obtains an energy-

revealing factorization based on the framework present in [1, 2, 3, 4]. Later in this

thesis, we will demonstrate some applications based on this novel factorization, and

compare the its results to the methods based on CP, Tucker and other decomposition.

11

One important thing to mention is that there is no a tensor decomposition that

works universally well on all the applications. Unlike the matrix case, where the

compression is often accomplished via Singular Value Decomposition (SVD), in which

the number of non-zero singular values is exactly the matrix rank, for higher-order

tensors, there is no such universal concept of rank that is well established. Different

tensor decompositions have different definitions of rank. Facing a real applications,

we need to carefully analyze the data and choose a proper tensor decomposition based

on the problems and the data itself.

Chapter 2

Notations and preliminaries

In this chapter we will talk about the related notations of t-product and t-SVD. The

development is adapted from [1, 2, 3, 4]

Some more notations are needed in this chapter. For convinience, a mode-3 fiber

is called tensor tube as å ∈ R1×1×n3 , and a mode-2 slice is denoted as tensor column

of size ~b ∈ Rn1×1×n3 . These are illustrated in Figure 2.1.

Â denotes a third-order tensor obtained by taking the Fourier Transform of all

the tubes along the third dimension of A, i.e., for i = 1, ..., n1 and j = 1, ..., n2, i.e.,

vec(Â(i, j, :)) = F(vec(A(i, j, :))), (2.1)

where vec is the vectorization operator that takes the tensor tube and makes it a vec-

tor, and F stands for the Discrete Fourier Transform (DFT). For compactness, we will

use the following notation for the DFT along the 3rd dimension: Â = fft(A, [], 3).

In the same fashion, one can also compute A from Â via ifft(Â, [], 3) using the

12

13

inverse FFT operation along the 3-rd dimension. For vectors x and y of length n,

y = fft(x) and x = ifft(y) are defined as follows.

y(k) =
n∑
j=1

x(j)w(j−1)(k−1)
n

x(j) =
1

n

n∑
k=1

y(k)w−(j−1)(k−1)
n ,

(2.2)

where wn = e(−2πi)/n is one of the n roots of unity.

Definition 2.0.1. (Tensor transpose [3]) The conjugate transpose of a tensor

A ∈ Rn1×n2×n3 is the n2 × n1 × n3 tensor A> obtained by conjugate transposing each

of the frontal slice and then reversing the order of transposed frontal slices 2 through

n3:

(
A>
)(1)

=
(
A(1)

)>
(
A>
)(i)

=
(
A(n3+2−i)

)>
, i = 2, ..., n3

Figure 2.1: General third-order tensor, tensor tube and tensor column.

14

Definition 2.0.2. (t-product [3]) The t-product A ∗B of A ∈ Rn1×n2×n3 and

B ∈ Rn2×n4×n3 is an n1 × n4 × n3 tensor whose (i, j)th tube c̊ij is given by

c̊ij = C(i, j, :) =

n2∑
k=1

A(i, k, :) ∗B(k, j, :) (2.3)

where ∗ denotes the circular convolution between two tubes of same size.

Figure 2.2: T-product of a third-order tensor and mode-2 slice.

Interpreted in another way, a 3-D tensor of size n1 × n2 × n3 can be viewed as an

n1×n2 matrix of fibers (tubes) oriented along the third dimension. So the t-product

of two tensors can be regarded as a matrix-matrix multiplication, except that the

multiplication operation between scalars is replaced by circular convolution between

the tubes. This allows one to consider 3-D tensors as linear operators over matrices.

That is, when A is a n1 × n2 × n3 tensor and B is an n2 × 1× n3 tensor (essentially

matrix oriented into the paper), A ∗B is an n1× 1×n3 tensor. This perspective has

been recently used in [48] for problems of unsupervised clustering of 2-D data. For

sake of brevity we direct the interested readers to [3, 1, 49].

Definition 2.0.3. (Identity tensor [3]) The identity tensor I ∈ Rn1×n1×n3 is

defined to be a tensor whose first frontal slice I(1) is the n1 × n1 identity matrix and

15

all other frontal slices I(i), i = 2, ..., n3 are zero.

Definition 2.0.4. (Orthogonal tensor [3]) A tensor Q ∈ Rn×n×n3 is orthog-

onal if it satisfies

Q> ∗Q = Q ∗Q> = I (2.4)

Definition 2.0.5. (Block diagonal form of third-order tensor [22]) Let

A denote the block-diagonal matrix of the tensor Â in the Fourier domain, i.e.,

A , blockdiag(Â)

,

Â
(1)

Â
(2)

. . .

Â
(n3)

∈ Cn1n3×n2n3

(2.5)

It is easy to verify that the block diagonal matrix of A> is equal to the transpose

of the block diagonal matrix of A:

A> = A> (2.6)

Remark 2.0.1. The following fact will be used through out the paper. For any tensor

A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3, we have

A ∗B = C⇐⇒ AB = C

The t-product allows us to define a tensor Singular Value Decomposition (t-SVD).

We need one more definition to state the decomposition.

16

Definition 2.0.6. (f-diagonal tensor [3]) A tensor A is called f-diagonal if

each frontal slice A(i) is a diagonal matrix.

Definition 2.0.7. (Tensor Singular Value Decomposition: t-SVD [3])

For M ∈ Rn1×n2×n3, the t-SVD of M is given by

M = U ∗ S ∗V> (2.7)

where U and V are orthogonal tensors of size n1×n1×n3 and n2×n2×n3 respectively.

S is a rectangular f -diagonal tensor of size n1 × n2 × n3, and the entries in S are

called the singular values of M. ∗ denotes the t-product here.

Figure 2.3: The t-SVD of an n1 × n2 × n3 tensor.

One can obtain this decomposition by computing matrix SVDs in the Fourier

domain as shown in Algorithm 1. Figure 2.3 illustrates the decomposition for the 3-D

case.

Based on the t-SVD one can define the following notion of tensor rank.

Definition 2.0.8. (Tensor tubal-rank [22]) The tensor tubal-rank r of A

is defined to be the number of non-zero singular tubes of S, where S comes from the

17

Algorithm 1 t-SVD for third order tensors

Input: M ∈ Rn1×n2×n3 .
Output: U ∈ Rn1×n1×n3 , S ∈ Rn1×n2×n3 , V ∈ Rn2×n2×n3 .

D← fft(M, [], 3)
for i = 1 to n3 do

[U,S,V] = svd(D(i))

Û
(i)

= U; Ŝ
(i)

= S; V̂
(i)

= V;
end for
U← ifft(Û, [], 3); S← ifft(Ŝ, [], 3); V← ifft(V̂, [], 3)

t-SVD of A : A = U ∗ S ∗V>. An alternative definition of tubal-rank is that it is the

largest rank of all the frontal slices of Â in Fourier domain. If we say a third order

tensor A is of full tubal-rank, it means r = min{n1, n2}.

Remark 2.0.2. It is usually sufficient to compute the reduced version of the t-SVD

using the tensor tubal-rank. It’s faster and more economical for storage. In details,

suppose M ∈ Rn1×n2×n3 has tensor tubal-rank r, then the reduced t-SVD of M is given

by

M = U ∗ S ∗V> (2.8)

where U ∈ Rn1×r×n3 and V ∈ Rn2×r×n3 satisfying U>∗U = I,V>∗V = I. S ∈ Rr×r×n3

is an f -diagonal tensor. This reduced version of the t-SVD will be used throughout

the paper unless otherwise noted.

An important property of the t-SVD is the optimality of the truncated t-SVD for

data approximation as stated in the following Lemma.

Lemma 2.0.1 ([3]). Let the t-SVD of M ∈ Rn1×n2×n3 be given by M = U ∗ S ∗ VT

18

and for k < min(n1, n2) define Mk =
∑k

i=1 U(:, i, :) ∗ S(i, i, :) ∗V(:, i, :)T , Then

Mk = arg min
M̃∈M

‖M− M̃‖F

where M = {C = X∗Y|X ∈ Rn1×k×n3 ,Y ∈ Rk×n2×n3} is the set of all tensors with ten-

sor tubal-rank at most k and ‖ ·‖F is the Frobenius norm defined in Definition 2.0.14.

Based on Lemma 2.0.1, one can perform dimensionality reduction and hence tensor

compression using the truncated t-SVD. Specifically, given a tensor M ∈ Rn1×n2×n3 ,

as in Lemma 2.0.1, we take the tubal rank k approximation Xk =
∑k

i=1 U(:, i, :

)S(i, i, :)V(:, i, :)> as a compression of X. Define the compression ratio as the number

of entries used to represent Xk over the number of entries in X,

ratio =
n1n2n3

n1kn3 + kn3 + kn2n3

=
n1n2

k(n1 + n2 + 1)

In Figure 2.4 we provide some video examples, which can be compressed (approx-

imated) well using the truncated t-SVD, compared to vectorizing or flattening the

data and using the truncated SVD [22]. From the Relative Square Error (RSE) ver-

sus the compression ratio plots, we see better performance of the t-SVD over SVD in

compression. Here all the videos share a similar feature that the camera is horizon-

tally panning and with linear motion in the video as well. In such videos, a compact

representation of one frame to the next frame can be effectively represented as a shift

operation, which is captured by a convolution type operation. The t-SVD is based

on such an operation along the third dimension, so it results in a much efficient rep-

resentation. Since efficiency in representation implies efficiency in recovery, and as

19

we will show later, such data will have a better performance in completion using the

t-SVD as well.

Remark 2.0.3. (Relation to CP decomposition) Suppose a tensor A ∈ Rn1×n2×n3

has CP rank r and its CP decomposition is given by

A =
r∑
i=1

a
(1)
i ◦ a

(2)
i ◦ a

(3)
i

where a
(k)
i ∈ Rnk , k = 1, 2, 3. Then tensor Â which is obtained by taking the FFT

along the third dimension of A, has the CP decomposition as follows,

Â =
r∑
i=1

a
(1)
i ◦ a

(2)
i ◦ â

(3)
i

where â
(3)
i = fft(a

(3)
i), i = 1, 2, ..., r. We can see that Â also has CP rank r, and each

frontal slice of Â is the sum of r rank-1 matrices, so the rank of each frontal slice is

at most r. It implies that if a tensor is of CP rank r, its tensor tubal-rank is at most

r. This means that for a third-order tensor with low CP rank, as we will show later,

we can recover it from random samples using the t-SVD structure.

Definition 2.0.9. (Inverse of tensor [3]) The inverse of a tensor A ∈ Rn×n×n3

is written as A−1 satisfying

A−1 ∗A = A ∗A−1 = I (2.9)

where I is the identity tensor of size n× n× n3.

Definition 2.0.10. (Tensor operator) Tensor operators are denoted by Calli-

graphic letters. Suppose L : Rn1×n2×n3 → Rn4×n2×n3 is a tensor operator mapping an

20

(a) Bicycle video of size 270× 480× 50.

(b) Car video of size 136× 240× 50.

(c) Basketball video of size 360× 640× 80.

Figure 2.4: Some videos and their compression performance using the SVD and the
t-SVD. The left figures show one frame of each video and the right figures are the
compression performance comparisons of the SVD and t-SVD. The relative square
error (RSE) is defined in dB as RSE = 20 log10(‖Xcom−X‖F/‖X‖F), where X is the
original video and Xcom is the compressed video, and tensor Frobenius norm ‖ · ‖F is
defined in Definition 1.1.14.

21

n1 × n2 × n3 tensor A to an n4 × n2 × n3 tensor B via the t-product as follows:

A = L(B) = L ∗B (2.10)

where L is an n4 × n1 × n3 tensor. Note that (2.10) is equivalent to the following

equation, which lies in the Fourier domain:

A = LB (2.11)

where A ∈ Cn1n3×n2n3, L ∈ Cn4n3×n1n3 and B ∈ Cn4n3×n2n3 are block diagonal matri-

ces.

Remark 2.0.4. For a tensor operator via t-product defined in (2.10), we are able

to transform it into the equivalent form in Fourier domain (2.11) for computational

efficiency. On the other hand, we can also transform an operator in Fourier domain

back to the original domain as needed.

Definition 2.0.11. (Inner product of tensors) If A and B are third-order

tensors of same size n1×n2×n3, then the inner product between A and B is defined

as the following,

〈A,B〉 =
1

n3

trace(B>A) ∈ R (2.12)

where 1/n3 comes from the normalization constant of the FFT. The reason that

this inner product produces a real-valued result comes from the conjugate symmetric

property of the FFT.

22

Definition 2.0.12. (Tensor basis and the corresponding decomposition)

We introduce 2 tensor bases here. The first one is called column basis ~ei of size

n1×1×n3 with one entry equaling 1 and the rest equaling zero. However, the nonzero

entry 1 will only appear at the first frontal slice of ~ei. Naturally its transpose ~e>i is

called row basis. The other tensor basis is called tube basis e̊i of size 1×1×n3 with

one entry equaling to 1 and rest equaling to 0. Figure 2.5 illustrates these 2 bases.

Figure 2.5: The column basis ~e3 and tube basis e̊5. The black cubes are 1, gray and
white cubes are 0. In the tensor column basis ~ei and row basis ~e>j , only the entries
in the frontal slice can be 1 (white cubes).

One can obtain a unit tensor E with only one non-zero entry Eijk equal to 1 via

E = ~ei ∗ e̊k ∗~e>j . (2.13)

Given any third order tensor X ∈ Rn1×n2×n3 , we have the following decomposition

23

X =

n1∑
i=1

n2∑
j=1

n3∑
k=1

〈~ei ∗ e̊k ∗~e>j ,X〉~ei ∗ e̊k ∗~e
>
j

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

Xijk~ei ∗ e̊k ∗~e>j

The proof to such a decomposition is straightforward since 〈~ei ∗ e̊k ∗~e>j ,X〉 will give

out the exact value of Xijk.

The following norms on tensors will be used throughout the proof of our main

result.

Definition 2.0.13. (`2∗ norm of tensor column) Let ~x be an n1 × 1 × n3

tensor column, we define an `2∗ norm on it as follows

‖~x‖2∗ =

√√√√ n1∑
i=1

n3∑
k=1

~x2
i1k . (2.14)

Moreover, we have the following relationship between the `2∗ norm of ~x and its FFT

along the third dimension ~̂x,

‖~x‖2∗ =
1
√
n3

‖~̂x‖2∗ , (2.15)

where 1/
√
n3 is the normalization constant.

Definition 2.0.14. (Tensor Frobenius norm) The induced Frobenius norm

from the inner product defined above is given by,

‖A‖F = 〈A,A〉1/2 =
1
√
n3

‖Â‖F =

√∑
i

∑
j

∑
k

A2
ijk

Definition 2.0.15. (Tubal nuclear norm [50, 25]) The tubal nuclear norm

of a tensor A, denoted as ‖A‖TNN , is the sum of singular values of all the frontal

24

slices of Â, and is a convex relaxation of the tensor tubal-rank [22]. In particular,

‖A‖TNN = ‖A‖∗ (2.16)

Definition 2.0.16. (Tensor spectral norm) The tensor spectral norm ‖A‖ of

a third-order tensor A is defined as the largest singular value of A. Moreover,

‖A‖ = ‖A‖ (2.17)

i.e. the tensor spectral norm of A equals to the matrix spectral norm of A.

Definition 2.0.17. (Tensor operator norm) Suppose L is a tensor operator

defined via t-product,

L(X) = L ∗X (2.18)

where L ∈ Rk×n1×n3 and X ∈ Rn1×n2×n3 are third-order tensors. Then the operator

norm of L is defined as,

‖L‖op = sup
X:‖X‖F≤1

‖L(X)‖F , (2.19)

which is consistent with matrix case, where the spectral norm is equivalent to the

operator norm ‖L‖op = ‖L‖.

Definition 2.0.18. (Tensor infinity norm) The tensor infinity norm ‖A‖∞

is defined as follows:

‖A‖∞ = max
i,j,k
|Aijk| (2.20)

which is the entry with the largest absolute value of A.

25

2.1 Outline of This Thesis

The remainder of the thesis is organized as follows. In Chapter 2 we introduce the

problem of tensor completion under limited samples. We show that by solving a

convex optimization problem, which minimizes a convex surrogate to the tensor tubal-

rank, one can guarantee exact recovery with high probability as long as number of

samples is of the order O(rnk log(nk)) given a tensor of size n × n × k with tubal-

rank r. We then give out the t-SVD based tensor completion algorithm and show

that it is in practice working better than classic matrix completion dealing with

horizontal panning video. Chapter 3 describes the problem tensor Robust PCA. In

this chapter we introduce two types of robust PCA: the batch tensor RPCA and

online tensor RPCA. We show that tensor robust PCA methods work very well in

denoising and background separation. Chapter 4 is devoted in studying the tensor

dictionary learning problems. We first introduce the t-linear combination of tensor

dictionaries and coefficients, then propose the K-TSVD algorithm to learn the high

dimensional dictionaries. As applications we show the learned dictionary perform

very well in video/image completion and denoising, compared to the state-of-the-art

dictionary learning techniques. In Chapter 5, we conclude the thesis, and give some

discussions about future directions.

Chapter 3

Tensor Completion

3.1 Introduction

1Recovery of multidimensional array of numbers or tensors2 under limited number of

measurements is an important problem, which arises in a variety of applications, such

as recommendation systems [52], dimensionality reduction [53], multi-class learning

[54], data mining [55, 56], and computer vision [57, 22].

The strategies and performance bounds for sampling and recovery of tensors rest

heavily on the framework used to reveal a low complexity algebraic structure in

the data, namely a low-rank decomposition. For example, for matrix data (a 2-

dimensional tensor) when treated as a linear operator over a vector space, one defines

the rank of the matrix via its minimal decomposition into a sum of rank-1 matrices.

1This research was supported in part by the National Science Foundation grant NSF:1319653.
2This terminology comes from representation of multilinear functionals on the outer product of
finite dimensional vector spaces as an indexed array of numbers, for example see [51].

26

27

This is well-known to be obtained via the Singular Value Decomposition (SVD).

In this case, it has been shown that as long as the left and right singular vectors

are incoherent with the standard basis, a random sampling strategy with sampling

complexity in proportion to the complexity of the decomposition is sufficient for

recovery by solving a convex optimization problem, namely minimizing the nuclear

norm of the matrix [58, 59].

For N -D tensors with N ≥ 3 (Note: N is also referred to as the order of the

tensor, and we will often refer to an N -D tensor as an order-N tensor), there are

several ways to define algebraic complexity using the framework of classical multilinear

algebra, where tensors are treated as multilinear operators over tensor product or

outer product of vector spaces [51]. In this framework, decomposition of a tensor

as sum of rank-1 outer products is referred to as CANDECOMP/PARAFAC (CP)

[29] factorization and the minimal number of such factors required is referred to as

the CP rank. However there are known computational and ill-posedness issues with

CP [60]. Other kinds of decompositions, such as Tucker, Hierarchical-Tucker (H-

Tucker) and Tensor Train (TT) [61], are also shown to reveal the algebraic structure

in the data with the notion of rank extended to multi-rank, expressed as a vector

of ranks of the factors in the contracted representation using matrix product states.

In this context, to the best of our knowledge, provably optimal approaches based on

Tucker decomposition work by matricizing the tensor in various ways, subsequently

employing the theory and methods for matrix completion, see for example [62, 63].

28

This paper considers sampling and recovery for 3-D tensors using the algebraic

framework proposed in [1, 2, 3, 4]. In this framework, 3-D tensors are treated as linear

operators over 2-D tensors and one obtains an SVD-like factorization referred to as

the tensor-SVD (t-SVD). Using this factorization, one can define a notion of rank,

referred to as the tubal-rank. This algebraic framework is essentially based on a group

theoretic approach where the multidimensional structure is unraveled by constructing

group-rings along the tensor fibers [64]. This approach has recently been extended

in [49] to construct a Banach algebra along tensor fibers. In this paper, we restrict

ourselves to group rings constructed out of cyclic groups and also omit consideration

of the extensions carried out in [49]. Nevertheless, the results presented here can be

generalized to these settings.

It is important to note that the t-SVD algebraic framework is different from the

classic multilinear algebraic framework for tensor decompositions [51]. Therefore, the

notion of tensor rank using the t-SVD, namely the tubal-rank, differs from the CP

rank and the Tucker rank. Hence, bounds and conditions for tensor completion for

low CP rank and low Tucker rank tensors are not directly comparable to results in

this paper.

The t-SVD has been recently exploited in [22] for the problem of 3-D tensor

recovery from limited sampling with applications to computer vision. In the present

paper, we derive theoretical performance bounds for the tensor recovery algorithm

proposed in [22]. In this context, our work is greatly inspired by [59, 65], in which the

29

main tool, namely the Non-commutative Bernstein Inequality (NBI), is also helpful

in deriving our results. We prove that with high probability one can exactly recover a

tensor of size n1×n2×n3 with tubal-rank r (as derived from the t-SVD), by solving a

convex optimization problem, given O(rn1n3 log((n1 + n2)n3)) samples when certain

tensor incoherence conditions are satisfied. The notions of tensor incoherence and

results are novel, and we show that, while related, they are not directly implied by

the results in matrix completion using the standard matrix incoherence conditions.

In order to put our work into perspective and highlight our contributions, we now

go over related work on tensor completion using different tensor factorizations and

contrast our findings with existing literature.

3.1.1 Related Work

Apart from the t-SVD, there are two major types of low-rank tensor completion meth-

ods considered in the literature: methods that are based on the CP decomposition,

and those that are based on the Tucker decomposition. The sampling methods in-

clude random downsampling, Gaussian measurements and adaptive sampling. We

summarize these results in Table 3.1. Below we will provide details for each of these

methods.

30

Table 3.1: A summary of existing tensor completion methods

Format Sampling
Method

Samples needed for exact
recovery (3rd-order tensor
of size n× n× n)

Incoherent condition

CP[66] Gaussian measure-
ments

O(rn2) for CP rank r N/A

CP[40] Random sampling O(n3/2r5 log4(n)) for CP rank r
on symmetric tensors

Incoherence condition of
symmetric tensors with
orthogonal decomposi-
tion

Tucker[66] Gaussian measure-
ments

O(rn2) for Tucker rank (r, r, r) N/A

Tucker[62] Random sampling O(rn2 log2(n)) for Tucker rank
(r, r, r)

Matrix incoherence con-
dition on all mode-n un-
foldings

CP[67] Adaptive Sampling O(nr log(r)) for CP rank r Standard incoherence
condition with orthogo-
nal decomposition

t-SVD Random sampling O(rn2 log(n)) for Tensor tubal-
rank r

Tensor incoherence con-
dition

31

3.1.1.1 Tensor Completion Based on CP decomposition

The CP decomposition of an order-N tensor X ∈ Rn1×n2×...×nN is given by,

X =
r∑
`=1

x
(1)
` ◦ x

(2)
` ◦ · · · ◦ x

(N)
` , x

(i)
` ∈ Rni , i = 1, 2, ..., N , (3.1)

where ◦ denotes the outer product [29]. The smallest r such that Equation (3.1) holds

is called the CP rank of X.

Suppose we sample X based on an index set Ω. Let PΩ be the orthogonal projection

onto Ω. Then in [39] the authors propose to complete the tensor by solving the

following optimization problem,

min ‖PΩ(A−
r∑
`=1

x
(1)
` ◦ x

(2)
` ◦ ... ◦ x

(N)
`)‖2

2 + λ
r∑
`=1

N∑
i=1

‖x(i)
` ‖

2
2 , (3.2)

where λ ≥ 0 is the regularization parameter. However, this approach has several

drawbacks. The optimization problem is non-convex and hence only local minima can

be guaranteed. Further, for practical problems it is often computationally difficult

to determine the CP rank or the best low rank CP approximation of a tensor data

beforehand. Recently in [40] it was shown that one can provably recover an n×n×n

symmetric tensor with CP rank r from O(n3/2r5 log4 n) randomly sampled entries

under standard incoherence conditions on the factors3.

3A tensor X ∈ Rn×n×n is called symmetric in the CP format if its CP decomposition has the

format X =
r∑̀
=1

σ`(u` ◦ u` ◦ u`), where u` ∈ Rn with ‖u`‖ = 1.

32

3.1.1.2 Tensor Completion Based on Tucker Decomposition

In [68] tensor completion based on minimizing a convex surrogate to the tensor n-

rank is proposed. Tensor n-rank is the sum of the ranks of matrices obtained by the

matricizations of the tensor, i.e. it is the sum of the Tucker ranks. Specifically one

solves for,

min
X

N∑
i=1

αi‖X(i)‖∗

subject to PΩ(X) = PΩ(T) ,

(3.3)

where X(i) denotes the mode-i matricization of X [29], αi are pre-specified positive

constants satisfying
∑N

i=1 αi = 1, and ‖·‖∗ denotes the matrix nuclear norm. However,

no theoretical guarantees for recovery are provided and it is not clear how to optimally

choose the weights αi’s. Normally one ends up choosing the best matricization that

is determined empirically, which turns it into a matrix completion problem. In [69]

a tighter convex relaxation for the tensor n-rank is proposed, but again no provable

recovery bounds are provided.

In [62] the authors solve the following convex problem,

min
X,E

N∑
i=1

αi‖X(i)‖∗ + ‖E‖1 +
τ

2
‖X‖2

F +
τ

2
‖E‖2

F

s.t. PΩ(X + E) = B ,

(3.4)

for some specific choices for αi and τ . This can be viewed as a combination of the

matrix completion and the matrix Robust Principal Component Analysis (RPCA)

when extended to the case of tensors. It is shown that if the tensor satisfies the

matrix incoherence conditions under all its matricizations, then solving for the above

33

optimization problem leads to accurate recovery if the number of samples exceeds

that required for completion under each matricization.

3.1.1.3 Tensor Completion under Gaussian Measurements

Instead of random sampling, in [66] a different method for low CP or Tucker rank

tensor completion under Gaussian measurements is proposed. The main idea is to

reshape the tensor X ∈ Rn1×n2×n3×...×nN into a square matrix X[j] ∈ Rn1...nj×nj+1...nN

and apply matrix completion on it. If X is a low-rank tensor (in either CP or Tucker

sense), X[j] will be a low-rank matrix. It is shown that if X0 has CP rank r, then

O(rndN/2e) Gaussian samples are sufficient to recover the original tensor. If X0 has

Tucker rank (r, r, ..., r), then O(rbN/2cndN/2e) Gaussian samples are needed.

3.1.1.4 Tensor Completion via Adaptive Sampling

In [67] a tensor completion approach based on adaptive sampling is developed. The

key idea is to predict the tensor singular subspace given the sampled sub-tensor, and

recursively update the subspace if a newly sampled sub-tensor lies out of it. It is

shown that O(nr3/2 log r) adaptively chosen samples are sufficient for exact recovery

of an n×n×n tensor with CP rank r. This approach extends the matrix completion

to the tensor case and yields a tighter bound, requiring only column incoherence

conditions.

34

3.2 Tensor Completion via T-SVD

In this section, we will formally define the sampling model and the problem of tensor

completion. Our main result is stated in Theorem 3.2.1.

3.2.1 Tensor Completion with Random Sampling

Given a third-order tensor M ∈ Rn1×n2×n3 of tubal-rank r, suppose there are m

entries in M sampled according to the Bernoulli model, which means each entry in

the tensor is sampled with probability p independent of the others. The task of tensor

completion problem is to recover M from the observed entries.

In this paper, we follow the approach taken in [22] which solves the following

convex optimization problem for tensor completion,

min
X
‖X‖TNN

subject to Xijk = Mijk, (i, j, k) ∈ Ω

(3.5)

where Ω is the index set of observed entries. We will analyze the sufficient conditions

under which, the solution to (3.5) is equal to M.

Before we state our main result, we need to introduce the notion of tensor incoher-

ence, a condition that is required for the results to hold true under random sampling.

Similar to the matrix completion case, recovery under random sampling is hopeless

if most of the entries are equal to zero [58]. For tensor completion using t-SVD, if

tensor M is sparse, then in the reduced t-SVD of M = U ∗S ∗V> , the tensors U and

35

V will be highly concentrated on the tensor basis. Similar to the case of matrix com-

pletion [58], it is required that the tensor columns, U(:, i, :) and V(:, i, :), i = 1, 2, ..., r

be sufficiently spread, i.e. should be uncorrelated with the tensor basis, for recovery

under random sampling. This intuition motivates the following tensor incoherence

condition.

Definition 3.2.1. (Tensor Incoherence Condition) Let the reduced t-SVD of a

tensor M be U ∗ S ∗ V>. M is said to satisfy the tensor incoherence condition, if

there exists a µ0 > 0 such that

max
i=1,...,n1

∥∥U> ∗~ei∥∥2∗
≤
√
µ0r

n1

,

max
j=1,...,n2

∥∥V> ∗~ej∥∥2∗
≤
√
µ0r

n2

,

(3.6)

where ~ei is the n1×1×n3 column basis with ~ei11 = 1 and ~ej is the n2×1×n3 column

basis with ~ej11 = 1, i = 1, 2, ..., n1, j = 1, 2, ...n2.

Note that the smallest µ0 is equal to 1 and this value is achieved when each tensor

column ~ui = U(:, i, :) has entries with magnitude 1/
√
n1n3, or each tensor column

~vi = V(:, i, :) has entries with magnitude 1/
√
n2n3. The largest possible value of µ0

is min(n1, n2)/r when one of the tensor columns of U (or V respectively) is equal

to the tensor column basis ~ei (or ~ej resp.). With low µ0, each entry of M carries

approximately same amount of information.

In [58] for matrix completion case, another joint incoherence condition is needed,

which bounds the maximum (absolute value) entry of UV >, where U and V corre-

spond to left and right singular vectors in the SVD of the matrix. However, this joint

36

incoherence condition is regarded unintuitive and restrictive. In [65], the authors

successfully removed this joint incoherence by using the `∞,2 norm to get a similar

bound in the dual certificate step. In our tensor completion case, we apply this idea

to our set-up and successfully avoid the joint incoherence condition. Now we will

present our main result.

Theorem 3.2.1. Suppose M is an n1×n2×n3 tensor and its reduced t-SVD is given

by M = U ∗ S ∗ V> where U ∈ Rn1×r×n3, S ∈ Rr×r×n3 and V ∈ Rn2×r×n3. Suppose

M satisfies the tensor incoherence condition(3.6) with parameter µ0 > 0, then there

exists constants c0, c1, c2 > 0 such that if

p ≥ c0
µ0r log(n3(n1 + n2))

min{n1, n2}
, (3.7)

then M is the unique minimizer to (3.5) with probability at least 1−c1((n1+n2)n3)−c2.

Note that the sampling model we use here is the Bernoulli model. There are

some other widely used models including sampling with or without replacement. For

matrix completion, the recovery guarantees for different models are consistent with

only a change of the constants in the sampling complexity and recovery guarantees

[70, 71] and we expect them to be the same in our case as well.

Note that although the proof of Theorem 3.2.1 follows closely the proof of matrix

completion under various measurement models, there are some subtle differences.

First of all, we are sampling in the original domain, while the tubal nuclear norm

(TNN) is defined in the Fourier domain. In fact, let PΩ(Z) denote the same size

37

tensor as Z with PΩ(Z)ijk = Zijk if (i, j, k) ∈ Ω and zero otherwise. Then (3.5) can

be rewritten as,

min
X
‖X‖TNN

subject to PΩ(X) = PΩ(M) ,

Note that it is equivalent to the following

min
X
‖X‖∗

subject to BPB−1(X) = BPB−1(M) ,

(3.8)

where B is a mapping which maps a third order tensor Z to Z, and B−1 is its inverse

transform. Now the above problem is a matrix completion problem under linear

constraint and it is completely defined in the Fourier domain.

We can regard this constraint as several observations in the form of inner products

of X and Eijk in the Fourier domain, where Eijk is a unit tensor with only (i, j, k)th

entry being 1 and Eijk = fft(Eijk, [], 3). In details, the problem can be equivalently

rewritten as,

min ‖X‖∗

subject to 〈X,Eijk〉 = 〈M,Eijk〉, (i, j, k) ∈ Ω

X is block diagonal (block size n× n).

(3.9)

We now note that [72] gives provable guarantees on recovery for such cases, but

without the block diagonal constraint, provided that, (a) the basis are orthonormal,

and (b) the basis and matrix satisfy a standard incoherence condition and an extra

joint incoherence condition.

38

However, because of the block diagonal constraint, the result of [72] cannot be directly

applied to derive provable bounds to our problem even if we are given an extra

joint incoherence condition. In fact, following this formula we can also change the

block diagonal constraint in (3.9) into some more inner product observations, which

force the entries outside the block diagonal positions to be zero. But this actually

needs to observe even more entries (O(n2n2
3)) than the data tensor itself to finish

the recovery. On the other hand, we also cannot solve (3.9) slice-wise (which avoids

the block diagonal constraint) using matrix completion results, since the constraint

〈X,Eijk〉 = 〈M,Eijk〉 is not separable on each frontal slice. As we will see in the next

section, in the case of random tubal sampling, the tensor completion problem can

be separated into individual matrix completion problem on each frontal slice, with

random sampling in the Fourier domain.

3.2.2 Tensor Completion with Random Tubal Sampling

Another way to sample a tensor is to perform random or adaptive tubal sampling

as considered in [73] for fingerprinting application. Here we will comment on the

theoretical guarantees for recovery under random tubal sampling, since [73] did not

specifically analyze this. Instead of randomly sampling entries of a third-order tensor

M as in the previous subsection, one can randomly sample tensor tubes along the

39

third dimension. Then the completion problem becomes,

min
X
‖X‖TNN

subject to Xijk = Mijk, (i, j) ∈ Ω, k = 1, 2, ..., n3

(3.10)

where Ω is the index set of observed tubes. If we take the FFT of X and M along

the third dimension,

min
X̂

(k)

n3∑
k=1

‖X̂
(k)
‖∗

subject to X̂ijk = M̂ijk, (i, j) ∈ Ω, k = 1, 2, ..., n3

(3.11)

then it is easy to see that solving the above optimization problem is equivalent to

solving n3 matrix completion problems in the Fourier domain,

min
X̂

(k)
‖X̂

(k)
‖∗

subject to X̂
(k)

ij = M̂
(k)

ij , (i, j) ∈ Ω

(3.12)

for k = 1, 2, ..., n3. Therefore tensor completion problem with tubal sampling is

essentially the matrix completion from random samplings of each frontal slice in the

Fourier domain. Then we can directly use the result of matrix completion here.

Suppose there are p third-dimensional tubes of M ∈ Rn1×n2×n3 sampled accord-

ing to the Bernoulli model, which means each tube in the tensor is sampled with

probability p independent of the other tubes. Then we have the following theorem,

Theorem 3.2.2. [73] Let M be an n1 × n2 × n3 tensor and its reduced t-SVD is

given by M = U ∗ S ∗ V> where U ∈ Rn1×r×n3, S ∈ Rr×r×n3 and V ∈ Rn2×r×n3.

Suppose each frontal slice M̂
(i)

satisfies the matrix weak incoherence condition (3.13)

40

with parameter µ0 > 0. Then there exists constants c0, c1, c2 > 0 such that if

p ≥ c0
µ0r log2(n1 + n2)

min{n1, n2}
,

then M is the unique minimizer to (3.5) with probability at least 1− c1n3(n1 +n2)−c2.

Remark 3.2.1. (A comment on the incoherence conditions for tubal sam-

pling) In Theorem 3.2.2 each slice M̂
(k)

in the Fourier domain needs to satisfy matrix

weak incoherence condition [65] with parameter µ0. That is for all k ∈ {1, 2, ..., n3},

max
i=1,2,..,n1

‖Û
(k)>

ei‖2 ≤
√
µ0r

n1

,

max
j=1,2,..,n2

‖V̂
(k)>

ej‖2 ≤
√
µ0r

n2

,

(3.13)

where ei denotes the i-th standard basis in Rn. Note that we have 1 ≤ µ0 ≤

min{n1, n2}/r. We now show that the matrix incoherence condition of Equation (3.13)

is not equivalent to the tensor incoherence conditions of Equations (3.6). In fact from

Equations (3.13) we have,

max
i∈{1,2,..,n1}

‖Û
(k)>

ei‖2 ≤
√
µ0r

n1

(3.14)

=⇒ max
i=1,2,..,n1

n3∑
k=1

‖Û
(k)>

ei‖2
2 ≤

n3µ0r

n1

(3.15)

⇐⇒ max
i=1,2,..,n1

‖Û
>
i ‖2

2∗ ≤
n3µ0r

n1

⇐⇒ max
i=1,2,..,n1

∥∥U> ∗~ei∥∥2∗
≤
√
µ0r

n1

.

Similarly we can get,

max
j=1,...,n2

∥∥V> ∗~ej∥∥2∗
≤
√
µ0r

n2

,

41

Figure 3.1: Comparison of tensor and matrix incoherent condition on 50 × 50 × 20
tensor.

which is exactly the tensor incoherence condition. Therefore our tensor incoherence

condition can be obtained from the matrix incoherence condition, but not vice versa

since (3.15) does not imply (3.14).

Figure 3.1 shows a comparison of tensor and matrix incoherence condition. Each

time we randomly generate a 50×50×20 tensor with different tubal-rank and compute

µ0 of both cases. We repeat this process 20 times and plot the average µ0 in the figure.

As we can tell, µ0 of tensor incoherence condition is indeed lower than that of matrix

incoherence condition. In the worst case, when tensor tubal-rank is small, the two

incoherence constants can differ by an order of
√
n3.

42

3.3 Main proof

In this section, we provide the proof of Theorem 3.2.1. The main idea is to use

convex analysis to derive conditions under which one can verify whether M is the

unique minimum tubal nuclear norm solution to (3.5), and then to explicitly show

that such conditions are met with high probability under the conditions of Theorem

3.2.1.

To simplify the notation and without loss of generality we assume n1 = n2 = n

and do not put any assumption on n3.

Before continuing, some notations used in the proof should be clarified. A tensor Y

is the subgradient of ‖·‖TNN at M0 (denoted Y ∈ ∂‖M0‖TNN), if for all X ∈ Rn×n×n3 ,

‖X‖∗ ≥ ‖M0‖∗ + 〈Y,X−M0〉 . (3.16)

Recall that a matrix Y is a subgradient of a convex function f : Rn1×n2 → R at

matrix M0 if

f(X) ≥ f(M0) + 〈Y,X−M0〉 .

Moreover, Y is a subgradient of the nuclear norm at M0 if and only if Y is of the

form [74]

Y = UV> + W , (3.17)

where US0V
> = svd(M0) is the singular value decomposition of M0, and W satisfies

1. U>W = 0, WV = 0

43

2. ‖W‖ ≤ 1 .

Similarly, let Y = U ∗V>+W, where U ∈ Rn×r×n3 ,S0 ∈ Rr×r×n3 ,V ∈ Rn×r×n3 is the

t-SVD of M0 = U ∗ S ∗ V>, and ‖W‖ ≤ 1. One can verify that such a Y satisfies

(3.16), therefore Y ∈ ∂‖M0‖TNN .

In order to proceed, we introduce the orthogonal decomposition Rn×n×n3 = T⊕T⊥,

where T is the linear space spanned by the elements of the form U(:, k, :) ∗ ~x> and

~y ∗V(:, k, :)>, where ~x, ~y ∈ Rn×1×n3 are arbitrary tensor columns, k = 1, 2, ..., r. Let

T⊥ be its orthogonal complement. The orthogonal projections PT onto T and PT⊥

onto T⊥ are given as follows,

PT (Z) = U ∗U> ∗Z + Z ∗V ∗V> −U ∗U> ∗Z ∗V ∗V> (3.18)

PT⊥(Z) = Z−PT (Z) = (I−U ∗U>) ∗Z ∗ (I−V ∗V>) (3.19)

where I is the identity tensor of size n× n× n3.

Define a random variable δijk = 1(i,j,k)∈Ω where 1(·) is the indicator function. Let

RΩ : Rn×n×n3 → Rn×n×n3 be a random projection as follows,

RΩ(Z) =
∑
i,j,k

1

p
δijkZijk~ei ∗ e̊k ∗~e>j . (3.20)

Similar to the matrix completion case, in the following we will construct a dual cer-

tificate Y and show that it is close to the subgradient of ‖M‖TNN under certain

conditions. In [58], the authors constructed such a certificate via an infinite series

using a construction obtained in the compressed sensing literature [75, 76]. Then

each term in the series were analyzed individually using some decoupling inequalities.

44

The following Proposition 3.3.1 and Lemma 3.3.1 directly support the proof of the

main theorem. The proofs of these technical and supporting results are provided in

the Appendices A-D.

Proposition 3.3.1. Tensor M is the unique minimizer to (3.5) if the following con-

ditions hold.

1. ‖PTRΩPT −PT‖op ≤ 1
2

2. There exists a tensor Y such that PΩ(Y) = Y and

(a) ‖PT (Y)−U ∗V>‖F ≤ 1
4nn2

3

(b) ‖PT⊥(Y)‖ ≤ 1
2

Lemma 3.3.1. Suppose ‖PTRΩPT −PT‖op ≤ 1
2
. Then for any Z such that PΩ(Z) =

0, we have

1

2
‖PT⊥(Z)‖TNN >

1

4nn3

‖PT (Z)‖F . (3.21)

Proof of Proposition 3.3.1 The main idea is that we want to prove that for any Z

supported in Ωc, ‖M + Z‖TNN > ‖M‖TNN . To prove this the following three facts

are used.

45

Fact 3.3.1. ‖A‖TNN = n3 sup‖B‖≤1〈A,B〉, where A,B ∈ Rn×n×n3. Specifically, if

the t-SVD of A is given by A = U∗S∗V>, then let B = U∗V>. Obviously ‖B‖ ≤ 1

and we have n3〈A,B〉 = trace(S) = ‖A‖TNN .

Recall that for matrix case, we have ‖A‖∗ = sup‖B‖≤1〈A,B〉, where A,B ∈ Rn×n.

Then the fact comes from,

‖A‖TNN =‖A‖∗

= sup

‖B‖≤1

〈A,B〉

=n3 sup
‖B‖≤1

〈A,B〉 .

Define the t-SVD of PT⊥(Z) to be PT⊥(Z) = U⊥ ∗ S⊥ ∗ V
>

⊥, where Z ∈ Rn×n×n3

such that PΩ(Z) = 0. Then use the fact above we have

‖PT⊥(Z)‖TNN = n3〈U⊥ ∗V
>

⊥,PT⊥(Z)〉 . (3.22)

Fact 3.3.2. ‖M‖TNN = n3〈U ∗V> + U⊥ ∗V>⊥,M〉

Since PT (U) = U and PT⊥(U⊥) = U⊥, we have U ∗ U>⊥ = 0 and similarly

V ∗V>⊥ = 0 by definition. Then the fact can be verified by the following.

n3〈U ∗V
>

+ U⊥ ∗V
>

⊥,M〉

=n3〈U ∗V
>

+ U⊥ ∗V
>

⊥,U ∗ S ∗V
>〉

=trace((UV
>

+ U⊥V
>
⊥)> USV>)

=trace(S) = ‖M‖TNN

Fact 3.3.3. ‖U ∗V> + U⊥ ∗V>⊥‖ = 1

46

Consider a matrix Q such that

Q = UV> + U⊥V
>
⊥ =

[
U U⊥

] V>

V>⊥

Since U>U⊥ = 0 and V>V⊥ = 0, the above expression is the matrix singular value

decomposition of Q, so we have

‖U ∗V> + U⊥ ∗V
>

⊥‖

=‖UV> + U⊥V
>
⊥‖

=‖Q‖ = 1

47

Now using the above facts, given any Z ∈ Rn×n×n3 such that PΩ(Z) = 0, we have

‖M + Z‖TNN

≥n3〈U ∗V
>

+ U⊥ ∗V
>

⊥,M + Z〉 (3.23)

=‖M‖TNN + n3〈U ∗V
>

+ U⊥ ∗V
>

⊥,Z〉

=‖M‖TNN + n3〈U ∗V
>
,PT (Z)〉+ n3〈U⊥ ∗V

>

⊥,PT⊥(Z)〉

=‖M‖TNN + n3〈U ∗V
>
,PT (Z)〉+ n3〈U⊥ ∗V

>

⊥,PT⊥(Z)〉 − n3〈Y,Z〉 (3.24)

=‖M‖TNN + n3〈U ∗V
> −PT (Y),PT (Z)〉+ n3〈U⊥ ∗V

>

⊥ −PT⊥(Y),PT⊥(Z)〉

=‖M‖TNN + 〈UV> −PT (Y),PT (Z)〉+ ‖PT⊥(Z)‖TNN − 〈PT⊥(Y),PT⊥(Z)〉 (3.25)

≥‖M‖TNN − ‖UV> −PT (Y)‖F‖PT (Z)‖F + ‖PT⊥(Z)‖TNN − ‖PT⊥(Y)‖‖PT⊥(Z)‖∗

(3.26)

=‖M‖TNN − n3‖U ∗V> −PT (Y)‖F‖PT (Z)‖F + ‖PT⊥(Z)‖TNN

− ‖PT⊥(Y)‖‖PT⊥(Z)‖TNN

≥‖M‖TNN −
1

4nn3

‖PT (Z)‖F +
1

2
‖PT⊥(Z)‖TNN (3.27)

>‖M‖TNN

where (3.23) uses the Fact 3.3.1; Y in (3.24) is a tensor dual certificate supported in

Ω such that PΩ(Y) = Y. So it is easy to show 〈Z,Y〉 = 0 using the standard basis

decomposition; (3.25) uses equation (3.22); (3.26) is based on the following two facts

48

for any same size matrices A and B,

|〈A,B〉| ≤ ‖A‖F‖B‖F

〈A,B〉 ≤ ‖A‖‖B‖∗ ,

and (3.27) uses the Condition 2 of Proposition 3.3.1.

Therefore, for any X 6= M obeying PΩ(X−M) = 0, we have ‖X‖TNN > ‖M‖TNN ,

which proves M is the unique minimizer of (3.5).

Proof of Theorem 3.2.1 As proved in the Appendix A, B and C, if p satisfies (3.7),

the Condition 1 and Condition 2 in Proposition 3.3.1 are satisfied with probability

at least 1 − c1((n1 + n2)n3)−c2 for some positive constants c1 and c2. The proof of

Theorem 3.2.1 then follows directly from Proposition 3.3.1, which states that M is

the unique minimizer to (3.5).

3.4 Algorithms For Tensor completion

We will show the case when the tensor data is simply decimated randomly or down

sampled in this section. Specifically we consider the problem of data completion from

missing entries for multilinear signals. Suppose there is an unknown tensor M of size

n1×n2×n3 which is assumed to have a low tubal-rank and we are given a subset

of entries {Mijk : (i, j, k) ∈ Ω} where Ω is an indicator tensor of size n1 × n2 × n3.

Our objective is to recover the entire M. This section develops an algorithm for

49

addressing this problem via solving the following complexity penalized algorithm:

min ‖X‖TNN

subject to PΩ(X) = PΩ(M)

(3.28)

where PΩ is the orthogonal projector onto the span of tensors vanishing outside of

Ω. So the (i, j, k)th component of PΩ(X) is equal to Mijk if (i, j, k) ∈ Ω and zero

otherwise. Let Y be the available (sampled) data: Y = PΩM. Define G = F3PΩF
−1
3

where F3 and F−1
3 are the operators representing the Fourier and inverse Fourier

transform along the third dimension of tensors. Then we have Ŷ = G(M̂) where Ŷ

and M̂ are the Fourier transforms of Y and M along the third mode.

So (3.28) is equivalent with the following:

min ||blkdiag(X̂)||∗

subject to Ŷ = G(X̂)

(3.29)

where X̂ is the Fourier transform of X along the third dimension and blkdiag(X̂) is

defined in (??). Noting that ‖X‖TNN = ||blkdiag(X̂)||∗. To solve the optimization

problem, one can re-write (3.29) equivalently as follows:

min ||blkdiag(Ẑ)||∗ + 1Ŷ=G(X̂)

subject to X̂− Ẑ = 0

(3.30)

50

where 1 denotes the indicator function. Then using the general framework of Alter-

nating Direction Method of Multipliers(ADMM)[77] we have the following recursion,

Xk+1 = arg min
X

{
1Y=PΩ(X) + X(:)>Qk(:) +

1

2
||X−Zk||2F

}
= arg min

X:Y=PΩ(X)

{
||X− (Zk −Qk)||2F

}
(3.31)

Ẑ
k+1

= arg min
Ẑ

{
1

ρ
||blkdiag(Ẑ)||∗ +

1

2
||Ẑ− (X̂

k+1
+ Q̂

k
)||2F
}

(3.32)

Qk+1 =Qk +
(
Xk+1 −Zk+1

)
(3.33)

where Equation (3.31) is least-squares projection onto the constraint and the solution

to Equation (3.32) is given by the singular value thresholding[74, 78]. The X(:) and

Qk(:) means vectorizing the tensors which is Matlab notation.

Equivalence of the algorithm to iterative singular-tubal shrinkage via con-

volution

We will now show that the proposed algorithm for tensor completion has a very

nice interpretation as an iterative singular tubal shrinkage using a convolution oper-

ation between the singular tubes and a tube of threshold vectors.

According to the particular format that (3.32) has, we can break it up into n3

independent minimization problems. Let Ẑ
k+1,(i)

denotes the ith frontal slice of Ẑ
k+1

.

Similarly define X̂
k+1,(i)

and Q̂
k,(i)

. Then (3.32) can be separated as:

Ẑ
k+1,(i)

= arg min
W

{
1

ρ
||W ||∗ +

1

2
||W − (X̂

k+1,(i)
+ Q̂

k,(i)
)||2F
}

(3.34)

51

for i = 1, 2, ..., n3. This means each ith frontal slice of Ẑ
k+1

can be calculated through

(3.34).

In order to solve (3.34), the following lemma is needed [78].

Lemma 3.4.1. Consider the singular value decomposition (SVD) of a matrix X ∈

Cn1×n2 of rank r.

X = UΣV ∗, Σ = diag({σi}1≤i≤r), (3.35)

where U and V are respectively n1 × r and n2 × r unitary matrices with orthonormal

columns, and the singular values σi are real and positive. Then for all τ ≥ 0 , define

the soft-thresholding operator Dτ as follows [78] :

Dτ (X) := UDτ (Σ)V ∗, Dτ (Σ) = diag{(σi − τ)+}, (3.36)

where t+ is the positive part of t, namely, t+ = max(0, t). Then, for each τ ≥ 0 and

Y ∈ Cn1×n2, the singular value shrinkage operator (3.36) obeys

Dτ (Y) = arg min
X∈C

{
1

2
‖X − Y ‖2

F + τ‖X‖∗
}

(3.37)

The proof can be found in [78] for the case when the matrix is real valued. How-

ever, it can be easily extended to matrices with complex entries using the result on

gradients of unitarily invariant norms in [79].

Now note that, for matrices X̂
k+1,(i)

+Q̂
k,(i)
∈ Rn1×n2×n3 , i = 1, 2, ..., n3, if USV T =

(X̂
k+1,(i)

+ Q̂
k,(i)

) is the SVD of (X̂
k+1,(i)

+ Q̂
k,(i)

), then the solution to (3.34) is

UDτ (S)V T, where Dτ (S) = diag(Si,i − τ)+ for some positive constant τ and “ + ”

52

means keeping the positive part. This is equivalent to multiplying (1− τ
Si,i

)+ to the

ith singular value of S. So each frontal slice of Ẑ
k+1

can be calculated using this

shrinkage on each frontal slice of (X̂
k+1

+ Q̂
k
). Let U ∗ S ∗VT = (Xk+1 + Qk) be the

t-SVD of (Xk+1 +Qk) and Ŝ be the Fourier transform of S along the third dimension.

Then each element of the singular tubes of Ẑ
k+1

is the result of multiplying every

entry Ŝ(i, i, j) with (1− τ

Ŝ(i,i,j)
)+ for some τ > 0. Since this process is carried out in

the Fourier domain, in the original domain it is equivalent to convolving each tube

S(i, i, :) of S with a real valued tubal vector ~τi which is the inverse Fourier transform

of the vector [(1 − τi(1)

Ŝ(i,i,1)
)+, (1 − τi(2)

Ŝ(i,i,2)
)+, ..., (1 − τi(n3)

Ŝ(i,i,n3)
)+]. This operation can be

captured by S ∗ T, where T is an f-diagonal tensor with ith diagonal tube to be ~τi.

Then Zk+1 = U ∗ (S ∗ T) ∗ VT. In summary, the shrinkage operation in the Fourier

domain on the singular values of each of the frontal faces is equivalent to performing

a tubal shrinkage via convolution in the original domain.

3.5 Experiments

3.5.1 Video Completion

For experiments we test 3 algorithms for video data completion from randomly miss-

ing entries: TNN minimization of Section 3.4, Low Rank Tensor Completion (LRTC)

algorithm in [80], which uses the notion of tensor-n-rank [63], and the nuclear norm

53

minimization on the vectorized video data using the algorithm in [78]. As an ap-

plication of the t-SVD to higher order tensor we also show performance on a 4-D

color Basketball video data of size 144 × 256 × 3 × 80, where the first 2 dimensions

are the width and heights, third dimension is the RBG mode, 4th dimension is the

time(frames).

Figures 3.2 and 3.3 show the results of recovery using the 3 algorithms. Figure 3.4

shows the RSE (dB) plots for sampling rates ranging from 10% to 90% where the

sampling rate is defined to be the percentage of pixels which are known. Results from

the figures show that the TNN minimization algorithm gives excellent reconstruction

over the LRTC and Nuclear norm minimization. Figure 3.5 shows the recovery of

4-D colorful video using the proposed algorithm.

3.5.2 Cellular Data Completion

A wide variety of data for assessing the service quality experienced by their smart-

phone users are collected from lots of cellular network providers. A big challenge for

effective service quality management in operational setup is the presence of missing

or unavailable data. Furthermore, the cellular data is inherently multidimensional,

i.e. it is a function of several variables such as location, device type, and time. In

this section, we show that we can use our algorithm to complete cellular data as well.

One thing to notice here is that, we also consider the case of tensor completion under

54

Figure 3.2: Tensor completion results for MERL video. Upper left: Sampled
video(20%). Upper right: Nuclear norm minimization (vectorization and SVD
based) result. Lower left: LRTC result. Lower right: TNN minimization result.

55

Figure 3.3: Tensor completion results for basketball video. Upper left: Sampled
video(20%). Upper right: Nuclear norm minimization (vectorization and SVD
based) result. Lower left: LRTC result. Lower right: TNN minimization result.

Figure 3.4: RSE (dB) plot against sampling rate Left: MERL video. Right: Bas-
ketball video

56

Figure 3.5: Recovery for color basketball video: Left: Sampled Video(10%). Middle:
LRTC recovery. Right: Tensor-nuclear-norm minimization recovery

linear constraint :

min
X
‖X‖TNN

subject to L(X) = Y ,

(3.38)

where L represents the linear constraint. The algorithm is almost the same under

the ADMM framework.

Firstly we consider a three-dimensional tensor consisting of service performance

data. This data set is of size 314×360×73 for 314 RNCs (Radio Network Controllers)

and for 360 hours and contains a total of 73 KPIs (Key Performance Indicators). The

data contains several KPIs including voice and data accessibility, retainability, RRC,

SRB and RAB success rates, paging success rates, uplink and downlink traffic, voice

Erlangs or minutes of usage. We sample the tensor elements randomly (independent

and equally likely) with probability p to obtain the incomplete tensor, and complete

this tensor using our approach. The results is showing in Figure 3.6, we can see that

our method is better than LRTC(unfold completion) in this case.

Secondly we consider a four-dimensional tensor extracted from smartphone specific

57

Figure 3.6: Completing the 3D tensor with varying sampled data with/without ag-
gregate linear constraints.

58

measurements. The size of the tensor is 29 × 253 × 97 × 5. The first dimension is

the number of days (29); 253 is the number of smartphone types; 97 is the number

of network locations where the measurements are aggregated; and 5 is the number

of KPIs from voice call detail records. This 4D tensor has inherently missing data

because of the sparse population of users across certain types of smartphones.

Therefore, the missing data in this case is not random, and has a structure which is

given by the available measurements. Our tensor-based completion approach can be

used to predict the places where there is no data. We have only 68% entries available

in this tensor, and use cross-validation to study the performance of our algorithm.

We sample the available data with probability p (choosing each element among the

available data randomly with probability p), and check the error on the remaining

unsampled available data (1p fraction of 68% data). Figure 3.7 gives the error on the

unsampled data as p increases. Based on the accuracy for different unfolds, we find

that for this data, unfolding onto the first dimension yields the best results while using

the t-SVD approach we see that fixing the tensor orientation as a 29× 253× 97× 5

tensor (obtained by simply permuting the indices) yields the best results. Figure 3.7

shows the results for the two cases.

3.5.3 Numerical Experiments

To demonstrate our results, we conducted some numerical experiments to recover

third order tensors of different sizes and tubal-ranks r from m observed entries. For

59

Figure 3.7: Completing the 4D tensor with varying sampled data on the 68% available
data.

60

each episode we generated an n1×n2×n3 random tensor with i.i.d. Gaussian entries,

performed the t-SVD of it, kept the first r singular tubes and got M with tubal rank

r. We sampled m entries of M uniformly at random and try to recover M using

(3.5). We denote the solution of (3.5) by X and compute the relative square error

(RSE): ‖X −M‖F/‖M‖F . If the RSE ≤ 10−3, then we claim that the recovery is

exact. We repeated our experiments 20 times. The results are shown in Figure 3.8.

In the left figures, the color of each cell reflects the empirical recovery rate ranging

from 0 to 1. White cell means exact recoveries in all experiments; and black cell

means all experiments failed. The right figures are the RSE plots of one typical run

of the simulation. For each cell, the value reflects the RSE of the recovery under the

corresponding sampling rate and tubal rank. Black denotes 1 and white is 0.

61

(a) 40× 40× 30 tensor.

(b) 30× 30× 20 tensor.

Figure 3.8: Recovery of third order tensors from their entries. In the left fig-
ures of both cases, each cell’s value reflects the empirical recovery rate. Black denotes
failure and white denotes success in recovery in all simulations. In the right figures
of both cases, each cell’s value is the RSE of the recovery under the corresponding
sampling rate and tubal rank. Black denotes 1 and white denotes 0.

Chapter 4

Tensor Robust PCA

In this chapter we consider a “tensor robust principal component analysis” problem

of recovering a low tensor-multi rank tensor L from a sparsely corrupted observation

tensor. There are two topics introduced in this chapter, batch tensor Robust PCA

and online tensor Robust PCA.

4.1 Batch Tensor Robust PCA

4.1.1 Problem Formulation and Algorithm

Similar to the matrix robust PCA case [81], suppose we have a third-order tensor M

such that it can be decomposed as

M = L + S (4.1)

62

63

where L has low tensor-multi-rank and S is sparse tensor. Here we focus on a case

where the sparse tensor S is tubewise sparse as shown in Figure 4.1. To resolve

the low rank and the sparse components given the observation M we consider the

following optimization problem.

min ‖L‖TNN + λ‖S‖1,1,2

subject to M = L + S

(4.2)

where λ > 0 and the ‖S‖1,1,2 for 3-D tensors is defined as
∑

i,j ||S(i, j, :)||F .

An application where this is useful arises in multilinear imaging scenarios where

some pixels have heavy noise on them and the task is to automatically locate such

pixels and recover the video. Although this may be done by processing each frame

but if the noise artifacts and video features are aligned, one needs to both detect the

noise and estimate the corrupted video feature.

In order to solve the convex optimization problem of Equation (4.2) we use

ADMM. Then we have the following recursion,

Lk+1 = arg min
L
‖L‖TNN +

ρ

2
‖L + Sk −M + Wk‖2

F (4.3)

Sk+1 = arg min
S
λ‖S‖1,1,2 +

ρ

2
‖Lk+1 + S−M + Wk‖2

F (4.4)

Wk+1 = Wk + Lk+1 + Sk+1 −M (4.5)

where W = ρY, for some ρ > 0. From section 3.4 we already have the solution to (4.3)

if we transform this equation into the Fourier domain then the tensor-nuclear-norm of

L will be the nuclear norm of blkdiag(L̂). The closed form solution to Equation (4.4)

64

is given by,

Sk+1(i, j, :) =

(
1− λ

ρ‖Sk(i, j, :)‖F

)
+

Sk(i, j, :) (4.6)

where i = 1, 2, ..., n3.

4.1.2 Experimental Results

For experiment we consider a video, which is compressible in the t-SVD. We randomly

corrupt video data by corrupting some pixels with heavy additive noise. We want

to estimate the locations of such pixels using tensor robust PCA. The video used

in this application is the basketball video with randomly chosen sparse pixels tubes

along the third dimension. This set-up is especially useful when dealing with old

movies where some certain pixel locations are dead for the whole movie. For each

selected pixel we add random Gaussian noise on it. Figure (4.1) shows the original

video(tensor) and the noise tensor. The size of each frame is 72 × 128 and the total

number of frames is 80. The noisy pixel tubes within every 10 frames are consistent.

We use the above ADMM algorithm to separate the original video and the noise. We

also perform matrix robust PCA on this noisy video data by vectorizing each frame,

saving it as a column vector and then get a n1n2× n3 matrix. In this case the choice

of λ is 1√
max(n1n2,n3)

[81].

The result of both tensor robust PCA and matrix robust PCA is shown in Fig-

ure 4.2. From the results we can see that tensor robust PCA works very well on

separating the noisy pixels from the video. However, the matrix robust PCA results

65

Figure 4.1: Upper left: Original video. Upper right: Noisy tensor. For 10 consec-
utive frames the locations of noisy pixels are the same and then selected randomly
for the next 10 frames. Lower left 21st frame of the original video. Lower right
21st frame of the noisy video.

66

Figure 4.2: (21st frame shown) Upper Left: Low tensor multi-rank part recovered
from tensor robust PCA. Upper Right: Sparse reconstruction from tensor robust
PCA. Lower left: Low matrix rank part recovered from matrix robust PCA. Lower
right: Sparse reconstruction from matrix robust PCA.

in an almost fixed blurred background as the low rank part while some structure of

the playground, moving people and the noise are recovered as the sparse part.

67

4.2 Online Tensor Robust PCA

4.2.1 Problem Formulation and Algorithm

Before going to the online version, we start with the a slightly different batch setting.

One difference between this section and the previous one is the sparse component.

Suppose we have a third-order tensor Z which can be decomposed as,

Z = X + E, (4.7)

where X is a tensor with low tensor tubal rank and E is a sparse tensor. The problem

of recovering X and E separately, termed tensor RPCA [22], can be formulated as an

optimization problem 1

min
X,E

1

2
‖Z−X− E‖2

F + λ1‖X‖TNN + λ2‖E‖1, (4.8)

where ‖X‖TNN =
∑

i,j Ŝ(i, i, j) denotes the tensor nuclear norm and it’s a convex

relaxation of the tensor tubal rank; ‖E‖1 =
∑

i,j,k |E(i, j, k)|; and λ1, λ2 > 0.

Now we describe an implementation of tensor robust PCA that operates online.

Suppose the 2-D data samples Z(:, i, :), i = 1, 2, ..., T are observed sequentially. Our

goal is to estimate the spanning basis (principal components) of X on the fly, and

separate the sparse tensor simultaneously. A figure that illustrates this is given in 4.3

In order to proceed we introduce the following lemma with its proof.
1In the previous section, we use ‖.‖1,1,2 norm as the complexity of the “tubal-sparsity” of tensors
in the third-dimension. Here we consider a general case of sparsity of S, therefore ‖.‖1 norm is
utilized.

68

Figure 4.3: Online manner: data samples observed sequentially. Note that here each
data sample is an n1 × 1× n3 lateral slice (tensor column).

Lemma 4.2.1. For a third-order tensor X ∈ Rn1×n2×n3, suppose its tensor tubal rank

is upper bounded by r, then we have

‖X‖TNN = inf
L∈Rn1×r×n3

R∈Rn2×r×n3

{n3

2
(‖L‖2

F + ‖R‖2
F) : X = L ∗R>

}
. (4.9)

Proof. Let X̂ = fft(X, [], 3), then we have

‖X‖TNN =

n3∑
i=1

‖X̂
(i)
‖∗

=

n3∑
i=1

inf
L̂

(i)
∈Rn1×r

R̂
(i)
∈Rn2×r

{n3

2
‖L̂

(i)
‖2
F +

n3

2
‖R̂

(i)
‖2
F :

X̂
(i)

= L̂
(i)
R̂

(i)T
}

(4.10)

since tensor tubal rank is always greater or equal to the matrix rank of each frontal

slice in the Fourier domain. Note that for each i = 1, 2, ..., n3, L̂
(i)

is independent

69

from each other, so as R̂
(i)

. We can write

‖X‖TNN

= inf
L̂

(i)
∈Rn1×r

R̂
(i)
∈Rn2×r

{1

2

n3∑
i=1

‖L̂
(i)
‖2
F +

1

2

n3∑
i=1

‖R̂
(i)
‖2
F :

X̂
(i)

= L̂
(i)
R̂

(i)T
}

= inf
L̂

(i)
∈Rn1×r

R̂
(i)
∈Rn2×r

{1

2
‖L̂‖2

F +
1

2
‖R̂‖2

F : X̂
(i)

= L̂
(i)
R̂

(i)T
}

= inf
L∈Rn1×r×n3

R∈Rn2×r×n3

{n3

2
‖L‖2

F +
n3

2
‖R‖2

F : X = L ∗R>
}

where the last step is because ‖X‖F = 1/
√
n3‖X̂‖F [82].

Using the above lemma, we re-write (4.8) as

min
L,R,E

1

2
‖Z−L ∗R> − E‖2

F +
n3λ1

2
(‖L‖2

F + ‖R‖2
F)

+ λ2‖E‖1 s.t. X = L ∗R>,
(4.11)

where L ∈ Rn1×r×n3 , R ∈ Rn2×r×n3 . For sequentially observed data {
−→
Z 1,
−→
Z 2, ...,

−→
Z T} ∈

Rn1×1×n3 , we define the loss function for each sample based on (4.11) as

`(
−→
Z i,L) = min−→

R ,
−→
E

1

2
‖
−→
Z i −L ∗

−→
R> −

−→
E ‖2

F +
n3λ

2
‖
−→
R‖2

F + λ2‖
−→
E ‖1. (4.12)

To solve the online tensor RPCA problem, we summarize our online tensor RPCA

approach in Algorithm 2. For simplicity, we use Â to denote fft(A, [], 3), and A ∈

Rn1n3×n2n3 to denote the block diagonal matrix of Â. In Matlab notation, it’s defined

by

A = blkdiag(Â
(1)
, Â

(2)
, · · · , Â

(n3)
). (4.13)

70

The key idea of our online tensor RPCA algorithm is that at each time round t,

we minimizes the loss function over
−→
Z t given the previous estimation Lt−1, to get

the optimal
−→
R t and

−→
E t. Then we alternately use the latest estimated components to

update the spanning basis Lt via minimizing the cumulative loss.

Specifically,
−→
R t and

−→
E t are optimized in Step 3 with detailed description in Al-

gorithm 3. In the data projection step in Algorithm 3, Sλ[·] is a soft-thresholding

operator defined by [83],

Sλ[x] =

x− λ, if x > λ

x+ λ, if x < −λ

0, otherwise.

(4.14)

To update Lt, we have

Lt = argmin
L

t∑
i=1

(1

2
‖
−→
Z i −L ∗

−→
R>i −

−→
E i‖2

F

+
n3λ1

2
‖
−→
R i‖2

F + λ2‖
−→
E i‖1

)
+
n3λ1

2
‖L‖2

F

= argmin
L

1

2
‖Zt − Et −L ∗R>t ‖2

F +
n3λ1

2
‖L‖2

F

= argmin
L

1

2
‖Zt − Et −LR>t ‖2

F +
n3λ1

2
‖L‖2

F

= argmin
L

1

2
tr
(
(Zt − Et −LR>t)>(Zt − Et −LR>t)

)
+
n3λ1

2
tr(L>L)

= argmin
L

1

2
tr
(
L(R>t Rt + n3λ1I)L>

)
− tr(L>(Zt − Et)Rt).

71

Algorithm 2 Online Tensor Robust PCA

Input :Sequentially observed data ZT = {
−→
Z 1, ...,

−→
Z T} ∈ Rn1×1×n3 . λ1, λ2 > 0,

number of rounds T .
Initial: L0 ∈ Rn1×r×n3 ,

−→
R0 ∈ Rr×1×n3 ,

−→
E 0 ∈ Rn1×1×n3 .

1: for t = 1, 2, ..., T do

2: Reveal data sample
−→
Z t.

3: Project the new sample(See Algorithm 3):

{
−→
R t,
−→
E t} = argmin

−→
R∈Rr×1×n3
−→
E∈Rn1×1×n3

1

2
‖
−→
Z t −Lt−1 ∗

−→
R −

−→
E ‖2

F

+
λ1

2
‖
−→
R‖2

F + λ2‖
−→
E ‖1

4: At = At−1 +
−→
R t ∗

−→
R>t , Bt = Bt−1 + (

−→
Z t −

−→
E t) ∗

−→
R>t . Then take the Fourier

transform of At,Bt, and let the block diagonal form be At,Bt, as in (4.13).
5: Compute Lt using Lt−1 as the starting point(See Algorithm 4):

Lt , argmin

L

1

2
tr[L>(At + n3λ1I)L]− tr(L>Bt).

6: Organize the block diagonal Lt into the tensor form L̂t and let Lt =
ifft(L̂t, [], 3).

7: end for
8: RT (t, :, :) =

−→
R>t ,ET (:, t, :) =

−→
E t, t = 1, 2, ..., T .

9: Return XT = LT ∗R>T and ET .

Output: Low tubal rank tensor XT and sparse tensor ET .

Let At = At−1+
−→
R t∗
−→
R>t and Bt = Bt−1+(

−→
Z t−

−→
E t)∗

−→
R>t , where

−→
R t ∈ Rr×1×n3 ,

−→
E t ∈

Rn1×1×n3 , as indicated in Step 4 of Algorithm 2. We update At,Bt each time new

data comes and save the updated ones such that we can update the spanning basis

L in the Fourier domain with block-coordinate descent [84], as indicated in Step 5

of Algorithm 2 with details in Algorithm 4. Note that our algorithm needs a prior

information about estimated upper bound of the rank of the overall data samples.

72

Algorithm 3 Projecting data samples

Input: Lt−1 ∈ Rn1×r×n3 ,
−→
Z t ∈ Rn1×1×n3 , λ1, λ2 > 0.

Initial:
−→
E t = 0, r̂t ∈ Cr×1×n3 .

1: ẑt = fft(
−→
Z t, [], 3), L̂t−1 = fft(Lt−1, [], 3).

2: while not converge do
3: for i = 1, 2, ..., n3 do

4: r̂
(i)
t = ((L̂

(i)

t−1)>L̂
(i)

t−1 + λ1I)−1(L̂
(i)

t−1)>(ẑ
(i)
t − ê

(i)
t).

5: end for
6:

−→
R t = ifft(r̂t, [], 3).

7:
−→
E t = Sλ2 [

−→
Z t −L>t−1 ∗

−→
R t].

8: end while

Output:
−→
R t and

−→
E t.

Algorithm 4 Update spanning tensor basis

Input: Lt−1 ∈ Rn1×n2×n3 ,At ∈ Rr×r×n3 ,Bt ∈ Rn1×r×n3

1: Lt = Lt−1, L̂t = fft(Lt, [], 3).

2: B̂t = fft(Bt, [], 3).

3: Ct = At + λ1I, Ĉt = fft(Ct, [], 3).
4: for j = 1, 2, ..., r do
5: for k = 1, 2, ..., n3 do

6: L̂t(:, j, k) = B̂t(:,j,k)−L̂t(:,:,k)∗Ĉt(:,j,k)

Ĉt(j,j,k)
+ L̂t(:, j, k).

7: end for
8: end for

Output: Lt = ifft(L̂t, [], 3).

As regarding to the storage needed, for the batch tensor robust PCA all the data

samples up to time T , i.e., the total number of entries in {Zi}Ti=1, are required.

Therefore the storage requirement for the batch tensor robust PCA is n1n3T . While

for online tensor robust PCA, we need to save Lt−1 ∈ Rn1×r×n3 , RT ∈ RT×r×n3 (AT

can be computed through RT), BT ∈ Rn1×r×n3 , and the total storage requirement is

n3rT +n1n3r, which is much smaller than that of the batch tensor robust PCA when

73

r << T .

4.2.2 Experimental Results

We consider the cloud removal problem on satellite images. A total of 24 cloud

contaminated images captured by Landsat 7 ETM+ and Landsat 8 OLI near Harz,

Germany over a period of time are used in our numerical experiments. Each image

is of size 598 × 1070. The image backgrounds change slightly and the variability

is mainly caused by the clouds and their shadows. Two example images are shown

in Fig. 4.4. Considering the fact that the images are captured sequentially with

restricted onboard storage, we use tensor online RPCA to perform cloud removal

process such that clear images can be generated. Each time we receive an image from

the satellite of this area, we directly estimate the spanning basis without saving all

the past images but only the latest estimation and the newly collected data.

Figure 4.4: Example images of the same location taken by Landsat 7 ETM+ and
Landsat 8 OLI on different days. A total of 24 images are used in our experiments.

To perform the proposed algorithm, images are normalized to have intensity of

74

[0, 1] and reshaped as a lateral slice ~zi of size 598 × 1 × 1070. In the experiments

we set r = 3 as a upper bound of the tensor tubal rank since the background is

barely changing without clouds and shadows and λ1 = λ2 = 1/
√

598. The results are

shown in Fig. 4.5, in which the top row and the bottom row represents the low tubal

rank parts and the sparse parts respectively. It is clear that the cloud and shadow

contaminated areas are well recovered using our online tensor RPCA method.

Figure 4.5: Tensor online Robust PCA results on the images shown in Fig. 4.4. The
top row shows the low tubal rank components and the bottom row shows the sparse
components.

In order to further evaluate our algorithm, we compare the tensor online robust

PCA to the matrix online robust PCA [84] and the Grasta streaming [85]. Here we

75

synthesize a total number of 500 cloud-free images of the same location but different

time as ground truth tensor G. The images are of size 100×100 and intensity normal-

ized to [0, 1]. We randomly add zero-mean Gaussian noise with standard deviation

10 to sparse locations of the images and use them as our input data samples Z. The

sparsity level varies from 0.02 to 0.2. We run over all the possible ranks using the

tensor online robust PCA and the matrix online robust PCA, then choose the ranks

which give the best performance on the two algorithms. In tensor online robust PCA,

λ1 = λ2 = 1/
√

100 = 0.1. For matrix online robust PCA and the Grasta streaming,

each time the data image is vectorized into a long vector as input. At each round t

we compute the relative square error up to time t defined as

RSE(t) = ‖Xt − Gt‖F/‖Gt‖F , (4.15)

where Xt and Gt are the low rank component and ground truth we get up to time t,

respectively. The performance is compared in Fig. 4.6. We can tell that our tensor

online RPCA has a smaller relative square error comparing to the matrix online robust

PCA and Grasta streaming on all sparsity levels.

Figure 4.7 shows the convergence speed of the three algorithms when the sparsity

level of the Gaussian noise is equal to 0.2. Our tensor online robust PCA converges

the fastest among the three, which is one of the most important things in online

algorithms. Consequently, when the total number of data samples are small, our

proposed algorithm is more efficient and accurate than the other two methods.

76

Figure 4.6: Comparison of tensor online robust PCA, matrix online robust PCA, and
Grasta streaming version.

Figure 4.7: Convergence speed comparison when the sparsity of Gaussian noise is 0.2.

Chapter 5

Tensor Dictionary Learning

5.1 Introduction

Sparsity driven signal processing has been widely used in many areas across computer

vision and image analysis, such as image restoration and classification [86, 87, 88]. The

main principle driving the gains is the idea of sparse coding, i.e. the underlying signal

is compactly represented by a few large coefficients in the overcomplete dictionary,

while the noise and the sampling process are incohrent. Since the performance heavily

relies on the chosen dictionary, a lot of dictionary learning algorithms are developed

to obtain dictionaries that are more adapted to the signal than the predefined ones,

such as wavelet and DCT. In [86], Aharon et al. proposed an algorithm called K-

SVD, which efficiently learns an overcomplete dictionary from a set of training signals.

The method of optimal directions (MOD)[89] shares the same effective sparse coding

77

78

principle for dictionary learning as K-SVD. The discriminative K-SVD algorithm (D-

KSVD) proposed in [90] improved the K-SVD method by unifying the dictionary and

classifier learning processes. In [91], the authors efficiently accelerated the K-SVD

algorithm and reduced its memory consumption using a batch orthogonal matching

pursuit method.

When the signal is not limited to two dimensional signals, traditional methods

generally embed the high dimensional data into a vector space by vectorizing the

data points; therefore the conventional matrix based approaches can still be used.

This kind of vectorization, however, will break the original multidimensional struc-

ture of the signal and reduce the reliability of post processing. To this end, some

dictionary learning techniques have been explored based on different tensor decom-

positions such as CP decomposition [41, 92], Tucker Decomposition[93, 94, 95] and

tensor-SVD[96]. In [41], the authors developed an algorithm called K-CPD which

learns high order dictionaries based on the CP decomposition. [93] proposed a tensor

dictionary learning algorithm based on the Tucker model with sparsity constraints

over its core tensor, and applied gradient descent algorithm to learn overcomplete

dictionaries along each mode of the tensor (see [97] for definition of tensor modes).

Peng et al. The authors of [94] presented a tensor dictionary learning algorithm based

on Tucker model with Group-block-sparsity constraint on the core tensor with good

performance. In [96], the authors considered the problem of tomographic reconstruc-

tion using priors in the form of a dictionary learned based on t-SVD, in which the

79

dictionary learning problem is presented as non-negative tensor factorization problem

with sparsity constraints.

In this chapter, we present a new multidimensional dictionary learning approach

based on a notion of tensor-SVD proposed in [1, 2, 3]. Essentially the t-SVD is based

on an operator theoretic interpretation of the 3rd order tensors [1], as linear operators

over the set of 2-D matrices. This framework has recently been used for dictionary

learning for 2-D images in [96], but the authors there employ a different algorithm

and the problem considered is tomographic image reconstruction. Moreover we will

also consider the problem of filling in missing data by sparse coding using the learned

dictionary.

5.2 Problem Formulation

In this section, we introduce our tensor dictionary learning model and the related

algorithm.

5.2.1 t-linear Combination of Tensor Dictionaries and Coef-

ficients

As in the matrix case, given an overcomplete dictionary D ∈ Rn×K which contains

K prototype signal-atoms for columns, a signal y ∈ Rn can be represented as a linear

80

combination of columns of D

y = Dx, (5.1)

where x ∈ RK is called the representation coefficient vector of y. This set up could

be easily extended to 3rd order tensors using the framework outlined in the previous

section. Given K tensor columns (or dictionary atoms)
−→
Dk ∈ Rn1×1×n3 , we represent

a tensor signal
−→
X ∈ Rn1×1×n3 using the t-linear combination [3] of the given tensor

dictionaries as follows,

−→
X =

K∑
k=1

−→
Dk ∗ ~ck = D ∗

−→
C , (5.2)

where {~ck}Kk=1 are tubes of size 1 × 1 × n3;
−→
C ∈ RK×1×n3 is called coefficient tensor

obtained by aligning all the ~ck. D = {
−→
D1,
−→
D2, ...,

−→
DK} ∈ Rn1×K×n3 is the tensor

dictionary. The representation (5.2) may either be exact or approximate satisfying

‖
−→
X −D ∗

−→
C ‖ ≤ ε, (5.3)

for some ε > 0. When K > n, we say the tensor dictionary D is overcomplete.

Figure 5.1: A tensor signal represented by a t-linear combination of K tensor dictio-
nary atoms.

81

5.2.2 From Matrix to Tensor Dictionary Learning

Given an overcomplete dictionary D ∈ Rn×K with K > n, if D is full rank, there are

infinite number of solutions to the representation problem (5.1); therefore in order to

constrain the solution set, one common approach is to enforce sparsity. As in classic

dictionary learning model which was first designed for the purpose of reconstruction,

one adaptively learns an overcomplete dictionary using the training data, which leads

to the best possible representation of the data with sparsity constraints. Specifically,

given training data {yi}ni=1 ∈ Rd where d is the dimensionality and n is the total num-

ber of training data used, dictionary learning methods aim at finding an overcomplete

dictionary D ∈ Rd×K with K > d, and a coefficient matrix X = [x1, x2, ..., xn] ∈ RK×n

by the following optimization problem,

min
D,X

n∑
i=1

‖yi −Dxi‖2
F

subject to ‖xi‖q ≤ T, i = 1, 2, ..., n,

(5.4)

where ‖ · ‖q, q ≥ 1 is the `q norm which represents different sparsity regularization.

Using t-SVD structure discussed in the previous section, we generalize this dic-

tionary learning model to higher dimensional cases. Given training data as tensor

columns {
−→
Y i}ni=1 ∈ Rd×1×n3 , we want to find a dictionary D ∈ Rn×K×n3 with K > n,

and “tubal sparse” tensor coefficients {
−→
X i}ni=1 ∈ RK×1×n3 to represent the training

data using t-product. The tubal sparsity of a tensor column is defined in Chapter 3

as follows.

82

Definition 5.2.1. (tensor tubal sparsity) Given a tensor column
−→
X , the ten-

sor tubal sparsity ‖ · ‖TS is defined as the number of non-zero tubes of
−→
X in the third

dimension.

Then we can construct our dictionary learning model:

min
D,
−→
X i

n∑
i=1

‖
−→
Y i −D ∗

−→
X i‖2

F

subject to ‖
−→
Xi‖TS ≤ T, i = 1, 2, ..., n,

(5.5)

or equivalently,

min
D,X
‖Y−D ∗X‖2

F

subject to ‖X‖TS ≤ T0,

(5.6)

where Y =
[−→
Y 1,
−→
Y 2, ...,

−→
Y n

]
∈ Rd×n×n3 and X =

[−→
X1,
−→
X2, ...,

−→
Xn

]
∈ RK×n×n3 .

Figure 5.2 illustrates the tensor sparse coding model. Note that if the jth tube of

−→
X i(j, 1, :) is zero, then it means that the jth dictionary D(:, j, :) is not being used in

the representation of
−→
Y i.

Figure 5.2: Data in the form of tensor columns represented by the t-product of tensor
dictioanry and tubal-sparse coefficient tensors. The red tubes in the coefficient tensors
stand for the non-zero tubes and white ones are zero tubes.

83

5.2.3 K-TSVD

We now discuss our tensor dictionary learning model in detail. Our model is called

K-TSVD since it is a general extension from classic K-SVD to high dimensional tensor

based on t-SVD. Similarly to K-SVD algorithm, K-TSVD also consists of two stages:

the tensor sparse coding stage and the tensor dictionary update stage. First let’s

consider the sparse coding stage where the tensor dictionary D is fixed. So we need

to solve

min
X
‖Y−D ∗X‖2

F

subject to ‖X‖TS ≤ T0,

(5.7)

or alternatively we can work on an equivalent form,

min−→
X i

‖Y−D ∗X‖2
F + λ‖X‖TS, (5.8)

for some positive λ. Since the sparsity measure is computational intractable in both

matrix and tensor cases, we use the ‖ · ‖1,1,2 norm instead as a convex relaxation for

the tubal sparsity, where the ‖ · ‖1,1,2 norm of a 3rd order tensor X is defined as

‖X‖1,1,2 =
∑
i,j

‖X(i, j, :)‖F

If we regard a third dimensional tube ~x ∈ R1×1×n3 as a n3 × 1 column vector, then

the `1,1,2 norm of X is just the summation of `2 norm of all such tubes along the third

dimension in X.

Replacing the tubal sparsity with the `1,1,2 norm, the problem becomes

min
X
‖Y−D ∗X‖2

F + λ‖X‖1,1,2 (5.9)

84

Using the block-diagonal form, (5.9) can be equivalently reformulated in Fourier do-

main as

min
X
‖Y−DX‖2

F + λ
√
n3‖X̂‖1,1,2

where the
√
n3 factor comes from the fact that ‖X‖F = ‖X̂‖F/

√
n3. Use the general

framework of Alternating Direction Method of Multipliers (ADMM) [77], we can solve

this optimization problem recursively with the following algorithm:

Xk+1 = arg min
X
‖Y−DX‖2

F + tr(Q>kX) +
ρ

2
‖X−Zk‖2

F (5.10)

Zk+1 = arg min
Z
‖Z‖1,1,2 +

ρ

2λ
‖Xk+1 +

1

ρ
Qk −Z‖2

F (5.11)

Qk+1 = Qk + ρ(Xk+1 −Zk+1) (5.12)

where Q ∈ Rn1×n2×n3 is a helper tensor which comes from the framework of ADMM

and could be initialized as a zero tensor, ρ > 0. (5.10) is essentially a least square

minimization problem and we can separately solve it in each frontal slice of X̂ (or

equivalently, each diagonal block of X). Let Ck+1 = Xk+1 + Qk/ρ, the update of

(5.11) is given by

Zk+1(i, j, :) =

(
1− λ

ρ‖Ck(i, j, :)‖F

)
+

C(i, j, :)

∀i = 1, 2, ..., K, j = 1, 2, ..., n

(5.13)

where (·)+ = max(0, ·).

The second stage of our tensor dictionary learning model is dictionary update.

Given fixed D and X, suppose we only want to update the k-th element of D, we

85

can decompose the error term as follows,

‖Y−D ∗X‖2
F

=

∥∥∥∥∥Y−
K∑
j=1

−→
Dj ∗X(j, :, :)

∥∥∥∥∥
2

F

=

∥∥∥∥∥
(
Y−

∑
j 6=k

−→
Dj ∗X(j, :, :)

)
−
−→
Dk ∗X(k, :, :)

∥∥∥∥∥
2

F

=‖Ek −
−→
Dk ∗X(k, :, :)‖2

F

=‖Ek −D(:, k, :) ∗X(k, :, :)‖2
F

Ek here stands for the representation error when the k-th atom D(:, k, :) is removed

from the dictionary. The next step is to find D(:, k, :) ∗X(k, :, :) which best approxi-

mates Ek, so that the error term is minimized. This is essentially to compute the best

tubal rank-1 approximation using Lemma 2.0.1. Since we need to maintain the tubal

sparsity of X and avoid to fully fill X(k, :, :), let wk = {i|X(k, i, :) 6= 0, i = 1, 2, ..., n}

be the set of indices where data Y uses tensor dictionary D(:, k, :) and restrict Ek

by choosing the tensor columns corresponding to wk to obtain Rk : R(:, i, :) = E(:

, wk(i), :), i = 1, 2, ..., |wk|. From Lemma 2.0.1, we apply t-SVD on Rk to get U,S and

V, and take the first tensor column of U to update D(:, k, :), use S(1, 1, :) ∗V(:, 1, :)>

to renovate the coefficient tensors which use the k-th dictionary. To accelerate the

algorithm we only compute the approximate rank-1 SVDs in Fourier domain when

we compute t-SVD of R. The complete algorithm is presented in Algorithm 5. Note

that the optimization problem in Step 1 is convex and we use ADMM [77] with

global convergence guarantees. Similarly to K-SVD, the dictionary update stage is

86

only guaranteed to converge to a local minimum theoretically. However, in practice

the output dictionary of K-TSVD performs very well as we will see in the next section.

Algorithm 5 K-TSVD

Input : Observed tensor data Y = {
−→
Y i}n2

i=1 ∈ Rn1×n2×n3 , λ > 0.
Initialize: Dictionary D0 ∈ Rn1×K×n3

Repeat until convergence:

1: Compute the sparse coefficient tensor using (5.10)-(5.12):

X = arg min
X
‖Y−D ∗X‖2

F + λ‖X‖1,1,2

2: for k = 1, 2, ..., K do
3: Let wk = {i|X(k, i, :) 6= 0} be the set of indices where data Y uses dictionary

D(:, k, :).
4: Compute Ek = Y−

∑
j 6=kD(:, j, :)∗X(j, :, :)>, which is the over all error without

using the k-th dictionary atom D(:, k, :).
5: Restrict Ek by choosing only the tensor columns corresponding to wk and obtain

Rk:
R(:, i, :) = E(:, wk(i), :) (5.14)

for i = 1, 2, ..., |wk|.
6: Compute the t-SVD of Rk:

Rk = U ∗ S ∗V>.

7: Update D(:, k, :) = U(:, 1, :).
8: Update X(k, wk, :) = S(1, 1, :) ∗V(:, 1, :)>.
9: end for

Output: Trained tensor dictionary D.

87

5.3 Experiment Results

5.3.1 Filling Missing Pixels in Tensors

In this section we consider the application of filling missing pixels in third order ten-

sors. Suppose that we are given a video with dead pixels, where the dead pixels mean

pixel values are deleted or missing on some fixed positions of each frame. Specifically,

let Ω indicate the set of indices of the remaining pixels and M be the data tensor,

then M(i, j, :) = 0 for all (i, j) /∈ Ω. Our goal is to recover such tensors with missing

pixels. Suppose D is the learned overcomplete dictionary on the training data, define

PΩ as an orthogonal projector such that PΩ(M)(i, j, :) = M(i, j, :), if (i, j) ∈ Ω and 0

otherwise. Then for each patch
−→
Mk in the test data, the reconstruction of this patch

is D ∗
−→
C k, where

−→
C k is the solution to

min−→
C k

‖PΩ(
−→
Mk)− PΩ(D ∗

−→
C k)‖2

F + λ‖
−→
C k‖1,1,2 (5.15)

which can be solved in the same manner as (5.9).

We utilized a basketball video here to apply K-TSVD algorithm and reconstruct

M from missing pixels. There are 40 frames in the video and the resolution of each

frame is 144×256. To learn the overcomplete dictionary using K-TSVD, we randomly

took 9000 overlapping block patches of size 8× 8× 10 from the first 30 frames, saved

them as tensor columns of size 64× 1× 10, and obtained our training data Y of total

size 64 × 9000 × 10. All these patches were used to train a tensor dictionary with

K = 256 atoms. The last 10 frames of the video were used for testing. We took the

88

total 576 disjoint 8 × 8 × 10 blocks in the last 10 frames, saved each block into a

tensor column, and obtained our training data of size 64× 576× 10.

We investigated the performance of K-TSVD by comparing it with K-SVD and

pre-fixed overcomplete DCT dictionary. In K-SVD, in order to have a fair comparison,

for each test frame we also randomly trained 10000 block patches of size 8× 8 in the

first 30 frames. We visualize an example of the overcomplete DCT dictioanry, the K-

SVD learned dictionary and the K-TSVD learned dictionary in Figure 5.3. One frame

with 50% and 70% missing pixels and its reconstructions are shown in Figure 5.4. As

one can see the reconstruction based on K-TSVD learned dictionary has a better

quality. Figure 5.4(e) shows the reconstruction error (RE) comparison of those three

approaches, where the error is computed via RE =
√
‖X−Xrec‖2

F/N , N is the total

number of pixels in the data. We can see that when the percentage of missing pixels

is small, all three methods perform equally well. With more missing pixels, K-TSVD

gives better performance over the other two methods.

5.3.2 Multispectral Image and Video Denoising

In order to further test the proposed method, we applied our algorithm on multi-

spectral/hyperspectral images and video data denoising. In the first experiment the

multispectral data was from the Columbia datasets 1, each dataset contains 31

real-world images of size 512 × 512 and is collected from 400nm to 700nm at 10nm

1http://www1.cs.columbia.edu/CAVE/databases/multispectral/

http://www1.cs.columbia.edu/CAVE/databases/multispectral/

89

(a) (b)

(c) (d)

Figure 5.3: (a) The overcomplete DCT dictionary. (b) Dictionary learned on the first
frame of the basketball video using K-SVD. (c) The first frontal slice D(:, :, 1) of the
learned dictionary of the tensor. (d) The 3rd frontal slice D(:, :, 3) of the learned
dictionary of the tensor.

90

(a) Pixels missing (b) DCT recovery (c) K-SVD recovery

(d) K-TSVD recovery

(e) Reconstruction error comparison.

Figure 5.4: The reconstruction result from missing pixels on the basketball video.
The different rows are for 50% and 70% of missing pixels respectively.

91

steps. In our experiment we resized each image into size of 205×205, and took images

of the last 10 bands to accelerate the speed of training tensor dictionaries. Therefore

the total size of the tensor data we used here is 205 × 205 × 10. Further work is

required to fully deploy the algorithm in large-scale high order tensor applications.

For the noise model we consider the fixed-location defects without knowing the

noisy positions, which commonly exists in video and multispectral images. On image

of each bandwidth, some fixed pixel locations are corrupted with very high noise

and our task is to recover the image. Specifically in our experiment we picked a

sparse number of pixel locations and added Gaussian noise on these positions of each

image. Let Ω indicate the set of noisy pixel locations, then what we did was for each

(i, j) ∈ Ω, k = 1, 2, ..., 10, Ŷ(i, j, k) = Y(i, j, k) +wijk, where Y is the clean tensor and

wijk ∼ N (0, σ) is the additive Gaussian noise.

To train the data and learn the dictionaries, similar to what we did in the previous

experiment, we randomly took 10000 overlapping patches of size 8× 8× 10 from the

noisy tensor data, which is about a quarter of all the overlapping patches in the data.

For a fair comparison, in K-SVD we also randomly select 10000 overlapping patches

of size 8× 8 within each noisy image.

The denoising process of our method includes a tensor sparse coding stage based

on the learned tensor dictionary. We extracted each 8 × 8 × 10 patch in the noisy

multispectral images and solved the tensor sparse coding problem (5.9) to obtain the

denoised patch. Following a similar idea in [98], we averaged all the denoised patches

92

(a) Noisy image (b) K-SVD (c) 3DK-SVD (d) BM3D

(e) LRTA (f) DNMDL (g) PARAFAC (h) K-TSVD

Figure 5.5: Denoised image at the 610nm band of chart and stuffed toy. The sparsity
of the noisy pixels is 10% and the locations of noisy pixels are consistent on image of
each band. The additive noise is Gaussian with σ = 100.

with some relaxation obtained by averaging with the original noisy data then got our

denoised tensor.

To test the performance of our method, we compared our K-TSVD to these meth-

ods: K-SVD (band-wise)[86, 98] 3D K-SVD [98], BM3D (band-wise) [99], LRTA[100],

DNMDL[94] and PARAFAC[101]. The result with σ = 100 and the sparsity of noisy

pixels equaling 10% is shown in Figure 5.5. The detailed PSNR comparison on dif-

ferent noise levels of these methods is in Table 5.1. We can see that our algorithm

has a better performance over the other competing methods on most cases.

We also applied K-TSVD algorithm on video denoising. The video that we used

here was footage from a still camera view of a traffic intersection [102]. The resolu-

tion of each frame is 175 × 328, and we performed our method on every 10 frames.

Figure 5.6 shows one frame of the denoising result with sparsity = 10% and noise

93

Table 5.1: PSNR(dB) of chart and stuffed toy images.

Sparsity 5% 10% 15% 10% 10%
Noise level 100 100 100 150 200

Noisy image 20.96 18.18 16.35 14.75 12.10
K-SVD 22.73 22.60 22.49 22.38 22.00

3DK-SVD 22.61 22.53 22.47 22.41 22.20
BM3D 26.95 26.62 26.36 25.23 24.29
LRTA 23.54 26.84 26.65 23.90 22.03

DNMDL 24.07 23.73 25.16 17.89 16.83
PARAFAC 27.07 26.86 26.72 26.13 25.24
KTSVD 27.19 26.98 26.79 26.18 25.44

(a) Noisy image (b) K-SVD (c) 3DK-SVD (d) BM3D

(e) LRTA (f) DNMDL (g) PARAFAC (h) K-TSVD

Figure 5.6: Video denoising result. The sparsity is 10% and σ = 100.

level 100. As one can see in this experiment K-TSVD perform very well.

Chapter 6

Conclusions and Future Work

In this thesis, we firstly considered the problem of recovering third-order tensors

under random sampling, based on the t-SVD framework. Using the notion of tensor

tubal rank, we showed that under the certain tensor incoherence conditions, we could

exactly recover a third-order tensor with low tubal-rank, and establish a theoretical

bound for exact completion when using a convex optimization algorithm for recovery.

Moreover, we presented the algorithms for recovery using ADMM. As applications we

considered the problem of video and cellular data completion, and showed significant

performance gains compared to the existing methods.

Secondly we considered batch and online tensor robust PCA methods, and pro-

posed algorithms on them. Applications includes image denoising and fusing cloud-

contaminated satellite images. We compared our methods to the state-of-the-art

approaches and showed superiority in both convergence speed and performance.

94

95

We proposed a new tensor dictionary learning method in the end. Our K-TSVD

method learned a multidimensional dictionary directly of the data tensor via t-SVD.

The K-TSVD could be regarded as a general extension of K-SVD from matrix (2-D

tensors) to higher-order tensors. We showed that the K-TSVD methods outperformed

some classic methods in video/multispectral image completion and denoising.

A lot remains to be done in the future. For instance, the theoretical bound of

exact recovery of tensor completion could be generalized to tensors with order higher

than 3, in which the tensor tubal rank needs to be re-defined. In the batch and online

robust PCA, more applications could be considered, such as object tracking and data

completion. The tensor dictionary learning could also be generalized to higher-order

tensor cases, where the sparse coding is orientation depended. In summary, there is

a lot to explore in the area of tensor analysis, and I will continue working on them.

Chapter 7

Appendix

In this appendix, we provide all the detailed proofs to the tensor completion theory

of Chapter 2 Section 2.3.

7.1 Proof of Proposition 3.3.1 Condition 1

The following theorem is first developed in [59], and it will be used frequently in this

section.

Theorem 7.1.1. (Noncommutative Bernstein Inequality)

Let X1,X2, ...,XL be independent zero-mean random matrices of dimension d1 × d2.

Suppose

ρ2
k = max{‖E[XkX

>
k]‖, ‖E[X>k Xk]‖}

and

‖Xk‖ ≤M

96

97

almost surely for all k. Then for any τ > 0,

P

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥ > τ

]
≤ (d1 + d2) exp

(
−τ 2/2∑L

k=1 ρ
2
k +Mτ/3

)
(7.1)

This theorem is a corollary of a Chernoff bound for finite dimension operators

developed by [103]. An extension of this theorem[104] states that if

max

{∥∥∥∥∥
L∑
k=1

XkX
>
k

∥∥∥∥∥ ,
∥∥∥∥∥

L∑
k=1

X>k Xk

∥∥∥∥∥
}
≤ σ2 (7.2)

and let

τ =
√

4cσ2 log(d1 + d2) + cM log(d1 + d2)

for any c > 0. Then (7.1) becomes

P

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥ ≥ τ

]
≤ (d1 + d2)−(c−1) (7.3)

The following fact is used frequently in this section.

Fact 7.1.1.
∥∥∥PT (~ei ∗ e̊k ∗~e>j)

∥∥∥2

F
≤ 2µ0r

n

Proof of Fact 7.1.1. Following the definition of PT in (3.18), we have

PT (~ei ∗ e̊k ∗~e>j)

=U ∗U> ∗~ei ∗ e̊k ∗~e>j +~ei ∗ e̊k ∗~e>j ∗V ∗V
> −U ∗U> ∗~ei ∗ e̊k ∗~e>j ∗V ∗V

>

98

This gives ∥∥∥PT (~ei ∗ e̊k ∗~e>j)
∥∥∥2

F

=〈PT (~ei ∗ e̊k ∗~e>j),~ei ∗ e̊k ∗~e>j 〉

=‖U ∗U> ∗~ei‖2
F + ‖V ∗V> ∗~ej‖2

F − ‖U ∗U
> ∗~ei‖2

F‖V ∗V
> ∗~ej‖2

F

≤µ0r
n1 + n2

n1n2

≤2µ0r

n

where the first inequality comes from the tensor incoherence condition (3.6).

Proof of Proposition 3.3.1 Condition (1).

Proof. First note that

E[PTRΩPT] = PT (ERΩ)PT = PT , (7.4)

which gives

E[PTRΩPT −PT] = 0

and

E[PTRΩPT −PT] = 0 (7.5)

Our goal is to prove the operator PTRΩPT is not far away from its expected value

PT in the spectral norm using the Noncommutative Bernstein Inequality.

99

Given any tensor Z of size n×n×n3, we can decompose PT (Z) as the following

PT (Z)

=
∑
i,j,k

〈PT (Z),~ei ∗ e̊k ∗~e>j 〉~ei ∗ e̊k ∗~e
>
j

=
∑
i,j,k

〈Z,PT (~ei ∗ e̊k ∗~e>j)〉~ei ∗ e̊k ∗~e>j

This gives

RΩPT (Z) =
∑
i,j,k

1

p
δijk〈Z,PT (~ei ∗ e̊k ∗~e>j)〉~ei ∗ e̊k ∗~e>j

and

PTRΩPT (Z) =
∑
i,j,k

1

p
δijk〈Z,PT (~ei ∗ e̊k ∗~e>j)〉PT (~ei ∗ e̊k ∗~e>j)

which implies

PTRΩPT (Z) =
∑
i,j,k

1

p
δijk〈Z,PT (~ei ∗ e̊k ∗~e>j)〉PT (~ei̊ek~e

>
j)

Define operator Tijk which maps Z to 1
p
δijk〈Z,PT (~ei ∗ e̊k ∗~e>j)〉PT (~ei ∗ e̊k ∗~e>j).

Observe that ‖Tijk‖op = ‖Tijk‖ = 1
p
‖PT (~ei ∗ e̊k ∗ ~e>j)‖2

F and ‖PT‖op = ‖PT‖ ≤ 1.

Then we have

‖Tijk −
1

n2n3

PT‖op

=‖Tijk −
1

n2n3

PT‖

≤max

{
1

p
‖PT (~ei ∗ e̊k ∗~e>j)‖2

F ,
1

n2n3

}
≤2µ0r

np

where the first inequality uses the fact that if A and B are positive semidefinite

matrices, then ‖A−B‖ ≤ max{‖A‖, ‖B‖}.

100

On the other hand, from the definition of Tijk we have E[Tijk] = 1
n2n3

PT . So∥∥∥∥E[(Tijk −
1

n2n3

PT)2]

∥∥∥∥
=

∥∥∥∥E[(Tijk −
1

n2n3

PT)2]

∥∥∥∥
op

=

∥∥∥∥∥E[
1

p
‖PT (~ei ∗ e̊k ∗~e>j)‖2

FTijk]−
2

n2n3

PTE[Tijk] +
1

n4n2
3

PT

∥∥∥∥∥
op

=

∥∥∥∥1

p
‖PT (~ei ∗ e̊k ∗~e>j)‖2

F

1

n2n3

PT −
1

n4n2
3

PT

∥∥∥∥
op

<

(
1

p

2µ0r

n

1

n2n3

)
‖PT‖op

≤ 2µ0r

n3n3p

Now let

τ =

√
14βµ0r log(nn3)

3np
≤ 1

2

with some constant β > 1. The inequality holds given p satisfying (3.7) with c0 large

enough. Use Theorem 7.1.1 we have

P [‖PTRΩPT −PT‖op > τ]

=P
[
‖PTRΩPT −PT‖ > τ

]
=P

[∥∥∥∥∥∑
i,j,k

(
Tijk −

1

n2n3

PT

)∥∥∥∥∥ > τ

]

≤2nn3 exp

(
−7

3
βµ0r log(nn3)

np

2µ0r
np

+ 2µ0r
np

1
6

)

≤2(nn3)1−β

101

Therefore we can get

P
[
‖PTRΩPT −PT‖op ≤

1

2

]
≥P [‖PTRΩPT −PT‖op ≤ τ]

≥1− 2(nn3)1−β ,

which finishes the proof.

7.2 Proof of Lemma 3.3.1

Proof. Given any Z such that PΩ(Z) = 0 and ‖PTRΩPT −PT‖op ≥ 1/2, we have

〈Z,PTRΩPT (Z)−PT (Z)〉 ≥ −1

2
‖Z‖F

which gives

〈Z,PTRΩPT (Z)−PT (Z)〉 ≥ −1

2
‖Z‖F

Note that

〈Z,PTRΩPT (Z)〉

=
1
√
n3

〈Z,PTRΩPT (Z)〉

=
1
√
n3

‖RΩPT (Z)‖2
F

=
√
n3‖RΩPT (Z)‖2

F

=
√
n3‖RΩ(Z−PT⊥(Z))‖2

F

=
√
n3‖RΩPT⊥(Z)‖2

F

≤
√
n3

p2
‖PT⊥(Z)‖2

F

102

Thus

‖PT⊥(Z)‖2
F

≥ p2

√
n3

〈Z,PTRΩPT (Z)〉

≥ p2

√
n3

(
−1

2
‖Z‖F + 〈Z,PT (Z)〉

)
=

p2

√
n3

(
1
√
n3

〈Z,PT (Z)〉 − 1

2
‖Z‖F

)
=
p2

n3

‖PT (Z)‖2
F −

p2

2
√
n3

‖Z‖F

≥(p2 − p2

2
√
n3

)‖PT (Z)‖2
F −

p2

2
√
n3

‖PT⊥(Z)‖2
F

Then we have

‖PT⊥(Z)‖2
F

≥p2 2
√
n3 − 1

2
√
n3 + p2

‖PT (Z)‖2
F

≥ 1

4n2n3
3

‖PT (Z)‖2
F

It follows that

‖PT⊥(Z)‖TNN

=‖PT⊥(Z)‖∗

≥‖PT⊥(Z)‖F

≥
√
n3‖PT⊥(Z)‖F

≥ 1

2nn3

‖PT⊥(Z)‖F

which finishes the proof.

103

7.3 Proof of Proposition 3.3.1 Condition 2

Three more lemmas will be introduced in this sections and their proofs are provided

in the Appendix D.

We define `∞,2∗ norm for tensors to return the largest `2∗ norm of the tensor row

or tensor column of a third-order tensor.

‖Z‖∞,2∗ := max

max
i

√∑
b,k

Z2
ibk,max

j

√∑
a,k

Z2
ajk

The following lemma states that RΩ(Z) is closed to Z in tensor spectral norm.

The difference is bounded with `∞ norm and `∞,2∗ norm.

Lemma 7.3.1. If p satisfies the condition in Theorem 3.2.1, and Z ∈ Rn×n×n3. Then

for any constant c > 0, we have

‖RΩ(Z)−Z‖op ≤ c

(
log(nn3)

p
‖Z‖∞ +

√
log(nn3)

p
‖Z‖∞,2∗

)
(7.6)

holds with probability at least 1− (2nn3)−(c−1).

The lemma below bounds the `∞,2∗ distance between the terms PTRΩ(Z) and

PT (Z).

Lemma 7.3.2. If p satisfies the condition in Theorem 3.2.1 for some c2 sufficiently

large, and Z ∈ Rn×n×n3. Then

‖(PTRΩ(Z)−PT (Z)‖∞,2∗ ≤
1

2
‖Z‖∞,2∗ +

1

2

√
n

µ0r
‖Z‖∞

with probability at least 1− (2n2n3)−(c2−1).

104

Lemma 7.3.3. If p satisfies the condition in Theorem 3.2.1 for some c3 sufficiently

large, and Z ∈ Rn×n×n3. Then

‖(PTRΩPT −PT)Z‖∞ ≤
1

2
‖Z‖∞ (7.7)

with probability at least 1− 2n−(c3−2)n
−(c3−1)
3 .

Proof of Proposition 3.3.1 Condition 2

Proof. (a) We will first construct a tensor dual certificate Y and then show it satisfies

both conditions here. We will use an approach called Golfing Scheme introduced by

Gross [72] and we will follow the idea in [59][65] where the strategy is to construct

Y iteratively. Let Ω be a union of smaller sets Ωt such that Ω = ∪t0t=1Ωt where

t0 = 20 log(nn3). For each t, we assume

P [(i, j, k) ∈ Ωt] = q := 1− (1− p)1/t

and it is easy to verify that it’s equivalent to our original Ω. Define RΩt similarly to

RΩ as follows

RΩt(Z) =
∑
i,j,k

1

q
1(i,j,k)∈ΩtZijk~ei ∗ e̊k ∗~e>j

set W0 = 0 and for t = 1, 2, ..., t0,

Wt = Wt−1 + RΩtPT

(
U ∗V> −PT (Wt−1)

)
(7.8)

and tensor Y = Wt0 . By this construction we can see PΩ(Y) = Y.

For t = 0, 1, ..., t0, set Dt = U ∗V> −PT (Wt). Then we have D0 = U ∗V> and

Dt = (PT −PTRΩtPT)(Dt−1) (7.9)

105

Note that Ωt is independent of Dt, which implies

‖Dt‖F ≤ ‖PT −PTRΩtPT‖ ‖Dt−1‖F ≤
1

2
‖Dt−1‖F

since q ≥ p/t0 ≥ c′µ0r log(nn3)/n, we have

∥∥PT (Y)−U ∗V>
∥∥
F

= ‖Dt0‖F

≤
(

1

2

)t0 ∥∥U ∗V>∥∥
F

≤ 1

4(nn3)2

√
r

≤ 1

4nn2
3

holds with probability at least 1 − c′(2nn3)−c
′′

by the union bound, for some large

enough constants c′, c′′ > 0.

(b) From (7.8) we know that Y = Wt0 =
∑t0

t=1 (RΩtPT) (Dt−1), so use Lemma 7.3.1

we obtain for some constant c > 0,

‖PT⊥(Y)‖op

≤
t0∑
t=1

‖PT⊥ (RΩtPT) (Dt−1)‖op

≤
t0∑
t=1

‖(RΩt − I)PT (Dt−1)‖op

≤c
t0∑
t=1

(
log(nn3)

q
‖Dt−1‖∞ +

√
log(nn3)

q
‖Dt−1‖∞,2∗

)

≤ c
√
c0

t0∑
t=1

(
n

µ0r
‖Dt−1‖∞ +

√
n

µ0r
‖Dt−1‖∞,2∗

)

106

where we could bound term ‖Dt−1‖∞ using Lemma 7.3.3 as follows,

‖Dt−1‖∞

=‖(PT −PTRΩt−1PT)...(PT −PTRΩ1PT)(D0)‖∞

≤
(

1

2

)t−1

‖U ∗V>‖∞

(7.10)

and ‖Dt−1‖∞,2∗ is bounded using Lemma 7.3.2 and (7.9)(7.10),

‖Dt−1‖∞,2∗

=
∥∥(PT −PTRΩk−1

PT)(Dt−2)
∥∥
∞,2∗

≤1

2
‖Dt−2‖∞,2∗ +

1

2

√
n

µ0r
‖Dt−2‖∞

≤1

2

(
1

2
‖Dt−3‖∞,2∗ +

1

2

√
n

µ0r
‖Dt−3‖∞

)
+

1

2

√
n

µ0r
‖Dt−2‖∞

≤t
(

1

2

)t−1√
n

µ0r

∥∥U ∗V>∥∥∞ +

(
1

2

)t−1 ∥∥U ∗V>∥∥∞,2∗
So we get

‖PT⊥(Y)‖op

≤ c
√
c0

n

µ0r
‖U ∗V>‖∞

t0∑
t=1

(t+ 1)

(
1

2

)t−1

+
c
√
c0

√
n

µ0r
‖U ∗V>‖∞,2∗

t0∑
t=1

(
1

2

)t−1

≤ 6c
√
c0

n

µ0r
‖U ∗V>‖∞ +

2c
√
c0

√
n

µ0r

∥∥U ∗V>∥∥∞,2∗
holds with probability at least 1 − c′(2nn3)−c

′′
by the union bound for some large

enough constants c′, c′′ > 0.

107

Now let’s bound ‖U ∗V>‖∞. We have

‖U ∗V>‖∞

= max
i,j,k

(
U(i, :, :) ∗V>(:, j, :)

)
k

= max
i,j
‖U(i, :, :) ∗V>(:, j, :)‖∞

Note the fact that for two tensor tubes x̊, ẙ ∈ R1×1×n3 , use the Cauchy-Schwartz

inequality we get

‖̊x ∗ ẙ‖∞ ≤ ‖̊x‖2∗ ‖̊y‖2∗

Then let ůt = U(i, t, :), v̊>t = V>(t, j, :), we can further write ‖U∗V>‖∞ as follows

‖U ∗V>‖∞

= max
i,j

∥∥∥∥∥
r∑
t=1

ůt ∗ v̊>t

∥∥∥∥∥
∞

≤max
i,j

r∑
t=1

‖̊ut ∗ v̊>t ‖∞

≤max
i,j

r∑
t=1

‖̊ut‖2∗ ‖̊v>t ‖2∗

≤max
i,j

r∑
t=1

1

2

(
‖̊ut‖2

2∗ + ‖̊v>t ‖2
2∗

)
= max

i,j

{
1

2
‖~e>i ∗U‖2

2∗ +
1

2
‖V> ∗~ej‖2

2∗

}
≤µ0r

n

108

by the standard incoherence condition. We also have

‖U ∗V>‖∞,2∗

= max
i,j

{
‖U ∗V> ∗~ei‖2∗ , ‖~e>j ∗U ∗V

>‖2∗

}
≤
√
µ0r

n

and thus

‖PT⊥(Y)‖ ≤ 8c
√
c0

≤ 1

2

given c0 large enough.

7.4 Proofs of supporting Lemmas

Proof of Lemma C.1

Proof. Let

RΩ(Z)−Z

=
∑
i,j,k

C(ijk)

=
∑
i,j,k

(
1

p
δijk − 1

)
Zijk~ei ∗ e̊k ∗~e>j

where C(ijk) are independent tensors. Then we have

C(ijk) =
∑
i,j,k

(
1

p
δijk − 1

)
Zijk~ei̊ek~ej

>

109

Notice that E
[
C(ijk)

]
= 0 and ‖C(ijk)‖ ≤ 1

p
‖Z‖∞. Moreover,∥∥∥∥∥E

[∑
i,j,k

C(ijk)
>C(ijk)

]∥∥∥∥∥
=

∥∥∥∥∥E
[∑
i,j,k

C>(ijk)C(ijk)

]∥∥∥∥∥
op

=

∥∥∥∥∥∑
i,j,k

Z2
ijk~ej ∗~e

>
j E
(

1

p
δijk − 1

)2
∥∥∥∥∥
op

=

∥∥∥∥∥1− p
p

∑
i,j,k

Z2
ijk~ej ∗~e

>
j

∥∥∥∥∥
op

since ~ej ∗~e>j will return a zero tensor except for (j, j, 1)th entry equaling 1, we have∥∥∥∥∥E
[∑
i,j,k

C(ijk)
>C(ijk)

]∥∥∥∥∥
=

1− p
p

max
j

∣∣∣∣∣∑
i,k

Zijk

∣∣∣∣∣
≤1

p
‖Z‖2

∞,2∗

And
∥∥∥E [∑i,j,k C(ijk)C(ijk)

>
]∥∥∥ is bounded similarly. Then use the extension of The-

orem A.1, for any c′ > 0 we have

‖RΩ(Z)−Z‖op

=‖RΩ(Z)−Z‖

=

∥∥∥∥∥∑
i,j,k

C(ijk)

∥∥∥∥∥
≤

√
4c′

p
‖Z‖2

∞,2∗ log(2nn3) +
c′

p
‖Z‖∞ log(2nn3)

≤c

(
log(nn3)

p
‖Z‖∞ +

√
log(nn3)

p
‖Z‖∞,2∗

)
holds with probability at lease 1− (2nn3)−(c−1) for any c ≥ max{c′, 2

√
c′}.

110

Proof of Lemma C.2

Proof. Consider any bth tensor column of PTRΩ(Z)−PT (Z):

(PTRΩ(Z)−PT (Z)) ∗~eb

=
∑
i,j,k

(
1

p
δijk − 1)ZijkPT (~ei ∗ e̊k ∗~e>j) ∗~eb =

∑
i,j,k

~aijk

where ~aijk ∈ Rn×1×n3 are zero-mean independent tensor columns. Let ãijk ∈ Rnn3×1

be the vectorized column vector of ~aijk. Then the `2 norm of the vector ãijk is bounded

by the following

‖ãijk‖

=‖~aijk‖2∗

≤1− p
p

Zijk

∥∥∥PT (~ei ∗ e̊k ∗~e>j) ∗~eb
∥∥∥

2∗

≤1

p

√
2µ0r

n
‖Z‖∞

≤ 1

c0 log(nn3)

√
2n

µ0r
‖Z‖∞

for some constant c0 > 0 given p satisfying (3.7). We also have∣∣∣∣∣E
[∑
i,j,k

ã>ijkãijk

]∣∣∣∣∣
=E

[∑
i,j,k

‖~aijk‖2
2∗

]

=
1− p
p

∑
i,j,k

Z2
ijk

∥∥∥PT (~ei ∗ e̊k ∗~e>j) ∗~eb
∥∥∥2

2∗

111

Use the definition of PT and the incoherent condition, we can write∥∥∥PT (~ei ∗ e̊k ∗~e>j) ∗~eb
∥∥∥

2∗

=
∥∥∥(U ∗U> ∗~ei ∗ e̊k) ∗ e̊>j ∗~eb + (I−U ∗U>) ∗~ei ∗ e̊k ∗ e̊>j ∗V ∗V

> ∗~eb
∥∥∥

2∗

≤
√
µ0r

n

∥∥∥~e>j ∗~eb∥∥∥
2∗

+
∥∥∥(I−U ∗U>) ∗~ei ∗~ek

∥∥∥∥∥∥~e>j ∗V ∗V> ∗~eb∥∥∥
2∗

≤
√
µ0r

n

∥∥∥~e>j ∗~eb∥∥∥
2∗

+
∥∥∥~e>j ∗V ∗V> ∗~eb∥∥∥

2∗

where I is the identity tensor. Thus,∣∣∣∣∣E
[∑
i,j,k

ã>ijkãijk

]∣∣∣∣∣
≤2

p

∑
ijk

Z2
ijk

µ0r

n

∥∥∥~e>j ∗~eb∥∥∥2

2∗
+

2

p

∑
ijk

Z2
ijk

∥∥∥~e>j ∗V ∗V> ∗~eb∥∥∥2

2∗

=
2µ0r

pn

∑
i,k

Z2
ibk +

2

p

∑
j

∥∥∥~e>j ∗V ∗V> ∗~eb∥∥∥2

2∗

∑
i,k

Z2
ijk (7.11)

≤2µ0r

pn
‖Z‖2

∞,2∗ +
2

p

∥∥V ∗V> ∗~eb∥∥2

2∗
‖Z‖2

∞,2∗

≤4µ0r

pn
‖Z‖2

∞,2∗

≤ 4

c0 log(nn3)
(7.12)

where (7.11) is because ~e>j ∗~eb = 0 if j 6= b. In the same fashion
∣∣∣E [∑i,j,k ãijkã

>
ijk

]∣∣∣
is bounded by the exact same quantity. Since the spectral norm of the vector ãijk

is equal to its `2 norm, then use the extension of Theorem 7.1.1 we have for any

112

c1 > 0, we have

‖(PTRΩ(Z)−PT (Z)) ∗~eb‖2∗

=

∥∥∥∥∥∑
i,j,k

~aijk

∥∥∥∥∥
2∗

=

∥∥∥∥∥∑
i,j,k

ãijk

∥∥∥∥∥
≤
√

4c1σ2 log(nn3) + c1M log(nn3)

≤1

2
‖Z‖∞,2∗ +

1

2

√
n

µ0r
‖Z‖∞

holds with probability at least 1− (nn3)−(c2−1) for c2 large enough.

We can also do the same to the tensor rows ~e>a ∗ (PTRΩ(Z)−PT (Z)) and get the

same bound. Then using a union bound over all the tensor columns and tensor rows,

the result holds with probability at least 1− 2n2n
−(c2−1)
3 . With c2 large enough, the

probability goes to zero. Done.

Proof of Lemma C.3

Proof. Observe that

PTRΩPT (Z) =
∑
i,j,k

1

p
δijkZijkPT (~ei ∗ e̊k ∗~e>j)

so we have that any (a, b, c)th entry of PTRΩPT (Z)−PT (Z) is given by

〈PTRΩPT (Z)−PT (Z),~ea ∗ e̊c ∗~e>b 〉

=
∑
i,j,k

(
δijk
p
− 1

)
Zijk〈PT (~ei ∗ e̊k ∗~e>j),~ea ∗ e̊c ∗~e>b 〉

:=
∑
i,j,k

Hijk,abc

113

It is easy to observe that

|Hijk,abc|

≤1

p
‖Z‖∞‖PT (~ei ∗ e̊k ∗~e>j)‖F‖PT (~ea ∗ e̊c ∗~e>b)‖F

≤2µ0r

np
‖Z‖∞

We also have ∣∣∣∣∣E
[∑
i,j,k

H2
ijk,abc

]∣∣∣∣∣
=

1− p
p
‖Z‖2

∞

∑
i,j,k

∣∣∣〈PT (~ei ∗ e̊k ∗~e>j),~ea ∗ e̊c ∗~e>b 〉
∣∣∣2

=
1− p
p
‖Z‖2

∞

∥∥∥PT (~ea ∗ e̊c ∗~e>b)
∥∥∥
F

≤2µ0r

np
‖Z‖2

∞

Then use Theorem A.1, we have

P
[
(PTRΩPT (Z)−PT (Z))abc ≥

1

2
‖Z‖∞

]
≤2 exp

(
−‖Z‖2

∞/4
2µ0r
np
‖Z‖2

∞ + µ0r
3np
‖Z‖2

∞

)

≤2(nn3)−c3

for some c3 = 3c0/28 large enough, given p satisfying (24). Then using the union

bound on every (a, b, c)th entry we have ‖(PTRΩPT − PT)(Z)‖∞ ≤ 1
2
‖Z‖∞ holds

with probability at least 1− 2n−(c3−2)n
−(c3−1)
3 .

Bibliography

[1] K. Braman, “Third-order tensors as linear operators on a space of matrices,”

Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241 – 1253, 2010.

[2] M. Kilmer, K. Braman, N. Hao, and R. Hoover, “Third-order tensors as opera-

tors on matrices: A theoretical and computational framework with applications

in imaging,” SIAM Journal on Matrix Analysis and Applications, vol. 34, no. 1,

pp. 148–172, 2013.

[3] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order ten-

sors,” Linear Algebra and its Applications, vol. 435, no. 3, pp. 641 – 658, 2011,

special Issue: Dedication to Pete Stewart on the occasion of his 70th birthday.

[4] D. F. Gleich, C. Greif, and J. M. Varah, “The power and arnoldi methods in

an algebra of circulants,” Numerical Linear Algebra with Applications, vol. 20,

no. 5, pp. 809–831, 2013.

[5] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”

J. Math. Phys, vol. 6, no. 1, pp. 164–189, 1927.

114

115

[6] Hitchcock, “Multiple invariants and generalized rank of a p-way matrix or ten-

sor,” J. Math. Phys, vol. 7, no. 1, pp. 39–79, 1927.

[7] L. Tucker, “Implications of factor analysis of three-way matrices for measure-

ment of change,” Problems in measuring change, pp. 122–137, 1963.

[8] Tucker, “The extension of factor analysis to three-dimensional matrices,” Con-

tributions to mathematical psychology, pp. 109–127, 1964.

[9] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-

chometrika, pp. 279–311, 1966.

[10] J. D. Caroll and J. J. Chang, “Analysis of individual differences in multidi-

mensional scaling via n-way generalization of Eckart–Young decomposition,”

Psychometrika, vol. 35, pp. 283–319, 1970.

[11] R. A. Harshman, “Foundations of the PARAFAC procedure: models and con-

ditions for an explanatory multimodal factor analysis,” UCLA Working Papers

in Phonetics, vol. 16, pp. 1–84, 1970.

[12] B. Chen, A. Petropulu, and L. de Lathauwer, “Blind identification of convo-

lutive MIMO systems with 3 sources and 2 sensors,” EURASIP Journal on

Applied Signal Processing, vol. 5, pp. 487–496, 2002.

[13] P. Comon, “Tensor decomposition: state of the art and applications,” in IMA

Conf. Math. in Sig. Proc., Warwick, UK, 2000.

116

[14] L. de Lathauwer, J. Castaing, and J. Cardoso, “Fourth-order cumulant-based

blind identification of underdetermined mixtures,” IEEE Trans. on Signal Pro-

cessing, vol. 55, no. 6, pp. 2965–2973, 2007.

[15] L. de Lathauwer, B. de Moor, and J. Vandewalle, “A multilinear singular value

decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, pp. 1253–1278, 2000.

[16] T. G. Kolda, “Orthogonal tensor decompositions,” SIAM J. Matrix Anal. Appl.,

vol. 23, no. 1, pp. 243–255, 2001.

[17] T. Zhang and G. H. Golub, “Rank-one approximation to high-order tensors,”

SIAM J. Matrix Anal. Appl., vol. 23, pp. 534–550, 2001.

[18] E. Acar, S. Camtepe, M. Krishnamoorthy, and B. Yener, “Modeling and mul-

tiway analysis of chatroom tensors,” ISI, vol. 3495, pp. 256–268, 2005.

[19] J. Sun, S. Papadimitriou, and P. Yu, “Window-based tensor analysis on high-

dimensional and multi-aspect streams,” Proc. ICDM2006, 2006.

[20] J. Sun, S. Papadimitriou, and P. S. Yu, “Window-based tensor analysis on

high-dimensional and multi-aspect streams,” in Sixth International Conference

on Data Mining (ICDM’06), Dec 2006, pp. 1076–1080.

[21] M. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles:

Tensorfaces,” Lecture Notes in Computer Science, pp. 447–460, 2002.

117

[22] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods for mul-

tilinear data completion and de-noising based on tensor-svd,” in Proceedings of

the 2014 IEEE Conference on Computer Vision and Pattern Recognition, ser.

CVPR ’14, 2014, pp. 3842–3849.

[23] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear subspace analysis of image

ensembles,” in 2003 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2003. Proceedings., vol. 2, June 2003, pp. II–93–9

vol.2.

[24] D. Vlasic, M. Brand, H. Pfister, and J. Popović, “Face transfer with multilinear

models,” ACM Trans. Graph., vol. 24, no. 3, pp. 426–433, Jul. 2005. [Online].

Available: http://doi.acm.org/10.1145/1073204.1073209

[25] O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller, “Tensor-based formula-

tion and nuclear norm regularization for multi-energy computed tomography,”

CoRR, vol. abs/1307.5348, 2013.

[26] N. Hao, M. E. Kilmer, K. Braman, and R. C. Hoover, “Facial recognition using

tensor-tensor decompositions,” SIAM Journal on Imaging Sciences, vol. 6, no. 1,

pp. 437–463, 2013. [Online]. Available: http://dx.doi.org/10.1137/110842570

[27] L. Grasedyck, “Hierarchical singular value decomposition of tensors,” SIAM

Journal on Matrix Analysis and Applications, vol. 31, no. 4, pp. 2029–2054,

2010.

http://doi.acm.org/10.1145/1073204.1073209
http://dx.doi.org/10.1137/110842570

118

[28] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific

Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[29] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

REVIEW, vol. 51, no. 3, pp. 455–500, 2009.

[30] J. M. F. ten Berge, “Kruskal’s polynomial for 2x2x2 arrays and a generalization

to 2xnxn arrays,” Psychometrika, vol. 56, no. 4, pp. 631–636, 1991. [Online].

Available: http://dx.doi.org/10.1007/BF02294495

[31] J. Hastad, “Tensor rank is NP–complete,” J. of Algorithms, vol. 11, no. 4, pp.

644–654, 1990.

[32] T. G. Kolda, “Multilinear operators for higher-order decompositions,” Tech.

Rep., 2006.

[33] C. J. Appellof and E. R. Davidson, “Strategies for analyzing data from video

fluorometric monitoring of liquid chromatographic effluents,” Analytical Chem-

istry, vol. 53, no. 13, pp. 2053–2056, 1981.

[34] F. Miwakeichi, E. Martinez-Montes, P. Valdes-Sosa, N. Nishiyama,

H. Mizuhara, and Y. Yamaguchi, “Decomposing EEG data into space–time–

frequency components using parallel factor analysis,” NeuroImage, vol. 22,

no. 3, pp. 1035–1045, 2004.

http://dx.doi.org/10.1007/BF02294495

119

[35] N. Sidiropoulos, R. Bro, and G. Giannakis, “Parallel factor analysis in sensor

array processing,” IEEE transactions on Signal Processing, vol. 48, no. 8, pp.

2377–2388, 2000.

[36] E. Acar, S. A. Çamtepe, and B. Yener, Collective Sampling and

Analysis of High Order Tensors for Chatroom Communications. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, pp. 213–224. [Online]. Available:

http://dx.doi.org/10.1007/11760146 19

[37] A. Shashua and A. Levin, “Linear image coding for regression and classification

using the tensor-rank principle,” in Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. CVPR 2001,

vol. 1, 2001, pp. I–42–I–49 vol.1.

[38] R. Furukawa, H. Kawasaki, K. Ikeuchi, and M. Sakauchi, “Appearance based

object modeling using texture database: Acquisition, compression and render-

ing,” in Eurographics Workshop on Rendering, P. Debevec and S. Gibson, Eds.

The Eurographics Association, 2002.

[39] L. Karlsson, D. Kressner, and A. Uschmajew, “Parallel algorithms for tensor

completion in the CP format,” Sep. 2014.

[40] P. Jain and S. Oh, “Provable tensor factorization with missing data,” in

Advances in Neural Information Processing Systems 27, Z. Ghahramani,

http://dx.doi.org/10.1007/11760146_19

120

M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Curran As-

sociates, Inc., 2014, pp. 1431–1439.

[41] G. Duan, H. Wang, Z. Liu, J. Deng, and Y. Chen, “K-CPD: learning of

overcomplete dictionaries for tensor sparse coding,” in Proceedings of the

21st International Conference on Pattern Recognition, ICPR 2012, Tsukuba,

Japan, November 11-15, 2012, 2012, pp. 493–496. [Online]. Available:

http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=6460179

[42] L. De Lathauwer and J. Vandewalle, “Dimensionality reduction in higher-order

signal processing and rank-(R1, R2, ..., RN) reduction in multilinear algebra,”

Linear Algebra Appl., vol. 391, pp. 31–55, 2004.

[43] D. Muti and S. Bourennane, “Multidimensional filtering based on a tensor ap-

proach,” Signal Processing, vol. 85, no. 12, pp. 2338–2353, 2005.

[44] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear image analysis for fa-

cial recognition,” in Object recognition supported by user interaction for service

robots, vol. 2, 2002, pp. 511–514 vol.2.

[45] M. A. O. Vasilescu, “Human motion signatures: analysis, synthesis, recogni-

tion,” in Object recognition supported by user interaction for service robots,

vol. 3, 2002, pp. 456–460 vol.3.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6460179

121

[46] H. Wang and N. Ahuja, “Facial expression decomposition,” in Proceedings Ninth

IEEE International Conference on Computer Vision, Oct 2003, pp. 958–965

vol.2.

[47] H. Wang and N.Ahuja, “Compact representation of multidimensional data us-

ing tensor rank-one decomposition,” in Proceedings of the 17th International

Conference on Pattern Recognition, 2004. ICPR 2004., vol. 1, Aug 2004, pp.

44–47 Vol.1.

[48] E. Kernfeld, S. Aeron, and M. E. Kilmer, “Clustering multi-way data: a novel

algebraic approach,” CoRR, vol. abs/1412.7056, 2014.

[49] E. Kernfeld, M. Kilmer, and S. Aeron, “Tensor-tensor products with invertible

linear transforms,” Linear Algebra and its Applications, vol. 485, pp. 545–570,

2015.

[50] N. Hao, “Moving from matrix to tensor-based analysis and algorithms for ap-

plications in imaging science and beyond,” Ph.D. dissertation, Medford, MA,

USA, 2014.

[51] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, ser. Springer

Series in Computational Mathematics. Springer, 2012, vol. 42.

[52] N. Boumal and P.-A. Absil, “RTRMC: A Riemannian trust-region method for

low-rank matrix completion,” in Advances in Neural Information Processing

Systems 24 (NIPS), 2011, pp. 406–414.

122

[53] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of

its algorithmic applications,” Combinatorica, vol. 15, no. 2, pp. 215–245, 1995.

[54] G. Obozinski, B. Taskar, and M. I. Jordan, “Joint covariate selection and joint

subspace selection for multiple classification problems,” Statistics and Comput-

ing, vol. 20, no. 2, pp. 231–252, 2010.

[55] T. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect data

mining,” in Data Mining, 2008. ICDM ’08. Eighth IEEE International Confer-

ence on, Dec 2008, pp. 363–372.

[56] J. Sun, S. Papadimitriou, C. Lin, N. Cao, S. Liu, and W. Qian, “Multivis:

Content-based social network exploration through multi-way visual analysis,”

in Proceedings of the SIAM International Conference on Data Mining, SDM

2009, April 30 - May 2, 2009, Sparks, Nevada, USA, 2009, pp. 1064–1075.

[57] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating

missing values in visual data,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 35, no. 1, pp. 208–220, Jan 2013.

[58] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”

Commun. ACM, vol. 55, no. 6, pp. 111–119, 2012.

[59] B. Recht, “A simpler approach to matrix completion,” Journal of Machine

Learning Research, vol. 12, pp. 3413–3430, 2011.

123

[60] V. D. Silva and L.-H. Kim, “Tensor rank and the ill-posedness of the best

low-rank approximation problem,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3,

2008.

[61] L. Grasedyck, “Hierarchical singular value decomposition of tensors,” SIAM J.

Matrix Anal. Appl., vol. 31, no. 4, pp. 2029–2054, May 2010.

[62] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable low-rank tensor re-

covery,” Optimization-Online, p. 4252, 2014.

[63] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank tensor

recovery via convex optimization,” Inverse Problems, vol. 27, no. 2, p. 025010,

2011.

[64] C. Navasca, M. Opperman, T. Penderghest, and C. Tamon, “Tensors as module

homomorphisms over group rings,” ArXiv e-prints, May 2010.

[65] Y. Chen, “Incoherence-optimal matrix completion,” CoRR, vol. abs/1310.0154,

2013.

[66] C. Mu, B. Huang, J. Wright, and D. Goldfarb, “Square deal: Lower bounds

and improved relaxations for tensor recovery,” in Proceedings of the 31th Inter-

national Conference on Machine Learning, ICML 2014, Beijing, China, 21-26

June 2014, 2014, pp. 73–81.

124

[67] A. Krishnamurthy and A. Singh, “Low-rank matrix and tensor completion via

adaptive sampling.” in NIPS, C. J. C. Burges, L. Bottou, Z. Ghahramani, and

K. Q. Weinberger, Eds., 2013, pp. 836–844.

[68] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating

missing values in visual data,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 35, no. 1, pp. 208–220, 2013.

[69] B. Romera-Paredes and M. Pontil, “A new convex relaxation for tensor comple-

tion,” in Advances in Neural Information Processing Systems 26: 27th Annual

Conference on Neural Information Processing Systems 2013. Proceedings of a

meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., 2013,

pp. 2967–2975.

[70] E. J. Candès and T. Tao, “The power of convex relaxation: near-optimal matrix

completion,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp.

2053–2080, 2010.

[71] D. Gross and V. Nesme, “Note on sampling without replacing from a finite

collection of matrices,” CoRR, vol. abs/1001.2738, 2010.

[72] D. Gross, “Recovering low-rank matrices from few coefficients in any basis,”

IEEE Transactions on Information Theory, vol. 57, no. 3, pp. 1548–1566, 2011.

125

[73] Xiao-Yang Liu and Vaneet Aggarwal and Xiaodong Wang and Shuchin Aeron

and Min-You Wu, “Adaptive Sampling of RF Fingerprints for Fine-Grained In-

door Localization,” December 2015, Accepted to IEEE Transactions on Mobile

Computing.

[74] G. Watson, “Characterization of the subdifferential of some matrix norms,”

Linear Algebra and its Applications, vol. 170, pp. 33 – 45, 1992.

[75] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: ex-

act signal reconstruction from highly incomplete frequency information,” IEEE

Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb 2006.

[76] J. J. Fuchs, “On sparse representations in arbitrary redundant bases,” IEEE

Trans. Inf. Theor., vol. 50, no. 6, pp. 1341–1344, Jun. 2004. [Online]. Available:

http://dx.doi.org/10.1109/TIT.2004.828141

[77] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Op-

timization and Statistical Learning via the Alternating Direction Method of

Multipliers,” Foundations and Trends R© in Machine Learning, vol. 3, no. 1, pp.

1–122, 2011.

[78] J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm

for matrix completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp.

1956–1982, 2010.

http://dx.doi.org/10.1109/TIT.2004.828141

126

[79] A. S. Lewis, “The convex analysis of unitarily invariant matrix functions,” Jour-

nal of Convex Analysis Volume 2 (1995), vol. 2, no. 1/2, pp. 173–183, 1995.

[80] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating

missing values in visual data,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 35, no. 1, pp. 208–220, 2013.

[81] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component

analysis?” J. ACM, vol. 58, no. 3, pp. 11:1–11:37, Jun. 2011. [Online].

Available: http://doi.acm.org/10.1145/1970392.1970395

[82] Z. Zhang and S. Aeron, “Exact tensor completion using t-svd,” CoRR, vol.

abs/1502.04689, 2015. [Online]. Available: http://arxiv.org/abs/1502.04689

[83] E. T. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for l1-

minimization: Methodology and convergence,” SIAM Journal on Optimization,

vol. 19, no. 3, pp. 1107–1130, 2008. [Online]. Available: http://dx.doi.org/10.

1137/070698920

[84] J. Feng, H. Xu, and S. Yan, “Online robust PCA via stochastic optimization,”

in Advances in Neural Information Processing Systems 26. Curran Associates,

Inc., 2013, pp. 404–412. [Online]. Available: http://papers.nips.cc/paper/

5131-online-robust-pca-via-stochastic-optimization.pdf

[85] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the grassmannian for

online foreground and background separation in subsampled video,” in IEEE

http://doi.acm.org/10.1145/1970392.1970395
http://arxiv.org/abs/1502.04689
http://dx.doi.org/10.1137/070698920
http://dx.doi.org/10.1137/070698920
http://papers.nips.cc/paper/5131-online-robust-pca-via-stochastic-optimization.pdf
http://papers.nips.cc/paper/5131-online-robust-pca-via-stochastic-optimization.pdf

127

Conference on Computer Vision and Pattern Recognition, 2012, pp. 1568–1575.

[Online]. Available: http://dx.doi.org/10.1109/CVPR.2012.6247848

[86] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for

designing overcomplete dictionaries for sparse representation,” Trans. Sig.

Proc., vol. 54, no. 11, pp. 4311–4322, Nov. 2006. [Online]. Available:

http://dx.doi.org/10.1109/TSP.2006.881199

[87] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training

for image super-resolution,” Image Processing, IEEE Transactions on, vol. 21,

no. 8, pp. 3467–3478, Aug 2012.

[88] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering via

dictionary learning with structured incoherence and shared features,” in Com-

puter Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, June

2010, pp. 3501–3508.

[89] K. Engan, S. O. Aase, and J. H. Husy, “Multi-frame compression:

theory and design.” Signal Processing, vol. 80, no. 10, pp. 2121–

2140, 2000. [Online]. Available: http://dblp.uni-trier.de/db/journals/sigpro/

sigpro80.html#EnganAH00

[90] Q. Zhang and B. Li, “Discriminative k-svd for dictionary learning in face

recognition.” in CVPR. IEEE Computer Society, 2010, pp. 2691–2698. [Online].

Available: http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#ZhangL10

http://dx.doi.org/10.1109/CVPR.2012.6247848
http://dx.doi.org/10.1109/TSP.2006.881199
http://dblp.uni-trier.de/db/journals/sigpro/sigpro80.html#EnganAH00
http://dblp.uni-trier.de/db/journals/sigpro/sigpro80.html#EnganAH00
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#ZhangL10

128

[91] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation of the

k-svd algorithm using batch orthogonal matching pursuit,” 2008.

[92] F. Huang and A. Anandkumar, “Convolutional dictionary learning through

tensor factorization,” CoRR, vol. abs/1506.03509, 2015. [Online]. Available:

http://arxiv.org/abs/1506.03509

[93] S. Zubair and W. Wang, “Tensor dictionary learning with sparse tucker decom-

position,” in Digital Signal Processing (DSP), 2013 18th International Confer-

ence on, July 2013, pp. 1–6.

[94] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang,

“Decomposable nonlocal tensor dictionary learning for multispectral image

denoising,” in Proceedings of the 2014 IEEE Conference on Computer

Vision and Pattern Recognition, ser. CVPR ’14. Washington, DC,

USA: IEEE Computer Society, 2014, pp. 2949–2956. [Online]. Available:

http://dx.doi.org/10.1109/CVPR.2014.377

[95] Y. Fu, J. Gao, Y. Sun, and X. Hong, “Joint multiple dictionary learning

for tensor sparse coding,” in 2014 International Joint Conference on Neural

Networks, IJCNN 2014, Beijing, China, July 6-11, 2014, 2014, pp. 2957–2964.

[Online]. Available: http://dx.doi.org/10.1109/IJCNN.2014.6889490

[96] S. Soltani, M. E. Kilmer, and P. C. Hansen, “A tensor-based dictionary learning

approach to tomographic image reconstruction,” CoRR, vol. abs/1506.04954,

http://arxiv.org/abs/1506.03509
http://dx.doi.org/10.1109/CVPR.2014.377
http://dx.doi.org/10.1109/IJCNN.2014.6889490

129

2015. [Online]. Available: http://arxiv.org/abs/1506.04954

[97] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-

chometrika, vol. 31, pp. 279–311, 1966c.

[98] M. Elad and M. Aharon, “Image denoising via sparse and redundant

representations over learned dictionaries,” Trans. Img. Proc., vol. 15, no. 12,

pp. 3736–3745, Dec. 2006. [Online]. Available: http://dx.doi.org/10.1109/TIP.

2006.881969

[99] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse

3d transform-domain collaborative filtering,” IEEE TRANS. IMAGE PRO-

CESS, vol. 16, no. 8, p. 2080, 2007.

[100] N. Renard, S. Bourennane, and J. Blanc-Talon, “Denoising and dimensionality

reduction using multilinear tools for hyperspectral images,” in IEEE

Trans. Geoscience and Remote Sensing, 2008. [Online]. Available: http:

//dx.doi.org/10.1109/ICASSP.2008.4517867

[101] X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images

using the PARAFAC model and statistical performance analysis,” IEEE T.

Geoscience and Remote Sensing, vol. 50, no. 10, pp. 3717–3724, 2012. [Online].

Available: http://dx.doi.org/10.1109/TGRS.2012.2187063

[102] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar,

“Changedetection.net: A new change detection benchmark dataset.” in

http://arxiv.org/abs/1506.04954
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1109/ICASSP.2008.4517867
http://dx.doi.org/10.1109/ICASSP.2008.4517867
http://dx.doi.org/10.1109/TGRS.2012.2187063

130

CVPR Workshops. IEEE, 2012, pp. 1–8. [Online]. Available: http:

//dblp.uni-trier.de/db/conf/cvpr/cvprw2012.html#GoyetteJPKI12

[103] R. Ahlswede and A. Winter, “Strong converse for identification via quantum

channels,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 569–

579, 2002.

[104] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Found.

Comput. Math., vol. 12, no. 4, pp. 389–434, Aug. 2012.

http://dblp.uni-trier.de/db/conf/cvpr/cvprw2012.html#GoyetteJPKI12
http://dblp.uni-trier.de/db/conf/cvpr/cvprw2012.html#GoyetteJPKI12

	List of Tables
	List of Figures
	Introduction to Tensors
	What are tensors?
	CANDECOMP/PARAFAC Decomposition
	Tucker Decomposition

	Notations and preliminaries
	Outline of This Thesis

	Tensor Completion
	Introduction
	Related Work
	Tensor Completion Based on CP decomposition
	Tensor Completion Based on Tucker Decomposition
	Tensor Completion under Gaussian Measurements
	Tensor Completion via Adaptive Sampling

	Tensor Completion via T-SVD
	Tensor Completion with Random Sampling
	Tensor Completion with Random Tubal Sampling

	Main proof
	Algorithms blackFor Tensor completion
	Experiments
	Video Completion
	Cellular Data Completion
	Numerical Experiments

	Tensor Robust PCA
	Batch Tensor Robust PCA
	Problem Formulation and Algorithm
	Experimental Results

	Online Tensor Robust PCA
	Problem Formulation and Algorithm
	Experimental Results

	Tensor Dictionary Learning
	Introduction
	Problem Formulation
	t-linear Combination of Tensor Dictionaries and Coefficients
	From Matrix to Tensor Dictionary Learning
	K-TSVD

	Experiment Results
	Filling Missing Pixels in Tensors
	Multispectral Image and Video Denoising

	Conclusions and Future Work
	Appendix
	Proof of Proposition 3.3.1 Condition 1
	Proof of Lemma 3.3.1
	Proof of Proposition 3.3.1 Condition 2
	Proofs of supporting Lemmas

	Bibliography

