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Abstract

The purpose of this thesis is to critique the analogy between physical systems and stock market crashes. We do
this by calculating the intraday correlations between a collection of stocks over the past 20 years and the intrahour
correlations over a few particular years. Comparing these results to Monte Carlo simulations of a generic condensed
matter system, the Ising model, we find that stocks do not exhibit the same correlation features imposed by the
dimension of the lattice of the Ising model, suggesting that a measure of distance between stocks does not exist.
Rather, the results resemble a Zero-dimensional Ising model. An investigation of the properties of such a model –
one that has not been systematically analyzed in condensed matter physics as there is no physical interpretation
– will provide several interesting policy implications, including that stock market crashes may depend on market
size. We will also expand the analysis of Kiyono et al. [24] by analyzing the critical behavior of the S&P 500 over
the past 30 years.
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Chapter 1

Introduction

There is an extensive literature of analogies between physical and economic systems. Among these is the analogy
between physical systems exhibiting critical phenomena and the stock market. This analogy has also been discussed
by popular academics: Niall Ferguson, the controversial economic historian, used the analogy to further an argument
against financial regulation [14]. Malcolm Gladwell’s bestselling book The Tipping Point [17] could easily be retitled
The Critical Point. Beyond stock markets, the theory has been extended to many other fields, including virus
dynamics, ecological shifts, and traffic jams [45]. With this burgeoning amount of literature, one must be careful
that the aesthetic appeal of the analogy does not substitute for a theoretically solid and empirically verified analysis
of its validity. Indeed, we need to see if market crashes can be thought of within any kind of universal framework,
since, if not, any empirical description seems hopeless. The purpose of this thesis is, then, to critique the analogy
between critical systems and stock markets. It is the contention of this thesis that the aforementioned analogy has
some validity, but important physics has thus far been neglected. Our means of performing the analysis will be
to examine the correlation properties of minute-by-minute stock market data. These results will be compared to
a generic condensed matter system, the Ising model, which is a simple and well-studied model of ferromagnetism
that exhibits a phase transition in certain dimensions. Our primary result is that stock market crashes provide a
unique opportunity to study the “spatial structure” of the stock market, which we find to lack an obvious measure
of distance. This leads us to propose a condensed matter system that has similar properties, a zero dimensional
Ising model, which similarly has no spatial structure. We will then show that the zero dimensional Ising model does
not, strictly speaking, exhibit a phase transition, although it does exhibit something similar to it.

There are eight chapters in this thesis, including the current introduction. The structure of each of these chapters
is as follows.

In chapter 2 we introduce the discipline of econophysics, paying attention to the connection between physical and
economic systems. This will include discussions of diffusive processes and price variation, hydrodynamic turbulence
and price variation, and the statistical properties of price variation.

In chapter 3 we continue the theoretical background discussion, but this time from a purely physics-based
perspective. We will begin this chapter with an introduction to the study of statistical mechanics, which is the
area of physics most connected to economics and finance. Monte Carlo methods in statistical mechanics will also
be discussed. We will then examine a few common examples of critical phenomena while introducing concepts like
universality, correlation length, order parameters, and so on. Following this, we will introduce the Ising model and
pose the “black box” Ising problem - where we attempt to determine the connectivity of an arbitrary Ising system
by observing only its state. A collection of Monte Carlo simulations will then be shown in one and two dimensions.

In chapter 4 we review some of the literature concerning models of market crashes as critical phenomena and
then proceed to outline a particular agent-based model of market behavior with spin-like interaction. Following
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this we will state our critique of such models.
In chapter 5 we discuss the methods used in this thesis, including the data, software, and computing tools.
This results of these methods are shown in chapter 6. This chapter will be divided into three sections. In section

one we will show the results of the autocorrelation of the returns and volatility for both intraday detrended and
non intraday detrended data. In the next section we reapply the analysis of Kiyono et al. [24] to the S&P 500 from
1983 to 2012. This is a substantial expansion of the scope of this analysis. Finally, in the last section we analyze
the correlation properties of stock returns. It is from this section that we conclude that the stock correlations do
not exhibit the same structural properties as exhibited by the spin correlations.

Next, in chapter 7, we introduce a zero dimensional Ising model. This will include a definition of the model,
an investigation of the partition function, and the results of several Monte Carlo simulations, including one with a
random coupling matrix.

In the final chapter we summarize the conclusions of this thesis and propose several suggestions for further work.
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Chapter 2

Econophysics

The connection between physics and economics is not new. For example, the mathematician Daniel Bernoulli
developed utility based preferences in the 18th century [4]. Although not a physicist, Vilfredo Pareto’s empirical
observation of a power law wealth distribution in early 20th century Italy follows physics-like analysis [31]. Also in
the 20th century, we have seen the emergence of a number of prominent economists with backgrounds in physics, such
as Irving Fisher [15] and Nobel Price winner Jan Tinbergen [46], as well as prominent physicists/mathematicians
with a strong interest in economics, such as Benoit Mandelbrot [31]. Since the mid-1990s, during which time H.E.
Stanley coined the term econophysics to describe the study of economics using physics-like analysis, there has been
a particular interest in physics from academics studying statistical mechanics [41], which is the branch of physics
concerned with applying the laws of statistics to predict the average, macroscopic behavior of a system with a large
number of components, given an understanding of the microscopic mechanics governing interactions between the
individual system components. Already, one can see an obvious connection to microeconomics, which looks at the
behavior of individual households and firms, and macroeconomics, which looks at the behavior of the economy as
a whole. Yet, it still seems odd that there is a connection to physics as a natural science. As economics is often
quantifiable, one can certainly see the potential advantages of adopting the rigorous, mathematical language used
in physics. Then, one might ask, why not simply bypass physics and connect directly to mathematics? For the most
part, this is the direction economics has headed, as economics has become substantially more mathematical since
the early 20th Century [11]. Nowadays, one can open a textbook on modern economics and see little immediate
distinction between it and a textbook in mathematical analysis. Nonetheless, a connection to physics remains,
particularly because the idea of falsifying economic models is grounded in science and not mathematics. On one
level, we can see this connection in terms of the people that study physics and economics. Both disciplines deal
with complex, unsolved problems concerning the nature of the world around us and attempt to develop widely
applicable models to explain and predict phenomena. Certainly, one could imagine how this would attract like-
minded, analytical academics. The interest of physicists in economics was undoubtable intensified with the explosion
of available, high frequency stock market data starting in the 1980s [41].

It is also important to remember that the mathematical development in modern economics is much more recent
than it is in physics, as finance did not become at all quantitative until the introduction of mean-variance analysis
by Markowitz in the 1950s [33]. From a practical perspective, it seems logical to attempt to apply to economics
some of the already developed tools from physics. Yet, it is an interesting exercise to consider whether or not there
is a more fundamental connection between physics and economics. Is it possible that we can use the knowledge of a
physical system to inform our understanding an economic analog, rather than considering it merely as a secondary
application of the same tools? For example, can we think of the variation in a stock price in the same way we think
of the motion of a grain of pollen in water? Or, can we think of people in the same way we think of particles?
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Of course, the obvious objection to this last application is the that unlike particles, we generally consider people
to have some form of free will. At this point, this discussion is already exceeding the philosophical scope of this
thesis. However, we will offer the following answer to this question: while it is possible that individual people are
far too unpredictable to be understood with the same intellectual framework, it is still a worthwhile study, since
without some universal properties governing human behavior, the discipline of economics seems hopeless. Moreover,
in aggregate, there are certainly commonalities and trends in human behavior. This search for universal properties
is really at the heart of physics as well, and it perhaps in is in this respect that the connection between physics
and economics is most clear. It is necessary, where an analogy between physical and economic systems is proposed,
to scrutinize it as carefully as possible from both sides. The purpose of the present thesis is to examine, from the
physics perspective, the stock market—phase transition analogue.

In this chapter we outline a few of the results and tools from econophysics. Although the results of this thesis
center on stock market crashes as critical phenomena, we will briefly discuss a few other results in econophysics in
an effort to stress the underlying physical analogy, if one exists. We will also try to point out when these analogies
fail. Of course, there are plenty of results we will not have time to introduce. For a more thorough review of
econophysics and the statistical properties of financial time series, see [44, 32, 8, 27].

2.1 Distribution of Price Variation

An important question in finance is the distribution of the log returns G (t), defined as

G (t) = lnZ (t+�t)� lnZ (t) , (2.1)

where Z (t) is a stock price at time t 1. Although answering this question is not a goal of this thesis, the connection
to diffusive processes, as we will see, is illustrative of the connection between physics and economics. This discussion
will also illustrate how the connection can fail.

The classical assumption in financial theory is that G (t) follows follows a Wiener process Wt, which is a
continuous time stochastic process satisfying the following three properties:

1. W0 = 0.

2. The function t 7! Wt is almost surely everywhere continuous.

3. For all times t and s, where 0  s < t, Wt �Ws is normally distributed with zero mean and variance t� s.

A Wiener process is a mathematical description of Brownian motion, which models the effectively random motion
of particles suspended in fluid as they are repeatedly bombarded by smaller atoms of molecules of the fluid. The
term derives from the botanist Robert Brown who, in 1827, observed such random behavior in the motion of grains
of pollen in water [40]. In 1905, Albert Einstein showed precisely that the grains of pollen were being moved by
water molecules, thus confirming the existence of atoms and molecules [10].

Remarkably, the proposition that stock market returns follow a Wiener process (although this term did not
yet exist) was made by Louis Bachelor in 1900 [2], five years prior to Einstein’s paper, although the theory did
not become popular until the 1950s [31]. This is a rare case in which the application to economics predated the
application to physics.

On the surface, the analogy between stock prices and grains of pollen in water seems to make sense. A stock
price is continually bombarded with news and other unpredictable information in such a way that its returns are, on
average, nearly zero. Unfortunately, with stocks we cannot use the physical space and known mechanics to derive a

1Note that we may consider G (t) as a finite, discrete time series {Gt}Nt=1. In the above notation, G : N ! R is a function.
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precise description of their motion, as Einstein did with grains of pollen. Thus, we should be exceedingly cautious in
using this description of stock price variation. But not only does a description according to Brownian motion lack a
sound theoretical background, it seems to be contrary to empirical evidence, as Mandelbrot first pointed out in 1963
[30], suggesting that we should reject this description. This, however, has not been the case in standard financial
theory. The popular Black-Scholes model and, in particular, the Nobel prize-winning Black-Scholes equation, which
gives a pricing formula for options, assumes stock prices follow Brownian motion2 [5].

2.2 Correlation

In section 3.2 on critical phenomena we will see how, in a system exhibiting a phase transition, correlations increase
as the system approaches the transition. In this section we will discuss the known statistical properties of stock
market correlation.

2.2.1 Intraday Patterns

It is well documented that intraday patterns exist in the volatility of the returns [47, 3]. In order to adjust for intraday
patterns we will follow the procedure of [27]. We start by letting tday index the 390 daily trading minutes of a trading
day. We then write Gk

(tday) as the log return on day k at local time tday (so that G (t) = G (390 (k � 1) + tday)).
Next, we define A (tday) as the average log return at time tday over each of the N days in the sample:

A (tday) ⌘
PN

k=1

��Gk
(tday)

��
N

. (2.2)

We then adjust G (t) for intraday patterns by dividing it by A (tday):

g (t) ⌘ Gk
(tday)

A (tday)
, (2.3)

where we are mapping t ! (k, tday) so that G (t) = Gk
(tday). In words, g (t) is the log return at time t divided by

the average absolute value of the log return at that time during the day over each day in the sample.

2.2.2 Autocorrelation

The autocorrelation function C (⌧) of the sequence y (t), where t = 1, ..., N , can be written as

C (⌧) =
hy (t) y (t+ ⌧)i � hy (t)i2

hy2 (t)i � hy (t)i2
. (2.4)

It is well established that the autocorrelation of the log returns decays rapidly to zero within a few trading
minutes and for ⌧ � 15 minutes it may be assumed to be zero for all practical purposes [9]. Eugene Fama has cited
this as support for the Efficient Market Hypothesis [12].

However, the same is not true of the autocorrelation of the absolute value of the log returns, which are a measure
of volatility. Figure 2.1 shows both the autocorrelation of g (t) and the autocorrelation of |g (t)| (at a resolution
of �t = 1 minute) for the S&P 500 during the years 1984-1996 [27]. Recall from section 2.2.1 above that g (t)

is the log return after intraday adjustment. On the left we see that the autocorrelation of the log returns decays
exponentially to near zero in about 20 trading minutes. Specifically, during this decay, C (⌧) ⇠ e�⌧/T with T ⇡ 4.0

minutes. However, on the right we see power law behavior in the autocorrelation function of |g (t)|: C (⌧) ⇠ ⌧��

2Actually, the model assumes stock prices follow geometric Brownian motion with constant drift and volatility, which is slightly more
general.
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with � = 3.0 ± 0.08.3 This power law behavior exists for more than three decades. Note that the horizontal line
indicates the white noise level.

Figure 2.1: Left: Autocorrelation of g (t). Right: Autocorrelation of |g (t)| (reproduced from [27]).

2.2.3 Long Range Autocorrelation

To investigate the long range autocorrelation we will briefly discuss rescaled range (R/S) analysis, which is a method
of estimating the Hurst exponent, a number that characterizes the long-term correlations of a time series. A similar
method that is slightly more appropriate for financial time series - as it may be applied to non-stationary processes
- is detrended fluctuation analysis (DFA) (for a nice discussion see [25]). We will stick with RS analysis as it is
has a nice physical motivation (although DFA was originally developed to investigate the long-range power-law
correlations of DNA sequences [38]).

2.2.3.1 Rescaled Range Analysis (R/S)

The following method was developed by Harold E. Hurst during his lifetime study of water storage problems related
to the Nile river. By observing annual water influx from a lake, his goal was to determine the ideal volume of a
reservoir such that a regulated amount of water - equal to the average influx - could be extracted each year without
depleting the reservoir [13]. Rather than taking our signal as the water influx, we will use the adjusted log returns,
g (t). The analogue of the extracted volume of water will then be the mean of g (t) over the first ⌧ observations.
Define hgi⌧ ⌘ 1

⌧

P⌧
t=1 g (t) as this mean. We then define X (t, ⌧) as the accumulated departure of the signal at time

t from hgi⌧ :

X (t, ⌧) =

tX

k=1

(g (k)� hgi⌧ ) . (2.5)

In Hurst’s original formulation, X (t, ⌧) represents the amount of water left in the reservoir at time t. As an ideal
reservoir is one that never overflows or empties, the quantity of interest to Hurst was the range R (⌧) of X (t, ⌧).
That is, the difference between the largest accumulated departure and the smallest accumulated departure over the
the first ⌧ observations:

3Note that we are abusing notation slightly by letting C (t) denote the autocorrelation of both g (t) and |g (t)|.
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R (⌧) = max

1t⌧
X (t, ⌧)� min

1t⌧
X (t, ⌧) . (2.6)

Notice this quantity depends on the dimensions of the signal. In order to apply this methodology to various
phenomena, the range is standardized by dividing it by the (biased) sample standard deviation of the signal over
the first ⌧ observations, S (⌧) =

q
1
⌧

P⌧
k=1 [g (k)� hgi⌧ ]

2. Since R (⌧) and S (⌧) are calculated over ⌧ observations
only, we partition the sample into periods of length ⌧ and define the rescaled range as the average ratio of R (⌧) to
S (⌧) over each of those periods. We denote this quantity by (R/S)⌧ .

We then ask, what is the asymptotic behavior of (R/S)⌧ with respect to ⌧? The quantity of interest is the
Hurst exponent, which comes from the scaling relation (R/S)⌧ ⇠ C⌧H , where C is a constant. For a statistically
independent process with finite variance, H should equal 1/2. The converse of this statement is not quite true. If
H > 1/2, the process is positively correlated at all lags, while if H < 1/2 the process is negatively correlated at all
lags [25].

2.3 Hydrodynamic Turbulence Models

Another physical analogy of economic phenomena is that of price changes as hydrodynamic cascade processes (see
[34, 16], for example). More precisely, the analogy is between, on one hand, the probability density function of price
changes and the time scale �t over which these price changes occur, and, on the other hand, the probability density
function of the velocity of a fluid at points in space and the physical separation between these points. Analogous to
the energy cascade in hydrodynamic turbulence is the information cascade from long-term to short-term investors.

A interesting paper by Kiyono et al. [24] casts doubt on this analogy by showing the existence of scale invariant
behavior in the S&P 500 index during the 1987 market crash. This behavior cannot be accounted for by a hydro-
dynamic cascade process. It does, however, provide evidence that the 1987 crash may be thought of as a phase
transition. In the paper, they assume that the inflation detrended returns �sZ (t) at scale parameter s follow a
random multiplicative form given by

�sZ (t) = ⇠s (t) e
!s(t), (2.7)

where ⇠s and !s are Gaussian distributed random variables with mean zero and variance �2
s and �2

s, respectively.
For a more precise description of the how these returns are detrended for inflation, see section 5.2.2.6. It can be
shown that the probability density function of these returns is given by Castaing’s equation

Ps (�sZ) =

ˆ
Fs

✓
�sZ

�

◆
1

�
Gs (ln�) d (ln�) , (2.8)

where Fs (⇠s) and Gs (!s) and both Gaussian distributions with mean zero and variance �2
s and �2

s, respectively. �2
s

is a measure of the non-Gaussian nature of the returns and will cause Castaing’s equation to converge to a Gaussian
as � ! 0. Castaing’s equation may be used to describe hydrodynamic turbulence [7] as well as heartbeat interval
fluctuations [23].

Figure 2.2 shows both the temporal and scale dependence of �2
s. For a given s, the detrended log returns �sZ

are partitioned into overlapping intervals of about two month’s worth of data and each interval is offset by about 5
days. The horizontal axis T gives the midpoint of the interval. The value T = 0 corresponds to the 1987 crash and
the region C corresponds to the set of intervals that include data from the 1987 crash. In the results section of this
thesis we will calculate this same figure for other crashes.

8



Figure 2.2: Plot of �2
s near the 1987 crash (reproduced from [24]).
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Chapter 3

Statistical Mechanics

The area of physics most connected to economics is statistical mechanics. In this chapter we will discuss the
perspective of statistical mechanics, the theory of Monte Carlo simulations in statistical mechanics, the theory of
critical phenomena, and the Ising model, including Monte Carlo simulations of the Ising model.

3.1 Basic Concepts

3.1.1 Microstates and Macrostates.

Consider a one liter box containing oxygen gas at standard temperature and pressure. This box will contain
about 3 ⇥ 10

23 oxygen molecules. Although the mechanics of this system are simple and well understood, the
sheer number of particles makes resolving the motion of each particle prohibitively difficult. Yet, despite this
computational barrier, many questions about this system are quite simple to answer. At high temperature and
low pressure, the ideal gas law effectively relates pressure, volume, temperature, and the number of particles in the
system. This law was originally stated nearly 200 years ago as a combination of Boyle’s law and Charles’ law, both
of which were derived from empirical observations. How is it possible that such an important result could be derived
with such simple methods when the number of interacting system components is so large? Bridging the gap between
a system consisting of a large number of components and the behavior of the system from a broader, macroscopic
perspective, is the task of statistical mechanics. Indeed, a description of the subject can be derived from the two
words in its title: mechanics and statistics. We begin with a knowledge of the mechanics of the interactions between
the system components and we use the laws of statistics to estimate how the system will behave on a larger scale.

We will call the exact configuration of the system components (particles, for example) and this large-scale
condition of the system the microscopic and macroscopic states, respectively. Notice the microstate contains all
of the information about the state of the system. If we were to change anything about the system (for example,
the position of a single particle) then we would change the microstate. A macrostate is a complete collection of
macroscopic variables, each of which is an average over microstates. Specifically, let Q be a quantity that takes the
value Qµ in microstate µ 2 M , where M is the collection of all possible microstates. We define the macroscopic
variable hQi at time t as the expectation of Q over each of the microstates. That is,

hQi =
X

µ2M

Qµwµ (t) (3.1)

where wµ (t) is the probability of being in state µ at time t. Later we will show how we can also think of this
as a time average, but for now we will stick with this definition. As is common in textbooks, we will often abuse
notation and write Q in reference to the macroscopic variable hQi. Note that although much of the macroscopic
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behavior of a system may be understood by classical equilibrium thermodynamics, which does not consider the mi-
croscopic interactions, there are many quantities which thermodynamics cannot describe (for example, fluctuations
in macroscopic variables). The results of thermodynamics may be derived from statistical mechanics.

Notice how we allowed the probability of being in a state to depend on time. We define a system to be in
equilibrium when this is no longer the case. That is, when wµ (t) = pµ for all microstates µ, where pµ is a constant.
In order to calculate a macroscopic variable in equilibrium, we will need to say something about these equilibrium
probabilities, pµ. To answer this question we must first introduce the concept of a statistical ensemble.

3.1.2 Statistical Ensembles

Central to this thesis will be the introduction of the Ising model, and the Monte Carlo simulations of its evolution.
In order to develop an algorithm to govern these simulations (the Metropolis algorithm, as we will see in section
3.1.4) we will need to understand the equilibrium probability distribution of states, pµ. To do this we will introduce
the concept of a statistical ensemble, which is a collection of mental copies of a system, each in a different microscopic
configuration, but satisfying the same prescribed set of macroscopic constraints. For a more complete description
we refer the reader to [20, 42].

We can think of an ensemble as a region in the phase space, which is the space of all possible states of the system.
Classically, each microscopic configuration corresponds to a point in the 6N dimension phase space of position and
momentum (three dimensions for each position vector and three dimensions for each momentum vector). In this
case, the distribution of these points, which we characterize by a density function, represents the ensemble.

In general, we derive statistical properties of the system by prescribing a probability measure to the phase space.
Such a prescription of the probability measure relies on the postulate that in thermal equilibrium, an isolated system
does not have a preference for any of its available microstates. That is, they are all equally probable. We call this
the fundamental postulate of statistical mechanics (or, the equal a priori probability postulate). In a classical
system, the probability measure follows from Liouville’s theorem, which implies that that the distribution of points
in the phase space evolves like an incompressible fluid. In other words, the density representing the ensemble is
constant in time.

We will now consider the micro canonical, canonical, and grand canonical ensembles, as these are the most
important ensembles in statistical mechanics. The microcanonical ensemble applies to any system with a fixed
number of components N (usually particles), a fixed volume V , and a fixed energy E. By fixed energy we mean
that E 2 [E � �, E + �], where � is a number and E ⌧ �. These are the macroscopic constraints. Each
member of the ensemble is then a copy of the system, with the same N , V , and E, but with a different microscopic
configuration.

Notice that fixed N , V , and E imply an isolated system. This means that the probability measure follows
directly from the fundamental postulate. Thus, for all microstates µ, we write the probability of observing the
system in this microstate as pµ = 1/⌦, where ⌦ = ⌦ (N,V,E) functions as a normalization constant. Formally,
⌦ equals the volume occupied by the ensemble in the phase space. If the phase space is discrete and the number
of microscopic configurations corresponding to the prescribed N , V , and E is finite, then ⌦ equals this number of
configurations (since we would take the volume integral with respect to the counting measure).

In the canonical ensemble we replace the assumption of fixed energy with the assumption of fixed temperature.
Specifically, each member of the ensemble is the system taken together with a reservoir. The system and the
reservoir are assumed to be in thermal contact and together they are assumed to be isolated from the surroundings.
We still require that the number of particles and the volume of the system are fixed; however, we allow the system
to exchange energy with the reservoir in such a way that the temperature remains fixed. This can be achieved by
assuming the heat capacity of the reservoir to be so large that any heat flow to or from the system has a negligible
effect on the temperature of the reservoir. In summary, the macroscopic constraints are fixed N , V , and T . Since
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the energy of the system is no longer fixed, the system is no longer isolated from the surroundings and so the
probabilities will no longer be constant. However, the composite of the system and the reservoir is isolated from
the surroundings. Thus, we may apply the fundamental postulate to this composite system. It is a fundamentally
important result in statistical mechanics that for a system in the canonical ensemble, the probability of being in a
state µ is proportional to the Boltzmann factor, e��Eµ , where � = 1/kT . To normalize the probabilities, we divide
each by the constant Z, called the partition function, where

Z =

X

µ

e��Eµ . (3.2)

The probabilities are then

pµ =

1

Z
e��Eµ . (3.3)

One can derive this result with the method of most probable distribution, or the method of steepest descents, for
example. A simple derivation writes the a ratio of probabilities as a ratio of the number of configurations of the
reservoir, ⌦(N,V,E), and connects these configurations to energies of the states using the thermodynamic identity.
The exponential term comes from the definition of entropy as S = k log⌦. As a full derivation can be readily found
in any statistical mechanics textbook, we will not say any more about the derivation here. Finally, notice that in
the canonical ensemble, equation 3.1 becomes

hQi = 1

Z

X

µ

Qµe
��Eµ . (3.4)

The Ising model (which we will introduce in section 3.3) falls under the umbrella of the canonical ensemble and
for this reason we will limit the remaining discussion of statistical ensembles. However, we will quickly note that
when we replace the assumption of fixed N with the assumption of fixed chemical potential, we are led to the grand
canonical ensemble. The construction is the same as the canonical ensemble, except that we allow each system to
exchange particles with the reservoir. Certainly, in an experimental setting this is an attractive idea, since it seems
unreasonable to expect knowledge of the exact number of particles in the system (of course, the same argument can
be made with respect to energy in favor of the canonical ensemble over the microcanonical ensemble). Analogous
to the volume of the phase space ⌦ in the microcanonical ensemble, and the partition function Z in the canonical
ensemble, is the grand partition function Z in the grand canonical ensemble. This grand partition function can
be written as a weighted sum of the canonical partition functions, each corresponding to a different number of
particles. We may think of the grand canonical ensemble as a distribution over canonical ensembles.

3.1.3 Partition Function

Recall the result from the previous section, that for a system described by the canonical ensemble, the probability
of observing the system in a particular microstate is proportional to the Boltzmann factor (equation 3.3). We called
the constant of proportionality Z the partition function. It is important to briefly discuss this function as we will
need it to derive the formula for the internal energy and magnetization of the Ising model.

The partition function encodes much of the information about how probabilities are partitioned amongst the
microstates. It is really at the heart of statistical mechanics because although its calculation depends entirely on
the microscopic configuration of the system, many macroscopic variables may be extracted from it through simple
algebraic manipulations. For example, using equation 3.1 and our definition of the equilibrium probabilities pµ we
have

12



U ⌘ hEi =
X

µ

Eµpµ =

1

Z

X

µ

Eµe
��Eµ

= � 1

Z

X

µ

@

@�
e��Eµ

= � 1

Z

@

@�

X

µ

e��Eµ
= � 1

Z

@Z

@�
. (3.5)

Therefore,

hEi = �@ logZ

@�
. (3.6)

In a similar manner, one may show that the Helmholtz free energy F , given by F ⌘ U � TS, where S is the
entropy, may be written as

F = � 1

�
logZ. (3.7)

One can likely see from the previous two equations how macroscopic variables may be expressed as derivatives
of the free energy (which we write without the h·i notation as this is the way it is usually written). Unfortunately,
the large number of microstates makes the computation of the partition function quite difficult, except in special
cases.

3.1.4 Introduction to Monte Carlo Methods and the Metropolis Algorithm

Recall our definition of a macroscopic variable as a weighted average of a particular quantity over the available
microstates of the system (equation 3.1), where the weights were shown to be determined by a normalized Boltzmann
factor. Unfortunately, we have seen that the sheer number of available microstates makes this average exceedingly
difficult to compute. Luckily, as we will now show, we can also think of a macroscopic variable as an average over
time. This is the key insight that allows the use Monte Carlo methods, which will later be used to simulate the
Ising model in a several dimensions. As we will use the correlation data from these simulations to provide insight
into the spatial structure of the stock market, the discussion of Monte Carlo methods is important to this thesis.
This discussion of Monte Carlo methods will follow [35] and this text is highly recommend to anyone interested in
a more detailed treatment.

Consider first the following question: is it possible to choose a finite sequence of states µ1, ..., µn such that the
arithmetic mean of the macroscopic variable Q over these states gives a good estimate of the actual expectation
value, defined by equation 3.1? Loosely speaking, to do this we would need some assurance that this finite sequence
of states is in some way representative of the full set of available states. On the surface, this might seem like a
difficult problem. For example, a good computer will be able to sample about 10

8 states in a few hours [35], while
the Ising model - one of the simplest models in statistical mechanics - on, say, a 10 ⇥ 10 ⇥ 10 lattice will have
2

10⇥10⇥10 ⇠ 10

301 possible states. However, we should be encouraged by the following fact: a system with a large
number of components spends the vast majority of its time in a very small number of states.

Consider for a moment a real system consisting of a box of particles that is in thermal contact with a reservoir.
Suppose that the system and the reservoir are allowed to exchange energy but not particles. In other words,
this system falls into the canonical ensemble. In equilibrium, the system and the reservoir will have the same
temperature. However, the energy will fluctuate in time. To estimate a macroscopic quantity (like the energy) we
may average the value of this quantity over time.

In a Monte Carlo simulation we do essentially this, except we map our system onto a computer. In both cases
we choose some initial state and watch the system evolve. The longer we wait, the more accurate our estimates
become. Of course, on a computer, we measure time in terms of iterations of our Monte Carlo algorithm (this idea
will be refined later). The main difference is that on a computer we must completely specify the system by a model,
which inevitably introduces some degree of simplification. Our task is then to specify the time evolution of this
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model in such a way that once the model system reaches equilibrium, states will appear with probability according
to the Boltzmann distribution.

To do this, most Monte Carlo simulations define a stochastic time evolution according to a Markov process,
which is a type of stochastic process in which the probability of transition between a state µ and a state ⌫ depends
only on the states µ and ⌫, and not on any of the previous states. We will denote this transition probability by
P (µ ! ⌫). For a Markov process to generate a sequence of states according the the Boltzmann distribution, two
conditions must be satisfied.

The first condition is that of detailed balance. Using our notation from earlier sections, we will let wµ (t) denote
the probability of being in state µ at time t. Therefore, wµ (t)P (µ ! ⌫) is the rate at which the system transitions
out of the state µ and into the state ⌫, while w⌫ (t)P (⌫ ! µ) is the at which the system transitions into the state
µ from the state ⌫. The state probabilities wµ (t) then evolve according to the master equation

wµ (t+ 1)� wµ (t) =
X

⌫

[w⌫ (t)P (⌫ ! µ)� wµ (t)P (µ ! ⌫)] (3.8)

Recall that we defined a system to be in equilibrium when wµ (t) no longer depends on time, for all states µ.
We wrote these equilibrium state probabilities as pµ. Thus, in equilibrium, the master equation becomes

X

⌫

pµP (µ ! ⌫) =
X

⌫

p⌫P (⌫ ! µ) . (3.9)

In order to rule out the possibility of limit cycles in our Markov process, we must further assume that these sums
agree term-wise. That is, for all µ,

pµP (µ ! ⌫) = p⌫P (⌫ ! µ) . (3.10)

This is the condition of detailed balance. Since we want pµ =

1
Z e�Eµ/kT , we can rewrite the condition of detailed

balance as

P (µ ! ⌫)

P (⌫ ! µ)
=

p⌫
pµ

= e��(E⌫�Eµ). (3.11)

The second condition is that each state must be accessible from each other state. This is the condition of
ergodicity. Note that it is not necessary for the each state to be accessible in a single transition. Indeed, most
Monte Carlo methods set the majority of transition probabilities to zero [35]. Rather, it must only be that there is
at least one path of non-zero probability between any pair of states. Assuming a valid probability distribution (that
is, one that sums to one) if the condition of ergodicity as well as equation 3.11 are satisfied, then the equilibrium
distribution will be Boltzmann distribution [35].

At this point we have still not specified a way to construct a Markov process satisfying the conditions above.
To change this, we first break the transition probability into a product of two other probabilities:

P (µ ! ⌫) = g (µ ! ⌫)A (µ ! ⌫) . (3.12)

The first term, g (µ ! ⌫), is called the selection probability and it gives the probability of selecting a target
state ⌫ while the system is in state µ. Once the target state has been selected, the system will actually transition
to it with probability A (µ ! ⌫), called the acceptance probability. If the system rejects the target state ⌫ it will
remain in the current state µ. An ideal algorithm is one in which the selection probabilities are equivalent to the
transition probabilities, making the acceptance ratio unity and a good algorithm is one that approximates this as
best as possible.

The most widely used algorithm to this problem is Metropolis algorithm. Recall that setting some of the
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transition probabilities to zero will not violate the condition of ergodicity, as long as there is at least one path of
non-zero probability between each pair of states. In the so-called single-spin-flip dynamics, we set the transition
probability to zero for all states except those differing by a single spin. The Metropolis algorithm then sets the
probability of selecting one of these states, g (µ ! ⌫), to be the same number for each pair µ and ⌫, where µ and
⌫ differ by a single spin. For a system of N spins, this assumption along with the normalization of the probability
distribution gives

g (µ ! ⌫) =
1

N
. (3.13)

Using equations 3.11 and 3.12 we have

A (µ ! ⌫)

A (⌫ ! µ)
= e��(E⌫�Eµ). (3.14)

Recall that a more efficient algorithm, the acceptance ratios are near unity. One way to exploit this fact is to
set the larger acceptance ratio to unity and adjust the other accordingly. We can do this since it is only the ratio
of acceptance probabilities that matters. The Metropolis algorithm does exactly this, giving

A (µ ! ⌫) =

8
<

:
e�(E⌫�Eµ) if E⌫ � Eµ > 0

1 otherwise
. (3.15)

This is equation is the distinguishing feature of the Metropolis algorithm. We will discuss our implementation of
the Metropolis algorithm in section 5.3.

3.2 Critical Phenomena

A system may exist in different states - called phases - that are distinguished by their qualitative features, e.g.
density, average molecular orientation, magnetization, etc. It is difficult to give a clear definition of a phase as
there is no canonical system to consider. The prototypical view of phases in physics is they are distinguished by
the symmetries of the system, including translational, rotational and inversion symmetries. A phase transition,
generically, is when such a symmetry is broken as some thermodynamic variable is adjusted through a critical
value. A central idea in condensed matter physics, known as universality, is that the critical properties of a system
depend only on the symmetries broken and not on the detailed nature of the interactions. This means that many
of the tools from critical phenomena may be adapted to non-physics systems. Indeed, systems with widely different
objects of interest and interactions, in disciplines ranging from biology to, as has already been stressed, sociology
and economics, have been analyzed under this approach.

In other sections we discuss in detail the validity of the extension of the theory of critical phenomena to non-
physics systems. This discussion is, of course, centrally important to this thesis. To this end, it is important to
discuss critical phenomena in a purely physics-based context, as this is the field in which the theory of critical
phenomena is most properly developed. This section is an attempt at such a discussion. We have chosen to
develop these concepts in context, beginning with a simple pressure-temperature phase diagram and ending with
an introduction to ferromagnetic systems. We will then settle on a more careful definition of a phase transition in
the next section. The discussions on phase diagrams and ferromagnetic systems will follow [43].

3.2.1 Phase Diagrams

Figure 3.1 shows a phase diagram, in pressure-temperature space, of a typical substance. Each point in the diagram
corresponds to a particular phase of the substance. The solid curves, called phase boundaries (or coexistence curves),
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represent the boundaries between the different states. If a system crosses a phase boundary, a phase transition will
occur. For concreteness, consider a system at (P1, T1). If the system were heated at constant pressure until it
reached (P1, T2), following path 1, the system would transition from a liquid to a gaseous phase. The important
fact is that this transition will occur abruptly. More precisely, a parameter that allows us to distinguish between
the phases, called an order parameter, will change discontinuously (in higher order transitions the order parameter
is changes continuously). In our example, the parameter of interest is the difference in the densities between any
two states. Now, recall that macroscopic variables may be expressed as derivatives of the free energy. We define
the order of a phase transition as the lowest order derivative of the free energy that behaves discontinuously at
the transition. This is called the Ehrenfest classification. Note that higher order phase transitions are often called
continuous phase transitions. The density may be expressed as a first order derivative of the free energy and for
this reason we classify the transition as a first order phase transition.

Now, in principle, a system may trace out any path in the diagram. Since the liquid-gas phase boundary
terminates at the so-called critical point, if the system follows path 2, the same initial and final states can be achieved
without crossing the liquid-gas phase boundary. This implies a continuous phase transition. The termination of the
liquid-gaseous phase boundary – indicated by a red dot in the phase diagram – is an example of a critical point. In
general, a critical point is the point in the phase space at which a continuous phase transition occurs. As a system
approaches a critical point from the high temperature side, the system begins to adjust itself on a microscopic level.
Correlations over long distances will begin to occur, signaling the emergence of the order parameter which becomes
nonzero upon reaching the critical point. These long-range correlations become the only relevant length scale of
the system and dominate over the microscopic physics of the system. Mathematically we say the correlation length
⇠ diverges, where ⇠ = ⇠0⌧

�⌫ and ⌧ = (T � Tc) /T is the reduced temperature. Rendering the microscopic physics
unimportant explains why the divergence in the correlation length is crucial to the understanding of universality,
which is the term used to describe the remarkable degree of similarity observed near critical points in systems
with different physics. Universality includes similarity in the so called critical exponents, one of which is given by
the parameter ⌫ in the expression for the correlation length. Other critical exponents are �, �, �, and ↵, which
correspond to the order parameter, the susceptibility, the critical isotherm, and the specific heat, respectively.

Near a phase transition we also tend to observe a change in the symmetry of the system, a phenomena known
as symmetry breaking. For example, in the liquid-solid and gas-solid transitions, the translational symmetry of
the high temperature phase is broken as the system transitions to the low temperature, solid phase. This is true
since in the liquid and gas phases, the average particle density is independent of position and therefore is invariant
under translation, while in solid the solid phase the average particle density is periodic and hence not invariant
under translation. Mathematically we can think of the transformations describing symmetries as forming a group.
We could then say that the liquid and gaseous phases are invariant under the translation group, while the solid is
phase is only invariant under a subgroup of the translation group. Notice there is no such symmetry breaking upon
crossing the liquid-gas phase boundary. Therefore, a first order phase transition may or may not exhibit a phase
transition. Continuous phase transitions, on the other hand, will always exhibit symmetry breaking.

Finally, we also tend to observe ergodicity breaking, where the assumption that the system will explore its entire
phase space given sufficient time (called the ergodic hypothesis) ceases to hold.

The mathematical origin of phase transitions are the branch cuts in the logarithm of the partition function. To
see this, recall that macroscopic variables may be expressed as derivatives of the free energy F , which is may be
expressed as F = �(1/�) lnZ. Branch cuts in lnZ cause nonanalyticities in F , which cause singular behavior in the
derivatives of F . Notice that for a finite system, the partition function is a sum of a finite number of exponential
terms and it is thus analytic. Therefore, phase transitions can only occur in systems of infinite system size. The
finite size of the system will smooth out any discontinuous changes in macroscopic variables. Finally, we note that
a critical point should be an intensive property of the system. That is, it should not not depend on the size of the
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system.

Figure 3.1: Phase diagram in pressure-temperature space of a typical substance.

3.2.2 Ferromagnetic Systems

Ferromagnetism is the phenomena wherein a system forms a permanent magnetic field. We commonly refer to
ferromagnetic materials as permanent magnets. Examples include iron, nickel, and cobalt. The exact origins of
ferromagnetism are not particularly important to our discussion so we will only give a brief discussion in the next
few sentences. Due to the effect of quantum mechanical spin, electrons behave as tiny magnetic dipole moments.
Although the dipoles will tend to align in opposite directions, an effect known as the exchange interaction will tend
the dipoles towards alignment in the same direction. Magnetism will be observed at a macroscopic level if the
system is such that a large number of dipoles align. If the dipoles are not, in general, aligned, and will only align
at this temperature in the prosiness of an external magnetic field, the system is in paramagnetic state.

Figure 3.2 shows an illustrative phase diagram of a ferromagnetic system. To understand this diagram, first
suppose that the system is in zero external magnetic field with a temperature T > Tc, so that the system is in a
paramagnetic state. As the system is cooled to T < Tc a second order phase transition occurs. During the transition
the magnetization jumps spontaneously – but continuously – to some non-zero number (either positive or negative),
causing the system to form a ferromagnet, and the magnetic susceptibility, which is a second order derivative of the
free energy, to diverge (this is path number 2 in the diagram). The magnetization functions as the order parameter.
At the transition we observe a break in the rotational symmetry of the system, as the spontaneous magnetization
defines a direction in space, and a break in the ergodic hypothesis, as the system will choose a state of nonzero
magnetization, but will not reach a state corresponding to a magnetization of opposite sign in any amount of time.
In the ferromagnetic state, a change in the sign of the external magnetic field will cause the magnetization to flip
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signs discontinuously, resulting in a first order phase tradition (path 1 in the diagram). Notice that the phase
boundary is symmetric about the T axis in the M �T plane. This is because the system is symmetric with respect
to a flipping of all spins.

Figure 3.2: Phase diagram in (M,h, T ) space of a typical ferromagnetic system.

3.3 Ising Model

A simplified model of ferromagnetic systems is given by the Ising model, which is likely the most widely studied
model in all of condensed matter physics. In it, we make three primary assumptions: that the dipoles are arranged
on a graph (usually a lattice), that each magnetic dipole can point either parallel or antiparallel along a single axis
of magnetization, and that interactions exist only between adjacent dipoles (that is, dipoles connected by a single
edge in the graph). We call the two spin orientations "spin up", often denoted by ", and "spin down", often denoted
by #. Glauber succinctly describes the motivation for simplified models like the Ising model:

“The property most desired in these models is mathematical transparency. The deeper insights offered
by the possibility of exact treatment are intended to compensate for any unrealistic simplifications in the
formulation [18].”

We would now like to formulate a more precise description of the model. Consider an arbitrary graph ⇤. To
each vertex i of ⇤ we associate a number �i 2 {�1,+1} called the spin, where �i = �1 indicates the spin down
orientation and �i = 1 indicates the spin up orientation of the dipole. We also define the scalar Jij as the interaction
strength between spins �i and �j and we let hi denote the strength of the external magnetic field acting on spin �i.
The Hamiltonian of the system is then given by the following equation:

H = �
X

(i,j)

Jij�i�j �
X

i

hi�i, (3.16)

where the notation (i, j) indicates that the sum is taken over all pairs of spins. However, since the matrix J is
symmetric, we will only count each pair once (i.e. will will count (i, j) but not (j, i)). Recall that only adjacent
spins are allowed to interact. Therefore, for any non-adjacent spins �i and �j , we require Jij = 0. This means that
the first sum is effectively taken over all pairs of adjacent spins. This notation is more generally than simply stating
that the sum is taken over all pairs of adjacent spins. However, it does allows us to encode topological information
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about the space of spin interaction in the matrix J and for this reason we choose this notation. From now on we
will assume that the graph ⇤ is a hypercubic lattice of arbitrary integer dimension.

As each �i represents a magnetic dipole moment, the mean magnetization M is the average spin value:

M =

1

N

NX

i=1

�i. (3.17)

The minus sign on the right-hand side of the Hamiltonian is conventional. It implies that if Jij > 0 8i, j, the
energy of the system will decrease if any pair of adjacent spins �i and �j have the same sign (that is, if they are
aligned). We call this type of interaction ferromagnetic. On the other hand, if Jij < 0 8i, j the spins will tend to
antialign and we call this type of interaction antiferromagnetic. Furthermore, notice that the presence of a positive
or negative external magnetic field tends to decrease or increase the energy of the system, respectively.

We can also derive the expression for the mean magnetization in a constant external magnetic field h in terms
of the partition function, as we did with the internal energy in section 3.1.3. To do this first notice that we can use
equation 3.17 to write the Hamiltonian as

H (�) = �
X

Jij�i�j � hNM, (3.18)

which gives M = � 1
N

@H
@h . Them, since the Hamiltonian gives the energy of the system, we can use equation3.4

(where the state is now denoted by �) to write

hMi = 1
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(3.19)
Therefore, using the definition of the partition function we have

hMi = � 1

N�

@ logZ

@h
. (3.20)

This is the mean magnetization. We will use this result in chapter 7 when we introduce a 0D Ising model.

3.3.1 Ising Model by Dimension

We will now demonstrate how the behavior of the Ising model depends very much on the dimension of the lattice.
This is a remarkable result, as it demonstrates how systems with equivalent physics but different physical spaces
can have dramatically different behavior. It is this fact that has been previously neglected in the proposed analogy
between stock market crashes and phase transitions, and the elucidation of this point is the central result of this
thesis. Specifically, it has been shown analytically that a 2D Ising model will exhibit a phase transition at a finite,
positive temperature, while a 1D model will not. Due to the prominence of this result to the present thesis, we
discuss separately the behavior of the Ising model in low dimensions. Attention will be paid to the adjacency matrix
of the lattice in anticipation of the correlation matrix of spins during a Monte Carlo simulation, shown in section
3.3.3.

3.3.1.1 1D

In the 1D Ising model, the N spins are arranged in a line. Each spin interacts with the spin to its left and the spin
to its right. Usually, periodic boundary conditions are imposed by allowing the 1st andNth spins to interact. This
model was first solved analytically by Ising himself in his 1924 thesis [21] when he found the following expression
for the free energy per spin (this form of the equation is reproduced from [19]):
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F

N
= �J � 1

�
ln

✓
cosh (�h) +

q
sinh

2
(�h) + e�4�J

◆
. (3.21)

Figure 3.3 shows a plot of this equation in as a function of T and h, where we let k = J = 1. Notice that for any
fixed h, the free energy is a smooth function of T , suggesting that there is no singular behavior in the derivatives
of the free energy and hence no phase transition.

Figure 3.3: Plot of the free energy as a function of the temperature T and external magnetic field h assuming
k = J = 1 according to Ising’s exact solution of the 1D Ising model.

From this expression for the free energy the magnetization follows immediately (see [19] for details):

M = � 1

V

@F

@h
=

N
V sinh (�h)

q
sinh

2
(�h) + e�4�J

(3.22)

Notice that in zero external magnetic field, the magnetization is zero for all T . This shows that there is no phase
transition in a 1D Ising model.

To illustrate the topology of spin interaction, we will introduce the adjacency matrix of a lattice. If we assume
that the interaction strength between interacting spins is always 1, then the adjacency matrix of the lattice is
equivalent to the interaction strength matrix J introduced in the definition of the Ising model. Therefore, Jij will
take the value 1 if spins �i and �j can interact and 0 if they cannot. Figure 3.4 shows the adjacency matrix of a 1D
lattice of size N = 25. Notice that the matrix is symmetric, as each of the interactions is mutual. The two nonzero
entries off the the diagonal indicate that any spin �i not on the boundary is related to spins �i�1 and �i+1. The
fact that J1,25 = J25,1 = 1 indicates the imposed periodic boundary condition. The diagonal itself is zero as the
spins do not interact with themselves. Finally, notice that we can easily compute the number of nearest neighbors
of spin �i by summing along either row or column i (the result will be the same as the matrix is symmetric).
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Figure 3.4: Adjacency Matrix of a 1D Lattice.

3.3.1.2 2D

The 2D Ising model in zero magnetic field was first solved by Onsager in 1944 [37]. In particular, he found the
following analytical expression for the spontaneous magnetization for T < Tc (this form of the equation is reproduced
from [19]):

M =

1

2

⇥
1� sinh

�4
(2�J)

⇤1/8
, (3.23)

where

Tc =
2J

k log
�
1 +

p
2

� (3.24)

is the critical temperature at which the system exhibits a phase transition. For T > Tc the magnetization is zero.
Note that in the limit T ! Tc, one can show that

M = 1.224

✓
Tc � T

Tc

◆1/8

(3.25)

Therefore, the critical exponent is 1/8.
To illustrate the topology of the 2D Ising model we once again analyze the adjacency matrix of the lattice. To

do this we must map each index pair (i, j) to a single index. We do this by counting down columns. That is, for a
2D square lattice of N spins, (i, j) 7! i + N1/2

(j � 1). Since this is a square lattice, N1/2 is the number of spins
along each row or column of the lattice.

We will also impose toroidal boundary conditions, as illustrated in Figure 3.5. The dashed lines show how spins
on the top and bottom rows interact, while the dotted lines show how spins on the left-most and right-most columns
interact. Note that to avoid too much clutter in the figure, the interactions between the spins at the corners of the
lattice are omitted. For example, the spins at the top-left and top-right corners should interact.
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Figure 3.5: Illustration of toroidal boundary conditions on a 2D lattice.

To see why we describe these boundary conditions as toroidal we note that the adjacency graph of a 2D lattice
with these boundary conditions (figure 3.6) has a toroidal structure.

Figure 3.6: Adjacency graph of a 2D lattice with toroidal boundary conditions for a system of N = 1000 spins.

Now that we have an understanding of the boundary conditions we can show that associated adjacency matrix.
Figure 3.7 depicts such a matrix for system of N = 25 spins. The four diagonal bands represent the four nearest
neighbors. Since we map the index pair (i, j) in the lattice to a single index in the correlation matrix by counting
down rows, the two interior bands represent the nearest neighbors that are above and below a given spin. The two
exterior bands represent the nearest neighbors separated to the left and right of a given spin, since they will be
mapped to single indices that are 5 less and 5 more than a given spin, respectively. In general, the exterior bands
will be separated from the diagonal by N1/2 matrix elements, where, once again, N1/2 is the number of spins along
each row or column of the square lattice.
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Figure 3.7: Adjacency matrix of a 2D lattice.

3.3.1.3 Higher Dimensions

The Ising model in all dimensions higher than 2 exhibits a phase transition, although the critical exponents differ.
There is no existing analytical solution to the 3D Ising model, which remains, famously, one of the great unsolved
theoretical problems in condensed matter physics. In dimensions greater than four, the Ising model can be effectively
described by a mean field theory, where the local field is defined as the average spin value over the local region.
Since these results are not of central importance to the present work, details are left to the established literature.

3.3.2 “Black Box” Ising Problem

Typically, in physics, the dimension of the system of interest is fully known beforehand. Where the methods of
physics are applied to other systems, as in econophysics, it need not be given and hence must be determined
empirically. It is of central importance to this thesis, as we will later ask this same question of a stock market,
which does not operate in an obvious physical space.

In order to illustrate an important difficulty that this presents, we propose the following gedanken experiment,
which will be henceforth referred to as the “black box” Ising problem: Consider a physical system described by an
Ising model of unknown dimension enclosed in a closed box and which cannot be accessed. The box is equipped
with a paper tape that periodically reports the state of the system. Hence, although we are able to observe the
state of the system at different times, we have no a priori knowledge of its connectivity. We therefore pose the
following inverse problem: is it possible to infer the connectivity of the Ising model, including its dimensionality,
simply from the contents of the tape?

Generally speaking, fluctuations in the system will prevent us from concluding much about the connectivity by
observing the tape at any given point in time. The best that can be done is to compare the contents of the tape at
different times, that is to say to examine the correlations present between states. The question may therefore be
reposed: can the connectivity of the system be deduced from the correlation matrices and autocorrelation functions
of the system? In order to answer this problem, we use Monte Carlo simulations to generate quantitative data as
we describe in more detail in the next section.

3.3.3 Monte Carlo Simulations of the Ising model

With an eye on the black box problem posed in the previous section, we will now show the results of various Ising
model Monte Carlo simulations in 1D, 2D, and 3D. Although these simulations were performed specifically for this
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thesis, the Ising model is such a well-studied system in these dimensions that we have kept this discussion separate
from the results chapter (chapter 6).

Among the reported results is the time-averaged correlation matrix C of the spins, where Cij is the time-
averaged correlation between spins �i and �j . We compute this matrix as follows. After allowing the system to
reach equilibrium, for each spin we record the sequence of spin values over M Monte Carlo sweeps, {�t

i}
M
t=1, where

i 2 {1, .., N} indexes the spin. We then partition each of the N sequences into overlapping subsequences
�
�tk
i

 S

k=1

of length L (corresponding to L Monte Carlo sweeps), where the starting point of each interval is offset by K sweeps.
This gives S ⌘ (M � L) /K + 1 subsequences. The time-averaged correlation between spins �i and �j is then the
average of the correlations over each subsequence. That is,

Cij =

PS
t=1 corr

�
�tk
i ,�tk

j

�

M/S
, k = 1, ..., S. (3.26)

We have found that taking this time average gives a better result than computing a single correlation over the M

Monte Carlo sweeps.

3.3.3.1 1D Simulations

Figure 3.8 shows the time-averaged correlation matrix for a Monte Carlo simulation of the 1D Ising model with
N = 100 spins at T = 1 and T = 1000. Notice the diagonal of each matrix is identically 1, as each spin is perfectly
correlated with itself. Off the diagonal, the correlations are so close to zero that they are barely visible in the plot,
reflecting that the system is in paramagnetic state. This is true for both T = 1 and T = 1000. Of course, this does
not prove the nonexistence of a phase transition, but as the analytical solution of the 1D Ising model shows that
indeed there is no phase transition, we need not run any further simulations. The correlation of a 1D Ising model
simulation will always look like figure 3.8.

Figure 3.8: 1D correlation matrices at T = 1 and T = 1000.

3.3.3.2 2D Simulations

We will begin by showing the results of simulations for a 10 ⇥ 10 lattice at a selection of temperatures. For each
simulation we will run for 1000 sweeps to reach equilibrium and and then run for an additional 10,000 sweeps to
calculate the mean magnetization M , the internal energy U , and the time-averaged correlation matrix C. The
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time-averaged correlation matrix will be calculated with a subsequence length of L = 1000 sweeps and an offset of
K = 1 sweeps, according to the notation defined above. As always, we assume J = k = 1.

Figure 3.9 shows M as a function of T . Recall that in an Ising system, M is the order parameter. The sudden
jump in M as the system cools is a 2nd order phase transition, as explained in the discussion on ferromagnetic
systems. Onsager’s solution of the 2D Ising model predicts that the critical temperature Tc at which this transition
phase transition occurs is Tc = 2/ log

�
1 +

p
2

�
⇡ 2.269 (assuming J = k = 1). Thus, our results are approximately

in accordance with theoretical prediction. Next, 3.10 shows U as a function of T . Notice that the transition is much
softer than the transition in the magnetization.
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Figure 3.9: Net magnetization as a function of temperature.
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Figure 3.10: Internal Energy as a function of temperature.

Figures 3.11 and 7.3 show the time averaged correlation matrices for a selection of temperatures (note that the
temperature spacing between each of the matrices is not uniform). We can see the clear onset of structure as the
system approaches the critical temperature, although this onset is more gradual above the critical temperature. A
review of the adjacency matrix of a 2D lattice makes the interpretation of the structure of the correlation matrix
clear: the diagonal bands of higher correlation correspond to each spin being more highly correlated with its nearest
neighbors. The vertical (or horizontal) distance between these bands should be 10 matrix elements, since, for any
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given spin in the interior of the 10 ⇥ 10 lattice, the spins to the left and right on the lattice are mapped to single
indices that are 10 less and 10 more than the single index of the given spin (this idea is explained in the discussion
of the adjacency matrix of a 2D lattice in section 3.3.1.2). Figure 3.13 shows the 2-Norm of the correlation matrix
as a function of T . We can see that it clearly spikes near the transition.
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Figure 3.11: Time averaged correlation matrices from 2D Ising model simulations (part 1).
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Figure 3.12: Time averaged correlation matrices from 2D Ising model simulations (part 2).
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Figure 3.13: 2-norm of the correlation matrix as a function of temperature.

3.3.3.3 Resolution of the Black Box Problem

Recall that our goal is to use the information from these matrices to solve the black box Ising problem outlined
above. It is immediately apparent from the above simulations that the inverse problem cannot in general be solved
because sufficient information about the connectivity is not always available; correlation matrices for both the 1D
and 2D systems are indistinguishable at high temperature. However, it seems that near the critical point we have an
excellent means of accomplishing this, since near this point the correlation matrix for the 2D model acquires a rich
diagonal structure. Since the 1D model does not possess a transition, it lacks this structure at any temperature.
We do not show explicitly that this is the case, but calculations for 3D show a qualitatively similar effect. A
problem that remains is that the elegant structure visible in figures 3.11 and 7.3 depends on the ordering of the
spins. Once can see this effect in figure 3.14, which shows the matrix corresponding the highest matrix norm from
the simulations but with randomly reordered elements. The diagonal structure is lost. It therefore necessary to
develop tools for analyzing the correlation matrices that are invariant with respect to a reordering of the matrix.
The tools we introduce are the histogram of the correlations and the staircase function of the correlation matrix.
We begin with the histogram (which we will also refer to as the distribution of correlations).
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Figure 3.14: Randomly reordered correlation matrix at T = 2.4.
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Figure 3.15: Histograms of the off-diagonal correlations at T = 2.4 and T = 100.

Figure 3.15 shows the histograms of the matrix elements for a temperature near the transition, T = 2.4, and
a temperature away from the transition, T=100. Since a correlation matrix will always have a diagonal that is
identically 1, we actually show the histogram of the off-diagonal elements in each plot. Now, around the transition,
the histograms of matrix elements (represented by figure 3.15, left) show multiple peaks and high correlations.
The peak centered on 0.7 reflects the strong correlations between adjacent and nearby spins. This structure
vanishes above the transition as shown by the typical histogram displayed in figure 3.15 (right), which instead is
centrosymmetric and has only one peak. Figure 3.16 shows the histograms for a collection of temperatures (although
for a maximum of T = 10). Again, near the transition, we see the multiple peaks of the histograms. These peaks
fade as the temperature increases, although the outermost peak is still visible at T = 10. We also see that the
mean of the histogram shifts outward near the transition, reflecting that correlation’s are higher everywhere in the
system. For a more detailed discussion of how the histograms were calculated, see section 5.2.2.5.
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Figure 3.16: Histograms of the off-diagonal correlations for a variety of temperatures.

For an n⇥n matrix C we will define the staircase function S (x) as the average of the average number of elements
per row that exceed the value x. That is,

S (x) =
1

n2

nX

j=1

nX

i=1

�(x,1) (Cij) (3.27)

where � is the characteristic function of the interval (x,1). The division by n2 gives us that S (x) 2 [1, 1], since
at least zero and at most n2 elements can exceed a given value x. One could, of course, generalize this to a m⇥ n

matrix, but since we are only interested in the square correlation matrix we will write the staircase function in this
form. Figure 3.17 shows the staircase plots of the same two correlation matrices discussed above. The interpretation
of the plot is that for small x values (about 0.4 for T = 2.4 and about 0 for T = 100), nearly all of the correlations
exceed this value, whereas for larger x, nearly all of the correlations do not exceed this value. Since the entries of
a correlation matrix are bounded by [�1, 1], S (x) = 0 8x > 1 and S (x) = 1 8x < �1.

We can see that the staircase plot of the high temperature correlation matrix has a much steeper transition than
the lower temperature matrix. This tells us that the variance of the correlations is smaller in the high temperature
case. Also, the point of the transition is lower in the high temperature case implying that the correlations are in
general lower. Finally, notice the slight bump in the lower temperature case just above the transition. Again, this
is a result of correlations between nearest neighbors. This behavior is more clear in figure 3.18, which shows the
staircase plots for a selection of temperatures in the range [1.5, 10]. One can see that the staircase function spikes
in the neighborhood of the critical temperature.
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Figure 3.17: Staircase plots near the transition (T = 2.4) and at high temperature (T = 100).
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Figure 3.18: Staircase plots for a selection of temperatures.

3.3.3.4 2D with Random Coupling Matrix

It is hardly to be expected that any kind of stock market would be described by a Hamiltonian with constant
coefficients. Additional simulations were therefore performed for the 2D Ising model where nonzero elements of Jij
were replaced with random numbers on the interval [0, 1]. The following figures illustrate results corresponding to
those in the previous section; showing that the diagonal structure is still visible, but modulated by the presence of
disorder. The primary effect seems to be softened correlations and a lower critical temperature. The latter effect is
apparent from figures 3.19 or 3.20, which show a transition temperature of just above 1. To see the former effect,
notice from figure 3.20 that the maximum matrix norm is just under 30 (it was over 40 in the previous simulation
with constant couplings). Figure 3.21 shows that the diagonal structure is preserved near the critical point, although
it is weakened. Finally we see similar but softened behavior in the histograms and staircase functions.
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Figure 3.19: Internal energy and magnetization.
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Figure 3.20: 2 norm of the correlation matrix.
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Figure 3.21: A sample of correlation matrices near the transition.
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Figure 3.22: Histogram of the off-diagonal correlations for a variety of temperatures.
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Figure 3.23: Staircase plots for a variety of temperatures.
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3.3.4 Summary: Importance of Dimension

We restate the result of this chapter seen that at temperatures far away from the critical temperature, we cannot
distinguish between the different dimensional Ising models. The black box Ising problem is therefore not in general
solvable. However, near the critical point, the onset of structure to the correlations provides information that can
be used to distinguish between dimensions, or at least to identify spins that are “nearby” to one another in some
measure of distance. It is clear that a rigorous analysis of this new problem is a worthy topic of further study, and
in particular quantitative methods for distinguishing detailed features of the hidden system are not developed here
and remain a topic of future work. Rather, the distribution functions and the staircase functions of the correlations
matrices, which are independent of the ordering of the matrix, will prove adequate tools for the present analysis of
stock market crashes.
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Chapter 4

The Analogue between Stock Market

Crashes and Phase Transitions

There are an extensive number models of stock market crashes as phase transitions. For example, Levy [26]
constructs a simple two asset model where an investor’s participation in the market depends his or her degree of
conformity, among other factors. The paper argues that in situations of high investor conformity relative to investor
heterogeneity, the market is susceptible to a crash. As ought to be obvious from the preceding chapters, a two asset
model is incapable of capturing the differences that are caused by the physical space of the system. Yalamova [48]
even maps the phase diagram of a substance in pressure-temperature space to the phase diagram of an investor in
risk/fundamentals-noise/information space, where the gas, liquid, and solid phases correspond to the buy, sell, and
wait decisions of the investor, respectively. A number of these models are based on the Ising model. The central
point of this thesis is that these models, and models of market crashes as critical phenomena in general, ignore a
detailed discussion of the dimension. As we have seen in the previous discussion of the Ising model, the dimension
can dramatically change the behavior of the system.

We will now focus on agent-based models of market behavior with spin-like interaction. Although there are
differences among the models, there are a few common concepts. To begin with, we consider a graph (which is
usually taken to be lattice, as in the Ising model) of size N . Instead of associating a spin with each vertex of the
graph, we associate a buy or sell order �i. Generally, �i (t) = 1 implies that agent i places a buy order at time
t, while �i (t) = �1 implies a sell order. Notice that this construction limits the model to the consideration of a
single asset. The time evolution of this system is specified according to a particular stochastic formulation of the
Ising model. Finally, each model relates the magnetization to the asset price. Table 4.1 presents an summary of
the analogy.

These models are difficult to verify as we cannot directly observe the buy and sell orders of individual investors.
In reference to section 3.3.2 we essentially have a black box Ising problem without the tape. However, the collection
of all buy and sell orders of a stock determines its price and, according to the famous efficient market hypothesis,
the price is all that matters since it contains all of the available information concerning the stock. We therefore
consider a second analogy, laid out in table 4.2, in which the spins correspond to individual stocks rather than
investors. One can think of this as a “course-grained” version of the first. For this reason, we believe that in order
for the first analogy to hold, the second analogy must hold as well. As high frequency stock market data is readily
available it is possible to investigate the validity of the second analogy through empirical observation, something
we attempt in the results section.

To provide further illustration (of the first analogy, as this appears to be what is discussed in the literature),
we will next discuss a particular model, the Bornholdt model [6], in more detail. For examples of other models, see
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[22, 49, 44].

Ising model Financial model
Variable at each vertex: Spin Investor decision

Possible values of the variable: " (+1) or # (�1) buy (+1) or sell (�1)

Order parameter: Mean magnetization M Asset price
Phase transition: Sudden change in M (T ) Stock market crash

Table 4.1: One possible analogy between the Ising model and financial market models based on it.

Ising model Financial model
Variable at each vertex: Spin An asset

Possible values of the variable: " (+1) or # (�1) Asset price
Order parameter: Mean magnetization M Market Index/Sum of asset prices
Phase transition: Sudden change in M (T ) Stock market crash

Table 4.2: A second possible analogy between the Ising model and financial market models based on it.

4.0.5 Bornholdt Model

Here we will outline the Bornholdt model, a model of agent behavior with spin-like interaction. Note that although
�i (t) refers to demand of an agent, to simplify the discussion we will often refer this number as the spin. The
time evolution of the model follows the heat-bath Monte Carlo algorithm, which is an alternative to the Metropolis
algorithm. In it, the probability p of spin �i taking the value +1 at time t+ 1 is given by

p =

1

1 + e�2�hi(t)
, (4.1)

where hi (t) is the local field. This mean,

�i (t+ 1) =

8
<

:
+1 p

�1 1� p
. (4.2)

The local field is given by

hi (t) =
X

j

Jij�j � ↵Ci (t)
1

N

NX

i=1

�i (t) , (4.3)

where, as in our notation on the Ising model, the matrix J encodes the topology of spin interaction, so Jij = 0 if
spins �i and �j do not interact. This equation shows the two important interactions in this system. The first term
represents the interaction between each agent and his or her neighbors. Since p depends positively on the local field,
the term implies that each agent is inclined to follow the investment decisions of his or her neighbors. However, this
is potentially frustrated by the second term, which represents the interaction between each agent and the market
as a whole. The factor 1

N

PN
i=1 �i (t) represents the excess demand of the market, per agent. In the Ising system, it

is the net magnetization. As the parameter ↵ is assumed to be positive, the value of Ci (t) determines the direction
of the interaction. As the strength of the interaction may be adjusted by choice of ↵, there are only two cases to
consider. If Ci (t) = 1, agent i is inclined to follow the minority (in the language of an Ising system, there is an
anti-ferromagnetic coupling between spin �i and the net magnetization). On the other hand, if Ci (t) = �1, agent
i is inclined to follow the majority.

This is the basic construction of the model. The model is then simulated on a 32 ⇥ 32 lattice and the results
reproduce some of the observations from real economic data, including power-law distributed returns and clustered
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volatility.

4.1 Critique of Phase Transition Models

Our critique of the above models centers around the previous neglect of the physical space component in constructing
the analogy, which is important because in physical systems this space actually determines the qualitative behavior.
It is not a priori obvious what the physical space that either assets (or investors, depending on how the analogy
is constructed) occupy in a financial market. We stress that what is really meant by “physical space” in this
context actually encodes a measure of distance. While it is certain that both stocks and investors exist in the
4(+) dimensional space we all occupy, it is really the idea of locality between objects that is not well defined. For
example, two investors in different states can just as easily buy and sell shares on the time scale of seconds, so
it is clear that the geographic measure of distance need not be the relevant one. As we have seen, the behavior
of the Ising model—including the very existence of a phase transition—depends on the dimension of the lattice.
Stock market data provides a way to investigate the validity of the above models. If the stock market can indeed
by thought of as an Ising-like system, with a market crash corresponding to a phase transitions, we should observe
some of the same properties of the correlations as observed in Monte Carlo simulations of the Ising model. This is
the application of the black box Ising problem introduced in section 3.3.2.
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Chapter 5

Methods

5.1 Software and computing

Almost all of the programs used in this thesis were written in Mathematica 8. For a list of important programs,
see table 5.1. Although some of the small calculations were performed on a personal computer, most calculations
were performed on the Tufts Research Computing Cluster, provided by Tufts Technology Services.1

5.2 Financial Data Methods

5.2.1 Data

Our data is the HIstorical Market Data package, purchased from the Pi Trading Corporation2. It contains minute-
by-minute observations of over 300 time series, including 18 indices, all 30 components of the Dow Jones Industrial
Average, and 201 other actively traded stocks. Each observation includes the open, close, high, and low price as
well as the trading volume during that minute. By an observation we mean a single line of the data file in its raw
format. The start date of each series varies, although no individual stock data is available before 1991. The S&P500
index is available starting in 1983. Each series continues until 06/15/2012. Below we show the first few lines and
the last few lines of a typical data file, this one corresponding to IBM.

"Date","Time","Open","High","Low","Close","Volume"
01/02/1991,0931,28.22,28.22,28.22,28.22,122000
01/02/1991,0933,28.25,28.25,28.25,28.25,94000
01/02/1991,0934,28.25,28.25,28.25,28.25,26000
01/02/1991,0936,28.22,28.22,28.22,28.22,8400
01/02/1991,0937,28.19,28.19,28.19,28.19,93200
.
.
.
06/15/2012,1558,199.13,199.19,199.10,199.18,43625
06/15/2012,1559,199.19,199.25,199.16,199.18,59425
06/15/2012,1600,199.19,199.27,199.06,199.11,155332

1For more information on the cluster, see http://wikis.uit.tufts.edu/confluence/display/TuftsUITResearchComputing/Home.
2http://pitrading.com/historical_data.htm
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The time variable is given in a standard 12-hour clock notation (so, for example, 0931 corresponds to 9:31 a.m.).
Notice that, for this particular stock, the time skips from 0931 to 0933 and again from 0934 to 0936. We will explain
this in the next section.

5.2.1.1 Omitted observations

In its raw format, an observation of any particular time series is omitted if it is identical to the observation from
the previous minute (that is, if each price variable price and the volume do not change). Obviously, if left in this
form, cross sectional comparisons would be difficult. To correct for this, we replace each omitted observation with
the most recently available observation prior to the omitted observation. In the example of the IBM file above, the
omitted observation at 9:32 would be replaced with the observation at 9:31, while the omitted observation at 9:35
would be replaced with the observation at 9:34. Note that it is often the case that consecutive observations are
omitted. In this case we use the same procedure, meaning we replace the entire sequence of omitted observations
with the most recently available observation prior to the omitted observation. To reduce run time we performed
this procedure with a simple program written in C++. Below we show a sample of the output for the IBM data
given above. Since we only use the open price in this thesis, we do not record the other variables.

“Date”,”Time”,”Open”
01/02/1991,0931,28.22
01/02/1991,0932,28.22
01/02/1991,0933,28.25
01/02/1991,0934,28.25
01/02/1991,0935,28.25
01/02/1991,0936,28.22
01/02/1991,0937,28.19
.
.
.
06/15/2012,1558,199.13
06/15/2012,1559,199.19
06/15/2012,1600,199.19

5.2.1.2 Unusable data

The following stocks were excluded, as their price often went below zero (making it impossible to calculate at the
log returns): McDermott International (MDR), Motorola Solutions Inc. (MSI), Time Warner Inc. (TWX), Verisign
Inc. (VRSN), and Wynn Resorts Limited (WYNN).

5.2.1.3 Storage

As indicated above, the raw data and the data after filling-in omitted observations for each stock was stored in a
comma separated text file. All other data was stored in Mathematica form using the Put and Get functions.

5.2.2 Analytical Tools

5.2.2.1 Log Returns

After filling-in the omitted observations, we denote the opening price of a particular stock at time t by Z (t). The
log returns G (t) are defined by G (t) = lnZ (t+�t)� lnZ (t).
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5.2.2.2 Intraday Detrending

Unless otherwise noted, we will always examine data that has been detrended for intraday patterns, as explained
in section 2.2.1.

5.2.2.3 Correlations

The standard Mathematica function Correlation [x, y] computes the standard sample Pearson correlation coefficient
between two vectors x and y in the following form:

Correlation [x, y] =
Covariance [x, y]

StandardDeviation [x]StandardDeviation [y]
(5.1)

where Covariance [x, y] is the Mathematica function that gives the unbiased estimate of the correlation between
x and y and StandardDeviation [x], for example, is the Mathematica function that gives the unbiased estimate of
the standard deviation of x. To be clear, they are mathematically equivalent to

Covariance [x, y] =
1

N � 1

NX

i=1

(xi � x̄) (yi � ȳ) (5.2)

and

StandardDeviation [x] =

vuut 1

N � 1

NX

i=1

(xi � x̄)
2
. (5.3)

The division by N � 1, rather than N , is a degrees of freedom adjustment required for unbiasedness. The
mathematical equivalent of equation 5.1 is therefore

Correlation [x, y] =

PN
i=1 (xi � x̄) (yi � ȳ)qPN

i=1 (xi � x̄)
2PN

i=1 (yi � ȳ)
2
. (5.4)

Unfortunately, it is sometimes the case that a stock price (and hence the log returns) will not change during
a window over which we want to calculate the sample correlations. This can happen either if all of the price and
volume data did not change (and so these observations were omitted in the raw format but added as constant values
by the Repair Price program) or if only the open price did not change. This will cause the estimated covariance
between this stock and any other stock to be zero. The trouble is that estimated standard deviation of this stock
will also be zero, which will cause the Mathematica function given by equation 5.1 to return an error flag. As the
these Mathematica functions are substantially faster than an equivalent but manually written function we would
like to find a way to use these functions. Therefore, we define the function Correlation⇤ by

Correlation⇤
[x, y] =

8
<

:
0 StandardDeviation [x] = 0 or StandardDeviation [y] = 0

Correlation [x, y] otherwise
(5.5)

Since we are generally interested in calculating the correlations between more than two stocks, it is more useful
to compute the correlation matrix C, where Cij = Correlation⇤ ⇥xi, xj

⇤
.

Now, if given a matrix M , the same mathematica functions evaluated on this matrix, Covariance [M ] and
Correlation [M ], will return the covariance matrix corresponding to the columns of M . Therefore, in practice, we
calculate C by Correlation⇤

[M ] = Correlation [M ] if StandardDeviation
⇥
xi
⇤
= 0 8i. If this condition does not

hold we construct C manually by Cij = Correlation⇤ ⇥xi, xj
⇤
.
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5.2.2.4 Matrix Norms

Throughout our analysis of correlation matrices we will often report the 2 norm of the matrix. We briefly note
here that the 2 norm is equivalent to the spectral norm, which, for a symmetric matrix, gives the largest eigenvalue.
Recall that a norm k·k on Rn induces a norm on the space of n⇥ n matrices in the following manner

kAk = sup {kAxk : kxk = 1} . (5.6)

The p norm is defined as

kxkp ⌘
 

nX

i=1

|xi|p
!1/p

. (5.7)

One can show that the 2 norm is equivalent to the spectral norm, given by

kAk2 =

p
�max (A⇤A) = �max (A) , (5.8)

where �max (A) is called the singular value of A. If A is a symmetric matrix, a singular value and a non-negative
eigenvalue are equivalent. Thus we have

kAk2 = �max (A) . (5.9)

5.2.2.5 Histograms

The histograms of the correlations (alternatively called the distribution of the correlations) were calculated, in part,
with the Mathematica function HistogramList, which divides the elements of a list into bins. Although we always
adjust the height of the bins so that the area under the distribution is 1, in general we adjust the width of the bins
to optimize the look of the particular plot. For example, if the bin width is too small there will only be a single but
large bin at the mean correlation. For the 3 dimensional histogram plots we used the results from HistogramList to
construct a piecewise linear plot connecting the midpoints of the tops of the bins. We always show the histogram
of correlations off the diagonal of the correlation matrix.

5.2.2.6 Fitting Castaing’s equation

Following [24] we would like to fit the detrended the log returns to Castaing’s equation (equation 2.8). To do this,
we partition the data into intervals of length 2s. On each of these intervals we fit lnZ (t) with a linear function and
let x (t) denote the deviation of lnZ (t) from the fitted function. Then, we define the detrended log returns at scale
parameter s as

�sZ (t) = x (t+ s)� x (t) . (5.10)

Next we detrend for intraday patterns in the usual fashion (see section 5.2.2.2). We then fit Castaing’s equation
to the observed PDF of the these doubly detrended returns using the Mathematica function FindFit to find optimal
values of �2

s and �2
s . We find that optimizing with respect to the 1 norm gives qualitatively better results than

optimizing with respect to the 2 norm as the latter will give a poor fit if there is a large number of zero returns
in the sample (see section 5.2.1.1 for a discussion of why this might happen). All optimizations were run with an
accuracy goal of 5 digits.
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5.2.3 List of programs

Name Language Description
Repair Price C++ Fills in omitted observations (see section

5.2.1.1)
Log Returns Mathematica 8 Computes the log returns

G (t) = lnZ (t+�t)� lnZ (t) (see section
5.2.2.1).

Detrend Intraday Mathematica 8 Performs intraday detrending procedure on
the log returns (see section 5.2.2.2)

Detrend Inflation Mathematica 8 Detrends for inflation, as described in 5.2.2.6.
Correlation* Mathematica 8 Computes sample correlation (or correlation

matrix) as outline in section 5.2.2.3.
Calculate Correlations Mathematica 8 Computes a sequence correlation matrices

(using the function Correlation* ) between a
collection of stock returns. The length and
the overlap of the window over which the
correlation matrix is calculated may be

specified.

Table 5.1: List of programs.

5.3 Condensed Matter Methods

The Monte Carlo simulations of the 0D, 1D, and 2D Ising models were straightforward applications of the Metropolis
algorithm (the results of the 0D simulations will be shown in chapter 7). Each program was written in Mathematica
and run on the aforementioned cluster. Since we have already derived the Metropolis algorithm (section 3.1.4) and
described our procedure for calculating the time averaged correlation matrix (section 3.3.3) we need not say much
more concerning the implementation and so we will only make a few brief remarks.

In the forthcoming discussion of the 0D Ising model we will mention that equation 7.4, which gives a simplified
expression for the Hamiltonian in terms of the number of negative spins, can be used to reduce the computation
time required in a Monte Carlo simulation. To see this, note that in any dimension the change in energy �Ei

obtained by flipping single spin �i is

�Ei = �2

X

j2Ni

Jij�i�j , (5.11)

where the sum is over the set Ni of all nearest neighbors of spin �i. The cardinality of this set is given by the
coordination number of the lattice. For example, a 2D lattice has coordination number of 4. Since each spin is
adjacent to each other spin in a 0D model, the coordination number is N � 1. To compute �Ei in 0D we will thus
need to perform N � 1 operations, rather than just 4 in a 2D simulation. To speed up the computation we can use
equation 7.4 to give

�Ei =

8
<

:
H (n+ 1)�H (n) if �i = +1

H (n� 1)�H (n) if �i = �1

. (5.12)

Of course, this formula may only be used when the nonzero elements of Jij are constant for all i and j.

43



Chapter 6

Results

6.1 Autocorrelation

We are interested in understanding the effect of the intraday detrending procedure on the autocorrelation. To
this end, we will analyze the S&P 500 index for entire window we have available, 2/01/1983 to 6/15/2012. For a
complete discussion of the intraday detrending procedure and a general discussion of the autocorrelation properties
of financial time series, please see section 2.2.1.

We begin by showing a plot of A (tday), the average of the volatility at local time tday over each day in the
sample. This U-shaped pattern is typical of A (tday) as it indicates the know pattern: that trading is more volatile
at the beginning and end of the trading day. Figure 6.2 shows the autocorrelation function C (⌧) of the detrended
and non-detrended volatility. Once again, the daily pattern in the non-detrended data is quite clear. Furthermore,
it seems to be the case that the detrending procedure effectively removes this pattern. Notice that this detrending
procedure has almost no effect on the returns (figure 6.3). Note that ⌧ is of course measured in minutes. In this
thesis we will only analyze stock market data that has been adjusted for intraday patterns.

Figure 6.1: A (tday).
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Figure 6.2: Autocorrelation of detrended and non-detrended volatility.

Figure 6.3: Autocorrelation of the detrended and non-detrended returns (with different axes).

6.2 Scale Invariance

We would like to expand the analysis of Kiyono et al [24] from the 1987 crash to the 30 year history of available,
intraday S&P 500 returns. To do this we partition the intraday and inflation detrended returns for a collection of
scale parameters s (see sections 5.2.2.2 and 5.2.2.6) into overlapping intervals of length 50 days and increment 5
days. We then fit Castaing’s equation to the observed PDF of these returns, as described in section 5.2.2.6. Recall
that �2

s is a measure of the non-Gaussian behavior in the returns. The vertical “bars” in figure 6.4 of high �2
s –

– indicate scale invariance at a particular point in time. Near the 1987 crash, the results are qualitatively similar
to Kiyono, as can be seen in figure 2.2. However, our expansion of this analysis shows that this scale invariant
in behavior in �2

s did not occur in other market crashes to nearly the same degree, suggesting that this analysis
does not provide a universal framework for analyzing market crashes. We also notice large values of �2

s in the years
following the 1987 crash. Although the U.S. experienced a mild recession in the early 1990s, by any metric it was
nothing in comparison to the recession following the 2008 financial crisis. In the figure, the U.S. invasion of Kuwait
in summer of 1990 is noted for context.
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Figure 6.4: Fit of the parameter �2
s in Castaing’s equation to the probability density functions of the detrended log

returns.

6.3 Stock Correlations

We are now ready look at the correlations between stocks. Unfortunately, the variance in the start dates of the
stock price time series prevents us from consider the complete set of stocks, unless we only look at data after the
last start date, or we allow the number of stocks in our calculations to change over time. As the last start date
is not until 2011, we avoid the first option. We also avoid the second option as it would complicated comparisons
between correlation matrices at different time periods. Instead, we we choose the start date 04/1/1993 for the
calculation of daily correlations, as this date is early enough to not eliminate too much data, late enough to allow
us to include the majority of stocks, and as it coincides with the start date of the Dow Jones Industrial Average (in
our dataset, that is). Note that we do not have individual stock data before 1991 and so we are therefore unable to
study the 1987 crash. This is especially disappointing as the size and compactness of the 1987 crash makes it ripe
for analysis as a phase transition. Many of the other financial crises correspond to a sequence of stock market drops
that took place over a matter of weeks or months. Recall that our goal is to look for evidence of spatial structure
in the correlations between stocks. Rather than showing a legend next to each plot of a correlation matrix, we will
state here that all of the following correlation matrices are plotted on the following color scale:

Figure 6.5: Color map used in each of the correlation matrix plots.
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6.3.1 Intraday

We begin by providing 6.6, which shows the intraday price changes as for each day in the sample. To compute this,
over each day we recorded the maximum and minimum price of the S&P 500 and plotted a vertical line between
these two points. Notice how much the index has grown since the early 1990s.
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Figure 6.6: Intraday price changes in the S&P 500 over the sample, (1993-2012).

Table 6.1 shows the 2 norm of the correlation matrix, the variance of the eigenvalues of the correlation matrix,
the price change of the S&P 500, and the volatility (defined here as the standard deviation of the S&P 500) on
the 20 days corresponding to the 20 highest norms of the correlation matrix. We define the price change as the
difference between the maximum and minimum price over the course of the day, as in figure 6.6. We also define the
volatility as the standard deviation of the returns over the day. Notice the dominance of late 2011 in this table.
On August 6th, 2011, Standard and Poor’s downgraded the U.S. credit rating for the first time [1]. One must wait
until the 17th day of largest norm to find a day in 2008. Finally, notice that although the flash crash and the day
after the flash crash appear relatively high in the list.
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Rank Date 2 Norm Eigenvalue Variance Price Change Volatility
1 08/09/2011 73.68 49.93 68.60 64.63
2 08/05/2011 72.71 48.63 49.68 62.69
3 08/10/2011 73.08 49.11 52.95 54.29
4 05/07/2010 71.32 46.78 40.11 50.99
5 05/06/2010 53.04 26.43 101.41 106.88
6 08/08/2011 68.17 42.70 77.41 52.43
7 05/20/2010 65.50 39.38 34.23 24.07
8 10/04/2011 64.11 37.73 50.13 33.22
9 08/26/2011 63.98 37.56 45.00 17.66
10 08/11/2011 63.98 37.56 64.70 28.92
11 09/01/2011 63.58 37.08 25.08 11.93
12 09/12/2011 63.24 36.68 26.00 13.80
13 09/09/2011 63.41 36.88 36.97 15.43
14 09/26/2011 63.47 36.93 33.10 17.87
15 09/22/2011 62.76 36.13 50.33 29.69
16 08/16/2011 63.40 36.86 23.69 16.75
17 10/23/2008 63.33 36.77 63.38 156.37
18 10/16/2008 62.28 35.57 80.61 208.02
19 11/01/2011 61.71 34.93 35.18 18.81
20 08/25/2011 62.17 35.44 34.26 16.22

Table 6.1: Some statistics of the 20 days corresponding to the dates with the 20 highest 2 norms of the daily
correlation matrix of returns.

In figure 6.7 we see that the 2 norm of the correlation matrix increased substantially in both mean and variance
over the sample.
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Figure 6.7: Norm of the daily correlation matrix over the sample (1993-2012).

We will now show a few correlation matrices and histograms of these matrices near a few important events,
beginning with the most recent.

6.3.1.1 August 2011

Here we can see the very large correlations near the U.S. credit downgrade. As we have already discussed, however,
the arbitrary ordering of the stock market correlation matrix makes it impossible to determine spatial structure
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from the matrices in this form. We therefore look at the histograms for the same dates. Notice we do not see
additional peaks of correlation, which are our telltail sign of spatial structure. However, these peaks are different:
whereas in the Ising model simulation we observed smaller peaks of higher correlation above the mean correlation,
here we observe the peaks below the mean correlation. We will show in the next discussion that these peaks are a
result of a few stocks being nearly uncorrelated with the rest.
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Figure 6.8: Correlation matrices near the U.S. credit downgrade on 08/05/2011.
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Figure 6.9: Distribution of correlations near the U.S. credit downgrade.

6.3.1.2 Flash Crash

We now show the same figures near the flash crash of 05/06/2010. Notice that rows 38 and 39 (or, alternatively,
columns 38 and 39 as the matrix is symmetric) are nearly white, implying approximately zero correlation of stocks
38 and 39 with the rest of the stocks in the sample over this period. These stocks are the cause of the lower peaks
of correlation discussed above and observed, once again, in near the distribution of correlations near the flash crash
(figure 6.11). To see this, we remove stocks 38 and 39 from the correlation matrix and recalculate the histogram.
The results for 05/07/2010 can be seen in 6.12. Notice that the peaks of lower correlation completely disappear.
Interestingly, stocks 38 and 39 are correspond to Fannie Mae and Freddie Mac, the government-sponsered enterprises.
Following the 2008 financial crisis, during which time both companies were bailed out by the U.S. government, both
were delisted from the New York Stock Exchange on July 7th, 2010, months after the flash crash [39].
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Figure 6.10: Correlation matrices near the flash crash of 05/06/2010.
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Figure 6.11: Distribution of correlations near the flash crash of 05/06/2010.
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Figure 6.12: Correlation matrix and histogram from 05/07/2010 after removing Fannie Mae and Freddie Mac.

6.3.1.3 2008 Financial Crisis

Here we observe the correlation matrices and the histograms of the correlations near the collapse of Lehman brothers,
which occurred on September 15, 2008 [29]. Once again, we do not see peaks of higher correlation.
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Figure 6.13: Correlation matrices near the collapse of Lehman Brothers.
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Figure 6.14: Histograms near the collapse of Lehman Brothers.

6.3.1.4 Dot Com Bubble

It is generally considered that the Dot-com bubble burst on March 10th, 2000 [28]. Here we show the correlation
matrices histograms in the surrounding days. Notice that the correlations are much smaller than in the more recent
crashes. Once again, we do not see evidence of spatial structure to the correlation correlations.
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Figure 6.15: Correlation matrices near the bursting of the Dot-com bubble.
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Figure 6.16: Correlation matrices near the bursting of the Dot-com bubble.

6.3.1.5 Asian Financial Crisis

The stock market crash associated with the Asian Financial Crisis is the October 27th, 1997, mini-crash, during
which time the Dow Jones industrial average plunged 554.26 points [36]. Although the 2 norm on this date is small
relative to the more recent crashes, we note that the mean norm for a 200 day interval centered on this date is 5.46
with a standard deviation of 1.76. The histograms do not exhibit evidence of spatial structure.
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Figure 6.17: Correlation matrices near the mini-crash of 10/27/1997.
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Figure 6.18: Histograms near the mini-crash of 10/27/1997.

6.3.1.6 Distribution of Correlations

We would now like to show the analogue of figure 3.16, which shows the distribution of spin correlations for a 2D
Ising model as a function of temperature. Of course, a financial market does not have a temperature, but there are
a few analogies of temperature that we may explore. As with distribution of 2D returns we will only consider the
off-diagonal elements of the correlation matrix.

Figure 6.19 shows the histogram of stock correlations as a function of the 2 norm of the correlation matrix. We
can see that the distributions scale nicely with the norm. Notice that we do not see the additional bumps of higher
correlation seen in the distribution of spin correlations for a 2D Ising system. This suggests that stock markets do
not have a well-defined same spatial structure. Figure 6.20 shows that the histograms scale nicely with the variance
of the eigenvalues as well.

56



Figure 6.19: Distribution of stock correlations as a function of the 2 norm of the correlation matrix.

Figure 6.20: Distribution of stock correlations as a function of the variance of the eigenvalues of the correlation
matrix.

6.3.1.7 Staircase Function

Finally we will show the staircase plots of each correlation matrix in the sample (figure 6.21). Note that we choose
to sort the plots by the 2 Norm of the correlation matrix. Notice that we do not see the additional peak in the
staircase plot as observed in the analogous plot of the 2D Ising model. Again, this suggests the nonexistence of

57



spatial structure to a stock market.

Figure 6.21: Plot of the staircase plots for each correlation matrix in the sample.

6.3.2 Intrahour

We will now examine intrahour correlation matrices, where we define an hour as 60 trading minutes. As showing the
actual correlation matrices would quickly fill up a great deal of space, we will focus on the histograms and staircase
plots of the correlations, which are the results we are more interested in anyway, since, as already explained, they
are independent of the ordering of the matrix. We will also focus on more recent data. This enables us to expand
the number of stocks in our sample.

6.3.2.1 2008

Here we observe the data on intrahour correlations in 2008. First we will note a few minor observations, beginning
with the peak of correlations near zero. As in the daily case, this is the result of a small number of stocks
consistently having nearly zero correlation with other stocks. Although we will spare the details, it appears that
the small correlations are due to little variation in the price, not uncorrelated movement in the price. Next, we note
the histogram corresponding to June 12, 2008 looks different from the rest (it corresponds to a 2 Norm of about
115 in figure 6.24). As there does not appear to be any significant event that occurred on that day, it is possible
the dataset contains an error. The final observation, and, indeed, the most important one, is that the lack of peaks
of higher correlation demonstrate a lack of spatial structure, as in the daily case. The other figures are similar to
the ones above and require no further explanation.
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Figure 6.22: Intrahour price changes during the year 2008.
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Figure 6.23: Norm of the hourly correlation matrices during 2008.

Rank Date Time 2 Norm Eigenvalue Variance Price Change Volatility
1 11/20/2008 10:01-11:00 129.12 81.11 17.44 160.82
2 12/12/2008 9:31-10:30 127.82 79.51 19.82 42.71
3 10/17/2008 12:01-13:00 127.30 78.89 29.50 76.24
4 12/03/2008 10:01-11:00 124.72 75.70 25.17 33.41
5 11/17/2008 11:31-12:30 123.63 74.42 10.88 71.04
6 11/13/2008 10:31-11:30 122.89 73.57 32.56 56.82
7 11/18/2008 12:01-13:00 122.36 72.94 30.22 49.56
8 10/23/2008 12:01-13:00 122.32 72.88 44.51 156.72
9 10/16/2008 9:31-10:30 122.06 72.65 15.79 154.99
10 11/21/2008 11:31-12:30 121.75 72.22 32.47 129.38

Table 6.2: Statistics concerning the hourly correlation matrices in 2008 with the 10 highest 2 norms.

59



Figure 6.24: Distribution of correlations and staircase plots for 2008 hourly correlations.

6.3.2.2 2010

Here we show the same figures for 2010. Notice the flash crash (which occurred on 05/06/2010) is not on table 6.3,
although the day after it is. In figure 6.27 we see the same behavior in the histograms and the staircase plots of the
correlations that has been discussed above.
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Figure 6.25: Intrahour price changes during the year 2010.
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Figure 6.26: Norm of the hourly correlation matrices during 2010.

Rank Date Time 2 Norm Eigenvalue Variance Price Change Volatility
1 05/26/2010 15:01-16:00 135.75 89.61 15.28 24.36
2 05/25/2010 14:31-15:30 133.17 86.23 12.95 21.76
3 05/07/2010 12:31-13:30 132.80 85.85 10.46 55.48
4 06/23/2010 14:31-15:30 132.20 85.03 10.98 18.97
5 05/20/2010 14:01-15:00 131.98 84.70 16.68 27.61
6 05/28/2010 15:01-16:00 129.97 82.26 9.58 14.97
7 05/20/2010 15:01-16:00 128.28 80.20 16.47 23.48
8 05/07/2010 11:31-12:30 127.77 79.45 17.98 76.48
9 05/26/2010 14:01-15:00 126.71 78.15 10.46 18.27
10 05/07/2010 10:31-11:30 125.78 77.16 25.78 74.62

Table 6.3: Statistics concerning the hourly correlation matrices in 2010 with the 10 highest 2 norms.

Figure 6.27: Distribution of correlations and staircase plots for 2010 hourly correlations.
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6.3.2.3 2011

Finally, we show the results for 2011. Notice from figure 6.30 that the peak of zero correlation is smaller than in
2008 and 2010, suggesting that stocks were more actively traded. Also, notice the prevalence of August 2011 (near
the U.S. credit downgrade) in table 6.4. The other figures require no further explanation at this point.
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Figure 6.28: Intrahour price changes during the year 2011.
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Figure 6.29: Norm of the hourly correlation matrices during 2011.
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Rank Date Time 2 Norm Eigenvalue Variance Price Change Volatility
1 08/09/2011 14:01-15:00 144.62 101.72 38.34 204.70
2 08/10/2011 14:31-15:30 144.09 100.80 21.35 54.74
3 09/12/2011 14:31-15:30 143.56 100.08 11.17 21.76
4 08/09/2011 15:01-16:00 140.10 95.35 57.57 89.31
5 09/26/2011 13:31-14:30 139.78 94.94 9.14 31.92
6 08/05/2011 15:01-16:00 139.49 94.55 13.44 34.34
7 08/05/2011 13:01-14:00 138.24 92.83 16.43 84.29
8 08/10/2011 12:31-13:30 137.48 91.85 12.05 57.08
9 08/16/2011 11:31-12:30 136.85 91.03 10.63 41.82
10 10/04/2011 14:31-15:30 135.38 89.10 14.10 35.65

Table 6.4: Statistics concerning the hourly correlation matrices in 2011 with the 10 highest 2 norms.

Figure 6.30: Distribution of correlations and staircase plots for 2011 hourly correlations.
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Chapter 7

0D Ising Model

We will now propose a 0D Ising model, where each spin interacts with each other spin. This means the adjacency
matrix is identically 1 off the diagonal (and zero on the diagonal as spins still do not interact with themselves).
Geometrically, one can consider each spin to be concentrated at a single point. Unlike in the other dimensions we
have discussed, the Ising model in 0D is not studied in condensed matter physics as there is no physical analogue.
In this section we will derive important properties of the 0D model and we will show the results of Monte Carlo
simulations. Our primary observation concerning the 0D model is that although it may exist in paramagnetic and
ferromagnetic states, strictly speaking it does not have a phase transition. To show this we will start by analyzing
the partition function.

7.0.3 Partition Function

Recall that the macroscopic behavior of a system may be extracted from the partition function, but that the
partition function is often very difficult to compute. Even in the case of an Ising system, the definition of the
partition function involves a sum of 2

N exponential terms, as there are 2

N states in an Ising system. We will
now show that the partition function of a 0D Ising model may be written as a sum of only N exponential terms.
Although this equation is still difficult to handle, for small N we can exploit it to calculate analytical expressions for
the internal energy and magnetization. We will then use these expressions to justify the claim that the 0D model
does not have a phase transition. Along the way we will obtain a simplified form of the Hamiltonian for a 0D Ising
model that will reduce the computation time required for Monte Carlo simulations.

First notice that since the Hamiltonian H (�) gives the energy of the system, where � represents a particular
spin configuration, the expression for the partition function (equation 3.2) becomes:

Z =

X

�

e��H(�) (7.1)

The key to deriving equation a simplified partition function is the following observation: since there is no
topological structure to the 0D Ising model, the particular arrangement of spins does not matter (i.e. does not
affect the Hamiltonian); rather, it is only the number of spins in each state that matters. Therefore we may write
H (�) = H (n), where n is the number of, say, negative spins in spin configuration �. Since there are

�
N
n

�
spin

configurations with n negative spins we have

Z =

NX

n=0

✓
N

n

◆
e�H(n). (7.2)

If we further assume that the interaction matrix J and the external magnetic field h are constant, the definition
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of the Ising Hamiltonian becomes:

H (n) = �J
X

hi,ji

�i�j � h
X

i

�i (7.3)

where the notation hi, ji indicates that the sum is taken over all adjacent pairs, counting each pair once (i.e. not
hj, ii if we have already counted hi, ji). Of course, as spins are not allowed to interact with themselves, we do not
count the pair hi, ii.

Now, we would like to derive a simpler expression for H (n). We can do this by first altering the definition of
the Hamiltonian, given above. Specifically. we will double count each adjacent pair (i.e. by including hj, ii as well
as hi, ji in the summation) and we will considers spins to be adjacent to themselves (i.e. by including hi, ii in the
summation). We will denote this new first term by J

P0
hi,ji �i�j . Upon computing this new summation we will

adjust the result so that it is equivalent to the original summation in the Hamiltonian. To this end, first consider
the contribution of the N � n positive spins to the summation. Each positive spin will contribute +1 for each
other positive spin, and �1 for each negative spin. Thus, the contribution of the positive spins to the summation is
(N � n) [(N � n)� n] = (N � n) (N � 2n). Similarly, each of the n negative spins will contribute +1 for each other
negative spin and �1 for each positive spin. Therefore, the contribution of the negative spins to the summation is
n [n� (N � n)] = n (N � 2n). If we add each of these two contributions we have that for a system with n negative
spins,

P0
hi,ji Jij�i�j = (N � 2n)

2. To get the original summation, we need to adjust the new summation for our
altered assumptions. To remove the contribution due to spins interacting with themselves, we need to subtract N

from the new summation. Then, to remove the contribution due to counting each adjacent pair twice, we need only
divide by 2, since the interactions are symmetric. Thus, we have

P
hi,ji Jij�i�j =

h
(N � 2n)

2 �N
i
/2 .

The effect of the second term,
P

i hi�i, is more straightforward. The n negative spins will cancel out n positive
spins, leaving N � 2n remaining positive spins to add to the sum. Thus,

P
i hi�i = hi [N � 2n]. Therefore,

H (n) = �J
h
(N � 2n)

2 �N
i
/2� h [N � 2n] . (7.4)

This expression for the Hamiltonian will greatly reduce the computation time required in a Monte Carlo sim-
ulation of the 0D Ising model. If we plug this expression into equation 7.2 we have a simplified expression for the
0D partition function

Z =

NX

n=0

✓
N

n

◆
eJ�[(2n�N)2�N

]

/2+h�[2n�N ]. (7.5)

7.0.4 Lack of Phase Transition

For small N it is possible to apply equations 3.6 and 3.20 to obtain analytical expressions for the magnetization
and the internal energy. The following were computed with Mathematica for N = 4:

Z = e(6J�4h)�
+ 4e�2h�

+ 6e�2J�
+ 4e2h� + e(6J+4h)� (7.6)

hMi = �8e�2h�
+ 8e2h� � 4e(6J�4h)�

+ 4e(6J+4h)�

4e�2h�
+ 4e2h� + 6e�2J�

+ e(6J�4h)�
+ e(6J+4h)�

(7.7)

U ⌘ hEi = ��8he�2h�
+ 8he2h� � 12Je�2J�

+ (6J � 4h) e(6J�4h)�
+ (6J + 4h) e(6J+4h)�

4e�2h�
+ 4e2h�+6e�2J�

+ e(6J�4h)�
+ e(6J+4h)�

(7.8)

One can see that even for relatively small N , the calculations grow cumbersome quite quickly. Now, figure 7.1
shows a plot of the internal energy as a function of temperature in zero magnetic field, where we let k = 1 and
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J = 1. Certainly we can see a sudden change in the energy as a function of temperature. However, notice that an
increase in the system size both shifts the internal energy curve outwards and softens the transition between the
low energy and high energy states. As N ! 1 we expect the internal energy curve to approach a horizontal line. If
the 0D model had a critical temperature, it would certainly increase with N . That is, it would not be an intensive
property of the system. This violates our definition of phase transition and we thus conclude that the 0D model
does not have a phase transition. Yet, as the sudden change in internal energy illustrates, the 0D model exhibits
behavior similar to a phase transition. We will define this behavior as a pseudo-phase transition. This concept
will become more clear in section 7.1 where we show the results of Monte Carlo simulations of the 0D Ising model.
The equations above also imply that the mean magnetization is always zero for all system sizes. We will see in the
next section, however, that the simulations of the 0D Ising model exhibit “pinning”, whereby a net magnetization is
observed. This illustrates the difference between a time average and an ensemble average, as discussed in chapter
3. It also illustrates that the 0D model does not exhibit ergodicity breaking at the pseudo-critical point as the
magnetization will eventually flip signs.

Figure 7.1: Internal energy as a function of temperature for a selection of system sizes.

7.1 Simulations of 0D

In the spirit of section 3.3.3, we will now show the results of a collection of Monte Carlo simulations of the 0D Ising
model. As before, we will use the Metropolis algorithm.

We will begin by focusing on a system of N = 100 spins. As with the 2D simulations, for each simulation
we will run for 1000 sweeps to reach equilibrium and then run for an additional 10,000 sweeps to calculate the
mean magnetization M , the internal energy U , and the time-averaged correlation matrix C. The time-averaged
correlation matrix will be calculated with a subsequence length of L = 1000 sweeps and an offset of K = 1 sweeps.

Figures 7.2 and 7.3 show the correlation matrices for a selection of temperatures. Notice the absence of the
diagonal bands observed in the 2D simulations. However, the correlations increase just below a temperature of
around 80, and decrease afterwards. This is reminiscent of a phase transition. Figure 7.4 shows the 2 norm of the
correlation matrix as a function of T .

66



Figure 7.2: Correlation matrices of a 0D Ising model simulations (part 1).
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Figure 7.3: Correlation matrices of a 0D Ising model simulations (part 2).
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Figure 7.4: Matrix 2-norm as a function of temperature.

Figure 7.5 shows the internal energy and mean magnetization as a function of T . The plot of the internal energy
seems to agree with the results predicted by the partition function for small N . However, the plot of the mean
magnetization exhibits a “pinned” magnetization for low temperature. Recall that the partition function predicts
a mean magnetization of zero for all temperatures. To explain this difference we offer the following explanation: a
0D Ising system does not experience ergodicity breaking at the pseudo phase transition. Over a finite amount of
time, the 0D system may exhibit non-zero net magnetization. However, in the limit, the system will cross between
spin up and spin down states, giving a net magnetization of zero. This is the magnetization calculated from the
partition function. The difference corresponds to the difference in taking a finite time average of a macroscopic
quantity and an ensemble average.
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Figure 7.5: s.

The next two figures, 7.6 and 7.7, show U and M for a selection of system sizes. Here we can see that
the transition temperature shifts outwards with increased system size. This is in agreement with the theoretical
prediction of the partition function.
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Figure 7.6: Internal energy from 0D simulations for different N .

Figure 7.7: Mean magnetization from 0D simulations for different N .

Last, in figures 7.8 and 7.9, we show plots of the distribution of correlations and the staircase function for a
variety of temperatures. Notice that the correlation plots do not exhibit the additional bumps of higher correlation
that are characteristic of the 2D system near the critical point. Indeed we see little change in the distributions near
the transition, other than than an outward shift in the mean. The observations in the staircase plots are similar:
the additional bumps are not exhibited and the plots seem only to shift outward near the transition. Also, notice
that the slope of the staircase plot is much steeper than in the 2D simulation.

70



80

100 T

0.0
0.1

0.2
0.3

0.4
Distribution of correlations

0.00

0.02

0.04

0.06

0.08

Figure 7.8: Distribution of correlations for a variety of temperatures.

.

6080100

T

-0.5
0.0

0.5x

0.0

0.5

1.0

SHxL

Figure 7.9: Staircase plots for a variety of temperatures.

7.2 With Random Coupling Matrix

As we argued earlier in the discussion of the 2D Ising model, we do not expect a stock market to be described by
a Hamiltonian with constant coupling coefficients Jij . The simulations below show that, as with the 2D model,
randomly coefficients (on the interval [0, 1] , as before) do not substantially alter the behavior of the system, other
than by lowering the critical temperature. The correlation matrices themselves are not shown as they are similar
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to the results from figures 7.2 and 7.3.
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Figure 7.10: 2 norm as a function of temperature.
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Figure 7.11: Mean magnetization and internal energy as a function of temperature.
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Figure 7.12: Histograms of the correlations for a variety of temperatures.
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Figure 7.13: Staircase plots of the correlation matrix for a variety of temperatures.

73



Chapter 8

Conclusion

8.1 Summary of New Results

We briefly summarize the new methods and results developed in this thesis.

1. Scale invariance of the parameter �2
s, a measure of the non-Gaussian nature of the returns, does not appear

to be a strong universal property of stock market crashes, although there does appear to be some correlation.

2. The black box Ising model problem is, in general, not solvable, although the histograms and staircase functions
of the correlation matrices near the critical point do provide some information that may be used to distinguish
between spatial dimensions.

3. Correlation matrices of intraday and intrahour stock data from the last 20 years never exhibit any features
that suggest that a measure of distance between stocks exists.

4. The results in fact resemble the correlation matrices of a Zero-dimensional Ising model, which while a common
pedagogical problem for small N , has not been analyzed systematically. The 0D Ising model exhibits an
interesting pseudo-phase transition, where a macroscopic quantity (the internal energy) changes character at
a critical temperature, but this is not an intensive property of the system. Simulations of the 0D Ising model
exhibit “pinning” of the system in one state at lower temperatures, whereby only an ensemble of identically
prepared systems equates to the thermodynamic averages.

5. The resemblance of the stock market to the 0D Ising model suggests that

(a) stock market crashes will critically depend on market size in the way the pseudo-phase transition of the
0D model depends on system size.

(b) as the coefficients of stock interaction vary, the “critical point” of the stock market may evolve in time.

(c) the stock market may in fact be “pinned” when the correlation matrices are observed to be high.

(d) a 0D matrix model with random and time varying coefficients may better describe the stock market.

6. Policy arguments drawn upon the analogy as originally proposed are potentially spurious until further research
is conducted.
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8.2 Further Study

Unlike physical systems, which are inevitably confined to 1D or higher and for which there exists a rich variety of
possible symmetries that generate a vast plethora of different symmetry breaking phase transitions, the symmetry
structure of 0D is extremely simple. This suggests that a very small space of possible 0D models exist. Since we
have seen that it is the symmetries of the system that determine its critical behavior we suggest a more thorough
investigation of symmetries of a 0D system. We also leave to further work the construction of a 0D model of a stock
market, with random and time varying coefficients, and that may be used to predict distributions of returns, etc.
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