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ABSTRACT 

This work investigates the probabilistic behavior of the time to occurrence of 

natural hazards that exhibit nonstationarity through time with special attention to 

floods. Chapter one combines existing theoretical and empirical results from the 

literature to provide the first general, comprehensive description of the 

probabilistic behavior of the return period and reliability under nonstationarity for 

the case of floods. Findings indicate that under nonstationarity, the underlying 

distribution of the return period exhibits a more complex shape than the 

exponential distribution under stationary conditions. Chapter two provides an 

introduction to the field of hazard function analysis (HFA)  for flood events under 

nonstationary conditions, and demonstrates how HFA can be used to characterize 

the probability distribution of the return period and the reliability – two primary 

metrics in hydrologic design. This is the first paper to explicitly link the 

probabilistic properties of a flood series (X) with failure times (T) associated with 

a particular infrastructure design. This work shows that HFA is a relevant and 

useful approach for characterizing nonstationary flood series, and can provide 

engineers with tools to support hydrologic design decisions under nonstationary 

conditions. Chapter three investigates the suitability of HFA to characterize a 

wide class of nonstationary natural hazards whose peaks over threshold (POT) 

magnitudes are assumed to follow the widely applied Generalized Pareto (GP) 

model. Such natural hazards might include: wind speeds, landslides, wildfires, 

precipitation, streamflow, sea levels, and earthquakes. The hazard function 

equations are derived for a natural hazard event series (X) whose POT follows the 

2-parameter GP distribution. The derived model and HFA are used to compute 
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reliabilities and average return periods associated with nonstationary behavior of 

the original hazard series.  These generalized results for a wide class of natural 

hazards are consistent with the results in Chapters 1 and 2 for floods: 

nonstationarity adds complexity to computation of traditional design metrics and 

changes the shape of the probability distribution of the return period. General 

implications for planning and design of nonstationary natural hazards are 

discussed.  
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 FOREWORD 

In literature of many disciplines, hydrologists, climate scientists, 

engineers, and others concerned with natural hazards are discussing the existence, 

attribution, and relevance of trends, and underlying concepts of stationarity and 

nonstationarity.  On one extreme some argue that stationarity is dead! (Milly et 

al., 2008), while others proclaim its immortality (Montanari and Koutsoyiannis, 

2014).  Rich literature exists in between these two extremes, addressing the notion 

of whether nature is trendy (Cohn and Lins, 2005) and the implications of 

assuming stationarity or nonstationarity for planning and design of infrastructure.  

Although the future is uncertain, the scientific community generally agrees that 

certain elements of climate-to-come will be different from the past – e.g. 

atmospheric carbon dioxide levels from greenhouse gas emissions will increase. 

While hydrologists do not know precisely how changes in climate will manifest to 

impact the hydrologic system, we have been able to measure certain impacts, such 

as how urbanization affects hydrology (Villarini et al., 2009; Prosdocimi et al., 

2015 and others).   

The risks imposed by adverse climate and corresponding changes in the 

hydrologic system are potentially devastating to populations around the world, 

and thus engineers have a unique responsibility to understand these processes and 

develop ways to communicate associated risks. Vogel et al. (2015) argues that 

hydrology is inextricably linked with society and human behavior, addressing 

points raised in previous papers that continuing to assume stationarity and not 

consider human influences when designing hydrologic (and other) infrastructure 
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may not be a strategy we can afford.  For example Rosner et al. (2014) introduce a 

risk-based approach for comparing no-action to action strategies for hydrologic 

infrastructure design.  The question at the center of these discussions is how to 

proceed with design and communication of risk given unresolvable uncertainties 

in the system, recognizing that underdesign may expose many to high risks, and 

overdesign may be wasteful.    

The three chapters of this dissertation intend to contribute to the 

aforementioned ongoing discussion in the literature, specifically to the point on 

how nonstationarity, if present, may impact the risk of failure and reliability of 

natural hazard systems.  Briefly, this work uses concepts from probability theory 

to show how the distributions of floods and natural hazards change – and grow in 

complexity – when trends are present in the historic record; and, the implications 

on hydrologic design and risk communication for trends that continue into the 

future.  Though this work does not advocate for trend extrapolation into the future 

nor attempt to attribute trends to anthropogenic or natural sources, it intends to 

push readers to consider that if a trend has indeed been detected, engineers and 

managers need a plan for moving forward with design and communication to the 

public.  Currently there is no cohesive standard for implementing nonstationarity 

into hydrologic or natural hazard infrastructure design, though many studies 

require that research include climate change in their scopes.  This lag in adoption 

of new standards at a higher level is slowly dissipating, as organizations like the 

American Society of Civil Engineers have recently written on the need to update 

principles and practice to include climate change and adaptation (Olsen, 2015). 
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While this is progress, it does not address the issues associated with 

misperception of risk and need to modify communication to appropriately inform 

the public on risks associated with hazards they may encounter. This technical 

and social challenge requires that engineering and social science align, 

recognizing the interdisciplinary nature of hydrology to find solutions (Vogel et 

al., 2015). Indeed this alignment is perhaps one of the most exciting, yet greatest 

challenges facing water resource engineers in the coming years.  

The three chapters presented in this dissertation seek to document the 

impact of nonstationarity on the probability distribution of floods and natural 

hazards in general; and based on these findings, suggest innovative ways to 

communicate this much more complicated story to those responsible for design 

and planning. Chapter 1 presents an argument for replacing the concept of 

average return period with reliability for communicating risk of flooding and for 

designing infrastructure; Chapter 2 provides an introduction to the theory of 

hazard function analysis for characterizing floods in a nonstationary context; and 

Chapter 3 extends the application of hazard function theory to nonstationary 

natural hazards in general.   
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Chapter 1: Reliability, Return Periods, and Risk under Nonstationarity 

 
Journal reference: Read, L. K., and R. M. Vogel (2015), Reliability, return 

periods, and risk 
under nonstationarity, Water Resour. Res., 51, doi:10.1002/2015WR017089 
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ABSTRACT 

Water resources design has widely used the average return period as a concept to 

inform management and communication of the risk of experiencing an 

exceedance event within a planning horizon. Even though nonstationarity is often 

apparent, in practice hydrologic design often mistakenly assumes that the 

probability of exceedance, p, is constant from year to year which leads to an 

average return period To equal to 1/p; this expression is far more complex under 

nonstationarity.  Even for stationary processes the common application of an 

average return period is problematic: it does not account for planning horizon, is 

an average value that may not be representative of the time to the next flood, and 

is generally not applied in other areas of water planning. We combine existing 

theoretical and empirical results from the literature to provide the first general, 

comprehensive description of the probabilistic behavior of the return period and 

reliability under nonstationarity. We show that under nonstationarity, the 

underlying distribution of the return period exhibits a more complex shape than 

the exponential distribution under stationary conditions. Using a nonstationary 

lognormal model, we document the increased complexity and challenges 

associated with planning for future flood events over a planning horizon. We 

compare application of the average return period with the more common concept 

of reliability and recommend replacing the average return period with reliability 

as a more practical way to communicate event likelihood in both stationary and 

nonstationary contexts.  
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1. Introduction 

Traditional probabilistic approaches for defining risk, reliability, and return 

periods under stationary hydrologic conditions assume that extreme events arise 

from serially independent time series with a probability distribution whose 

moments and parameters are fixed. Gumbel [1941] and Thomas [1948] defined a 

return period of a flood as the interval between flood events, where an event is 

any streamflow discharge exceeding a known threshold. In some studies, the 

return period has been defined as the (conditional) interval between two flood 

events [Lloyd, 1970; Haan, 1977; Mays, 2005], whereas the more common 

definition of a return period in practice is the unconditional waiting time until an 

exceedance event [Fuller, 1914; Gumbel, 1941; Fernández and Salas, 1999].  The 

unconditional return period does not assume a flood has occurred in year one.  

Though the two definitions are equivalent for stationary conditions, the 

conditional return period is not sensitive to hydrologic persistence [Lloyd, 1970; 

Douglas et al., 2002], an attractive feature in drought planning because droughts 

tend to exhibit persistence.  The more commonly used unconditional definition of 

a return period is useful for describing the recurrence of hydrologic events 

because it does not depend on knowledge of a previous event, yet its value is 

sensitive to hydrologic persistence. 

Consider the case of planning for a random future annual maximum 

extreme event X, where the design quantile Xp is the threshold of exceedance, and 

determines whether a flood event with exceedance probability p, occurs in a given 

year.  Assume the hydrologic event X is defined as the annual maximum 
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streamflow which has a stationary probability distribution function (pdf) denoted 

by fx(x) and cumulative distribution function (cdf) denoted by Fx(x).  In the case 

where a structure is built to protect against an event with an annual 

nonexceedance probability, 1-p = Fx(x), the design event for such a structure is 

computed as simply the inverse of the cdf and equal to the quantile Xp.  Under 

stationary conditions, if we assume that the exceedance probability p, of annual 

floods is constant and that flood events are independent and identically 

distributed, then the return period, T, follows a geometric distribution with 

probability mass function (pmf) given by: 

pptTPtf t 1)1()()( −−===    (1) 

where p is the annual exceedance probability. Similarly, for the continuous case, 

the random variable T follows an exponential pdf.  In either case, the average 

return period is: 
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In the design of hydrologic infrastructure, the probability of failure over its 

lifetime or its associated system reliability over a project lifetime is perhaps the 

most important piece of information an engineer can communicate to planners 

and the public. Prior to the 1983 Principles and Guidelines [WRC, 1983], standard 

practice in the United States for designing hydraulic infrastructure had been to 

select a design event, compute its average return period, and build the lowest cost 
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structure. Such an approach does not consider the risk of failure over the planning 

horizon as a decision variable, and instead reported this risk of failure as more of 

a posterior calculation [Yen, 1970]. Since then, hydrologists and the Army Corps 

of Engineers have adopted a probabilistic approach, or risk-based design [WRC, 

1983], where a level of infrastructure (i.e. protection) is selected based on 

minimizing the expected annual damage costs from a hazard, i.e. a flood [U.S. 

Army Corps of Engineers, 1996].  More recently, Risk-Based Decision Making 

(RBDM) has become a well-established methodology that determines appropriate 

levels of infrastructure based on the expected damages avoided vs. the cost of the 

infrastructure required  [Tung, 2005; National Research Council, 2000].  RBDM 

can be used in place of the traditional design storm approach to first select a 

particular design event (a distinct To-year event usually specified by regulation), 

and then select the necessary infrastructure to protect against the flood event with 

that specified return period. Rosner et al. [2014] document how RBDM can be 

applied in a nonstationary setting. 

We define risk of failure over a planning period (Riskn) here as in most 

introductory hydrology textbooks [Bras, 1990; Viessman and Lewis, 2003; Mays, 

2005] and hydrology handbooks [Tung, 1999; Stedinger et al., 1993; IACWD, 

1982; Chow, 1964], as the likelihood of experiencing at least one event exceeding 

the design event over a given project life of n years: 

     n
n pRisk )1(1 −−=    (4) 

Note that the risk of failure can be directly computed from the stationary average 

return period by replacing p=1/To from (2) into (4).  Yen [1970] points out that 
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when the project lifetime (n years) is equal to the average return period (To) in 

equation (4), the project risk approaches a value of 0.63 as the project life nears 

infinity. This result emphasizes an important link that exists between project life 

and its risk of failure under stationary conditions.  

A more modern definition of risk used in environmental and water 

resource planning involves both the magnitude and frequency of the event 

[Krimsky and Golding, 1996], whereas the definition in (4) is only indicative of 

the probability of failure over an n year period. For this reason, we recommend no 

longer using the term risk when discussing the concept defined in equation (4).  

Instead, we recommend  the term ‘reliability’ over a planning period 

(Reliabilityn), which is defined as the probability that a system will remain in a 

satisfactory state [Hashimoto et al., 1982; Salas and Obeysekera, 2014] during its 

lifetime, i.e. that an exceedance event will not occur within a project life of n 

years: 

     npnliability )1(Re −=    (5) 

The concept of reliability is not new to hydrology and is widely used in 

water supply planning [Hirsch, 1979; Vogel, 1987; Harberg, 1997; Loucks et al., 

2005] and many other engineering fields [Kottegoda and Rosso, 2008; Tung et al., 

2006].  For stationary systems, the relationship between the reliability and 

average return periods for n = 25, 50, and 100 year planning horizons is illustrated 

in Figure 1-1 by simply substituting p=1/To into (5):  
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FIGURE 1-1. Reliability of a stationary system which is designed on the basis of 
an average return period To, corresponding to n = 25, 50, and 100 years 

 

Figure 1-1 illustrates that to achieve a reliability commensurate with other 

areas of design (i.e. Reliability > 0.9), over typical project lifetimes, the average 

return period of the design event must be in the hundreds of years.  Most 

importantly, Figure 1-1 illustrates that knowledge of the average return period 

alone gives little guidance regarding the likelihood that a given project will 

perform as expected.  Under nonstationary conditions, the exceedance probability 

associated with the design event is likely to change over time, creating additional 

challenges in selecting a suitable design event. Furthermore, a prerequisite to the 

use of RBDM under nonstationary conditions is that we develop a complete 

understanding of the impact of nonstationarity on traditional design metrics such 
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as the expected return period as well as the reliability of a system over its 

planning horizon.  

Overall, our goal is to initiate a discussion as to how engineers can effectively 

communicate the risk of failure and reliability of hydrologic design over planning 

horizons for a range of possible conditions. This goal is in line with a number of 

recent papers in the hydrologic science literature which discuss the existence and 

mortality/immortality of stationarity as it relates to hydrologic design and extreme 

events [Cohn and Lins, 2005; Milly et al., 2008; Montanari and Koutsoyiannis, 

2014; Koutsoyiannis and Montanari, 2014; Serinaldi, 2015; Serinaldi and Kilsby, 

2015; Condon, et al., 2015]. In the following sections we provide detailed 

reasoning for the need to replace the use of the average return period with the 

concept of reliability over a planning horizon as a metric for design and more 

efficient means for communicating risk of failure.  We show this to be the case 

under stationary conditions, (Figure 1-1), and even more dramatically under 

nonstationary conditions.  In addition, we document the general impact of 

nonstationarity on statements of risk of failure, reliability, and the average return 

period using a simple, realistic and representative two-parameter nonstationary 

lognormal (LN2) flood model. We begin by reviewing the past and current 

approaches to hydrologic design under stationary and nonstationary conditions. 

Then we introduce the nonstationary LN2 flood model and apply it to develop 

general relationships among risk of failure, reliability, and average return periods 

introduced by previous investigators, and demonstrate its use for hydrologists and 

planners. This investigation is presented in the context of the growing societal 
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interest in the impact of future nonstationarities and the need for guidance in 

selecting a representative design event over a future planning horizon. Finally, we 

conclude with recommendations concerning suitable statements of risk of failure, 

reliability, and average return periods in both stationary and nonstationary 

settings.  

2. Hydrologic design under stationary conditions 

 In the water resources literature the concept of an average return period 

has many applications, with each definition based on the type of hydrologic event 

described [see Fernandez and Salas, 1999 and references therein]. For example 

several investigators have considered the behavior of average return periods for 

hydrologic processes that exhibit persistence (long-range dependence) such as 

droughts and water supply failures [Lloyd, 1970; Vogel, 1987; Fernandez and 

Salas, 1999; Douglas et al., 2002], and taken steps to create stochastic models 

that can reproduce such persistence [Efstratiadis et al., 2014]. We focus our 

attention on flood events which do not tend to exhibit significant interannual 

persistence as do droughts and water supply failure.   

The risk of failure defined by Yen [1970] and our preferred definition of 

reliability are essential metrics for communicating the likelihood associated with a 

system failure during a project lifetime. Since society and planners are concerned 

with knowing whether a system will remain undamaged within a given design 

period, reliability is a more effective tool than the average return period for 

directly communicating the likelihood that a flood exceeding the design event will 

occur over a planning horizon. Serinaldi [2015] and Serinaldi and Kilsby [2015] 
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relay a similar message, pointing out that risk of failure better describes this 

likelihood over a planning horizon because it summarizes the joint probability 

instead of the average probability, and does not require computations involving 

sums to infinity (i.e. to times beyond the design life).  

Figure 1 shows that systems designed on the basis of typical average 

return periods are not nearly as reliable as one might anticipate over a typical 

project life. According to Figure 1-1, system reliability is only 78% when the 

design event is based on the 1% exceedance event (100-year flood) for n = 25 

years. Considering that the design life of some public structures can be much 

longer than 25 years, and that reliability decreases as project life increases for a 

given average return period, careful attention should be given to how the system 

reliability of such structures is impacted by the planning horizon for structures 

which have been designed on the basis of an average return period.   

Other fields concerned with risk and hazard planning ensure a much 

higher reliability over typical planning horizons than corresponding reliabilities 

associated with the 100-year flood so commonly used in hydrologic planning. 

Table 1-1 provides several examples, highlighting the differences between 

average return periods and reliabilities associated with various disciplines 

concerned with hazard planning.  For example earthquake design regulations, 

suggest protection against a “less than 2% chance of failure (collapse) occur[ring] 

in a 50-year project life” [NEHRP, 2010]. This level of protection corresponds to 

an earthquake magnitude with an average return period of 2,475 years [obtained 

by combining equations (2) and (5)]. By comparison, traditional flood frequency 
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analysis which often bases designs on an average return period of To = 100 years 

corresponds to reliabilities of 78%, 61%, and 37% over a range of n = 25, 50, and 

100 years, respectively.  

TABLE 1-1. Reliabilities and average return periods associated with important 
events associated with several disciplines which seek to protect against extreme 
events  

Discipline 
Reliability for 
typical n-year 

planning period 
Average Return 
Period (Years) 

Citation 

Earthquake (shaking) 98%, n = 50 2475 NEHRP 
[2010] 

Retirement portfolio 
planning 95%, n = 30 585 

Ameriks et 
al. [2001]; 

Stout & 
Mitchell 
[2006] 

Nuclear power plant 
accident 95%, n = 21 409 U.S. NRC 

[1975] 
National Flood 

Insurance 75%, n = 30 105 FEMA 

Flood design 
(infrastructure) 61%, n = 50 100 Yen [1970] 

  

 In communicating flood risk, the “100-year flood” has a long history as a 

regulatory concept endorsed in the 1970s by the National Flood Insurance 

Program (NFIP) and FEMA in an effort to standardize flood risk. See Pielke 

[1999] for a complete discussion of the many misconceptions regarding the “100-

year flood” and its influence on flood risk perception. Today the NFIP 

communicates flood risk to the public on their website (available at 

https://www.floodsmart.gov/floodsmart/pages/flooding_flood_risks/defining_floo

d_risks.jsp ) by relating the likelihood of flood damage over a typical 30-year 

mortgage, and categorizing locations as “high-risk” (residences within the 100-
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year floodplain) and “moderate-to-low” risk (outside the 100-year floodplain). 

Interestingly the “moderate-to-low risk” areas, which are not required to purchase 

flood insurance, receive over 1/3 the payouts of disaster flood assistance or 20% 

of claims, begging the question of how the category “low risk” was defined. As 

Salas [2013] notes, the omission of uncertainty from estimating the floodplain is 

in itself a compounding issue.  

2.1 Should we consider replacing the average return period with concept of 

reliability?  

 We are not the first researchers to question the use of the average return 

period as a design metric for hydrologic purposes and for communication of 

extreme events [Fernandez and Salas, 1999; Pielke, 1999; Douglas et al., 2002; 

Cooley, 2013; Serinaldi, 2015; Serinaldi and Kilsby, 2015].  A summary of 

others’ points and our own thoughts suggest that even under stationary conditions, 

using the average return period as a design metric for hydrologic infrastructure 

and as a conceptual tool for communicating risk of failure is problematic because: 

(1) the shape of the geometric (discrete) and exponential (continuous) distribution 

associated with the time to failure under stationary conditions have a very long 

right tail, thus the mean time to failure (average return period) is a poor 

representation of the most likely time to failure; (2) the average return period is 

not explicitly tied to a planning horizon and thus is unable to characterize the 

likelihood of an event occurring during a project lifetime. When hydrologic 

processes exhibit nonstationarity, the probability of exceedance associated with 

the design event is changing over time, and thus the traditional formulae in 

15 
 



equations (1)-(4) no longer hold. In this situation the average return period may 

become even less representative of the future system reliability than under 

stationary conditions as is shown in the following sections.  

3. Hydrologic design under nonstationary conditions 

 This work is in part motivated by the studies of Olsen [1998], Cooley 

[2009], Parey et al. [2007, 2010], and Salas and Obeysekera [2014], who 

introduced much of the mathematics needed to describe the risk of failure, 

reliability, and average return periods in a nonstationary context.  Interestingly, 

most of the key developments extending hydrologic design indices to 

nonstationary conditions have appeared primarily in the statistics and climate 

change literature, likely as a result of the attention and resources devoted to 

understanding and characterizing climate change [Wigley, 1988; Katz, 1992, 

2010; Olsen et al., 1998; Parey et al., 2007, 2010; Cooley, 2009, 2013].   

 When a trend exists in annual maximum streamflow, the expressions for 

Riskn, Reliabilityn, and average return period To presented in Equations (1)-(4) are 

no longer correct because the probability of experiencing a flood which exceeds a 

fixed design threshold is increasing (positive trend)/decreasing (negative trend). 

Under stationary conditions the return period follows a homogeneous geometric 

distribution as described in Equations (1-2), whereas, under nonstationary 

conditions the exceedance probability pt associated with a particular annual 

maximum flood discharge changes every year. Under nonstationary conditions, 

the average return period is no longer a sufficient statistic of the distribution of 

return periods.  For example, p, or the average return period 1/p, are both 
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sufficient statistics for the geometric distribution in (1) because each one is all 

that is needed (sufficient) to describe the pdf of return periods in a stationary 

context.  However, under nonstationary conditions, knowledge of the average 

return period is no longer the only piece of information needed to specify the 

complete distribution of the return period [Rootzén and Katz, 2013]. Olsen et al. 

[1998] and Salas and Obeysekera [2014] introduce expressions for the average 

return period for the case where the exceedance probabilities of extreme events 

are increasing, such that p continuously increases until reaching unity at some 

future time, t = tmax.  From Cooley [2013] and others, the pmf of a return period or 

waiting time distribution, for a nonstationary process, is given by 

    ∏
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i
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where t is the time until the first flood that exceeds the design event. An 

expression for the probability of failure in year t, pt, can be derived for any 

distribution depending on the random variable of interest x.  Note that as expected 

for a stationary hydrologic process, equation (6) reduces to equation (1) because 

pt is constant in every year. Cooley [2013] and Salas and Obeysekera [2014] 

show that the expected value of the return period, T1 = E[T] under nonstationary 

conditions is given by: 
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Here we denote the average return period under nonstationary conditions using 

the notation T1 to distinguish it from the average return period To under stationary 
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conditions given in equation (2). Equation 7 is a general form to compute T1; in 

cases with increasing exceedance probabilities, one hopes that the maximum time 

(tmax) is very far into the future, as it corresponds to experiencing annual floods in 

excess of some important design threshold, with certainty (i.e. exceedance 

probability of unity). In the case of decreasing exceedance probabilities 

(downward trends), tmax and the expected return period itself may be both infinite. 

These are additional challenges for the practical application of applying a 

nonstationary return period for future planning purposes. An equivalent 

numerically simplified formula from Cooley [2013] is: 
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Parey et al. [2007, 2010] define a non-stationary return period as the number of 

years, T2, for which the expected number of exceedance events is equal to one, 

which can be solved numerically by computing the upper limit of the summation 

in: 
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Cooley [2013] shows why (9) can be interpreted as the number of years in which 

the number of expected exceedances is equal to unity.  It is interesting to note that 

under stationary conditions all three measures of the expected time to failure are 

equal so that, To= T1=T2; however, this is not the case under nonstationary 

conditions. Equations (6-9) can be applied to any variable or process which leads 

to a system failure defined as the occurrence of an annual maximum streamflow 
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(flood) above some level. All that is needed is the nonstationary cdf of the 

variable of interest to compute its average return period using (6)-(9).  In the 

sections which follow we provide examples of the application of (6)-(9) for the 

nonstationary lognormal model summarized by Vogel et al. [2011], Prosdocimi et 

al. [2014] and others.  We begin by using this model because it offers the 

possibility to generalize the probabilistic behavior of floods under nonstationary 

conditions, and because it is a parsimonious nonstationary model that reproduces 

the behavior of floods for a large percentage of U.S. and U.K. river systems as 

shown by Vogel et al., [2011] and Prosdocimi et al. [2014], respectively.  

From Salas and Obeysekera [2014], the system reliability over a planning 

period (n) under nonstationary conditions is given by 

∏
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)1(Re      (10) 

Another metric defined by Stedinger and Crainiceanu [2000] is the average 

annual risk of failure, which is simply the average of the annual exceedance 

probabilities over a planning period (n years): 
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Stedinger and Crainiceanu [2000] use (11) along with a damage function and 

discount rate, to compute the discounted equivalent risks for four flood forecast 

models. Following Stedinger and Crainiceanu [2000], we elect to introduce 

another measure of reliability which we term the annual average reliability: 

19 
 



( )∑
=

−=
n

i
ia p

n
liability

1
11Re     (12) 

 The above review of average return periods, risk of failure, reliability over 

a planning horizon and average reliability over a planning horizon under both 

stationary and nonstationary conditions led us to question which among the 

various indices would be most useful for communicating risk of failure under both 

stationary and nonstationary conditions. The following sections present our 

investigation of the average return period and reliability under nonstationarity in 

the context of design, planning, and communicating risk of floods.    

4. Generalized Probabilistic Behavior of LN2 Model of Flood Hazard 

4.1  LN2 Stationary Flood Hazard Model 

 Vogel et al. [1996] reviewed the pdfs which were commonly used in flood 

frequency analysis prior to that date. While the generalized extreme value (GEV), 

log Pearson type III (LP3) and three-parameter lognormal (LN3) are perhaps the 

most commonly used pdfs used for flood frequency analysis, the two-parameter 

lognormal (LN2) model was found by Beard [1974] and others to provide an 

excellent parsimonious alternative to those models and has since been commonly 

applied in flood studies [Stedinger and Crainiceanu, 2000; Lund, 2002].  Note 

also that an LN2 model is a special case of the log Pearson type III distribution, 

the mandated distribution for use in U.S. federal flood studies by Bulletin 17B 

[IAWCD, 1982].  Vogel et al. [2011] and Prosdocimi et al. [2014] document that a 

simple nonstationary LN2 model can provide an approximate yet general 

representation of the behavior of floods for rivers across the United States and the 
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United Kingdom, respectively, thus we employ that model here. Since our goal is 

to explore the behavior of flood risk under nonstationary conditions we begin with 

a two-parameter pdf, which enables more general comparisons. Future studies 

should consider extending our results to nonstationary models corresponding to 

other two parameter pdfs such as the Gumbel distribution as well as some of the 

more common three parameter models such as the GEV, LN3 and LP3 

distributions. 

Consider a stationary series of annual minima or maxima, X, which 

follows a two-parameter lognormal (LN2) distribution where Y = ln(X), and the 

mean and standard deviation of y are given by: 
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                )21ln( xCy +=σ                      (13b) 

where µx is the mean of X, Cx is the coefficient of variation in real space 

xxxC µσ=
, and xσ  is the standard deviation of X. The design event 

corresponding to an LN2 pdf is given by the quantile function  

     )exp( ypyp ZX σµ +=    (14) 

where Zp is a standard normal variable with a corresponding exceedance 

probability p.  

Under stationary conditions, the quantile function Xp can be evaluated for the 

event which has an average return period To, by computing the fixed exceedance 
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probability using (2) to obtain po = 1/To.  Under stationary conditions, all 

moments of both X and Y are assumed to be fixed over the planning horizon n.  

4.2 Nonstationary LN2 Flood Model 

 We follow Vogel et al. [2011] and Prosdocimi et al. [2014] who show that 

a simple exponential model of X versus time t captures the behavior of annual 

maximum floods at rivers in the United States and the United Kingdom, 

respectively. Such a model is easily fit using ordinary least squares (OLS) 

regression to fit the simple log linear trend model to describe the relationship 

between y over time t  

    ttt txy εβα ++== )ln(    (15) 

Note that we do not advocate the use of a trend model using time as a covariate, 

this model is only used here for illustrative purposes. We do advocate use of 

meaningful covariates to reflect future changes in the mean annual flood levels, 

such as covariates which reflect changes due to urbanization and/or climate.  

Regardless of whether or not a significant trend was detected in the observed 

flood series at thousands of rivers across the conterminous U.S., Vogel et al. 

[2011] found that the residuals in (15) were homoscedastic and well approximated 

by a normal distribution, both important assumptions needed to perform further 

statistical inference.  Although their evaluations included detailed hypothesis tests 

concerning the normality of regression model residuals and t-tests on model slope 

coefficients as well as graphical evaluations of homoscedasticity, their evaluations 

did not include a comprehensive assessment of the stochastic independence of the 
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model residuals or the flow series.  Vogel et al. [2011] (see their appendix) 

concentrated their analysis on the approximately 11% of rivers in the study which 

exhibited (obvious) positive trends. When applying ordinary least squares (OLS) 

linear regression, the resulting fitted model yields the conditional mean of the 

dependent variable so that the expectation of (15) yields an estimate of the 

conditional mean of Y, denoted here as tty βαµ +=| , because the residual term is 

assumed to have zero mean.  Importantly, this nonstationary trend model implies 

a reduction in 2
yσ as compared with stationary conditions, with that reduction 

proportional to the degree of the trend.   As shown in Appendix A-1, the 

coefficient of variation of the nonstationary flood series is: 

    1)1()12(|
2

−−+= ρ
xCtxC    (16) 

Note the two extreme cases of no trend in which case (16) reduces to xCtxC =| and 

a perfect trend model with ρ=1, which leads to 0| =txC .  Figure A1 (in Appendix 

A-1) illustrates the relationship in (16) and documents the small reduction in the 

coefficient of variation of the flood series X under typical nonstationary 

conditions.  Since values of ρ are likely to be quite small in actual situations (i.e. 

ρ<0.5), we elected to assume xCtxC =| because we found this effect to be of minor 

importance to our overall findings. 

Now if a hydrologist has a historic streamflow record of length N 

represented by xi for i= t1,…, tN years. The trend model 
tty βαµ +=|  becomes  

23 
 

















 +

−+=
2

1
|

N
ty

ttty βµ    (17) 

where β is the slope of the trend that extends from t1 to tN,  , y is simply the mean 

∑
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)ln(1 , and the annual maximum floods xt are measured for N  years 

starting at t1.   

The trend model in (17) can be used to calculate the conditional mean of 

Yt=ln(Xt) for any year in the future, t > tN.  We do not advocate the use of (17) for 

trend extrapolation, unless the user considers the use of physically meaningful 

covariates in the regression model and/or includes prediction intervals associated 

with such extrapolations which are known to widen considerably when a model is 

used in ‘extrapolation mode.’ [See Serinaldi and Kilsby [2015] for examples and 

a discussion on the possible implications of such extrapolations for a different 

model.] The use of OLS regression is quite powerful for trend extrapolation, 

because when the residuals are approximately independent, homoscedastic, and 

normally distributed, analytical expressions are readily available for computing 

both prediction intervals and the likelihood of type I and II errors.  Such type I 

and II probabilities may be readily integrated into a risk-based decision 

framework [Rosner et al. 2014] as probabilities of over- and under-design, 

respectively, and have been shown to be particularly important for understanding 

hydroclimatic change [see Vogel et al., 2013; and Prosdocimi et al. 2014]. 

Since exceedance and nonexceedance values are no longer fixed under 

nonstationary conditions, the quantile function under nonstationary conditions is 

obtained by substitution of the nonstationary mean ty|µ ,  and standard deviation 
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ty|σ  in (17) and (A2), respectively, into the nonstationary quantile function: 

)exp( ||| typtytp ZX σµ +=  which results in:  

   [ ]2
| 1)(exp ρσβ −+−+= yptp t

ZttyX   (18) 

See Appendix A-1 for a derivation of the reduction in the variance of Y which is 

implied by the nonstationary LN2 trend model. 

To provide a more physically intuitive understanding of the impact of 

trends on flood quantiles under nonstationary conditions, we employ the idea of 

magnification factor introduced by Vogel et al. [2011] and also tested by 

Prosdocimi et al. [2014].  Vogel et al. [2011] define the magnification factor M as 

the ratio of the T-year flood at some future t+Δt period to the To-year flood at time 

t. They further show that 

[ ]t
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ttpx
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∆+
= βexp

)(
)(    (19) 

for the nonstationary LN2 model given here.    

For a stationary LN2 variable the fixed exceedance probability 

( )xXPp ≤=  associated with a design event Xp, is given as 
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where the function Φ is the cdf for a standard normal variable.  This is easily 

adapted under nonstationary conditions,  to compute the changing values of pt, the 
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annual exceedance probability associated with experiencing an event greater than 

the design event X*: 
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Here we denote the design event as X* to emphasize that it is a fixed value which 

must be chosen by the design engineer under nonstationary conditions. Under 

stationary conditions, the design event is denoted as Xp and is given by (14), so 

that only under stationary conditions is Xp = X*. Note that for the stationary case 

(21) reduces to (20) and either can be used to compute both the average return 

period (Eqn. 2) and reliability (Eqn. 5) under stationary conditions. Under 

nonstationary conditions (21) can be inserted into (7)-(9), and (10) to compute 

nonstationary average return periods and reliabilities corresponding to a particular 

design event xp.  Again, the nonstationary mean ty|µ
,  and standard deviation 

ty|σ
 in (21) are given in (17) and (A3), respectively,  We emphasize that under 

stationary or nonstationary conditions, the choice of a design event is fixed, 

denoted here by X*.  Selection and computation of X* is quite straightforward 

under stationary conditions, but under nonstationary conditions, with values of pt 

changing in every year, its definition and computation is much more complex, as 

is discussed later in this paper.   

5. Results 
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In the following sections we explore the general behavior of the 

nonstationary LN2 model with the goal of improving our understanding of the 

likelihood of future floods (increasing exceedance probabilities and upward 

trends) associated with a particular design event X*, under nonstationary 

conditions.  To enable general comparisons, analyses, and conclusions, we make a 

number of simplifying assumptions including the following:  (1) the stationary 

coefficient of variation Cx is defined as that value at the end of the period of 

streamflow record, (t = tN), (2) Cx is assumed to be fixed throughout each 

planning horizon and equal to the nonstationary coefficient of variation, so that 

xCtxC =| , and (3) the trend in the mean of the annual maximum streamflow series 

is increasing over time. Now the behavior of floods under nonstationary 

conditions can be generalized using the nonstationary LN2 model in (18) and (21) 

along with the magnification factor in (19) and the general relationships between 

the moments in real and log space given in equation (13). 

 
5.1 Investigation of Return Period Distribution under Nonstationarity 
 

If the field of flood planning and management is to continue to use the 

average return period as a tool for communicating risk and informing 

infrastructure planning and design, it is important to understand the behavior of 

the probability distribution of the return period under nonstationary conditions. In 

this section we examine the behavior of the pdf of the return period under 

nonstationary conditions for increasing flood magnitudes. We assume a decadal 

magnification factor (Δt = 10), where M = exp(10β), and thus a value of M = 1.02 
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implies a 2% increase in flow magnitude every 10 years for all design events, 

regardless of their probability of exceedance.  

We begin by exploring how nonstationarity affects the return period or the 

waiting time until experiencing an event which exceeds the design event. The pdf 

of the return period under nonstationary conditions is given in (6) with 

exceedance probability pt computed from (21).  We assume that a design engineer 

has chosen a design protection level based on the stationary LN2 flood frequency 

model using the quantile function in (14) with p = 0.01, corresponding to a 

traditional ‘100-year’ flood.   

Of interest here is how a trend in the annual maximum floods impacts the 

pdf of the return period associated with the traditional 100-year design event.   

Figure 1-2 illustrates the pdf of the return period associated with a 100-year (po = 

0.01) design event for the case when Cx =1 for several levels of nonstationarity, as 

described by increasing values of the magnification factor M.  Figure 1-2 

illustrates that what was once an exponential distribution for the return period 

associated with the 100-year flood under stationary conditions becomes a very 

different probability distribution as the degree of nonstationarity increases.   
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FIGURE 1-2. Probability distribution function (pdf) of the return period 
associated with a traditional 100-year flood for Cx = 1 and a range of increasing 
trends (M = 1, 1.02, 1.14, 1.5). Note M=1 corresponds to stationary conditions 

Several conclusions can be drawn from Figure 2 concerning our experience of 

floods which exceed the traditional 100-year flood, under nonstationary 

conditions.  Our experience of the likelihood of the return period until a flood 

exceeds the design event changes dramatically both in terms of the shape of the 

pdf of the return period and its expectation. Importantly, the distribution of the 

return period is no longer exponential as is the case under stationary conditions 

(M =1). One implication is that if a structure is built for today’s po = 0.01 event 

and the future is not known with certainty (always the case), we do not know how 

the return period distribution will evolve, i.e. the shape it will take.  We also note 

from Figure 1-2 that regardless of the magnitude of a future trend, one can expect 

the po = 0.01 event to occur much sooner than 100 years as the magnitude of the 

trend increases, as evidenced by M.  
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Of interest is the impact of nonstationarity on our experience of return 

period associated with design floods of various magnitudes. Figure 1-3 illustrates 

the distribution of the return period associated with the traditional To = 10, 100, 

and 1000 year design events (p = 0.1, 0.01, and 0.001) under nonstationarity 

conditions described by M=1.14 and Cx=1.   Under these nonstationary conditions 

the average return period of the 100 year event is shifted to ~32 years, and 

remarkably, the average return period of the 1,000 year flood is reduced to 

approximately 66 years. Interestingly, the expected return period associated with 

the 10-year flood is essentially unchanged (~ 9 years), suggesting that rarer events 

may be more impacted by nonstationarity than more common floods. We 

conclude that the evolution of the return period distribution for different levels of 

nonstationarity (Figure 1-2) and from common to rare events (Figure 1-3) exhibits 

highly non-linear behavior and is likely to be impractically complicated for 

purposes of design, planning, management, and risk communication. These 
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findings are consistent with those of Serinaldi and Kilsby [2015]. 

 

FIGURE 1-3. The probability distribution function of the return period for po = 
0.1, 0.01, 0.001 events; Cx = 1, M = 1.14 

5.2 The Behavior and Choice of the Design Flood under Nonstationary 

Conditions 

 Figures 1-1 to 1-3 assume that the design flood is chosen under the 

assumption of stationary conditions.  Under nonstationary conditions, the design 

flood should be chosen in such a way as to account for the likelihood of future 

floods. For example, if we are to estimate a design flood under nonstationary 

conditions, we must employ equation (7) or (8) to describe the average return 

period T1, along with an appropriate nonstationary flood frequency model. To 

determine the design event X* which will ensure a value of average return period 
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T1 under nonstationary conditions defined by M and Cx, one can combine 

equations (8) and (21) and solve numerically for X* in the resulting expression: 
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Equation (22) leads to an estimate of the design event under nonstationary 

conditions which will have an average return period equal to T1; this is a useful 

equation for design engineers who need to size infrastructure based on the “new” 

100-year flood under nonstationary conditions.  Clearly, solving for the design 

event under nonstationary conditions using (22) is far more complex than under 

stationary conditions, and it should be noted that in the case of decreasing trends, 

if tmax is infinite, a numerical solution is not even possible. This is clearly 

problematic for practical use of such a metric for planning.  Figure 1-4 illustrates 

the behavior of the probability distribution of the return period associated with 

such a design event chosen so that average return period T1=100 years in all cases, 

regardless of the increasing degree of nonstationarity as described by increasing 

values of M. Figure 4 illustrates how the probability distribution of the return 

period associated with a design event having average return period of T1=100 

years changes shape from exponential in the stationary case (M =1) to a more 

normal or symmetrically shaped (M = 1.5) distribution. Interestingly, we find that 

in the presence of an increasing trend, the mean return period is actually more 

representative of the waiting time distribution, and may be more representative of 

when a failure will occur than under stationary conditions.   
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FIGURE 1-4. The pdf of the return period associated with a design flood, chosen 
in such a way as to ensure that the average return period is always 100 years, 
regardless of the degree of nonstationarity, considering a range of trends (M=1 to 
M=1.5) given that Cx = 1. 

For comparison purposes, we examine whether this same behavior in the 

return period distribution is observed when flood flows arise from a nonstationary 

Gumbel distribution. Using the same log-linear trend model as described in the 

previous section, we derive pt for the Gumbel distribution allowing the location 

parameter to vary with time with fixed Cx (as was described with the LN2 model).  

As in Figure 1-4, Figure 1-5 fixes the average return period at 100 years to 

illustrate the impact on the return period distribution due to a 5% increase in 

magnitude of floods over 10 years (M = 1.05), Cx = 0.25, for both Gumbel and 

LN2 flood flows. This investigation reveals that regardless of whether the flood 

flows are LN2 or Gumbel, there is a similar and striking evolution from an 

exponential to a more symmetric distribution when an exponential trend in the 
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annual maximum flood series is present. Further, Figure 1-5 indicates that the 

expected waiting time distribution may differ significantly depending on which 

probability distribution is selected to represent flood flows, yet another element of 

complexity added under nonstationarity.  

 
FIGURE 1-5. Comparison of the pdf of the return period associated with a design 
flood, which has a recurrence interval of 100 years, for M = 1 stationary (solid 
lines) and M = 1.05 (dashed lines), Cx = 0.25 assuming Gumbel flows (grey) and 
LN2 (black) 

We are also interested in how physical hydrology of the river system 

affects the probability distribution of the return period under nonstationary 

conditions. Here we use Cx as a proxy for hydrologic variability, where Cx < 1 

represents a system with relatively low variability as compared with Cx > 1. Since 

rivers with Cx < 1 are dominated by changes in the mean, they are most 

34 
 



influenced by increasing trends as shown in Figure 1-6 by the evolution from Cx = 

0.25 to Cx = 1.5 in each panel figure, moving from upper left (no trend M = 1) to 

bottom right (large trend M = 1.5).      

 
FIGURE 1-6. The pdf of the return period associated with a design flood which is 
chosen to ensure that the average return period is always 100 years, regardless of 
the degree of nonstationarity or coefficient of variation.  Curves show a range of 
Cx values (0.25 – 1.5); panel shows trends increasing from M = 1 (top left) to M = 
1.02, 1.14, 1.5 (bottom right) 

Figures 1-4 and 1-5 illustrate that the mean return period is more 

representative of the time to the event under nonstationary conditions than under 

stationary conditions.  Figure 1-6 illustrates that the shape of the pdf of the return 
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period also depends on the hydrologic variability as described by the value of Cx.  

We conclude from all of these investigations, that the pdf of the return period 

exhibits extremely complex behavior under nonstationary conditions, with its 

shape depending on both hydrologic variability, the level of nonstationarity, and 

the magnitude of the design event of interest.  Further examination of other 

commonly used pdfs such as the LP3 and GEV models would likely reveal the 

same patterns as shown here with LN2 and Gumbel. 

5.3 Comparisons of Summary Measures of Average Return Period under 

Nonstationarity 

Recall that there are two different summary measures of the average return 

period which have been advanced in the literature.  The traditional definition is 

simply the average of the distribution of the return period T1 given in (7) and (8).  

In addition, Parey et al. [2007, 2010] and Cooley [2013] introduced the return 

period as the number of years, T2, for which the expected number of exceedance 

events is equal to one, which can be solved numerically using eqn. (9). In this 

section we compare the behavior of these two different summary measures of the 

time to failure, keeping in mind that under stationary conditions they are 

equivalent.  To accomplish this comparison, we use (14) to compute the design 

discharge Xp corresponding to stationary conditions for p values corresponding to 

To = 10, 100 and 1000 year events.  Now each of those Xp values are assumed to 

be the fixed design event X* in eqn (21), which is then used for a particular Cx 

and M to determine the corresponding set of pt values for each design discharge.  

These values of pt are in turn used to compute average return periods T1 using (8) 
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and the return level T2 from (9). Figure 1-7 compares estimates of T1 (black lines) 

and T2 (grey lines) to the values of To corresponding to stationary conditions and 

shows how the average return periods reduce as M increases from stationary (M = 

1) to an extreme case (M = 3) for Cx = 0.5 (left) and Cx = 2 (right). Each plot in 

Figure 1-7 illustrates average return periods under stationary conditions: To = 10-

year (solid), 100-year (dot-dash), and 1000-year (dashed) events in the figure 

legend along with the average return periods T1 and T2.  The average return 

periods associated with the To year event undergo a dramatic reduction even with 

a small trend; for example the original To = 100-year event, when Cx= 0.5 (left 

panel) and M = 1.1, becomes a T1 = 30 year event. From this comparison we also 

note that though T1 and T2 differ in their assumptions, most significantly that the 

shift from ToT2 is more pronounced than To T1, the two measures behave 

similarly for the LN2 nonstationary model over a range of magnification factors 

and design events characterized by To. Thus our remaining results only 

concentrate on use of the more common metric, the average return period T1. 
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FIGURE 1-7. The average return periods T1 (black) and T2 (grey) vs. the decadal 
flood magnification factor M, for Cx = 0.5 (left) and Cx = 2.0 (right); lines are 
shown for the To = 10- (solid), 100- (dot-dash), and 1000- year (dashed) design 
events selected today, tn 

5.4 The Relationship between Reliability and Return Periods under Nonstationary 

Conditions 

Recall that under stationary conditions, there is a unique relationship 

between reliability, average return period and planning horizon as was illustrated 

in Figure 1-1.  Of importance is that the results illustrated in Figure 1-1 for 

stationary conditions are invariant to characteristics of the flood frequency model 

and/or hydrologic characteristics of the river under consideration.  In this section 

we explore the same relationships shown earlier in Figure 1-1 under nonstationary 

conditions by combining the theoretical expressions for average return period and 

reliability introduced in earlier sections with the nonstationary LN2 model.  

We begin by investigating the behavior of the reliability index under 

nonstationary conditions in Figure 1-8.  Figure 1-8 illustrates reliabilities over a 

realistic range of planning horizons for a fixed average return period of T1=100 
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years associated with the design event. Holding the average return period constant 

at T1=100, under nonstationary conditions, is similar to the earlier results shown 

in Figures 1-4 and 1-5, and contrasts with previous results where the design event 

was chosen using the stationary To=100 year event. Each panel in Figure 1-8 

represents a fixed trend (M = 1, 1.02, 1.14, 1.5) and uses different lines to 

represent a range of Cx values (0.25, 0.5, 1, 1.5). We choose to illustrate the 

impact of nonstationarity due to increasing trends on reliability by fixing the 

average return period at 100 years in order to highlight that a structure must be 

built larger (often unrealistically so) to achieve a particular reliability under 

nonstationary conditions. Such large design events would involve considerable 

increases in design costs. As expected, regardless of whether conditions are 

stationary or nonstationary, reliability decreases with planning horizon; and, when 

a trend is present, in systems with less variability (low Cx), reliability is higher 

since the time to failure is more predictable (as was shown in Figure 1-6).    
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FIGURE 1-8. Reliability over planning horizon for a fixed average recurrence 
interval T1 of 100 years; curves show a range of Cx= 0.25, 0.5, 1, 1.5; each plot 
considers a fixed trend (M = 1, 1.02, 1.14, 1.5) 

Of considerable interest are the large increases in reliability associated 

with design events which are chosen based on the average return period T1 under 

nonstationary conditions. One observes that in order to protect against a 100-year 

flood in a nonstationary setting, the chosen design event X* results in much higher 

reliabilities than we are normally accustomed to under stationary conditions. The 

reason, as we observed earlier, is that under nonstationary conditions the 

distribution of the time to the event of interest becomes much more symmetric 

and peaked as M increases, i.e. the average return period becomes a better 

indicator of the time to the next event as M becomes large. This results in a much 
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higher system reliability for planning horizons less than the design average return 

period T1. 

In Figure 1-9a,b we compare reliability to the average return period T1, as 

we did in Figure 1, this time considering trends (M = 1.02, 1.14, 1.5).  Several 

points arise from Figure 1-9, namely that the relationship between reliability and 

average return period is now extremely complicated and can no longer be defined 

by a single curve for a given n.  The relationship between reliability and average 

return period under stationary conditions is invariant to the flood frequency 

model, whereas as is shown in Figure 1-9, the relationship between T1 and 

reliability depends critically on the values of both M and Cx. Figure 1-9 also 

reiterates that for a given average return period T1, reliability is higher for larger 

trends because the design event is larger.  For example, in the theoretical case 

illustrated in Figure 1-9a, design flows for the T1 = 100 year event are x = 0.20 

m3/s for M = 1 (stationary), and increase to x = 0.23 m3/s  for M = 1.02, x = 0.52 

m3/s for M = 1.14, and x = 5.45 m3/s  for M = 1.5; thus to design for a structure 

with a 100-yr average return period under nonstationary conditions, the required 

infrastructure will be much larger than under stationary conditions. 
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   [a]       [b] 

FIGURE 1-9. Reliability versus average return period T1, for n = 50, [a] Cx = 1; 
and the set of curves compare the stationary (M=1) case to a set of increasing 
trends M = 1.02, 1.14, 1.5; [b] trend is fixed at M = 1.14; set of curves represent 
different values of Cx = 0.25, 0.5, 1, 1.5.  

 Note also in Figure 9 that knowledge of T1 alone is insufficient to provide 

a complete understanding of the likelihood of future flood events, because the 

reliability associated designs corresponding to a particular value of T1 vary 

dramatically, depending upon both M and Cx.  Nevertheless, the relationships 

shown in Figure 1-9 can guide hydrologists and design engineers on the 

likelihood of failure and the expected return period of a flood which will exceed 

the design flow under a range of nonstationary conditions. Both Figures 1-8 and 

1-9 indicate that in order to secure high average return periods, we must consider 

much higher reliabilities, which are likely to be unrealistic in practice. If instead 

we start with reliability as a way to determine the size of the design event we are 

willing to protect against, then we can better communicate the likelihood of 

failure under both stationary and nonstationary conditions.  

6. Discussion and Summary  
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In this paper we have drawn on existing theory and empirical results from the 

recent literature to provide the first general, comprehensive analysis of the 

probabilistic behavior of the return period and reliability under nonstationary 

conditions. Our results are a summary of old and new reasons for rethinking the 

use of an average return period as a design and communication metric for flood 

hazard planning. Under assumptions of stationarity, the average return period 

does not adequately communicate the likelihood of experiencing a failure over a 

given project life, which is precisely the concern for engineers designing 

infrastructure for flood management. We provide a theoretical example using a 

nonstationary lognormal (LN2) distribution to demonstrate that when evidence of 

nonstationarity exists in historic data, the time to failure distribution changes 

shape, the average return period is dramatically impacted, and the relationship 

between average return period and reliability becomes more complex since 

reliability now depends on Cx and the magnitude of the trend (M). From studying 

the time to failure distribution corresponding to a fixed average return period, we 

note its evolution from a right-skewed exponential tail to a very peaked and 

nearly symmetric pdf for larger values of M. A similar investigation with the 

Gumbel distribution reveals the possible generality of this finding. 

The illustrations presented here are general and can also be applied to 

decreasing trends to examine how the behavior of the return period distribution 

changes and whether these alterations are consistent or inconsistent with results 

presented here for the case of increasing trends. Further, the relationships here 

should also be compared with those from other distributions such as the log 
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Pearson type III distribution (LP3) and the generalized extreme value (GEV) 

[Salas and Obeysekera, 2014; Serinaldi and Kilsby, 2015].   

When assuming stationarity, the relationship between reliability, average 

return period and planning horizon is independent of the properties of the river 

under consideration and the resulting model of flood frequency.  However, under 

nonstationarity, the relationship is far more complex, so that our experience of the 

reliability of flood management systems as well as the average return period 

associated with the next flood exceeding a critical design event depend on a 

number of additional considerations including: the characteristics of the 

underlying nonstationarity, the form of the probability distribution of the annual 

maximum flood discharges, and the planning horizon.  The complexity in the 

shape and behavior of the distribution of the return period is further confounded 

by our inability to know and describe both the pdf and the trend in future flood 

series.  Our analysis has only considered a single model of nonstationary flood 

frequency, so that considering other probabilistic models, as well as other models 

of trends in the mean, variance, and skewness, would lead to considerable 

additional complications.  In other words, even for one of the simplest possible 

probabilistic models of nonstationarity, we have shown that our experience of the 

probability distribution of the return period is considerably more complex and 

unpredictable than its counterpart under stationary conditions. The assumption of 

an exponential trend model of annual maximum floods combined with the LN2 

distribution, while reasonable, may not apply to all cases (nonstationarities) and 

thus we recognize that the same patterns may not result from different models. 
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Thus the complexity of the relationship between the model parameters (M, Cx) 

and the design metrics (reliability and T1) grows in complexity as one considers 

additional uncertainties associated with nonstationary behavior of future floods. 

Serinaldi and Kilsby [2015] discuss how these increases in complexity add 

uncertainty when developing nonstationary models, and thus suggests careful 

treatment of uncertainty characterization before employing such models for 

design purposes.     

Interestingly, for the case of increasing trends presented here, we showed 

that such trends actually improve our ability to know the time to failure, because 

the distribution of return periods becomes much more peaked and symmetric, so 

that the average return period becomes a better indicator of the time to an 

(exceedance) event.  Correspondingly, large trends tend to produce very large 

design events and associated infrastructure costs, which are shown to be more 

reliable over a planning period than we normally experience under stationary 

conditions.  In order to achieve high reliabilities under nonstationary conditions, 

we must build structures for these larger design flows or accept a greater risk of 

failure, a decision that is now further complicated by the uncertainty of future 

nonstationarities. We show that a unique relationship between reliability and 

average return period exists for a given nonstationary flood frequency model but 

without knowing the form of the nonstationary model with certainty, drawing 

inferences about the reliability from the average return period becomes difficult.  

Further, given that the average return period is not intrinsically tied to a 

planning horizon, one might make a statement similar to the following in order to 
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communicate event likelihood over a certain period of time: “we are 80% sure 

that this structure, built to withstand today’s 1,000-year event, will not experience 

at least one exceedance event within the next 25 years.” From this confusing 

statement, it is difficult to discern the meaning of the average return period and 

much more succinct to simply report the 80% reliability of the design over the 

future 25 year planning horizon. If instead planners designed for a certain desired 

level of reliability as is done in other fields concerned with planning under risk, 

then the statement could read: “we are 80% confident that this structure will not 

fail in the next 25 years.” And, the associated average return periods (assuming 

one would desire reliability > 80%)  may be orders of magnitude higher as is 

illustrated in this study; the need to avoid misrepresenting the risk of failure is one 

reason we recommend replacing the average return period with the notion of 

reliability over planning horizon. 

The consequences of misinterpreting the expected waiting time to an extreme 

event do not only impact the physical system, they also impact perceptions of 

individuals interacting with the floodplain. In the literature of flood risk 

communication, Lave and Lave [1991] report that floodplain residents generally 

expect to be protected for a particular average return period and have little 

understanding of the true risk of flooding during their lifetimes. Risk 

communication is itself a complex issue, as empirical research suggests that 

obstacles to understanding risks from natural hazards often require strategies 

deeper than presenting facts, such as using tactics to dispel heuristics and 

preconceived mistaken theories (see Bier, 2001; for a review).  

46 
 



7. Conclusions 

We have shown how a parsimonious nonstationary lognormal model can be 

combined with recent research on nonstationary return periods, risk and reliability 

to obtain a very general understanding of the risk posed by future floods.  The 

probability distribution of the time to failure of a water resource system under 

nonstationary conditions no longer follows an exponential distribution as is the 

case under stationary conditions, with a mean return period equal  to the inverse 

of the exceedance probability To=1/p.  Our findings raises numerous questions 

about our ability to understand and communicate the likelihood of future flood 

events under nonstationary conditions.  We recommend replacing the notion of an 

average return period with reliability over a planning horizon, a metric used in 

almost all other realms of water resources planning and many other fields that 

communicate long term risk. Referring to a system’s reliability directly conveys 

two pieces of information: the likelihood of no failure within a given number of 

years (i.e. over a planning horizon) and the accepted level of reliability that is 

implicit in the design.  In the context of climate variability and change, and as 

cities become more urbanized , decisions on how to plan our water resource 

infrastructure become  increasingly complex [Rootzén and Katz, 2013; 

Obeysekera and Park, 2013; Rosner, et al., 2014; Condon et al., 2015]. Our 

evolving perception of design and adaptation is increasingly recognized by those 

who study “socio-hydrology” in the context of floods and propose models and 

frameworks for the feedbacks/interactions between society and risks from the 

hydrologic environment [Di Baldassarre et al., 2013; Viglione et al., 2014]. 
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Future work will investigate how a modern risk-based decision analysis 

framework can aid selection of an appropriate design event for hydrologic design 

under nonstationarity and explore new tools for characterizing nonstationary 

probability distributions.  
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ABSTRACT 

The field of hazard function analysis (HFA) involves a probabilistic assessment of 

the ‘time to failure’ or ‘survival time’ of an event of interest and is widely used in 

epidemiology, manufacturing, medicine, actuarial statistics, reliability 

engineering, economics and elsewhere. HFA assumes that the probability of 

exceedance of the event of interest, known as the hazard function, is changing 

over time, thus this field should be of considerable interest to hydrologists 

concerned with nonstationary processes.  We describe how HFA can be used to 

characterize the probability distribution of the return period and the reliability, 

two primary metrics in hydrologic design. We provide a general introduction to 

HFA with application to water resources management by providing a clear 

linkage between HFA and flood frequency analysis.  Explicit linkage between the 

flood series (X) and failure times (T) enables computation of corresponding 

average return periods and reliabilities for a nonstationary 1-parameter 

exponential (EXP1) hazard model from first principles. We then use Monte-Carlo 

simulation to extend HFA for the case of a nonstationary 2-parameter lognormal 

distribution, linking the theory of an accelerated life modeling problem with flood 

frequency analysis. Our findings suggest that a 2-parameter Weibull distribution 

is a reasonable model for the survival (reliability) function. We document how 

HFA is a relevant approach for characterizing nonstationary flood series and 

provide engineers with tools to support hydrologic design decisions under 

nonstationary conditions. 
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1. Introduction 

  Many disciplines are concerned with the survival time of some process 

before experiencing a certain type of event defined as a failure. Such analyses 

termed “Hazard Function Analysis” (HFA) informs many fields, for example, in 

the medical field, the onset or relapse of a disease; in economics, the time until a 

person becomes employed; in reliability engineering, the time until a device fails; 

and in actuarial science, the time to death.  Thus, HFA comprises a well-known 

set of tools applied in many disciplines for characterizing the probability 

distribution of the time to failure associated with specific events or processes of 

interest over the course of a lifetime or some other time period of interest.  In 

general, the ability to represent the time to failure and its distribution are crucial 

for understanding event likelihood through time, given that year to year the 

likelihood may change. For example, many design standards in reliability 

engineering and manufacturing, as well as policies for clinical trials in public 

health, are based on the survival time of a piece of equipment, or a person’s 

expected lifetime after diagnosis of a disease, etc.   

The field of HFA has a rich and long history as evidenced by the number of 

textbooks on survival analysis for handling a wide range of hazards [see Klein 

and Moeschberger, 1997; Cleves, 2008; Wienke, 2010; Lawless, 2011; 

Finkelstein, 2010].  HFA is also included as a chapter in textbooks on probability 

[Bean, 2001] and statistics [Kottegoda and Rosso, 2008].  Remarkably, in spite of 

this fact, to our knowledge we are one of the first studies to offer a bridge 
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between HFA and water resources planning and management. The introduction of 

HFA methods and theory to the hydrologic community for understanding and 

characterizing nonstationary flood series is the primary goal of this study.    

Critical to HFA is the hazard rate function, h(τ), which describes the  likelihood 

through time, τ, associated with a particular event of interest. Table 1 presents 

definitions and applications of the hazard rate function in other fields [Klein and 

Moeschberger, 1997].  

TABLE 2-1. Cross-disciplinary examples of hazard function definitions and 
applications 
Field Definition Example 

Manufacturing Conditional 
failure rate Parts wearing out in a machine 

Economics Inverse Mills' 
ratio Control for selection bias in regression 

Epidemiology Age-specific 
failure rate 

Number of people in specific age group 
contracting a disease 

Actuary statistics Force of mortality Likelihood of dying at a particular age 

Reliability 
engineering Failure rate Failure of electronic devices 

 

Analogous to the fields outlined in Table 2-1, water managers, flood planners, and 

hydraulic design engineers are concerned with the expected waiting time (average 

return period) until a system might experience at least one exceedance event. 

Interest also focuses on a system’s reliability, or the likelihood to survive a 

planning period without experiencing at least one exceedance event.  Under 

stationary conditions, computing the average return period and associated 
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reliability of experiencing a design flood (or larger) is straightforward because the 

exceedance probability (p) of the event of interest is constant over time, and thus 

the return period or survival time, T, follows an exponential (continuous case) or 

geometric (discrete case) distribution with average return period equal to 1/p.  

Under nonstationary conditions, p is changing through time, which is exactly the 

condition dealt with by HFA; thus a second goal of this work is to reevaluate the 

behavior of traditional design metrics such as the average return period and 

reliability in the context of HFA.  

The presence of nonstationarity in hydrologic systems due to possible changes in 

climate, land use and water infrastructure has received considerable attention 

since the work of Milly et al., [2008] in spite of the reservations of Cohn and 

Lins, [2005], Matalas [2012] and many others.  The climatology community has 

been active in publishing research relating the impact of nonstationarity on 

frequency analysis of climatic events [Katz and Brown, 1992; Olsen, 1998; 

Cooley, 2013].  Similarly, there is considerable interest in nonstationary 

hydrologic processes such as trend detection of numerous indicators including: 

temperature [Parey et al. 2007; 2010], annual maximum precipitation [Westra et 

al., 2013], alterations in peak flow series [Vogel et al., 2011; Villarini et al., 2009] 

and streamflow variability [McCabe and Wolock, 2014].  Bayazit [2015] reviews 

literature on nonstationarity in hydrologic systems and the impact on design 

metrics such as average return period and risk of failure; Read and Vogel [2015] 

examine the implications of nonstationarity on reliability of water resource 

systems. This recent attention to nonstationarity with regard to water resource 
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planning has catalyzed a need to apply new methods for evaluating extreme event 

risk and reliability, especially given the trajectory of estimated damage costs from 

certain hazards, e.g. the National Weather Service projects flood damages will 

increase by $30 billion from 2013-2043 (www.nws.noaa.gov/hic).  

  There is now a plethora of recent literature relating the impact of 

nonstationarity on hydrologic systems with most work concentrated on the 

development of models of nonstationary flood frequency [see Bayazit, 2015 for a 

review]. There is a much smaller but growing literature which focuses on the 

impact of nonstationarity on design indices such as reliability and average return 

periods [see Read and Vogel, 2015 for review].  Surprisingly, none of those 

studies which consider nonstationarity in hydrologic systems mention the 

potential of HFA as a framework for this topic, nor provide an explicit link 

between HFA and flood frequency analysis as we do in this work. 

A primary goal of this paper is to provide a general introduction to the theory and 

background for relating HFA to flood planning under nonstationarity. Since 

hydrologic engineers are concerned with metrics such as average return period 

and reliability, which become more complicated under nonstationary conditions, 

we see value in applying concepts from HFA, which model the risk of event 

occurrence over time. We begin with an introduction to the definition and theory 

behind hazard function analysis, followed by a review of hazard function 

applications from the water resources literature; section 2 presents an analytical 

derivation of hazard function analysis for the EXP1 model; section 3 describes the 

methodology for fitting a hazard function model to one example of a more 
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realistic nonstationary model of flood frequency (nonstationary LN2).   

Discussion and conclusions in sections 4 and 5 focus on implications for 

employing hazard function analysis tools for extreme event planning under 

nonstationarity, and recommendations for future work. 

1.1 An introduction to hazard function definitions and theory 

The hazard function h(τ) describes how the likelihood of experiencing an event 

changes through time; it is normally not considered a probability but rather a rate 

that provides an essential piece of information in studies concerned with 

processes such as the deterioration of infrastructure, remaining ‘survival’ life of a 

device or human being, or time of relapse to a disease, etc.  Hazard functions are 

of particular interest in environmental and water resource applications due to the 

impacts of nonstationarity associated with urbanization, climate change, 

infrastructure decay and other factors which cause abrupt and/or continual 

changes in the likelihood associated with various flood and other hydrologic 

events of interest.  

The hazard rate function is defined as the conditional likelihood of experiencing a 

flood within a small interval of time (τ, τ + Δτ), given that a flood has not yet 

occurred in (0, τ):  
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ττττ

τ
τ

τ
≥∆+≤≤

∆
=

→∆
ttPh   (23) 

where h(τ) is in units (1/time) and Δτ is an infinitesimally small time step and the 

variable τ, denotes the deterministic variable time.  Although the hazard rate 
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function is not a formal probability function, it is related to the probability density 

function (pdf), fT(t), and the cumulative distribution function (cdf)  FT(t), of the 

return period, or time to failure T, by:  

)(1
)(

)(
tF

tf
h

T

T

−
=τ     (24) 

where the complement of the cdf, 1-FT(t)= ST(t) is termed the survival function, 

and represents the exceedance probability P(T > t) that a failure will not occur in a 

given time period.  Here T denotes the random variable which we term the time to 

failure or return period of a particular event and t denotes a realization of that 

random variable, both of which are distinguished from τ which denotes 

deterministic time.   

Most previous applications of HFA assume a functional form for h(τ), and then 

derive fT(t), FT(t) and ST(t) using the relation in (24) rather than explicitly linking 

h(τ) to the properties of the random variable of interest, which here is the 

magnitude of a design flood event Xp, where Xp denotes the quantile function of 

the AMS of floods X. Since numerous textbooks provide the governing 

relationships for relating h(τ), ST(t), FT(t) and the cumulative hazard function H(τ) 

[Lawless 2011] we do not derive them here, and only present the following well 

known results: 
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t
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We use subscripts for the pdf, cdf, and the survival function to highlight that the 

random variable T is equal to return period, in contrast with the hazard functions, 

h(τ) and H(τ), which are not formal probability functions and thus do not depend 

on the random variable T.  In the following sections the above theoretical relations 

for HFA are applied to the problem of nonstationary flood frequency analysis.  

HFA normally begins with the hazard function, h(τ), usually chosen based on 

empirical evidence or expert judgement. For example, the user assumes that h(τ) 

takes a certain shape (e.g. ‘bathtub’, increasing, decreasing, etc.) that reflects ones 

intuition about the nature of future changes in the exceedance probability of a 

certain hazard over time (τ). For example hazard rate functions for electronic 

devices are usually assumed to be constant through time, and for mechanical 

devices are often “bathtub” shape curves, with a decreasing failure rate initially, 

leveling off for a duration, and then increasing monotonically as parts eventually 

wear out.  Similar hazard rate functions have been advocated for infrastructure 

problems [see Figure 9.4.3 in Kottegoda and Rosso, 2008 for an example]. If little 

or no information about the hazard function is available, a parametric survival 

function ST(t) such as the Exponential or Weibull, or non-parametric estimator 

can be implemented to define the survival function from an empirical data set 

[Klein and Moeschberger, 1997]. A discussion of the advantages and limitations 

of using non-parametric methods is given in Wienke [2010].  The survival 

function ST(t) is equivalent to the reliability function which represents the 
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probability of no-failure, defined as the exceedance probability for the random 

variable time, T, for which t is the realization. The survival function is more 

commonly defined in terms of the cumulative distribution function (cdf) of t, 

termed FT(t), so that ST(t) = 1 – FT(t). Our challenge is to connect the hazard 

function h(τ) and survival function ST(t) with the probability distribution of the 

flood event X.  Our work differs from previous studies on hazard function theory 

because it begins with rigorous definition of h(τ) defined by the exceedance 

probability (po) associated with the design flood event xo, so that h(τ) =po for a 

stationary case.   

Consider in detail the stationary case where failure rates are constant through 

time, thus the hazard function h(τ) = po is fixed in which case the time to failure T, 

follows a one-parameter exponential distribution (continuous case) or geometric 

distribution (discrete case), regardless of the probability density function (pdf) 

associated with the design discharge, Xo [Gumbel, 1941; Chow, 1965].  In this 

case the average return period, or the mean time to failure (MTTF),  is simply 

expected value of an exponential random variable, where E[T] = 1/p, the p% 

exceedance event.  

Now consider the nonstationary condition where historic streamflow data show an 

increasing trend in the mean of the annual maximum peak flows over time. Such 

trends have found to be quite common in urbanizing areas for annual maximum 

streamflow series (AMS) [Vogel et al., 2011; Prosdocimi et al. 2014]. A trend in 

the flood series also indicates that the exceedance probability associated with the 

design event changes as a function of time, pτ, and thus the expected time E[T] 
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until a flood occurs is no longer 1/p, the common assumption in the majority of all 

hydrologic and water resource investigations to date.  HFA is ideally suited to this 

task because a nonstationary hazard rate function, h(τ) can be derived function 

which reflects the change in the exceedance probability over time, for a design 

given by xo(po) at time τ = 0. Thus in contrast with previous applications of HFA, 

in this context h(τ) has a very important and precise definition equivalent to the 

probability that a flow will exceed the design event conditioned on τ, or precisely, 

h(τ) = pτ = 1 - Fx(xo, τ).  This definition in and of itself is useful in planning, 

because it reflects the increasing exceedance probability associated with the 

original design if the future flood regime exhibits nonstationary behavior.  

1.1 Review of hydrologic planning metrics from climate and hydrologic literature 

Our primary concern is with modeling the probability distribution of the return 

period, or time to failure for infrastructure which provides protection against 

future floods.  We begin by reviewing the stationary case, where the hazard rate 

function or failure rate is constant through time, and an engineer needs to design a 

structure to withstand a certain design event, e.g. the 1% exceedance event, p = 

0.01, or the 100-year flood, E[T] = 1/0.01 = 100.  The probability of this event in 

each year over a planning period n, τ = 1,…n is assumed constant (i.e. h(τ) = 

constant in eq. 2), and the average return period E[T]=1/p, is equal to the expected 

value of a geometric series (discrete) or an exponential series (continuous) with 

rate parameter p.   
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Now consider the nonstationary condition where historic flood data show an 

increasing trend in the mean of the AMS over time. Such trends are quite 

common in urbanizing areas [see Vogel et al., 2011; and Prosdocimi et al. 2014]. 

While a number of recent studies have raised concerns over use of the average 

return period in the context of nonstationarity [Sivapalan and Samuel, 2009; 

Cooley, 2013; Salas and Obeysekera, 2014], few examples of practical 

applications of nonstationary flood frequency models and alternatives to the 

average return period are available in the hydrologic literature.  

Concerned with climate change, Olsen (1998) first introduced a nonhomogeneous 

form of the geometric distribution to define the average return period (T1) under 

nonstationary conditions.  That work was later extended by Cooley (2013) and 

Salas and Obeysekera (2014) to hydrologic systems. Their formulations rely on 

knowledge of pτ, defined as the annual probability of exceeding a design flood 

assumed to be continuously increasing every year; then in general the expected 

return period is:  
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where T1  is defined as the average return period, or expected waiting time until 

the next exceedance event. Another definition of the average return period was 

defined as the time it takes to experience exactly one exceedance event [Parey et 

al., 2007, 2010; Cooley, 2013]. Read and Vogel [2015] argue that the concept of 

an average return period is confusing and misleading for communication of the 

risk posed by and the likelihood of future floods under both stationary and 
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nonstationary conditions.  Read and Vogel [2015] recommend use of the 

reliability function as an alternative metric to communicate flood risk and 

likelihood to engineers and decision makers. Considering the increasing societal 

awareness and associated literature on planning under nonstationary conditions in 

the water resources field we see great relevance in extending HFA to enable 

future discussions of hydrologic planning in a nonstationary context.     

1.2 Survival and hazard function analysis in the water resources literature 

Applications of survival and HFA in the water resources literature are sparse and 

targeted toward specific flood or other case studies rather than a general analysis 

that attempts to relate HFA to flood frequency analysis as is the goal here. Several 

researchers have applied proportional hazard (PH) Cox regression models [Cox, 

1972] for characterizing flood risk [Futter and Mawdsley, 1991], climate variation 

[Maia and Meinke, 2010], and to changes in flood behavior by the peaks over 

threshold method [Smith and Karr, 1986; Villarini et al., 2010], based on 

covariates. Cox models are classified as PH models, because the hazard for one 

participant (location) is a fixed proportion of the hazard for another participant 

(location), and the rate of occurrence process has a functional dependence on a 

covariate process [Cox, 1972]. Literature on ‘trend attribution’ in hydrology have 

applied PH models to identify mechanisms for changes in peak flood regimes 

[Cunderlik and Burn, 2004; Villarini et al., 2010], though much more research is 

needed in this area [Merz et al. 2012]. Cox type models are popular in the bio-

statistics literature [Klein and Moeschberger, 1997], and are considered very 

useful in determining whether covariates (stationary or time-varying) influence 
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the rate of occurrence of events (i.e. does climate influence the occurrence of 

floods, droughts, etc. for our application). One advantage is that the Cox model 

does not require knowledge of the functional form for the hazard function, which 

as we have discussed is often unknown in practice; one potential issue in the 

practical application of HFA is the ability to determine a plausible baseline hazard 

function, a requirement for the Cox model. Our study takes a different approach 

by deriving the hazard function from our knowledge of the probabilistic 

properties of the flood series X, and the design event Xp. 

Several disciplines concerned with the cdf or survival function of the time to an 

event of interest have employed HFA: e.g. in economics [Kiefer, 1988] and 

transportation [Hensher and Mannering, 1994].  In the hydrology literature, Lee et 

al. [1986] applied HFA to the problem of multi-year drought durations. After 

testing several hazard functions for modeling the temporal behavior of 

exceedance probabilities corresponding to observed droughts, the authors 

suggested a logistic model for h(τ) with an exponential correction for short 

durations.  

Despite the obvious applicability of HFA to  hydrologic challenges associated 

with infrastructure design and planning under nonstationarity, only a handful of 

hydrologic studies even mention HFA  [Katz and Brown, 1992; Wang et al., 

2010; Zhong & Hunt, 2010], and only one application of the type of accelerated 

failure time (AFT) hazard modeling, introduced here, could be found in the water 

resources literature [Lee et al., 1986].  
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 In this initial application of HFA to nonstationary flood frequency analysis we 

present two realistic cases to show how HFA can be useful as a framework for 

characterizing reliabilities and average return periods under nonstationary 

conditions.  Naturally, future studies are needed to extend our analysis to other 

realistic cases.  We provide a derivation of the hazard function, survival 

(reliability) function and cumulative hazard function for two cases which are 

representative of the behavior of a wide class of flood management systems.  Our 

analysis results in  a complete probabilistic description of the return period  

corresponding to nonstationary flood series arising from: (1) a nonstationary one 

parameter exponential (EXP1) distribution to demonstrate how the properties 

random hazard variable X corresponding to a flood series, can be related to the  

probabilistic properties of the random variable time T; and (2) a more realistic 

case considering a nonstationary lognormal model which has been shown to 

provide an excellent approximation to AMS floods for thousands of rivers in the 

US (Vogel et al. 2011) and the UK (Prosdocemi et al. 2014).  In the first case, our 

entire analysis is analytical resulting in very general closed-form results. For the 

second, more realistic case, Monte-Carlo simulations are used to obtain general 

results, because analytical results are unavailable. In this second case we use 

goodness of fit methods to document that the 2-parameter Weibull (Weibull-2) 

distribution provides a reasonable model of the reliability (survival) function. We 

then use multivariate regression to relate the parameters of the Weibull-2 

reliability model with those of the nonstationary LN2 flood model and compare 

estimates of the average return period corresponding to the HFA analysis with 
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Monte Carlo results. The resulting model can be applied for any case where AMS 

floods exhibit a log-linear trend in the mean and follow a LN2 distribution. 

The analysis presented through these examples provides readers with a 

methodology for integrating HFA with standard hydrologic frequency analysis 

and design metrics that hydrologists are familiar with, and also with the language 

and understanding for accessing the HFA literature.  Thus we expect our findings 

and approach outlined to enable numerous future extensions to the hydrologic 

community for planning and design under nonstationarity, specifically 

demonstrating how planning metrics such as reliability and average return periods 

can be computed for a river system using independent methods from HFA. 

2 Hazard Function Analysis for Exponential Flood Peaks  

The exponential distribution is widely used in the peaks over threshold (also 

called partial duration series or PDS) method for characterizing the magnitudes of 

flood exceedances above some set level [Stedinger et al., 1993].  For example, 

Stedinger et al. [1993] document that if the number of PDS flood arrivals follow a 

Poisson process and their magnitudes follow an exponential distribution, then the 

series of AMS flood magnitudes will follow a Gumbel distribution. Clearly the 

exponential pdf plays a pivotal role in the theory of extremes.  In this section we 

derive general results corresponding to HFA for the case when flood series follow 

an EXP1 distribution.  This analysis enables us to demonstrate how the 

probabilistic properties of as a series of POT flood magnitudes X, and an 

associated design event, are related to their corresponding probabilistic properties 

of their failure times, T.   
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To contrast the application of HFA with the nonstationary case, we begin by 

considering the much simpler and more common stationary case.  The pdf and cdf 

of an EXP1 random variable, X, representing the flood magnitude above some 

threshold are given by  

)exp()( xxf x λλ −=    (28) 

)exp(1)( xxFx λ−−=    (29) 

where λ  is the rate parameter, with E[X] = xµ = 1/λ .  Consider po = 1- Fx(x) the 

fixed exceedance probability associated with design event 
opX given by the 

quantile function obtained from (29): 

)ln(1
op pX

o λ
−=    (30) 

 Recall from eqn. (23) that h(τ)=p, so that the survival function is given by 

substitution of h(τ) = p into eqn (25) resulting in 
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Similarly, since fT(t)=dFT(t)/dt we obtain the pdf of the time to failure T, as an 

exponential distribution with parameter p, so that the average time to failure 

E[T]=1/p for this simple stationary case. 
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Now consider the nonstationary case in which the random variable X increases 

with time (τ) due to a trend in the mean, represented by the following exponential 

model:  

( )τβ
λ

τµ ⋅= exp1)(x     (32) 

Note that for no trend, the term β=0 and the nonstationary mean reduces to the 

stationary mean λµ /1=x .  Although the trend parameter β denotes the 

magnitude of the flood trend, this parameter is difficult to physically interpret. 

Instead, Vogel et al. [2011] and Prosdocimi et al. [2014] define the more easily 

understood flood magnification factor M as the ratio of the flood magnitude in 

year (τ  + ∆τ) to the flood magnitude in year τ.  Combining the quantile function 

in (30) under stationary conditions with the model for the nonstationary mean in 

(32) leads to an expression for M for a nonstationary EXP1 variate: 
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which, interestingly, is identical to the magnification factor derived by Vogel et 

al. [2011] for a nonstationary lognormal variable.  The cdf of a nonstationary 

EXP1 variable is obtained by inserting (32) into (29) and replacing β with M 

given in (33) leading to: 

     )exp(1),( / ττλτ ∆−⋅−−= MxxFx   (34) 
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If the design event Xp is based on conditions at τ = 0, then Xp = Xo and p = po and 

the design event is fixed so that combining (30) and (34) leads to an expression 

for the hazard rate function h(τ) = pτ as:  

ττ

ττ
∆−

=−=
/

),(1)( M
oox pxFh    (35) 

After fixing the design event, the random variable of interest is now T, the time to 

failure, with t as its realization, and henceforward use τ solely to represent the 

deterministic time.  The survival function ST(t) and the cumulative hazard 

function H(τ) are easily obtained by inserting (35) into the relationships in (25) 

and (26), respectively, and solving numerically: 
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The cumulative hazard function H(τ) is the integral of the hazard function over 

time, interpreted as the total hazard, or equivalently, as the number of failures 

expected to occur in a given time period, assuming failures can repeat [Cleves, 

2008].   

The pdf is easily computed from the cdf by )()( tF
dt
dtf TT =  which leads to the 

following expression, which may be solved numerically: 
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Above we have shown how HFA can be used to relate the probabilistic properties 

of an EXP1 flood series X combined with a fixed design event, to the properties of 

the time to failure distributions associated with the resulting design event.  Figure 

2-1 illustrates the hazard function computed from (35) for a set of trends 

parameterized by decadal (Δτ=10 years in eqn. 33) magnification factors (M = 1, 

1.05, 1.2, 1.5, 2) assuming [a] po = 0.1 and [b] po = 0.01. We note from Figure 2-1 

that the hazard rate function for the nonstationary EXP1 model is no longer 

constant through time as it was under stationary conditions; and, that greater 

trends are associated with more accelerated hazard rates. While h(τ) is an 

important mathematical function in hazard analysis, and serves as the linkage 

between the probabilistic properties of the time to failure, T, and the properties of 

the flood series X, for the purposes of flood planning and risk communication, the 

survival function, cdf and  pdf of T are more useful tools in practice.  

FIGURE 2-1.  Hazard rate function h(τ) = pτ for the nonstationary EXP1 case; 
lines represent trends parameterized by a range of decadal magnification factors 
(M = 1, 1.05, 1.2, 1.5, 2) for two possible event sizes [a] po = 0.1, [b] po = 0.01. 
Note the log scale for the x-axis (time).  
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The survival function ST(t) given in eqn (36) and shown in Figure 2 assumes p o = 

0.01 for a range of trends (M).  The time to failure distribution is clearly impacted 

by the presence of an increasing trend, evidenced by the departure from the 

classic exponential curve corresponding to a stationary EXP1 model in Figure 2-

2. Realizations of ST(t) yield important information about the distribution of the 

time to an exceedance event, or the reliability of a system, and how trends impact 

this experience.  

 
FIGURE 2-2.  Survival function, ST(t) = Reliability(t) for the nonstationary 
(EXP1) model with po = 0.01; lines represent trends parameterized by a range of 
decadal magnification factors (M = 1, 1.05, 1.2, 1.5, 2).  

The cumulative hazard function H(τ) given in eqn (37) and plotted in Figure 3 

provides a way to interpret the total hazard through time. From eq. (37) H(τ) is 

the integral of the hazard rate function, which represents the number of events up 

to a particular point in time.  Note that for the stationary case, H(τ) = 1 at τ = 100 

indicating that only one event is expected within this time period.  As the 
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magnitude of the trend increases, the amount of time it takes to experience an 

event (or magnitude above some threshold) decreases; for example Figure 2-3 

illustrates that with M = 1.5, the po = 0.01 event may now occur twice in 100 time 

periods (or once in 60 periods).  

 

FIGURE 2-3.  Cumulative hazard function, H(τ) for the nonstationary EXP1 
distribution with po = 0.01; lines represent trends parameterized for a range of 
magnification factors (M = 1, 1.05, 1.2, 1.5, 2). 

In the context of flood planning, engineers and managers are concerned with 

probabilities associated with certain design events, and summary metrics that 

measure central tendency of these events. The pdf of the time to failure 

distribution given in equation (38) illustrates important properties of how its 

shape as trend magnitudes increase.  Figure 2-4 (panels [a-c]) illustrates how 

trends in several event sizes (po = 0.1, 0.01, 0.001) impact the behavior of the 

distribution of the return period in terms of both timing and shape.  Figure 2-4 

documents that different arrival times are occurring in complex patterns, e.g. the 
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arrival time distribution for a smaller event (po = 0.1) is less impacted than a 

larger event (po = 0.001) for the same magnitude trend. 

 

 

FIGURE 2-4. The pdf of the time to failure distribution for the nonstationary 
EXP1 model; each figure shows a range of possible trend values by the 
magnification factor (M = 1, 1.02, 1.25, 1.5) and panels are per event size [a] po = 
0.1, [b] po = 0.01, [c] po = 0.001. 

The HFA corresponding to a nonstationary EXP1 model of flood magnitudes is 

summarized using the functions h(τ), ST(t), and H(τ) and provides a window into 

how the time to failure distribution shape and timing change due to trends, and the 

type of information we can use for planning under nonstationary conditions. Our 

results for nonstationary EXP1 flood series based on HFA are analogous to the 

results of Read and Vogel (2015) for a different nonstationary flood frequency 

model and using completely different methods of analysis.  Their findings and our 

findings emphasize the importance of extending HFA to other realistic 

nonstationary flood frequency models. 

3 Hazard Function Analysis for Nonstationary 2-Parameter Lognormal 

(LN2) Floods  
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In the previous section we derived general results for a nonstationary exponential 

model of flood series which provides a good representation of the behavior of 

partial duration series.  Here we consider AMS of floods, and thus a more 

complex pdf of flood series is needed.  We employ a nonstationary LN2 model 

introduced by Vogel et al. [2011] and Prosdocimi et al. [2014] based on evidence 

that the LN2 distribution is a suitable approximation for representing the pdf of 

AMS flows [Vogel and Wilson, 1996; IACWD, 1982; Villarini et al., 2009] and 

that a log-linear (exponential) trend model is simple and effective for 

approximating a change in the mean of the logarithms of AMS flows through time 

for thousands of rivers in the USA [Vogel et al., 2011] and the UK  [Prosdocimi 

et al., 2014], particularly in urbanizing areas.  The goal of the following 

experiments is to use Monte-Carlo simulation of AMS flows arising from a 

nonstationary LN2 model to examine the probabilistic properties of the return 

period and to apply goodness of fit measures to select a suitable probability 

distribution for approximation of the survival function associated with the return 

period.  Our application of HFA differs from many previous applications of HFA 

concerned with modeling and finding a suitable distribution for h(τ).  Instead, we 

derive h(τ) from properties of the nonstationary LN2 model and the associated 

design event, and instead, we seek a parametric distribution to represent the 

failure time distribution and survival function ST(t). 

Read and Vogel [2015] provide details on steps to derive an expression for pτ for 

a LN2 random variable assuming the log-linear trend model

τττ ετβα +⋅+== )ln(xy , where an ordinary least squares (OLS) regression 
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yields estimates of the model parameters α and β for the model of the conditional 

mean of y given by τβαµ τ ⋅+=|y . Note that this nonstationary trend model 

implies a proportional reduction in 2
yσ compared with stationary conditions that 

depends on the magnitude of the trend. Read and Vogel [2015] derive a formula 

for computing the coefficient of variation Cx|τ of the nonstationary series X given 

by,  

    1)1( )1(2
|

2

−+= −ρ
τ xx CC    (39) 

Note the two extreme cases of no trend in which case (17) reduces to Cx|τ = Cx and 

a perfect trend model with ρ = 1, which leads to Cx|τ = 0.   

Again, we employ the decadal magnification factor introduced by Vogel et al. 

[2011] to parameterize the slope term β into a value with physical meaning, 

interpreted as the relative change in magnitude of the T-year flood in some future 

time period ττ ∆+ compared with time τ. Vogel et al. [2011] document that the 

magnification factor for the nonstationary LN2 model presented here is equivalent 

to the EXP1 model presented earlier in (35) as M=exp(βΔτ).  

Substitution of the log linear trend model τβαµ τ ⋅+=|y into the cdf for a LN2 

variable yields an expression for the exceedance probability pτ in year τ, 

associated with design discharge
opX , given by:    











 −
Φ−=

τ

τ
τ σ

µ

|

|)ln(
1

y

ypo
x

p      (40) 
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where )1ln( 2
|| ττσ xy C+= and   again, 

opX  is the fixed design chosen to protect 

infrastructure over the future planning horizon.  

 We define h(τ) = pτ given in (40), which unlike the nonstationary EXP1 model, 

does not lead to a closed form solution for ST(t) and H(τ). In order to estimate a 

survival model, we use Monte-Carlo simulation to generate a large number of 

failure times, along with their  associated average return periods, and then employ 

goodness of fit measures to select a reasonable probability distribution to 

represent both ST(t) as well as the mean survival times (return periods). Our 

methodology is as follows: given po, opX , M, and Cx, we generated traces of 

floods (for τ = 1…1000) using the nonstationary LN2 quantile function:  

[ ]2
| 1)(exp ρσττβ

ττ −+−+= ypp zyx   (41) 

where ∑
=

=
n

x
n

y
1

)ln(1
τ

τ ,  zp is the standard normal variate randomly generated by 

sampling the exceedance probability po from a uniform distribution U(0,1); β is 

obtained from the fact that M=exp(β∆τ), ∆τ=10, and the standard deviation yσ  is 

computed from )1ln( 2
xy C+=σ if ρ is assumed to be zero, otherwise from τσ |y . 

Each of these 1000-year traces results in a failure time, t, i.e. the year in which p|τ 

> xτ,stat, and produces a single realization of the return period, ti. This process is 

then repeated for i = 100,000 experiments to obtain the pdf and L-moments of ti. 

We vary the experiments over a realistic range of M (1 – 2) and Cx (0.25 – 1.5) 

values and for large and small events (po = 0.001 to 0.1).  
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Figure 2-5 shows that similar to the EXP1 model, the hazard rate function for the 

LN2 model is constant under stationary conditions (equal to po when M = 1), and 

increases rapidly towards unity as the trend in the mean increases.  The panel in 

Figure 5 illustrates h(τ) for three events po = 0.1, 0.01 and 0.001, with Cx = 1 and 

a range of trends (note the log scale on x-axis).  The shape of h(τ) informs our 

search for a probability distribution to fit the survival times corresponding to a 

nonstationary LN2 model, pointing toward one that can accommodate increasing 

hazards.  

 

 
FIGURE 2-5. Hazard function h(τ) = pτ for a nonstationary LN2 variable with Cx 
= 1; dotted and dashed lines represent increasing trends (M = 1.01, 1.05, 1.1, 1.5) 
from stationary (M = 1 solid black) illustrating evolution in each panel for 
different sized events [a] po = 0.1, [b] po = 0.01, [a] po = 0.001.  

 

In selecting a probability distribution to fit the failure times of the simulated 

nonstationary LN2 data, probability plot correlation coefficients (PPCC) were 

employed to assess goodness of fit for potential 2 or 3-parameter probability 

distributions. The PPCC hypothesis test was introduced by Filliben [1975] and 

shown to compare favorably with some of the most powerful alternative 
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hypothesis tests for a number of alternative distributional assumptions [Vogel, 

1986].  The PPCC tests are now widely used, as evidenced by the recent 

availability of equations for evaluating the significance level of the resulting test 

for a wide class of probability distributions [see Heo et al., 2008].  Figure 6 shows 

box plots illustrating the PPCC values over a range of distributions corresponding 

to the full range of M, Cx, and po parameters described in the experimental design. 

Figure 6 indicates that the distribution of the failure times is no longer well 

approximated by an exponential pdf, as it is under stationary conditions. Figure 2-

6 documents that among all the distributions considered, the Weibull-2 

distribution provides a best overall approximation of the distribution of return 

periods with PPCC values which ranged from 0.9970 to 0.9999, and a median 

value of 0.9979.   .  
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FIGURE 2-6. Boxplots of PPCC values that illustrate fit of nonstationary LN2 
simulated failure time data for a range of parameters (M : 1 – 2; Cx|= 0.25 – 1.5; po 

= 0.001, 0.01, 0.1) to a range of  models including the Exponential (EXP1), 
Generalized Pareto (GP2), Rayleigh, Weibull, Normal, Generalized Extreme 
Value (GEV) and Pearson type III (PE3) distributions. 

 Given our results in Figure 2-6, we further explore the Weibull-2 model as a 

distribution for describing the time to failure distribution corresponding to the 

nonstationary LN2 model over a feasible range of trends (M), event sizes of 

interest (po), and hydrologic variability (Cx).  

3.1 Characterization of Weibull-2 model for LN2 time to failure 

distribution 
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Interestingly, in the HFA literature, the two-parameter Weibull model is one of 

the most common hazard models applied to characterize many different types of 

data. This is due to its ability to model both increasing and decreasing hazards due 

to its flexibility [Mudholkar et al., 1996; Klein and Moeschberger, 1997; Wienke, 

2010]. Examples of hazard types that give rise to Weibull-2 survival models 

include software reliability (i.e. time between failures of software) [Pham and 

Pham, 2000], bank failure rates [Evrensel, 2008], and occurrences of earthquakes 

from crustal strain [Hagiwara, 1974].  In addition, several researchers have 

proposed a modified Weibull survival models, for example the Beta-Weibull to 

characterize breast cancer occurrence rates [Wahed et al., 2009].  

In the following section we show how the cdf of the time to failure associated 

with a design based on a series of AMS floods from the nonstationary LN2 model 

can be linked with a Weibull-2 survival model, using an empirical analysis.  

Consider a two parameter Weibull cdf of the random variable time, T: 















−−=

κ

σ
ttFT exp1)(    (42) 

where the scale and shape parameter are given by σ and κ, respectively.  The 

survival function is easily written as ST(t) = 1-FT(t)  and the corresponding hazard 

function is given by Mudholkar et al. [1996] as: 

)1(

)(
−





==

κ

σσ
κτ tth    (43) 
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O’Quigley and Roberts [1980] use the Weibull quantile function to derive the 2-

parameter Weibull survival model as  

)log()log())](log(log[ ttST κσ +=−   (44) 

The Weibull survival model provides a good fit to data if the a plot of the left-

hand side of (44) vs. log(t) produces a straight line; then the slope = κ and 

intercept = σ [Vogel and Kroll, 1989].  

Here we need to estimate the shape (κ) and scale (σ) parameters of the Weibull-2 

distribution from the true LN2 failure time data in order to develop a plausible 

model for ST(t).  Using the survival package in R [Therneau, 2015], we compute 

the maximum likelihood estimates for κ and σ; we then develop regression models 

to predict the κ and σ Weibull parameters from the physical/design parameters of 

the hydrologic system, i.e. κ (M, xC , po) and σ (M, xC , po).   Regression analyses 

resulted in the following approximations:  

ox pCM ⋅+⋅−⋅+−
=

0882.10194.00489.00249.0
1σ  (45) 

1858.01196.06583.03252.0 −−−= ox pCMeκ    (46) 

To test how well the regression models in (45) and (46) predict the true values of 

σ and κ, we computed the Nash-Sutcliffe Efficiencies (NSE) between the true 

values of the parameters and the regression estimates of the parameters as 0.796 

and 0.968, respectively. The adjusted R2 values for the κ and σ parameter models 

are 0.961 and 0.987, respectively. The reported values of NSE are obtained in 
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cross validation using the leave-one-out method. Based on the high NSE and 

adjusted R2 of (45) and (46) we are confident in using these equations to 

approximate values of κ and σ based on a given set of hydrologic parameters, M, 

Cx, po.  Below we describe the utility of these estimates for hydrologic planning 

and design.  

With the relationships in (45) and (46) we can compute ST(t) and H(τ) for any 

system, given M, Cx, po; several sample traces of the resulting ST(t) and H(τ) 

functions are shown in Figures 2-7 and 2-8, respectively. Recall that the 

cumulative hazard function H(τ) can be computed using the theoretical 

relationship between ST(t) and h(τ) shown in eqn. (26), resulting in 
κ

σ
ττ 



=)(H

for the Weibull-2 pdf. As expected from the nature of h(τ) as an increasing 

function, HT(t) increases through time, more so for higher trends. The H(τ) 

function is yet another way to interpret the expected number of events within a 

certain period of time, and an easy way to visually compare expected exceedances 

under stationary conditions to those under nonstationary conditions. 
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FIGURE 2-7. Survival function of simulated time to failure data corresponding to 
a nonstationary LN2 model; traces illustrate parameter subsets for the po = 0.01 
event                                         

 

FIGURE 2-8. Cumulative hazard function H(τ) for simulated time to failure data 
from a nonstationary LN2 model; traces illustrate parameter subsets for the po = 
0.01 event                                                 
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With estimates of the σ and κ obtained from (45) and (46), we can compute the 

average return period, E[T],  and reliability based on  probability theory. The 

expected value of a Weibull-2 distribution is:  

)11(][ +Γ⋅=
κ

σTE     (47) 

Where Γ() is the Gamma function.  A regression estimate of E[T] is easily 

obtained from (47) by using the regression equations for σ and κ in (45) and (46). 

As a comparison of central tendency, we can compute the average return period of 

T when X follows a nonstationary LN2 model, in three independent ways: (1) 

calculation of the mean of the simulated failure times for a nonstationary LN2 

model for a given set of parameters, (2) an exact result from T1 in (27) where pτ in 

(35) is derived from the nonstationary LN2 model, and (3) computation of (47) 

with estimates of the κ and σ obtained from (45) and (46) respectively. Figure 2-9 

illustrates the exact average return period versus the regression estimates from the 

Weibull-2 model computed from (47) with regression estimates of the σ and κ 

obtained from (45) and (46), for the entire range of M, Cx and po values.   
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FIGURE 2-9. Comparison of exact values of average return period from (27) and 
(35) with regression estimates from a fitted Weibull-2 model in (45), (46) and 
(47). The data range (points) represent a reasonable range of parameters from 
LN2 distributed flood flows (M = 1 – 2; Cx= 0.25 – 1.5; po = 0.001, 0.01, 0.1).   

We note that average return periods, T1, are extremely well approximated by the 

Weibull-2 model which is fit using regression estimates of its model parameters, 

and that in practice, it may be easier to estimate the Weibull parameters and use 

ST(t) to describe the likelihood of experiencing an event than using (27), which 

may require difficult derivations of pτ. Thus our result could be quite practical and 

useful in flood planning and we recommend that future studies develop similar 

approximations for wider range of models of nonstationary flood series. 

Read and Vogel [2015] and others [see Bayazit, 2015; Serinaldi, 2015; Sivapalan 

and Samuel, 2009] document concerns with use of the expected return period in 

practice and instead, recommend use of the reliability of a system over a planning 

horizon. For a given system with physical and design parameters M, Cx and po, 

“exact” values of reliability are computed by using the expression given in Read 
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and Vogel, 2015 and others: ∏
=

−=
n

i
in pl

1

)1(Re .  Regression estimates Weibull-2 

of ST(t) in each year, are computed from the Weibull-2 model by taking the 

inverse of (42) with estimates of σ and κ obtained from (45) and (46). Figure 10 

compares reliability values over a planning horizon for the exact (solid black 

lines) and Weibull-2 regression estimates (solid grey lines) for a range of 

experiments: [a] trends: M, [b] Cx, and [c] po. The Weibull-2 estimates based on 

regression estimates of the model parameters  reproduces the exact reliabilities 

very well for a range of increasing trends and event sizes (panels [a] and [b] in 

Figure 10).  The greatest difference between exact and estimated reliability values 

is ± 0.04 years, occurring when Cx is higher.  

 

FIGURE 2-10. Comparison of nonstationary reliability values between exact 
(black lines) and Weibull-2 regression model estimates (grey lines) for a range of 
experimental values: [a] trends, M = 1 (stationary), 1.1, 1.5; [b] po = 0.1, 0.01, 
0.001; [c] Cx = 0.2, 0.5, 1.5  

4 Conclusions 

The purpose of this paper is to introduce the field of hazard function analysis 

(HFA) to flood planning under nonstationarity. When trends are present in 

historic flood series or predicted in the future due to climate, urbanization or other 
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causes,   the assumption of stationary  probabilities of exceedance and the 

associated distribution of the time to failure fall into serious question. This has 

important implications on hydrologic design and the metrics by which we rely on 

to build infrastructure to protect against floods. HFA provides a set of tools for 

analyzing flood series whose probabilities of exceeding a design flood (threshold) 

are changing in time. HFA has served numerous other fields well over the past 

few decades, thus we expect this initial study to result in numerous extensions in 

hydrology and water resource planning.   

We have presented two approaches to the application of HFA to flood frequency 

analysis. Our first example provides a relatively simple yet relevant and 

application of HFA to flood series which arise from a nonstationary exponential 

model applicable for peaks-over-threshold flood frequency analysis.  That simple 

example, resulted in elegant, and general analytical results. A second example 

provides an application of HFA to a more realistic and more complicated 

nonstationary LN2 model. Here, even for this relatively simple nonstationary 

model, analytical results could not be obtained, and instead, we resorted to a 

Monte-Carlo analysis to simulated failure time data, applicable for flood 

frequency analysis with AMS flows.   

With the simple nonstationary EXP1 model of PDS, we demonstrated how the 

properties of a hydrologic variable X can be explicitly linked to the hazard rate, 

survival function, and cumulative hazard function associated with associated 

return periods, T.  Since an EXP1 model is limited in its relevance to hydrology 

beyond a POT analysis, we also performed an analogous HFA to a nonstationary 
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LN2 model of AMS.  Due to the complexity of the nonstationary LN2 model, 

numerical approximations were needed for this analysis. Using the probability 

plot correlation coefficient (PPCC) as a distributional goodness of fit measure, the 

Weibull-2-2model was identified as a suitable model for representing ST(t) 

corresponding to a nonstationary LN2 model of AMS flows; this finding is in line 

with the widespread use of the Weibull survival model in other fields [O’Quigley 

and Roberts, 1980; Mudholkar, et al., 1996; Cleves, 2008]. Weibull-2We then 

developed a regression model to estimate the Weibull shape and scale parameters 

based on known hydrologic system parameters and design requirements (M, Cx, 

po). We show how these estimated shape and scale parameters can be employed to 

calculate important metrics for hydrologic planning, such as the average return 

period E[T], and reliability, achieving very reasonable estimates without complex 

numeric computations required using alternative approaches (see Read and Vogel, 

2015).   

The primary goals of this paper were to introduce HFA to the water resources 

community and to encourage other extensions to our analysis to enable more 

efficient water resource systems planning under both uncertainty and 

nonstationarity. We envision a great deal of future work on this topic, including 

the application of HFA to  other reasonable nonstationary models of AMS flood 

series besides those presented here, such as Gumbel, GEV, and LP3,  which have 

been recommended for nonstationary flood frequency analysis [Villarini and 

Smith, 2010; Salas and Obeysekera, 2014; Serinaldi and Kilsby, 2015]. We also 

expect future extensions to our example for a nonstationary EXP1 model of PDS 
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floods which derived for analytical estimates of the hazard rate function h(τ), the 

expected return period and the survival function ST(t). For example, the natural 

extension to that example would be to apply HFA to PDS series which follow a 

nonstationary Generalized Pareto model, and to consider alternate forms of 

nonstationarity to the exponential model considered here.  For cases that PH 

models are appropriate, such as testing whether certain climatic or human 

activities act as co-variates to influence a particular hydrologic process, we see 

further work that builds on Smith and Karr [1986], Maia and Meinke [2010] and 

Villarini et al. [2012] to identify semi-parametric Cox models for characterizing 

these nonstationarities through time. 

We have shown how hazard function analysis can provide theory for examining 

nonstationary processes where the variables of concern are a design event and its 

associated time to a failure event. . This field has benefited from researchers in 

many disciplines who have been asking similar types of questions, working with a 

range of data types, and advancing analysis methods that we can apply to 

hydrology. We can use hazard analysis to independently compare measures of 

central tendency, for example computing the average return period E[T] of an 

event arising from a nonstationary probabilistic process. 

While outside the scope of this paper, the work presented here further draws 

attention to the need for a risk-based decision analysis to choose an “optimal” 

design event given tremendous uncertainty about future nonstationarities [see 

Rosner et al., 2014 for a related example].  Future work should consider deriving 

more general guidance for design decisions under nonstationarity using HFA 
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coupled with the risk-based framework introduced by Rosner et al. [2014] for 

nonstationary AMS series.  
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ABSTRACT 

Impact from natural hazards is a shared global problem that causes tremendous 

loss of life and property, economic cost, and damage to the environment.  

Increasingly, many natural processes show evidence of nonstationary behavior 

including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, 

and earthquakes. Traditional probabilistic analysis of natural hazards based on 

peaks over threshold (POT) generally assumes stationarity in the magnitudes and 

arrivals of events, i.e. that the probability of exceedance of some critical event is 

constant through time.  Given increasing evidence of trends in natural hazards, 

new methods are needed to characterize their probabilistic behavior.  The well-

developed field of hazard function analysis (HFA) is ideally suited to this problem 

because its primary goal is to describe changes in the exceedance probability of 

an event over time. HFA is widely used in medicine, manufacturing, actuarial 

statistics, reliability engineering, economics, and elsewhere. HFA provides a rich 

theory to relate the natural hazard event series (X) with its failure time series (T), 

enabling computation of corresponding average return periods, risk and 

reliabilities associated with nonstationary event series. This work investigates the 

suitability of HFA to characterize nonstationary natural hazards whose POT 

magnitudes are assumed to follow the widely applied Generalized Pareto (GP) 

model. We derive the hazard function for this case and demonstrate how metrics 

such as reliability and average return period are impacted by nonstationarity and 

discuss the implications for planning and design. Our theoretical analysis linking 

hazard event series X, with corresponding failure time series T, should have 
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application to a wide class of natural hazards with rich opportunities for future 

extensions. 

1. Introduction 

Studies from the natural hazards literature indicate that certain hazards show 

evidence of nonstationary behavior through trends in magnitudes over time. Such 

trends in the magnitudes of  natural hazards have been attributed to changes in 

climate patterns, e.g. for wind speeds (de Winter et al., 2013), wildfires (Liu et al., 

2010), typhoons (Kim et al., 2015), and extreme precipitation (Roth et al., 2014), 

and also linked directly to human activities, e.g. increase in earthquakes from 

wastewater injection associated with hydraulic fracturing (Ellsworth, 2013).  

Other natural hazards such as floods resulting from streamflow (Di Baldassarre et 

al., 2010; Vogel et al., 2011) and from sea level rise (Obeysekera and Park, 2012) 

may be a result of a myriad of anthropogenic influences including climate change, 

land use change and even natural processes such as land subsidence.   In addition 

to evidence of magnitude changes of many natural hazards, recent reports 

document a corresponding surge in human exposure to natural hazards (Blaikie et 

al., 2014), along with a 14-fold increase in economic damages due to natural 

disasters since 1950 (Guha-Sapir et al., 2004). Given evidence of trends and the 

consequent expected growth in devastating impacts from natural hazards across 

the world, new methods are needed to characterize their probabilistic behavior 

and communicate event likelihood and the risk of failure associated with 

infrastructure designed to protect society against such events.   The existing rich 

and evolving field of hazard function analysis (HFA) is ideally suited to problems 
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in which the probability of an event is changing over time, yet to our knowledge 

has not been applied to natural hazards.  Our primary goal is to apply HFA to 

characterize the likelihood of nonstationary natural hazards and to better 

understand the expected time until the next natural hazard event occurrence for 

design and planning purposes.  

Probabilistic analysis of natural hazards normally takes one of two 

approaches in fitting a probability distribution to hazard event data series.  As we 

summarize in Table 3-1, a very common approach to probabilistic analyses of 

natural hazards employs the peaks over threshold (POT) dataset, also commonly 

referred to as the partial duration series (PDS), to characterize exceedances above 

some defined magnitude (threshold) that occur over an interval of time. The 

second approach is to fit a probability distribution to the annual maximum series 

(AMS), common practice in hydrology (Gumbel, 2012; Stedinger et al., 1993)  

and also  appropriate for earthquakes (Thompson et al., 2007) and many other 

processes (Beirlant et al., 2006; Coles et al., 2001). Hydrologists have extensively 

studied the theoretical relations between POT and AMS methods (Stedinger et al., 

1993; Todorovic, 1978) and compared the two for characterizing the probabilities 

of flood events (Madsen et al., 1997). In general the POT approach appears to 

provide a larger dataset to draw from, however as the threshold of exceedance 

used to define the POT series is lowered, the series of maxima begin to exhibit 

temporal dependence which complicates the probabilistic analysis considerably. 

Further complexities arise in POT analyses due to subjectivity of the threshold 
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and difficulty in confirmation of  independence between events (Stedinger et al., 

1993).   

Still the POT method is often the most widely used approach for many natural 

phenomena either because there is an intuitive choice for the threshold of 

exceedance, as in the case of earthquakes where the magnitude of completeness is 

often selected, or because the analyst wishes to maximize the use of data, and 

does not always understand the tradeoff between the length of the POT series and 

the inherent increase in its temporal dependence structure and the associated 

consequences.  Due to the wide-spread application of the POT method, a 

substantial number of textbooks and articles have studied methods for minimizing 

the difficulty of implementation, with emphasis on the subjectivity of threshold 

selection and evaluation of  independence of events (Davison and Smith, 1990; 

Smith, 2003).  This study assumes a POT approach is taken as is so often the case 

for the probabilistic analysis of magnitudes of natural hazards including extreme 

winds (Palutikof et al., 1999), earthquakes (Pisarenko and Sornette, 2003), 

wildfires (Schoenberg et al., 2003), and wave heights (Lopatoukhin et al., 2000), 

among others. Future work will extend our analyses to AMS series as has been 

attempted recently by Read and Vogel (2015ab) for floods. 

1.1 Application of general POT model in natural hazards 

Here we focus on the POT approach to characterize exceedance events and 

their frequencies for natural hazards. The GP distribution, a generalization of the 

exponential distribution, was first introduced as a limiting distribution for 

modelling high level exceedances by Pickands (1975), and later developed by 
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Hosking and Wallis (1987), who discuss its theory and an application for extreme 

floods. Davison and Smith (1990) provide techniques for dealing with serially 

dependent and seasonal data for modeling exceedances above a threshold with the 

GP distribution. Hosking and Wallis (1987) discuss the fundamental properties of 

the GP distribution.  See Pickands (1975) and Davison and Smith (1990) for 

further theoretical background on the application of the GP distribution for 

modeling POT series.  In general, the GP distribution arises for variables whose 

distributions are heavy-tailed, in cases where the lighter-tailed exponential 

distribution does not provide sufficient robustness (Hosking and Wallis, 1987).  

The GP distribution has been widely applied to natural hazards (see Table 3-1) 

and in many other fields including financial risk, insurance, and other 

environmental problems (Smith, 2003) to characterize the magnitude of 

exceedances above a threshold.  Hosking and Wallis (1987), Stedinger et al. 

(1993) and others show that if the time between the peaks corresponding to a POT 

follow a Poisson distribution and the POT magnitudes follow an exponential 

distribution, then the AMS follow a Gumbel distribution. Similarly, Hosking and 

Wallis (1987) and others show that if time between the peaks of the POT series  

are Poisson and the POT magnitudes follow a 2-parameter GP (GP2) distribution 

then the AMS follows a Generalized Extreme Value (GEV) distribution.   
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TABLE 3-1. Summary of natural hazards employing Poisson-GP model 

Natural 
Hazard   References 

Evidence of 
nonstationarity in 

process 

Nonstation
ary POT 
model 

formulated
? 

Floods Todorovic, 1978;  
Madsen et al., 1997 

Bayazit, 2015 for a 
review 

Yes - 
Strupczewsk

i et al., 
2001; 

Villarini et 
al., 2012 

Earthquakes 
Gutenberg and 

Richter, 1954; Utsu, 
1999 

Ellsworth, 2013 for a 
review No 

Extreme 
rainfall 

Sugahara et al., 2009; 
Bonnin et al., 2011 

Begueria et al., 2011; 
Tramblay et al., 2013; 

Roth et al., 2014; 
Sugahara et al., 2009 

Yes, in all 
references 

Wildfires Holmes et al., 2008 Liu et al., 2010 No 

Extreme 
wind speeds 

Palutikof et al., 1999 
for review; Jagger and 

Elsner, 2006 

Young et al., 2011; 
Pryor and Barthelmie, 

2010 for review 

Young et 
al., 2011 

Wave height 
(proxy for 
storm surge) 

Davison and Smith, 
1990 

Mendez et al., 2006; 
Young et al., 2011;  

Ruggerio et al., 2010 

Yes - in 
Mendez et 
al., 2006; 

and 
Ruggerio et 

al., 2010 
Daily max 
and min 
temperature 

Waylen, 1988 Keellings and Waylen, 
2014 

Yes, but not 
derived in 

text 
Ecological 
extremes  Katz et al., 2005  Katz et al., 2005 

(sediment yield) Yes 

 

Table 3-1 lists many natural hazards problems that apply the Poisson-GP model 

for their probabilistic analysis. Here we consider a POT that follows the GP 

model (the exponential distribution is a special case of the GP model when the 

limit of the shape parameter approaches zero; see Davison and Smith (1990) for 
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details). For example the Gutenberg-Richter model developed for earthquake 

magnitudes is a 2-parameter exponential model (Gutenberg and Richter, 1954).  

For the natural hazards listed in Table 3-1, the common approach is to assume 

that the probability of exceedance (p) for a given magnitude event is constant 

from year to year, i.e. stationary through time. Under the assumption of 

stationarity in the time series and resulting exceedance probabilities associated 

with a particular design event, the theoretical relationships between POT and 

AMS enable straightforward computation of summary and design metrics such as 

the quantile or percentile of the distribution associated with a particular average 

return period and/or reliability (Stedinger et al., 1993). When evidence of 

nonstationarity, or a trend in either or both the frequency or the magnitude of the 

exceedance events occurring through time is present (Table 3-1), then p can no 

longer be assumed as a constant and the traditional Poisson-GP (or other) model 

must be modified to account for dependence on time and/or some other 

explanatory co-variate. Not adjusting the probabilistic analysis for a positive trend 

when it is present can lead to gross over-estimation of the expected return period 

and reliability of a system, as shown for floods by several recent studies (Salas 

and Obeysekera, 2014; Read and Vogel, 2015a). Importantly, Vogel et al., (2013) 

document that without a rigorous probabilistic analysis of trends in natural 

hazards, we may overlook and fail to prepare for a wide range of societal 

outcomes which  they document may have occurred repeatedly in the past.. 

We conclude from a brief review of the literature that the GP POT model is 

widely used to model natural hazards, and that it can provide a foundation for a 
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nonstationary analysis. What distinguishes this work from the expanding literature 

on nonstationary natural hazards, is that we attempt to draw a formal linkage 

between the magnitude of the natural hazard event and the waiting time or failure 

time until we experience another hazard in excess of some design event.  

1.1 Brief introduction to hazard function theory and implications for natural 

hazards 

Despite the similarity in name, the application of the theory of hazard 

function analysis (HFA), also commonly referred to as survival analysis, is 

practically absent from general literature in the field of natural hazards. HFA is a 

well-established set of tools useful for conducting a “time-to-event” analysis, or 

for understanding the distribution of survival (failure) times for a given process 

(e.g. survival rate of a chronic disease, time until electrical burnout of a device, 

age-specific mortality rate). This is precisely the concern of those modeling 

natural hazards that are changing over time. Generally, HFA is comprised of three 

primary functions: (1) the hazard function, h(τ), which is defined as the failure 

rate, or as the likelihood of experiencing a failure at a particular point in time; (2) 

the survival function, ST(t), defined as the exceedance probability for the random 

variable time (T), or in reliability engineering as the cumulative distribution 

function (cdf) of t, FT(t), where ST(t) = 1 – FT(t); and (3) the cumulative hazard 

function, H(τ), interpreted as the total number of failure events over a period of 

time τ. Note that in natural hazards work, we normally begin with the POT 

random variable X, which denotes the magnitude of the natural hazard of interest 

above some threshold. Thus a connection is needed between the variable of 
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interest X, and the time to failure, T, associated with some design event chosen 

from the probability distribution of X.  This is the focus of our work and 

distinguishes it from most previous work in HFA as well as most previous studies 

in natural hazards, because normally HFA only focuses on the random variable T, 

without any formal connection to the variable of interest X. 

Most applications of HFA are interested in computing design metrics 

based on knowledge of h(τ), ST(t) and H(τ), e.g. the mean time to failure (MTTF), 

or the reliability of surviving a certain amount of time without at least one failure 

event. In nearly all of the literature on HFA, the process for defining these three 

functions begins in one of two ways: either by first identifying an appropriate 

hazard function h(τ), a possible path if sufficient knowledge (or empirical 

evidence) of the failure process is known, (e.g. does the probability of failure 

increase, decrease, or is it constant over time); or, by estimating the survival 

function ST(t) by fitting a set of survival time data to a distribution (Klein and 

Moeschberger, 1997).  Neither of these two approaches are suited to natural 

hazards, because until this paper, there has not been any guidance on how to 

choose a suitable hazard function h(τ) for a natural hazard event, and in natural 

hazards work, we do not have adequate empirical data on the time to failure to 

enable fitting a survival function to data. 

The theory of hazard function analysis is derived elsewhere and 

summarized in numerous textbooks (Finkelstein, 2008; Kleinbaum and Klein, 

1996; Klein and Moeschberger, 1997), hence we only summarize the fundamental 

and useful results here including the relationships among the hazard rate function 
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h(τ), the probability distribution function of the time to failure fT(t), the 

cumulative distribution function of the time of failure FT(t), and its corresponding 

survival function ST(t), as well as the cumulative hazard function H(τ): 
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HFA has been applied in the fields of bio-statistics and medicine (Cox, 1972; 

Pike, 1966) as well as many other disciplines including economics (Kiefer, 1988) 

and engineering (Finkelstein, 2008; Hillier and Lieberman, 1990).  Similar to the 

field of natural hazards, these fields need summary metrics associated with the 

time to failure, such as the concepts of reliability and the average return period 

(known in HFA as ST(t) and MTTF, respectively). Very little attention has been 

given to the use of HFA to natural hazards (Katz and Brown, 1992; Lee et al., 

1986), with the exception of the recent paper by Read and Vogel (2015b), who 

apply HFA to nonstationary floods. Concepts from hazard function theory were 

applied to develop dynamic reliability models for characterizing evolving risk of 

hydrologic and hydraulic failures in conveyance systems in the 1980s (Landsey, 

1989; Tung, 1985; Tung and Mays, 1981). 
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The primary goal of this work is to use the theory of HFA to link the probabilistic 

properties of t with properties of the probability distribution for a nonstationary 

natural hazard event X.  We begin by explicitly relating the properties of h(τ) to 

the event magnitudes for a general natural hazard, X, assuming the natural hazard 

POT follows a GP distribution. We then derive ST(t), H(τ) and MTTF=E[T] for 

the case of 2-parameter Generalized Pareto (GP2) model. Since an exponential 

model is a special case of the GP model, our results also apply to POT series 

which follow an exponential model.  Recall that the exponential distribution is of 

interest when the AMS is Gumbel, which is applicable for many natural hazards.  

See Read and Vogel (2015b) for an application of HFA to POT hazards which 

follow an exponential distribution, in which case very elegant analytical 

expressions for ST(t) and E[T] result. Since both the exponential and GP2 models 

are widely used for representing natural event magnitudes in a POT, the analysis 

presented here is relevant for a wide range of nonstationary natural hazards. We 

hope to demonstrate that HFA can be a useful methodology for characterizing 

nonstationary natural hazards, for communicating natural hazard event likelihood 

under nonstationarity, and for computing corresponding design metrics that reflect 

the changing behavior of the both the magnitude and frequency of a natural 

hazard through time.  

2. Hazard function analysis for nonstationary natural hazard 

magnitudes 

To relate the properties of h(τ) with the magnitudes of a particular natural hazard 

(X), we first consider the stationary situation in which the exceedance probability 
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po for a particular natural hazard event to exceed some threshold magnitude value 

is constant through time. In the stationary case, the hazard failure rate, h(τ), is 

constant so that h(τ) = po.  For the stationary case, the time to failure, T, always 

follows an 1-parameter exponential distribution (or the geometric distribution for 

a discrete random variable); and, computation of the average return period (or 

MTTF) is easily obtained from probability theory as the expected value of the 

exponential series  E[T] = 1/p.   

If the magnitudes of a natural hazard exhibit an increasing trend through time, this 

indicates that the exceedance probability associated with a particular design event 

is changing with time, which we denote as pτ. In such a situation, the expectation 

E[T] or MTTF, is no longer a sufficient statistic for the distribution of T, and a 

more complex analysis is needed.   

For a nonstationary natural hazard, h(τ) is no longer constant and can be 

computed directly from a probabilistic analysis of the natural hazard of interest.  

For example, suppose our interest is in the probability distribution of the time to 

failure for a natural hazard which has been designed to protect against an event 

with exceedance probability po at time τ = 0.  Such a design event can be 

expressed using the quantile function xp for the natural hazard of interest. We term 

this design event xo(po). Suppose we also have defined a nonstationary cumulative 

probability distribution for the natural hazard X, which we term Fx(x,t). Then it is 

possible to compute the changing exceedance probability associated with this 

design event, pτ, using the fact that pτ = 1 - Fx(xo,t).  This forms the fundamental 

linkage between the probabilistic properties of X and T, because the changing 
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exceedance probabilities associated with the design event are identical to the 

hazard rate function so that h(τ)= pτ.  Our use of probabilistic theory to link the 

properties of X and T, rather than empirical evidence (fitting) to explicitly relate 

h(τ) to the event magnitudes (X) of a natural hazard is the primary difference in 

our analysis compared with other HFA applications in the literature. We believe 

this is a fundamental difference which should enable future researchers to 

formulate even more general conclusions concerning the probabilistic behavior of 

nonstationary natural hazards. 

3. Two-parameter Generalized Pareto (GP2) model for magnitudes of 

natural hazards 

As discussed earlier, the GP distribution is widely used in modeling the 

magnitudes above a pre-defined threshold for a variety of natural hazards. In this 

section we present the GP2 stationary and nonstationary models, reviewing 

literature to support the selection of our nonstationary natural hazard model 

formulation.  We then use HFA theory to derive h(τ), ST(t) and H(τ) for the GP2 

nonstationary model and discuss the findings and interpretations for each 

function. Our goal is to show that HFA is ideally suited for modeling the 

probabilistic behavior of a wide range of natural hazards whose behavior is 

changing through time.   

3.1 Stationary Generalized Pareto two-parameter model 

We assume that the POT natural hazard series follows the GP2 distribution. The 

definitions of the stationary probability density function (pdf) and cumulative 
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distribution function (cdf) for a GP2 distribution for  random variable X, 

introduced by Hosking and Wallis (1987) are: 

11

11)(
−















−=

κ

α
κ

α
xxf x   for κ ≠ 0 (51)

κ

α
κ

1

11)( 













−−=

xxFx  for κ ≠ 0 (52) 

where α is the scale parameter and κ is the shape parameter.  Note that when κ=0 

Cx = 1, (4) and (5) reduce to the exponential distribution with a mean of α; this 

form corresponds to a Gumbel distribution for the AMS.  The reliability function 

is simply Rel(x) = 1-Fx(x), or the probability of nonexceedance associated with X. 

The first and second moments of X are:  
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We use the coefficient of variation xxxC µσ /= to represent the variability of the 

system. Combining (53) and (54) for the GP2 model yields 
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The quantile function for the GP2 distribution for a design event, Xp, associated 

with exceedance probability, p, is written as 
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These equations serve as the foundation for developing a nonstationary GP2 

model, discussed in the next section. 

3.2 Nonstationary GP2 model 

Although we could not locate any previous research combining HFA and 

nonstationary natural hazards, there are numerous papers that employ a 

nonstationary GP model for the POT magnitudes of specific natural hazards 

(shown in Table 1). We briefly review those models to provide context for the 

trend model adopted here. Literature on nonstationary GP models for specific 

natural hazards has employed a variety of parameterizations. For example, Roth et 

al. (2012, 2014) considered models of changes in the POT threshold over time 

and Strupczewski et al., (2001) modeled the arrival time distribution of the POT 

with time-varying Poisson parameters. Strupczewski et al., (2001) also modeled 

the changes in the magnitudes of the POT events over time by modeling changes 

in the GP model parameters over time as we do here.  

Nearly all previous studies that employed nonstationary POT models in the 

context of natural hazards adopt some form of the Poisson-GP model, and many 

whose concerns regard increasing magnitudes have been specific to extreme 

rainfall.  With respect to extreme daily rainfall, most have built nonstationary GP2 

models assuming a trend in the scale parameter (α), either modeled linearly 

(Beguería et al., 2011; Sugahara et al., 2009), or log-linearly (Tramblay et al., 

2013).  Roth et al., (2014) notes that modeling a trend in the threshold level itself 
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indicates a comparable trend in the scale parameter.  Tramblay et al., (2013) used 

time-varying co-variates in the Poisson arrivals (occurrence of seasonal 

oscillation patterns) and in the magnitudes (monthly air temperature) to model 

heavy rainfall in Southern France and found improvement from the stationary 

model. As pointed out by Khaliq et al., (2006) and Tramblay et al., (2013) and 

others, it is less common to vary the shape parameter (κ) through time due to 

difficulty with precision and a lack of evidence on model improvement with a 

time-varying shape parameter.  

Studies from other natural hazards are consistent with those in extreme rainfall for 

nonstationary Poisson-GP model formulations, though with more examples of 

time-variation in the shape parameter. For example, Strupczewski et al., (2001) 

used linear and parabolic trends in both α and κ to model flood magnitudes; others 

have explored linear models in κ for extreme winds (Young et al., 2011), and in 

sediment yield (Katz et al., 2005). For wave height, several assumed a trend in the 

location parameter either as linear (Ruggiero et al., 2010) or log-linear (Méndez et 

al., 2006) formulations. Renard et al., (2006) used a Bayesian approach to explore 

step-change and linear trend models in α for general purpose with an application 

to floods. The Bayesian framework was also used by Fawcett and Walshaw, 

(2015) to present a new hybridized method for estimating more precise return 

levels for nonstationary storm surge and wind speeds.  

3.3 Derivation of nonstationary GP2 hazard model  

Our approach is to derive the primary HFA functions fT(t), FT(t), ST(t), h(τ) and 

H(τ) from the probability distributions of the random variable X, fx(x) and Fx(x) of 
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the GP2 distribution.  To create a nonstationary GP model, we employ an 

exponential trend model in the scale parameter αx(τ), so that:  

)exp()( βτατα ox =      (57) 

The model in (57) is equivalent to a model of the conditional mean of the natural 

hazard X and has been found to provide an excellent representation of changes in 

the mean annual flood for flood series at thousands of rivers in the United States 

(Vogel et al. 2011) and in the United Kingdom (Prosdocimi et al., 2014). This 

model is described by Khaliq et al., (2006) and was also used in Tramblay et al., 

(2013) for extreme rainfall.  

We assume that the shape parameter κ is constant through time as consistent with 

previous studies discussed earlier. This assumption implies that Cx is fixed 

(Equation 10), or that the variability of the system is assumed constant over the 

time period, defined at τ = 0, and thus the standard deviation changes in step with 

the mean (parameterized by α).  Again, there is reasonable evidence that this is 

the case for floods (see Vogel et al., 2011; and Prosdocimi et al. 2014). 

Following Vogel et al. (2011), Prosdocimi et al. (2014), and Read and Vogel 

(2015), we replace the trend coefficient β in (57) with the more physically 

meaningful magnification factor M to represent the ratio of the magnitude of the 

natural hazard quantile at time period (τ + ∆τ) to the natural hazard quantile  at 

time τ.  For the model developed here, the magnification factor, M, can be derived 

by combining the GP2 quantile function in (56) and the trend model in (57), 

inserting into the expression below: 
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Thus M reflects the change in the magnitude of the natural hazards over time. So 

for example, a magnification factor of two corresponding to particular time 

interval Δτ, indicates that the natural hazard has increased twofold over that time 

period, for all values of p. 

We consider a magnification factor M corresponding to ten time periods, (Δτ 

=10), since that is what others have done and because it provides a physically 

meaningful interpretation of the degree of change in the design events over time. 

For example, if the time periods were equal to a year as in an AMS series, this 

would correspond to a decadal magnification factor. In this section we derive h(τ), 

ST(t), H(τ), and fT(t) for the nonstationary GP2 model.  First recall that the hazard 

function is equal to the exceedance probability through time for a natural hazard 

event series, h(τ) = pτ. Using the relationships above we can now derive an 

expression for h(τ) dependent only on those fundamental parameters M, po, and 

Cx. describing the behavior of the natural hazard X and our design exceedance 

probability to protect against future hazards. 

Consider that the design event in (56) is fixed and set at time t = 0, and denoted as 

xo, and associated with po and αo; we can use the fact that pτ =1-Fx(x) in (52), 

combined with xp = xo from (56) and the definition of M in (57) which yields,  
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where κ is replaced with Cx after rearranging (55). Combining the theoretical 

relationships in Equations (47-50) with (59), leads to expressions for ST(t), H(τ), 

and fT(t) which are solved easily by numeric integration. 
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Finally, the pdf of the time to failure distribution for the GP2 nonstationary model 

is 
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For the case of the 1-parameter exponential, these functions simplify to 
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 (see Read and Vogel, 2015b for a complete 

derivation). 

3.4 Investigation of impacts of nonstationarity on probabilistic analysis of 

natural hazards using HFA 

In this section we explore how HFA can characterize the behavior of 

nonstationary natural hazards whose PDS magnitudes follow a GP2 model.  Our 

results are exact (within the limitations of numerical integration) because they 

result from the derived analytical equations in (59-62) for the HFA functions 

fT(t), FT(t), and ST(t), h(τ) and H(τ) corresponding to a natural hazard X which 

follows a GP2 model.  With no loss in generality, we assume the mean of the GP2 

natural hazard of unity. We investigate the impact of small and large trends 

(corresponding to magnification factors, M, ranging from 1 to 1.25 with ∆τ=10) 

for a range of physical systems characterized by a range in variability 

corresponding to a range in the coefficient of variation of X, Cx, from 0.5 to 1.5 

corresponding to a range in the GP2 shape κ between -0.28 to 1.5) for three event 

sizes (po = 0.01, 0.002, 0.001).  

Figure 1 presents the hazard function h(τ), examining how it is influenced by the 

variability of the natural hazard and the magnitude of the trend for a particular 

design event po = 0.002 (500-year event): [a] increasing variability, Cx = 0.75, 
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1.25, 1.5 for a set M = 1.1, and [b] increasing trend values, M = 1.1, 1.25, 1.5 for a 

set Cx  = 0.75. Note that in the stationary case, pt = po = 0.002 results in a constant 

horizontal line, and as the magnitude of the trends increases (as M increases), the 

hazard rate h(τ) tends toward unity earlier in time. Even from this initial relatively 

simplistic investigation we find that the hazard functions exhibit complex shapes, 

with some exhibiting inflection points, and other without an inflection. This is 

extremely important, because most applications of HFA assumes a particular 

hazard function without deriving their generalized shapes in advance as we do 

here in Figure 3-1. Another important point is that the variability of the hazard 

magnitudes (characterized by the shape of the pdf of X) impacts the rate at which 

h(τ) increases, so that less variable hazards tend to have higher hazard rates than 

more variable hazards. This point is perhaps initially counter-intuitive, our 

interpretation is that if a hazard is more consistent (with less variability), a larger 

trend ensures exceedance more so than a less consistent system that has a wider 

range of small and large events.  This finding is relevant for planning purposes as 

it indicates which systems may be greater impacted by nonstationarity.   

120 
 



FIGURE 3-1. Hazard function h(τ) for the nonstationary GP2 model, po = 0.002 
for [a] a range of variability (Cx = 0.75, 1.25, 1.5), given M = 1.1; [b] a range of 
trend values (M = 1.1, 1.25, 1.5), given Cx = 0.75. 

Typically in HFA work, the survival function ST(t) is presented as a primary 

figure in understanding risk of failure and likelihood of experiencing an 

exceedance event within a given period of time. Since ST(t) also represents the 

relationship between system reliability and time and because many fields employ 

the concept of reliability to protect against natural hazards, the ST(t) function is 

also very relevant for planning purposes in this context (see Read and Vogel 

2015ab for further discussions relating to flood management and design). Figure 

3-2 illustrates ST(t) for a po = 0.002 event with a fixed Cx = 0.75 representing a 

slightly lower variable system, and a range of increasing trends (M = 1.02, 1.1, 

1.25) compared with stationary conditions (M = 1). Clearly even a small trend 

significantly reduces the system reliability compared with our expectations under 

stationary conditions.  For example, the reliability of a structure designed to 

protect against a 500-year event under stationary conditions after 50 time periods 

is quite high (Rel = 0.90), however, as M increases, the reliability decreases 
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significantly, approaching zero for M = 1.1 and 1.25 at τ = 50. This suggests that 

if one was designing infrastructure to withstand a particularly large magnitude 

event over a planning period, under nonstationary conditions, the design would 

need to be significantly larger, and it may not even be possible to design a 

structure to achieve the same reliability as expected under stationary conditions.  

 
FIGURE 3-2. Reliability or Survival function S(t) for the nonstationary GP2 
model, po = 0.002 and Cx = 0.75, for a range of trend values (M = 1, 1.02, 1.1, 
1.25)  

A unique tool offered by HFA that can provide advancements in planning for 

nonstationary natural hazards is the cumulative hazard function H(τ) which 

represents the total hazard over a given amount of time (Wienke, 2010).  For 

example if po = 0.002, as expected under stationary conditions H(τ) = 1 for τ = 

500, or we will experience, on average, one exceedance event every 500 years. 

However, if a trend with a magnification factor M = 1.1 (∆τ =10) is introduced in 

the same system, the time it takes for H(τ) = 1 is about 36 time periods, or another 

view, H(τ) = 333 events for τ = 500. Figure 3-3 illustrates these interpretations for 
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two exceedance event sizes, fixed Cx = 0.75: [a] po = 0.002, showing the number 

of time periods until H(τ) = 1; and [b] po = 0.001, showing the total number of 

events over time. In Figure 3-3a, we note that the stationary M = 1 line 

corresponds with the H(τ) = 1 for τ = 500 as expected, and that as M increases, the 

time until an exceedance event occurs dramatically decreases (note the log x-axis 

scale).  Figure 3-3b depicts a similar story, but illustrates an alternate 

interpretation: the total number of exceedance events over a time period for the 

rarer po = 0.001 event, where H(τ) ranges from 1 for τ  = 1000 as expected under 

stationary conditions, to H(τ) = 10+ events in under 50 time periods with a large 

M.  

When one wishes to communicate the risk of failure and event likelihood, the 

cumulative hazard function is a useful metric for describing total risk (or 

reliability) over a certain planning horizon.  While our analysis assumes that the 

trend would increase over the entire time period, perhaps a ‘worst case’ scenario, 

our results show that in the presence of an increasing trend in the POT of a natural 

hazard series, we may experience far more exceedance events than expected 

under stationary conditions. Ignoring such trends may result in significant 

increased damages and losses from under-design of infrastructure or insufficient 

planning in populated areas.  
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FIGURE 3-3. Cumulative hazard function H(τ) for the nonstationary GP2 model, 
with a fixed Cx = 0.75 for a range of trend values (M = 1, 1.02, 1.1, 1.25); panels 
show two different size exceedance events [a]: po = 0.002 and [b]: po = 0.001 

After computing ST(t) and h(τ) we can easily use (1) to determine the pdf of the 

time to failure distribution for the nonstationary GP2 model by (62).  Since we are 

interested in the behavior of fT(t) due to trends on a range of physical systems and 

for extreme events, we plot fT(t) for a fixed Cx = 0.75 in Figure 3-4, for a range of 

increasing trends (M = 1, 1.02, 1.1, 1.25) and three event sizes (po = [a] 0.01, [b] 

0.002, [c] 0.001). We note that the shape of fT(t) evolves from the expected 

exponential curve under stationary conditions, to a more symmetric or normally 

distributed shape as M increases.  These results complement those by Read and 

Vogel, (2015ab) who show similar behavior for a nonstationary 2-parameter 

lognormal model of an AMS series of floods.  Interestingly, Figure 3-4 [b] and [c] 

show little difference in timing of the peak, especially for larger M values (M > 

1.1), suggesting that for systems experiencing large increasing trends, rare events 

(po = 0.002) and extremely rare events (po = 0.001) may exhibit similar 

probabilistic behavior.   
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FIGURE 3-4. Probability density function (pdf) of the time to failure distribution 
for the nonstationary GP2 model, with a fixed Cx = 0.75 for a range of trend 
values (M = 1, 1.02, 1.1, 1.25); panels show three exceedance event sizes 
increasing in extremity [a]: po = 0.01, [b]: po = 0.002 and [c]: po = 0.001 

Similarly, in Figure 3-5 we fix the trend at M = 1.05 and explore the behavior of 

ft(t) over a realistic range of Cx values (0.5, 0.75, 1.5), for the same three event 

sizes (po = [a] 0.01, [b] 0.002, [c] 0.001). As consistent with Figure 3-1 showing 

h(τ) for various Cx values, the shape of fT(t) in less variable systems (lower Cx) is 

more impacted by a trend than a more variable system, as indicated by the sharp 

peaks and shift in timing of the peaks (Figure 3-5 [a-c]). We again highlight the 

similar shape and timing of peaks in the po = 0.002 and po = 0.001 events, an 

unanticipated yet consistent result with Figure 3-4.  

FIGURE 3-5. Probability density function (pdf) of the time to failure distribution 
for the nonstationary GP2 model, with a fixed M = 1.05 for a range of trend 
values (Cx = 0.5, 0.75, 1.50); panels show three exceedance event sizes increasing 
in extremity [a]: po = 0.01, [b]: po = 0.002 and [c]: po = 0.001 
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Our investigation of the behavior of fT(t) for the nonstationary GP2 model 

indicates that the shape and timing of the distribution changes with both the 

magnitude of the trend and variability of natural hazard. We also note that fT(t) 

exhibits complex patterns under nonstationary conditions, e.g. fT(t) is less 

impacted in shape/timing by M for smaller events (po), and that the presence of a 

trend leads to a range of shapes (approaching normal for large positive M) of the 

time to failure distribution.  This more complicated behavior implies that under 

the premise of nonstationarity, we can no longer assume the failure time 

distribution is exponential in shape and that the MTTF is equal to 1/p.  In fact, the 

mean of the distribution of T is no longer a sufficient statistic as is the case under 

stationary conditions. We are the first to document such changes in the context of 

natural hazards for the GP2 distribution and anticipate that others will continue to 

do so for specific events that exhibit nonstationarity. Using the derivations of h(τ), 

ST(t), H(τ), and fT(t) that we have provided here, one can use knowledge of the 

system (M, Cx) and existing design metrics (po and reliability standards) in 

combination with HFA to better understand and characterize natural hazards as 

they change through time.  

4. Summary and Conclusions 

We have presented a general introduction to the probabilistic analysis of 

nonstationary natural hazards using the well-developed field of hazard function 

analysis (HFA). We cited numerous sources of evidence which suggests that the 

magnitudes of a variety of natural hazards are increasing, thus our study should be 

of considerable interest in the coming years. To the authors’ knowledge, the 
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analysis and discussion presented here provides the first formal probabilistic 

analysis of the link between a natural hazard with design event X, and the 

corresponding properties of the probability distribution of the time to failure T 

associated with a structure designed to protect against that design event. Through 

the lens of HFA, we have investigated the impacts of a positive trend in natural 

hazard event magnitudes for a random variable X that follows a GP2 distribution 

on the likelihood of future hazards under nonstationary conditions.  We introduce 

a complete probabilistic analysis useful for re-evaluating event likelihood, 

reliability (survival) and cumulative hazard under nonstationary conditions which 

should prove useful for a wide range of natural hazards.  Our results are 

applicable for understanding the probabilistic behavior of the time to occurrence 

of natural hazards subject to increasing trends.  

By explicitly linking properties of the time to failure T with the exceedance 

probability p of a natural hazard (X), we have derived the primary hazard analysis 

equations: the hazard function h(τ), the survival (reliability) function ST(t), the 

cumulative hazard function H(τ), and the pdf of the time to failure distribution 

fT(t) corresponding to a POT series of natural hazards which follows the GP2 

distribution.  We parameterize this GP2 model such that it only depends on the 

design exceedance probability at time τ = 0, po, the known system variability Cx, 

and the magnification factor M, and use this to explore the impact of positive 

trends on the reliability, or survival ST(t) until an exceedance event. Findings of 

this investigation suggest that under nonstationary conditions, medium and large 

events could occur with much greater frequency than under stationary conditions 
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(no trend).  We find that the total number of hazards as characterized by H(τ) 

within a given planning period may substantially increase in the presence of a 

positive trend in the POT magnitudes of a natural hazard. Perhaps most 

importantly, under nonstationary conditions, the distribution of the time to the 

natural hazard is no longer exponentially distributed, and instead takes on a 

distribution with extremely complex shapes, depending on the variability of the 

hazard and the magnitude of the trend.  As trend magnitudes increase for a range 

of event sizes (po), the shape of the distribution of the survival time approaches 

normality in shape and exhibits a sharp peak with a heavy upper-tail.  We also 

find that variability impacts the shape and timing of this peak in fT(t), such that 

less variable systems (lower Cx) are more affected by larger M values, i.e. produce 

a more pronounced peak and a greater shift in timing.  

The implications of these findings for planning and design for nonstationary 

natural hazards are significant. Given a historic (or future) increasing trend in the 

magnitudes of some hazard, we should prepare to experience exceedance events 

much more frequently.  For fields that use reliability as a primary design standard, 

our analysis suggests that the presence of a positive trend corresponds to a lower 

system reliability for a given design event (xo) than under stationary conditions. 

Through exploration of ST(t) for various trend factors, we also note that 

determining the reliability of a system over time is more complicated given 

uncertainty in the magnitude of the trend and how it will manifest through time.  

In either case, continuing to assume stationary conditions when computing system 

reliability for design purposes, when a positive trend in the POT magnitudes has 
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been observed historically, may pose a significant risk to the populations and 

infrastructure in that region. Thus we recommend that design practices should be 

reviewed and adapted for cases where nonstationary behavior of natural hazards is 

evident in order to avoid under-design (also see Vogel et al., 2013).  

Overall, we have shown that HFA provides a set of tools for understanding the 

probabilistic behavior of nonstationary natural hazards for application to a wide 

range of natural phenomena. Using the well-studied theory of HFA, engineers and 

planners can use language from HFA – hazard rate, survival, cumulative hazard – 

to relate to risk and reliability under nonstationarity for natural hazards, advancing 

risk communication in this field. We intend for this analysis to inform future work 

on modeling nonstationary natural hazards with HFA, for example by developing 

other models that may include co-variates, extensions to AMS series, and also 

exploring the impact of decreasing trends.  We expect that additional research on 

this topic will contribute to the emerging conversation on planning for 

nonstationary natural hazards and shed light on innovative methods to determine 

best practices for infrastructure design.  Results of this work further support the 

need for a risk-based decision analysis framework for selecting a design event 

under nonstationarity (Rosner et al., 2014).  Such a framework can provide 

guidance in choosing infrastructure that minimizes the risk of under-design 

(protection) and over-design (excess spending) through probabilistic decision 

trees.  
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Appendix A: Derivation of Coefficient of Variation of X in nonstationary 
lognormal model. 
 
The nonstationary LN2 flood hazard model employed in this paper assumes a 

linear trend in the mean of logarithms of the annual maximum flood series 

Y=ln(X).  Interestingly, this single trend model of Y implies a trend in both the 

mean and the variance of the annual maximum floods X.  Importantly, although 

the coefficient of variation of the flood series X, denoted Cx, is assumed fixed, the 

nonstationary LN2 model implies a different coefficient of variation of  X which 

we term the conditional coefficient of variation and denote as Cx|τ and for which 

we derive an expression below. Recall the well-known relationship between the 

stationary standard deviation of Y=ln(X) and Cx:  

 

   (A1) 
 
The nonstationary LN2 model introduces a trend in the mean of Y so that the 

variance of Y, conditioned on the time τ, is obtained by simply taking the variance 

of Y, given in (15), assuming α, β and τ are constants which leads to: 

 

  (A2) 
 
This is equivalent to  

   (A3) 

because ρ is the Pearson correlation coefficient defined as   which 

measures the strength of the linear relationship between the flood series Y and the 

covariate time, τ.  Consider two extreme cases.  If the regression model has 

perfect explanatory power, then ρ=1 and the conditional variance of Y in (A3) is 
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equal to zero.  If the regression model has no explanatory power, then ρ=0 and the 

conditional variance in (A3) is exactly equal to the unconditional variance of Y.  

Of course the unconditional variance of Y is always the same, regardless of the 

explanatory power of the regression.  Since the residuals are assumed to be 

normally distributed, the values of exp(ε) are lognormal, thus analogous to (A1):  
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where Cx|τ is the coefficient of variation of the nonstationary variable X.  

Combining equations (A1), (A3) and (A4) leads to a relationship between the 

coefficient of variation of the stationary series Cx and the coefficient of variation 

of the nonstationary series, Cx| τ given by  

 

    (A5) 
 

For a reasonable range of ρ, we explore the relationship between Cx and 

Cx|t in Figure A1.  As expected, there is a reduction in the coefficient of variation 

of the nonstationary series Cx|τ as ρ increases, i.e. as the trend increases. Since the 

true value of ρ is unknown, is generally quite small in practice, and will depend 

on the level of sophistication of the trend model employed, we assume that Cx = 

Cx|τ for all trends analyzed in this paper, but we recommend that in practice (A5) 

be used in any particular application of the nonstationary lognormal model. 
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Figure A1. Relationship between coefficient of variation of the stationary series 
Cx and the coefficient of variation of the nonstationary series Cx|τ for a feasible 
range of correlation coefficients, ρ (grey lines). Note that the black solid line 
represents the 1:1 line for stationary conditions where ρ=β=0. 
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Appendix B: Analytical example: Exponential distribution 

The following example uses the simplest case of the exponential distribution to 

demonstrate how behavioral properties of flood flows (X) can be adapted to 

hazard function analysis where the random variable is now time (T).  We use the 

standard equations for the exponential distribution pdf and cdf presented in 

Equations 36-37.  

The corresponding quantile function is reprinted here for convenience:  

)ln(1 px p λ
−=    (B1) 

Assuming the annual maximum flow series follow an exponential distribution and 

under stationary conditions we can now write the survival function of time to 

relate the stochastic properties of time to the random variable of interest, X. The 

expected value and variance of X are equal so that E[x]= Var[x], 1/ λ . Since the 

expected waiting time is exponential we can use parallel logic to express E[t] = 

1/p, the survival function for a fixed hazard function, as it depends on the 

probability of X, the exponential random variable.  From here our goal is to use 

the theory of hazard function analysis to derive the pdf fT(t), cdf FT(t), and 

reliability (now called survival function ST(t)) of the variable T, defined as the 

waiting time until we exceed the design event.  

Now consider that the random variable X is not stationary, or that the annual 

probability p of exceeding a certain design event X * is increasing every year due 

to an increasing trend in the mean, E[X] = 1/( 0λ - bτ). Since we now know how 

the probability of X relates to the survival function for time, we can write the 
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hazard function equations for a nonstationary exponential random variable X by 

deriving an equation for the changing exceedance probability pt and equating this 

to h(τ). First, at time zero we rearrange (B1) to compute the exceedance 

probability p0 defined at time zero with a known initial value of 0λ and a design 

flow xo* as: 

 *)exp( 00 oxp λ−=    (B2) 

For the design flow x0* we can write the time-varying pt as:  

 *))(exp( 00 xbp τλτ −−=   (B3) 

We can combine terms in (B2) and (B3) to arrive at a useful form of pτ which we 

can equate with h(τ) and continue on to derive H(τ) and ST(t).  

0/1
0)( λτ

τ τ bphp −==    (B4) 

Note that when b=0, (B4) reduces to the stationary case. Since the survival 

function ST(t) is related to the hazard function we can derive a model of the 

survival function that depends on the rate of change in the mean (b) and the 

probability of exceedance and scale parameters at time zero, po and .0λ   
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Alternatively we can write ST(t) without the design event X* in the equation by 

substituting (B2) into (B4) and solving for ST(t):  
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We can also derive the cumulative hazard function for this case, where the 

interpretation of H(τ) is the total number of expected failures (flows exceeding the 

design event) over a certain number of years. 
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We can now derive FT(t) and fT(t) from (B5) using known relationships.  
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or written shorthand as )()( /
0 tS

p
p

tf Tb
o

o
T oλτ

λ
= . The beta term can be easily 

replaced by the magnification factor described in Chapter 1. While the 

exponential hazard function family is important to survival analysis, the 

inflexibility of a constant hazard function limits its use for modeling survival 

times in many applications.  
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