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Abstract
As intelligent agents become integrated into our society, it becomes increas-
ingly important for them to be capable of engaging in natural, human-like
human-agent interactions. A key aspect of such interactions is the ability
to engage in pragmatically appropriate natural language dialogues. That is,
intelligent agents must be able to understand and generate natural language
expressions in a way that is sensitive to their current environmental context,
social context, and dialogue state.

This problem is especially difficult in the uncertain and open worlds com-
mon to typical human-robot interaction scenarios, in which a robot cannot be
expected to have perfect or complete knowledge of its environment. What is
more, many of the approaches that have been developed to facilitate human-
robot dialogues are tailored to specific knowledge representation schemes or
particular domains of information that prevent them from being generally
applicable across robot architectures or across application domains.

To address these concerns, I have developed a set of algorithms for under-
standing and generating natural language in uncertain and open worlds, and
a set of general frameworks and architectural mechanisms that allow these
algorithms to be agnostic to representational format and application domain
whenever possible. The algorithms and architectural mechanisms presented
in this dissertation represent an interdisciplinary approach to artificial in-
telligence, in which cognitive science is drawn upon to provide theoretical
frameworks (e.g., Speech Act Theory, the Givenness Hierarchy), and cogni-
tive models (e.g. the Incremental Algorithm), and in which computer sci-
ence is drawn upon to provide computational frameworks (e.g., Multi-Agent
Systems, Integrated Robot Architectures) and techniques (Dempster-Shafer
Theory, logical inference, search).

In this dissertation, I demonstrate how these algorithms and architec-
tural mechanisms can be integrated into a single natural language processing
pipeline within an integrated robot architecture. What is more, I show how
this integrated system extends the state of the art in domains such as natural
language enabled wheelchairs when implemented on robot hardware.
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Chapter 1

Introduction

We are entering the age of intelligent agents. It has long been a dream
of humanity to integrate artificially intelligent agents into our society, and
we are now discovering that we not only desire, but need, such agents: An
aging population suffers from the expense and lack of caretakers; disaster
relief workers are confronted with disaster zones too dangerous to enter;
astronauts find themselves in need of assistance in the vacuum of space.

And while their need may be less dire, the general public yearns for such
agents as well. Personal Assistants such as Apple’s Siri and Amazon’s Alexa
are increasingly used to help manage schedules and lifestyles and access
information. And such assistants are promising to enter our homes in the
form of robots like Cynthia Breazeal’s Jibo and ASUS’ Zenbo.

As intelligent agents come into the field and onto shelves, the need for
these agents to be socially and contextually intelligent increases. Perhaps
most critical is the need for such agents to be able to engage in truly natural
communication, not only for capricious consumers, but for those in eldercare
facilities, disaster areas, and the depths of space, for whom the training or
use of other control methods may be too cognitively or physically taxing.

In eldercare robotics and education robotics, it may simply be too cog-
nitively burdensome for the target population to learn to interact with their
would-be caregiving or educational assistants through some other modality.
In space robotics and urban search-and-rescue robotics, it may be too phys-
ically burdensome for the target population to interact with their would-be
assistants or rescuers, due to, e.g., lack of gravity, or trapped limbs. In ur-
ban search-and-rescue environments, victims are also not likely to have the
time or inclination to learn another control modality to interact with their
would-be rescuers. It is thus important that robots operating in these and

1
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other domains be taskable through control modalities, like natural language,
that the general public is already familiar and proficient with.

In addition, natural language is an attractive interaction modality even
for users without physical or cognitive limitations. Natural language is in-
finitely flexible, requires only the simplest of hardware additions, is lightning-
fast and interactive, and allows for learning from a single example.

While there has been some progress on enabling natural-language based
human-robot interaction (HRI) (Mavridis, 2015), most natural language en-
abled robots rely on highly scripted interactions, keyword spotting, and shal-
low natural language processing techniques. For many applications, these
methods may be sufficient to achieve the desired behavior, which may be
restricted to a small class of tasks. Such methods, however, are not helpful
for the development of robots that are generally and flexibly taskable, that
can learn about new entities and concepts on the fly, and that are capable of
engaging in truly natural human-like human-robot interactions; that is, the
robots that are the ultimate goal of human-robot interaction (Fong, Thorpe,
& Baur, 2001; Goodrich & Schultz, 2007; Dautenhahn, 2007).

What is more, even natural-language enabled robots designed to handle
more natural, flexible dialogue typically operate under a set of assumptions
that severely restrict the types of language they are prepared to handle. To
see why this is the case, consider the following scenario.

1.1 An Illustrative Example

Imagine a robot named Cindy and a human named Bob. Cindy and Bob
are working together in a disaster relief scenario, and have just left a room
containing a refrigerator, and two medical kits: one on a table, and one on
a counter. After driving down the hallway for a few minutes, Bob turns to
Cindy and says “The commander needed that medical kit from the kitchen!
He’s in the cafeteria on the second floor. Could you bring it to him?”

In the following subsections, I will step through a variety of implicit
assumptions made by most current natural language enabled robots, and
how those assumptions may be violated in this example.

1.1.1 Knowledge is Certain

Many language enabled robots make an assumption of certain knowledge:
that there are a set of entities known to the robot, each with a set of known
features. However, in most realistic human-robot interaction scenarios, the
robot’s knowledge will almost certainly be uncertain, especially since robots
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do not have perfect perception of their worlds. Here, for example, even if
Cindy perfectly perceives her world, it may be difficult for her to ascertain
the identity of the referent described as ‘the kitchen’. The fact that the
room the robot recently left contained a refrigerator, a table, and a counter
certainly provides evidence that it may be a suitable candidate referent,
but it is unlikely that this information will be sufficient for the robot to be
completely certain that that room was a kitchen. Uncertain knowledge may
also be troublesome if a robot needs to refer to some entity but is uncertain
of its properties.

1.1.2 Knowledge is Complete

With very few exceptions, natural language enabled robots operate under a
closed world assumption: that natural language utterances made by inter-
locutors will only refer to entities known of a priori. In many cases, it is
even assumed that interlocutors will only refer to entities that are currently
visible. However, in many realistic human-robot interaction scenarios, robots
cannot be assumed to have full knowledge of every entity which could pos-
sibly be referenced. Here, for example, it may be the case that Cindy has
never actually seen the cafeteria on the second floor. This should not prevent
Cindy from discussing or reasoning about this location, and it may even be
the case that Cindy is able to infer where the cafeteria may be located, and
travel to it accordingly. We would thus state that robots must be able to
operate under an open world rather than closed world assumption.

1.1.3 Knowledge is Homogeneous in Domain

Many natural language enabled robots only attempt to handle referents from
a single domain, e.g., objects, or locations. However, in many realistic
human-robot interaction scenarios, interlocutors may be expected to refer
to referents from a variety of domains. Here, for example, Bob refers to ob-
jects, locations, and people. Similarly, it may be most natural for Cindy to
refer to some object based on its relation to some location, person, or event.

1.1.4 Knowledge is Centralized, and Homogeneous in Rep-
resentation

Many natural language enabled robots assume that all information regard-
ing candidate referents is contained within a single, centralized knowledge
base, and that all information regarding those entities is represented in a
single format (an assumption that goes hand in hand with an assumption of
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a single relevant domain of knowledge). However, in many realistic robot ar-
chitectures, information may be decentralized for a variety of reasons. First,
a centralized knowledge base knowledge base may become a computational
bottleneck when multiple processes need to access it frequently. Not only
does querying become more expensive due to the size and complexity of
the central knowledge base, which must accrue and bind together informa-
tion from different architectural components, but computational resources
become focused onto a single “stress point” rather than balanced across the
architecture’s components.

Knowledge may also be decentralized due to heterogeneity of knowledge
representations; information about entities recognized by a vision component
will likely be stored in a substantially different manner than the map pro-
duced by a mapping component. Moreover, only the vision component must
deal with low-level visual features such as pixels, textures, edges, etc. and
thus it makes sense to keep such information local to where it is processed
and needed.

Here, for example, it is entirely plausible that information regarding the
medkit may be stored as a visual memory object in the architecture’s vi-
sion component, information regarding the kitchen and the second floor may
be stored as elements of a hybrid metric-topological map in the architec-
ture’s mapping component, and information regarding the commander may
be stored in a Prolog knowledge base elsewhere in the architecture.

1.1.5 All Utterances are Commands

Many natural language enabled robots make a command-based assumption:
that they have been designed purely for task-based interactions, and that
thus all utterances made by human interlocutors will be for the purpose of
providing some command to the robot. Even if we assume that Cindy was
designed for task-based interactions1, it is entirely plausible that Bob might
issue questions or statements in service of that task. Here, for example, Bob
uses two statements and an utterance that may be a command, or may be a
question. This leads directly to our next assumption.

1In fact, in many of our examples, we assume Cindy to be a Mobile Dexterous Social
(MDS) robot, designed by Breazeal et al. (2008): a robot that can certainly be used in
task-based scenarios, but whose design prioritizes social concerns.
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1.1.6 Utterances are Expressed Directly

Most natural language enabled robots make an assumption of direct expres-
sion: that the intended meaning of a sentence is directly derivable from its
semantics, which reflect the literal, direct meaning of the sentence. However,
in most human-robot interaction scenarios, it is reasonable to assume that
humans will use a high volume of so-called indirect speech acts, whose literal
meanings mismatch their intended meanings. Here, for example, Bob’s final
utterance is literally a question regarding Cindy’s abilities. But it is more
likely that Bob’s true intention is to express a command that he believed
would be impolite to express directly (i.e., “Bring it to him.”)

1.1.7 Utterances are Contextually Invariant

Many natural language enabled robots make an assumption of contextual
invariance: that the meaning of a particular utterance is always the same
(an assumption that goes hand in hand with an assumption of direct expres-
sion). However, in most human-robot interaction scenarios, it is reasonable
to assume that humans will use a variety of utterances whose intended mean-
ings depend on the current context. Here, for example, Cindy may need to
decide whether Bob’s last utterance is intended as a question or a command
based on her current model of Bob. Does Bob really not know whether this
is something she is able to accomplish? Is Bob in a social role that grants
him the right to issue her commands? And so forth.

What is more, many utterances in human-robot dialogue may contain
referring expressions that can only be resolved with respect to the current
dialogical or environmental context. Here, for example, Bob uses a variety
of anaphoric expressions, such as ‘he’, ‘it’, and ‘him’ whose meanings are
entirely dependent on the current dialogue state, as well as the demonstrative
adjective phrase ’that medical kit’, in which ’that’ uses the current context
to narrow the scope of possible referents. In addition, Bob uses ’you’, a
deictic expressions whose meaning additionally depends on the immediate
spatio-temporal context.

1.2 Summary

In order to advance the state of the art of natural language based human-
robot interactions, we must develop natural language enabled robots that
challenge the assumptions explicitly or implicitly made by most other such
robots. We must develop natural language enabled robots that can (1) han-
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dle uncertain and open worlds; (2) make use of distributed knowledge that
is heterogeneous in domain and in representation; (3) process a wide vari-
ety of utterance forms and referring expression forms; and (4) process such
utterances in a context sensitive manner.

Over the course of the next nine chapters, I will describe the algorithms
and architectural mechanisms I have developed in service of these goals,
from the ground up, starting with architectural concerns, then discussing
referring expression understanding and generation, followed by pragmatic
understanding and generation, and finishing with a discussion of applications
in which the full understanding and generation pipeline has been employed.

To be specific, I provide in Chapter 2 a short overview of the robot
architecture in which these algorithms and mechanisms have been devel-
oped. In Chapter 3 I present a set of reference resolution algorithms as
well as architectural mechanisms that they facilitate or are facilitated by:
Section 3.2 presents SPEX, the Spatial Expert, an architectural component
responsible for performing spatial reference resolution in open worlds; Sec-
tion 3.3 presents REX, the Referential Executive, an architectural component
responsible for a broader class of referential activities, including domain-
independent reference resolution of definite noun phrases in uncertain and
open worlds. In Chapter 4, I describe how REX is used within the context of
a broader Givenness Hierarchy theoretic framework in order to additionally
resolve anaphoric and deictic expressions in a context sensitive manner. In
Chapter 5, I move beyond referring expression understanding, and show how
REX is used for referring expression generation as well.

Next, I move on to discuss pragmatic reasoning : in Chapter 6, I present
experimental evidence demonstrating the extent of indirect speech act usage
in human-robot interaction, and then present a Dempster-Shafer theoretic
algorithm for understanding indirect speech acts in a context sensitive man-
ner under uncertainty and ignorance. In Chapter 7, I move beyond indirect
speech act understanding, and show (1) how our Dempster-Shafer theoretic
framework is used for indirect speech act generation as well; and (2) how
this framework can be used to generate clarification requests to resolve prag-
matic and referential ambiguity. Finally we move beyond the pragmatics
of human-robot communication, and discuss the pragmatics of robot-robot
communication.

In Chapter 8 I discuss the application of the presented algorithms and
architectural mechanisms to assistive robotics, by providing a comprehensive
survey of natural language enabled wheelchairs and then demonstrating how
the algorithms presented in this dissertation advance the state of the art by
integration of our robot architecture (configured to use the presented algo-
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rithms and architectural mechanisms) with the Vulcan intelligent wheelchair.
Finally, in Chapter 9 I discuss directions for future work, including applica-
tions of the presented algorithms and architectural mechanisms outside of
robotics.
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Chapter 2

Architectural Background

In Chapter 1, I described a set of capabilities necessary for natural, human-
like human-robot interaction. The majority of this dissertation concerns nat-
ural language processing algorithms I have designed in order to facilitate
these capabilities. These algorithms do not exist in a vacuum: in order for
my algorithms to facilitate meaningful capabilities, they must interact with
computational mechanisms that dictate how a robot reasons about and trav-
els within its environment. As such I owe a great intellectual debt to the
researchers who have enabled the host of capabilities that my algorithms
make use of and interact with, both linguistic and non-linguistic.

But perhaps even more important to acknowledge is the cognitive scaffold
into which this host of algorithms is integrated. The computational mecha-
nisms discussed in this dissertation are implemented as part of a larger robot
architecture that conceptualizes how a robot’s cognitive processes can and
should interact. This robot architecture, DIARC, is not merely an implemen-
tation detail, but is instead explicitly leveraged by the presented algorithms.
DIARC will make appearances in every chapter of this dissertation, under a
variety of different configurations, and as such it is important to understand
its motivations, principles, and points of variance and invariance. The par-
tial architecture diagram shown in Figure 2.1 serves as a roadmap for the
technical contents of this dissertation, as described in the caption beneath
that figure.

This chapter is divided into two sections. In Section 2.1 I will describe
DIARC, the robot architecture into which the presented algorithms are in-
tegrated. In Section 2.1, I will describe ADE, the multi-agent infrastructure
in which DIARC is implemented.

9
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Figure 2.1: Architectural Diagram
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2.1 DIARC

The Distributed, Integrated, Affect, Reflection, Cognition (DIARC ) archi-
tecture is a robot architecture designed for robots that interact naturally
with humans (P. W. Schermerhorn, Kramer, Middendorff, & Scheutz, 2006).
As described by Scheutz, Schermerhorn, Kramer, & Anderson (2007), DI-
ARC is in part designed to satisfy three requirements of natural, human-
like, human-robot interaction: social behavior, goal-oriented cognition, and
robust intelligence.

First, DIARC prioritizes teleological (i.e., goal-related) capabilities, in
the form of explicit goal representations and far-reaching goal and task man-
agement mechanisms that appear in the majority of architectural configu-
rations. These representations and architectural mechanisms are prioritized
because DIARC recognizes the importance of bidirectional intentionality as-
cription for natural human-like human-robot interaction. In order for robots
to successfully interact with humans, robots must not only be able to infer
and communicate about the intentions of their human interlocutors; they
must also be able to communicate their own intentions to humans, and gen-
erally promote theory of robot minds. That is, humans should be prompted
to regard robots as having their own beliefs, desires, and intentions, in order
to allow them to better predict those robots’ behaviors.

Second, unlike most other robot architectures (cf., e.g., Quigley et al.,
2009), DIARC also prioritizes the natural-language capabilities required for
social interaction. While the precise architectural configuration used may dif-
fer on a case-by-case basis, DIARC ’s architectural constituents typically pro-
vide capabilities for speech recognition and synthesis, syntactic and semantic
processing, as well as mechanisms for introspecting upon and communicat-
ing about the dialogical and aforementioned teleological structures required
for natural linguistic interactions (Grosz & Sidner, 1988; Lochbaum, Grosz,
& Sidner, 1990; Grosz & Sidner, 1990). And, although such mechanisms
will not appear in this dissertation, DIARC at one time made consistent
use of mechanisms for recognizing and generating affective and non-verbal
interaction cues.

Finally, DIARC makes a set of theoretical commitments designed to
ensure robust intelligence, including the following, which are discussed
by Scheutz et al. (2013):

1. Processing is distributed across a set of architectural components.

2. All processing performed in architectural components is asynchronous
with respect to that performed in other components.
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3. Each component operates on its own, possibly multi-threaded, cogni-
tive cycle.

4. Control is decentralized, and no central executive or “homunculus” may
be employed.

5. Goals and their associated primitive skills are represented in a form
that includes preconditions, post-conditions, and expected utilities.

6. Actions are selected by priority, and based on availability of resources
constrained based on relations of mutual exclusivity.

7. No single architectural learning mechanism is prescribed.

8. No single architectural knowledge representation is prescribed within
individual components.

9. Logical formulae are used as “common currency” for inter-component
communication whenever possible.

10. Architectural components are capable of introspecting on the multi-
agent middleware in which they are implemented.

While in principle DIARC may be implemented in any sufficiently flex-
ible multi-agent system middleware, this dissertation will only discuss its
implementation within the Agent Development Environment.

2.2 ADE

The DIARC architecture is implemented in the Agent Development Envi-
ronment (ADE) multi-agent system middleware. ADE is an architectural
framework (Kramer & Scheutz, 2007) that builds on previous work from
multi-agent systems(Bellifemine, Poggi, & Rimassa, 1999; Sycara, Paolucci,
Van Velsen, & Giampapa, 2003) in order to support the development of in-
dividual agent architectures using distributed multi-agent system computing
infrastructure.

As such, the DIARC architecture is implemented in ADE as a set of dis-
tributed architectural components which satisfy the theoretical commitments
of DIARC listed above. The majority of these components are responsible
for providing discrete cognitive capabilities (e.g., speech recognition, syntac-
tic processing, dialogue processing, goal management, speech synthesis) or
for providing access to a robot’s sensors and effectors, although components
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also exist to provide debugging interfaces, provide simulated environments,
or facilitate Wizard-of-Oz-style1 control over real or simulated robots. In ad-
dition, every instantiation of the ADE framework must make use of at least
one Registry component with which other components must register in order
to be part of the architecture. The registry (and by extension, ADE ) treats
architectural components as autonomous software agents in order to facilitate
dynamic system configuration, fault tolerance and recovery, distributed com-
putation, and autonomic computing(Scheutz, 2006; Andronache & Scheutz,
2006; Kramer & Scheutz, 2006).

ADE is primarily implemented in Java, with inter-agent communication
facilitated by Java RMI. The use of a JVM language provides two main
advantages: first, this allows for portability between different architecture
platforms; second, it allows for developer flexibility, as code written in a
variety of programming paradigms (i.e., through Java, Clojure, or Scala)
can be seamlessly and richly integrated.

A comparison of ADE to similar robot development environments (e.g.
Carmen (Montemerlo, Roy, & Thrun, 2003), Player/Stage (Gerkey, Vaughan,
& Howard, 2003)) was previously presented by Kramer & Scheutz (2007).
However, in the time since that publication, a number of other robot de-
velopment environment environments have been created, most principally
ROS (Quigley et al., 2009). Because ROS is widely used throughout the
robotics community at this time, I believe it is important to provide a com-
parison between it and ADE. For the purposes of this dissertation, it is
sufficient to identify three points of contrast, beyond which the capabilities
of the two frameworks are generally comparable.

1. There is a general philosophical difference between ADE and ROS
regarding inter-component communication. While ROS components
tend to communicate using high volumes of low-level messages, ADE
components tend to communicate using low volumes of high-level mes-
sages (in keeping with DIARC commitment 9).

1Wizard-of-Oz (WoZ): an experimental paradigm in which a human interacts with a
robot or other intelligent agent which they are led to believe is autonomous, when in fact
some or all of its behavior is controlled by an experimenter, i.e., “Wizard”. The WoZ
paradigm was most famously discussed by Dahlbäck, Jönsson, & Ahrenberg (1993) in the
context of natural language dialogue systems, and was effectively surveyed within the field
of human-robot interaction by Riek (2012). An important delineation is drawn by Baxter,
Kennedy, Senft, Lemaignan, & Belpaeme (2016) between Perceptual WoZ, in which the
Wizard replaces some (potentially unreliable) input capability (e.g., speech recognition),
and Cognitive WoZ, in which the Wizard provides some cognitive capability which the
robot (may have) otherwise lacked.
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2. This philosophical difference is reflected in the mechanisms ADE and
ROS provide and rely on for inter-component communication. ROS
provides three mechanisms: topics (a publish-subscribe mechanism),
services (a blocking remote procedure call mechanism used for short-
term information requests), and actions (a non-blocking remove proce-
dure invocation mechanism used for longer-term task requests). Prac-
tically, however, ROS implementations principally rely on its publish-
subscribe mechanisms, given the tendency towards high volumes of
low level messages. In contrast, ADE only (currently) provides remote
procedure call mechanisms equivalent to ROS’s services and actions,
due to its tendency towards low volumes of high level messages.

3. Finally, as a practical detail, ADE and ROS differ with respect to dis-
tribution and ease-of-use. ROS is readily available in Linux reposito-
ries, and makes it easy to distribute and install ROS packages providing
new architectural components; however, ROS is notoriously difficult to
install, especially outside of the Ubuntu operating system. In contrast,
ADE is not easily available outside of Tufts University, and does not
provide mechanisms for simplifying the distribution or installation of
packages providing new architectural components; but ADE is far eas-
ier to install, and essentially only requires Java as a dependency. This
makes ADE much easier to get started using, and thus potentially
easier to integrate into the classroom as a tool for teaching robotics.

In this chapter, I have provided a high level overview of the DIARC
architecture and the ADE middleware in which it is implemented. In the
next chapter, I will begin the discussion of my work within this framework
by considering the problem of reference resolution.



Chapter 3

Reference Resolution

A crucial aspect of natural language communication is the ability to re-
fer (G. M. Green, 1996). That is, we (humans) commonly use expressions
that serve to “pick out” some entity about which we want to make some
claim, request some information, or issue some command. These so-called
referring expressions come in a variety of forms (Strawson, 1950), includ-
ing demonstrative pronouns (e.g., ’this’ and ’that’), personal and impersonal
pronouns (e.g., ’I’, ’you’, ’he’, ’it’), proper names (e.g., ’Tufts University’,
’Thelonious Monk’), and definite and indefinite noun phrases (e.g., “I have
eaten the plums that were in the icebox ”, “There is a house in New Orleans”).

In order for robots to be able to engage in natural, human-like human-
robot interactions, they must thus be able to both understand and generate
such referring expressions. In this chapter, I will focus on the task of referring
expression understanding.

Perhaps the most popular approach towards enabling this capability is
to use co-reference resolution (Ng, 2010; Soon, Ng, & Lim, 2001), in which
new referring expressions are “linked” with previously heard referring expres-
sions. For example, for the sentence pair “The commander needs the medical
kit. He says that he left the medkit in the atrium”, a co-reference resolution
system should identify that [The commander], [He], and [he] all co-refer,
as do [the medical kit] and [the medkit]. Determining what referring ex-
pressions belong to the same co-reference cluster can be highly informative,
especially in text-centered fields such as question answering (McCarthy &
Lehnert, 1995) and document summarization (Morton, 2000), in which the
co-reference resolution problem has enjoyed significant attention1.

1Although perhaps not as much attention as it could attract, as discussed by Versley
et al. (2008)

15



16 CHAPTER 3. REFERENCE RESOLUTION

In robotics, however, this is not typically sufficient: the referring expres-
sions which must be understood by robots typically refer to entities in “the
real world”. The robotics community has thus emphasized the problem of
identifying what real-world entities are the referents of referring expressions.
This problem goes by many names, including “language grounding” (Steels &
Hild, 2012), “reference resolution” (Popescu-Belis, Robba, & Sabah, 1998),
and “entity resolution” (Meyer, 2013). While these names are sometimes
used to denote the same concept, they carry different connotations, and we
will use them to refer to distinct concepts:

Language Grounding:
The problem of associating a referring expression with a continuously
(i.e. sub-symbolically) represented percept2. Language Grounding
(as we cast it) can be broken into two sub-parts:

Reference Resolution: The problem of associating a referring ex-
pression with a discretely (i.e., symbolically) represented entity.

Symbol Grounding: The problem of associating a discretely
represented entity with a continuously represented per-
cept(Harnad, 1990).

Note that while referring is something assumed to happen between lin-
guistic expressions and real world entities (i.e., the referents of those referring
expressions), we take the problem of reference resolution to be the identifi-
cation of the mental representations that may or may not actually be associ-
ated with real world entities. This is necessary in that robots (at least those
operating purely in the “real world” rather than in virtual or mixed-reality
environments) must typically infer the existence of “real world” entities, hav-
ing direct access only to their own internal mental representations. Variants
of the reference resolution problem can be further subdivided in two ways.
First, they can be subdivided along existential lines:

2This is not to be confused with H. H. Clark & Brennan (1991)’s concept of Grounding
in Language, which refers instead to the process by which communicating agents come
to arrive at common ground. For work on that topic, the interested reader is directed to
surveys provided by (Baker, Hansen, Joiner, & Traum, 1999; Traum, 1999; M. J. Clark &
Liggins, 2012).
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Closed World Resolution:

Local Resolution: The reference resolution problem under the as-
sumption that all candidate referents are perceivable at resolu-
tion time.

Global Resolution: The reference resolution problem under the
assumption that all candidate referents are known at resolution
time.

Open World Resolution:
The reference resolution problem under which it is neither assumed
that candidate referents will be perceivable nor that they will be
known3.

Second, variants of the reference resolution problem can be subdivided
along ontological lines:

Domain-Dependent Resolution:
The reference resolution problem under the assumption that all can-
didate referents are drawn from a single “domain”, such as objects,
or locations.

Domain-Independent Resolution:
The reference resolution problem under the assumption that candi-
date referents may be drawn from multiple domains4.

In this chapter I will specifically focus on open-world reference resolution
of definite noun phrases.

Rest assured, however, that this does not constitute the entire treatment
of reference within this dissertation. In Chapter 4 I will expand this discus-
sion to reference resolution for a wider class of referring expressions; and in
Chapter 5 I will discuss the process of referring expression generation.

There are a number of unique challenges that present themselves to
robots seeking to understand referring expressions, due to robots’ status as

3What is important here is that a solution to this problem may need to create new
mental representations if it is determined that a referring expression does not refer to any
previously known entity.

4What is important here is that a solution to this problem should not perform any sort
of domain-specific processing.
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situated agents: agents (entities capable of autonomously acting to achieve
their own goals (Jennings, 2000)) that are embedded in an environment that
is perceivable and manipulable by themselves and other agents with whom
they can interact (G. J. Smith & Gero, 2005). While a software entity
operating within a non-situated domain such as text mining or document
summarization may need to associate entities referenced in a text with pre-
vious portions of that text, a robot must instead associate entities referenced
in dialogue with its own mental representations resulting not only from di-
alogue and inference, but also from interpretation of sensory data gathered
by its perceptual systems.

In this chapter, I will examine the problem of reference resolution over the
course of five subsections. In Section 3.1, I will begin with an introduction to
the process of reference resolution, from the perspective of psycholinguistics.
In Section 3.2 I will discuss my initial work in reference resolution, and
will introduce the concept of open world reference resolution, in which it is
not assumed a priori that the robot knows all possible entities that could
be referenced. In Section 3.3, I will present an architectural framework
to facilitate referential processing within DIARC, and a set of algorithms
which make use of that framework in order to perform domain independent
reference resolution in uncertain and open worlds. In Section 3.4 I will
present analysis and evaluation of these algorithms. Finally, in Section 3.5 I
will contrast this work to previous work on reference resolution in robotics.

3.1 Psycholinguistic Motivations

How do people determine what entities are being referred to in natural lan-
guage utterances? This problem, known as reference resolution, is among the
most basic facets of language comprehension. In this section, I will examine
the theories presented over the past 30 years to account for this process.
I will begin by discussing reference resolution in the context of traditional
sentence processing models. I will then discuss alternative “propose and dis-
pose” models, and how they led to constraint-based models, the dominant
modeling paradigm. Next, I will discuss these constraint-based models in
depth, including various implementations of such models. Finally, I will
discuss recent Bayesian models of reference resolution.

3.1.1 Modular Theories

“The horse raced past the barn fell” is one of the most famous sentences
in the sentence processing literature. Such sentences are known as “garden
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path” sentences, because they lead the reader or hearer down one path of
interpretation up until the end, at which point the reader or hearer realizes
that interpretation is incorrect, and must backtrack in order to determine
the correct interpretation (Traxler, 2011).

In this case, upon encountering ‘fell’ it finally becomes known that ‘the
horse’ refers to whichever entity is best described as ‘the horse that was raced
past the barn’, and not, as would previously have been assumed, whichever
entity is best described as ‘the horse’.

In order to explain this phenomenon, researchers developed modular the-
ories of sentence processing (e.g. Frazier, 1987; Britt, 1994; Perfetti, 1990;
Pritchett, 1992; Mitchell, Corley, & Garnham, 1992). Such theories, the
most prominent of which was Frazier’s aptly named “Garden Path” theory
(Frazier, 1987), hypothesized that sentences were first analyzed by a Syn-
tactic Processing Module, which would build up the most likely parse of a
given sentence according to some core set of principles (e.g., Minimal At-
tachment and Late Closure) and send the resulting parse tree to the second
component, a Semantic Processing Module.

The Semantic Processing Module would then determine the literal mean-
ing of the sentence by performing subtasks such as assigning thematic roles
to the entities referenced in the sentence. If this could not be achieved, i.e.,
if the sentence was not meaningful given the syntactic structure produced
by the previous module, then the Semantic Processing Module would sig-
nal the Syntactic Processing Module that a new, better parse was needed,
prompting the process to start over.

These sentences predict that semantic information should have no initial
effect on sentence interpretation. This prediction, however, does not hold
out. Consider the following utterance:

(1) The burglar blew up the safe with the rusty lock.

Upon reading this sentence, it is unclear whether the burglar blew up
a safe that had a rusty lock, or whether he blew up a safe using a rusty
lock using some McGuyver-like ingenuity. It should be clear that the first
interpretation is more likely, but it takes readers a second or two to come to
this conclusion. Under the Garden-Path Theory, nothing should be able to
change this, as in all cases the same syntactic structure should be created
by the Syntactic Processing Module. However, if readers are provided with
initial context, e.g., “The burglar had to choose whether to blow up a new
safe or a safe which had sat in the rain for ten years” before Example 1, then
readers will have no trouble reading the sentence, and will not slow down as
the Garden Path theory would expect.
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3.1.2 “Propose and Dispose” Theories and Constraint-Based
Models

In order to explain this, other researchers (primarily Altmann and colleagues)
developed an alternate theory, often referred to as “Propose and Dispose”.
Models falling under this theory (e.g. Crain & Steedman, 1985; G. Altmann,
1987; Steedman, 1986; G. Altmann & Steedman, 1988; Ni & Crain, 1990) sug-
gested that all possible parse trees were proposed in parallel by the Syntactic
Processing Module, and that the Semantic Processing Module then uses con-
textual information to rapidly winnow down this set of options. While this
casting of the problem avoids the problem described above, it is not clear
whether it’s plausible to assume that the thousands of syntactically plausible
parses for a given sentence are all generated and stored (see also Church &
Patil, 1982). For this and other reasons, “Propose and Dispose” models were
quickly superseded by “constraint-based” models, which remain the domi-
nant paradigm today. Constraint-based models suggest that a large number
of factors influence sentence processing from the first moments of process-
ing, serving to constrain the syntactic and referential ambiguities while the
sentence is parsed, such that by the time parsing is finished, the meaning of
the sentence (at least its literal, direct meaning) is understood. Thus two
stages are no longer needed; a single stage will suffice.

3.1.3 The Visual World Paradigm

While evidence in favor of constraint-based models had already started to ac-
cumulate throughout the early nineties (e.g. Boland, Tanenhaus, Garnsey, &
Carlson, 1995; MacDonald, Pearlmutter, & Seidenberg, 1994; M. J. Spivey-
Knowlton, Trueswell, & Tanenhaus, 1993; M. Spivey-Knowlton & Tanen-
haus, 1994; M. Spivey-Knowlton, Tanenhaus, Eberhard, & Sedivy, 1995;
Spivey & Tanenhaus, 1998; Tanenhaus & Trueswell, 1995), the best evidence
came with the development of the Visual World Paradigm by Tanenhaus,
Spivey-Knowlton, Eberhard, & Sedivy (1995).

In the Visual World Paradigm (Huettig, Olivers, & Hartsuiker, 2011),
participants hear utterances while looking at a display. This display is typ-
ically a set of line drawings depicted on a computer screen (e.g. Allopenna,
Magnuson, & Tanenhaus, 1998), or a set of objects arranged in a physical
display (e.g. Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). The
utterances heard by participants usually include references to objects in the
scene, and come in the form of instructions to follow or general comments
to listen carefully to. These utterances are typically heard a few seconds
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after the objects become visible in the scene. The eye gaze of participants is
tracked while they listen to utterances. This is what makes the Visual World
Paradigm so useful with respect to related paradigms; participants tend to
look at objects when they are mentioned (as well as to objects that constrain
the interpretation of other objects), perhaps as a way of relating an utter-
ance to the world around them, so that auditory and visual information may
inform each other (G. T. Altmann & Kamide, 2007). Eye tracking data gath-
ered in this way may thus be used to examine the time course of reference
resolution5. Eye tracking data is analyzed by examining the relative likeli-
hood of looking at different regions during different time intervals, through
either analysis of variance, t-tests, logistic regression, log-linear regression,
and growth-curve analysis (Huettig, Olivers, & Hartsuiker, 2011).

This paradigm has been useful for evaluating a wide variety of hypotheses
associated with constraint-based models. Under constraint-based models,
words impose various constraints, which immediately affect the activation
levels of various competitors within a referential domain (e.g., by downgrad-
ing their likelihoods6 (Weber & Crocker, 2012))in order to facilitate ambigu-
ity resolution. In order to test what factors serve as constraints, researchers
vary the items depicted in a visual world and determine whether the factor
under investigation affects eye gaze in the time region following a particular
word of interest (200ms afterwards, typically).

This has shown that in general, when context is available and salient,
it is used in the incremental interpretation of referring expressions, and
that goal-relevant reference in particular is established as quickly as possible
(Eberhard, Spivey-Knowlton, Sedivy, & Tanenhaus, 1995). Furthermore,
this paradigm has been used to show that two-stage language models are
implausible because syntactic and referential constraints interact on a word-
by-word basis; Sedivy (2002) demonstrates how referential constraints effect
parsing choices, by showing how the use of the word ‘only’ affects incremen-
tal interpretation of sentences such as “Only businessmen loaned money at
low interest were told to record their expenses”. In such sentences, the use

5Note that it is unclear to what extent these eye gaze patterns reflect automatic ver-
sus deliberate processing; an important factor for the interpretation of results from this
paradigm.

6While constraints are typically seen as downgrading rather than eliminating refer-
ential competitors, it is important to note that only a limited number of candidates are
typically considered: those within the referential domain circumscribed by various contex-
tual factors. For the sake of space I will not address this facet of reference resolution, but
it is both interesting and important (Grosz, 1977; Arnold, Tanenhaus, Altmann, & Fag-
nano, 2004; Dahan & Tanenhaus, 2004; Brown-Schmidt, Campana, & Tanenhaus, 2001;
Brown-Schmidt & Tanenhaus, 2008; Louwerse & Bangerter, 2010).
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of ‘only’ immediately establishes contrast and causes hearers to anticipate a
modifier (e.g., ‘loaned money at low rates’), thus supporting the hypothesis
that referential factors are able to bias parsing on-line in order to pursue
otherwise dispreferred syntactic structures.

In fact, the Visual World Paradigm has been used to provide evidence for
a wide variety of information sources which work from the first moments of
language processing to constrain interpretations, thus facilitating resolution
of ambiguity, whether lexical, referential, syntactic, or otherwise.

Pronoun Gender

Perhaps the most straightforward extension of the referential constraints de-
scribed above is the finding that pronoun gender serves to constrain possible
sentence interpretations(Arnold, Eisenband, Brown-Schmidt, & Trueswell,
2000).

Participants were shown a scene containing Donald Duck and either
Mickey or Minnie Mouse, and were read a sentence such as “Donald is bring-
ing some mail to [Mickey/Minnie]. He’s sauntering down the hill while a
violent storm is brewing. [He’s/She’s] carrying an umbrella, and it looks like
they’re both going to need it.”

Arnold et al. found that when the choice of pronoun was disambiguating
(i.e., when Minnie was depicted), participants’ fixations rapidly converged on
the referent soon after the pronoun’s offset, whereas when the choice of pro-
noun was not disambiguating (i.e., when Mickey was pictured), participants
did not rapidly converge to one of the two candidates.

Semantics

Researchers have also shown how the presence of semantically related distrac-
tors can bias reference resolution through spreading activation. Specifically,
Yee and Sedivy showed that objects semantically related to the target of
resolution receive more activation than do other distractors, as measured
through fixation patterns(Yee & Sedivy, 2006). For example, upon hearing
the word ‘lock’ when viewing a scene containing a lock, key, deer, and apple,
participants were shown to be more likely to fixate on the key than the apple
or deer.

Scalar Implicature

One of the classic examples of pragmatic reasoning is the processing of scalar
implicatures such as ‘some’. For example, hearing “/Some/ of the apples are
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green” suggests that some but not all of the referenced apples are green.
Breheny, Ferguson, & Katsos (2013) showed participants videos in which a
person moved items into two boxes. In different conditions, the video showed
the person moving different numbers of objects into the two boxes. Partici-
pants then heard phrases such as “The woman put a spoon into Box A and
a spoon and a fork into Box B.” Results showed that participants rapidly
constrained the set of considered candidates as soon as conjunctions disam-
biguated the sentence, even if this required the interpretation of a so-called
scalar implicature. Similar findings have been found by others(Y. T. Huang
& Snedeker, 2011; Degen & Tanenhaus, 2015). These findings are especially
important as they suggest that pragmatic inferences are computed incremen-
tally, i.e., that a complete literal meaning is not computed before determining
an utterance’s indirect meaning.

Common-Sense Reasoning and Affordance

A related aspect of pragmatic reasoning is the consideration of object af-
fordances. For example, a cup affords placing things inside of it, whereas a
plate does not. Previous models of affordance-reasoning in language assumed
that such reasoning only occurred at utterance boundaries (as in Centering
theory (Grosz, Weinstein, & Joshi, 1995)), or on a sentence-by-sentence ba-
sis (as in Mental Model accounts (Johnson-Laird, 1983; Morrow, Bower, &
Greenspan, 1989) or Dynamic Semantic Interpretation accounts (Stalnaker,
1978; Groenendijk & Stokhof, 1991)). In contrast, Chambers et al. showed
that when prepositions such as ‘inside’ are used, attention is immediately
restricted to containers, specifically to those large enough to hold the refer-
enced object(Chambers, Tanenhaus, Eberhard, Filip, & Carlson, 2002).

Researchers have also demonstrated that constraints for other types of
Common-Sense Reasoning are similarly employed. Kamide et al. showed
that verbs can be used to anticipate compatible themes and goals, verbs
and agents can combine to anticipate compatible themes, and that in head-
final constructions, constraints from pre-verbal arguments can anticipate
other pre-verbal arguments(Kamide, Altmann, & Haywood, 2003). Hanna
& Tanenhaus (2004) showed that if a listener is asked to hand a speaker an
object, and the speaker has one or more empty hands, attention is rapidly
restricted to out-of-reach items, whereas if the speaker has her hands full,
attention is not restricted.
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Prosody

Prosodic features of utterances have also been shown to constrain reference
resolution. Dahan, Tanenhaus, & Chambers (2002) found that deaccented
nouns biased resolution towards prominent entities, while accented nouns
biased resolution towards less prominent entities. Arnold et al. found that
when disfluent articles were used (e.g., “Thee. . . uh. . . ”), resolution was bi-
ased towards new or unfamiliar entities(Arnold, Tanenhaus, Altmann, &
Fagnano, 2004; Arnold, Kam, & Tanenhaus, 2007); Bosker, Quené, Sanders,
& de Jong (2014) went on to show that this only occurs when the speaker
is a native speaker (i.e., when the disfluency can’t be easily explained by a
language barrier).

Common Ground

Perhaps the deepest investigation of reference-constraining factors has been
the work on common ground. Suppose you are part of a team exploring a
building in a disaster relief scenario. You and a teammate walk past a door
marked ‘kitchen’ in a debris-filled hallway, and then reach an intersection.
You take one hallway-fork, your teammate takes the other fork. As you walk
down your hallway fork, you see another door marked ‘kitchen’. At this
moment, your partner says over your walkie-talkie that he’s going to come
back and check the kitchen. Which room is he talking about? You know of
two kitchens, but as far as you know, your partner only knows of the single
kitchen you had previously passed together. It is thus far more likely that
your partner is referring to that previous kitchen. That first kitchen is said
to be in common ground between you and your partner, whereas the second
kitchen is said to be in your own privileged ground. Determining that the
kitchen in common ground is the likely referent of your teammate’s expres-
sion requires you to consider the scene from your teammate’s perspective.
This is known as perspective taking.

Early work on perspective taking (e.g. Keysar, Barr, Balin, & Paek, 1998;
Keysar, Barr, Balin, & Brauner, 2000; Keysar, Lin, & Barr, 2003; Keysar,
2007) worked under the assumption that listeners initially process utterances
egocentrically (as a heuristic to avoid the cognitive expense of perspective
taking), and then, in a second stage, adjusted the results of that process to
account for what is or is not in common ground. Evidence for this view,
known as strategic egocentrism, came from studies showing that in certain
cases, listeners would look to or even reach for items in privileged ground
over acceptable referential candidates in common ground.
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However, evidence from visual world studies performed by constraint-
based modelers (i.e. Hanna, Tanenhaus, & Trueswell, 2003) showed that this
was only the case when the item in privileged ground was the best perceptual
match. If an equally viable candidate was present in common ground, the
privileged ground competitor would not typically be considered. Hannah
et al. explained this as the interaction of two constraints operating from
the earliest moments of processing: a common ground constraint, and a
perceptual match constraint.

The perspective adjustment theorists suggested that perhaps this bias of
common ground on early resolution processes was simply the result of antic-
ipatory effects; that is, that perhaps reference resolution really is egocentric,
but that the activation levels at the start of the reference resolution processed
may be implicitly biased towards entities in common ground (as people may
be already looking at those items predictively), resulting in selection of items
in common ground (Barr, 2008). This is known as the autonomous activation
or anticipation integration account.

Constraint-based modelers rebutted with evidence showing that informa-
tion in common ground is typically ignored if it can be ruled out in relation
to information in privileged ground. Heller, Grodner, & Tanenhaus (2008)
showed participants scenes containing objects of contrasting sizes, some of
which were clearly only visible to themselves (in privileged ground), and
some of which were clearly also visible to a confederate (in common ground).
Heller et al. tracked participants’ eye gaze within such scenes while hear-
ing sentences such as “Pick up the big duck”. If a participant heard such
an utterance while regarding a scene containing a big box and a big duck
in common ground and a small box in privileged ground, all objects should
receive equivalent activation before the sentence is heard. If the anticipa-
tion integration account is correct, then upon hearing ‘big’, people should
be equally likely to look at the big box as the big duck. But in fact, their
data suggested that people were far more likely to look (for example) at the
big duck than the big box, suggesting that the small box’s privileged status
was used from the earliest moments of processing to rule out the use of ‘big’
to refer to the big box.

Other experimenters have since investigated precisely when and how com-
mon ground is used to constrain reference resolution. In a series of studies,
Brown-Schmidt showed that listeners quickly attend to privileged informa-
tion rather than common ground when WH-Questions (e.g., ‘Who’, ‘What’,
and ‘Where’) are used (Brown-Schmidt & Tanenhaus, 2009) (although this
depends on the contour of one’s speech (Brown-Schmidt & Fraundorf, 2015)),
that insensitivity to common-ground information in other situations may be
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due to failures in inhibitory control (Brown-Schmidt, 2009), (see also Grod-
ner, Dalini, Pearlstein-Levy, & Ward, 2012; H. J. Ferguson & Breheny, 2012),
and that otherwise the use of an egocentric vs. non-egocentric perspective
may be a strategic choice which is made based on the strength of various
cues (Brown-Schmidt & Hanna, 2011; Brown-Schmidt, 2012).

Kuhlen & Brennan (2013) and Bezuidenhout (2013) came to similar con-
clusions: Kuhlen & Brennan (2013) suggest that the degree of believability
to a participant that an confederate is really not aware of what is in the
participant’s privileged ground could be one such constraint; Bezuidenhout
(2013) suggest that degree of motivation given to participants to actively
consider the privileged nature of privileged-ground information could be an-
other. Evidence also shows that people automatically “choose” the correct
strategy from the earliest moments of processing, and have trouble switching
an entire scene to another perspective afterwards (Ryskin, Brown-Schmidt,
Canseco-Gonzalez, Yiu, & Nguyen, 2014). However, other evidence suggests
that while users are not initially egocentric with respect to knowledge of the
relevant items in a scene, they may be egocentric with respect to the identi-
ties of those objects when those objects could be ambiguous in how they’re
interpreted (Mozuraitis, Chambers, & Daneman, 2015).

More recently, Heller, Parisien, & Stevenson (2016) has suggested that
cues may not lead to the “choosing” of one strategy over the other after all.
Rather, they suggest that people simultaneously consider meanings from
multiple interpretations, probabilistically weighting and integrating infor-
mation from the two perspectives. However, it is not clear how this would
account for the difficulty in shifting from one perspective to another.

Conceptual Pacts

Another relevant aspect of common ground is the use of conceptual pacts.
Over time, interlocutors tend to converge on specific words and phrases to
refer to certain entities. This is known as lexical entrainment. Brennan &
Clark (1996) view this as interlocutors converging on a mutual conceptualiza-
tion of a conversationally relevant entity, that is, establishing a conceptual
pact with respect to that entity. Such entrainment has been found to be
highly partner-specific (Metzing & Brennan, 2003). In line with this theory,
Brown-Schmidt (2009) found that participants use early, on-line, partner-
specific information to quickly resolve referents. However, other research
(i.e. Yoon & Brown-Schmidt, 2013) suggests that while interlocutors are
sensitive to conceptual pacts when generating referring expressions, they are
(relatively) insensitive to those pacts when interpreting referring expressions.
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Thus while interlocutors can make early, on-line, use of such pacts during
reference resolution, they often may not.

3.1.4 Implementations of Constraint Based Models

Finally, while constraint-based models have been implemented in a variety of
ways (McRae &Matsuki, 2013), most such implementations are connectionist
models, typically Recurrent Neural Networks such as Elman Nets (Elman,
1990; Elman, Hare, & McRae, 2004). In this subsection, I will briefly describe
several prominent implementations.

Competition Integration

The simplest implementation of a constraint-based model is the competition-
integration model (M. J. Spivey-Knowlton, 1996; McRae, Spivey-Knowlton,
& Tanenhaus, 1998). This model simply uses two layers of units: an input
layer of “constraint” nodes, and an output layer of “interpretation” nodes.
During each model cycle, values within each input node are normalized,
and interpretation node activations are calculated by the sum of facilitative
constraint activations scaled by connection weights. Constraint nodes then
receive feedback proportional to activation. This model suffers in that it
cannot generatively construct potential interpretations, is not necessarily
scalable, and does not compute the meanings of utterances.

Visitation Set Gravitation

The visitation set gravitation model (Tabor & Tanenhaus, 1999) uses simple
recurrent networks (i.e., Elman Nets (Elman, 1990)) with input, output, and
hidden units. Over time, the hidden units converge to a set of clusters of
similar patterns. The centers of these clusters are known as attractors. For
a given sentence, this network moves through a multi-dimensional space of
mental states. As it does so, the hidden layer is analyzed in order to generate
reading time predictions, where the predicted time to read a particular word
is the time taken to gravitate from the network’s current focal point in mental
state space to a particular attractor. When a sentence is ambiguous, the focal
point in mental space hovers between multiple attractors.

Coordinated Interplay Account

The coordinated interplay account is also based on recurrent neural net-
works (Knoeferle & Crocker, 2006). It differs from visitation set gravitation
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in that it explicitly takes visual context into account: included in its input
layer is a set of units through which visual input is coded in terms of “event
constituents”. This network then operates in three stages. First, an incom-
ing word is integrated into the interpretation of the sentence. Second, the
interpretation and associated expectations guide attention to referents in the
visual world or working memory. Finally, information from the word comes
into the network through the aforementioned visual context units, in order
to update the linguistic interpretation of the sentence. This model has been
used to show that online comprehension is affected by contextual effects such
as goal of comprehension and speaker gaze (Kreysa & Knoeferle, 2013).

3.1.5 Bayesian Approaches

The majority of models discussed thus far have been concerned with model-
ing the cognitive processes of reference resolution and the time course thereof.
However, in recent years, there have also been a number of Bayesian mod-
els which seek to model reference resolution at the computational level (cf.
Marr, 1982). Frank & Goodman (2012) model reference resolution with the
following equation:

P (r | w,C) =
P (w | r, C) · P (r)∑

ri∈C
P (w | ri, C) · P (ri)

(3.1)

Here, the prior probability P (r) of referring to potential referent r is
defined to be the contextual salience of object r, which combines the per-
ceptual, social, and conversational salience of object. Frank & Goodman
(2012) assume that the prior probability of selecting a particular referent
from within a scene does not depend on the presence or absence of the dis-
tractors in that scene, rendering the choice of referent r and the context C
independent. Due to this independence assumption, P (r) = P (r, C), result-
ing in the abbreviated prior in the equation above. The likelihood term,
P (w | r, C) is defined as one divided by the number of referents in context
C that “could be referred to” by word w. An algorithmic implementation of
this model was then presented by Engonopoulos, Villalba, Titov, & Koller
(2013).

This model was formalized by Goodman & Stuhlmüller (2013) into the
Rational Speech Act Theory. According to this theory, listeners assume that
speakers choose their utterances approximately optimally, and use Bayesian
inference to invert their speaker model. Furthermore, this model assumes
that people try to choose utterances that maximize surprisal for listeners



3.1. PSYCHOLINGUISTIC MOTIVATIONS 29

so as to be maximally informative. This model has since evolved to handle
a more general class of linguistic phenomena, as described by Goodman &
Frank (2016). Finally, Heller, Parisien, & Stevenson (2016) have presented a
Bayesian model of reference resolution which extends this model to account
for perspective, as described in the previous subsection. Note that Bayesian
models are not necessarily incompatible with the other models presented in
this section; rather, they operate at different levels of analysis.

However, the validity of these models has been contested by some. Mar-
cus & Davis (2013) points out that most Bayesian models of cognition fall
into one of three categories. First, some models work on specific domains
where Bayesian models happen to perform well, resulting in a dispropor-
tionate reporting of success, and an inability to account for related domains
where people routinely make errors not predicted by such models. Second,
some models present data in a way which obscures poor performance. Fi-
nally, some models make assumptions about prior distributions which are
demonstrably false, or which could have just have easily been replaced with
other, equally valid alternatives which would have yielded different results.

Marcus and Davis specifically point to the aforementioned work of Frank
& Goodman (2012) as an example of the first group of models, as their
model would not have been successful if they had chosen a winner-take-all
decision strategy, which would have been consistent with their hypotheses
but produced different results. Furthermore, Marcus & Davis (2015) cast
Frank & Goodman (2012) as an example of the third group of models, due
to their assumption that hearers know of all word choices available to the
speaker. Finally, Frank & Goodman (2012) have also been critiqued by Gatt,
van Gompel, van Deemter, & Kramer (2013) due to their inability to account
for factors such as referential overspecification.

3.1.6 Future Directions: Beyond the Visual World

Reference resolution is a fascinating area of study, sitting at the intersection
of language, memory, attention, and other areas of cognition. However, the
majority of work surveyed in this section has looked at reference resolution
in scenarios in which the intended referent is in the scene presented to the
agent. Meanwhile, related work in the visual search literature has examined
how people search for described objects in a visual scene(Huettig, Olivers, &
Hartsuiker, 2011; Huettig, Rommers, & Meyer, 2011; Andersson, Ferreira, &
Henderson, 2011). Neither of these areas cover how people resolve references
to entities out of the field of view, such as ‘the kitchen on the floor above
us’, or how people resolve references to entities which cannot be seen, such
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as those encountered in hypothetical statements such as “Imagine a red box;
the box has a handle”, or in statements that refer to abstract entities such as
sentences and events: such utterance types have typically been considered
from a linguistics perspective.

Finally, there has been a dearth of research on open-world reference reso-
lution, which occurs when the listener does not know of all referenced entities.
For examine, imagine that you are told “My office is the room across from the
kitchen on the second floor.” Upon hearing this sentence, you must deter-
mine not only the referents of known entities within this sentence, but also
determine which entities are as yet unknown to you, and for which you must
hypothesize new entities. Previously, Schlangen, Baumann, & Atterer (2009)
presented an incremental Bayesian model of reference resolution in which a
default decision of “undecided” is maintained until a candidate with poste-
rior probability above some adaptive threshold is found. In the following
sections, I will discuss alternative approaches I have developed.

3.2 Open World Spatial Reference Resolution

In Chapter 1, I discussed the importance of challenging the assumptions of
certain, complete, centralized, homogeneous knowledge. As this chapter pro-
gresses I will demonstrate how all of these assumptions are challenged – but
in this chapter, I will begin by presenting my initial work towards this goal,
which challenged specifically the assumption of complete knowledge, while
still holding to assumptions of certain, centralized, homogeneous knowledge.
This research was performed within the area of location-based spatial lan-
guage grounding, in which a robot must travel to described locations such as
rooms, hallways, and doors.

Most approaches to location-based spatial language grounding have fo-
cused on traveling to described locations that are known a priori (e.g.
S. Hemachandra, Kollar, Roy, & Teller, 2011; Kollar, Tellex, Roy, & Roy,
2010; Zender, Kruijff, & Kruijff-Korbayová, 2009; Shimizu & Haas, 2009;
Chen & Mooney, 2011; Matuszek, Fox, & Koscher, 2010). These approaches
all use some form of map to represent the robot’s environment which is ei-
ther provided beforehand or built on the fly through exploration or a guided
tour of the environment. For all of these approaches, it is assumed that any
referenced location will be found in this map. What is more, most of these
maps are “static” in nature, i.e., they will not (and are not allowed to) change
from the point when reference resolution is performed.
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At the time at which this research was conducted, only Matuszek, Herbst,
Zettlemoyer, & Fox (2012) were able to also travel to previously unknown
locations, by parsing natural language utterances directly into action se-
quences which would bring the robot to the described location. However,
this approach is a member of a subset of these previous approaches that
must be categorized not as an approach to reference resolution, but rather
as an approach to directive grounding – the objective is not to ascertain
the identities of the referenced entities, but rather to successfully follow the
provided instructions. This means that using this approach, a robot is not
able to learn about new locations without being asked to travel to them;
and the ascertained information about the location of a new location from
a route instruction may be only of value at the location where it was pro-
vided. Furthermore, like the majority of the other mentioned approaches,
that taken by Matuszek, Herbst, Zettlemoyer, & Fox (2012) is only able
to handle natural language commands, and not, for example, statements or
questions.

In this section, I will describe algorithms for location-based spatial ref-
erence resolution which are integrated into the aforementioned DIARC cog-
nitive robotic architecture; the remainder of the work in this chapter is
related to these algorithms in spirit and motivation, although that later
work does not directly extend this previous work. These algorithms sig-
nificantly improved on previous approaches by: (1) systematically creating
representations for previously unknown referent locations, allowing robots to
meaningfully communicate about unknown locations without having to first
discover their exact location (e.g., by way of navigating there); (2) system-
atically creating representations for previously unknown observed locations,
allowing robots to have natural language interactions about new environ-
mental features discovered while navigating to a previously unknown place;
and (3) generating action sequences only when they are actually needed to
visit a referenced location (instead of immediately generating and following
such sequences, the proposed approach stores the information in a location-
independent form, which allows a robot to learn a map entirely through
dialogue).

3.2.1 Algorithms, Architecture and Implementation

As previously stated, the algorithms presented in this section are integrated
into the ADE implementation of the DIARC architecture described in Chap-
ter 2. Figure 3.1 depicts the components within this DIARC configuration
that are relevant to the processing of natural language utterances (hereafter
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Figure 3.1: Spatial Cognition Architectural Diagram

Partial architecture diagram isolating the components and interactions rele-
vant to natural language spatial cognition.

denoted by small caps such as nlp for “Natural Language Processing”), with
a focus on the SPatial EXpert (spex), which employs all algorithms proposed
in this section. spex receives information about landmarks from perceptual
components in order to build a map of its environment. nlp queries spex
in order to perform reference resolution on utterances it receives from the
speech recognition component. nlp then sends utterance semantics to the
dialogue manager (dialogue). dialogue uses contextual information from
the belief modeling component (belief) to perform pragmatic analysis on
received semantics. belief uses these semantics to inform the Goal Man-
ager (gm) of new goals. The gm uses connectivity information from spex for
path planning, and uses action scripts generated by spex when a destination
has only been described to the robot and not yet visited (and thus might
not have a precisely known location). It is necessary for the gm to rely on
spex in these circumstances, as the best way to formulate a plan to these
locations is by exploiting knowledge gained through dialogue interactions.

Spatial Semantics

Producing spatial descriptions entails identifying relationships between ob-
jects and modifiers, whether that is expressed in predicate semantics (as we
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do it), or in some other form (e.g., spatial description clauses (Tellex et al.,
2011b)). To identify these relationships, we use a data-driven dependency
parser which produces semantic predicates (Cantrell, Scheutz, Schermerhorn,
& Wu, 2010).

Components such as spex interpret these semantic predicates in ways
that are typically more limited than humans would interpret them. For
example, a relational term like to_right(X,Y ) 7 is interpreted by spex in
the context of a route description in the following way: when the robot
is past a landmark Y (e.g., a room or hallway), X is always to the right
from the robot’s perspective (whereas a human might more flexibly entertain
additional interpretations that are not egocentric). To illustrate, imagine
that the robot is located as shown in Figure 3.2.

Figure 3.2: Simulation Environment

A: Robot’s initial position, B: The room at the end of the hallway.

A refers to the robot’s current location, specifically the room in which it
is located (as opposed to its location within that room). The robot is told
“The room at the end of the hall is to the right”, or to_right(B,A) where
B is the name of the room at the end of the hall. The robot will assume
that, as it is exiting A, B is to its right. So far, that is in accord with human
intuition, and this description can apply to the labeled room on the map.
However, imagine it is instead standing in the hallway and is given the same
utterance. Now it thinks that B is to its right as it is exiting the hallway.
This is no longer true of the labeled room, and does not match the human
interpretation of the utterance.

With this in mind, let us examine the utterance “Go to the room at the
end of the hall down to the right.” The room is the only noun to which at the
end of the hall could be attached; there is no ambiguity. By contrast, it is

7All formulae/predicates/terms/constraints in this dissertation will be represented as
here, with uppercase letters representing variables and lowercase letters representing con-
stants.
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not clear whether the hall or the room is the noun to which down to the right
should be attached. The parser chooses the most syntactically and lexically
likely relationship. However, based on spex’s interpretation of to_right,
only the attachment to room will be successful. If it is attached to hall, the
robot will assume that, as it is exiting A into the hallway, it will still need
to find a second hallway that is to its right and which is connected to the
room in question. Thus, the only acceptable semantic representation for the
phrase “the room at the end of the hall down to the right” is (endroom(X)∧
hall(H) ∧ connected_to(X,H) ∧ to_right(X,A)). If the attachment were
to the hallway, the semantics would instead be (endroom(X) ∧ hall(H) ∧
connected_to(X,H) ∧ to_right(H,A)). Note that spex and nlp together
resolve such ambiguities in a fixed manner, in that “higher attachments” are
always preferred in the parser. In other words, because at the end of the hall
is already attached to (is dependent on) the room, attachment to the room
is preferred over attachment to the hall.

Spatial Reference Resolution and Exploratory Route Suggestion

spex aggregates information about its environment in order to build a hi-
erarchical map M stratified into two layers, similar to the mapping ap-
proaches presented by Kruijff, Lison, Benjamin, Jacobsson, & Hawes (2007)
and Kuipers (2000). The top layer Mtop = (Vtop, Etop) is a graph with ver-
tices Vtop and edges Etop where each vertex v ∈ Vtop is a large-scale place
such as a room or hallway, and where each edge e ∈ Etop represents a means
to travel between such places (i.e., through a doorway). The bottom layer
Mbot = (Vbot, Ebot) is a graph with vertices Vbot and edges Ebot where each
vertex v ∈ Vbot is a small-scale place: a specific location in a room or hallway,
or a landmark such as a door, and where each edge e ∈ Ebot represents a path
between these places. A vertex v in either graph is indexed by a uniquely
referring identifier, and contains an adjacency list of connecting places’ iden-
tifiers and a list of properties held by the represented place. The primary
difference between the two levels is thatMtop is only concerned with whether
or not its vertices connect (e.g., whether or not a room is accessible from
a given hallway), while Mbot is additionally concerned with the details of
where and how its vertices connect. For this reason, the metric positions of
Mbot’s vertices are stored when known, while such information is not main-
tained for vertices in Mtop. Topological information, such as an ordering of
places within a hallway, can be extracted from Mbot using the coordinates
of Vbot. Each large-scale place in Vtop also stores a list of places from Vbot
that it contains. This stratification is conceptually motivated by the fact
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that natural language references to spatial locations are typically concerned
with large-scale places, whereas sensing and planning systems are typically
concerned with the small-scale places contained within.

Information used to augment this map can come from both perceptual
components and dialogue. As the robot travels through its environment,
spex actively requests information from various perceptual components, e.g,
it requests information about landmarks from the Laser Range Finder (lrf)
component. If lrf has detected a landmark, it returns its coordinates to
spex, as well as coordinates necessary for establishing the landmark’s orien-
tation or for navigating through traversable landmarks such as doors. spex
then uses the algorithm summarized in detectLandmark (Algorithm 1) to
process this information.

detectLandmark seeks to determine whether a landmark has been seen
before, and if not, to build a new representation for the landmark and any
new locations its observation entails (e.g., rooms on the other sides of ob-
served doors). To do so, it requires the coordinates of the observed landmark
(D), the coordinates that will allow one to approach (T ) and depart (O)the
landmark. In this algorithm, it is assumed that landmarks are doors that
separate large-scale topological spaces (e.g., rooms and hallways), and thus
the set of coordinates T and O are assumed to be in the current and adjoin-
ing topological space, respectively. In addition, detectLandmark requires a
list of predicates P describing any other properties the landmark might have.
For example, if a camera is being used, visual characteristics of a landmark
might be included.

detectLandmark then operates as follows: if the landmark can be iden-
tified as a known landmark based on its coordinates, nothing more must
be done, and the subroutine immediately returns (Algorithm 1, Lines 2-3).
Otherwise, detectLandmark constructs a list of locations that are known but
unobserved (such as those previously described in natural language) whose
properties include those which the landmark is observed to have (Lines 5-8).
If there are no such known but unobserved locations, then the landmark is
assumed to represent an as-yet-unknown location, and new representations
are created and added to Mbot for the three small-scale locations implied by
this observation, as well as any large scale places entailed, such as a room
assumed to be on the other side of an observed door (Lines 11-13). spex
determines whether such an adjoining space is a room or hallway using the
simplifying heuristic that rooms only connect to hallways and not to other
rooms. A more general solution would be to postpone this decision until
this property can be verified through exploration. This would require more
sophisticated exploration strategies, which I will later discuss.
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Algorithm 1 detectLandmark(D, T, O, P)
1: (D,T,O are Coordinates, P is a list of Predicates)
2: if D is a known landmark then
3: return
4: end if
5: m = ∅
6: for all φ ∈Mbot such that loc(φ) == ∅ do
7: if P ⊂ φ.properties then
8: m← m ∪ {φ}
9: end if
10: end for
11: if m == ∅ then
12: add places φD, φT , φO at coordinates D, T , O to Mbot

13: properties(φD)← properties(φD) ∪ P
14: else
15: c← the room the robot is currently in
16: t← the place connected to n in c
17: o← the other place connected to n
18: loc(m[0])← D; loc(t)← T ; loc(o)← O
19: children(c)← children(c) ∪ {t}
20: connect(c, parent(o))
21: end if

If, however, there do exist some number of previously known yet unob-
served locations with properties that match those of the observed landmark,
then the first of these is selected, and is grounded using the set of coordinates
D. Furthermore, the small-scale locations assumed to be on either side of
this now-grounded landmark are also grounded using T and O, and the rep-
resentation for the large-scale location associated with the newly grounded
landmark is connected to the robot’s current large-scale location at both the
large-scale and small-scale levels (Lines 14-20).

When nlp sends spex information regarding a received utterance, it is
as a list of predicates P representing the semantics of the utterance that
convey some information about the structure of the environment. This can
be seen in processSemantics (Algorithm 2). spex separates these predicates
into three categories: type predicates (predicates that express the type of an
entity, such as room(X)), descriptive predicates (predicates that describe an
entity, such as color(X, green)), and relational predicates (predicates that
describe relations between entities, such as connects(X,Y )).

This separation is useful since each type of predicate plays a different role
in the process of reference resolution. When spex receives a predicate list



3.2. OPEN WORLD SPATIAL REFERENCE RESOLUTION 37

Algorithm 2 processSemantics(P)
1: (P is a list of Predicates)
2: M ← new Map
3: for all type predicate p ∈ P do
4: M(vars(p)[0])← buildBindings(p)
5: end for
6: for all descriptive predicate p ∈ P do
7: pruneBindings(p,M)
8: end for
9: PR = relationalpredicates ∈ P

10: pruneRelationBindings(PR,M)
11: if (∃L ∈M |L == ∅) then
12: return createP laces(P,M)
13: else if (∃L ∈M |size(L) > 1) then
14: return ambiguous
15: end if
16: return M(args(P [0])[0])

from nlp, it attempts to determine the identities of any locations referenced
in the utterance (i.e., specified in a type predicate with name ‘room’, ‘door’
or ‘hall’). For each landmark or large-scale location referenced by a type
predicate in P , spex constructs a new list of candidate identifiers (Algo-
rithm 2, Line 4). For example, the type predicate room(R) will result in the
creation of a list which initially contains the identifiers of all known rooms8.

spex then uses the descriptive and relational predicates to eliminate bad
candidate locations from these lists. First, descriptive predicates are used by
the pruneBindings routine to quickly eliminate incorrect candidates from
M (Line 7). At this point, the only constraints left to consider are the
relational constraints. These are used by pruneRelationBindings to reduce
each list in M to its smallest size (Line 10). This process can be perhaps
best be understood by casting it as a constraint satisfaction problem (CSP,
see also Kumar, 1992) with variables X = keys(M) such that the set of
domains D = values(M), and set of constraints PR, i.e., the set of relational
constraints. The process effected by pruneRelationBindings can then be
viewed as equivalent to the process of finding all solutions to that CSP.

Once spex has reduced each list to its smallest size (i.e., by finding the set
of CSP solutions), it examines each list (Algorithm 2, Line 11). The size of
the lists can be used to classify the level of ambiguity in the utterance. If a list

8While this approach was acceptable for our initial foray, it is important to realize that
it may become unacceptable as the number of locations grows
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Algorithm 3 getScript(S, D)
1: (S is the id of the source, D is the id of the destination)
2: A is a new action script
3: if small-scale(S)ANDsmall-scale(D)ANDsame-or-adjacent(par(S), par(D))

then
4: if locationKnown(D) then
5: if adjacent(par(S), par(D)) then
6: A = A ∪ (move through doorway towards D)
7: end if
8: A = A ∪ (go to D)
9: else
10: useCluesToP lanMotion(S,D,A)
11: end if
12: else
13: D′ = nearestGrounded(D)
14: I = planSmallScaleRoute(S,D′)
15: if D′ 6= D then
16: I = I ∪ planLargeScaleRoute(D′, D)
17: end if
18: for all i ∈ I do
19: A = A ∪ (go to i)
20: end for
21: end if
22: return A

is empty, then the description corresponds to a previously unknown place. In
practice, this may be incorrect since the description could actually refer to a
known location in a way that is not currently determinable (e.g., if the robot
knows of a certain door, but does not know that the room beyond it is the
cafeteria, then it will not be able to automatically resolve a reference to ‘the
cafeteria’), but this discrepancy will need to be resolved during exploration
or during further dialogue. If the received semantics came in the context of
an assertion about the world as opposed to a query regarding its structure,
spex adds a new entry to the appropriate map level, and then adds to this
new entry any relevant properties from P . In the case of the room at the
end of the hall, the list corresponding with the referenced room is empty,
so spex creates a new large-scale place to represent the room, along with
small-scale places in Mbot representing the door which must connect it to
the hallway and the places on either side of this door. spex then gives the
newly created door the property end_of_hall(d, h), indicating where in the
hall it is located. This is necessary since spex would otherwise not be able
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to identify the door as being at the end of the hall, as its coordinates are as
of yet unknown.

If a list contains a single identifier, such as in the case of the list associated
with the hallway, spex assumes this is the identifier of the referenced location
and modifies that place’s connections and properties accordingly.

This brings up one of the difficult problems which spex must deal with.
If the robot is given a description of a place whose location it does not know,
spex needs to create a representation of that place without specifying its
metric location. If it is informed of some series of connected rooms and
hallways, their topological representations should be linked to the known
map only if their locations are known relative to some known place.

If the robot is later able to determine the precise location of one of the
rooms, its child locations in Mbot can then be given metric positions. In the
case of the room at the end of the hall, spex creates place representations
in Mbot for the door and the points of access on either side of it, but sets
a property in each of these representations indicating that its coordinates
are unknown. The identifiers for these places are then placed into a list of
unknown places which is considered whenever a new place is seen.

If there are multiple candidate identifiers for a described place, spex
informs nlp that more information is needed to disambiguate between the
candidates (Line 14) – determining whether and how to choose between
multiple candidates is an interesting topic. spex could, for example, return
a distribution representing the relative likelihoods of the various candidates,
and allow nlp to decide for itself how to resolve this ambiguity, or it could
create and assert the conveyed information for all candidate locations, along
with some diminished confidence value. This would also be useful if nlp
needed to partially assert two alternate semantic interpretations of a received
utterance. These are issues I will return to in subsequent chapters.

Another important capability addressed by spex is the generation of
actions to reach locations whose metric locations are unknown. Since the
semantics in the case of “the room at the end of the hall down to the right”
involve clues about the location of the place (i.e., it is at the end of a hallway,
in a room “to the right” of the current one), spex is able to produce a possi-
ble action sequence to reach the target location. This process is summarized
in Algorithm 3. When spex is asked for an action script which, when exe-
cuted, will take the robot between two locations S and D, it creates a new
action script A, and adds actions to this script based on the properties and
connectivity of S and D.

If S and D are small scale locations, in the same or adjoining large scale
locations, and D’s locations are known, the script returned by spex only has
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to contain an instruction to travel to D (Line 8), and, in the latter case, an
instruction to move through the doorway connecting the two rooms (Line 6).
If one of these relationships hold butD’s location is unknown (Line 10), spex
uses a set of rules of thumb to determine if it knows how to travel towards D
(i.e., whether it is known that one location is ’to the left’ of the other, with
respect to some landmark). It should be noted that these rules of thumb were
designed to operate specifically within simple room-and-hallway networks.

If, on the other hand, neither of these relationships hold, spex uses a
standard search algorithm to plan a route through small-scale space from the
starting location S to the nearest grounded location D′ to the destination D
(Line 14). If this location is not D itself, i.e., if D’s location is unknown, then
appended to this route is the shortest path from D′ to D through large-scale
topological space (Line 16). An instruction to travel to each point along this
full route is appended to A (Line 19). Finally, A is returned.

For the example sentence of the room at the end of the hall, the action
sequence is formalized in this manner:

[moveTo, self, exitposition]
[exitRoom, self]
[moveTo, self, entryposition]
[moveTo self, currentroom]
[turnRel, self, ang]
[traverse, self]
[informSpexEnd, AtEndOfHall]
[moveTo, self, destination]

Note that since spex is unable to directly detect “end-of-hall-ness”, the
created script includes a request informSpexEnd to be informed when the
exploration of the hallway is completed. spex finally alerts DIARC’s Goal
Manager (gm) component of any new places it learned of and the connections
between them.

When the gm receives the above script and and issues execution, the
robot exits the room, turns in the direction indicated, and starts driving
down the hall. When the robot reaches the end of the hallway, the gm
informs spex that the exploration has finished. spex checks whether any
nearby location is close enough to be construed as being “at the end of the
hall.” It then examines all places connected to the current hallway, and
checks to see if any of them have “end-of-hall-ness” listed among their prop-
erties (in this case, the previously described room does). Assuming one
place fits this description (at this stage in our research we did not attempt
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to handle ambiguity resolution), spex consolidates its representations of the
recently encountered place and the described place, placing into a consoli-
dation map the identifier of the place that is consolidated away, in case the
old reference is used by some other component.

3.2.2 Evaluation

We ran three sets of evaluations of spex. In the first two, spex alone was
evaluated, and in the third, the integrated architecture was tested. In order
to abstract away from the concerns of other architectural components such
as nlp, spex was provided with a starting location and gold standard se-
mantics for the utterance being tested which uniquely identified a location;
the robot was not asked, for example, to go to “the room at the end of the
hall” in an environment in which several rooms existed at the hallway’s end.
If these types of requests and environments had been included in testing,
performance would have decreased.

In the first evaluation, spex was given a full map of an environment,
and 64 resolution tests, which represented all ways that a set of utterances
(such as “the room to your immediate left when exiting the break room”,
“the room at the right end of the hallway” and “the third room on the right
facing left from your current position”) could be successfully resolved in the
environment. For example, “the room to your immediate left” was evaluated
from all starting points that had a room on their immediate left. spex
generated the correct reference for 64/64 (100%) of the tests.

In the second evaluation, spex was given a partial map of the same
environment; 44% of the large-scale locations were removed, along with all
contained small-scale locations and any connecting doors. spex was then
given all 34 tests from the original set of tests whose starting location was
still known. Since some destinations were unknown in this set, success in
the case of an unknown destination was qualified as generating a new place
representation and returning a plan which would successfully take the robot
from its current location to the location. spex passed 34/34 (100%) of these
tests.

Finally, the complete architecture using spex was tested in a simulated
environment on a set of utterances. We used a simulated MobileRobots
Pioneer robot, although the remainder of the architecture ran in the same
configuration that it would on the real robot. We first gave the command
“Go to the room at the end of the hallway down to the right” to the robot
in the simulated environment pictured again in Figure 3.3. The robot exited
the room and proceeded to the right end of the hallway. Examining spex’s
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map showed that spex had successfully consolidated its representations of
the rooms the robot had heard referenced in natural language and observed
at the end of the hall. Thus, the original reference was successfully resolved
to its physical location.

Figure 3.3: Simulation Environment

A: Robot’s initial position, B: The room at the end of the hallway.

We also evaluated some basic exploratory functionality for resolving am-
biguous statements. Consider the command “Go to the room at the end
of the hallway.” In an unknown environment, this will result in the gm
asking spex for an action script, which will need to be formed using the
useCluesToP lanMotion (Algorithm 3, Line 10) function. When this func-
tion tries to determine which end of the hallway it needs to send the robot
to, it will determine that the room could be at either end of the hallway.
It thus chooses one of the ends and adds the necessary instructions to the
action script. It then creates a new script to return to the choice point and
travel to the other end of the hallway, and stores this second script in an
“alternate plan” list indexed by the destination point. spex then returns the
first action script. When the system follows this script and travels to the
first end of the hallway, the last action it will execute will be to move to the
destination point. If the reference is successfully resolved, it will move to
that point. If it is not, the gm will once again ask spex for an action script.
spex will check its alternate plan list and see that there is a plan waiting
for that destination, and will remove and return it to the gm. Assuming
the robot’s interlocutor did not give an instruction to go to a nonexistent
location, this plan will lead it to the target location. We tested this in the
manner of the first two steps of evaluation and achieved successful results,
as evidenced in the produced action scripts:
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[moveTo, self, spex12]
[turnRel, self, -1.5708]
[traverse, self]
[informSpexEnd, AtEndOfHall]
[moveTo, self, spex14]

[moveTo, self, spex12]
[traverse, self]
[informSpexEnd, AtEndOfHall]
[moveTo, self, spex14]

3.2.3 Discussion

The above evaluations showed that spex was able to successfully resolve
spatial references to both known and unknown locations as long as the spa-
tial semantics picks out places uniquely. Storing the information gleaned
from natural language and through exploration in a location-independent
format affords the robot improved capabilities. Specifically, it allows the
robot to (1) travel to previously described locations, (2) describe how two
unknown locations are positioned relative to each other, (3) pause an ac-
tion sequence and then later resume it from another location, and (4) return
to a known location after visiting an unknown one. Finally, augmenting the
robot’s world model based only on descriptions allows a robot to learn a map
purely through dialogue if it is able to extract sufficiently accurate semantics
representations, while none of the approaches mentioned in the introduction
would able to learn a map of their environment without physical exploration
from dialogue alone.

Despite these improvements, spex had several shortcomings, specifically
in situations where the attempt to resolve a spatial reference produces either
no candidate places, or several appropriate candidates. Consider the instruc-
tion “Go to the cafeteria”: if the robot knows of no cafeterias, what heuristics
should it use to determine where to explore? Clearly, unless the robot has
some notion of where cafeterias are usually located (e.g., in buildings like
the current one), this will be very challenging. One strategy might be to
simply ask a human for help. If that is not feasible or not allowed, another
strategy might be for the robot to start exploring its environment, even when
it has no notion of the goal location (cf. Hawes et al., 2011). Sometimes a
combination of strategies may be called for – identifying the best strategy
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for a given situation is in itself a challenging open research problem.

Another condition in which SPEX was not able to resolve references was
when the robot could identify several candidate referents. For example, if
the robot is told to go to the cafeteria and it knows of several cafeterias,
how is it to determine the intended one? In the final part of our evaluation,
I presented one possible approach. Later in this dissertation, I will present
another – to ask for clarification. The exploration-based technique presented
in this work could be improved in a variety of ways, such as prioritization
of exploration based on relative likelihood, the use of other experts (e.g., an
Episodic Memory Expert), or the modeling of the beliefs and knowledge of
other agents.

Furthermore, in our evaluation of spex, we did not require spex to han-
dle underspecified descriptions of locations, which typically happen in nat-
ural interactions. A place could easily be described in a way which fails to
mention important details that are necessary for determining its location. In
such a case, a representation for the described place would have been added
to the map, but spex would either have been unable to generate a plan to
reach it, or it would have never been able to recognize the place when it
was encountered. There are additional complications that would impact the
performance of spex, for example, the environmental complexity (including
multiple intersecting hallways with loop closure, multi-level spatial layouts
with connections among the levels, and others). Finally, our evaluation also
assumed reliable perceptual information, but this is rarely the case in prac-
tice. For example, if the robot is sent to the third room in a hallway but fails
to notice one of these doors, many problems will arise. In the second of our
evaluations, we counted a test case as successful if spex was able to generate
an appropriate action plan, but did not check whether the robot made mis-
takes while carrying out those plans as this would require additional action
monitoring mechanisms to detect action failures and mechanisms to recover
from them.

In this section, I presented spex, an architectural component capable
of resolving references to unknown locations in an indoor environment in
a manner that allows a robot to discuss and reason about such locations
without having to visit them first. I discussed how spex’s capabilities are
facilitated by its interaction with other components of the DIARC architec-
ture. However, I also identified a number of serious shortcomings, including
assumptions of certain, unambiguous knowledge in a single domain and rep-
resentation scheme. In the next section, I present a more general framework
for referential processing that eliminates these shortcomings.
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3.3 Probabilistic Open World Reference Resolution

In the previous section, I presented an algorithm for open-world location-
based spatial reference resolution. But as was shown, it was subject to a
number of assumptions that limited its viability in realistic human-robot
interaction scenarios. In this section, I will present a more general architec-
tural framework and set of algorithms to perform reference resolution within
that framework. In order to do so, let us first reexamine the reasons why
reference resolution is particularly difficult for agents such as robots: rea-
sons both external (i.e., relating to their environments), and internal (i.e.,
relating to their architectures).

Externally, robots must contend with environments that are uncertain
and unknown. Suppose a robot is asked “Can you bring this mug to the
kitchen and put it in the sink?” Because the robot’s knowledge of what
locations may or may not be kitchens is likely inferred from evidence provided
by noisy sensors, it may be uncertain as to whether a particular location is
or is not a kitchen; but it should still be able to identify and assess candidate
referents. Similarly, because the robot likely does not have perfect knowledge
of every object in the building in which it works (let alone other buildings),
it may simply never have seen a sink that’s in the building’s kitchen; but it
should still be able to discuss, reason about, and travel to the described sink,
perhaps by creating a new internal representation of the described sink.

Internally, these difficulties are exacerbated by the organizational proper-
ties of integrated robot architectures. Most previous algorithms for reference
resolution (and, as well, for referring expression generation, as I will discuss
in Chapter 5), assume that information about possible referential candi-
dates is stored in a single, easily accessible knowledge base. This is usually
a reasonable assumption given the context in which most such algorithms
are developed: most reference resolution algorithms, for example, have tra-
ditionally focused on resolution within a single domain, such as large-scale
topological locations (as we did in Section 3.2) or objects perceived in a visual
scene (as have many of the psycholinguistic models covered in Section 3.1).
Unfortunately, this is not a reasonable assumption in most of the use cases
for which robot designers seek to enable natural language capabilities, such
as search and rescue robotics or assistive robotics. In these use cases, it is
likely that a robot will need to resolve references to entities from a wide
variety of domains, including people, places, objects, and utterances.

This is problematic because many integrated robot architectures used
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on robots operating in such domains, such as ROS or our own DIARC,
store information about entities from these various domains in a distributed
fashion across architectural components, rather than in a single centralized
knowledge base. Furthermore, these distributed knowledge bases may use a
variety of representational formats that facilitate domain-specific reasoning:
information about locations may be stored as a hybrid metric-topological
map in a mapping component; information about objects may be stored
as a scene graph in a vision component; information about people may be
stored in a Prolog knowledge base in a social knowledge component; and
information about recent utterances may be stored as a discourse tree in a
dialogue component.

Before reference algorithm algorithms can be designed that overcome
the limitations suffered by spex, a new architectural framework must be
developed within DIARC to facilitate such algorithms.

3.3.1 Architectural Framework

In our architecture, the set of architectural components capable of provid-
ing information about entities that might be referenced by a robot or its
interlocutors can be viewed as a set of distributed, heterogeneous knowledge
bases (DHKBs). These are viewed as abstract knowledge bases because they
are assumed to represent and reason about information of interest to the
robot; they are viewed as heterogeneous because each such knowledge base
may have its own unique means of representing and providing access to such
information; and they are viewed as distributed because each such knowledge
base may be physically located on a different machine.

DHKBs

Due to the heterogeneous nature of these knowledge bases, we cannot as-
sume a unified means of access to the information stored in a given knowl-
edge base. What is more, it cannot be assumed that all information in a
given knowledge base should even be accessible through introspection by an
agent’s higher level cognitive processes. In humans, for example, it is uncon-
troversial that the set of information introspectable by higher level cognitive
processes is much smaller than the total amount of information processed
by the brain (Nisbett & Wilson, 1977). Similarly, it is possible that only
a small subset of the information stored in a given knowledge base will be
introspectable by a robot’s higher level cognitive processes.

In order for a DHKB to be useful, however, we assume that some subset
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of its information can be introspectively accessed. Furthermore, we make
the following assumptions about such information:

1. We assume that, for a given DHKB, there exists some set of entities
known of by that DHKB about which information is accessible through
introspection, and that these entities can be enumerated using a set of
unique identifiers.

2. We assume that all information that can be introspectively accessed
can be described using positive arity predicate symbols, i.e., properties
(unary predicate symbols) and relations (polyadic predicate symbols
(i.e., predicate symbols with arity greater than one))9.

3. We assume that all information that can be introspectively accessed
can be assessed (i.e., it is possible to determine to what extent a given
property or relation holds for a given entity or set of entities).

4. We assume that all information that can be introspectively accessed
can be imagined (i.e., it is possible for the DHKB to store, on com-
mand, information about a new hypothetical entity that has an arbi-
trary set of properties and relations

For example, consider the case of a DHKB taking the form of a hybrid
metric-topological map. The DHKB may store information in a variety of
forms, e.g., occupancy grids used at the metric mapping level. But it may
be the case that the only information that can be introspected upon are the
concepts of Rooms, Hallways, and Connectivity. This DHKB may have a set
of large-scale places {p1,p2} it knows of, which constitute its set of entities.
It must be possible to assess the degree to which it is believed that each of
{room(p1),room(p2),hallway(p1),hallway(p2),connects(p1,p2),connects(p2,p1)}
hold, and it must be able to imagine a new entity (e.g., p3) such that,
for example, each of {room(p3),connects(p1,p3),connects(p3,p1)} can be
consciously willed to be true to any degree desired.

Consultants

Our assumptions given DHKBs are exploited using a set of consultants, each
of which provides an interface to a single type of information stored in an

9It is crucial to understand, however, that (1) no assumption is made that information
is stored in this form – it is merely describable in this form, and that (2) no assumption
is made that such descriptions are made with perfect certainty.
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agent’s DHKBs. Typically, each consultant serves as the interface to a par-
ticular DHKB. The interface provided by a consultant c must be capable of
the following four functions:

1. Providing the set cdomain of atomic entities about which information
is assessable through introspection in its associated DHKB;

2. Advertising a list cconstraints of constraints (i.e., typed positive-arity
predicate symbols) that can be assessed with respect to known entities
from cdomain or asserted with respect to imagined entities. These con-
straints are assumed to be listed in descending order of preference (see
also Dale & Reiter, 1995);

3. Assessing the extent to which constraints from cconstraints can be said
to be true about entities from cdomain; and

4. Asserting newly imagined entities into cdomain such that some arbitrary
set of constraints from cconstraints are true to a desired extent (an action
known hereafter as hypothesization).

Above, I stated that the constraints advertised by a consultant are typed
positive-arity predicate symbols. By this, I mean that a consultant must
specify the consultants responsible for handling each of the entities that
can be bound to the arguments of an advertised constraint. For example,
a consultant named obj responsible for knowledge regarding objects may
advertise in(X : obj, Y : obj), indicating that it can, for example, assess
whether one entity from objdomain can be considered to be ‘in’ another entity
from objdomain (for example, whether a given book is in a given box)10. This
is important for two reasons.

First, we assume that multiple consultants may advertise constraints
that are identical in name and arity, but that differ with respect to type
information (but that no consultants advertise constraints that are identical
with respect to name, arity, and type information). For example, a consul-
tant named loc responsible for knowledge regarding locations may advertise
in(X : loc, Y : loc), indicating that it can, for example, assess whether
one entity from locdomain can be considered to be ‘in’ another entity from
locdomain (for example, whether a given room is in a given building).

10Note that here we informally use the word ‘object’ to refer to small, everyday objects,
and use the word ‘locations’ to refer to large-scale spatial locations such as rooms or
hallways. It is of course possible to view a room as an object or the inside of a cup as a
location, but here, and throughout this dissertation, we will use the more everyday sense
of these words, and define consultants and algorithms with this sense in mind.
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Second, for a constraint q advertised by consultant c with arguments
qargs, we only assume that at least one argument in qargs must be bound
to an entity from cdomain. This relaxed assumption allows obj to adver-
tise, for example, in(X : obj, Y : loc), indicating obj can assess whether
a given object is in a given location about which more information can be
found by querying consultant loc. In integrated agent architectures in which
information is distributed across multiple DHKBs, connections often exists
enabling communication of information between those components. For ex-
ample, when a new object is seen, a vision component may query a mapping
component for the current location, so it can be stored along with the new
object’s representation.

Referential Executive

The final facet of our architectural framework is REX, the Referential Ex-
ecutive. REX is a DIARC component that manages and makes use of the
consultants available within a robot architecture. Whenever a new compo-
nent that fills the role of consultant registers with the DIARC architecture,
REX is automatically notified, at which point REX records that consultant’s
name and the constraints it advertises.
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3.3.2 Notation

Before I move on, I introduce the notation used throughout this chapter.

Λ The set of logical formulae (or constraints) λ0 . . . λ|Λ| associated with the
current variable of interest in the semantic connotation of an incoming ut-
terance.

Λ[t] The aforementioned set of logical formulae under typing t.

ΛV The set of variables used in all logical formulae in Λ.

λV The set of variables {λv0 , . . . , λv|ΛV |} used in logical formula λ.

V [t] The ordered list of free variables found in Λ under a typing t mapping
variables to consultants.

C A set of consultants {c0, . . . , c|C|}.

cQ A set of query templates {cq0, . . . , cq|cq|} advertised by consultant c.

CQ The set of query templates {ciQ ∪ · · · ∪ c|C|
Q} advertised by all consultants.

M A robot’s world model of entities {m0 . . .m|M |} found in the domains pro-
vided by the robot’s various consultants.

Mv[t] The subset ofM provided by the consultant associated with variable v under
typing t.

Γ A binding hypothesis, i.e., a set of bindings from variables in ΛV to entities
in M , denoting the semantic denotation of the current variable of interest
of an incoming utterance.

Γ̃ A set of binding hypotheses {Γ0, . . . ,Γ|Γ̃|} under consideration.

ΓV The set of variables {Γv0 , . . . ,Γv|ΓV |} used in binding hypothesis Γ.

ΓΛ The set of formulae {Γλ0 , . . . ,Γλ|ΓΛ|} that have not yet been considered for
binding hypothesis Γ.

Φ A satisfaction variable which is True iff all formulae in Λ hold when bound
using Γ.

ΓP The probability of satisfaction for binding Γ; Superscript notation is used for
consistency and to distinguish this possibly partially computed probability
value from the final value P (Φ | Γ,Λ) obtained for a complete binding Γ,
after considering all λ ∈ Λ.

Here, I use Mill (1884)’s terminology of connotation and denotation for
simplicity; this should not be taken as a commitment to any particular theory
of meaning.
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3.3.3 Mechanisms to Facilitate Reference Resolution

We are now ready to examine how reference resolution is facilitated us-
ing the presented architectural framework. When a robot receives an
utterance, it is parsed into an utterance structure with a set of addi-
tional semantic content. For example, the utterance “The medkit is on
the shelf in the breakroom” may be parsed into the utterance structure
Statement(speaker, self, on(X,Y )) with additional semantic content Λ =
{medkit(X), shelf(Y ), breakroom(Z), in(Y, Z)}. The additional semantic
content associated with each variable found in the utterance structure are
assumed to be distinct, and are dealt with separately. For each variable
found in the utterance structure, its associated additional semantic content
is sent to REX for resolution, along with an ordering over the variables
found in those semantics, based on considerations such as prepositional at-
tachment. For example, when processing the second clause of the above
utterance, REX would receive Λ = {shelf(Y ), breakroom(Z), in(Y,Z)} and
the ordering {Y, Z}, determined because entity Y is being described with
respect to entity Z.

Before REX can perform reference resolution, it must determine which
consultant should be used to provide information about each variable. That
is, REX must find the most probable mapping from variables to consultants,
given the provided (untyped) constraints and the the (typed) constraints
advertised by REX’s consultants.

The process of associating a consultant with each variable is viewed as
the process of finding the optimal mapping t : ΛV →C from variables in ΛV

to consultants in C, drawn from set of possible mappings T :

argmax
t∈T

∏
λ∈Λ

P (t|λ).

Here, P (t|λ) represents the probability that mapping t correctly maps
variables to consultants given that λ appears in Λ. This can be calculated in
one of two ways. If a training corpus is available, P (t|λ) can be calculated by
consulting the learned conditional distribution P (T |λ). Otherwise a uniform
distribution may be assumed, and P (t|λ) can be calculated as:

P (t|λ) =

{
0, if δ = 0.

1/δ, otherwise.

where δ =
∑
c∈C

∑
q∈cQ
|matches(q, λ)|
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.
Here, |matches| is the number of query templates in cQ that can be

unified with λ.
Once a constraint typing has been chosen, and used to transform the

set of constraints associated with a variable into a set of typed constraints,
those constraints are provided to the DIST-POWER reference resolution
algorithm. In the following three subsections I will describe how the process
of reference resolution may be modeled within the presented architectural
framework, and how that model is implemented by the DIST-CoWER and
DIST-POWER algorithms.

3.3.4 Model

Using the previously provided notation, we can create models of both closed
world and open world reference resolution. Closed world reference resolution
is the problem of finding the optimal association from referenced entities to
known entities, that is, the optimal set of bindings Γ? from variables in ΛV

to entities in M . We define optimality as highest probability of maximizing
a satisfaction variable Φ, and assume independence among constraints such
that the probability of a set of variable bindings satisfying a set of constraints
is equivalent to the product of the probabilities of those variable bindings
satisfying each individual constraint, as assessed by REX’s Consultants. This
produces the following model for closed-world reference resolution:

Γ? = argmax
Γ∈Γ̃

P (Φ | Γ,Λ[t]) = argmax
Γ∈Γ̃

|Λ[t]|∏
i=0

P (φi | Γ, λ[t]i) (3.2)

However, in an open world in which new entities may be introduced
through dialogue, it may be impossible or inappropriate to associate all
variables in ΛV to entities in M , as some subset of those variables should
perhaps instead be associated with new, previously unknown entities. Thus,
open world reference resolution can be characterized as the problem of find-
ing both (1) the optimal division of variables in ΛV into those that should be
resolved to existing representations and those for which new representations
should be created, and (2) the optimal set of bindings from variables in the
former subset to entities in M . In order to help find the optimal division
of variables, it is assumed that the variables in ΛV are listed in increasing
order of likeliness of being part of this subset, as I describe in Williams &
Scheutz (2015b). Using this assumption, the first half of the problem can
be cast as that of finding the longest suffix of ΛV such that the probability
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of satisfaction for the best closed world solution using that suffix is above
some threshold τcower 11. Let ΛV

i be the suffix of ΛV containing its last i el-
ements, let Λ[t]i be the subset of (typed) constraints that only involve those
variables, let Γi be the space of candidate variable bindings from variables
in ΛV

i to entities in M , let Γi? be the solution to the closed world reference
resolution problem for Γi, and let Γi?P be the probability associated with
that best solution, and let complete() be a function that completes a partial
solution by hypothesizing new representations for unbound references. The
problem of open-world reference resolution can then be modeled as:

Γ? = complete

(
argmax

Γi?∈{Γ0?,...,Γ|ΛV |?}

{
i, if Γi?P > τcower

0, otherwise

)
(3.3)

Here, it is important to understand that i is the index of each interme-
diate solution. There may indeed be multiple intermediate solutions that
are sufficiently probable (i.e., whose associated probability is above τcower).
By choosing from these the intermediate solution with the highest index, we
achieve the affect of choosing the intermediate solution for which the fewest
variables have been removed from consideration, and thus, the intermediate
solution for which the fewest new representations must be created.

I will now discuss how this model is algorithmically realized. The space
of possible bindings Γ is quite large, namely O(d|Λ

V |), where d = max
v∈ΛV

|Mv[t]|,
i.e., the size of the largest domain provided by a consultant associated with
a variable in ΛV . As it will be prohibitively expensive to examine all such
bindings, I have developed the DIST-POWER algorithm to efficiently search
this space, as discussed in this section.

I will first discuss the Distributed, probabilistic, Closed World Entity Res-
olution algorithm (DIST-CoWER,12 Algorithm 4), which implements Equa-
tion 3.2, and I will then discuss our Distributed, Probabilistic, Open World
Entity Resolution algorithm (DIST-POWER, Algorithm 5), which imple-
ments Equation 3.3, using DIST-CoWER as a subroutine.

11A note about τ : Several of the algorithms in this dissertation make use of thresholds
denoted by tau – a symbol which does not appear in the definitions for those algorithm.
This is because these thresholds are intended to be set by the developer at implementation
time, to values chosen at the developer’s discretion.

12I use “Entity” Resolution here as a way of emphasizing the domain-independent nature
of our reference resolution algorithms; I use “Probabilistic” to emphasize that the algorithm
incrementally computes the probabilities of binding hypotheses.
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3.3.5 DIST-CoWER

The DIST-CoWER algorithm, generally stated, performs a best-first search
through the space of possible assignments from variables to known entities, in
which (incrementally constructed) partial assignments are eliminated when
their (incrementally computed) joint probability falls below a given thresh-
old; this probability function also serves as the priority function that dictates
the order in which these partial assignments are considered.

To be specific, DIST-CoWER begins with a set of typed variables V [t],
a list of typed formulae Λ[t], an initial set of candidate hypotheses (i.e.,
partial assignments, each of which is paired with a set of formulae left to
examine, and a probability value that serves as its priority), and a set of
consultants C. DIST-CoWER then does the following until some termination
condition is met (Algorithm 4, Line 2). Here, different termination conditions
may be preferred depending on context of use: a termination condition of
(|Γ̃| = 0) will find all sufficiently probable solutions; a termination condition
of (|Γ̃| = 0 or |Γ?| = 1) will find the best sufficiently probable solution; a
termination condition of (|Γ̃| = 0 or |Γ?| = n) will find the top n candidate
solutions.

DIST-CoWER first pops the highest-priority (i.e., most probable) hy-
pothesis Γ off of Γ̃ (Line 3). If this hypothesis Γ is a solution (i.e., a suffi-
ciently probable hypothesis that accounts for all formulae in Λ[t]), it is added
to the set of solutions (Lines 19-22). Otherwise, one of two actions is taken.
If the first formula λ not yet accounted for in the hypothesis Γ contains a
variable v that Γ does not include a binding for, a set of copies of Γ are put
back into the queue, each of which binds v to a different candidate entity m
provided by the consultant responsible for v (as determined by v’s typing)
(Lines 6- 10). If, on the other hand, the first formula λ not yet accounted
for in hypothesis Γ does not include any new variables, DIST-CoWER finds
a consultant c to “consult with” for λ, acquires from c the probability that λ
is satisfied under hypothesis Γ (using the function apply, provided by each
consultant in compliance with consultant capability 3, multiplies this with
Γ’s prior probability to produce a new posterior probability, and if this new
probability is above threshold τcower, removes λ from Γ’s set of unconsidered
constraints, and adds Γ back onto the queue (Lines 11-18).

Thus, as previously stated, DIST-CoWER uses best-first search through
an incrementally computed tree of partial solutions to find some subset (de-
pending on chosen terminating condition) of sufficiently probable binding
hypotheses.

I will now discuss how DIST-CoWER is used in the context of DIST-
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Algorithm 4 DIST-CoWER(V [t],Λ[t], Γ̃, C)
1: Γ? = ∅
2: while (not done) do
3: Γ = pop(Γ̃)
4: if ΓΛ 6= ∅ then
5: λ = Γλ0

6: if (∃v ∈ λV | v /∈ Γ̃V ) then
7: for all m ∈Mv[t] do
8: γ = (v → m)
9: Γ̃ = Γ̃ ∪ (Γ ∪ γ,ΓΛ,ΓP )

10: end for
11: else
12: c = find_consultant(C, λ)
13: ΓP = hP · apply(c, λ,Γ)
14: ΓΛ = ΓΛ \ λ
15: if (ΓP > τcower) then
16: Γ̃ = Γ̃ ∪ Γ
17: end if
18: end if
19: else
20: Γ? = Γ ? ∪Γ
21: end if
22: end while
23: return Γ?

POWER to implement equation 3.3 and effect open-world reference resolu-
tion.

3.3.6 DIST-POWER

While DIST-CoWER finds the optimal set of bindings from a set of variables
to entities, DIST-POWER finds the longest suffix of a list of variables such
that the set of bindings produced by DIST-CoWER to those variables is
nonempty. DIST-POWER begins with the same input as DIST-CoWER:
a set of typed variables V [t], a list of typed formulae Λ[t], an initial set of
candidate hypotheses, and a set of consultants C. DIST-POWER’s behavior
can then be split into three stages: pre-processing (Algorithm 5 Lines 1- 9),
resolution (Lines 10- 14), and hypothesization (Lines 15- 18).

During the pre-processing step, DIST-POWER first populates initial pri-
ority queue of hypotheses Γ̃ with the space of possible bindings to the first
variable found in the first formula in Λ[t], unless some partial set of bindings
is set a priori. DIST-POWER then creates copies of Λ[t] and V [t], which
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may be pruned during iterations of the resolution loop.
During this resolution stage, DIST-POWER attempts to use DIST-

CoWER to perform resolution; each time DIST-CoWER fails to produce
results, DIST-POWER tries again with a smaller set of variables and formu-
lae.

Finally, during the hypothesization step, DIST-POWER instructs its
consultants to hypothesize new representations to associate with any vari-
ables that were “set aside” during the resolution stage (using the function
posit, provided by each consultant in compliance with consultant capabil-
ity 4. Because this may involve asserting that certain relations hold between
known entities and these new entities, if hypothesization must be performed,
all but the most probable hypothesis are discarded. If hypothesization is
performed, DIST-POWER uses the newly created entities to produce a new
hypothesis binding all variables in V [t] to either previously known or newly
hypothesized entities.

Algorithm 5 DIST-POWER(V [t],Λ[t], Γ̃, C)

1: if Γ̃ = ∅ then
2: v = λ[t]v0

0

3: for all m ∈Mv[t] do
4: γ = (v → m)
5: Γ̃ = Γ̃ ∪ {Γ ∪ γ,Λ[t], 1.0}
6: end for
7: end if
8: Λ′ = Λ[t]
9: V ′ = V [t]

10: repeat
11: Γ? = DIST-CoWER(V ′,Λ′, Γ̃, C)
12: Λ′ = [λ ∈ Λ|head(V ′) /∈ λV ]
13: V ′ = tail(V ′)
14: until Γ? 6= ∅ or V ′ = ∅
15: if V ′ 6= V [t] then
16: Γ? = posit(Γ?0,Λ[t], C)
17: end if
18: return Γ?

Currently, it is assumed that after a DIST-POWER query in which hy-
pothesization is performed, a subsequent, identical DIST-POWER query
should be able to identify that the newly hypothesized entities are the target
referents. Because this requires asserting properties and relations involving
those hypothesized entities, DIST-POWER may be unable to simultaneously
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identify ambiguities and perform hypothesization. For example, if one were
to say “Could you go to the room at the end of the hallway” and the robot
knows of two hallways, and does not know of a room at the end of either, it
will choose the large-scale location more likely to be a hallway and hypoth-
esize a room at its end. In the future, it may be more appropriate to move
this hypothesization stage into a separate action such that resolution can be
interleaved with, rather than purely precede, clarification request generation
mechanisms. In addition, as described, DIST-POWER ends up performing
some queries up to ΛV times; this may be remedied (at the cost of additional
memory usage) using traditional dynamic programming techniques.

3.4 Evaluation

In this section, I will present a multi-faceted evaluation of the previously
presented algorithms.

1. First, I will provide a proof-of-concept demonstration of the algorithm’s
behavior.

2. Second, I will compare the performance of the proposed algorithm to
that of humans (using human data collected through a crowdsourcing
experiment), to demonstrate the extent to which it might serve as a
model of human open-world reference resolution.

3. Third, I will discuss the worst-case time and space complexity of DIST-
CoWER and DIST-POWER.

4. Fourth, I will compare the performance of the proposed algorithm
in practice relative to a baseline (in which all relevant knowledge
is contained within a single centralized knowledge base rather than
distributed) in order to assess the efficiency gains effected by DIST-
POWER’s use of distribution and variable typing.

5. Fifth, I will examine how the performance of the proposed algorithm is
in practice affected by variations in constraint ordering (e.g., whether
it is more efficient to sort constraints based on arity, cost, or some
other metric).

6. Finally, I will discuss the proposed algorithm’s adherence to the theo-
retical commitments of DIARC.
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3.4.1 Proof of Concept Demonstration

In this section we present a proof of concept demonstration of our proposed
algorithm and framework. The purpose of this demonstration is two-fold:
First, we will demonstrate that DIST-POWER behaves as intended, that
is, that it allows resolution to be performed when the requisite information
is distributed across various knowledge bases, and it allows resolution to
be performed without knowledge (on the part of the algorithm itself) as
to (1) the format of the knowledge stored in each knowledge base, and (2)
the techniques necessary for extracting the relevant knowledge from each
knowledge base. Second, we will demonstrate that DIST-POWER has been
fully integrated into our cognitive robotic architecture (i.e, DIARC ) in order
to perform tasks natural to human-robot interaction scenarios.

As previously described, DIARC uses a distributed heterogeneous knowl-
edge representation scheme: the architecture has Belief, Goal, and Dialog
management components that track, as their names suggest, information
about the beliefs of other agents, the robot’s goals, and the human-robot di-
alogue state; but information about visual targets, for example, is localized
in the Vision component, and information about spatial entities is localized
in the Spatial Expert component. To implement the proposed framework,
a set of “consultants” were implemented to interface with knowledge bases
of known objects, locations, and people. Each consultant performed four
functions:

1. Each consultant advertised the types of queries it handled by exposing
a list of formulae such as in(W−objects, Y − locations). This formula,
for example, states that the consultant which advertises it is able to
assess the degree to which some entity from the objects knowledge
base is believed to be in an entity from the locations knowledge base.

2. Each consultant provided a method which returned a set of numeric
identifiers of the atomic entities in its associated knowledge base.

3. Each consultant provided a method which, given formula p (e.g.,
in(X−objects, Y −locations)) and mappingm from variable names to
numeric identifiers, (e.g., from X and Y to 22 and 25) would return the
probability that relationship p held under the variable bindings spec-
ified in m. In this example, the appropriate consultant would return
the degree to which it believed object 22 to be in location 25.

4. Each consultant provided a method which, given a set of formulae with
some unbound variables, would posit new representations to associate
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with those unbound variables, store the knowledge of their properties
represented by those formulae, and return new variable bindings ac-
counting for the newly posited entities.

In addition, a Referential Executive component provided a DIST-
POWER method which, given a set of formulae Λ, calculated optimal
mapping t and executed DIST-POWER(V [t],Λ[t], Γ̃, C). As a proof of
concept demonstration, we examined the behavior of a robot running this
DIARC configuration, when given the utterance “Jim would like the ball
that is in the room across from the kitchen” (assumed to be uttered by an
agent named ‘Bob’). This utterance is represented as:

Stmt(bob, self, and(wouldlike(jim,X),ball(X), in(X,Y ), room(Y ),

acrossfrom(Y,Z), kitchen(Z))).

This utterance is a statement from ‘Bob’ to the robot (i.e., ‘self’), where
the head of the and list (i.e., {wouldlike(jim,X)}) represents the literal
semantics of the sentence, and the tail of the and list represents the properties
which must be passed to the Resolver for resolution.

We will now describe the behavior of the Referential Executive (REX)
as it follows the DIST-POWER algorithm (with termination condition
| Γ̃ |= 0), detailing the state of REX’s hypothesis queue Γ̃ at several points
throughout the trace of the algorithm. In order to provide an easily de-
scribable example, we limited the number of entities in the initial domain of
each knowledge base to three or four entities. The robot’s knowledge base of
locations contained a hallway and several rooms, including a kitchen, and a
room across from it which only contained, to the robot’s knowledge, a table.
The robot’s knowledge base of objects contained the table and several boxes
and balls. We will use o as shorthand for objects and l as shorthand for
locations.

REX first calculates optimal mapping t, and returns {X : o, Y : l, Z :
l}. Next, REX determines that the first constraint to be examined will be
ball(X : o). REX thus instantiates its hypothesis queue by requesting a set
of candidate entities for X from the consultant associated with knowledge
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base o, which produces candidate set {o1, o2, o3, o4} 13. REX then requests
from o the probability of each of {ball(o1), ball(o2), ball(o3), ball(o4), } being
true, and receives back, respectively, 0.82, 0.92, 0.0, 0.0. Since 0.0 < 0.1 (the
chosen value of τcower), the hypotheses with mappings X : o3 and X : o4 are
thrown out, and the other two hypotheses are returned to H, resulting in
hypothesis queue:

Γ ΓΛ ΓP

{X : o2} {room(Y : l), kitchen(Z : l), in(X : o, Y : l), 0.92
acrossfrom(Y : l, Z : l)}

{X : o1} {room(Y ), kitchen(Z : l), in(X : o, Y : l), 0.82
acrossfrom(Y : l, Z : l)}

The next constraint to be considered is room(Y : l). Since {X : o2} does
not contain a candidate identifier for Y , REX requests the initial domain of
Y from l, receives the set of candidates {l1, l2, l5, l6}, and replaces the first
hypothesis with a set of four hypotheses which each have a different binding
for Y but share the original ΓP priority and set of unconsidered constraints
ΓΛ. The probability resulting from apply(l, in(X : o, Y : l), {X : o2, Y :
li . . . }) is then computed for each of these four hypotheses, resulting in,
respectively, 0.82, 0.92, 0.0, 0.6. The third hypothesis is thrown out and the
others are returned to Γ with updated probabilities, resulting in hypothesis
queue:

Γ ΓΛ ΓP

{X : o2, Y : l2} {kitchen(Z : l), in(X : o, Y : l), 0.846
acrossfrom(Y : l, Z : l)

{X : o1} {room(Y : l), kitchen(Z : l), in(X : o, Y : l), 0.820
acrossfrom(Y : l, Z : l)}

{X : o2, Y : l1} {kitchen(Z : l), in(X : o, Y : l), 0.754
acrossfrom(Y : l, Z : l)}

{X : o2, Y : l6} {kitchen(Z : l), in(X : o, Y : l), 0.736
acrossfrom(Y : l, Z : l)}

13Note that this is the set of all entities known of by consultant o, and not the set of
entities that o believes could plausibly be a ball. A simple extension of this process that
would likely effect significant speedups would be to provide the query or some subset of
the query to the consultant, and ask for the set of locally sufficiently likely candidates
rather than the set of all candidates. This would, however, result in the bulk of the work
involved in reference resolution being pushed onto the individual consultants, and thus,
for the sake of generality, I do not consider such an extension in this dissertation, but
instead leave it aside, to be considered in future work.
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As the hypothesis with binding {X : o2, Y : l2} is then the most likely hy-
pothesis and the next constraint to consider is kitchen(Z : l), Z is expanded
with candidate locations, each checked for the kitchen(Z : l) property. As
only location 2 is known to be a kitchen, the first hypothesis is replaced with
a single new hypothesis, with probability 0.762. This causes the hypothesis
with binding {X : o1} to become the most probable hypothesis, resulting in
the above process being repeated for that hypothesis, resulting in hypothesis
queue:

Γ ΓΛ ΓP

{X : o2, Y : l2, Z : l2} {in(X : o, Y : l), 0.762
acrossfrom(Y : l, Z : l)}

{X : o2, Y : l1} {kitchen(Z : l), in(X : o, Y : l), 0.754
acrossfrom(Y : l, Z : l)}

{X : o1, Y : l2} {kitchen(Z : l), in(X : o, Y : l), 0.754
acrossfrom(Y : l, Z : l)}

{X : o2, Y : l6} {kitchen(Z : l), in(X : o, Y : l), 0.736
acrossfrom(Y : l, Z : l)}

{X : o1, Y : l1} {kitchen(Z : l), in(X : o, Y : l), 0.672
acrossfrom(Y : l, Z : l)}

{X : o1, Y : l6} {kitchen(Z : l), in(X : o, Y : l), 0.656
acrossfrom(Y : l, Z : l)}

When the next best hypothesis is examined, it will be eliminated, as o2

is not known to be located in l2. Indeed, as no ball is known to exist in
a room across from a kitchen, all hypotheses are systematically eliminated.
Once this has finished, DIST-POWER removes the head of its variable list
V ′ and tries the entire above process again, with V ′ = {Y : l, Z : l} and Λ′ =
{room(Y : l), acrossfrom(Y : l, Z : l), kitchen(Z : l))}. The elimination of
X : o from these sets suggests that X refers to an object that is not yet
known to the robot. This time, after considering the first formula in Λ[t]
(i.e., room(Y : l)), the initial hypothesis queue is:

Γ ΓΛ ΓP

{Y : l2} {kitchen(Z : l), acrossfrom(Y : l, Z : l)} 0.92
{Y : l1} {kitchen(Z : l), acrossfrom(Y : l, Z : l)} 0.82
{Y : l6} {kitchen(Z : l), acrossfrom(Y : l, Z : l)} 0.8

After going through the same resolution process, the final hypothesis
queue will be:



62 CHAPTER 3. REFERENCE RESOLUTION

Γ ΓΛ ΓP

{Y : l1, Z : l2} {} 0.702

DIST-POWER then instructs the objects consultant to create a new
representation for X. It does so and returns a new identifier for it, which is
used to update the hypothesis queue:

Γ ΓΛ ΓP

{X : o5, Y : l1, Z : l2} {} 0.702

DIST-POWER then instructs both the objects and locations consul-
tants to maintain consistency with Λ[t] under the bindings Γ of the one
remaining hypothesis, h. This results in the objects consultant asserting
into its KB that o5 is a ball, and the locations consultant asserting into its
KB that l1 contains o5.

REX then uses Γ? to convert wouldlike(jim,X) into wouldlike(jim, o5).
The utterance Stmt(bob, self, wouldlike(jim, o5)) is then returned to the
process that requested resolution.

In Section 6.4, we will describe how the intentions behind this type of
utterance could be inferred. In our proof-of-concept demonstration, this
process (which we will leave until that section to explain) results in the
following goal being inferred: goal(self, bring(self, o5, jim)), The robot thus
determines that bob wants it to bring object o5 (which is in room l1) to jim.
The robot responds “Okay” and drives to l1 to retrieve object o5.

Before moving on, we would like to emphasize that this proof-of-concept
demonstration is of course not a quantitative evaluation, nor is it intended to
be. In the next section, we present the first of three quantitative evaluations
which fill just this purpose.

3.4.2 Evaluation and Cognitive Model

In this section, we present a human-subject experiment designed to achieve
two purposes: (1) to serve as an evaluation as to how successful DIST-
POWER would be in resolving references relative to humans (as in (Williams
& Scheutz, 2015b)), and (2) to investigate how well DIST-POWER models
the products of human reference resolution in uncertain and open worlds, at
the computational level of analysis (Marr, 1982) (as in (Williams & Scheutz,
2015a)). This experiment does not exploit DIST-POWER’s distributed rea-
soning capabilities, evaluation of which is examined in subsequent sections.
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Experimental Design

In this experiment, participants were asked to consider three sets of referen-
tial statements. For each of the three sets of statements, they were provided
with the corresponding third of the following knowledge base shown in Ta-
ble 3.1.

Table 3.1: Knowledge Base Provided to Participants

ID Name Description
1 Jim Nelson Doctor (pretty sure). Friends with Sam Greene.
2 Sam Greene friends with Jim Nelson. Probably male.
3 Jim Cruz ?
4 Mary Greene Sister of Sam Greene.
5 Frank Roberts Jon says he’s a painter, but Craig says he’s an

author . . . ? Lives next door to Nicolas.
6 Martin Francis Painter, lives next door to Heidi.
7 Kristy Roberts Might be the daughter of Frank Roberts. Unsure.
8 Heidi Wilkerson Chemist, lives next door to Martin.
9 Nicolas Morris Chemist, lives next door to Frank.
10 Craig Horton Chemist, might work with Heidi?

Probably doesn’t work with Nicolas, but who knows.
11 Ted Wells Baker. Possibly brothers with Phillip and/or Troy.
12 Phillip Wells Brewer. Possibly brothers with Ted and/or Troy.
13 Troy Wells Byron’s friend. Possibly brothers with Phillip and/or

Ted.
14 Laurie Rodgers Byron’s friend. Girlfriend of one of the Wells brothers.
15 Sally Owens Teacher. Sibling of Willie Owens. Laurie’s neighbor.
16 Willie Owens Customs officer. Possibly female. Sibling of Sally

Owens.
17 Byron Todd Could be a podiatrist . . . or maybe a pediatrician.

In bold are words indicating uncertain information.

Participants were told that their siblings were planning a party, and that
the aforementioned list was a list of people their sister had invited. Each
participant was then given a second list corresponding to each third of the
second column of Table 3.2, and were told that each description in this list
represented a description given by their brother of someone he wanted invited
to the party, that anyone mentioned in a description needed to be invited
as well, and that it was their job to determine, for each person mentioned
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in one of their brother’s descriptions, whether or not that person already
appeared on their sister’s list and if so who that person was. The sixteen
referring expressions used in this evaluation specifically probed 16 conditions
we will now describe.

We identify four types of uncertainty which may arise when resolving
referring expressions. (1) In cases of incomplete knowledge (IK), an utterance
might seem to refer to an entity not yet known to the robot. (2) In cases of
uncertain knowledge (UK) an utterance might use properties to describe an
entity which a robot is not sure actually has those properties. (3) In cases
of ambiguous knowledge (AK) an utterance may seem to be equally likely to
refer to multiple known entities. (4) And of course, an utterance may seem
to uniquely identify an entity (a case we refer to as certain knowledge (CK)).

In the resolution of a referring expression, these categories can apply
either to the target (i.e., the intended referent) of a referring expression or
to one or more of its anchors. For example, in the referring expression “The
uncle of the doctor’s brother”, the uncle is the target, and the doctor and the
doctor’s brother are the anchors. Similarly, when considering the subclause
the doctor’s brother, the brother is the target, and the doctor is the anchor.

Sixteen classes of uncertainty can thus be created by classifying referring
expressions into four classes (i.e., IT, UT, AT, CT) based on the uncertainty
status of the referring expression’s target, crossed by four classes (i.e., IA,
UA, AA, CA) based on the uncertainty status of the referring expression’s
anchors14.

The sixteen referring expressions we used to probe these sixteen classes
of uncertainty are listed, along with their uncertainty class, in Table 3.2.

For each expression, DIST-POWER’s consultant was provided the same
knowledge encoded in logical form, with confidences attached to each state-
ment indicative of any uncertainty associated with that statement. For ex-
ample, the consultant was informed that Kristy was the daughter of Frank
with probability 0.5. All terms used to choose these probability values are
highlighted in Table 3.1. DIST-POWER was then provided with the same
referring expressions as were given to participants, encoded into logical form,
with hand-annotated variable orderings.

14Note, however, that for the referring expression associated with the combination of a
certain target and a certain anchor, the qualifier ‘Pretty Sure’ was used. This was originally
intended to indicate a low degree of uncertainty, but obviously could be construed as
suggesting uncertainty. If this paradigm is used in the future, we would suggest omitting
this qualifier, which in retrospect was an experimental oversight.
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Table 3.2: Evaluation Cases

Condition Description given to participant
CA:CT The doctor’s friend’s sister
AA:CT Jim’s friend
AA:IT Jim’s daughter
IA:IT Tabitha’s mother
AA:AT The chemist’s neighbor
UA:IT Craig’s coworker’s neighbor’s son
IA:CT Marion’s daughter Kristy
UA:UT Craig’s coworker’s neighbor’s daughter
CA:UT Troy’s girlfriend
CA:AT The baker’s brother
IA:AT The chemist, Billie’s father
IA:UT Michelle’s daughter
CA:IT Sally’s wife
AA:UT The Wells boy’s girlfriend
UA:CT Troy Wells, the podiatrist’s friend
UA:AT The podiatrist’s friend

(1) Each condition, (2) the referring expression used to probe that condition.

Participation

For this experiment, participants were recruited using Amazon Mechanical
Turk. The pool of subjects who finished the task consisted of 40 participants
(18 Male, 22 Female) with mean age 34.75. Participants were paid $2.00 to
perform the task.

Results

The results of this experiment are summarized in Columns 3-5 of Table
3.3. Here, Column 3 shows the most frequent human response given for each
referring expression, and the result or set of equally-likely results returned by
DIST-POWER are shown in Column 4. In both cases, referents deemed not
already on the guest-list are denoted ‘?’. For those referents, the model added
new entries to the knowledge base and updated existing entries appropriately.

Column 5 of Table 3.3 shows the percentage of participants whose re-
sponse aligned with each of DIST-POWER responses, with conditions in
which the most frequent human response matched one of DIST-POWER’s
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Table 3.3: Evaluation Cases and Results

Condition Description given to
participant

Most Frequent Human
Response

Model Responses %

CA:CT The doctor’s friend’s
sister

(Sister:4, Friend:2,
Doctor:1)

(Sister:4, Friend:2, Doc-
tor:1)

80.0

AA:CT Jim’s friend (Friend:2, Jim:1) (Friend:2, Jim:1) 60.0
AA:IT Jim’s daughter (Daughter:?, Jim:1) (Daughter:?, Jim:1) 47.5

(Daughter:?, Jim:3) 37.5
IA:IT Tabitha’s mother (Mother:?, Tabitha:?) (Mother:?, Tabitha:?) 90.0
AA:AT The chemist’s neighbor (Neighbor:6,

Chemist:8)
(Neighbor:6, Chemist:8) 22.5

(Neighbor:5, Chemist:9) 15.0
UA:IT Craig’s coworker’s

neighbor’s son
(Son:?,Nei.:6,
Co.:8,Craig:10)

(Son:?,Nei.:6,Co.:8,
Craig:10)

65.0

IA:CT Marion’s daughter
Kristy

(Kristy:7,Marion:?) (Kristy:?,Marion:?) 18.5

UA:UT Craig’s coworker’s
neighbor’s daughter

(Daug.:?,Nei.:6,
Co.:8,Craig:10)

(Daug.:?,Nei.:6,
Co.:8,Craig:10)

50.0

CA:UT Troy’s girlfriend (Girlfriend:14,
Troy:13)

(Girlfriend:14,Troy:13) 55.0

CA:AT The baker’s brother (Brother:12,Baker:11) (Brother:12,Baker:11) 70.0
(Brother:13,Baker:11) 5.0

IA:AT The chemist, Billie’s
father

(Father:?,Billie:?) (Father:?,Billie:?) 97.5

IA:UT Michelle’s daughter,
Willie

(Willie:16,Michelle:?) (Willie:?,Michelle:?) 5.0

CA:IT Sally’s wife (Wife:?,Sally:15) (Wife:?,Sally:15) 95.0
AA:UT The Wells boy’s girl-

friend
(Girlfriend:14,Wells
boy:13)

(Girlfriend:14,Wells
boy:13)

5.0

(Girlfriend:14,Wells
boy:12)

2.5

(Girlfriend:14,Wells
boy:11)

2.5

UA:CT Troy Wells, the podia-
trist’s friend

(Troy Wells:13, Podia-
trist:17)

(Troy Wells:13, Podia-
trist:17)

85.0

UA:AT The podiatrist’s friend (Friend:13, Podia-
trist:17)

(Friend:13, Podiatrist:17) 27.5

(Friend:14, Podiatrist:17) 20.0
(1) Each condition, (2) the referring expression used to probe that condi-
tion, (3) the most frequent human response for that referring expression, (4)
the responses provided by DIST-POWER for that referring expression (with
multiple rows used when multiple responses were returned), and (5) the per-
centage of human participants who provided the same answer as the model
for each model response. Cases in which the most frequent human response
matched a response provided by DIST-POWER are bolded in Column 1.
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responses displayed in bold in Column 1.
The results show that in 14 of the 16 conditions (87.5%), DIST-POWER

gave a response that was most frequent among human participants.
Overall, these results suggest that DIST-POWER was successful at pro-

ducing results that align well with human performance. We take this as
evidence that DIST-POWER serves as a successful model of human refer-
ence resolution in uncertain and open worlds, at the computational level
of analysis. We will now turn our attention towards those few cases where
human and algorithmic responses did not align: IA:CT and IA:UT.

Both are examples of false negatives, in which DIST-POWER failed to
find a match it thought sufficiently probable. These are strictly better than
the false positives which would have been unavoidable had the algorithm
not accounted for open-world operation. False negatives are strictly better
in part because they can be more easily recovered from: if it is later estab-
lished that a posited hypothetical entity is in fact the same as some known,
grounded entity, those two representations may be consolidated. Recovering
from the discovery of an error of mistaken identity is much harder, as it
would require source tracking whenever information is added to a knowledge
base.

We also compare world model modifications suggested by participants
with those made by DIST-POWER. Modifications made by DIST-POWER
were straightforward: if DIST-POWER believed a referenced person did not
yet exist in the knowledge base, it added a new representation for that person.
For example, for ‘Jim’s friend’, DIST-POWER created a new representation
and gave it a property indicating it was friends with Jim. In all but one
condition, the most common human suggestions for world-model modifica-
tion followed this pattern, and thus the most frequent human response for
world model modification matched that of DIST-POWER in 13 of the 16
conditions (81.25%).

We will now examine the conditions in which DIST-POWER produced
incorrect results. In condition IA:CT, DIST-POWER produces an incorrect
response due to, we believe, a violation of its assumption that unknown
entities are always referenced with respect to known entities. This type of
violation occurs when a speaker makes incorrect assumptions about their
addressee’s beliefs.

We believe that DIST-POWER would be able to handle this condition if
it was extended to (1) consider whether newly posited anchors were highly
probable matches to other known entities, (2) generate a clarification request
as to whether those matches were valid, and (3) consolidate the relevant
representations if an affirmative response is returned.
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In condition IA:UT, participants seem to have assumed, as in condition
IA:CT, some failure in belief modeling on the part of the speaker. In this
condition, however, this assumption was made despite high uncertainty as
to whether the known Willie was even of the same gender as the described
Willie, perhaps due to the relative uniqueness of the name.

In order for DIST-POWER to successfully handle this condition it would
need to acknowledge that certain properties, such as being named ‘Willie’,
are relatively unique, perhaps by modeling properties’ prior probabilities.

DIST-POWER’s world model modifications differed from those suggested
by human participants in both IA:UT and IA:CT, as would be expected.
However, DIST-POWER’s modifications also differed from humans in condi-
tion UA:UT, probed by the utterance ‘Craig’s coworker’s neighbor’s daugh-
ter’. In this condition, the response that no modification of the list was
needed was more popular (by a single participant) than the response which
aligned with that given by DIST-POWER (i.e., that ‘Craig’s coworker’s
neighbor’s daughter’ or ‘Martin’s daughter’ should be added to the list).
One may wonder why, for this question, the most popular human response
for world model modification did not align with the most popular human res-
olution response. Curiously, several participants reported that ‘the daugh-
ter’ did not already appear in the list, yet responded that no modification of
the list was necessary. If these inconsistent responses are ignored, than the
most popular human response aligns with the response provided by DIST-
POWER. We would thus argue that for this condition, DIST-POWER pro-
vided a more appropriate response than that provided by human partici-
pants.

Before moving on, it is important to note that technically in this experi-
ment, the “knowledge base” provided to participants reflected the knowledge
and uncertainties of the participant’s (fictional) brother, and not, strictly,
of the participant themselves. However, as the information in this knowl-
edge base was the only information participants were (at least initially) given
about people assumed to exist within the party domain, we see no reason why
they should not have adopted this knowledge, and its uncertainties, as their
own. It would of course be an interesting direction for future work to exam-
ine both the extent to which this uptake actually occurs, as well as the extent
to which the existence or non-existence of this uptake actually matters; it
is possible that there is no difference in assessing ones’ own knowledge and
uncertainty and assessing the knowledge and uncertainty of another, when
this is the only available information. For the time being, the fact that the
entirety of both the brothers’ knowledge and the participants’ knowledge
are taken as indistinguishable and held in common prevents the need for
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any Theory-of-Mind belief modeling, which has been shown by H. H. Clark
& Marshall (2002) to need to infinitely recurse in order to achieve exact
inference (see also Van Deemter, 2016).

3.4.3 Complexity Analysis

In this section I will discuss the time and space complexity of DIST-CoWER
and DIST-POWER. This is meant to paint a general picture of the complex-
ities of these algorithms, and is not intended as a formal theoretical analysis,
which would be beyond the scope of this dissertation.

The worst case for DIST-CoWER will occur when the termination con-
dition is finding all candidate bindings, and in which DIST-CoWER is given
a set of j uninformative $k$-arity single-domain predicates, i.e., predicates
that do not actually rule out any candidates and require all hypotheses to
contain candidate bindings for the maximum of k variables all from a single
domain. When this is the case, DIST-CoWER will need to build a hypoth-
esis queue with mk entries (each comprised of k variable bindings), where
m is the number of candidates in the singly handled domain. Because in
this scenario all predicates involve all k variables, they will not be evaluable
until after the hypothesis queue is completed, rendering a time complexity
of O(j ·mk) and space complexity of O(k ·mk).

DIST-POWER has the same time and space complexity as DIST-
CoWER, even though DIST-POWER runs DIST-COWER up to k times.
The time complexity of DIST-POWER is identical to that of DIST-CoWER
because each additional use of DIST-COWER is executed with a smaller
number of variables, and thus with a smaller value of k. Since k dominates
each individual run, and the runs are combined additively, the O(k ·mk) of
the initial run is guaranteed to dominate the complexity of the subsequent
additive runs. The space complexity of DIST-POWER is identical to that
of DIST-CoWER because, for the same reasons, the most space will be used
in the first run of DIST-POWER. And moreover, because information is not
retained between runs of DIST-CoWER, no additional space will be used
after the first run.

But of course, these analyses do not reflect the expected complexity of
DIST-CoWER and DIST-POWER in practice. First, most predicates used
will likely be of low arity (i.e., unary or binary). But second, and more impor-
tantly, the use of uninformative predicates will be uncommon, as this would
be a violation of Grice’s Maxims. We would not say, as a Rational Speech Act
Theorist might, that predicates will be designed to be optimally informative,
as speakers may indeed use phrases like ‘the thing’ which are near-completely
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uninformative, or properties like color for reasons of preference rather than
informativity (a topic we will come back to in Chapter 5). But the major-
ity of properties and relations used are expected to be informative, which
will have the effect of drastically reducing the number of hypotheses in the
hypothesis queue between DIST-CoWER’s rounds of hypothesis queue ex-
pansion. In the next two sections we thus investigate complexity concerns
from a more realistic perspective, using empirical simulations rather than
worst-case analysis.

3.4.4 Performance Differences by use of Typing

In this section we evaluate the performance of DIST-POWER (see
also (Williams & Scheutz, 2016a)) with that of our previous non-distributed
algorithm (POWER, see also (Williams & Scheutz, 2015b)). This primarily
serves to evaluate the efficiency gains made by using typed variables. To
facilitate this evaluation we generated forty knowledge bases: five each of
sizes n = 20, 40, 60, . . . , 160 where n indicates the total number of entities
stored in each knowledge base. In each knowledge base, half of the entries
were locations in a randomly generated floor plan (i.e., rooms, halls, intersec-
tions and floors) with various properties with randomly assigned likelihoods,
and the other half were objects (i.e., balls, boxes and desks), each of which
was randomly assigned various properties and assigned to a randomly cho-
sen room. Baseline performance was then evaluated by measuring the time
taken by DIST-POWER to evaluate the query associated with the referring
expression ‘the box in the room’ for each knowledge base. The times for each
set of five knowledge bases were then averaged.

We then generated forty additional pairs of knowledge bases: five pairs
each of sizes (n1, n2) = (10,10), (20,20), (30,30), . . . , (80,80) such that the
first knowledge base dealt with all information pertaining to locations and the
second knowledge base dealt with all other (i.e., object-related) knowledge.
Performance of DIST-POWER was then established by measuring the time
taken to evaluate the query associated with the referring expression ‘the box
in the room’ for each pair of knowledge bases. The times for each set of five
pairs of knowledge bases were then averaged.

Figure 3.4 shows the results of this experiment: along the horizontal axis
are the sum sizes of knowledge bases used in each test case (e.g., ‘40’ refers to
the knowledge base containing 40 entities used when evaluating performance
without the proposed mechanism, and the two knowledge bases containing
20 entities each used when evaluating performance with the proposed mech-
anism.) Along the vertical axis is the average time taken, for each set of
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Figure 3.4: Performance Differences

knowledge bases of each size, to perform the simple query described. From
these results one may observe the performance improvement effected through
use of the proposed algorithm: up to 3x speedup among the examined cases.

One will notice that both algorithms show performance exponential in the
number of stored entities, due to the use of best-first search over, e.g., beam
search. However, the complexity of both algorithms when used in the real
world would likely be substantially reduced, for several reasons. First, the
consultants used by DIST-POWER did not use any heuristics when returning
the set of initial candidates to consider. While these would certainly be used
in practice, but using them would have conflated the performance of the
algorithm with the performance of those heuristics, which is beyond the
scope of this dissertation.

Second, complexity would be significantly reduced by tracking the en-
tities in, e.g., the robot’s short term memory, and checking against those
entities before querying the robot’s knowledge bases. In fact, as we will
describe in Chapter 4, we have integrated DIST-POWER into a larger res-
olution framework inspired by J. K. Gundel, Hedberg, & Zacharski (1993)’s
Givenness Hierarchy , which substantially reduces complexity and allows a
robot to resolve references occurring in a wider variety of linguistic forms.

We also note that in order to have a consistent evaluation, the POWER
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and DIST-POWER algorithms were provided with information represented
in the same way. However, one of the primary advantages of the DIST-
POWER algorithm is that information need not be represented in a single
format; the information stored in the locations knowledge base could just as
easily have been represented in a topological map rather than as a database
of formulae. In fact, this was the case for our proof-of-concept demonstra-
tion (Section 3.4.1)

3.4.5 Performance Differences by Constraint Ordering

As previously described, the core of the DIST-POWER algorithm is a best-
first search over a set of relational assignments: given a set of constraints
(e.g., box(X), on(X,Y )), DIST-POWER uses each constraint to search over
the set of possible bindings of known entities to the variables found in
those constraints (e.g., X, Y ). In the presentation of DIST-POWER, how-
ever, the order in which these constraints are examined is left as an open
question; it is possible that the order in which constraints are examined
could greatly affect the performance of the algorithm, by lowering branch-
ing factor or “failing fast”, similar to the variable-ordering heuristics used
by constraint-satisfaction problem solvers(Kumar, 1992; Minton, Johnston,
Philips, & Laird, 1992; B. M. Smith & Grant, 1997). Furthermore, it’s
possible that the effectiveness of a particular constraint-ordering heuristic
may depend on the properties of the constraints being ordered, or upon
the knowledge base in which those constraints will be assessed. For exam-
ple, perhaps it is better to consider more expensive constraints first, while
there are few resolution hypotheses. On the other hand, maybe this depends
on exactly how costly those constraints are to evaluate, or the degree to
which the costliness of evaluation differs from constraint to constraint. In
this section, we investigate the effect of knowledge base characteristics and
constraint-ordering heuristics on the DIST-POWER algorithm through a set
of controlled experiments.

Procedure

In order to evaluate the effects of knowledge base characteristics, we first
devised a system in which random knowledge bases could be generated,
populated in accordance with a knowledge base “template”. Each template
contains information on ten different constraints. For each constraint, the
template specifies: (1) the name of the constraint, (2) its arity, (3) how long
it takes to evaluate, (4) what proportion of knowledge-base items it should
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be applied to, and (5) the range in probability which should be returned
for a “successful” query. Each template thus varied with respect to the dis-
tribution of arity of constraints, the distribution over constraint costs, the
distribution over coverage frequencies, and the distribution over constraint
certainties.

We first defined a default knowledge base template. This knowledge base
handled ten different relations: five unary relations (u1-u5), three binary
relations (b1-b3), and two ternary relations (t1-t2). Each relation was stated
to occur with 30% probability (if a binary or ternary constraint is applied,
other entities in the knowledge base are chosen at random to be the other
members of that constraint). Evaluating whether a relation held for an entity
or set of entities was stated to take one millisecond. If the relation was judged
to hold, the probability of it holding was stated to always be 1.0.

We then defined knowledge base templates which varied according to
each of the four dimensions noted above:

Arity: We defined three additional knowledge base templates which differed
from the default template with regards to the number of unary, binary,
and ternary relations (seven, two and one, respectively; three, six and
one, respectively; or three, two and five respectively).

We were interested in investigating varying arity, because, in practice,
evaluating polyadic constraints forces expansion of the search space to
account for new variables if any of a constraint’s members have not yet
been considered, and can thus be costly. It is for this reason why in
previous work arity-ordering has been the default constraint-ordering
strategy.

Coverage: We defined four additional knowledge base templates which dif-
fered from the default template with regards to how common each
relation was (each relation having 10% probability of being applied;
each relation having 50% probability of being applied; relations hav-
ing 10,20,30,40 or 50% probability of being applied, with probabil-
ity monotonically increasing with respect to arity; or relations having
2,8,16,32,or 64% probability of being applied, with probability mono-
tonically increasing with respect to arity).

We were interested in varying coverage because it determines the
branching factor of resolution. It may thus be more prudent to evaluate
rarer constraints (e.g., President of the United States) before evaluat-
ing constraints that will preserve high branching factor (e.g., whether
two people are friends).
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Cost: We defined four additional knowledge base templates which differed
from the default template with regards to how long each relation took
to apply (1,2,3,4 or 5 ms, with time either monotonically increasing
or monotonically decreasing with respect to arity; or 0.2, 0.4, 0.8, 1.6
or 3.2 ms, with time either monotonically increasing or monotonically
decreasing with respect to arity).

We were interested in varying cost because, in practice, evaluating cer-
tain constraints may take a significant amount of time, which could be
a waste if other constraints would have led to hypothesis pruning if they
had been evaluated first. For example, consider the referring expression
“the room across from the kitchen on the second floor”. Suppose that
a robot has a fast-accessible list of known locations, their floors, and
their types, and a metric map specifying their exact positions, which is
more costly to access. If the robot can quickly rule out that it doesn’t
know of a kitchen on the second floor (or that it knows of exactly one)
before it begins the costly process of assessing the across-from-ness of
all pairs of known rooms, it may save itself a large amount of time.

Uncertainty: We defined four additional knowledge base templates which
differed from the default template with regards to how certain the
knowledge base would be of applied properties (30 ± 5% probable; 70
± 5% probable; 60 to 100% probable with probability monotonically
increasing with respect to arity; or 20 to 100% probable with proba-
bility monotonically increasing to arity).

We were interested in varying uncertainty because, in practice, in-
creased uncertainty may lead to faster search-space pruning, and some
constraints (e.g., whether a given room could be considered to be an
office) may naturally have more uncertainty associated with them than
others (e.g., whether a given person is male).

Provided with these knowledge base templates, we now had the abil-
ity to systematically generate knowledge bases that differed with respect to
key characteristics. Since we were also interested in evaluating the effect of
constraint-ordering heuristics, we next define a set of seven simple heuristics.

Random: Using this heuristic, constraints are considered in a random order.
This provides a baseline performance level.

Arity: Using this heuristic, constraints are considered in increasing order
of arity. This is the heuristic typically used in the DIST-POWER
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algorithm. This is expected to perform well as it allows candidate
bindings for one variable to be pruned out before expanding hypotheses
to account for bindings to other variables.

Reverse Arity: Using this heuristic, constraints are considered in decreas-
ing order of arity. This is expected to perform poorly because it will
result in the hypothesis list rapidly expanding before it can be effec-
tively pruned.

Coverage: Using this heuristic, constraints are considered in increasing or-
der of frequency of coverage. This is expected to perform well as it
allows rare constraints to rapidly prune the search space before more
common constraints are considered.

Reverse Coverage: Using this heuristic, constraints are considered in de-
creasing order of frequency of coverage. This is expected to perform
poorly as those constraints most likely to rule out candidates will be
considered last.

Cost: Using this heuristic, Constraints are considered in increasing order of
cost. This is expected to perform well as expensive constraints are put
off until last, at which point they may no longer need to be evaluated.

Reverse Cost: Using this heuristic, constraints are considered in decreas-
ing order of cost. This is expected to perform poorly as expensive con-
straints are considered first, which may not turn out to be necessary
if the hypotheses on which they are evaluated would have otherwise
been pruned away.

Finally, we defined a set of evaluation queries with differing levels of
complexity: ({u1(X)}; {u1(X), u2(Y), b1(X,Y)}; {u1(X), u2(Y), u3(Z),
t1(X,Y,Z)}; {u1(X), u2(Y), u3(Z), b1(X,Y), b2(Y,Z), t1(X,Y,Z)}).

Altogether, the above considerations result in 448 meaningful combina-
tions of query, knowledge base template and heuristic (Q,T,H). For each
such combination, we generated five random knowledge bases according to
template T and then recorded the mean time taken to evaluate query Q
using heuristic H.

Results

In this section, we will describe the results of our experiment. First we will
discuss the results of varying knowledge base characteristics (i.e., arity, cost,
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coverage and uncertainty distributions). We will then discuss the results of
varying query complexity. Next, we will discuss the results of varying the
choice of constraint ordering heuristic. Finally we will discuss the interac-
tion effects found between knowledge base characteristics and the choice of
constraint ordering heuristic.

1. Knowledge Base Characteristics

(a) Arity: Upon examining the degree to which the distribution of
unary, binary, and ternary relations would affect resolution per-
formance, no significant differences were observed.

(b) Cost: As seen in Figure 3.5, DIST-POWER performed better in
knowledge bases where some relations (especially polyadic rela-
tions) are cheap to evaluate, even when other relations are slightly
more costly to evaluate.

Figure 3.5: Effect of Cost

Policy labels indicate relation between constraint application cost and arity:
linearly increasing, polynomially increasing, linearly decreasing, polynomi-
ally decreasing, and constant.
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(c) Coverage: As seen in Figure 3.6, DIST-POWER performed bet-
ter in knowledge bases where relations tend to apply to a smaller
percentage of entities.

Figure 3.6: Effect of Coverage

Policy labels indicate probabilities for whether predicates hold for particular
entities: 50% probability, probability linearly increasing with arity, proba-
bility polynomially increasing with arity, the standard 30% probability, and
10% probability.

(d) Uncertainty: Upon examining the degree to which relation un-
certainty would affect resolution performance, no significant dif-
ferences were found.
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2. Query Complexity

As seen in Figure 3.7, DIST-POWER performed better with less com-
plex queries.

Figure 3.7: Effect of Query Complexity

Here, u denotes a query containing a single unary predicate; uub denotes a
query containing two unary predicates and a single binary predicate. uubbt
denotes a query containing three unary predicates, two binary predicates,
and a single ternary predicate. uuut denotes a query containing three unary
predicates and a single ternary predicate.

3. Constraint-Ordering Heuristics

As seen in 3.8, DIST-POWER performed better when constraints were
sorted by arity or coverage, with reverse coverage ordering and cost or-
dering coming in close behind. It should not be surprising that the
performance of coverage, cost, and reverse-coverage ordering is simi-
lar to that of arity ordering: the majority of experimental data was
collected in circumstances where all relations had the same cost and
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coverage, in which cases those heuristics performed identically to arity-
ordering.

Figure 3.8: Effect of Heuristics

Here, CO denotes the cost-ordering heuristic, FO the coverage-ordering
heuristic, RCO the reverse cost-ordering heuristic, RFO the reverse
coverage-ordering heuristic, RO the random ordering heuristic, RSO the
reverse arity-ordering ordering heuristc, and SO the arity-ordering heuristic.

We thus decided to examine the interaction between cost, coverage,
and heuristic choice.

4. Interaction between Knowledge Base Characteristics and Constraint-
Ordering Heuristics

As seen in 3.9, reverse-coverage ordering heuristic was simply a bad
choice under certain conditions (i.e., when a few (but not all) con-
straints have high coverage) but that these three heuristics did not
in general DIST-POWER performs better when constraints have low
coverage. This is to be expected as this simply translates into a lower
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number of possible solutions.

Figure 3.9: Interaction of Coverage and Heuristics

Here, FO denotes the coverage-ordering heuristic, RFO the reverse coverage-
ordering heuristic, and SO the arity-ordering heuristic. Density indicates
probabilities for whether predicates hold for particular entities: 50% prob-
ability, probability linearly increasing with arity, probability polynomially
increasing with arity, the standard 30% probability, and 10% probability.

As seen in Figure 3.10, coverage and arity ordering performed signif-
icantly better than cost or reverse-cost ordering. A significant inter-
action effect between cost and heuristic was found (F(12,60)=2.263,
p<0.02), suggesting that this difference in heuristic occurs specifically
when polyadic predicates are more expensive than others. Finally, a
marginal effect of cost was found, suggesting, as expected, that DIST-
POWER performs better when constraints have lower costs.
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Figure 3.10: Interaction of Cost and Heuristics

Here, FO denotes the coverage-ordering heuristic, CO the cost-ordering
heuristic, RCO the reverse cost-ordering heuristic, and SO the arity-ordering
heuristic. Time indicates whether time taken to apply constraints increased
linearly, increased polynomially, decreased linearly, decreased polynomially,
or held constant with respect to constraint arity.

Discussion

As expected, sorting in increasing order of coverage, cost, and arity proved to
be significantly more efficient than sorting in a decreasing or random order.
And, as shown in Figure 3.10, for example, knowledge base characteristics
can make certain heuristics more effective than others. That being said, it
appears that sorting by arity is almost always the best choice; Figure 3.9
shows small gains for other heuristics (i.e., coverage ordering) under certain
circumstances, but those gains were not statistically significant, and it thus
seems that regardless of knowledge base characteristics, arity-ordering should
be used.

While we did not investigate these aspects in this work, it would be



82 CHAPTER 3. REFERENCE RESOLUTION

useful in the future to further investigate performance under a different set
of modifications, such as when knowledge bases vary in size, or when more
complicated heuristics are used. If more sophisticated heuristics were found
to result in knowledge base-dependent results, it may be useful to train a
classifier to learn optimally efficient query orderings.

3.4.6 Discussion of Architectural Desiderata

Finally, we would like to discuss how the experiments demonstrate the ar-
chitectural commitments of DIARC facilitated by DIST-POWER. First, the
architecture does not prescribe any single knowledge representation. This
is facilitated by distributing information amongst knowledge bases of het-
erogeneous representation. Second, the architecture uses formulae for inter-
component communication whenever possible. This is facilitated by accept-
ing queries represented as sets of formulae. Finally, architectural components
should perform processing asynchronously, with components possibly spread
across multiple computers. This is facilitated by allowing information and
processing to remain localized in separate components, rather than enforcing
consolidation into a single knowledge base. However, the proposed algorithm
is neither incremental nor parallelized, aspects which would yield tighter ad-
herence to this architectural commitment. These topics are further discussed
in Section 9.4.1.

3.5 Previous Work in Robotics

At this point, it is useful to take a step back, and compare the work pre-
sented thus far to previous work on reference resolution in robotics. As pre-
viously discussed, we are primarily interested in open-world reference resolu-
tion. While there has been significant work on open-world directive ground-
ing(Matuszek, Herbst, Zettlemoyer, & Fox, 2012; MacMahon, Stankiewicz,
& Kuipers, 2006), in which natural language utterances are translated di-
rectly into action sequences (thus bypassing the need to ground constituent
noun phrases) these has been relatively little work in open-world reference
resolution. In this section we will thus discuss both closed-world and open-
world approaches.

Work on reference resolution in robotics can be traced back to Terry
Winograd’s SHRDLU system(Winograd, 1971), in which a simulated robot
used a procedural semantics approach to natural language understanding in
order to carry out commands in a simple environment. Under this approach,
each lexical item was associated with a short procedure, such as a search
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through objects in the scene, which was executed when that lexical item was
encountered.

Many research efforts over the following decades took inspiration from
SHRDLU and employed a similar approach. For example Gorniak and Roy
associated lexical items with procedures that greedily applied composable
continuous visual models in order to produce a solution to the full language
grounding problem (i.e. Gorniak & Roy, 2004; D. Roy, Hsiao, Mavridis, &
Gorniak, 2003). This was a significant improvement over SHRDLU’s ap-
proach, in which objects’ properties were assessed by checking a database of
hand-assigned symbolic properties.

Kruijff et al. also take a SHRDLU-like approach, employing a set of com-
parators that assess whether certain entities satisfy certain properties (Krui-
jff, Lison, Benjamin, Jacobsson, & Hawes, 2007). Unlike Gorniak and Roy,
however, Kruijff et al. use these comparators to address the reference reso-
lution half of the language grounding problem – the symbol grounding half
is addressed using a separate process that binds information from different
modalities into composite representations in a centralized knowledge base.

Other researchers have also taken a “knowledge-based” approach in which
properties are assessed based on the information stored in a centralized
knowledge base. For example, Lemaignan uses a semantic parser to trans-
late utterances into lists of RDF triples (Klyne & Carroll, 2006); for example,
‘the yellow banana’ is translated into {((?obj type banana) (?obj hasColor
yellow))}. These triples can then be used to query a central knowledge base
populated by input from perception systems, thus producing the set of enti-
ties in that knowledge base that satisfy the conjunction of triples (Lemaig-
nan, Ros, Alami, & Beetz, 2011).

Similarly, Zender et al., who focus on reference resolution in the domain
of large-scale topological spaces such as rooms and hallways (as opposed to
the domain of objects used by the previous approaches), parse utterances into
SPARQL queries (Prud’Hommeaux & Seaborne, 2008) (a particular form of
RDF query) (Zender, Kruijff, & Kruijff-Korbayová, 2009). This approach
also differs from the approach used by Lamaignan through the use of a
dedicated co-reference resolution step, which attempts to add the references
found in an utterance to clusters of references found in past utterances – a
step which results in resolution of some anaphoric expressions.

Meyer uses a pair of tightly coupled co-reference resolution and reference
resolution algorithms in order to jointly resolve anaphoric and non-anaphoric
references (Meyer, 2013). The reference resolution algorithm used by Meyer
uses a Markov Logic Network whose weights are learned based on the connec-
tions between lexical items and the taxonomic classes of possible referents.
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Chai et al. also use a co-reference resolution pre-processing step. After
this step, Chai et al. use incoming utterances and perceived deictic gestures
to build up a graph representing the relations between the entities mentioned
in conversation, and perform reference resolution by finding the best partial
match between this graph to a similar graph that represents the relations
between entities observed in the world (J. Y. Chai, Hong, & Zhou, 2004;
Fang, Liu, & Chai, 2012; C. Liu, Fang, She, & Chai, 2013; J. Y. Chai et al.,
2014).

A different approach is taken by Fasola & Matarić (2013), through their
work on semantic fields. Fasola and Mataric use a simple reference reso-
lution procedure in which a knowledge base of labels is checked when par-
ticular nouns are used – their approach is interesting, however in how they
process relations. When a noun is ambiguous, if that noun is a constituent
of a prepositional phrase it is disambiguated using a semantic field: a data-
driven model of the preposition that produces a probability distribution over
coordinates in the environment; the referent whose location has the highest
probability value according to this distribution is selected as the referent.

A probabilistic approach is also taken by a number of Bayesian modelers.
Kennington and Schlangen present an incremental Bayesian model in which
each word is used to modulate the probability of reference for each entity
in a scene (Kennington & Schlangen, 2017). Similarly, Tellex and Kollar’s
Generalized Grounding Graph (G3) approach uses utterances (after a co-
reference resolution pre-processing step) to instantiate probabilistic graphical
models that are used to resolve references (Tellex et al., 2011a, 2012). This
approach has been extended by Tellex and Kollar’s colleagues through the
Hierarchical Distributed Correspondance Graph approach, which differs in
that it uses the “type” associated with each observed noun to restrict the set
of possible values associated with each noun-node in the resulting graphical
model (Chung, Propp, Walter, & Howard, 2015).

Finally, similar to all three of these approaches, Matuszek et al. present
an approach in which utterances are parsed into lambda expressions associ-
ated through training with a set of visual classifiers used to identify objects,
each of which returns a probability value representing its confidence that a
given object fits a given property.

Each of the approaches mentioned thus far in this section addresses, at
the least, the classic reference resolution problem15: given a definite de-
scription, a set of candidate referents from a common domain, and a set of

15We use this nomenclature to draw a parallel to the classic REG problem(Van Deemter,
2016) which is very much the counterpart of the classic reference resolution problem.
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properties held by each of those referents, determine the candidate referent
associated with each entity mentioned in the definite description.

But solutions to this “classic” problem framing are not sufficient for robots
operating in realistic human-robot interaction scenarios, for a number of rea-
sons discussed thus far in this dissertation, which I will now lay out again:
First, robots cannot assume that referring expressions will always come in
the form of definite descriptions: interlocutors may use anaphoric expres-
sions (e.g., ‘it’) that reference entities previously mentioned in dialogue; or
they may use deictic expressions (e.g., ‘this’) that reference entities based
on their joint situated perspective with the robot. Second, robots cannot
assume that candidate referents will be drawn from a single domain; inter-
locutors may refer in a single utterance to some combination of locations,
objects, people, utterances, ideas, actions, and so on. Third, robots cannot
assume that candidate referents will even be known a priori ; interlocutors
may refer to entities that were previously unknown to the robot. Finally,
robots cannot assume that they will have perfect knowledge regarding the
properties of objects: they may only have confidence to some extent that a
certain property or relation holds for a certain object or set of objects. In
this section, we will analyze the previous approaches and assess the extent
to which they address each of these four additional concerns.

3.5.1 Anaphoric and Deictic Reference

Many of the discussed approaches handle anaphoric reference to at least a
limited extent. Winograd (1971) associated anaphoric expressions such as
‘it’ with special procedures that gave preference to elements considered to
be ‘in focus’ (see also Mitkov, 1999); a simpler procedure is used by Gorniak
& Roy (2004). Kruijff, Lison, Benjamin, Jacobsson, & Hawes (2007) also
select items based on focus when ‘this’ is used, and use occurrences of ‘it’
to constrain search to the domain of objects. Lemaignan, Ros, Alami, &
Beetz (2011) handle anaphora by replacing anaphoric references with the
last entity in the dialogue history that matches the animacy and gender
constraints imposed by that referent (which serves to restrict uses of ‘it’, for
example, to objects, and uses of ‘he’, for example, to men) – an approach
also taken by Fasola & Matarić (2014).

As previously discussed, the approaches of Zender, Kruijff, & Kruijff-
Korbayová (2009); Meyer (2013); J. Y. Chai et al. (2014); Tellex et al. (2012)
handle anaphora through dedicated co-reference resolution pre-processing
stages. Kennington & Schlangen (2017) handle anaphora by attributing a
special property to entities selected in dialogue, and then statistically asso-
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ciating pronouns with that special property through training.
Fewer approaches handle deictic references. Kruijff, Lison, Benjamin,

Jacobsson, & Hawes (2007) use deictic references to impose preference or-
derings over candidate referents. Lemaignan, Ros, Alami, & Beetz (2011)
resolve deictic expressions to the last entity in the dialogue history that was
the focus of simultaneous eye gaze and gesture. J. Y. Chai, Hong, & Zhou
(2004) incorporate gestural information into their dialogue graph structures.
Kennington & Schlangen (2017) handle deixis and gaze by linearly combining
the probability of reference given an utterance with the probability of refer-
ence given gaze and the probability of reference given gesture; an approach
also taken by Matuszek, Fitzgerald, Zettlemoyer, Bo, & Fox (2012).

3.5.2 Domain Independence

The majority of the examined approaches are dependent on a particular do-
main. The approaches of Winograd (1971); Gorniak & Roy (2004); Lemaig-
nan, Ros, Alami, & Beetz (2011); J. Y. Chai et al. (2014); Fasola & Matarić
(2013); Kennington & Schlangen (2017); Matuszek, Fitzgerald, Zettlemoyer,
Bo, & Fox (2012) were designed to operate in the domain of objects in a
visual scene.

Zender, Kruijff, & Kruijff-Korbayová (2009), on the other hand, oper-
ates in the domain of large-scale topological locations (similar to SPEX,
Section 3.2).

Meyer (2013) appears to consider objects and units of time, with entities
from both domains stored in a single, centralized knowledge base. Simi-
larly, Kruijff, Lison, Benjamin, Jacobsson, & Hawes (2007)’s approach un-
derstands references to both objects and small-scale locations (i.e., local
points in space), with information from both domains stored in a single,
centralized knowledge base (but informed by a set of independent sensory
systems).

The approach of Tellex et al. (2011a), like our own initial work on DIST-
POWER, makes steps forward with respect to these previous approaches.
The approach presented by Tellex et al. is not hand tailored to a particular
domain, but appears to handle references to entities from whatever data set
it is trained on – so long as they are physically extant and can be grounded
to coordinates in Cartesian space. We expect that this assumption is also
true of the work presented by Chung et al. (2015). Similarly, our approach is
a domain-independent framework into which domain-dependent algorithms
can be used as “consultants”. Our approach, however, does not make any
assumptions about the physical existence of candidate entities.
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3.5.3 Operation in Uncertain Worlds

It is important to note that the Bayesian approaches do not handle uncer-
tainty in the way we describe: the approaches presented by Kennington and
Schlangen, Tellex and Kollar, and Chung et al. represent uncertainty with re-
spect to the relationship between words and features, but not the uncertainty
in whether certain entities have certain features. And in fact, representing
this uncertainty would undermine the features of some of these algorithms.
Chung et al., for example, use entity type to restrict the values that need
to be considered for each noun-node in the probabilistic graphical models
instantiated by their approach. This approach would need modification if
there was uncertainty as to an entity’s type.

While the Semantic Fields approach does not appear able to handle
uncertain properties, it does handle uncertain spatial relations (Fasola &
Matarić, 2013). Finally, Fang, Liu, & Chai (2012) describes how Chai et
al.’s approach handles uncertain properties by incorporating an extent of
compatibility measure into their graph-matching scoring functions; the ap-
proach taken by Matuszek, Fitzgerald, Zettlemoyer, Bo, & Fox (2012) is able
to represent the uncertainty in the properties of the objects it reasons about,
based on classifier confidences; and the DIST-POWER framework is specif-
ically designed to use domain-specific “consultants” that provide probability
values of just this sort.

3.5.4 Operation in Open Worlds

Of the discussed approaches, only work from two groups begins to address
operation in open worlds. Recent work from Duvallet et al. in the G3

framework allows a robot to handle references to previously unknown objects
described in relation to previously known objects (Duvallet et al., 2014). This
approach is limited, however, to spatially situated objects: the pose of the
new object is sampled with respect to the other object according to a learned
distribution. The DIST-POWER framework is also able to hypothesize new
entities, but is domain independent in nature, and thus does not have this
limitation (see also Williams & Scheutz, 2015b).

3.6 General Discussion

We have argued that a robot operating in natural human-robot interaction
scenarios must use a domain-independent reference resolution algorithm ca-
pable of handling not only definite descriptions, but also anaphoric and de-
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ictic expressions, and must do so in both uncertain and open worlds. The
algorithms presented in this chapter (see also (Williams, Cantrell, Briggs,
Schermerhorn, & Scheutz, 2013; Williams & Scheutz, 2015a,b, 2016a)) make
progress towards this goal, but fall short in two main respects: (1) they are
unable to handle the wide variety of expressions that occur in situated dia-
logue beyond definite noun phrases; and (2) they require all entities known
of by a robot’s various consultants to be considered when resolving any re-
ferring expression, leading to an explosion of computational complexity. In
the next chapter, we present a new set of algorithms that address these con-
cerns by embedding DIST-POWER into a larger framework inspired by a
principled linguistic framework known as the Givenness Hierarchy (GH).



Chapter 4

Reference Resolution in
Context

In the previous chapter, we presented algorithms for resolving references
occurring in definite noun phrases. Those algorithms were designed to handle
the open worlds (Williams, Cantrell, Briggs, Schermerhorn, & Scheutz, 2013;
Williams & Scheutz, 2015a,b) and uncertain contexts (Williams & Scheutz,
2015a,b) commonplace in natural human-robot interaction scenarios.

In this chapter, we present open-world reference resolution algorithms
that can handle a wider array of linguistic forms by using the Givenness Hi-
erarchy (GH) (J. K. Gundel, Hedberg, & Zacharski, 1993), a linguistic frame-
work which associates the form of a referential expression (e.g., pronominal,
definite noun phrase, indefinite noun phrase) with a presumed “cognitive sta-
tus” (e.g., focus of attention, short term memory, long term memory). This
significantly advances the state of the art of natural-language based HRI,
by (1) increasing the breadth and complexity of referring expressions un-
derstandable by robots, (2) allowing robots to understand such expressions
in open and uncertain worlds, and (3) bringing robot natural language un-
derstanding closer in line with an established linguistic framework (i.e., the
GH). What is more, it is significant in its extension of the GH itself, through
the addition of guidelines which clarify how the GH should be computation-
alized.

The rest of the chapter proceeds as follows. In Section 4.1 we present our
linguistic motivations, and describe the basics of the GH. In Section 4.2 we
discuss previous work in computationalizing the GH, and explain how those
previous implementations might be improved if clear guidelines for using
the GH could be crafted. In Section 4.3 we suggest such guidelines for the
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GH, and present and evaluate gh-power: an algorithm which uses those
guidelines to improve on previous approaches. In Section 4.4 we present
growler: an algorithm that expands on gh-power by accounting for a
notion of conversational relevance.

4.1 Linguistic Motivations

Figure 4.1: The Givenness Hierarchy

In focus
Activated
Familiar

Uniquely identifiable

Referential
Type identifiable

The GH (J. K. Gundel, Hedberg, & Zacharski, 1993) is comprised of six
hierarchically nested tiers of cognitive status, as seen in Figure 4.1. If a
candidate referent is marked as having one of these statuses, the hierarchical
nature of this framework means that it also has all statuses lower in the
hierarchy. For example, a candidate referent that is familiar is also uniquely
identifiable, referential, and type identifiable. It is possible that the candidate
referent is also activated, or even in focus, but a higher status cannot be
inferred from a lower status. Each level of the GH is “cued” by a set of
linguistic forms, as seen in Table 4.1 for English. For example, the second
row of the table shows that when the definite ‘this’ is used, one can assume
that the speaker assumes the referent of ‘this’ to be at least activated for
their interlocutor.

Table 4.1: Cognitive Status and Form in the GH

Cognitive Status Linguistic Form
In focus it
Activated this,that,this N
Familiar that N
Uniquely identifiable the N
Referential indefinite this N
Type identifiable a N
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The GH is attractive to computational researchers not only because it
suggests a clear mapping between linguistic form and cognitive status, but
because, due to its focus on means of access rather than salience, each status
evokes a particular mnemonic actions (i.e., actions involving selecting or
creating mental representations) upon an agent’s cognitive structures.

When the linguistic form of an expression explicitly signals that its ref-
erent is type identifiable or referential (but not necessarily uniquely identi-
fiable), this suggests the action of hypothesization: creating a new mental
representation, and then selecting that representation as the target referent.

When the linguistic form of an expression signals that its referent can also
be uniquely identified (but is not necessarily familiar), this suggests either
the action of hypothesizing a referent or selecting an existing referent from
memory. When the linguistic form of an expression signals that its referent
is also familiar, this suggests that the referent should be able to be found by
searching through memory and selecting an existing representation.

When the linguistic form of an expression signals that its referent is also
activated or in focus, this suggests that the referent should be able to be
found by searching through a subset of memory (the subset of activated
entities and the subset of activated entities that are in focus, respectively)
and selecting a referent from that subset.

The GH can directly solve certain computational problems: To determine
the cognitive status ascribed to a candidate referent, one need only check
which forms explicitly encode which statuses on the GH in a given language
(see also the Coding Protocol provided by J. K. Gundel, Hedberg, et al.
(2006)). And, when Speaker S uses linguistic form F to refer to entity E
when speaking to hearer H, it is easy to determine the most restrictive status
that H can rationally assume S to ascribe to E. For example, when S uses
‘it’, we can assume that S believes E to be in the subset of H ’s memory
that is in focus: any information that could not plausibly be in focus can be
ruled out, as such an interpretation would not be possible given the cognitive
status conventionally signaled by ‘it’; when S uses ‘this’, we can assume that
S believes E to be at least in the subset of H ’s memory that is currently
activated. E may also be in the subset of those entities that are in focus,
but we can not assume this; and in fact, it is unlikely that S believes E
to be in that subset, as otherwise S could have used the more informative
‘it’. Furthermore, information that could not plausibly be in the activated
subset of H ’s memory can be ruled out, as such an interpretation would not
be possible given the cognitive status conventionally signaled by ‘this’.

However, within the GH framework, choices among referents that meet
cognitive status restrictions are made through interaction of the GH with
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general pragmatic principles operative in language interpretation, such as
Grice’s Maxims(Grice, 1970) or Relevance theory(Sperber & Wilson, 1986).
As a result, there are other computational problems for which the GH itself
can only facilitate, but not directly produce solutions:

1. The referring expression generation task:
“When S wishes to refer to E when speaking to H, what linguistic form
F should be used?” (cf. Van Deemter, 2016; Krahmer & Van Deemter,
2012)

2. The reference resolution task:
“When S uses linguistic form F when speaking to H, what entity E is
most likely being referenced?” As discussed, this is the task for which
we wish to use a GH-theoretic approach.

It is thus unsurprising that there have been several attempts to use the
GH to inform reference resolution algorithms in the fields of Human-Robot
and Human-Agent Interaction. We will now describe the two implementa-
tions which, until now, have made the most extensive use of the GH.

4.2 Previous Computational Implementations of
the Givenness Hierarchy

The first implementation of the GH that we will examine is that presented
by Kehler (2000), in which they propose the modified hierarchy seen in Fig-
ure 4.2. There, Kehler omits the last two levels of the GH, due to a primary
interest in interfaces with which it is unlikely for one to refer to unknown or
hypothetical entities. Kehler used his modified hierarchy to craft four rules
(presented here verbatim) capable of resolving all references he encountered:

1. If the object is gestured to, choose that object

2. Otherwise, if the currently selected object meets all semantic type constraints
imposed by the referring expression (i.e., “the museum” requires a museum
referent; bare forms such as “it” and “that” are compatible with any object),
choose that object.

3. Otherwise, if there is a visible object that is semantically compatible, then
choose that object (this happened three times; in each case there was only
one suitable object).

4. Otherwise, a full NP (such as a proper name) was used that uniquely iden-
tified the referent.
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Figure 4.2: Kehler’s Modified Hierarchy
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The second GH implementation we will examine, presented by J. Chai,
Prasov, & Qu (2006), expands on Kehler’s approach in two important ways:
First, Chai et al.’s implementation can identify and resolve ambiguities
(Kehler’s first rule is problematic if the target of a gesture is ambiguous,
and Kehler’s third rule is problematic if a referring expression is ambiguous).
Second, Chai et al.’s implementation makes it possible to handle utterances
containing multiple referential expressions or gestures. To make these ad-
vancements, Chai et al. combine a subset of the GH with Grice’s theory of
Conversational Implicature (Grice, 1970) to produce the modified hierarchy
seen in Figure 4.3.

Figure 4.3: Chai’s Modified Hierarchy
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Chai et al.’s modified hierarchy contains four tiers: (1) “Gesture”, con-
taining entities gestured toward (because a gesture intentionally singles out
entities), (2) “Focus”, combining Gundel’s in focus and activated tiers, (3)
“Visible”, combining Gundel’s familiar and uniquely identifiable tiers, and (4)
“Others”, combining Gundel’s referential and type identifiable tiers, although
this tier does not appear to be used, perhaps due to the lack of hypothetical
entities in graphical interfaces.
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Chai et al. present a greedy reference resolution algorithm using their
hierarchy. This algorithm first assigns a score between each referring ex-
pression X in an utterance and each entity N contained in a set of vectors
(Gesture, Focus, Visible), calculated by multiplying (1) the probability of
selecting N from its vector, (2) the probability of selecting that tier given
the form of X, and (3) the “compatibility” between X and N . Compatibility
is 1 if the N has all properties mentioned in X, is of the type mentioned in
X (if any), has the name mentioned in X (if any), and was gestured towards
when X was uttered (if any), and 0 otherwise; it is thus binary in nature
and cannot account for uncertainty.

After scoring all visible entities, the algorithm greedily assigns reference-
entity matches, moving downward through the hierarchy of vectors.

This approach does not address all aspects of reference resolution found
in typical human-robot dialogues (nor does any other current approach).
There are, in particular, five aspects of human-robot dialogue not captured
by this approach.

First, the algorithm assumes complete certainty as to entities’ properties.
In realistic HRI scenarios, an agent may only be able to say that an entity
has a certain property with some probability. Furthermore, an agent could be
aware that it simply does not know whether an entity has a certain property.

Second, consider the following command:

“Get my laptop from my office, and if you see a charger bring that too.”

The three bolded referring expressions present issues for Chai et al.’s
approach. My laptop is (presumably) not currently visible, a condition
common in many HRI scenarios, but one which cannot currently be handled
using Chai et al.’s algorithm. My office is also (presumably) not currently
visible. And, it is not an object, per se, and cannot be gestured towards in
the same way as can be objects or icons. It is unclear whether Chai et al.’s
modified hierarchy could handle references to locations, which are common in
many HRI scenarios. A charger is also (presumably) not currently visible.
And, it is not even known to exist, as it is hypothetical. In order to resolve
such references, one must assume an open world in which new entities may
be added through experience or dialogue. While many HRI scenarios are
open-world in nature, Chai et al.’s algorithm operates in a closed world.

Third, a robot may need to resolve references to events, speech acts,
or other entities that cannot physically exist, as seen in Examples 2 and
3. However, Chai et al.’s algorithm cannot handle references to nonexistent
entities.
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Fourth, because Chai’s modified hierarchy combines the first two levels
of the GH, Chai et al.’s algorithm cannot distinguish between Examples 2
and 3 even if it could handle references to physically nonexistent entities.

(2) Can you repeat it?

(3) Can you repeat that?

When Example 2 is used to respond to the utterance “I’m sorry, but I
failed to complete the task”, ’it’ unambiguously refers to ’the task’. How-
ever, this is not the case when Example 3 is used. The GH predicts that
when a form associated with the activated level is used, one should prefer an
activated referent (such as a speech act) to an in-focus referent (such as the
focus of the previous sentence), because if the speaker had meant to refer
to an in-focus entity she could have used an in-focus-cueing form (e.g., ’it’).
Thus, while Example 3 could refer to either the speech act or failed task, the
speech act should be preferred 1.

Fifth, natural human-robot dialogues may contain complex noun phrases
such as “Do you see the red block on that blue block?” Because Chai et
al.’s algorithm uses a greedy approach (instead of, e.g., the graph matching
approach used in their previous work), it may choose an incorrect referent
for the first considered referential expression, and may thus be unable to
successfully resolve subsequent referring expressions. Chai et al. argue that
using a greedy approach is advantageous because it allows significant pruning
of the search space. However, their algorithm scores all entities against all
referring expressions before employing its greedy approach. In a realistic
HRI scenario, this may not be practical, as a robot may know of hundreds or
thousands of entities. Furthermore, the process of checking whether certain
properties hold for all entities may be cost prohibitive. For example, while
determining whether a given person is a man may be accomplished by a
simple database look-up, determining whether two rooms are across from
each other may require more expensive computation. An algorithm which
performed such assessments lazily (i.e., only when needed, perhaps as the
search space was pruned) could be much more efficient.

Thus far, we have described reasons for extending Chai et al.’s modified
hierarchy and algorithm. But to make the needed extensions, we must first

1Gundel et al. have empirically verified that these two hierarchical levels are dis-
tinguished between in a wide variety of languages beyond English, including Eegimaa,
Kumyk, Ojibwe, and Tunisian Arabic (each of which is genetically and typologically un-
related to the other three.) (J. K. Gundel, Bassene, Gordon, Humnick, & Khalfaoui,
2010)
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extend the GH itself: each extension we have discussed thus far can be related
to an area for which the GH lacks clear usage guidelines. No existing GH-
based approach can handle uncertain information, perhaps because the GH
neither specifies how uncertainty is handled nor provides guidelines for how
intra-tier ambiguity is resolved. GH-based approaches must be extended to
better resolve multiple referring expressions occurring in the same utterance,
in order to avoid incorrect greedy decisions. This is because the GH does
not provide guidelines for how multiple related referents are simultaneously
resolved.

Chai et al.’s approach cannot handle references to entities that are
unknown, hypothetical, intangible or not present. This is the result of Chai
et al.’s omission and combination of GH tiers, and their use of a purely top
down traversal. This may have been avoided if clear guidelines had existed
for traversing the tiers of the GH and for guiding intra-tier search using
salience arising from linguistic, visual or gestural factors. We thus believe
that a GH-based reference resolution algorithm for human-robot dialogue
requires the following:

Clear guidelines for:

1. Determining the order in which to peruse the tiers of the Givenness
Hierarchy that allow gestured-towards or gazed-upon entities to take
some degree of precedence.

2. Resolving complex referring expressions.

3. Choosing between candidates found within a given tier.

Assumptions of:

1. Uncertain information (i.e., the properties of an entity may not be
certain or known)

2. An open world (i.e., the existence of an entity may not be certain or
known)

3. Global resolution (i.e., a referring expression may refer to an entity
which is not currently visible)

4. Domain independence (i.e., a referring expression may refer to any
entity, regardless of type or tangibility).

To satisfy these needs, we presented the gh-power algorithm(Williams,
Acharya, Schreitter, & Scheutz, 2016), which we outline in the next section.
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4.3 GH-POWER

The gh-power reference resolution algorithm dictates how the referent of
a referring expression should be searched for, given a memory model orga-
nized in a specific, hierarchical way that parallels the organization of the
GH. In this section, we will first discuss the memory structure used in our
approach. Next, we will discuss the between-structure processes by which gh-
power algorithm chooses which structures to search. We will then discuss
the within-structure processes by which gh-power selects suitable referents
from a given structure.

4.3.1 The GH-POWER Memory Model

The memory model used by GH-POWER aligns well with Nelson Cowan’s
conceptualization of working memory(Cowan, 1998). According to Cowan,
working memory and long-term memory are not disjoint structures. Rather,
working memory can be regarded as the subset of entities in long term mem-
ory that are currently activated. Cowan further posits an additional sub-
structure, the focus of attention, which is a subset of those activated entities
that is limited in size to at most four elements, comprised of those items of
which an agent is consciously aware. There is clearly a strong parallel be-
tween Cowan’s Focus of Attention ⊂ Set of Activated Entities ⊂ Long Term
Memory structures and Gundel’s In Focus ⊂ Activated ⊂ Familiar statuses,
and observing this connection will facilitate understanding the connection
between our own memory structure and the statuses of the GH.

Our approach consists of four hierarchically nested data structures: the
Focus of Attention (FoA), Set of Activated Entities (ACT), Set of Familiar
Entities (FAM) and Long Term Memory (LTM). These four data structures
are hierarchically organized such that FoA ⊂ ACT ⊂ FAM ⊂ LTM. At
the computational level of analysis(Marr, 1982), the FoA, ACT, and LTM
data structures are identical to Cowan’s three memory structures. But in
a robot architecture, all of a robot’s knowledge is not typically located in
a single, monolith knowledge base. Instead, it may be distributed across a
set of knowledge bases that may be located on different machines, may use
different knowledge representation schemes, and may have different ways of
accessing and modifying the knowledge contained within them. Thus, at the
algorithmic level, our LTM data structure is really a set of domain-specific
distributed, heterogeneous knowledge bases. Because LTM is not a single
coherent knowledge base, the FoA and ACT also must differ at the algo-
rithmic level; instead of being literal subsets of the mental representations
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distributed across LTM, the FoA and ACT instead contain memory traces
that allow access to certain of those mental representations. Note that these
three structures are not intended to serve as the agent’s actual cognitive
structures; instead, they serve to model what an interlocutor might believe
to be in those structures, and thus as a model of common ground.

Finally, for the sake of convenience and efficiency, we introduce the FAM
structure, a minor point of departure from both the GH and Cowan’s model
of Working Memory, which we make for practical rather than theoretical
reasons. FAM contains memory traces for entities in LTM that are likely to
be referenced, such as entities mentioned at some point in the robot’s current
dialogue, recently visited locations, and recently visited objects, including all
entities in ACT (and by extension, in the FoA). Because searching all of LTM
is potentially expensive, when LTM needs to be searched for an entity that
matches some criteria, that search is preempted by a search of FAM: if a
match can be found there, LTM need not be searched.

To summarize, our model consists of four hierarchically nested data struc-
tures: a distributed LTM data structure containing mental representations
of known entities, and three smaller data structures that contain memory
traces allowing fast access to entities in LTM (i.e., FoA, ACT, and FAM).
These three data structures are populated periodically (e.g., after an utter-
ance is processed) according to rules inspired by the GH Coding Protocol. In
the next two sections, we will describe how these structures are used during
reference resolution. We will begin by providing a high-level overview of the
gh-power algorithm: how the linguistic form of a referring expression is
used by the gh-power algorithm to determine which of these structures to
examine, and how gh-power chooses whether a particular candidate refer-
ent within one of those structures is the target referent. We will then provide
an algorithmic description of this algorithm, and discuss its integration into
our robot architecture.

4.3.2 Process-Level Description

Between-Structure Processes

The GH alone does not specify how cognitive structures are selected for
perusal during reference resolution. For example, suppose Speaker S uses
the pronoun ‘that’ to refer to entity E when speaking with Hearer H. The
GH suggests that H can assume that S assumes that E is at least in H ’s
ACT, and thus may or may not also be in H ’s FoA.

Several strategies could be used to search ACT and the FoA. The agent
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could consider entities in the FoA, then out-of-focus entities in short term
memory (a top down approach), or she could consider out-of-focus entities
in ACT, then in-focus entities (a bottom up approach).

While some previous approaches (e.g. J. Chai, Prasov, & Qu, 2006) have
used a global top-down approach, this may violate certain predictions of the
GH. For example, the Givenness Hierarchy framework (i.e., the GH when
working in conjunction with general cognitive principles such as Grice’s
Maxim of Quantity) suggests that in the example above, while the refer-
ent of ‘that’ could be assumed to be in H ’s FoA, it is more likely to be
assumed to be in H ’s ACT but not in H’s FoA, as otherwise S could have
used ‘it’ to refer to the referent. If a purely top-down approach is used,
this effect may not be captured. On the other hand, consider the utterance
“Pick up the box”. The bottom-up approach would inappropriately priori-
tize inactive boxes from LTM over an activated box in front of the listener.
Since neither a purely top-down or purely bottom-up approach seems ade-
quate, we developed a hybrid approach, in which a unique search strategy is
used for each GH tier. These strategies, refinements of those we previously
presented (Williams, Acharya, Schreitter, & Scheutz, 2016) are seen in Ta-
ble 4.2. In that table, FoA denotes a search through memory traces found
in the FoA; ACT denotes a search through memory traces found in ACT but
not in the FoA; FAM denotes a search through memory traces found in FAM
but not in ACT LTM denotes a search through all of LTM; HYP denotes
hypothesization. We will now explain the rationale for each strategy.

Table 4.2: Search Plans for Complete GH

Level Search Plan
in focus FoA
activated ACT → FoA
familiar ACT → FoA → FAM → LTM
uniquely identifiable ACT → FoA → FAM → LTM → HYP
referential ACT → FoA → HYP
type identifiable HYP

1. In Focus

In the case of an “in focus” cuing form (e.g., ‘it’), we only search the
FoA, as it would be otherwise inappropriate to use such a form.

2. Activated Entities
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In the case of an “activated” cuing form (e.g., ‘this’), search is ex-
panded to include out-of-focus entities in ACT. For the reasons dis-
cussed above, we proceed bottom-up, first searching the out-of-focus
entities in ACT, then searching the FoA. However, this process is mod-
ified in the case of ‘This N’, as we discuss below.

3. Familiar Entities

In the case of a “familiar” cuing form (e.g., ‘that N’), search is expanded
to include all entities in memory. As it is inappropriate to prioritize
entities in LTM over those in ACT, we still perform our search through
ACT and the FoA first, and then move on to search through LTM. As
previously discussed, we first search through FAM, the subset of most
probable referents in LTM (not including those referents also found
in ACT), and only search all of LTM if this search fails, using the
previously described DIST-POWER algorithm, which has two main
features relevant to gh-power: its ability to simultaneously resolve
all parts of a complex definite description, and a feature discussed in
the following subsection.

4. Uniquely Identifiable

In the case of a “uniquely identifiable” cuing form (e.g., ‘the N’), search
is extended to allow for the possibility that the speaker is referencing
a previously unknown entity. This search process begins by search-
ing through the four tiers of the gh-power memory model, as per-
formed with familiar entities. However, when searching through LTM,
we take advantage of DIST-POWER’s second important feature DIST-
POWER’s “hypothesization mode”. When run in this mode, if DIST-
POWER is unable to find a mental representation that satisfies all
semantic criteria of a definite description, it attempts to find a subset
of that description that it can successfully resolve, and automatically
hypothesizes representations for remaining entities.

5. Referential

Gundel et al. suggest that the indefinite form of ‘this N’ (as in “This
dog I saw was enormous!”) cues the “referential” tier2, resulting in the
hypothesization of a representation. As a simplification (i.e., so that
we do not need to decide whether each use of ‘This N’ is definite or
indefinite), gh-power deals with both forms at the referential tier. To

2In fact, this form, which is only used colloquially, is the only form in English that
overtly cues the referential status.
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do so, we begin with the standard “activated” search strategy (i.e., a
bottom-up search starting from ACT), and hypothesize a representa-
tion only if this search fails. We acknowledge that there may be cases
in which our strategy for handling the referential form of ‘this N’ may
not produce the correct behavior. For example, if one says “This dog I
saw was enormous!” while standing in front of a dog, ‘This dog’ may
be incorrectly resolved to the co-present canine.

6. Type Identifiable

In the case of a linguistic form that only cues the Type Identifiable tier
(e.g., ‘a N’), we immediately hypothesize a representation in the same
way as is performed in the previous subsection. Note that the decision
to hypothesize a new representation does not necessarily imply that
the robot does not yet have a representation for the intended referent.
For example, suppose the robot is looking at a box, and its interlocutor
says to it remotely, “You should see a box: Bring it to me.” In this
case, the robot’s interlocutor actually intends to refer to a particular
box, and the robot in fact already knows of this box. Even in such
a case, we still create a new mental representation for a new box. It
will be up to subsequent processing stages to recognize the meaning
of the sentence, find the two representations, verify that they match,
consolidate them into a single representation, and of course, bring the
box to the interlocutor.

7. Complex Referring Expressions

The GH framework also does not specify how to resolve syntacti-
cally complex referring expressions, i.e., referring expressions contain-
ing multiple referents described in relation to each other, such as those
in Example 4:

(4) Scene: A table upon which sits a large green block and a large
blue block (towards the front of the table), and a greenish-yellow
block on a bluish-purple block (in a far corner of the table).
a. Pick up the green block that is on the blue block.
b. Pick up the one on the blue block.

Chai et al. resolve references of this sort using a a greedy algorithm
in which locally optimal choices are sequentially made for each sub-
expression. However, in cases like that seen in Example 4a, this is
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likely to incorrectly resolve whichever referring expression is considered
first, due to the decreased salience, prototypicality, and proximity of
the targets. Greedily resolving Example 4b will likely be even less
successful due to the underspecification of ‘the one’.

We would thus argue that syntactically complex referring expressions
should not be considered greedily in a GH-theoretic reference resolution
algorithm. How, then, should search plans (i.e., from Table 4.2) for an
expression’s constituent parts be jointly examined? We decided to
handle this problem by “crossing” the search plans for the constituent
parts, that is, considering all possible combinations of search plans
sorted in search plan order. For example, crossing ACT → FoA →
HY P with ACT → FoA yields Table 4.5.

Table 4.3: Sample Joint Search Plan Table

Y X
ACT ACT
ACT FoA
FoA ACT
FoA FoA
HYP ACT
HYP FoA

The rows of this table are successively examined until a sufficiently
probable solution is found or the table is exhausted. Two decisions
were made in designing this subroutine. First, while rows are con-
sidered in left-to-right order, the action of hypothesization (denoted
HYP) is postponed until the search process is successfully terminated;
a new representation should only be generated if sufficiently probable
referents are found for all other entries in a row, halting the search
process. Second, because our implementation’s LTM queries (1) au-
tomatically include hypothesization when necessary and (2) operate
simultaneously on all eligible references (e.g., ‘the green box’ and ‘the
blue box’), all [LTM → HYP] steps are executed simultaneously, and
after all other steps in a given row.

Within-Structure Processes

The GH does not specify how candidates are selected from within cognitive
structures during reference resolution. Despite what is often assumed (cf.
Brown-Schmidt, Byron, & Tanenhaus, 2005), Gundel et al. state that the
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GH is not a hierarchy of salience or accessibility, and that it is necessary to
model salience independently of tier of cognitive status (J. K. Gundel, 2010).
We will now describe how the proposed model handles degree of salience and
uncertainty, and how these measures are used to select candidates.

1. Focus of Attention and Activated Entities

In order to account for salience without relying on, e.g., a dedicated
gestural tier (cf. J. Chai, Prasov, & Qu, 2006), gh-power uses a multi-
modal salience score to assign a “degree of activation” to entities con-
tained in the FoA and ACT. The entities returned by the assess meth-
ods associated with the FoA and ACT structures are then the set of
all sufficiently probable entities within those tiers, ordered by activa-
tion such that the most salient candidate will be chosen if multiple are
available.

2. Familiar Entities and Long Term Memory

In the proposed model, the Set of Familiar Entities is equivalent to a
“highly salient” LTM cache; we would argue that the “Familiar” and
“Uniquely Identifiable” tiers can be viewed as different means of ac-
cessing the same structures, with different worst-case conditions. This
is consistent with J. K. Gundel (2010)’s that:

’[F]orms that encode cognitive status on the GH are not
markers of degree of accessibility. Rather, they provide pro-
cedural information about manner of accessibility, how and
where to mentally access an appropriate representation.’

The entities returned by the assess method associated with the FAM
are its sufficiently probable entities, ordered in reverse chronological or-
der ; the entities returned by the assess method associated with LTM
are its sufficiently probable entities, ordered in decreasing order of like-
lihood.

4.3.3 Algorithmic Description

In this section, we will describe the gh-power algorithm from a compu-
tational perspective, discussing the realities of its implementation and inte-
gration into our robot architecture. We will first discuss how utterances are
parsed and analyzed, and then describe the data structures we use and how
they are updated. Finally, we will describe how those data structures are
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Figure 4.4: Example Parser Output
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used to resolve references in parsed utterances. All capabilities described in
these sections are performed by components of the Distributed, Integrated,
Affect, Reflection and Cognition (DIARC ) architecture (Scheutz, Schermer-
horn, Kramer, & Anderson, 2007), as implemented in the Agent Development
Environment (ADE) (Scheutz, 2006; Scheutz et al., 2013).

Parsing

Each utterance is first sent to the C&C parser (S. Clark & Curran, 2007),
which uses the Combinatory Categorical Grammar formalism (Steedman,
2000) to generate a dependency graph. That graph is then converted into a
tree such as that seen in Figure 4.4, which shows the tree produced for “The
commander needs a medkit.”

From the structure of this tree one may extract: (1) a set of formulae
representing the surface semantics of the utterance, (2) a set of “status cue”
mappings for each referenced entity, and (3) the type of utterance which was
heard. From the tree shown in Figure 4.4, for example, one would extract:

1. The set of formulae {needs(X,Y ) ∧ commander(X) ∧medkit(Y )}.

2. The set of status cue mappings {X → uniquely id’able, Y →
type id’able}.

3. The utterance type “STATEMENT” (indicated by the label “dec” on
the arc pointing to the root node).

Data Structure Population

We now describe how the GH’s data structures (i.e., FoA, ACT, FAM, LTM)
are populated, as summarized in Table 4.4. Lines marked with a star denote
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information which is not yet included in each data structure, representing
future work.

Table 4.4: Contents of Relevant Data Structures

Level Contents

FoA
Main clause subject of clause n− 1
Syntactic focus of clause n− 1
* Event denoted by clause n− 1

ACT

* Entities visible in int.’s region of attention
All other entities referenced in clause n− 1
* Focus of int.’s gesture, if any
* Focus of int.’s sustained eye gaze, if any
* Speech act associated with clause n− 1
* All propositions entailed by clause n− 1

FAM All entities referenced in clause n− 1
* The robot’s current location

LTM All declarative memory
(including contents of clause n)

Starred items are the subject of current or future work.

Before clause n of some natural language utterance is processed, the
contents of FoA and ACT are reset (FAM is reset after each dialogue, and
LTM is never reset). FoA, ACT and FAM are then updated using the rules
listed in Table 4.4. Linguistically, this updating process entails placing the
main clause subject, syntactic focus, and event denoted by clause n− 1 into
FoA (each of which may be extracted from the syntactic representation of
clause n− 1), placing the speech act and any propositions entailed by clause
n − 1 into ACT, and placing all entities referenced at all in clause n − 1
into both ACT and FAM. In addition, each location visited by the robot
and its interlocutor should be placed into FAM, and any entities within the
interlocutor’s region of attention should be placed into ACT.

Each data structure is then sorted according to a “relevance score” or
“salience score” R-score. Although the ideal scoring function would account
for a variety of extra-linguistic factors, in this work we use the function
R(e) = α1 ·m(e) +α2 · s(e) +α3 · r(e) where m(e) ∈ [0, 1] represents whether
e is in a main clause, s(e) ∈ [0, 1] measures the syntactic prominence of
e, r(e) ∈ [0, 1] measures the recency of mention of e, and α1, α2, α3 are
monotonically decreasing coefficients (i.e., α1 > α2 > α3) prioritizing the
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three measures.

Reference Resolution

We will now describe how gh-power is used in practice to perform refer-
ence resolution. To resolve the references in a given clause, that clause is
first viewed as a graph whose vertices and edges are the variables and for-
mulae used to represent the semantics of that clause3. This graph is then
partitioned into connected components. For each partition, Alg. 9 (GH-
POWER) is used to resolve all references found in that partition, producing
a set of variable-entity bindings.

GH-POWER takes four parameters: (1) Λ (the semantics of clause n),
(2) M (the status cue mappings for clause n), (3) GH (containing FoA,
ACT , and FAM ), and (4) REX: The aforementioned Referential Execu-
tive, which provides access to the distributed LTM framework.

GH-POWER first collects the variables appearing in Λ and sorts them
with respect to the tier they are cued towards. For example, if X → in focus
and Y → familiar appear in M , then X will appear before Y (Alg. 9 line
2). GH-POWER then initiates cache-table C which stores a memoized list of
variable-to-entity bindings for each combination of variables in V and tiers
in {FoA, ACT, FAM, HYP} (line 3).

Before GH-POWER begins trying different variable-entity assignments,
it must determine in which data structures4 to look for those entities, de-
termined by the plan associated with each level of the hierarchy seen in
Table 4.2.

(5) The ball in this red box

To handle multi-variable expressions, GH-POWER creates a table Θ,
storing all multi-variable plan combinations.

For example, if the referring expression seen in Example 5 is parsed as:
{ball(X) ∧ box(Y) ∧ red(Y) ∧ in(X,Y)}
with status cue mappings

3To properly handle declarative and imperative utterances, we omit the formula asso-
ciated with the main clause verb from consideration. As later discussed, future work will
include consideration of the main clause verb using common-sense reasoning.

4As described above in Table 4.4, these data structures will have been recently pop-
ulated with recently referenced entities, as well as, possibly, other situatedly relevant
entities. When the architecture is configured such that salient co-present objects are in-
cluded in the set of entities used to populate the ACT or FAM data structures, then
GH-POWER will automatically be able to resolve deictic referring expressions, due to the
target referent’s elevated status.
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Algorithm 6 GH-POWER(Λ,M,GH,REX)
1: S: set of formulae, M : set of status cue mappings, GH: FoA, ACT, and FAM data

structures, REX: the Referential Executive
2: V = [v|v ∈ ΛV ] sorted by M(v)
3: C = create_cache_table(V, {FoA,ACT,FAM,HYP})
4: Θ = create_plan_table(M)
5: Γ? = ∅
6: for all θ ∈ Θ do
7: θd = [p|p ∈ θ, tier(p) = LTM ]
8: Vθ = new list
9: for all p ∈ (θ \ θd) do
10: (v, t) = (var(p), tier(p))
11: if C[v, t] == ∅ then
12: if (t == HY P ) then
13: C[v, t] = {((v → ’?’)→ 1.0)}
14: else
15: C[v, t] = GH-ASSESS(S, v, t, REX)
16: end if
17: end if
18: Vθ = v ∪ Vθ
19: Γ? = GH-ASSESS-ALL(Λ, Vθ, (Γ ?×C[v, t]), REX)
20: if Γ? == ∅ then
21: BREAK
22: end if
23: end for
24: if θd! = ∅ then
25: for all Γ ∈ Γ? do
26: Γ = resolve(REX, bind(Λ,Γ), order(vars(θd))))
27: end for
28: end if
29: Γ? = [Γ|Γ ∈ Γ?,ΓP >= τresolve]
30: if Γ? 6= ∅ then
31: BREAK
32: end if
33: end for
34: if |Γ? |6= 1 then
35: return Γ? // AMBIGUOUS or UNRESOLVABLE
36: else
37: return assert(REX, bind(Λ,Γ ? [0]))
38: end if

{X→ uniquely id’able, Y→ referential},
then Table 4.5 of joint search plans will be created, as previously de-

scribed.
After Θ is created (line 4), an empty set of candidate hypotheses Γ? is

created. GH-POWER then examines Θ one row at a time until a solution is
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Algorithm 7 GH-ASSESS(Λ, V, T,REX)
1: Λ: set of formulae, V : variable of interest, T : tier of interest, REX: the Referential

Executive
2: ΛV = [λ|λ ∈ Λ, λV = {V }]
3: Γ? = ∅
4: for all t ∈ members(T ) sorted by R(t) do
5: Γ = {(V → t)}
6: ΓP =

∏
λ∈Λv

assess(REX, bind({λ}, (V → t)))

7: if ΓP >= τassess then
8: Γ? = Γ ? ∪Γ
9: end if
10: end for
11: return Γ?

Algorithm 8 GH-ASSESS-ALL(Λ, V, Γ̃, REX)

1: Λ: set of formulae, V : variables of interest, Γ̃: set of hypotheses, REX: the Referential
Executive

2: Λv = [λ|λ ∈ Λ, head(V ) ∈ ΛV , [∃v ∈ tail(V )|v ∈ vars(λ)]]
3: Γ? = ∅
4: for all Γ ∈ Γ̃ do
5: ΓP = ΓP ·

∏
λ∈Λv

assess(REX, bind({λ},Γ))

6: if ΓP >= τassess then
7: Γ? = Γ ? ∪Γ
8: end if
9: end for
10: return Γ?

Table 4.5: Sample Joint Search Plan Table

Y X
ACT ACT
ACT FoA
ACT FAM
ACT (LTM → HYP)
FoA ACT
FoA FoA
FoA FAM
FoA (LTM → HYP)
HYP ACT
HYP FoA
HYP FAM
HYP (LTM → HYP)

found or the end of the table is reached.
For each table entry θ, GH-POWER first separates variables for which
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it must query LTM from all other variables (line 7). It then initializes an
empty list Vθ to hold variables that have been examined thus far for entry
θ (line 8). Next, it iterates over each (variable, tier) pair in that row, as we
now describe.

Consider row one of Table 4.5. GH-POWER would first examine the
first entry in this row, which says to look for Y ’s referent in ACT . If C does
not already contain hypotheses for var(p) and tier(p) (i.e., Y and ACT ), a
new one is created: if tier(p) = HY P , this hypothesis binds var(p) to “?”.
Otherwise, GH-POWER uses GH-ASSESS to search tier(p) for the most
likely entity to assign to var(p) (line 15).

GH-ASSESS takes four parameters: (1) Λ (the set of formulae), (2) V
(the variable of interest), (3) T (the tier in which to look for possible referents
for V ), and (4) REX. GH-ASSESS creates, for each entity t ∈ T , a new
hypothesis which maps V to t, with probability equal to the product of
probabilities of each formula λ ∈ Λ which only refers to V (Alg. 7 lines 2-6).
For example, if Example 5 is heard and there is one entity in ACT (e.g.,
obj13), GH-ASSESS would consult REX, which uses DIST-POWER to see
to what degree obj13 could be considered to be a box, and to what degree it
could be considered to be red, and then create a hypothesis mapping Y to
obj13 with probability equal to the product of the two probabilities returned
by DIST-POWER.

Once all formulae containing only var(p) are examined, all those contain-
ing both var(p) and any other previously examined variables are considered
(line 19) using Alg. 8 (GH-ASSESS-ALL). For Example 5, this would involve
inquiring to what degree the candidate entities for X could be considered
to be “in” each candidate entity for Y . After each variable is considered,
all candidate bindings whose likelihoods fall below a certain threshold are
removed. If this leaves no hypotheses with probability above τassess, GH-
POWER breaks out of its loop and considers the next row of the table.

For example, if resolving Y produces hypothesis list
{((Y → obj13)→ 0.8), ((Y → obj12)→ 0.75)},
and resolving X produces the hypothesis list
{((X → obj5)→ 0.9)},
these are combined into:

{((Y → obj13, X → obj5)→ 0.72),

((Y → obj12, X → obj5)→ 0.675)}.

If GH-ASSESS determines that in(X,Y ) has probability 0.2 for the first
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of these hypotheses and 0.9 for the second, the two hypotheses are updated
to

{((Y → obj13, X → obj5)→ 0.144),

((Y → obj12, X → obj5)→ 0.6075)}.

If τassess is set to 0.6, for example, then the first of these hypotheses
would be removed.

GH-POWER now considers all variables which were previously set aside
because they were to be searched for in LTM. If any such variables exist,
GH-POWER considers each candidate binding in H (line 26). For each, S is
bound using γ’s variable bindings, and an ordering of the variables Vh to be
queried in LTM is created based on the prepositional attachment observed in
Λ. The bound semantics and variable ordering are then used by the DIST-
POWER algorithm discussed in Chapter 3.3 to determine (1) whether any
of the variables in Vh refer to unknown entities, and (2) which entities in
LTM are the most probable referents for each other variable in Vh. The set
of hypotheses H is then updated using these results.

Finally, once a solution is found or all table rows are exhausted, the
number of remaining hypotheses is examined. If more or less than one hy-
pothesis was found, GH-POWER returns the set of solutions. This signifies
that the referring expression was either ambiguous or unresolvable. If only
one hypothesis remains, GH-POWER uses that hypothesis’ variable bind-
ings to update the set of semantics Λ, and then uses DIST-POWER to
assert a new representation for each variable bound to “?” (line 37). For
example, if resolving Example 5 produces a single hypothesis with prob-
ability 0.7 in which X is bound to obj4 and Y is bound to “?”, DIST-
POWER will create a new object (perhaps with identifier 5) with properties
{box(obj5), red(obj5), in(obj4, obj5)} and return {((Y → obj5, X → obj4) →
0.7)}. Once all partitions have been processed in this way, the results are
combined into a comprehensive set of candidate binding hypotheses.

4.3.4 Validation and Evaluation

In this section, we verify that the proposed algorithm and GH extensions do
indeed improve on previous approaches, and then perform an experimental
evaluation on real-world human-human and human-robot dialogues collected
by Schreitter et al. (Schreitter & Krenn, 2014). In those dialogues, human
instructors demonstrated to human or robot listeners how to connect two
sections of tubing and then affix the tubing to a box.
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Validation

We first evaluated several test cases within the previously described exper-
imental context, to demonstrate the success of the proposed approach in
addressing our concerns with previous GH-based approaches to reference
resolution:. In each case, the algorithm was provided with a knowledge base
containing information about the robot’s environmental and task context
(possibly modified according to that case), and was incrementally fed the
relevant utterances for that case.

(1) Previous approaches could not handle uncertainty. We confirmed
that when the robot believed there was 70% probability that one tube could
be referred to as flexible, and 40% probability that the other tube could be
referred to as flexible, the algorithm resolved ‘The flexible tube’ to the first
tube.

(2) Previous approaches could not handle open worlds. We confirmed
that when the robot only knew of red and yellow markers, the algorithm
posited a new entity when resolving “Find the blue marker.”

(3) Previous approaches could not handle references to hypothetical en-
tities. We confirmed that when the robot knew of a box on a table in front
of it and was then asked to resolve the utterances “Imagine a box.” and
“Describe the box”, ‘the box’ was resolved to the imaginary box and not the
observed box.

(4) Previous approaches could not resolve references to unobservable en-
tities. We confirmed that when the robot believed it was learning a task, the
algorithm resolved ‘the task’ in “Describe the task”.

(5) Previous approaches have been subject to errors when resolving com-
plex noun phrases. We confirmed that when a tube on a triangular table was
in “familiar” and a tube on a round table was in “activated”, the algorithm
successfully resolved ‘the tube’ in “Pick up the tube that is on the triangular
table.”

Evaluation

In addition to validating that the proposed algorithm significantly extended
the set of cases handled compared to previous algorithms, we evaluated it on
the corpus of human-human and human-robot dialogues collected by Schre-
itter et al. As participants’ utterances in that experiment were originally
in German, these were first translated to English. As we are not currently
attempting to handle disfluencies, these utterances were then “cleaned up”,
removing disfluencies and parenthetical statements. For example, an utter-
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ance with word-for-word translation “So then put you the grasp you here
at the marker at the red and yellow one” was “cleaned up” to “So then you
grasp here at the red and yellow marker.”

A knowledge base containing the relevant properties of the 16 objects and
agents involved in the task was constructed and provided to GH-POWER.
Then, each task-relevant utterance (excepting, e.g., “Hello.”) was provided
to GH-POWER in sequence, and the results of resolution were compared
against “gold standard” resolution results provided by human annotators.
The human-robot corpus contained 32 task-relevant utterances, the human-
human corpus contained 110.

It will also be illustrative to provide the distribution over linguistic forms
found across this corpus. Human annotators identified 304 referring expres-
sions across all dialogues. As shown in Figure 4.5, In Focus forms comprised
16.1% of all REs, Activated forms 15.8%, Familiar forms 0.7%, Uniquely
Identifiable forms 65.8%, and Type Identifiable forms 1.6%, with Referential
forms not being used at all. It is interesting that Familiar and Type Iden-
tifiable forms were used with such higher frequency in the Human-Robot
dialogues, although the size of the dataset makes it difficult to draw any
precise conclusions from this phenomena. In future work it will be necessary
to examine this, as well as all results presented in this section, using a larger,
more comprehensive dataset5.

Overall, GH-POWER correctly resolved 48 of the 98 (48.98%) references
found by the C&C parser in the human-robot dialogues (HRDs), and 121 of
the 270 (44.81%) in the human-human dialogues (HHDs), for a net 45.92%
accuracy. However, 17.93% of references found by C&C (14.29% in HRDs,
19.26% in HHDs) were not references at all, but artifacts or parse errors.
For example, the parser frequently decided that utterances like “Right, so”
referred to entities on the right. Discarding these parse errors, GH-POWER
correctly resolved 55.96% of references (57.14% in HRDs, 55.50% in HHDs).
The remaining 44.04% of references could not be resolved due to a variety
of reasons, shown in Figure 4.6:

4.97% of references (2.38% in HRDs, 5.96% in HHDs) were plurals (e.g.
‘the tubes’). GH-POWER was unable to resolve these as it is designed to
handle singular references. Future work will be needed to generate likely
groupings of entities to which plurals might be resolved.

10.60% of references (10.71% in HRDs, 10.55% in HHDs) referred to non-

5One of the challenges in doing so thus far has been the difficulty of finding a corpus
that provides both the ground truth of referring expressions as well as information about
the uncertainty of relationships between candidate referents within the environment.
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Figure 4.5: Distribution of Forms

discrete entities, e.g., regions or sections of tube. Future work will be needed
to generate likely regions or portions of entities to which such references
might be resolved.

10.26% of references (10.71% in HRDs, 10.09% in HHDs) needed gestural
information to be disambiguated; while it is an explicit design aim for GH-
POWER to handle this facet of multi-modal interaction, we do not yet make
use of such information. Future work will be needed to use gesture and eye
gaze to correctly bias entities’ salience scores.

4.64% of references (1.19% in HRDs, 5.96% in HHDs) were incorrectly
resolved due to inconsistencies regarding the “beginning” of the task. For
example, participants sometimes started interactions with utterances similar
to “I will now describe it to you.” Because speaker and listener shared a joint
context at the start of the task, the task may have been in the listener’s
focus of attention. However, in the evaluation, the system never “heard” the
experimenter giving instructions, and thus ‘the task’ was considered at most
activated.

3.31% of references (1.19% in HRDs, 4.13% in HHDs) were idiomatic
or colloquial. For example, “That was it” was understood to indicate task
completion, but GH-POWER was not privy to such information. This sug-
gests that reference resolution may need tighter integration with pragmatic
inference.

1.32% of references (1.19% in HRDs, 1.32% in HHDs) were incorrectly
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Figure 4.6: Reference Resolution Results

resolved because the linguistic salience score we used did not sufficiently
boost the target. Future work will be needed to investigate other salience
scoring functions.

The remaining 8.94% of references (15.48% in HRDs, 6.42% in HHDs)
were incorrectly resolved for various other reasons. For example, some par-
ticipants referred to some concepts we were unprepared to handle (e.g., “The
problem here. . . ”), and some participants used indefinite noun phrases in
ways we did not anticipate (e.g., “There is a pipe there”).

4.3.5 Discussion

In the previous section, we demonstrated how gh-power was able to resolve
the majority of references occurring in a corpus of human-human and human-
robot team tasks (as originally presented in (Williams, Acharya, Schreitter,
& Scheutz, 2016)). While there were a number of cases that gh-power was
unable to handle, it was able to capture several aspects of the GH missing
from previous GH-theoretic approaches. Consider, for example, the following
example presented by J. K. Gundel (2010):
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(6) a. Alice: I failed my linguistics course.
b. Bob: Can you repeat that?

Before resolving ‘that’6, the referent of “my linguistics course” should be
in the agent’s FoA, while the utterance itself should be in the agent’s ACT,
but not in the agent’s FoA since, as J. K. Gundel, Hedberg, & Zacharski
(1993) note, speech acts are activated, but not brought into focus just by
being uttered. Gundel et al. suggest that if Bob had meant to refer to
the course, he would have used it instead of that, because ‘it’ explicitly
picks out an in focus referent, whereas ‘that’ only signals that the referent
is activated and therefore could be in focus, and thus the course should
be dispreferred to the sentence itself. This effect is captured through gh-
power’s between-structure processes: When ‘that’ is used, ACT is first
checked; and because the utterance is in ACT, it is chosen. FoA is not
even examined, because any options residing therein should be dispreferred.
However, consider Example 7:

(7) Scene: A table on which sits a black box and a white box
a. Bob: Look at the white box
b. Bob: Pick that up

Before resolving ‘that’, the white box should be in the agent’s FoA, and
the black box is likely to only be in the agent’s ACT, as depicted in Figure 4.7.
Following the logic of Example 6, if Bob had meant to refer to the white box,
he could have used ‘it’ instead of ‘that’, and thus the white box should be
dispreferred. Yet while ‘it’ would have been more natural in referring to the
white box, choosing the white box as the referent of ‘that’ is clearly not

6While it is beyond the scope of this dissertation, the use of ‘that’ actually presents
much more information than we are making use of in this work (J. Gundel, Hedberg, &
Zacharski, 1988). Previous work has shown that ‘that’ is sometimes used to refer to objects
that are either physically removed (Xueping & Rong, 2009; Stevens & Zhang, 2013) or
referentially removed (see also C. Sidner, 1986). Interestingly, some of this work (Stevens
& Zhang, 2013) has suggested that this distance only plays a role in selection of ‘that’
or ‘this’ in cases of joint eye gaze between speaker and listener, suggesting that Theory-
of-Mind may play an important role in this process (see also J. K. Gundel, Ntelitheos,
& Kowalsky, 2006), and that it is only the linguistic or semantic notion of distance that
plays a role, and not literal visual distance (Kemmerer, 1999). In future work, it would be
interesting to try to incorporate different notions of ‘thisness’ (Poesio & Modjeska, 2002)
and ‘thatness’ into either the relevance assessment process or the property assessment
process itself. That is, ‘this’ and ‘that’ could be construed as yet-other-constraints, and
candidates could be supported or discounted based on the level to which they exhibit an
appropriate physical, temporal, or conceptual distance.
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Figure 4.7: gh-power Contents

LTM
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interlocutor
table

last utterance
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Contents of gh-power’s Cognitive Structures during Hypothetical Algo-
rithm Run. Structures are arranged to depict their hierarchical nature (i.e.,
an entity in one structure is also in all lower structures). [...] indicates the
wide variety of entities contained in the set of familiar entities and in long
term memory which are not immediately relevant to this example.

wrong and probably preferred in this situation in the absence of any gesture
indicating a shift in attention.

In this scenario, gh-power errs for two reasons. First, it treats hier-
archical preference as absolute, whereas dispreferred entities should be just
that: dispreferred, not removed from consideration. Second, gh-power does
not take conversational relevance into account. These factors were initially
overlooked because the GH does not specify how relevance factors influence
search. gh-power checks whether resolution candidates are suitable, i.e.,
whether they satisfy all described properties, and only moves on to con-
sider entities in another cognitive structure if no resolution candidates in the
current structure are deemed suitable. In this case, however, this is insuffi-
cient. In order for gh-power to perform correctly in this scenario, it should
recognize not only that both boxes are suitable, but that the white box is
conversationally more relevant than the black box; there is no clear reason
why the agent would be asked to look at the white box and then pick up the
black box.

In order to address this issue, gh-power should operate in the following
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way: When ACT is examined, the low conversational relevance of the black
box should be noted. This should result in search extending to the FoA
while retaining the black box as a resolution candidate. The white box
should then be selected using an equation that takes relevance, suitability,
and other factors into account.

To be precise, at least three factors must be considered in the within-
structure processes of future versions of gh-power: (1) suitability (i.e.,
the agent’s certainty that a candidate holds all described properties), (2)
relevance, (i.e., the agent’s certainty that reference to a candidate would not
violate, e.g., Grice’s Maxim of Relevance (Grice, 1970)) and (3) common-
sense judgments (here, e.g., the agent’s certainty that a candidate can be
picked up). Note that each of these factors may be used differently: while
a candidate must score highly on all three factors for the search to cease,
only low suitability will likely result in a candidate’s complete removal from
consideration. Furthermore, to respect the Theory-of-Mind considerations
of the GH, this process must consider the extent to which the speaker would
have been cognizant of each of these factors. In the next section, we present
a new algorithm that takes these factors into account.

4.4 GROWLER

In this section we present Givenness- and Relevance-theoretic Open WorLd
Entity Resolution, or growler: a new reference resolution algorithm that
seeks to address the concerns listed in the previous section. growler uses
the same memory model as gh-power, but uses different between-structure
processes.

Here, the following new notation is used:

Λv The list of logical formulae that use variable v.

Θv The list of mnemonic actions associated with variable v.

Cv The list of candidate referents associated with variable v.

While gh-power proceeded through a list of variable-tier combinations
until a sufficiently probable solution was found, growler takes a different
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Algorithm 9 growler (Λ,Ξ)
1: Λ: set of formulae, Ξ: set of status cue mappings
2: Θ = create_plan_maps(Ξ)
3: C = create_candidate_maps(ΛV )
4: for all v ∈ ΛV do
5: while (@c ∈ Cv | R(c) >= R̄) ∧ (Θv \ LTM 6= ∅) do
6: grow(Λv, Cv,Θv)
7: end while
8: end for
9: Γ = BuildAndAssessTable(C)

10: R = [v ∈ ΛV |CanAndShouldExpand(v,Γ)]
11: while R 6= ∅ do
12: for all v ∈ R do
13: C ′ = (C \ Cv) ∪ grow(Λv, Cv,Θv)
14: Γ = Γ ∪BuildAndAssessTable(C ′)
15: Cv = Cv ∪ C ′v
16: end for
17: R = [v ∈ ΛV |CanAndShouldExpand(v,Γ)]
18: end while
19: Γ? = ASSESS-LTM(Λ, Q)
20: if |Γ? |6= 1 then
21: return relevantPrefix(Γ)
22: else
23: return assert(bind(Λ,Γ ? [0]))
24: end if

Algorithm 10 grow(Λ,C,Θ)

1: for all e ∈ domain(head(Θ)) do
2: P (e) = ASSESS(e,Λ)
3: if P (e) > P̄ then
4: C = C ∪ 〈e, P (e), R(e)〉
5: end if
6: end for
7: pop(Θ)
8: return C

approach, as shown in Algorithm 97. growler takes two arguments: (1)
7In the presented pseudocode we abstract away many technical details for clarity and

brevity, including optimizations that can be made through dynamic programming tech-
niques.
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a set of logical formulae Λ encoding the surface semantics of an utterance
(excepting the predicate associated with the verb), and (2) a set of “status cue
mappings” Ξ associating each variable found in Λ to its presumed cognitive
status.

Given these arguments, GROWLER begins by associating with each vari-
able v: (1) a sequence Θv of mnemonic actions (i.e., data structure searches
and hypothesizations) to perform (Line 2) when searching for the referent
to bind to that variable, and (2) an (initially empty) list Cv of candidate
referents for that variable (Line 3).

GROWLER then finds for each variable v a set of candidate referents
that sufficiently satisfy the unary predicates in Λ that involve v (Lines 4–8).
For each variable v, GROWLER successively considers mnemonic actions
in Θv. Each action may yield new candidates that have varying levels of
satisfaction probability (as assessed by the grow algorithm (Algorithm 10,
which makes use of the same ASSESS subroutine used by GH-POWER (Al-
gorithm 7))) and conversational relevance (assessed using a function R(x),
such as that seen in Equation 4.3.3). While all sufficiently probable candi-
dates are added to Cv, regardless of relevance, new mnemonic actions are
only considered while until a sufficiently relevant candidate (as assessed with
respect to threshold R̄) is found (or until there are no such actions left to
consider beyond LTM queries, which are saved until the end of the resolu-
tion process). Another way to view this is to say that during this process,
all insufficiently probable candidates are removed from consideration, while
insufficiently relevant candidates are not removed from consideration, but
do not suffice to stop the search process.

Now, GROWLER must consider polyadic predicates. To do so, it begins
by building a table of hypotheses Γ containing combinations of variable as-
signments (similar to the similarly-named structures used by DIST-POWER
and GH-POWER), and makes use of the same ASSESS-ALL subroutine used
by GH-POWER (Algorithm 8) in order to weed out hypotheses that are no
longer sufficiently probable when polyadic predicates are considered.

Because this process may result in all sufficiently relevant referential can-
didates being eliminated, GROWLER now goes through a second cycle of
potential expansion-by-mnemonic-action. GROWLER goes through this cy-
cle so long as it is determined that it can and should perform such expansion
for some set of variables V . A variable v can be expanded if Θv is nonempty
(excepting LTM queries), and should be expanded if there does not already
exist a hypothesis in Γ that binds v to a sufficiently relevant candidate ref-
erent.

During each expansion cycle, GROWLER performs the following actions
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for each such variable v. First, GROWLER creates a copy of C (i.e., C ′) that
differs from C in that the candidate referents associated with v are replaced
by the new candidate referents discovered through a round of expansion ef-
fected by the grow subroutine (i.e., C ′v). GROWLER then creates a new
hypothesis table using C ′, and adds all new sufficiently probable hypothe-
ses found in this table to Γ. Finally, GROWLER adds all new sufficiently
probable bindings for v (i.e., C ′v) to Cv.

Now, GROWLER must deal with LTM queries that were previously set
aside, using the ASSESS-LTM subroutine. For any variables that still should
be expanded, and that can be expanded if LTM-querying is viewed as an
acceptable mnemonic action, ASSESS-LTM uses DIST-POWER to effect
such LTM queries and update the results stored in Γ?.

Finally, once the final set of hypotheses is found, the number of such
hypotheses is examined. If more or less than one hypothesis was found,
GROWLER returns the most relevant subset of hypotheses. This may be ef-
fected either by returning the top n most relevant hypotheses, all hypotheses,
the set of hypotheses that are considered sufficiently relevant when viewed
with respect to the most relevant of the final set of hypotheses, or, in the
cases that Γ? is empty, an empty set. If exactly only one hypothesis remains,
however, GROWLER uses that hypothesis’ variable bindings to update the
set of semantics Λ, and then uses DIST-POWER to assert a new represen-
tation for each variable bound to “?”.

For each candidate remaining in the set of hypotheses returned at the
end of this process, Cv will contain an entry 〈ID, P,R〉, where ID is a unique
identifier representing a memory trace allowing access to an entity in LTM,
P is the probability that entity ID satisfies unary predicates involving v, and
R is the relevance of entity ID: a combined measure of its visual, linguistic,
and conversational salience.

4.5 General Discussion

In Chapter 3, I introduced the problem of reference resolution, and presented
the DIST-POWER algorithm for resolving references found in definite noun
phrases, an an architectural framework that facilitates the use of that algo-
rithm. In this chapter, I showed how this architectural framework can be
expanded using Givenness Hierarchy theoretic principles, in order to facili-
tate a new reference resolution algorithm (GH-POWER) capable of resolving
a wider class of referring expressions, including indefinite noun phrases, and
anaphoric and deictic expressions.
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I then identified shortcomings of this approach, and how they might be
addressed by a modified algorithm, GROWLER. But while we have infor-
mally verified that GROWLER performs correctly in a handful of test cases,
we have not yet performed a systematic evaluation of the form seen in Sec-
tion 4.3.4. Future work must involve just such an evaluation, as well as
parameter tuning to choose appropriate values for P̄ and R̄ and determine
how best to assess the relevance of possible candidate referents. For now,
however, we will turn away from referring expression understanding, and
show how its inverse, the problem of referring expression generation, can
also be handled by the presented reference-processing architecture.
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Chapter 5

Referring Expression
Generation

For situated agents to effectively engage in natural-language interactions
with humans, they must not only be able to understand referring expres-
sions. They must be able to generate them as well. For natural language
enabled robots, for example, this capability is crucial for clarification request
generation: imagine a robotic wheelchair that is asked by its user “Could you
bring me to the kitchen?” in a building containing multiple kitchens. In or-
der for the wheelchair to carry out the command, it must determine which
kitchen is intended by its user, and thus may decide to ask which of these
kitchens is correct. Such a robot may be most successful in generating an
effective clarification request if it can sufficiently describe the various options
between which it is arbitrating, e.g., “Do you mean the large kitchen on the
first floor or the small kitchen on the second floor?”

This task, known as referring expression generation (REG) is typically
split into two sub-tasks: content determination, in which the agent decides
which properties to use to describe the target referent, and linguistic real-
ization, in which lexical items (i.e., words) are chosen to communicate those
properties (Krahmer & Van Deemter, 2012). In keeping with traditional
nomenclature, we will refer to algorithms that solve the content determina-
tion stage of the REG problem as REG algorithms.

Traditionally, the task of content determination is carried out by an al-
gorithm that uses a domain (comprised of target referent m and a set of dis-
tractors X), where each entity in that domain is represented by an attribute
set of properties and relations that hold for that entity (Dale & Reiter, 1995).
The most traditionally successful algorithm of this form has been Dale and

123
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Reiter’s Incremental Algorithm (IA), which additionally takes a preference
ordering P in which attributes are to be considered.

A variety of factors prevent many situated agents from using algorithms
from this tradition. Most crucially, to check whether a given attribute holds
for a given entity, IA simply checks whether that attribute is a member of
that entity’s attribute set, which always produces a clear and unambiguous
answer. But for many intelligent agents (e.g., robots), it is imperative to
represent the uncertainty associated with an agent’s knowledge. The knowl-
edge bases of these agents may thus be unable to definitively state whether
or not a given attribute holds for a given entity.

While there have been previous approaches to generating referring ex-
pressions (REs) under uncertainty, those algorithms have been explicitly
designed to refer to objects in visual scenes, and as such are tightly inte-
grated with visual classifiers (Zarrieß & Schlangen, 2016; D. K. Roy, 2002;
Meo, McMahan, & Stone, 2014). This is problematic for least two reasons:
First, intelligent agents may need to generate REs for a much wider class
of entities than those appearing in a visual scene (e.g., agents, locations,
ideas, utterances), which may not be possible if an REG algorithm is tightly
coupled with visual classifiers. Second, due to this tight coupling, the eval-
uation of these algorithms conflates the performance of the REG algorithms
themselves with the performance of the visual classifiers they employ. For
these reasons, previous REG algorithms have only been evaluated relative to
different versions of themselves, and not to other algorithms or to humans.
We believe that it is important to be able to talk separately about the de-
sign, efficacy, and integration of REG algorithms and the design, efficacy,
and integration of property classifiers used by those algorithms. As we will
discuss, we present in this section an REG algorithm that is not tightly inte-
grated with specific property classifiers, but is easily extensible to allow for
arbitrary property classifiers to be utilized within a general framework.

In addition to these two primary concerns, we raise a third, which is
specific to the realities of modern integrated architectures; a concern we pre-
viously rose in the context of referring expression understanding. In many
integrated robot architectures (e.g., DIARC and ROS ), information may
be distributed across a number of architectural components, rather than
being stored in a single centralized knowledge base, meaning that no cen-
tral attribute set is necessarily ready and available to use by an REG algo-
rithm. While there has been much research on merging disparate knowledge
bases (Lin, 1996; Liberatore & Schaerf, 1998; Konieczny, 2000), this is not
always feasible in integrated robot architectures, as their distributed knowl-
edge bases may use “lazy evaluation” (e.g., a mapping component may not
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have precomputed information about whether the acrossFrom relation holds
between all sets of places), and may not store information as attribute-value
pairs (e.g., a mapping component may represent spatial information using a
hybrid metric-topological map).

In this chapter, I address three main research challenges. First and most
crucially, I address the need for REG algorithms that take into account the
generator’s uncertainty regarding entities’ attributes, and which are not tied
to a particular domain (e.g., visible objects). Second, I address the lack of a
rigorous evaluation framework for systematically evaluating such algorithms,
in a way that allows REG algorithms in this class to be compared to one
another (as well as to humans). Third and finally, I address the need for such
algorithms to take into account the realities of the distributed knowledge
representation schemes used by modern integrated architectures.

To address these challenges, I present DIST-PIA – an IA-inspired REG
algorithm designed to operate within the referential processing framework
presented in Section 3.3. Furthermore, I present a novel two-stage evaluation
framework in which human participants first assess the uncertainty that
various attributes hold within a domain and to generate novel REs, and then
evaluate the effectiveness of REs created from both human- and machine-
generated sets of properties within that domain.

I will begin by discussing previous work on REG, particularly REG under
uncertainty. Next, I present DIST-PIA, a novel REG algorithm facilitated
by the previously presented referential processing framework. Next, I present
a novel evaluation framework used to evaluate DIST-PIA. Finally, I conclude
by discussing possible directions for future work.

5.1 Previous Work

“Referring” has been referred to as the “fruit fly” of language due to the
amount of study it has attracted (Van Deemter, 2016). And in truth an
enormous amount of research has been done on the topic of REG in the past
few decades. The bulk of this work has focused on the content determination
stage of REG, cast as what Van Deemter refers to as the classic REG task. As
previously noted, classic REG algorithms (e.g., Full Brevity, the Greedy Al-
gorithm (Dale, 1989), and the aforementioned Incremental Algorithm (Dale
& Reiter, 1995)) operate under a number of simplifying assumptions (such
as completely certain knowledge on the part of both speaker and listener)
that are not tenable in realistic interaction scenarios.

In this section, I will not attempt to survey the full scope of REG al-
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gorithms developed in the past few decades (for an excellent primer, I rec-
ommend Van Deemter’s recent book on the subject (Van Deemter, 2016)),
but will instead focus on REG algorithms that have relaxed the constraint
of completely certain knowledge.

The first REG algorithm that explicitly sought to relax the assumption
of completely certain knowledge may be that of Horacek (Horacek, 2005).
Specifically, Horacek presents an algorithm that reasons about the certainty
that a listener will be able to recognize that a target referent has certain
attributes. The algorithm thus attempts to choose an utterance that min-
imizes recognition failure: an example of audience design in which the lis-
tener’s knowledge and capabilities are taken into account. Horacek’s algo-
rithm does not, however, take into account the uncertainty of the agent’s own
knowledge. When an agent’s own knowledge is uncertain, it is inappropriate
to employ audience design without first taking that agent’s own uncertainty
into account. We thus focus in this work upon handling the agent’s own
uncertainty; once this is accomplished, audience design mechanisms can be
naturally integrated in future work.

In the graph-based approach presented by Sadovnik (Sadovnik, Gal-
lagher, & Chen, 2013), the confidences of computer vision classifiers are
used not only to facilitate audience design, but also as a measure of how
well a candidate referent (or an anchor with respect to which the referent
could be described) matches the attribute associated with that classifier. In
their approach, which is targeted towards generating expressions referring to
people in photographs, if the algorithm cannot generate an RE which it be-
lieves is sufficiently likely to disambiguate the target, the algorithm is re-run
using the attributes of both the target and one of its neighbors. While this
approach relaxes the assumption of completely certain knowledge, it imposes
a number of assumptions of its own, as it is specifically tailored to use com-
puter vision techniques to inform probability judgments and pick anchors.
Furthermore, by giving equal weight to the attributes of the target and the
attributes of possible anchors, the algorithm appears to generate REs that
curiously under-describe the target relative to anchors (e.g., “The person on
the right of a person who is not Asian and has eye glasses and is smiling and
has bangs and whose mouth is not closed”).

A similar approach is the graph-based approach presented by Fang, Liu,
She, & Chai (2013); Fang, Doering, & Chai (2014). In work from 2013, Fang
et al. present an approach which more systematically handles attributes by
expanding a hypergraph of properties until a hypergraph-matching algorithm
determines that the selected properties can be used to disambiguate the
target referent. When choosing how to expand this hypergraph, Fang et
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al. choose the attribute of minimal cost, using cost functions that take into
account the uncertainty of the agent’s knowledge as well as the preference of
that attribute (in the same sense as that used by the Incremental Algorithm).

In work from 2014, Fang et al. extend this approach so that REs can be
generated one clause at a time, facilitating collaborative human-agent dia-
logue. While these approaches are a move in the right direction, they operate
under similar assumptions to those imposed by Sadovnik: that probabilities
come from the confidence values of applied computer vision classifiers, that
the target referent is an object in a visual scene (as are all distractors and
candidate anchors), and that information about all such entities is stored in
a single, centralized data structure. As previously discussed, these assump-
tions do not hold in most integrated robot architectures, where information
about a wide variety of entities is distributed across multiple heterogeneous
knowledge bases.

5.2 The Distributed Probabilistic
Incremental Algorithm

I will now describe how Referring Expression Generation is performed using
our architectural framework. For this task, we use a modified version of the
Incremental Algorithm (IA) (Dale & Reiter, 1995). The IA incrementally
proceeds through an ordered list of potential properties that could be used to
describe a referent. For each such property p, if p is in the list of properties
attributed to the target referent, IA checks whether p is not true of any
distractors (initially all other possible referents). If any distractors are ruled
out in this way, p is added to the description, i.e., the list of properties to
communicate, and those ruled-out distractors are removed from the set of
distractors. This process iterates until the algorithm has either ruled out all
distractors or run out of properties to consider.

When information is uncertain and distributed across multiple DHKBs
as it is in our architecture, however, the application of this algorithm is
not straightforward: one cannot assume that there will exist a precomputed
set of sufficiently probable properties that hold for either the target or its
distractors, meaning that instead of a simple set-membership check, one
must assess whether each property holds for the target or a given distractor
by making a query to the relevant consultant. We thus present DIST-PIA,
the Distributed, Probabilistic Incremental Algorithm, in which REX uses
DIST-CoWER to do just that.

In this section, we use the same notation as used in Section 3.3,
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re-presented here within the context of referring expression generation.

C A set of consultants {c0, . . . , c|C|}.

cQ A set of query templates {cq0, . . . , c
q|cq |} advertised by consultant c.

M A robot’s world model of entities {m0 . . .m|M |} found in the domains
provided by the robot’s various consultants.

Γ A set of bindings from variables to entities in M .

λ A semantic constraint which, under a particular variable binding,
makes a claim regarding a property held by the entities in that vari-
able binding.

The DIST-PIA algorithm takes a target referent m, and a set of consul-
tants C. DIST-PIA begins by initializing a new empty description D and
a new queue of referents Q for which sub-descriptions must be generated,
which starts out containing only m (Algorithm 11, Lines 1- 2). Until this
queue is empty, DIST-PIA repeatedly does the following: first, DIST-PIA
pops the first referent m′ off of Q (Line 4), and uses DIST-PIA-HELPER
to generate a sub-description for that referent. Next, any entities mentioned
in that subdescription for which subdescriptions have not yet been gener-
ated (including m′) are pushed onto Q so that they too can be described
(Lines 5- 9). When this loop terminates, the completed description D is
returned (Line 11).

Algorithm 11 DIST-PIA(m,C)

1: D = new Map()
2: Q = new Queue(m)
3: while Q 6= ∅ do
4: m′ = pop(Q)
5: d = DIST-PIA-HELPER(m′, C)
6: D = D ∪ {m→ d}
7: for all m′′ ∈ dM \ keys(D) do
8: push(Q,m′′)
9: end for

10: end while
11: return D

The bulk of the REG process, however, is done by DIST-PIA-HELPER,
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Algorithm 12 DIST-PIA-HELPER(m,C)

1: d = ∅
2: X = M \m
3: P = [∀λ ∈ cΛm : (λ, ∅)]
4: while X 6= ∅ and P 6= ∅ do
5: (λ,Γ) = pop(P )
6: V = find_unbound(λ,Γ)
7: if |V |> 1 then
8: for all Γ′ ∈ cross_bindings(λ,Γ, C) do
9: push(P, (λ,Γ′))

10: end for
11: else if apply(cm, λ,Γ ∪ (v0 → m)) > τdph then
12: X̄ = [x ∈ X | apply(cx, λ,Γ ∪ (v0 → x)) > τdph]
13: if X̄ 6= ∅ then
14: d = d ∪ (λ,Γ ∪ (v0 → m))
15: X = X \ X̄
16: end if
17: end if
18: end while
19: return d

which is responsible for crafting the sub-descriptions that comprise D. Like
DIST-PIA, DIST-PIA-HELPER takes as arguments a target referent m and
set of consultants C. DIST-PIA-HELPER begins by initializing an empty
sub-description d, a set of distractors X, and a stack of properties P to
consider (i.e., the unbound formulae cΛ

m advertised by the constraint cm
responsible for target referent m (Algorithm 12, Lines 1- 3)). DIST-PIA-
HELPER then does the following until either all distractors in X have been
eliminated or until there are no properties left in P to consider adding to
the description:

First, DIST-PIA-HELPER pops from P the first unconsidered property,
in the form of a pair (λ,Γ), where λ is a formula and Γ is a partial set
of bindings for that formula (Line 5). Next, DIST-PIA-HELPER finds all
variables V in λV that do not have bindings in Γ (Line 6). If there is more
than one such variable, DIST-PIA-HELPER does not immediately consider
whether or not to add the property. Instead, it uses cross_bindings to find
all possible partial bindings from entities known of in C to variables in λV

(respecting type restrictions). These bindings are partial in that each leaves
exactly one variable unbound to which m could potentially be bound (once
again, respecting type restrictions). New versions of the property, each of
which uses one of these possible partial bindings, are then pushed back onto
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P (Lines 7- 10).
Otherwise, i.e., if there is exactly one unbound variable in V (i.e., because

λ is a unary predicate or because it has gone through the cross_bindings
process), DIST-PIA-HELPER considers whether the property actually ap-
plies to m, and if so, whether it rules out any remaining distractors in X.
If so, the property is added to sub-description d, after being modified such
that its set of bindings Γ includes a binding from the formula’s previously
unbound variable v0 to m (Lines 11- 17). Finally, once this loop terminates,
the completed sub-description d is returned (Line 19).

5.3 Algorithm Analysis

In this section, I will discuss the guarantees and complexities of DIST-PIA
and DIST-PIA-HELPER. This is meant to paint a general picture of these
guarantees and complexities, and is not intended as a formal theoretical
analysis, which would be beyond the scope of this dissertation.

DIST-PIA’s performance is straightforward. Because new referents from
M are only added to Q if they do not yet have associated subdescriptions in
D, the algorithm is guaranteed to terminate in no more than O(M) time –
the worst case circumstance in which describing the target referent requires
describing every known entity. Similarly, the worst case space complexity is
O(M) because in the worst caseD will contain an entry for eachm ∈M , and
because Q will never contain a referent already appearing in M . However,
these linear bounds may be deceiving, as they represent the time taken to
generate and store a subdescription for each possible referent, which may
in fact be quite computationally expensive, depending on the complexity of
DIST-PIA-HELPER.

In the worst case, all candidate properties provided by the consultant
responsible for m will apply both to m and to all distractors in X, in which
case all known entities in M will have to be examined for each property that
is considered. If only the literal set of properties P needed to be considered,
the time complexity of DIST-PIA-HELPER would be O(MP ). However, be-
cause DIST-PIA-HELPER expands each relation r into a set of Marity(r)−1

bound relations (whose cost of evaluation is equivalent to that of properties).
Thus, the true worst case is when each property is in fact a relation of arity
k, in which case the true time complexity is O(Mk−1 ·MP ) = O(MkP ).
With respect to space complexity, the consideration of relations also signif-
icantly increases complexity. If all predicates in P are properties, the space
complexity will be O(P ) (in the case that all properties either have yet to be
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considered or have already been moved into subdescription d). In the worst
case, however, all predicates in P will in fact be relations. But because
only one relation at a time may be “expanded” into property equivalents, the
largest P will ever be will be immediately after examining the first predicate
if it happened to be a $k$-arity relation, in which case the size of P will be
|P | − 1 +Mk−1. This space complexity is also contributed to by the size of
the subdescription d. In the worst case, it would seem that d could contain
O(P ·Mk−1) properties. However, this added complexity is mitigated due
to the condition that a property is only ever included in the description if it
rules out at least one distractor. This means that there could only ever be
at most O(M) elements in d, one for each distractor. Thus the true space
complexity is at worst O(P +Mk−1 +M).

Analysis of DIST-PIA-HELPER may be facilitated by discussion of the
find_unbound subroutine. find_unbound is guaranteed to return a non-
empty list. First, every consultant is required to advertise a set of query
templates, each of which by definition is represented as a predicate containing
at least one typed, unbound variable. Line 3 will thus populate P with a
nonempty set of pairs whose first argument is a predicate with at least one
typed, unbound variable, and whose second argument is an empty binding
list. If find_unbound examines a pair for which this second argument is still
empty, it must find at least one unbound variable, since the predicate that
is the pair’s first argument must have at least one unbound variable, and
because there are no bindings in the pair’s second argument that override
this unbound variable. The only circumstance in which find_unbound will
examine a pair for which this second argument is not empty is if the pair
was pushed onto P on Line 9. In this case, however, this second argument is
nonempty because all but one previously unbound variable was newly bound
on Line 8, as described above. The fact that all but one previously unbound
variable was newly bound means that, by definition, there must still be at
least (and in fact exactly) one unbound variable for find_unbound to find.
Thus, it is ensured that find_unbound will return a nonempty list.

It is important to note, however, that DIST-PIA-HELPER will only
find a successfully discriminating subdescription if one exists. DIST-PIA-
HELPER continues to add properties to d so long as there are both properties
left to consider and distractors left to eliminate. This means that if the
properties to be considered run out before all distractors are eliminated, then
the description returned by DIST-PIA-HELPER will not uniquely describe
the target. This will only happen, however, when the target cannot be
uniquely described using a conjunction of the properties provided by the
target’s consultant.
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5.4 Algorithm Walkthrough

Imagine a robot with three consultants: ppl, locs, and objs, that is instructed
to construct a set of properties referring to entity ppl5. DIST-PIA will
begin by creating empty description D = ∅ and referent queue Q = {ppl5}.
Next, DIST-PIA will pop ppl5 off of Q, and because a description for ppl5
does not appear in D, will call DIST-PIA-HELPER(ppl5, {ppl, locs, objs}).
DIST-PIA-HELPER will first initialize sub-descriptor d = ∅, and set of
distractors X = {ppl1, ppl2, ppl3, ppl4}, assuming for simplicity that ppl only
knows of five people. Next, let’s suppose that ppl advertises the following
properties, which may be all the properties it is able to handle, or may only
be the properties which it knows currently hold for some entity it knows
about:
{jim(X − ppl),
jill(X − ppl),
man(X − ppl),
woman(X − ppl),
lives-in(X − ppl, Y − locs)}.

First, DIST-PIA-HELPER will consider jim(X − ppl) (with empty set
of variable bindings Γ). This predicate has exactly one unbound variable.
DIST-PIA-HELPER will thus use DIST-POWER’s apply method to ask
how probable it is that ppl5 has property jim(ppl5). Suppose the returned
probability is above some threshold, say 60%. DIST-PIA-HELPER will thus
determine if this property also weeds out distractors. For each referent pplx
in X, DIST-PIA-HELPER will use DIST-POWER’s apply method to ask
how probable it is that pplx has property jim(pplx). Suppose that it is
only sufficiently probable that ppl2 has this property. The set of eliminated
distractor X̄ will thus equal {ppl1, ppl3, ppl4}. Because this is nonempty,
jim(ppl5) will be added to subdescription d and {ppl1, ppl3, ppl4} will be
removed from X.

DIST-PIA-HELPER will next consider jill(X − ppl) (with empty set
of variable bindings Γ). This predicate has exactly one unbound variable.
DIST-PIA-HELPER will thus use DIST-POWER’s apply method to ask
how probable it is that ppl5 has property jill(ppl5). Suppose the returned
probability is below 60%. DIST-PIA-HELPER will thus move on, to con-
sider man(X − ppl) (with empty set of variable bindings Γ). This predicate
has exactly one unbound variable. DIST-PIA-HELPER will thus use DIST-
POWER’s apply method to ask how probable it is that ppl5 has property
man(ppl5). Suppose the returned probability is above 60%. DIST-PIA-
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HELPER will thus determine if this property also weeds out distractors. For
each referent pplx inX, DIST-PIA-HELPER will use DIST-POWER’s apply
method to ask how probable it is that pplx has property man(pplx). Sup-
pose that this is sufficiently probable for the lone remaining distractor, ppl2.
Because the set of eliminated distractor X̄ is empty, DIST-PIA-HELPER
will not add this property to subdescription d, but will instead move on.

DIST-PIA-HELPER will next consider woman(X − ppl) (with empty
set of variable bindings Γ). This predicate has exactly one unbound variable.
DIST-PIA-HELPER will thus use DIST-POWER’s apply method to ask
how probable it is that ppl5 has property woman(ppl5). Suppose the re-
turned probability is below 60%. DIST-PIA-HELPER will thus move on, to
consider lives-in(X − ppl, Y − locs) (with empty set of variable bindings Γ).
This predicate has two unbound variables. DIST-PIA-HELPER will thus
use cross_bindings to come up with partial bindings to those variables that
leave exactly one unbound ppl-associated variable unbound. Because only X
is associated with ppl, this consists of finding the set of candidate bindings
to Y . Suppose locs knows of three locations: {locs1, locs2, and locs3}.
DIST-PIA-HELPER will thus add the following properties to P :

(lives-in(X − ppl, Y − locs), {Y → locs1}),
(lives-in(X − ppl, Y − locs), {Y → locs2}), and
(lives-in(X − ppl, Y − locs), {Y → locs3}).

DIST-PIA-HELPER will next consider lives-in(X−ppl, Y − locs) (with
variable bindings Γ = {Y → locs1}). This predicate has exactly one un-
bound variable. DIST-PIA-HELPER will thus use DIST-POWER’s apply
method to ask how probable it is that ppl5 has property lives-in(ppl5, locs1).
Suppose the returned probability is above 60%. DIST-PIA-HELPER will
thus determine if this property also weeds out distractors. For each refer-
ent pplx in X, DIST-PIA-HELPER will use DIST-POWER’s apply method
to ask how probable it is that pplx has property lives-in(pplx, locs1). Sup-
pose that this is not sufficiently probable for the lone remaining distrac-
tor, ppl2. The set of eliminated distractors X̄ will thus equal {ppl2}. Be-
cause this is nonempty, lives-in(X − ppl, Y − locs) will be added to sub-
description d and {ppl2} will be removed from X. Because X is empty,
ppl5 → {jim(ppl5), lives-in(ppl5, locs1)} will be returned to DIST-PIA.

Now, DIST-PIA will add all entities mentioned in this set of properties
other than ppl5 (i.e., locs1) to Q. Next, DIST-PIA will pop locs1 off of
Q, and because a description for locs1 does not appear in D, will call
DIST-PIA-HELPER(loc1, {ppl, locs, objs}). DIST-PIA-HELPER will first



134 CHAPTER 5. REFERRING EXPRESSION GENERATION

initialize sub-descriptor d = ∅, and set of distractors X = {locs2, locs3},
assuming for simplicity that locs only knows of three people. Next, let’s
suppose that locs advertises the following properties, which may be all the
properties it is able to handle, or may only be the properties which it knows
currently hold for some entity it knows about:

{somerville(X − locs),
cambridge(X − locs),
massachusetts(X − locs),
in(X − locs, Y − locs)}.

First, DIST-PIA-HELPER will consider somerville(X − locs) (with
empty set of variable bindings Γ). This predicate has exactly one unbound
variable. DIST-PIA-HELPER will thus use DIST-POWER’s apply method
to ask how probable it is that locs1 has property somerville(locs1). Sup-
pose the returned probability is above some threshold, say 60%. DIST-
PIA-HELPER will thus determine if this property also weeds out distrac-
tors. For each referent locsx in X, DIST-PIA-HELPER will use DIST-
POWER’s apply method to ask how probable it is that locsx has property
somerville(locsx). Suppose that it is not sufficiently probable that any of
the distractors have this property. The set of eliminated distractor X̄ will
thus equal {locs2, locs3}. Because this is nonempty, somerville(locs1) will
be added to subdescription d and {locs2, locs3} will be removed from X.
Because X is empty, locs1 → {somerville(locs1)} will be returned to DIST-
PIA. Because Q is empty, DIST-PIA will return:
{ppl5 → {jim(ppl5), lives-in(ppl5, locs1)},
locs1 → {somerville(locs1},
with the expectation that natural language generation will use these prop-
erties to craft a referring expression along the lines of “Jim, who lives in
Somerville”.

5.5 Evaluation

REG algorithms generate sets of attributes to use to describe target referents,
in particular contexts, under particular assumptions. The goal of evaluating
an REG algorithm is to see how well the attributes chosen by it align with
those used in human-generated REs. Traditional REG evaluation metrics
(e.g. Dice (Gatt, van der Sluis, & van Deemter, 2007) and MASI (Passon-
neau, 2006)) do so by measuring the distance (e.g., set difference) between
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machine-generated attribute sets and those used in human-generated REs.
Recently, however, this methodology has come under criticism, as the seman-
tic similarity of two attribute sets does not imply similarity between those
two sets with respect to effectiveness, that is, how well each allows a target
referent to be picked out by a hearer, which is presumably the purpose of
an REG algorithm in the first place (Van Deemter & Gatt, 2009). Recently,
there has thus been a shift towards task-based evaluations (e.g., (Byron et
al., 2009; Koller et al., 2010; Viethen & Dale, 2006)), in which algorithms
are compared by how well they allow some task to be achieved.

The previously discussed uncertainty-handling REG algorithms have
mainly used task-based evaluations in which an image provided to partici-
pants is also provided directly to the REG algorithm. However, this neces-
sarily conflates the evaluation of the REG algorithm with the evaluation of
the visual classifiers used to process that image. Furthermore, it does not
allow the REG algorithm to be directly compared to either other REG algo-
rithms (unless they use identical classifiers) or to humans (who certainly do
not use identical classifiers). It is thus imperative to develop a new evalua-
tion framework that allows an REG algorithm to receive information about
how uncertain a human would be regarding the attributes of various entities
in an environment, without having to visually process the scene.

In this section we present an evaluation framework that achieves this
goal, and use it to evaluate our algorithm. It is our hope that in the future it
will be used as a general framework for evaluating REG algorithms designed
for uncertain situated contexts. Our evaluation framework is comprised of
two stages. In the first stage, participants are shown an environment, and
are asked to provide (1) an RE referring to a particular entity in the envi-
ronment, and (2) probability judgments that particular attributes hold for
particular entities in in the environment. The probability judgments can
be used to train REG algorithms to assess whether various attributes hold
without committing to a particular domain (i.e., that for which visual clas-
sifiers are needed), and in a way that should allow machine-generated and
human-generated REs to be directly comparable. In the second stage, partic-
ipants are shown the same environments shown in the first stage, along with
either “human-driven REs” (REs created using the properties used in human-
generated REs) or “machine-driven REs” (REs created using the properties
chosen by human-data-trained REG algorithms), and are asked to select the
entity in the environment that matches the RE. This framework thus allows
REG algorithms to be compared to both other algorithms as well as to hu-
mans in uncertain situated contexts. In the following sections we describe
how we employ this framework to evaluate DIST-PIA.
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5.5.1 Stage One

In the first stage of the evaluation, participants were each shown three images
of rooms (positioned in a random order), where one image contained a red
bounding box surrounding an object within that room. The three rooms
depicted a kitchen, an office, and a large empty white room; each contained
three objects which were candidates for targeting. In each scene, one such
object was an object that only appeared in that scene; a second was an
object for which an identical object appeared in a different scene; the third
was an object for which an object of the same type (but, for example, of
a different color) appeared in a different scene. This resulted in five task-
relevant objects in each scene. Each image also contained around five salient
irrelevant objects as well. And, because each participant was simultaneously
shown three scenes, the rooms themselves also serve as anchors with respect
to which participants could describe their target referents. These scenes are
shown in Figure5.1.

Figure 5.1: Scenes Shown to Participants

In the scene to the left, the possible target referents in the two evaluation
stages were the waterbottle, headphones, and mug; in the middle scene,
these were the laptop, chair, and notebook; in the right scene, these were
the briefcase, book, and marker.

Participants were told to imagine that in a subsequent experiment, an-
other participant would tour the three rooms shown in the pictures, and
then receive a description of an object to put a sticker on. Participants were
told to write the description that they should receive. Participants were told
that the later participant would only walk through the rooms and not see
the exact images, and that they would tour the rooms in a random order,
and thus could receive the description in any room. This was to prevent
participants from referring to the positioning of the three images.

After each participant provided a description, they were asked to evaluate
how well the target object matched each of twenty attributes (randomly
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selected from a total of 521), such as “is blue”, “is a marker”, and “is in the
kitchen” by re-positioning [0-100] sliders that were originally set to 50.

Participants (56 male, 33 female; mean age 35 (sd=11.65)) were recruited
through Amazon Mechanical Turk. Each participant was shown a random
target object, providing us with an average of 10 REs per target object,
as well as an average of 3.8 probability judgments for each attribute for
each object. Gold standard semantic parses (i.e., sets of logical formulae
representing properties and relations) were then crafted for each such human-
generated RE.

Next, two DIST-POWER consultants were created, one for objects, and
one for locations, which were provided with, respectively, a subset of the
objects and locations found in the three scenes. Specifically, the location
consultant was provided with information regarding the three rooms, while
the objects consultant was provided with information regarding each ob-
ject referenced by pilot participants, as well as each possible distractor (i.e.,
objects of the same type as an object referenced by a pilot participant).

When these consultants are asked for the probability that an entity has a
particular attribute, they return the mean probability judgment provided by
participants, so long as that value is above a threshold of 0.1. For example, if
in this first experiment, some subset of participants were asked how strongly
they would agree that a certain object was a chair, the mean rating was
stored as the probability that that object had that property. While we
collected data on target objects, we did not collect data on distractors: for
distractors, we gave the consultants information regarding the properties
they shared with the target objects (using the same probability values), as
well as certain knowledge of the dimensions on which they differed (e.g.,
color). In addition, the consultants were provided with certain knowledge
that each room had the property room(X), that each object had the property
object(X), and information about what room each object was located in, if
and only if that information had not been specified by participants. Finally,
each DIST-POWER consultant was provided with a preference ordering over
properties. While this ordering was hand constructed, we would eventually
like to learn similar orderings from data.

The DIST-PIA algorithm was then used to generate attribute sets for
each of the nine target referents, as shown in Table 5.1. We then combined
these with the attribute sets derived from human utterances, and removed
duplicates in order to yield an average of 9.56 (sd=3.13) unique sets of at-

1Before Stage One, we informally collected object descriptions from colleagues. The
attributes used here were the entire set of attributes used in those descriptions.
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tributes per target object. For each of these attribute sets, we then crafted
one RE, using a consistent template to generate all REs. This conversion
from REs to logical form and back allows us to control for phrasing so that all
utterances were consistently worded. Because one RE was produced for each
unique set of properties, this thus resulted in an average of 9.56 (sd=3.13)
REs per target object.

5.5.2 Stage Two

In the second stage, a new set of participants were shown the same images,
but without bounding boxes, and were told to imagine that previous partici-
pants had walked through the pictured scenes, and had written descriptions
of object that they were to click on. For each of the nine target referents,
participants were shown a randomly selected human- or machine-driven RE
for that referent, and asked to click on the described object. After each im-
age, participants were notified as to whether they had clicked on the correct
object.

Participants were recruited through Amazon Mechanical Turk (62 male,
46 female; mean age 35.07 (sd=10.14)) 2. Each of the 85 unique REs was
thus shown to an average of 11.44 participants. Recall, however, that these
utterances were crafted based on either property sets chosen by DIST-PIA or
based on property sets extracted from the utterances collected from partici-
pants in Stage One. Because some of these property sets were identical, each
of the unique REs in this section really corresponds to a cluster of semanti-
cally identical human- or machine-driven property sets. For each cluster, we
computed the accuracy of that cluster’s chosen properties in allowing the true
target referent to be picked out by second-stage participants. This allowed
us, for each target referent, to compute an accuracy ranking over clusters,
in turn allowing us to calculate an accuracy percentile for DIST-PIA.

5.5.3 Results and Discussion

Overall, DIST-PIA allowed successful identification in 91.37% of cases; on
average, it achieved the 45.67th accuracy percentile (sd=23.94) among the

2While filters were set up intended to prevent participants from Stage One to partici-
pate in Stage Two, these did not work as intended, and this set of 108 participants included
five from Stage One, a fact that was only caught months later. While unfortunate, we do
not believe this set of repeated participants was large enough to prompt serious concern,
especially given the fact that utterances were standardized with respect to noun phrasing
between Stages One and Two, and given the low likelihood of any given participant in
experiment Two being shown their own utterance phrasing from Stage One.
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Table 5.1: Properties Chosen by DIST-PIA

ID Properties Translation Acc. Rank
1 notebook(X) The notebook 80% 11th of 11
2 Dell(X),laptop(X),blue(Y),

chair(Y),in-front-of(Y,X)
The Dell laptop that the
blue chair is in front of.

85.7% 5th of 10 (Tie)

3 blue(X),chair(X) The blue chair. 97.8% 2nd of 3
4 laptop-bag(X) The laptop-bag. 100% 1st of 5
5 textbook(X),laptop-

bag(Y), behind(Y,X)
The textbook that the
laptop-bag is behind.

63.6% 5th of 10

6 red(X),whiteboard-
marker(X)

The red whiteboard-
marker.

86.7% 6th of 10

7 headphones(X) The headphones. 100% 1st of 13 (Tie)
8 shaker-bottle(X),

headphones(Y),next-
to(X,Y)

The shaker-bottle next
to the headphones.

85.7% 3rd of 13 (Tie)

9 coffee-mug(X) The coffee-mug. 100% 1st of 10 (Tie)
Properties chosen by DIST-PIA to refer to each target object, with accom-
panying NL translation. “Accuracy” denotes the percent of participants who
clicked on the correct object when provided with the machine-driven RE.
“Rank” compares this percentage with human-driven REs. For example,
when “The notebook” was used, 80% of participants clicked on the correct
object, but all other REs for that object yielded higher accuracy rate. In
contrast, “The textbook that the laptop-bag is behind” had only a 63.6% ac-
curacy rate, but this was a higher accuracy rate than was achieved by all but
four of the unique human-driven REs for that object. “Tie” indicates that
a machine-driven REs had the same accuracy rate as at least one human-
driven RE. For example, in row 9, “the coffee-mug” had a 100% success rate,
but so did the human-driven, “the white mug near the headphones on the
table on which are the green marker and the blue-topped cup.”
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competing RE for a given object. That is, on average, the REs crafted
based on the properties chosen by DIST-PIA were as or more successful
than those crafted based on the properties chosen by 45.67% of human par-
ticipants. This demonstrates that DIST-PIA not only allowed for successful
disambiguation of the target object, but the attributes chosen by DIST-PIA
allowed nearly the same degree of accuracy and efficiency as the attributes
used in the average human-driven RE. Note that the 50th percentile indi-
cates super-human performance – any algorithm achieving in at least the
50th percentile when adjudicated relative to humans alone would be per-
forming, on average, better than humans at referring expression generation.
Thus, while not super-human in nature, we would view anything above the
40th percentile as generally successful.

DIST-PIA’s performance would further improve if given more sophisti-
cated consultants. In order to fairly evaluate DIST-PIA, we provided it with
consultants that only made judgments based on the attributes used in our
pilot study. Because pilot participants referred to the blue chair as being in
front of the laptop, but did not refer to the laptop as being behind the blue
chair, we did not collect data on the extent to which people believed the
laptop to be behind the blue chair. Because the consultants were not given
any extra knowledge (e.g., as to the symmetry of in-front-of and behind),
the algorithm produced properties in some cases that were less natural than
they could have been, as seen in Table 5.1.

Furthermore, DIST-PIA had to handle occasionally nonsensical probabil-
ity judgments, likely produced by participants who did not feel compelled to
take the task seriously (a problem common to crowdsourcing experiments).
For example, participants asked about the black laptop bag gave an average
confidence rating of 35 out of 100 that that object was actually a dry-erase
marker; when asked about the green book gave an average confidence rating
of 75/100 that it was a chair. Accepting such errors is necessary, however,
to prevent the performance of the algorithm from being conflated with the
performance of specific classifiers. This raises an important point: because
of the generality of DIST-PIA, it does not compete with the classifiers used
by other algorithms (e.g. Zarrieß & Schlangen, 2016; D. K. Roy, 2002; Meo,
McMahan, & Stone, 2014). In the future, it would be interesting to integrate
such classifiers into the DIST-POWER framework as part of special consul-
tants. This would also allow for direct comparison of disparate classifiers
when used with the DIST-PIA algorithm.

We must also comment on the visual nature of our evaluation, and how
this relates to our previous claim that DIST-PIA is domain independent and
not restricted to visual information. To be clear, there is no reason to restrict
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the consultants to those that handle visual information, a fact we tried to
account for by including a spatial classifier which handled the properties of
the larger rooms containing the objects of interest to the experiment. It is
certainly possible to further exploit this domain-independent nature in ad-
ditional evaluations. We needed participants to be able to unambiguously
select referents in an easily understandable, online, static environment. We
could have provided participants with information in other modalities: a
video recording of a fly-through of the environment in order to show spa-
tial information, audio recordings of conversations to provide dialogue-based
information, and so forth. However, we did not want participants to get
overwhelmed, and wanted all information that they would need to make
their decisions to be instantly and easily accessible and assessable. While
location-based data was presented visually to participants, a robot could
easily acquire location-based information using laser readings rather than
camera data; and abstract topological data and conversational data can of
course be represented in a much more readily accessible and assessable means
to a robot than it could have to human participants in our experiments.

Finally, DIST-PIA did not “nicely overspecify” in some conditions where
humans did. For example, DIST-PIA’s choice of simply notebook(X) for
the first target object achieved 80% success rate, but had the lowest ranking
for that object, in part because most humans used descriptions involving
red(X), which allows the eye to be drawn away from distractors like the
green book. The traditional IA captures this effect by placing colors at a high
priority. However, unlike the traditional IA, we chose to have the object’s
“type” (e.g., “bottle”) and variants thereof (e.g., “waterbottle”) be handled
as properties just like any other, so that we would not need to specify an
additional mandatory DIST-POWER capability (i.e., the ability to provide
the “type” of a candidate object). This required us to place these type-
like properties at the top of the preference orderings, in order to make sure
that a type-like property was always used. In this case, when presented the
trade-off, we chose generality of our architectural mechanisms over possible
performance gain.

5.6 General Discussion

In this chapter, we discussed three main research contributions made through
the design and evaluation of the DIST-PIA algorithm. First, we have pre-
sented an REG algorithm which, unlike previous algorithms, accounts for the
generator’s uncertainty and is domain independent. This algorithm operates
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within a general reference framework which allows architectural components
providing different types of information to be easily integrated together. We
believe that it is crucial for researchers to separate the problems of refer-
ring expression generation and reference resolution from the task of property
assessment, both for algorithm development and for evaluation of those al-
gorithms. Our presented approach makes great strides towards this goal; in
the future, it would be interesting to take visual classifiers previously pre-
sented as tightly-integrated facets of previous referring expression generation
and reference resolution frameworks, and integrate them into more general
frameworks such as that which was used in this chapter.

Second, we have presented a novel evaluation framework which allows
REG algorithms designed for uncertain situated contexts to be evaluated
relative to both other algorithms and to humans, without conflating the
performance of the algorithm with the performance of the classifiers used
by the algorithm. This evaluation showed that the performance of DIST-
PIA was comparable to that of humans. And finally, we have taken the
realities of modern integrated agent architectures into account by using the
DIST-POWER framework, which allows information to be distributed across
multiple heterogeneous knowledge bases. Yet, DIST-PIA still represents only
a first step for algorithms within such architectures. In the future, we would
like to improve DIST-PIA in a variety of ways.

First, DIST-PIA should be modified to consider not only whether the
probability of a particular referent is above a certain threshold but also its
probability relative to those of other referents, and the choice of threshold
should be learned from data. Second, we would like to incorporate audi-
ence design considerations, similar to Horacek (2005), as well as perspective-
taking considerations. Third, we would like to use Givenness-Hierarchy The-
oretic mechanisms similar to those seen in Chapter 4, in conjunction with a
multi-modal reference model to generate deictic and anaphoric REs. Finally,
we would like to modify our approach to use a Dempster-Shafer Theoretic
uncertainty representation, in order to better handle ignorance – an approach
we have used in the context of pragmatic understanding and generation, as
we will discuss in the next two chapters.



Chapter 6

Pragmatic Understanding

In Chapters 3-5, I presented algorithms that enable referential capabilities
(i.e., referring expression understanding and generation) in robots. In the
following two chapters, I move inwards and upwards, to discuss the tasks that
immediately succeed referring expression understanding and immediately
precede referring expression generation; tasks that take place at a higher
level of abstraction. Specifically, I will talk about the pragmatic reasoning
tasks of pragmatic inference and pragmatic generation.

When seeking to understand an interlocutor’s utterance, it is not enough
to know what entities are being communicated about; it is just as important
to discern the general intentions which one’s interlocutor is trying to com-
municate. Unfortunately, this problem is made challenging by the fact that
humans, at least, rarely communicate their intentions directly, and instead
tend to use linguistic forms whose intended meanings must be inferred. For
example, when a human asks “Could you get me a coffee?”, her interlocutor
may infer from goal-based, task-based, or other context-based information
that she is not really asking a question, but is instead making a request.
Such non-literal utterances are known as indirect speech acts (ISAs) (Searle,
1975), and are used in order to achieve a variety of socio-cultural goals (e.g.,
politeness) (Lakoff, 1973). While the use of ISAs differs between individuals
and between cultures (Tannen, 1981), their use is generally accepted as a
common feature of natural human dialogue. In this chapter, I will discuss
the importance of understanding ISAs in human-robot dialogue, and present
a set of mechanisms for doing so. Throughout this chapter, I will use the
following terminology:

143
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Indirect speech act: An utterance whose literal meaning does not
match its intended meaning.

Direct speech act: An utterance whose literal and intended mean-
ings match.

Illocutionary point: The category of an utterance, such as state-
ment, question, suggestion or command. An
utterance has both a literal illocutionary point
(which is directly reflected in the utterance’s
form) and an intended illocutionary point. For
direct speech acts, these match. For indirect
speech acts, they may or may not.

Directive: An utterance intended to causing the addressee
to perform some action.

Direct request: A direct directive whose literal illocutionary
point is that of a question.

Direct command: A direct directive whose literal illocutionary
point is that of a command.

Indirect request: Any indirect directive. Thus, an indirect re-
quest is an indirect speech act with the literal
illocutionary point of a statement, question,
or suggestion, and the intended illocutionary
point of a question or command.

The rest of this chapter will proceed as follows. In Section 6.1, I present
a treatment of the philosophical foundations of our work (i.e., the theo-
ries of meaning in human-human dialogue postulated by Grice and Searle).
In Section 6.2, I present experimental work justifying the study of indirect
speech act understanding in human-robot dialogue, and design recommen-
dations suggested by our experimental findings. In Section 6.3, I discuss
previous work seeking to enable indirect speech act understanding capabil-
ities in robotics. Finally, in Section 6.4, I present a novel computational
approach to indirect speech act understanding.
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6.1 Philosophical Motivations

In this section I will present the philosophical motivations behind our work.
I will start by discussing Grice’s theory of natural and non-natural meaning.
I will then discuss Searle’s response to this theory, as found in his theory
of speech acts. Finally, I will discuss how this theory is extended through
Searle’s theory of indirect speech acts.

6.1.1 Grice’s Theory of Natural and Non-Natural Meaning

In his 1957 article entitled Meaning (Grice, 1957), Paul Grice provides an
account (which is later expanded upon in Grice (1968, 1969)) of two notions
of meaning: natural and non-natural meaning. The natural meaning M of
some sign Θ is the set of facts, statements, or belief revisions entailed from
such a sign: a binary relation meansN (Θ,M). In contrast, the non-natural
meaningM of some sign U (e.g., an utterance) is the set of facts, statements,
or belief revisions which the issuer S of that sign intended to be produced
in the mind of hearer H by receiving (e.g., hearing or viewing) that sign by
recognizing this intention on the part of the speaker : a quaternary relation
meansNN (S,H,U,M).

That is, Grice suggests that to say that Speaker S meantM by utterance
or sign U (directed towards some hearer H) is to say that S intended U to
produceM as an effect in the mind ofH, and that S intends U to produceM
by virtue of H recognizing this intention. Grice argues that the non-natural
or speaker meaning of a sign is determined from the natural or semantic
meaning through a set of conversational maxims (described here as laid out
by Davis (2011):

Maxim of Quality Make your contribution true; so do not convey what
you believe false or unjustified.

Maxim of Quantity Be as informative as required.

Maxim of Relation Be relevant.

Maxim of Manner Be perspicuous; so avoid obscurity and ambiguity, and
strive for brevity and order.

6.1.2 Searle’s Theory of Speech Acts

In his 1969 book Speech Acts (Searle, 1969), John Searle presents two main
critiques of Grice’s account of non-natural meaning. First, Searle argues that
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under Grice’s account, there is no clear link between sentence and meaning,
and that a better account of meaning would show how rules can be used to
connect what a sentence means with what a speaker means by that sentence.
Specifically, Searle argues that Grice’s framework must be reformulated so
that the meaning of a sentence is not randomly related to its meaning, but
is rather derived from the sentence using a set of rules arising from cul-
tural convention. In this new account, a speaker performing a speech act
intends his interlocutor to recognize his intention to produce some effect by
that speech act, using a set of shared conventionalized rules which map an
utterance form, under a particular context, to a produced effect.

Here, the speech acts performed and recognized are assumed to be illo-
cutionary acts. This is a term originating in Austin’s three-tier speech act
framework (Austin, 1975):

1. A locutionary act is the physical performance of an utterance with
a particular propositional content.

2. An illocutionary act is a speech act with a particular illocutionary
point. Asserting, suggesting, demanding, promising, and vowing are
all illocutionary acts.

3. A perlocutionary act is a speech act which actually produces an
effect. Persuading, scaring, and inspiring are all perlocutionary acts.

This leads to Searle’s second, primary (see also Searle, 2007) criticism of
Grice’s account: Searle argues that because Grice defines meaning in terms
of intended effects, his account confuses illocutionary with perlocutionary
acts. Searle uses an example of the following form as evidence of this point:

Suppose you are an American soldier captured by Italian forces, who are
aligned with the Welsh. You do not believe the Italians speak any Welsh, and
wish to convince them that you are a Welsh soldier. You think back to your
days as a child singing in Cymanfaoedd Canu and recite the only phrase you
can remember, the first line of Calon Lân: “Nid wy’n gofyn bywyd moethus,
Aur y byd na’i berlau mân”

Under Grice’s account, the meaning of this utterance is “I am a Welsh
soldier”. Searle, on the other hand, would say that the meaning of this
sentence is its illocutionary effect, i.e., “I do not ask for a luxurious life,
the world’s gold or its fine pearls” (or, rather, the propositional content
associated with that sentence), whereas convincing the interlocutor of Welsh
heritage is the intended perlocutionary effect of the utterance. Searle argues
that under Grice, one intends to perform a perlocutionary act when they
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mean something by an utterance, whereby, he would say, one really intends
to perform an illocutionary act. Searle presents three reasons why this is the
case:

First, many utterances have no perlocutionary effect. For example, when
you say “Hello”, you are not trying to evoke some perlocutionary effect, e.g.,
persuading your interlocutor that they are being greeted; you just want them
to know that they are being greeted. Second, you can say something without
actually caring if you convince your interlocutor, instead only caring whether
your interlocutor has heard you, e.g., if you feel that you have to announce
something out of duty. Finally, when you say something to someone, you
do not generally believe that they will accept it solely because they will
understand that you want them to accept it.

Searle’s solution is to provide an account of meaning which suggests that
to say that S meant M by utterance U (directed towards hearer H) is to
say that S intended to produce the knowledge that the culturally accepted
meaning of U obtains (an illocutionary effect IE in the mind ofH) becauseH
will recognize this intention (because H is aware of the cultural conventions
C that will result in this inference).

Searle posits five main categories of illocutionary acts (i.e., assertives,
directives, commissives, expressives, declarations), each of which contains
several subcategories of acts. Under Searle’s framework, utterance under-
standing is effected using constitutive rules which specify the conditions un-
der which an utterance can be used to “count as” an attempt to perform one
of these types of illocutionary acts.

Under this framework, Speaker S uttering a sentence and meaning M
thus additionally involves S intending H to use conventionalized rules to
recognize that S wants H to know that S means M. A rule set for a particular
illocutionary act actX follows the following overall form:

1. Propositional content condition: Utterance U is only to be uttered in
the context that it predicates propositional content propX .

2. Preparatory conditions: Utterance U is only to be uttered if the
preparatory conditions prepX hold.

3. Sincerity condition: Utterance U is only to be uttered if the speaker
intends for the effects of actX to happen.

4. Essential Effect: When conditions 1-3 apply, Utterance U counts as an
attempt to perform actX , and for the effects of actX to happen.

For example, consider the case of the illocutionary act of requesting.
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1. Propositional content condition: Utterance U is only to be uttered to
hearer H in the context that it predicates H doing action A in the
future.

2. Preparatory conditions: Utterance U is only to be uttered by Speaker
S to Hearer H if H is able to do A, and S believes this.

3. Sincerity condition: Utterance U is only to be uttered to Hearer H if
S wants H to do A.

4. Essential Effect: When conditions 1-3 apply. Utterance U counts as S
attempting to get H to do A in the future.

Thus, if Alice says “Get me a beer” to Bob and intends this to be a
request, then she expects Bob to recognize, by virtue of these rules, that she
is requesting Bob to get her a beer, i.e., because Bob should have no problem
believing that:

1. Alice’s utterance involves Bob getting her a beer (and is not being
issued in a quotational or narrative context),

2. Alice believes that Bob is able to get her a beer,

3. Alice wants Bob to get her a beer

All three of these conditions are truly important to the correct interpre-
tation of an utterance. If Alice issues some utterance, and Alice believes
that Bob is able to get her a beer, there is no reason for her to believe that
Bob will recognize that she is requesting Bob to get her a beer if (a) the
utterance did not involve Bob getting her a beer (e.g., if the words Alice
used were “Have you seen Westworld?”) or if (b) Bob previously had reason
to believe that Alice explicitly did not want to be given a beer (e.g., if pre-
vious conversation had established that all the beer in the house had been
brewed using Isinglass or Gelatin, and that as a strict vegan, Alice viewed it
as morally wrong for the beer to be consumed).

6.1.3 Searle’s Theory of Indirect Speech Acts

Searle’s Speech Act Theory is not (on its own) sufficient to account for ut-
terances such as “Could you pass the Bara brith?” whose literal meanings do
not match their intended meanings, i.e., whereby one illocutionary act is per-
formed by way of performing some other illocutionary act. In order to handle
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such utterances, Searle introduces a theory of Indirect Speech Acts (Searle,
1975).

As an example, Searle presents an example of the following form:

(8) a. Alice: Let’s go to the Eisteddfod!
b. Bob: I have to study for an exam.

In Example 8b, Searle would say that Bob is performing the primary,
nonliteral illocutionary act of rejection by way of performing the secondary,
literal illocutionary act of making a statement. Searle would posit, then that
Alice should (implicitly) go through the following reasoning steps:

1. Because I made a proposal, and because I believe Bob is being cooper-
ative (i.e., relevant1), the appropriate responses would be: acceptance,
rejection, counterproposal, further discussion, etc.

2. Because his response was not one of these, I must assume that his
statement is only his secondary illocutionary point.

3. I can infer based on his statement that one of the preparatory condi-
tions of an acceptance to my proposal (i.e., his being free to accept it)
is not met; thus, it is most likely that the statement is intended as a
rejection.

In the example above, the agent must infer that one of the preparatory
conditions of the most likely response is not met. However, the majority of
indirect speech acts are constructed by calling attention to (by asking about
or stating) the preparatory, sincerity, or propositional conditions of one’s in-
tended primary illocutionary act, or by calling attention to (by asking about
or stating) some fact from which it might be inferred that the preparatory,
sincerity, or propositional conditions of such an act might be met. For ex-
ample, “Could you wash the car?” calls attention to the fact that the listener
satisfies a salient preparatory condition of directives: that the hearer is able
to carry out the directive.

It is important to note, however, that one cannot perform an indirect
speech act by asking about their own mental states (e.g., “Do I want you to
wash the car?”), as this attempts to call attention to information the hearer
cannot have access to, or by making statements about their interlocutors’

1Here, Searle makes implicit reference to Grice’s Conversational Maxim of Relation, as
presented in Grice’s “Logic and Conversation”(Grice, 1970), which appeared in the same
volume as Searle’s “Indirect Speech Acts”. This Maxim is also listed above, in Section 6.1.1.
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mental states (e.g., “You want to wash the car”), which presumes the speaker
to make claims about information they cannot have access to.

The use of indirect speech acts is common (at least in English) due to so-
cial concerns such as politeness; since the above method (of calling attention
to conditional requirements while respecting theory-of-mind restrictions) is
the most common means of constructing indirect speech acts, the most com-
mon constructions of this form have become conventionalized, such that the
inference process described above (known as the inferential approach to in-
direct speech act understanding) is no longer needed. For example, if an
interlocutor says to you “Could you get me a coffee?” it is not necessary
in most circumstances to reason about what they are attempting to call at-
tention to and why: it is automatically understood that their use of this
utterance form implies that they are trying to politely direct you to acquire
a coffee for them. The process of following this direct association rather than
deriving it through inference is known as the idiomatic approach to indirect
speech act understanding.

Thus far, I have provided an appropriate philosophical account of prag-
matic reasoning (i.e., indirect speech act usage) in human-human communi-
cation. Before applying this account to human-robot communication, how-
ever, we must experimentally verify that this phenomena is not restricted
to human-human communication, and that the social considerations that
lead to indirect speech act usage in humans will carry over to human-robot
interaction and lead to indirect speech act usage therein as well.

6.2 Experimental Motivations

Due to the social benefits of politeness, there has been a significant body
of human-robot interaction research investigating strategies for using polite-
ness strategies such as indirect speech, and the effects of those strategies on
human perceptions of robots (e.g. Briggs & Scheutz, 2013; Castro-González
et al., 2016; Dautenhahn et al., 2005; Kennedy, Baxter, & Belpaeme, 2014;
Nomura & Saeki, 2009; Salem, Ziadee, & Sakr, 2013, 2014; Strait, Canning,
& Scheutz, 2014; Torrey, Fussell, & Kiesler, 2013; Torrey, Powers, Marge,
Fussell, & Kiesler, 2006).

Furthermore, a variety of work over the past few decades (e.g. Briggs &
Scheutz, 2013; Deits, Tellex, Kollar, & Roy, 2013; Hinkelman & Allen, 1989;
Wilske & Kruijff, 2006) (See also Section 6.3) has investigated mechanisms
by which robots and other intelligent agents might automatically understand
(i.e., infer the intentions behind) indirect speech acts.
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But while the ability to understand indirect speech acts may allow an
intelligent agent to understand a wider range of human language, it is not
clear to what extent humans will actually use indirect speech acts when com-
municating with such an agent. One could argue that humans are not held
to the same social contracts and pressures when interacting with intelligent
agents such as robots as they are when interacting with other humans. It
is thus important to investigate the extent to which indirect language will
actually be used, as well as the extent to which an intelligent agent could
get away without the ability to understand indirect speech acts.

Specifically, in this section we seek to examine the following hypotheses:

H1 Indirect speech acts are central to human-robot dialogue patterns re-
gardless of task context.

H2 Indirect speech acts are central to human-robot dialogue patterns re-
gardless of whether or not they are actually understood by robot in-
terlocutors.

H3 While indirect speech acts are central to human-robot dialogue patterns
regardless of task context, they are more frequently used in highly
conventionalized scenarios.

H4 Because ISAs are central to human-robot dialogue patterns, a human
interacting with a robot unable to understand ISAs will be less efficient
in accomplishing a desired task than will a human interacting with a
robot able to understand ISAs.

H5 Because ISAs are central to human-robot dialogue patterns, a robot
unable to understand ISAs will be perceived less favorably by its human
interlocutor than a robot that is able to understand ISAs.

6.2.1 Methodology

In order to investigate these five hypotheses, we conducted a Wizard-of-Oz
experiment in which humans had to interact with a robot in one of two con-
texts. The first was a restaurant scenario: a context in which humans readily
use indirect speech acts (e.g., “Could I get a coke?”) to give orders to em-
ployees obligated to fulfill their requests. The second was a tower-toppling
scenario in which participants needed to command a robot to knock down
colored towers of cans (see Briggs & Scheutz, 2014a): a context which par-
ticipants would be unfamiliar with, and for which there should be no conven-
tionalized social norms requiring the use of indirect speech acts (although
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they could still be used felicitously, e.g., “Could you knock down the red
tower”). In each of these contexts, participants interacted with a robot that
either understood, or was clearly unable to understand, indirect speech acts.

Procedure

Participants were randomly assigned to one of four experimental conditions,
in which the task context was either that of a restaurant or a demolition,
and in which the robot either understood or misunderstood indirect speech
acts. In both conditions, participants were seated in the corner of a small
experiment room. In the restaurant scenario, the room was empty; in the
demolition scenario, the room contained three colored towers of aluminum
cans.

Figure 6.1: Augmented iRobot Create used in our Experiment

Participants were told that the experimenters were in the process of de-
veloping natural language interaction capabilities for robots, and that their
task would be to interact with either a robot waiter or a tower-toppling robot
in a simulated restaurant or demolition scenario: after being introduced to
the robot, they were to provide the robot with their first order (in the restau-
rant scenario, they were provided with a list of three “courses” which they
could request to be delivered in any order; in the demolition scenario, they
were provided with a list of three towers which they could request to be
knocked down in any order); once the robot had completed the first order,
they were to provide the robot with their second order; once the robot had
completed the second order, they were to provide the robot with their third
order.

The robot then entered the room and introduced itself. The robot used
in this experiment was an iRobot Create augmented with a Raspberry Pi
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computer, Hokuyo Laser Range Finder, speakers, and webcam, as shown in
Figure 6.1. The robot was teleoperated through a Wizard of Oz interface by a
trained confederate in a nearby room, using the ADE implementation of the
DIARC architecture (see Chapter 2). The robot’s voice was an ungendered
voice produced through the MaryTTS text-to-speech system (Schröder &
Trouvain, 2003).

The human and robot then engaged in each of the three sub-interactions,
which proceeded as follows: if the participant used a direct speech act, such
as “Knock down the red tower” or “Bring me a salad”, or used a bare noun
phrase, such as “red tower” or “salad”, the robot carried out the command. In
the restaurant scenario, this consisted of driving into a nearby room where
a confederate placed a card corresponding with the requested dish onto the
top of the robot, after which the robot drove back into the experiment room,
delivered the card to the participant, and requested their next order. In the
demolition scenario, this consisted of driving into the requested tower of cans
until it had fallen over.

If the participant used an indirect speech act, such as “Could you knock
down the red tower” or “I need a salad”, and the participant was in the
UNDERSTANDING condition, the robot carried out their request as if they
had used an equivalent direct form. If the participant used an indirect speech
act and the participant was in the MISUNDERSTANDING condition, the
robot took their utterance at face value, issuing a response according to the
Table 6.1. This table shows the forms of indirect speech acts we would expect
to observe in our experiments, based on combinations of direct illocutionary
point (i.e., statements, questions and suggestive statements), condition of
focus (i.e., sincerity condition or preparatory condition), and direction of
focus (i.e., agent or patient). For example, “Could you bring me a salad?”
has the illocutionary point of a question, focuses on a preparatory condition
of questions (i.e., the condition that the addressee is able to perform the
desired action), and focuses on the agent (i.e., the addressee bringing the
salad, as opposed to themselves receiving the salad) – facets derived from
Searle’s Speech Act Theory (Searle, 1969, 1975, 1976) (see also Section 6.1.2).

Participation

Participants were recruited online and through fliers posted near a university
campus. Before beginning the experiment, participants were given a short
demographic survey regarding their prior experience with robots and their
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Table 6.1: Responses Given for ISAs Categories

Point Cond Dir Example Response
Q P A “Could you X?” “Yes, I am able to do that. Please

tell me your order.”
S S A “I need you to X.” “Thank you for sharing that inter-

esting fact. Please tell me your or-
der.”

S P A “You can X.” “Thank you, but I am already aware
of my capabilities. Please tell me
your order.”

S[Su] P A “You should X.” “Thank you for your suggestion.
Please tell me your order.”

Q P P “Could I get X?” “Yes, that is permissible. Please tell
me your order.”

S S P “I’d like X.” “Thank you for sharing that inter-
esting fact. Please tell me your or-
der.”

S P P “I’ll have X.” “Thank you for sharing that inter-
esting prediction. Please tell me
your order.”

S[Su] P P “X should occur.” “Thank you for your suggestion.
Please tell me your order.”

Direct (Direct Illocutionary) Point: Q=Question, S=Statement,
S[Su]=Suggestive Statements; Cond(ition): P=Preparatory, S=Sincerity;
Dir(ection): A=Agent, P=Patient.

use of technology: Of the participants, 21 were male, and 28 were female.
Participants varied in age between 19 and 69 (m = 34.1, sd = 16.2). 12 partic-
ipants were initially assigned to each experimental condition; one additional
participant was later recruited for the RESTAURANT/UNDERSTANDING
condition after a previous participant forgot to answer a large number of sur-
vey questions. While the majority of participants were beyond college age,
we asked them for information regarding their current or previous college
major, if any. 6 reported studying mathematics, computer science or en-
gineering; 15 reported studying a natural science or medicine; 10 reported
studying a social science; 7 reported studying a branch of the arts or human-
ities; 5 reported studying some other field; 6 reported no previous or current
major. A minority (12/49 = 24%) reported playing video games. The vast
majority (45/49= 92%) reported having seen a robot in a movie, but fewer
than half (22/49 = 45%) had seen a robot in real life, and a minority re-
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ported having interacted with a robot before (11/49 = 22%). Participants
were paid $10 each for their participation and provided informed written
consent before beginning the experiment.

Measures

The dependent variables used in this study involved both behavioral and
subjective measurements.

Behavioral In order to assess HypothesesH1-H4, utterances made by par-
ticipants during the experiment were recorded and transcribed after-
ward. Annotators then classified all task-relevant utterances as either
direct or indirect.

Subjective In order to assess Hypothesis H5, participants took a 60-item
post-survey immediately following the experiment, assessing their per-
ceptions of the robot, as well as their beliefs about the types of utter-
ances that would have been appropriate and effective. The majority
of this study (regarding perception of the robot) was drawn from the
survey first used in (P. Schermerhorn, Scheutz, & Crowell, 2008).

Expectations

If our five hypotheses are correct, we would expect the following results:

E1 If ISAs are central to human-robot dialogue patterns regardless of task
context, we would expect a significant number of ISAs to be used
in both task contexts (RESTAURANT and DEMOLITION). “Signif-
icant” is an obviously subjective term – but for the purposes of this
experiment, we will consider a frequency of ~12% (the current speech
recognition state of the art on the Switchboard corpus) to be a reason-
able threshold.

E2 If indirect speech acts are central to human-robot dialogue patterns re-
gardless of whether or not they are actually understood by robot in-
terlocutors, we would expect a significant number of ISAs to be used
in both dialogue conditions (UNDERSTANDING and MISUNDER-
STANDING)

E3 If indirect speech acts aremore frequently used in highly conventionalized
scenarios, we would expect a statistically significantly greater number
of ISAs to be used in the RESTAURANT task context than in the
DEMOLITION task context.
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E4 If a human interacting with a robot unable to understand ISAs is less
efficient in accomplishing a desired task than a human interacting with
a robot able to understand ISAs, we would expect that a statistically
significantly greater number of task-relevant utterances will be required
to accomplish the task in the MISUNDERSTANDING scenario than
in the UNDERSTANDING scenario.

E5 If a robot unable to understand ISAs is perceived less favorably by its
human interlocutor than a robot that is able to understand ISAs, we
would expect to find a number of dimensions in our post-survey in
which robots’ assessments are statistically significantly lower in valence
for participants in the MISUNDERSTANDING scenario than in the
UNDERSTANDING scenario.

6.2.2 Results

Both behavioral and subjective measures were analyzed using 2x2 analyses of
variance (ANOVA) with task context (RESTAURANT vs DEMOLITION)
and dialogue condition (UNDERSTANDING vs MISUNDERSTANDING)
as independent variables. In order to use this methodology to analyze Likert
items, we assumed that responses to these items would be normally dis-
tributed (Gombolay & Shah, 2016).

Behavioral Results

We hypothesized (H1) that ISAs would be central to human-robot dialogue
patterns across task scenarios, but more frequently used (H3) in highly con-
ventionalized scenarios. We thus expected (E1) ISAs to comprise at least
12.5% of task relevant utterances in both the RESTAURANT and DEMOLI-
TION task contexts, but (E3) for this composition to be significantly higher
in the RESTAURANT task context than in the DEMOLITION task context.

In fact, ISAs comprised the majority (52%) of the 295 observed task-
relevant utterances, the majority of participants (34/49 = 69%) used at
least one ISA, and the average proportion of task-relevant utterances coded
as ISAs was 46%. This strongly supports our first hypothesis (H1). Fur-
thermore, this average was twice as high in the RESTAURANT condition
(M=63%, SD=39%) as it was in the DEMOLITION condition (M=28%,
SD=34%), supporting (F(1,47)=11.05,p<.01) our third hypothesis (H3).

In addition, we hypothesized (H2) that indirect speech acts would be
central to human-robot dialogue patterns regardless of whether or not they
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were actually understood by robot interlocutors, but that a human inter-
acting with a robot unable to understand ISAs would be less efficient in
accomplishing a desired task than a human interacting with a robot able
to understand ISAS (H4). We thus expected (E2) ISAs to comprise at
least 12.5% of task relevant utterances in both the UNDERSTANDING and
MISUNDERSTANDING dialogue conditions, but (E4) that a statistically
significantly larger number of task relevant utterances would be used in the
MISUNDERSTANDING dialogue condition than in the UNDERSTAND-
ING dialogue condition.

In fact, ISAs were used about twice as frequently as this threshold in
both experimental conditions (M=24%,SD=23% in the UNDERSTAND-
ING condition, M=24%,SD=20% in the MISUNDERSTANDING condi-
tion), supporting our second hypothesis (H2). Furthermore, participants in
the MISUNDERSTANDING dialogue condition did indeed use significantly
(F(1,47)=7.99 (p<.01)) more task-relevant utterances (M=8.08,SD=7.42) to
complete the task than did participants in the UNDERSTANDING dialogue
condition (M=4.04,SD=1.21), supporting our fourth hypothesis (H4).

Subjective Results

We hypothesized (H5) that a robot unable to understand ISAs would be
perceived less favorably by its human interlocutor than a robot that is able to
understand ISAs. We thus expected (E5) to find a number of dimensions in
our post-survey in which robots’ assessments were statistically significantly
lower in valence for participants in the MISUNDERSTANDING scenario
than in the UNDERSTANDING scenario.

Table 6.2 lists the significant effects of dialogue condition on perception of
the robot. The data suggest that participants found the robot to be harder
to interact with in the MISUNDERSTANDING dialogue condition (Rows
1-3), as well as less responsive (Row 4) and cooperative (Row 5). The data
also suggest that participants found the robot in the UNDERSTANDING
condition to be less annoying (Row 6), to better understand their commands
(Row 7), and to have better matched their expectations (Row 8). Taken
together, these results support our fifth hypothesis (H5).

A number of context-dependent effects were also found, as shown in Ta-
ble 6.3: Participants in the RESTAURANT context rated the task to be
more difficult (Row 1), and the robot to be less responsive (Row 2), less
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Table 6.2: Subjective Results: Effects of Dialogue Condition

Question F p M: m (sd) U: m (sd)
1 The robot was easy to interact with

(from 1 to 10, ’strongly disagree’ to
’strongly agree’)

16.02 <.001 7.67 (2.35) 9.60 (0.76)

2 How would you rate the ease of in-
teracting with the robot? (from 1 to
10, “easy” to “hard”)

17.00 <.001 3.33 (2.60) 1.24 (0.52)

3 How would you rate the difficulty of
the task? (from 1 to 10, “easy” to
“hard”)

4.19 .047 3.08 (2.32) 1.96 (1.85)

4 The robot was responsive to my
commands (from 1 to 10, ’strongly
disagree’ to ’strongly agree’)

6.83 .01 8.83 (2.08) 9.56 (1.41)

5 The robot was cooperative (from 1
to 10, ’strongly disagree’ to ’strongly
agree’)

9.65 <.001 8.67 (1.90) 9.80 (0.50)

6 The robot was annoying (from 1 to
10, ’strongly disagree’ to ’strongly
agree’)

5.95 .02 2.75 (2.29) 1.52 (1.12)

7 Did you feel that the robot under-
stood what you were saying? (from
1 to 10, “no” to “yes”)

7.15 .01 7.38 (2.72) 9.08 (1.89)

8 Did the robot meet your expecta-
tions? (from 1 to 10, “no” to “yes”)

4.37 .042 7.73 (2.73) 8.80 (2.22)

All results are for F(1, 45). M = MISUNDERSTANDING; U = UNDERSTAND-
ING.

cooperative (Row 3), and having poorer comprehension (Rows 4-5) than did
participants in the DEMOLITION context.

Finally, we asked participants towards the end of their questionnaire if
they would do anything differently if they had to do the study again. Out
of the 49 participants, 31 participants said they would, and said that they
would change the way that they phrased their commands. Of these 31, seven
indicated that they would make their commands more direct, nine indicated
that they would make their commands less direct, and 15 were not clear
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Table 6.3: Subjective Results: Effects of Task Context

Question F p R: m (sd) D: m (sd)
1 How would you rate the difficulty of

the task? (from 1 to 10, “easy” to
“hard”)

7.98 .007 3.28 (2.48) 1.71 (1.40)

2 The robot was responsive to my
commands (from 1 to 10, ’strongly
disagree’ to ’strongly agree’)

6.79 .01 8.36 (2.34) 9.58 (0.83)

3 The robot was cooperative (from 1
to 10, ’strongly disagree’ to ’strongly
agree’)

5.27 .02 8.84 (1.80) 9.67 (0.92)

4 How would you rate the robot’s level
of comprehension? (from 1 to 10,
“low” to “high”)

5.66 .02 6.72 (3.08) 9.38 (1.83)

5 Did you feel that the robot under-
stood what you were saying? (from
1 to 10, “no” to “yes”)

4.35 .04 7.60 (2.99) 8.92 (1.56)

All results are for F(1, 45). R = RESTAURANT; D = DEMOLITION.

(e.g., one participant said they would “ask for items in a different manner”).
What is striking is that only five participants used more than five utterances
– and of those five participants, four indicated that they would be less direct.
One such participant said “I would use concise commands, because it gets
confused when I talk like a normal casual person.” Another participant said
they would “cut out unnecessary words used for politeness to be more direct
in asking for what I want” Yet another said “I would speak to the robot
very literally, not like a human.” These participants attempted to speak to
the robot in normal, polite, human-like ways, and acknowledged that they
would have to give up such a way of speaking in order to have successful
interactions in the future. In contrast, participants who said they would be
more indirect gave reasons that seemed more exploratory, likely as a result
of the previous set of survey questions: One participant said, for example,
“I would use different sentence structure and make my words confusing.” –
another said “I would experiment with different commands, phrases, attempt
to talk more freely [with] the robot both before and during its tasks.”
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Figure 6.2: In-Task Human-Robot Dialogue (RESTAURANT context, MIS-
UNDERSTANDING dialogue condition)

Robot Hello my name is Waiter-
bot. I will be helping you
today.

Participant Great, can I order some-
thing?

Robot Please tell me your order.
Participant Um, can I have one wa-

ter?
Robot Yes, that is permissible.
Participant Great.
Robot Please tell me your order.
Participant Can I have one water?
Robot Yes, that is permissible.
Participant Great, I’ll take one water.
Robot Thank you for sharing

that interesting predic-
tion. Please tell me your
order.

Participant Can I order one water?
Robot Yes, that is permissible.
Participant Okay, can you bring me

one water?
Robot Yes, I am able to do that.
Participant May you bring me one

water?
Robot Yes, I am able to do that.
Participant I would like -
Robot Please tell me your order.
Participant I would like to have one

water.
Robot Thank you for shar-

ing that interesting fact.
Please tell me your order.
16-Second Pause

Participant Can you bring me one
water?

Robot Yes, I am able to do that.
Please tell me your order.

Participant May you please bring me

one water?
Robot Yes, I am able to do that.
Participant So can you do it?
Robot Yes. Please tell me your

order.
Participant Can you go inside and get

the water for me?
Robot Yes, I am able to do that.

Please tell me your order.
Participant My order is water-
Robot Please tell me your order.
Participant My order is water.
Robot Okay.

Robot retrieves meal card
for participant

Robot Here is your drink.
Participant Thank you.
Robot You’re welcome. Please

tell me your order.
Participant My order is two cakes.
Robot Okay.

Robot retrieves meal card
for participant

Robot Here is your dessert.
Participant Thank you.
Robot You’re welcome. Please

tell me your order.
Participant My order is done.
Robot Please tell me your order.
Participant My order is noodles.
Robot Okay.

Robot retrieves meal card
for participant

Robot Here is your meal.
Participant Thank you.
Robot You’re welcome. Thank

you for helping me. We
are now done.
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Figure 6.3: In-Task Human-Robot Dialogue

. . .
Participant Can you knock over the yellow tower please?
Robot OK. ... I have knocked down the yellow tower.
Participant Thank you. Can you please knock down the blue tower now, please?
Robot OK. ... I have knocked down the blue tower.
Participant And can you knock down the red tower now?
Robot OK. ... I have knocked down the red tower.

Figure 6.4: In-Task Human-Robot Dialogue from Additional Interaction Cor-
pus 1 (Aldebaran Nao capable of understanding ISAs in a DEMOLITION
scenario)

Participant Oh lets see here. I have to do something. I would like you to go to
the blue tower of cans to your left.

Robot OK.
Participant And I would like you to knock down the top can on the blue tower.
Robot OK.
Participant You can knock down all of the cans if you like.
Robot OK.
Participant Very good, thank you so much. Nice job!

6.2.3 Supplemental Analysis

Our results showed that not only did most participants use ISAs in this
scenario, but that some relied almost exclusively upon them, as seen in
Figure 6.3. In order to more fully examine this phenomenon, we decided
to examine ISA use across a set of experiments we have previously run.
In addition to the experiment presented in this section, we examined two
additional interaction corpora collected from previously conducted but un-
published experiments: (1) an experiment similar to the DEMOLITION x
UNDERSTANDING condition of the presented experiment, differing only
in that an Aldebaran Nao was used, and (2) an experiment similar to the
RESTAURANT x MISUNDERSTANDING condition of the presented ex-
periment.

While the data from those experiments cannot be directly compared to
the data from the presented experiment due to different experimental de-
signs, we can broadly compare ISA use across the interaction data from all



162 CHAPTER 6. PRAGMATIC UNDERSTANDING

Figure 6.5: In-Task Human-Robot Dialogue from Additional Interaction Cor-
pus 2 (iRobot Create incapable of understanding ISAs in a RESTAURANT
scenario)

Robot Hello my name is Waiterbot. I am taking care of you today. Please
tell me what drink I should bring you.

Participant Uh, I’d like a water.
Robot That is nice. Please tell me what drink I should bring you.
Participant Uh could I have a water?
Robot You could order that. Please tell me what drink I should bring you.
Participant Um I would like to have a glass of water please.
Robot That is interesting. Please tell me what drink I should bring you.
Participant Uhh I need a water.
Robot Okay. Please tell me what drink I should bring you.
Participant Um could I have a water?
Robot You could order that. Please tell me what drink I should bring you.
Participant Water.

three experiments, to get a sense as to whether or not the ISA use seen in the
presented experiment should be regarded as typical. As shown in Table 6.4,
ISA use was common across all three experiments, albeit slightly higher in
this larger sample study than in the two smaller sample studies. Figure 6.4
shows a dialogue drawn from the first of these two interaction corpora (Row
2 in Table 6.4); Figure 6.5 shows a dialogue drawn from the second of these
two interaction corpora (Row 3 in Table 6.4).

Table 6.4: Meta-Analysis of Indirect Speech Act Use Across Experiments.

# Robot Used Context Understanding n TRUs ISAs
1 iRobot Create Both Conditional 49 295 51.5%
2 Aldebaran Nao DEMOLITION Yes 13 167 10.2%
3 iRobot Create RESTAURANT No 21 160 42.0%

83 622 40.5%

6.2.4 Discussion

In this section, we will first summarize the results of our experiment with
respect to our experimental hypotheses. We will then discuss the theoretical
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implications of these results and what they suggest for for robot designers.
Next, we will examine how the ISAs used in both our primary experiment
and secondary interaction corpora can be categorized in order to produce
a taxonomy of observed ISAs, and discuss the implications for how robot
designers might proactively predict what ISA forms are likely to occur for
their own application domains. Finally, we will conclude with some possible
directions for future experimental work.

Justification of Experimental Hypotheses

The results of our experiment supported each of our five hypotheses. We
hypothesized (H1) that ISAs are central to human-robot dialogue patterns
regardless of task context, and our results showed that ISAs were frequently
used in both task contexts. Conversations such as those shown in Figure 6.2
demonstrate participants’ general reluctance to command the robot using
direct commands.

We hypothesized (H2) that ISAs are central to human-robot dialogue
patterns regardless of whether or not they are actually understood by robot
interlocutors, and our results showed that ISAs were frequently used in both
dialogue conditions.

We hypothesized (H3) that while indirect speech acts are central to
human-robot dialogue patterns regardless of task context, they are more fre-
quently used in highly conventionalized scenarios, and our results suggested
that ISAs were used significantly more often in our highly conventionalized
task context than in our novel task context.

We hypothesized (H4) that because ISAs are central to human-robot
dialogue patterns, a human interacting with a robot unable to understand
ISAs will be less efficient in accomplishing a desired task than will a human
interacting with a robot able to understand ISAs, and our results suggested
that participants that interacted with a robot unable to understand ISAs
needed to use significantly more task relevant utterances to accomplish their
task than did participants that interacted with a robot able to understand
ISAs.

Finally, we hypothesized (H5) that because ISAs are central to human-
robot dialogue patterns, a robot unable to understand ISAs will be perceived
less favorably by its human interlocutor than a robot that is able to under-
stand ISAs, and we found that robots unable to understand ISAs were rated
less favorably on a number of dimensions, relative to robots that were able
to understand ISAs. However, we acknowledge that the large number of in-
teresting questions we sought to examine in the data led to a large amount
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of analysis, increasing the possibility of Type I errors. While the likelihood
of Type I errors could be decreased through the use of a Bonferoni correc-
tion, this technique has a number of deleterious consequences, including an
increased likelihood of Type II errors (Perneger, 1998). Instead, we simply
direct the reader to consider the presented effect sizes when assessing the
reported results.

Theoretical Implications

These results suggest that participants are likely to bring their social norms
into interactions with robots. What is more, participants will bring these
politeness norms into contexts even when the robot’s sole purpose is to fulfill
participant’s requests (i.e., it does not purport to have its own goals, desires
and intentions), and when the robot is distinctly non-humanoid. We suspect
that the frequency of ISA usage might have been even higher had the robot
expressed its own goals which the participants would have been overriding
with their requests, or if a more humanoid robot had been used (given that
previous research has suggested that humans treat humanoid robots more
politely than they treat mechanical robots (Hinds, Roberts, & Jones, 2004)).

Overall, the results of this experiment suggests some high-level design
and application principles, which, if followed by robot architecture designers,
should improve task-based dialogue interactions of natural language enabled
robots with humans.

Language-enabled robots engaging in domain-independent
dialogue-based human-robot interactions must be able to under-
stand ISAs if the robots are expected to commonly engage with
naïve users, or if natural, human-like dialogue is of paramount
importance:
If a language-enabled robot is expected to be used in any situation with
dialogue-based interaction with humans, designers should expect the
robot to misinterpret upwards of 10% of commands if they are unable to
understand ISAs. What is more, this level of miscomprehension is likely to
occur even with non-humanoid robots, with robots under clear obligations
to satisfy interactants’ requests, in contexts for which conventionalized
social norms do not exist, and even when the robot repeatedly demonstrates
an inability to understand indirect speech acts.

If a robot is expected to interact with naïve users, this error rate is clearly
unacceptable: in such cases, we believe that it would thus be inappropriate to
use a language-enabled robot incapable of understanding at the very least,
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common conventionalized ISAs such as those concerned with capabilities,
permissions, and desires. In cases where interaction with naïve users is not
expected to be common, this error rate may be less problematic, as users
may be explicitly or implicitly trained to avoid using indirect language. But
this avoidance of natural, polite communication is likely to come at a cost
with respect to humans’ perceptions of the robot: if it is important to robot
designers that human teammates be able to engage in natural, human-like
dialogue with a robot, then this constrained communication style and its
associated interaction costs may prove to be unacceptable. This will be
particularly true in contexts with conventionalized social norms for which
we observed an ISA usage rate of 69%.

Furthermore, our results imply that even if robot designers are willing to
accept such a high error rate, the perception of their robot will be severely
impaired: users may find the robot difficult to interact with, unresponsive,
uncooperative, annoying, and uncomprehending – at least in comparison to
how it would have otherwise been perceived.

And while the specific scenarios used in this experiment are simple enough
that a robot could perform effectively without ISA understanding capabil-
ities (i.e., with simple word-spotting algorithms) if the robot was designed
specifically for use in that scenario, we emphasize that the goal of this disser-
tation is to develop mechanisms for, and study interaction with, robots that
are generally taskable and capable of working in any application domain.

We thus suggest that language-enabled robots engaging in domain-
independent dialogue-based human-robot interactions must be able to
understand ISAs if the robots are expected to commonly engage with naïve
users, or if natural, human-like dialogue is of paramount importance.

Language-enabled robots engaging in dialogue-based human-robot
interactions should be able to learn new ISA forms:
We have thus far suggested that language-enabled robots expected to be
used in dialogue-based interactions should be able to understand ISAs.
However, this does not mean that robot designers are expected to explicitly
design rules to capture every possible way in which one might use indirect
speech acts. Instead, it may be sufficient for a robot to be able to learn new
ISA forms as they are encountered. Robot designers may expect human
perception of robots without the ability to learn new ISA forms to suffer.
We would thus suggest that it would be useful for researchers to develop
mechanisms allowing language-enabled robots to automatically learn new
ISA forms.
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Ontological Analysis and Taxonomy

Finally, we can analyze the types of ISAs observed in these experiments
in order to determine how robot designers might predict the types of ISAs
they may expect in their own experiments. As discussed in Section 6.1.2,
Searle’s theory of speech acts suggests that an illocutionary act has four
components: (1) its propositional content, (2) its essential condition (i.e.,
what it “counts as”), (3) its sincerity condition (e.g., for a request, that the
speaker actually wants the listener to perform the requested action), and (4)
a set of preparatory conditions (e.g., for a request, that the hearer is able to
perform the requested action, that the speaker believes the hearer able to
perform the requested action, and that it is not obvious to both the speaker
and hearer that the hearer is already planning to perform the requested
action).

From the range of ISAs found in our experiment, as well as those observed
in our additional interaction corpora, we can infer how ISAs are commonly
constructed: by simultaneously calling attention to (1) either the preparatory
or sincerity condition of the intended utterance form, and (2) a constituent
of the requested action (e.g., the action’s agent or patient). Examples of each
observed combination of literal illocutionary point, condition of focus, and
action aspect can be seen in the table below2. All indirect requests observed
in the presented experiment or in the additional interaction corpora can be
accounted for by the taxonomy represented by this table.

Table 6.5: Taxonomy of Observed Indirect Requests

Direct Point Question Statement Statement Suggestion
Condition Preparatory Sincerity Preparatory Preparatory
Agent Could you X? I need you to X. You can X. You should X.
Patient Could X happen? I’d like X. X will happen. (X should happen.)

Notice that there exists no column for the combination of either Question
or Suggestion as literal illocutionary point and Sincerity as condition of focus.
This is because it generally does not make sense to draw attention to your
own mental states by asking what they are, as your interlocutor cannot assess
them, or to draw attention to your own desires by suggesting what they can
be, as your interlocutor cannot change them.

Similarly, it does not always make sense to make statements about the
2The final parenthetical item is a form we did not observe in our experiment or addi-

tional interaction corpora, but which fits the presented framework.
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abilities of others, especially when they are the presumed domain experts.
Consider the third column of Table6.5. Here, the examples seen in the
second row call attention to the preparatory condition of requests concerning
whether or not the action is going to happen anyways. Another subcategory
of such patient-directed preparatory statements would be to call attention to
the preparatory condition of capability (e.g., “The red tower can be knocked
down”). While such an utterance makes sense, it runs the risk of coming off
as rude if the hearer is the presumed domain, as it appears to assert that
the speaker knows something that the hearer does not. Calling attention to
either capability or inevitability for agent-directed preparatory statements
runs a similar risk. If the speaker calling attention to capability seems to
presume a lack of knowledge on the hearer’s part, whereas calling attention
to inevitability runs the risk of asserting dominance.

The discussion in this section suggests that robot designers should con-
sider (at least) the following criteria when deciding what types of ISA forms
their system must be prepared to handle: (1) The likely illocutionary points
users will need to convey (e.g., requests, suggestions, statements); (2) the
relationship between agent and patient in actions users might desire to be
performed; and (3) the relationships between the robot and user which might
make some utterance forms presumptive or rude.

Future Experimental Work

We foresee a number of interesting directions for future work. In this ex-
periment, we observed participants continuing to use ISAs even when the
robots clearly and repeatedly failed to understand indirect language: future
research should examine whether participants would be able to refrain from
using ISAs if explicitly told not to, or explicitly told that a robot was unable
to comprehend them. We would also like to examine how facets of a robot
affect linguistic interaction patterns with that robot. In this experiment,
we used a single robot with a single voice. It is unclear whether ISA usage
patterns would have differed if the robot had a different (e.g., more human)
morphology, of if the robot had used a clearly gendered voice. Future re-
search should also develop mechanisms whereby robots can automatically
learn to understand ISAs in general, or to understand specific newly encoun-
tered ISA forms. Finally, the issues discussed in this section are of import to
a wide variety of intelligent agents beyond robots, and it will be important to
investigate the extent to which the effects found in this section depend upon
the type of agent used, and whether these patterns hold for non-embodied
and non-situated agents.
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In this chapter, thus far, I have discussed our philosophical motivations,
focusing on Searle’s theory of indirect speech acts. I then presented experi-
mental evidence that indirect speech acts are commonplace in human-robot
interaction and demonstrated how one might analyze the types of indirect
speech acts that might be found in a human-robot interaction domain, in
order to determine what inference rules might need to be written to appro-
priately handle likely indirect speech acts. Before discussing how we actually
go about writing such rules, and the algorithms we have created to make use
of such rules, I will briefly discuss previous approaches to indirect speech act
understanding and generation.

6.3 Previous Computational Work

Over the past 40 years, there has been much research on indirect speech acts
in philosophy and linguistics(Searle, 1975; Pinker, Nowak, & Lee, 2008),
and much computational work on ISA understanding (outside the context of
robot architectures). Within robotics, there has been a significant amount
of work on enabling natural language capabilities in integrated robot archi-
tectures (To name a few illustrative examples from the past few years alone,
Lemaignan, Warnier, Sisbot, & Alami, 2014; Kruijff et al., 2010; J. Y. Chai
et al., 2014; Deits, Tellex, Kollar, & Roy, 2013; Scheutz et al., 2013; Jing,
Finucane, Raman, & Kress-Gazit, 2012), but very little work on enabling
any sort of pragmatic analysis (e.g., indirect speech act understanding or
generation)

Indeed, there seems to be a disconnect between the language-capable
agents currently being commercialized and the robots of the future which we
seek to develop. In this dissertation, I have made clear that our goal is to
develop robots capable of natural human-like human-robot interaction that
are generally taskable, and not crafted for particular scenarios. In contrast,
the language-capable agents that are currently being commercialized (mostly
phone-based personal assistants such as Siri, Cortana, and Google Now, but
also robots such as Jibo) are intended to operate within restricted domains
for which so-called “deep” linguistic processing is unnecessary3, as “shallow”
natural language processing (NLP) methods such as keyword spotting will

3Although in truth, the terminology of “deep” vs. “shallow” linguistic processing is not
always terribly informative. It is illustrative, for example, to consider approaches such as
that of DeVault & Stone (2009), who claim to determine the “deep semantics” of incoming
utterances, but do not actually ascertain the intended meanings of such utterances (as
one would if using an indirect speech act understanding algorithm), which is presumably
a yet-deeper level of meaning.
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typically be sufficient. Furthermore, even outside of robots actively intended
for commercialization, many robot designers seem to make an assumption
that all utterances that will be provided to robots will be commands, and
that future natural language understanding (NLU) systems will only need
to solve the problem of identifying the verb used in such a command and its
arguments (e.g. Tanaka, Tokunaga, & Shinyama, 2004).

Shallow processing techniques are not sufficient, however, for many
robots intended to interact with humans, who may need to understand a
richer class of natural language expressions, and for whom the consequences
of misunderstanding may be more dire. Many designers of such natural lan-
guage enabled robots, however, seem to have tacitly assumed that human
interlocutors will restrict themselves to direct commands, and that an ability
to understand and generate indirect speech acts is simply unnecessary. As
we have shown, however, this assumption is unwarranted. Not only are indi-
rect speech acts used in simple, task-based human-robot dialogues: they are
commonplace. We must thus consider previous work on indirect speech act
understanding and generation, to see how it could be applied or extended
for use in robotics.

6.3.1 Inferential vs. Idiomatic Approaches

Computational approaches to indirect speech act understanding and gen-
eration has tended to fall into two categories. First, there has been a set
of inferential approaches, in which indirect speech act understanding is re-
garded as a plan reasoning problem(Allen, 1979; Allen & Perrault, 1979,
1980; P. R. Cohen & Perrault, 1979; P. R. Cohen & Levesque, 1985; Perrault
& Allen, 1980). By using rich knowledge about interlocutors’ beliefs, desires,
and intentions, these approaches are able to infer the intended meanings be-
hind complicated unconventionalized indirect speech acts. For example, such
a system might be able to infer that “It’s cold in here!” was issued in order
to command the hearer to close an open window.

Also residing beneath the umbrella of “inferential” approaches would be
work such as that of Herzig & Longin (2002), who present a cognitive robotics
oriented logic intended to allow robots to infer when assertions made to a
robot (e.g., “I intend to know whether X holds”) are intended to be inter-
preted as either yes-no questions or more generally as requests, rather than
as simple assertions. As we will later describe, this is something of an inverse
to the types of inferences we would desire to make.
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Similarly, this class includes work on inferring the intentions behind in-
direct responses. N. Green & Carberry (1999); de Marneffe, Manning, &
Potts (2010) present computational models for understanding and generat-
ing indirect responses to questions. For example, “I can’t drive” is an indirect
response to the question “You’ll probably get a car when you arrive?” Such
indirect responses are often used by humans in order to answer implicit ques-
tions, to comply with social norms, to provide explanations, or to provide
clarification.

Unfortunately, all approaches in this category tend to be very expen-
sive computationally. As such, several researchers have turned their atten-
tion toward idiomatic approaches that cannot handle this broad class of
unconventionalized indirect speech acts, but instead focus on handling the
restricted set of conventionalized indirect speech acts, such as “Could you
X?”, “I need $X$”, “Will you X?” “Didn’t you want to $X$”, and “Y would
be happy if you did $X$”, which are so commonplace that we automatically
understand what is truly meant without the need for sophisticated reason-
ing processes (Searle, 1975) (see also the ontological analysis and taxonomy
presented in Section 6.2.4). The idiomatic approach is attractive because
conventionalized ISAs are the most common ISAs observed in dialogue, and
can be understood and generated with much greater efficiency than can un-
conventionalized ISAs.

For example, Wilske & Kruijff (2006) present an idiomatic approach ca-
pable of handling some conventionalized ISAs, by mapping indirect requests
directly to intended actions. This approach is also advantageous with respect
to the inferential approaches in that it attempts to handle uncertainty, and
is able to generate clarification requests when it is unsure how to interpret
an utterance. Unfortunately, this approach is limited to handling only indi-
rect commands. Furthermore, the adaptations this approach is able to make
with response to clarification request responses is restricted to all-or-nothing
changes, which can lead to shifts in belief of unwarranted magnitude. Wilske
and Kruijff attempt to rectify this problem by always allowing a chance for
the robot to ask for clarification, so unwarranted belief shifts can be re-
versed. However, this can lead to superfluous questions (when the agent is
fairly certain) and incorrect interpretations (when the agent has a belief that
is certain and incorrect).

Finally, there have been a few hybrid approaches that have sought to
employ both plan reasoning mechanisms to handle unconventionalized ISAs,
and mechanisms for quickly handling conventionalized ISAs. Briggs &
Scheutz (2013), for example, presents an approach within our own DIARC
architecture that does just this, for the purposes of both understanding and
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generation. Similarly, Hinkelman & Allen (1989) introduced a hybrid ap-
proach that was later implemented by Allen et al. (2001) within the TRIPS
system (G. Ferguson & Allen, 1998) (although to the best of our knowl-
edge this approach was never implemented in an integrated robotic archi-
tecture). These approaches(see also Litman & Allen, 1987), however, like
the aforementioned inferential approaches, are unable to handle any sort of
uncertainty.

6.3.2 Algorithmic Desiderata

In the next section, I will present a new algorithm for understanding indirect
speech acts, which builds directly off of the idiomatic half of the work pre-
sented by Briggs & Scheutz (2013). In developing this algorithm, we sought
to facilitate three primary capabilities, which we view as necessary for robust
understanding of conventionalized ISAs in realistic human-robot interaction
scenarios:

C1: Uncertainty. An agent must not assume perfect knowledge of
the contexts in which an indirect interpretation applies. The convention-
alized meaning of an ISA is not always the intended meaning; sometimes
“I’d love some cake” is simply a statement expressing a desire, and not an
indirect request for someone to give you cake. Since an agent might not
always be able to determine the true intended meaning of an utterance, it
should ascribe a level of confidence to each of its interpretations, based on
the contextual factors that provide evidence for each interpretation. Further-
more, it is important that an agent be able to represent and reason about
its own uncertainty and ignorance, and be able to act appropriately when
uncertainty is identified.

C2: Adaptation. Since an agent should be able to learn new
ISAs, and since it may not know the precise scenarios in which new
ISAs should be used, an agent should be able to learn and adapt new
rules, using feedback from interlocutors to adjust its beliefs as to when the
rules it knows apply. For example, consider the dialogue shown in Figure 6.6.

In the space of this short dialogue (which can be viewed at https://www
.youtube.com/watch?v=39XnZAEl1Z4), an agent (i.e., the android “Data”)
must make several adaptations. First, he must alter his beliefs about the
ISA “just passing by” based on feedback from Geordi that the ISA’s literal
meaning had been the correct interpretation. Then, he must at least par-
tially revert to his previous beliefs, as well as alter his belief as to when
said(X,Y )→ means(X,Y ).

https://www.youtube.com/watch?v=39XnZAEl1Z4
https://www.youtube.com/watch?v=39XnZAEl1Z4
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Figure 6.6: Short dialogue from Star Trek: The Next Generation. “Interface”

DATA Are you certain you do not wish to talk about your mother?

GEORDI Why do you ask that?

DATA You are no doubt feeling emotional distress as a result of her
disappearance. Though you claimed to be “just passing by”,
that is most likely an excuse to start a conversation about this
uncomfortable subject. Am I correct?

GEORDI Well, no. Sometimes “just passing by” means “just passing
by.”

DATA Then I apologize for my premature assumption...

GEORDI Data, maybe you gave up too fast.

DATA I do not understand.

GEORDI When I said “just passing by” means “just passing by”, I didn’t
really mean it.

DATA My initial assumption was correct. You do wish to speak of
your mother.

C3: Belief modeling. An agent should be able to model interlocu-
tors’ beliefs: the interpretation of an ISA uttered by an interlocutor should
be based not on the robot’s beliefs about, for example, its capabilities and
obligations, but rather on its interlocutor’s beliefs.

6.4 A Dempster-Shafer Theoretic Approach to
Pragmatic Inference

Enabling a robot to understand a broad coverage of human speech acts
requires a number of mechanisms within a robot architecture. In this sec-
tion, we introduce novel algorithms based on Dempster-Shafer (DS) theory
(Shafer, 1976) for inferring intentions I from utterances U in contexts C,
and, conversely, for generating utterances U from intentions I in contexts C.
We select more general DS-based representations over single-valued probabil-
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ities because the probability-based Bayesian inference problem to calculate
P (I|U,C) in terms of P (U |I, C) is not practically feasible, for at least two
reasons: (1) we do not have access to distributions over an agent’s intentions
(as we cannot look inside its head), and (2) we would need a table containing
priors on all combinations of intentions and contexts. Instead, we employ
rules of the form u ∧ c→[α,β] i.

This serves to capture the intentions behind utterances in particular con-
texts, where [α, β] is a confidence interval contained in [0,1] which can be
specified for each rule independently (e.g., based on social conventions, or
corpora statics when available). These rules are very versatile in that they
can be defined for individual utterances and contexts or whole classes of ut-
terances and contexts. Most importantly, we can employ DS-based modus
ponens to make uncertain deductive and abductive inferences which cannot
be made in a mere Bayesian framework.

We start with background information regarding basic Dempster-Shafer
theoretic concepts, and then introduce our proposed algorithm for pragmatic
inference.

6.4.1 Basic Notions of Dempster-Shafer Theory

Since the proposed algorithms and architecture will use DS-theoretic repre-
sentations of uncertainty, we briefly review the basic concepts of this frame-
work for reasoning about uncertainty, which is a generalization or extension
of the Bayesian framework (Shafer, 1976).

Frame of Discernment:

A set of elementary events of interest is called a Frame of Discernment (FoD).
A FoD is a finite set of mutually exclusive events Θ = {θ1, ..., θN}. The power
set of Θ is denoted by 2Θ = {A : A ⊆ Θ}.

Basic Belief Assignment:

Each set A ∈ 2Θ has a certain weight, or mass associated with it. A Ba-
sic Belief Assignment (BBA) is a mapping mΘ(·) : 2Θ → [0, 1] such that∑

A⊆ΘmΘ(A) = 1 and mΘ(∅) = 0. The BBA measures the support as-
signed to the propositions A ⊆ Θ only. The subsets of A with non-zero
mass are referred to as focal elements and comprise the set FΘ. The triple
E = {Θ, FΘ,mΘ(·)} is called the Body of Evidence (BoE).
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Belief, Plausibility, and Uncertainty:

Given a BoE {Θ, FΘ,mΘ(·)}, the belief for a set of hypotheses A is Bel(A) =∑
B⊆AmΘ(B). This belief function captures the total support that can be

committed to A without also committing it to the complement Ac of A.
The plausibility of A is Pl(A) = 1 − Bel(Ac). Thus, Pl(A) corresponds to
the total belief that does not contradict A. The uncertainty interval of A
is [Bel(A), P l(A)], which contains the true probability P (A). In the limit
case with no uncertainty, we get Pl(A) = Bel(A) = P (A). Thus, we see
how information regarding the probability of some event can be gathered
from the Dempster-Shafer theoretic notions of belief and plausibility, and
how these notions themselves are derived from the masses mΘ ascribed to
specific hypotheses.

Inference and Fusion:

Uncertain logical inference can be performed using DS-theoretic modus po-
nens (denoted �) (Tang, Hang, Parsons, & Singh, 2012). We will use the
DS-theoretic AND (denoted ⊗) to combine BoEs on different FoDs (Tang,
Hang, Parsons, & Singh, 2012), and Yager’s rule of combination (denoted

⋂
)

to combine BoEs on the same FoD (Yager, 1987). We choose to use Tang’s
models of modus ponens and AND over other proposed models due to the
counter-intuitive results of those models, and because those models do not
allow uncertainty to be multiplicatively combined. Yager’s rule of combi-
nation is chosen because it allows uncertainty to be pooled in the universal
set, and due to the counter-intuitive results produced by Dempster’s rule of
combination (as discussed in (Zadeh, 1979)).

Logical AND:

For two logical formulae φ1 (with Bel(φ1) = α1 and Pl(φ1) = β1) and
φ2 (with Bel(φ2) = α2 and Pl(φ2) = β2), applying logical AND yields
φ1 ⊗ φ2 = φ3 with Bel(φ3) = α1 ∗ α2 and Pl(φ3) = β1 ∗ β2.

Modus Ponens:

For logical formulae φ1 (with Bel(φ1) = α1 and Pl(φ1) = β1) and φφ1→φ2

(with Bel(φφ1→φ2) = αR and Pl(φφ1→φ2) = (1 − βR)), the corresponding
model of modus ponens is φ1 � φφ1→φ2 = φ2 with Bel(φ2) = α1 · αR and
Pl(φ2) = (1− βR).
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Measuring Uncertainty:

We will use the “uncertainty measure” λ discussed in (Williams, Núñez, et
al., 2014) to compare the uncertainties associated with formulae φ and their
respective confidence intervals [α, β]:

λ(α, β) = 1 +
β

γ
log2

β

γ
+

1− α
γ

log2
1− α
γ

(6.1)

where γ = 1 + β − α.

Here, φ is deemed more uncertain as λ(α, β) → 0. We introduce an
“uncertainty threshold” Λ (set to 0.1) where utterances with λ(α, β) < Λ
will require clarification from an interlocutor.
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6.4.2 Algorithm and Architecture

A cognitive robotic architecture capable of going beyond direct command-
based instructions needs several high-level components in addition to typical
NL components (such as speech recognizers, parsers, etc.) that work in
concert to extract intended meanings. Figure 6.7 depicts how these new
components are integrated into DIARC.

Figure 6.7: Pragmatic Reasoning Architectural Diagram

Partial architecture diagram. Highlighted are the components that form the
natural language pipeline: Automatic Speech Recognition (asr), Natural
Language Processing (nlp) Pragmatic Inference (pinf), and Dialogue, Be-
lief and Goal Management (dbgm). Also shown are language generation
components that will be covered in the next chapter (Text-to-Speech (tts),
Natural Language Generation (nlg), and Pragmatic Generation (pgen)),
as well as relevant components that interact with the dbgm: the SPatial
EXpert (spex), Task Planner (planner), Motion Planner (motion), Ma-
nipulation (manip), Laser Range Finder (lrf), and Vision (vision).

When an interlocutor speaks to the robot, speech is processed via the
standard NL pipeline (speech recognizer, syntactic and semantics parser) re-
sulting in candidate semantic expressions φ, each with its own uncertainty
interval [α, β] attached. While a typical command-based system (e.g. Dz-
ifcak, Scheutz, Baral, & Schermerhorn, 2009) would attempt to act on the
semantic interpretation with the highest confidence (and fail if it is not ac-
tionable), in the proposed architecture semantic representations are further
processed in a pragmatic inference component, which attempts to apply mod-
ulatory pragmatic rules to utterance and semantic representations to infer
the intentions of the speaker.

The semantic interpretation is passed to our new component for Prag-
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matic Inference (pinf), which uses contextual and general knowledge to de-
termine the intention underlying the literal semantics. By using pragmatic
rules indexed by utterance and context, pinf can determine, for example,
that asking if one knows the time should be interpreted not as a “yes-no
question”, but as an indication that the speaker would like to be told what
time it is. The resulting intention or intentions can then be returned to
DIARC’s ’Dialogue, Belief, and Goal Manager’ (dbgm), which is responsi-
ble for dialogue management (Briggs & Scheutz, 2012), storing beliefs in its
knowledge base, performing inference on those beliefs, tracking and manag-
ing goals (Brick, Schermerhorn, & Scheutz, 2007; Scheutz & Schermerhorn,
2009), and determining what actions to take in pursuit of its goals4. Next,
we will provide the details for the core pinf algorithm.

The goal of pragmatic analysis is to infer intentions based on (1) the
semantics of incoming utterances, (2) the robot’s current context, and (3)
the robot’s general knowledge. This process is depicted in Algorithm 13,
which takes three parameters: (1) a BoE of candidate utterances {ΘU ,mu}
provided by nlp, (2) a BoE of relevant contextual items {ΘC ,mc} provided
by the dbgm, and (3) a table of pragmatic rules R. Each rule ruc→i in R is
indexed by an utterance u and a set of contextual items c, and dictates the
mass assigned to Bel(i) and Pl(i) when the robot believes that utterance u
was heard and that contextual items c are true. Here i is a logical formula
representing the intention the interlocutor was expressing through utterance
u. When these contextual items involve the shared context of the robot
and its interlocutor, they are couched in terms of the interlocutor’s beliefs.
This is critical, as the intentions of the robot’s interlocutor are dependent
not on the robot’s beliefs, but on his or her own beliefs. This allows the
robot to correctly interpret its interlocutor’s intentions when cognizant of
discrepancies between its own beliefs and its interlocutor’s beliefs, and to
identify information of which its interlocutor may want to be informed. This
is important for both pragmatic inference and generation, as this paradigm
implicitly assumes that the robot’s interlocutor communicates according to
the same table of rules known to the robot (however, it is straightforward to
keep separate rule tables for individual interlocutors if required).

When an utterance is heard, each rule ruc→i ∈ R is examined (line 5),
and muc is determined by performing mu ⊗mc (line 6), where mu specifies
the degree to which utterance u is believed to be heard, and mc specifies the

4In truth, this is comprised of three components: the Dialogue Manager, the Belief
Manager, and the Goal Manager. However, for the sake of this section, it is simpler to
consider them as a single component with multiple responsibilities.
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degree to which each of the rule’s associated contextual items is believed to
be true. DS-based modus ponens is then used to obtain mi from muc→i and
muc (line 6).

Algorithm 13 getIntendedMeaning({ΘU,mu},{ΘC,mc},R)
1: {ΘU ,mu}: BoE of candidate utterances
2: {ΘC ,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: S = S ∪ {(mu ⊗mc)�mr=uc→i}
7: end for
8: G = group(S)
9: ψ = ∅

10: for all group gi ∈ G do

11: ψ = ψ ∪ {
|gi|⋂
j=0

gij}

12: end for
13: return ψ

While previous approaches (e.g Briggs & Scheutz, 2013) look for a single
applicable rule in order to produce a single likely intention, we instead con-
sider all applicable rules. This is particularly important for complex contexts
or abstract context specifications, where multiple rules might be applicable.
Moreover, the robot might have rules that apply to its particular context
as well as to a more general context, and it may be more appropriate to
consider the combined implicatures of all applicable rules rather than only
considering, for example, the most specific applicable rule. Since we may
consider multiple rules, multiple intentions may be produced. And multiple
rules may also produce the same intentions, possibly with different levels
of belief or disbelief. To be able to generate a set of unique intentions im-
plied by utterance u after considering all applicable pragmatic rules, we thus
group intentions that have the same semantic content but different mass as-
signments (line 8) and use Yager’s rule of combination (line 11) to fuse each
group of identical intentions, adding the resulting fused intention to set ψ.
This set then represents the set of intentions implied by utterance u and is
returned to the dbgm.

It is important to note that, at least in the way that the algorithm is
currently used in our architecture, the set of pragmatic rules provided to
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the pragmatics system must include rules to infer both non-literal and literal
interpretations. This means, for example, that if a robot is provided with
rules to interpret Can you utterances indirectly, it must also be provided
with rules to infer the direct meaning if it is to be possible to inquire about
the robot’s capabilities.

6.5 Evaluation

In this section we present an evaluation of our algorithm and demonstrate
the capabilities facilitated by our approach. The evaluation of a system at
this stage of the natural language pipeline is difficult, as the performance of
the algorithm is tightly coupled with the performance of components that
precede it in the natural language pipeline (e.g., speech recognition, parsing,
semantic analysis). Because of this, we take the same approach to evaluation
as previous work, i.e., through a case study that demonstrates the behavior
of our algorithm. We will now show how our algorithm works towards the
capabilities necessary for robust understanding of conventionalized ISAs.

6.5.1 Handling Uncertainty

Consider a robot conversing with interlocutor Jim. Suppose Jim says to the
robot: “I need coffee.” From the robot’s perspective, this is represented as
the utterance Stmt(jim, self, needs(jim, coffee)). In this representation,
the first argument represents the speaker of the utterance, in this case,
Jim; the second argument represents the receiver, in this case, the robot
(“self”); the last argument refers to the conveyed message, in this case, Jim
needs coffee. Suppose the robot knows two pragmatic rules. In both rules,
[αRi , βRi ] represents the belief and plausibility of rule i.

First, if B believes A is a barista, then telling A that B needs coffee
indicates that B wants A to believe that B wants A to get them coffee.

r0
[αR0

,βR0
] =

(Context : believe(B, barista(A)))
(Utterance : Stmt(B,A, need(A, coffee)))

(Intention : want(B, believe(A,want(B, get_for(A,B, coffee)))))

Second, if B believes C is thirst quenching, telling A that B needs C
indicates that B wants A to believe that B is thirsty.
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r1
[αR1

,βR1
] =

(Context : believe(B, quenches(C, thirst)))
(Utterance : Stmt(B,A, need(A,C)))

(Intention : want(B, believe(A, thirsty(B))))

Our approach affords the first capability of an ideal system, i.e., the
ability to handle uncertain contextual and dialogical information, and to
recognize and reason about one’s own ignorance. To demonstrate this,
suppose the robot strongly believes the following:

(a) Jim believes coffee is thirst quenching:
bel(jim, quenches(coffee, thirst))[1.0, 1.0],
(b) Jim just said he needs a coffee:
Stmt(jim, self, need(jim, coffee))[0.9, 0.9], and
(c) Jim may or may not think the robot is a barista:
bel(jim, barista(self)[αb, βb].

Applying rules r0 and r1 will produce a BBA containing two conse-
quents:

c0 = want(jim, bel(self, want(jim, get_for(self, jim, coffee))))
c1 = want(jim, bel(self, thirsty(jim))).

The degree to which c0 and c1 are believed will depend on whether Núñezor
Tang’s fusion operators are used. The following table shows how belief in the
two consequents changes depending on which set of fusion operators is used,
the degree to which the robot believes the interlocutor believes the robot is
a Barista (b), and the degree to which the robot believes the two rules r0, r1

hold.

Our approach can thus modulate its interpretation of utterances based
on the certainty of the relevant utterance, contextual factors, and pragmatic
rules. However, an ideal system should also explicitly reason about its own
ignorance. Since we are using a DS-theoretic approach, we can use the
consequents’ uncertainty intervals to determine whether or not the robot
needs to ask for clarification. Specifically, we use the ambiguity measure
defined by Núñez et al. (2013) (Equation 6.1).

For example, for the interval [0.6, 0.9],
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Table 6.6: Comparison of operators under Tang and Núñez

b[α, β] r0[α, β] r1[α, β] Fusion c0[α, β] c1[α, β] λ0 λ1

1 [0.9,0.9] [0.85,0.9] [0.7,0.85] Núñez [0.85,0.90] [0.70,0.85] 0.41 0.17
2 [0.9,0.9] [0.85,0.9] [0.7,0.85] Tang [0.69,0.90] [0.63,0.85] 0.18 0.11
3 [0.1,0.1] [0.1,0.1] [0.5,0.5] Núñez N/A [0.50,0.50] N/A 0.00
4 [0.1,0.1] [0.1,0.1] [0.5,0.5] Tang [0.01,0.10] [0.05,0.50] 0.56 0.07
5 [0.5,0.5] [0.1,0.5] [0.5,0.5] Núñez N/A N/A N/A N/A
6 [0.5,0.5] [0.1,0.5] [0.5,0.5] Tang [0.05,0.5] [0.45,0.5] 0.07 0.002
7 [0.002,0.002] [0.99,0.99] [0.99,0.99] Núñez [0.99,0.99] [0.99,0.99] 0.92 0.92
8 [0.002,0.002] [0.99,0.99] [0.99,0.99] Tang [0.002,0.99] [0.80,0.99] 0.00001 0.35

λ = 1 +
0.9

1.3
log2

0.9

1.3
+

0.4

1.3
log2

0.4

1.3
= 0.11.

λ→ 0 as uncertainty grows and as α and 1−β grow closer together. Using
this equation, we generate a clarification request if λ ≤ 0.1. This makes use
of information that is unavailable to the Bayesian approach. As shown in
Table 6.6, the results of the DS-theoretic approach are greatly dependent on
which set of fusion operators is used. We will now briefly compare Tang and
Núñez’ fusion operators before discussing the other capabilities afforded by
our approach.

One will notice that there are several cases in which Núñez’ fusion oper-
ators do not return results. In fact, since the last fusion operation applied
in our algorithm is Modus Ponens, using Núñez’ fusion operators produces
either no result, [0, βR], or[αR, βR]. While this ensures consistency with clas-
sical logic, it also means that the antecedent is largely ignored: the only
effect of context is to cause no result to be returned if belief in the context is
less than belief in the rule. This can lead to unwarranted confidence. Con-
sider cases 7 and 8 in the table above. Here, the robot is highly confident
in rule r0, and is highly confident that its antecedent is false. Tang’s logical
operators report near total uncertainty, while Núñez’ logical operators report
near total certainty. This is a highly problematic result: the more confident
a robot is in a rule, the less evidence it will need to be convinced in the
rule’s antecedent, even in the face of overwhelming evidence to the contrary.
In light of this, we recommend the use of Tang’s logical operators. While
using Tang’s operators avoids the aforementioned problems with Núñez’ op-
erators, we acknowledge that our use of them falls outside the scope of their
intended use: Tang’s operators were originally designed for use within an
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argumentation-theoretic context, and we are thus currently working on an
argumentation-theoretic approach that allows Tang’s operators to perform
as intended; this exploration is outside the scope of this dissertation.

6.5.2 Adaptation

The second capability of an ideal system is the ability to adapt old rules and
learn new ones. We currently assume that the initial beliefs and plausibil-
ities of our rules and contextual items are given, but we do allow rules to
be adapted based on user feedback. Upon receiving a corrected rule from
a user, it is compared against all currently applicable rules5. Those whose
antecedents and consequents are on the same frames as the antecedents and
consequents of the new rule may be updated using the Conditional Up-
date Equation (CUE) as defined by Wickramarathne, Premaratne, & Murthi
(2012). For example, if rule ri is on interval [0.8, 0.8], and a correction states
that in the current context, [αRi , βRi ]

i should be [0.5, 0.9], the CUE will up-
date the rule’s uncertainty to ri[0.53,1.0] (a substantial increase in uncertainty).
Although the proposed approach only allows for adaptation of rules, it could
easily be extended to allow for the addition of new rules, which would ini-
tially have very high levels of uncertainty and would become less uncertain
with exposure to applications of the rule.

We thus demonstrate that within our framework it is, at least in prin-
ciple, possible to effect adaptations based on user feedback. However, the
presented adaptation mechanisms have not been systematically integrated
into our architectural framework, and we have not demonstrated how new
rules would actually be learned, how old rules would be adapted when user
feedback suggests a modification of an existing rule, how feedback warrant-
ing adaptation would actually be identified, how feedback or rules could be
directly solicited, or how data-driven methods could be used to infer the
need for rule learning or adaptation. These will all be important directions
for future work.

5We would like to stress again that our architecture maintains a set of rules that are
applicable in the current context, and that our ISA understanding algorithm only considers
these rules for the sake of efficiency. In the future it would be interesting to investigate
ways of probabilistically maintaining a more limited set of rules or for quickly retrieving
a small set of appropriate rules when needed, in order to further reduce the complexity of
inference.
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6.5.3 Belief Modeling

The third capability of an ideal system is the ability to reason about other
agents’ beliefs. Rules such as r0 and r1 are formulated in terms of the inter-
locutor’s beliefs; to determine what interlocutor J is trying to communicate,
J ’s utterances must be evaluated in the context of J ’s beliefs. For example,
if J says he needs coffee, the likelihood that he is trying to order a coffee
should be modulated not by the robot’s belief that it is a barista, but instead
by J ’s beliefs; if J has no reason to think the robot is a barista, his state-
ment should not be viewed as a coffee order even if the robot has barista
training. Belief modeling also allows natural representation of interlocutors’
beliefs about the robot’s abilities and social roles. For example, the robot
may need general rules (e.g., Equation 6.2) that suggest that a statement
such as “I need a coffee” is only an indirect request if its interlocutor believes
the robot to be able and obligated to get them coffee.

(Context : bel(B, obligated(A, give(A,B,C))))
(Utterance : Stmt(B,A,would_like(B,C)))

(Intention : want(B, bel(A,want(B, give(A,B,C)))))
(6.2)

6.6 General Discussion

In this section, we have presented philosophical and empirical evidence moti-
vating the need for indirect speech act understanding algorithm development
in the field of human-robot interaction. We then presented a novel algorithm
for understanding conventionalized indirect speech acts, and demonstrated
how it satisfies several requirements we believe necessary for use in realistic
human-robot interaction scenarios. The presented algorithm is not intended
as an alternative to plan-based inferential approaches for understanding non-
conventionalized ISAs, but rather as a complement to such approaches. Ide-
ally, this approach would be integrated into a hybrid framework in order to
efficiently handle conventionalized ISAs while still being able to fall back on
plan reasoning in the case of non-conventionalized ISAs.

Just as we showed that the referential processing framework presented
in Chapter 3 was useful not only for referring expression understanding, but
for referring expression generation as well (in Chapter 5), we will similarly
demonstrate in the next chapter that the pragmatic reasoning framework we
have presented in this chapter can be used not only for pragmatic under-
standing, but for pragmatic generation as well.
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Chapter 7

Pragmatic Generation

In the previous chapter, we introduced novel algorithms based on Dempster-
Shafer (DS) theory (Shafer, 1976) for inferring intentions I from utterances
U in contexts C. In this chapter, we present novel algorithms for generating
utterances U from intentions I in contexts C, and show how these can be
used to generate requests to disambiguate intended meanings and intended
referents. We then demonstrate the operation of the algorithms in a detailed
example showing how uncertainty is propagated at each stage of processing
and can lead to different responses by the robot. Finally, in Section 7.3, I
present experimental evidence motivating future work on the application of
mechanisms such as those presented in this chapter to robot-robot communi-
cation.

7.1 A Dempster-Shafer Theoretic Approach to
Pragmatic Generation

When a robot needs to communicate information, it must choose appropriate
surface realizations of the semantic facts in intends to convey. However, for
reasons of social convention such as politeness, it may be inappropriate to
express semantic facts in the most direct manner. For example, one may
find it rude if the robot were to say “I want to know what time it is. Tell me
now.” To allow the robot to generate socially acceptable utterances based
on pragmatic considerations, we introduce an abductive inference algorithm
called pragmatic generation, which, much like pragmatic inference, uses the
robot’s current context and its set of pragmatic rules to determine the best
utterance to communicate intentions. The “best” utterance is determined to
be the utterance that, according to the robot’s set of pragmatic rules, would

185
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Algorithm 14 getSemantics({ΘI,mi},{ΘC,mc},R)
1: {Θi,mi}: BoE of candidate intentions
2: {ΘC ,mc}: BoE of relevant contextual items
3: R: Currently applicable rules
4: S = ∅
5: for all r ∈ R do
6: u = (mi ⊗mc)�mr=uc→i
7: for all (bs, bv) ∈ getBindings(u) do
8: if marked(bv) then
9: u = adapt(u, getSemantics(buildBoE(bs), {ΘC ,mc}, R))

10: end if
11: end for
12: u′ = checkEffects( getIntendedMeaning({ΘU ,mu}, {ΘC ,mc}, R))
13: S = S ∪ u′
14: end for
15: return S

be most likely to communicate the given intention properly (e.g., without
communicating any other information that the robot does not believe to be
true). A DS-based approach is particularly useful here, because rule-based
pragmatic inferences are determined by equations that relate the premise and
rule to the consequent and can thus, exactly because they are equations, be
used for inferences in both directions, deductive and abductive. We can thus
infer the best utterance to convey a given intention in a given context from
the same rules we use for inferring the best intention given an utterance in the
same context. Moreover, we can perform pragmatic generation recursively:
if a pragmatic rule matches the high-level structure of an utterance, it may
be necessary to further abduce the best way to phrase individual clauses of
the utterance that were left open by the high-level rule.

As with pragmatic inference, the pragmatic generation algorithm (see
Algorithm 14) takes the robot’s current context {ΘC ,mc} and the set of
currently applicable rules R. Instead of the BoE of possible incoming utter-
ances {ΘU ,mu}, the algorithm takes a BoE of possible intentions desired to
be communicated {ΘI ,mi}, as determined by the dbgm. For each applicable
rule ruc→i ∈ R, the algorithm performs an uncertain modus ponens opera-
tion producing a BoE indicating which utterance would most likely generate
the desired intention according to rule r (line 6).

The algorithm then examines the structure of the resulting utter-
ance (line 7) to determine whether it should recurse on subsections of
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the utterance, recursing on the semantics bs associated with each vari-
able bv marked as suitable for recursion. For example, for the utter-
ance Want(self,Know(self, or(X,Y ))), it may be necessary to recurse
on the portions of the utterance bound to X and Y . Once the re-
sults of any such recursions (line 9) are integrated into the representa-
tion of the utterance to communicate u, the set of intentions ψ that
would be implied by utterance u are calculated (on line 12) by calling
getIntendedMeaning({ΘU ,mu}, {ΘC ,mc}, R) (i.e., Algorithm 13) with the
candidate utterance and the current context and rule set. The belief and
plausibility of u are then modulated by Bel(pi) and Pl(pi) for pi ∈ ψ. This
prevents the robot from accidentally communicating some proposition that
it does not actually believe to be true. Finally, the set of candidate utter-
ances S is returned, from which an utterance is chosen to communicate, e.g.,
by choosing the candidate with the highest degree of belief.

In this section we have discussed the basics behind our pragmatic gen-
eration algorithm. In the next section we will discuss an important use for
this algorithm: generating clarification requests.

7.2 Generating Clarification Requests

Imagine a robot named Cindy and a human named Bob. Cindy and Bob
are working together in a disaster relief scenario, and have just left a kitchen
containing two medical kits: one on a table, and one on a counter. Af-
ter driving down the hallway for a few minutes, Bob turns to Cindy and
asks “Can you go back to the kitchen and grab the medical kit?” In order
for Cindy to successfully fulfill Bob’s request, Cindy must resolve both the
pragmatic and referential ambiguity inherent in his question. Bob’s request
is pragmatically ambiguous as it could be interpreted both directly, i.e., as
a literal question as to Cindy’s abilities, or indirectly, i.e., as a command
to Cindy. Bob’s request is referentially ambiguous because it could refer to
either the medical kit on the table or the medical kit on the counter.

When humans are confronted with this sort of ambiguity, they typically
resolve it using clarification requests such as “Do you want me to retrieve
the medical kit that is on the counter or the medical kit that is on the ta-
ble?” (Tenbrink, Ross, Thomas, Dethlefs, & Andonova, 2010). In this work,
we seek to endow robots with this capability as well: We begin by discussing
previous work on clarification request generation in human-robot interaction
contexts. Then, we present a clarification request generation framework tai-
lored to human-robot interaction scenarios. Next, we present the results of
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a human-subjects experiment in which previous findings regarding human
preferences with respect to robot clarification request formulation are repli-
cated and refined. Then, we present an approach to clarification request
generation designed to align with human preferences. Next, we present a
proof-of-concept demonstration of our approach, and evaluate our approach
through human-subject experimentation. Finally, we discuss possible direc-
tions for future work.

7.2.1 Related Work

Clarification request generation has attracted a large amount of research
overall(DeVault, Kariaeva, Kothari, Oved, & Stone, 2005; DeVault & Stone,
2007; Purver, Ginzburg, & Healey, 2003; Traum, 1994), but relatively lit-
tle in situated contexts such as human-robot interaction. Recently, some
researchers have used information-theoretic techniques to identify random
variables which could have their entropy reduced if asked about. In such
work, clarification requests have taken the form of yes/no questions about
the properties of an object(Deits, Tellex, Kollar, & Roy, 2013; S. Hemachan-
dra, Walter, & Teller, 2014; Purver, 2004) or as open-ended specification
requests (e.g., “What do the words X refer to?”)(Purver, 2004; Tellex et al.,
2013).

Recent experimental evidence, however, suggests this may not be the
right approach to take(Marge & Rudnicky, 2015). This evidence suggests
that in human-robot interaction contexts, people prefer robots to list multi-
ple options rather than asking for confirmation about a single referent with
a yes/no question (cf. H. H. Clark, 1996). This is particularly striking as the
evidence suggests that people maintain this preference even when a yes/no
question would be more efficient (cf. S. Hemachandra, Walter, & Teller,
2014).

In contrast, Kruijff et al. present an approach in which robots can gen-
erate multiple-option clarification requests such as “Do you mean the blue or
the red mug, Anne?” through a continual planning approach(Kruijff, Bren-
ner, & Hawes, 2008). This approach, however, does not appear to be able
to account for social context, uncertainty, or ignorance, and is only used for
generation. The ability to handle social context is crucial for enabling natu-
ral human-robot interactions, and typical human-robot interaction scenarios
are plagued by uncertainty and ignorance. An eldercare robot, for example,
is not likely to be familiar with every object in the home of the elder it is
assisting, nor is the robot likely to be familiar with every person who they
might refer to. Furthermore, even for the objects and people that the robot
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does know of, it is unlikely to have uncertainty-free knowledge of all of the
properties and relations involving those objects and people. We desire an
approach that is able to account for these missing factors, and which can be
used for both generation and understanding.

There has also been much previous work in developing general natural
language generation (NLG) systems. For example, Reiter et al. present an
NLG framework comprised of six stages: content determination, document
structuring, aggregation, lexical choice, referring expression generation, and
realization(Reiter, Dale, & Feng, 2000). It is unclear, however, whether such
frameworks are well suited to situated contexts. In human-robot interac-
tions, for example, NLG is often performed to solicit information, whereas
in non-situated contexts it is more typically performed to provide informa-
tion. For this reason, we propose the following alternate framework designed
specifically for clarification request generation in human-robot interactions.

7.2.2 A Framework for Clarification Request Generation

We identify five stages necessary for successful clarification request genera-
tion, as shown in Figure7.1: (1) uncertainty identification, (2) decision to
communicate, (3) utterance choice, (4) surface realization, and (5) speech
synthesis. In this section we describe the actions necessary at each stage.

Figure 7.1: Clarification Framework.

Uncertainty Identification

Suppose that in our original example, Bob had asked Cindy “Can you grab
the medkit?” During the stage of uncertainty identification, Cindy must de-
termine if she is unsure how to interpret any part of this utterance. This
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may be uncertainty as to what entities are being referenced, e.g., which med-
kit Bob is referring to, or uncertainty as to the speaker’s intentions, e.g.,
whether Bob wishes Cindy to bring him the medkit or whether he meant
something else by the utterance. Furthermore, this uncertainty may take
different forms (e.g. Stirling, 2010): the utterance may be ambiguous (e.g.,
if Cindy knows of multiple medkits) or the utterance may reveal ignorance
(e.g., if Cindy knows of no medkits, or is unsure whether a particular object
qualifies as a “medkit”).

Decision to Communicate

If a robot has identified a point in need of clarification, it must decide whether
it would be appropriate to actually ask for clarification. This decision will
depend on a variety of factors: Is it permissible for the robot to ask for
clarification1? Is the robot’s interlocutor likely to be able to provide clarifi-
cation? Would obtaining clarification really be the highest utility action at
the current time (compared to, e.g., exploration)? For example, if Cindy de-
termines there are actually two medkits that Bob could be referring to, but
while coming to this decision Bob has already engaged another teammate in
conversation, it may be necessary for Cindy to wait until this conversation
finishes before asking for clarification. Alternatively, it may be the case that
obtaining clarification for the point in question is of lower expected utility
than obtaining clarification on some other point, obtaining clarification in
some other way (e.g., exploration), or simply performing some other action.

Utterance Choice

Once a robot has decided to request clarification on a particular point, it
must determine what utterance form to use to communicate its request: de-
pending on the relationship between the robot and its interlocutor, and the
obligations of each party, certain utterance forms may be more or less ap-
propriate (Brown, 1987). For example, if Cindy is Bob’s subordinate, it may
be more appropriate to use an indirect request such as “Which medkit would
you like?”, whereas if Cindy is Bob’s superior, it may be more appropriate
to use a direct request such as “Tell me which medkit you would like.”

1Cf. work from Traum & Allen (1994) in which dialogue moves are made based on
obligations introduced by others’ utterances.
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Surface Realization

Once a robot chooses an utterance form to use, it must determine what words
to use (Garoufi & Koller, 2014; Stone, 2003). For example, if Cindy decides
to use an utterance of the form “Would you like [medkit1]”, she must choose
how to actually describe medkit1, e.g., by referring to it as “the medkit in
the kitchen” or perhaps as “the white medkit”. If one medkit is in front of
Cindy, it may be more appropriate to point to it and use a deictic expression
such as “this medkit.”

Speech Synthesis

Finally, once a robot determines what word to use, it must synthesize an
appropriate sound pattern.

7.2.3 Experimental Motivations

In developing a new HRI-oriented approach to clarification request genera-
tion, our primary goal is to account for the factors missing from previous,
non-HRI-oriented approaches. But we believe it is equally important to take
human preferences into account as part of the design process. We believe
that the previous work discussed thus far has not adequately considered what
type of utterances humans prefer to use and be used.

Specifically, there are three categories of human preferences that we hy-
pothesize humans will hold, and believe that these preferences should affect
the design decisions made when developing HRI-oriented clarification request
generation algorithms.

Design Hypotheses

1. Presentation of Options

Marge & Rudnicky (2015)’s research suggests that people prefer that
robots list options rather than ask yes/no questions. But clearly there
are limits to this preference. If a robot is asked “Could you get me some
ice cream?” It is unlikely that humans will prefer a robot that lists off
all twenty-seven available flavors instead of just asking “Which flavor
would you like?” We hypothesize (H1) that humans prefer options to
be listed only for a limited number of options.

2. Demonstration of Intention Understanding
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Similarly, many of the previous approaches have used clarification re-
quests that do not indicate understanding of the meaning of the sen-
tence. If a robot is asked “Could you get me some ice cream”, a robot
that replies “What do the words ‘ice cream’ refer to” or “Do you mean
‘the chocolate ice cream’ or ’the vanilla ice cream”’ does not allow its
interlocutor to discern whether their intention was understood (i.e.,
that they want ice cream brought to them), relative to utterances such
as: “Would you like me to get you the chocolate ice cream or the vanilla
ice cream?” In human-human dialogue, it is generally expected that
speakers will use utterances that serve to create and maintain common
ground with their conversational partners (see also Section 3.1.3). This
“grounding” process by which conversational partners stay on the same
page (H. H. Clark & Brennan, 1991) has been studied and exploited
in many human-robot interaction studies and scenarios (e.g. Kiesler,
2005; Mutlu, Terrell, & Huang, 2013; Stubbs, Hinds, & Wettergreen,
2007). We hypothesize (H2) that humans prefer clarification requests
that clearly demonstrate that their conversational partner has under-
stood their intentions.

3. Pragmatic Appropriateness

And finally, a robot that does generate clarification requests that reflect
their understanding of human intentions will almost certainly need to
use indirect speech acts(Searle, 1975) to create such clarification re-
quests (e.g., Would you like me to get you the chocolate ice cream or
would you like me to get you the vanilla ice cream?), as the direct alter-
natives (e.g., “I have an intention to know whether you want me to have
a goal to bring you chocolate ice cream or a goal to bring you vanilla
ice cream”) are hard to express without being overly verbose. Humans
may, paradoxically, have difficulty quickly inferring the intentions be-
hind direct, explicit utterances such as these, both because they are so
far removed from the more natural forms used in typical human-human
dialogue, but also because they likely will fail to conform with the con-
ceptual pacts humans will likely expect robots to follow within the local
dialogue due to principles of lexical entrainment (see also Section 3.1.3).
Furthermore, indirect phrasing is commonly used by humans in order
to achieve various socio-cultural goals (e.g. politeness); much previous
research has shown, as one might expect, that humans prefer robots
that are polite (Castro-González et al., 2016; Dautenhahn et al., 2005;
Nomura & Saeki, 2009; Salem, Ziadee, & Sakr, 2013, 2014) (see also
Section 6.2). We hypothesize (H3) that humans prefer clarification
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requests that are indirectly rather than directly phrased, and that are
thus more pragmatically appropriate.

We will now present the results of a human subjects experiment de-
signed to test our three hypotheses.

Methodology

Participants were recruited using Amazon Mechanical Turk (20 Male, 10
Female, mean age 32.67). Each participant was asked seven simple questions,
presented in a randomized order. Participants were told to imagine that they
have commanded a robot to “Pick up the mug” in a scenario in which there
are several mugs on a table. Each question then differed in the number of
mugs (of different colors) that were on the table, and how the robot chose
to ask for clarification; for each question, two ways of asking for clarification
were presented, and participants were asked to indicate which of the two
options they would prefer the robot to use.

The first five questions evaluated our first hypotheses: in each case, par-
ticipants chose between an option that listed out all options (ranging from
“Would you like the red mug or the orange mug?” to “Would you like the red
mug or the orange mug or the yellow mug or the green mug or the blue mug
or the purple mug?”) and a catch-all option (“Which mug would you like?”).

The sixth question evaluated our second hypothesis: participants chose
between an option that indicated understanding of the speaker’s goals
(“Would you like the red mug or the green mug?”) and an option that did
not (“Do you mean the red mug or the green mug?”).

The last question evaluated our third hypothesis: participants chose be-
tween a pragmatically appropriate option (“Would you like the red mug or
the blue mug?”) and a pragmatically inappropriate option (“I have an inten-
tion to know if you want me to have a goal to bring you the red mug or the
blue mug.”).

Results

We will now examine the results of this experiment, and the preferences
those results suggest.

1. Presentation of Options

Our results show that 70% of participants preferred options to be listed
when there were only two options. But for more than two options, this
number rapidly shrank. Only 20% of participants preferred options
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to be listed when there were three options, and preference for listing
all options fell between 10 and 13% when more options were listed.
This confirms but clarifies the previous findings of Marge & Rudnicky
(2015), and suggests that robots likely do not need mechanisms for
listing more than two options when there is referential ambiguity (H1).

2. Demonstration of Intention Understanding

Our results show that 80% of participants preferred the option
that indicated understanding of their goals, supporting our second
hypothesis (H2).

3. Pragmatic Appropriateness

Our results show that 93% of participants preferred the pragmatically
appropriate option, supporting our third hypothesis(H3).

Discussion

The results of this experiment suggest three design recommendations: (D1)
When phrasing clarification requests, robots should not present all clarifi-
cation options to their interlocutors unless there are only two such options;
(D2) When phrasing clarification requests, robots should use phrasings that
indicate that they understand the goals of their interlocutors; and (D3)
When phrasing clarification requests, robots should use pragmatically ap-
propriate phrasings.

7.2.4 Generating Clarification Requests to Resolve Inten-
tional Ambiguity

In this section, we will demonstrate how the previously presented algorithms
for pragmatic understanding and pragmatic generation can be used within
the presented clarification request generation framework in order to fulfill
the design recommendations suggested by the experiment presented in the
previous section.

Approach

Recall that in the previous chapter, pragmatic inference resulted in a set of
intentions implied by utterance u, which was returned to DIARC’s dbgm.
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Here, the level of uncertainty associated with these intentions must be as-
sessed: for each intention i ∈ ψ on uncertainty interval [αi, βi], a clarification
request is generated if λ(αi, βi) < Λ, where λ is the uncertainty measure orig-
inally presented in Section 6.4.1, and presented again here for clarity, and Λ
is some threshold (e.g., 0.1).

λ(α, β) = 1 +
β

γ
log2

β

γ
+

1− α
γ

log2
1− α
γ

where γ = 1 + β − α.

For example, consider a scenario in which the robot is unsure which of
two contexts it is in. In the first context, a particular statement should be
interpreted as a request for information, and in the second context, it should
be interpreted as an instruction. In this case, the robot will ask “Should I
<perform the intended action> or would you like to know <the intended
information>?” This demonstrates the ability for the robot to exploit prop-
agated uncertainty to identify and resolve uncertainties and ambiguities.

A similar process can also be employed directly before pragmatic infer-
ence: after nlp produces set of surface semantics s, those semantic interpre-
tations are analyzed using the λ ambiguity measure. If λ(αP , βP ) < Λ for
semantic predicate p with uncertainty interval [αP , βP ], a request to verify
what was said is sent to nlg, which generates and communicates a realization
of the form “Did you say that <s>” in which case the uncertain semantics
are not passed on for pragmatic analysis.

Demonstration

Now that we have presented this use case for natural language generation,
we are ready to present a proof-of-concept demonstration of our pragmatic
generation algorithm, within that use case. To demonstrate the operation of
the proposed inference algorithm for natural human-robot interactions, we
consider a dialogue interaction that occurs as part of a Search-and-Rescue
Task. The interaction starts with an interlocutor (“Jim”) telling the robot
“Commander Z needs a medical kit.” The utterance and semantic represen-
tation produced by nlp for this statement is

Statement(Jim, self, needs(commander_z,medkit))[α, β].

We will now examine how the dialogue between Jim and the robot plays
out under two different combinations of values for α and β, corresponding
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with low and high of uncertainty accrued by the early NL components (up
to semantic parsing). These two conditions are denoted2

Ulow (with uncertainty interval [0.95, 1.00]),
Uhigh (with uncertainty interval [0.62, 0.96]).

Furthermore, we will assume three settings that differ with respect to the
robot’s assumptions regarding its interlocutor’s beliefs about who is subor-
dinate to whom. In the first case (denoted Cjim), the robot believes that
Jim believes that the robot is subordinate to him. In the second case (de-
noted Crobot), the robot believes that Jim believes that he is subordinate to
the robot. In the third case (denoted Cunk), the robot is unsure who Jim
believes to be the subordinate between the pair of them. The differences in
these scenarios are reflected in differences in the knowledge base of the robot
at the start of the task:

Cjim locationof(breakroom,medkit)[0.80, 0.90]
Believes(Jim, subordinate(self, Jim))[0.80, 0.90]
Believes(Jim, subordinate(Jim, self))[0.10, 0.20]

Crobot locationof(breakroom,medkit)[0.80, 0.90]
Believes(Jim, subordinate(self, Jim))[0.10, 0.20]
Believes(Jim, subordinate(Jim, self))[0.80, 0.90]

Cunk locationof(breakroom,medkit)[0.80, 0.90]
Believes(Jim, subordinate(self, Jim))[0.50, 0.60]
Believes(Jim, subordinate(Jim, self))[0.40, 0.50]

In all conditions, the robot uses the following set of pragmatic rules3:

1. Stmt(A,B,Want(A, bring(C,D,E)))→
Goal(C, bring(C,D,E))[0.95, 0.95]

2. AskWH(A,B, or(C ′, D′))→
ITK(A, or(C ′, D′))[0.95, 0.95]

3. Stmt(A,B,Want(A,Know(A,C)))→
ITK(A,C)[0.85, 0.85]

4. Instruct(A,B,C)→
Goal(B,C)[0.90, 0.90]

2All beliefs and plausibilities listed in this section are rounded to two decimal places
for the reader’s convenience.

3Here intentions are represented as “Goal” and intentions to know are presented as
“ITK(A,B)”, e.g., (Perrault & Allen, 1980).
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5. if Bel(A, subordinate(B,A)):
Stmt(A,B, needs(C,D))→
Goal(B, bring(B,D,C))[0.80, 0.90]

6. if Bel(A, subordinate(B,A)):
Stmt(A,B, needs(C,D))→
not(ITK(A, locationof(E,D)))[0.80, 0.90]

7. if Bel(A, subordinate(A,B)):
Stmt(A,B, needs(C,D))→
ITK(A, locationof(E,D))[0.80, 1.00]

8. if Bel(A, subordinate(A,B)):
Stmt(A,B, needs(C,D))→
not(Goal(B, bring(B,D,C)))[0.80, 1.00]

In both Uhigh and Ulow, the semantics are passed to pinf, which yields
the following intentions for each combination of U and C conditions:

Cjim
Ulow Goal(self, bring(self,medkit, commander_z))[0.88, 0.95]

ITK(Jim, locationof(X,medkit))[0.05, 0.12]
Uhigh Goal(self, bring(self,medkit, commander_z))[0.88, 0.93]

ITK(Jim, locationof(X,medkit))[0.07, 0.12]

Crobot
Ulow Goal(self, bring(self,medkit, commander_z))[0.05, 0.12]

ITK(Jim, locationof(X,medkit))[0.88, 0.95]
Uhigh Goal(self, bring(self,medkit, commander_z))[0.07, 0.12]

ITK(Jim, locationof(X,medkit))[0.88, 0.93]

Cunk
Ulow Goal(self, bring(self,medkit, commander_z))[0.47, 0.67]

ITK(Jim, locationof(X,medkit))[0.33, 0.54]
Uhigh Goal(self, bring(self,medkit, commander_z))[0.50, 0.62]

ITK(Jim, locationof(X,medkit))[0.38, 0.50]

These intentions are then passed to the dbgm, which performs different
operations based on the uncertainty condition. In Cunk, the high level of
uncertainty necessitates a clarification request, so the dbgm forms intention
i:

ITK(self, or(ITK(Jim, locationof(X,medkit)),
Goal(self, bring(self,medkit, commander_z))))[1.0, 1.0].
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Bel(i) and Pl(i) are both 1.0, since the robot can be sure of its own
intentions. Given i, pgen produces:

ITK(self, or(Want(Jim,Know(Jim, locationof(X,medkit))),
Want(Y, bring(self,medkit, commander_z))))[0.95, 1.0].

nlg then translates this intention to “Would you like to know where
to find a medkit? or would you like me to bring commander z a medkit?”
Suppose Jim responds “I’d like to know where to find one.” pinf will produce:

Ulow ITK(Jim, locationof(X,medkit))[0.81, 1.0]
Uhigh ITK(Jim, locationof(X,medkit))[0.52, 1.0]

In Uhigh, the intention of the utterance resulting from pinf is deemed
too uncertain since λ(0.52, 1.00) < 0.1, so the robot asks for clarification:
“Would you like to know where to find a medkit?” In Ulow, this intention is
not deemed uncertain since λ(0.81, 1.00) > 0.1, so the intention is instead
added to the robot’s set of beliefs. This behavior, and the actions that
follow, are identical to how the robot responds to the original utterance
in scenario Crobot. Since Jim has not yet been provided an answer to his
question, the robot attempts to answer him. The robot first queries its
knowledge base to determine if it knows the answer. If it had not known the
location of a medkit, it would have generated a response with the semantics

Stmt(self,Jim,not(Know(self,locationof(X,medkit))))[1.0,1.0].

In this scenario, the robot does know the answer as it has
locationof(breakroom,medkit)[0.80, 0.90] in its knowledge base, so it
forms an utterance with semantics

Stmt(self,Jim, locationof(breakroom,medkit))[0.8,0.9].

nlg then translates this to “A medkit is located in the breakroom.”
Suppose the robot’s interlocutor instead responded to the initial clarifi-

cation request by saying “Bring him one.” pinf will produce:

Ulow Goal(self, bring(self,medkit, commander_z))[0.86, 1.0]
Uhigh Goal(self, bring(self,medkit, commander_z))[0.55, 1.0]
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This intention is not deemed uncertain in either condition4 so the inten-
tion is instead added to the robot’s set of beliefs. This behavior, and the
actions that follow, are identical to how the robot responds to the original
utterance in scenario Cjim. The dbgm then determines which action will
accomplish the goal and executes that action, setting forth to retrieve the
medkit. A video of this interaction in operation on a Willow Garage PR2
robot can be viewed at https://www.youtube.com/watch?v=wDrz44YyI58.

The goal of the demonstration example on a real robot in a real-world
setting was two-fold. First, we intended to show the potential of the proposed
algorithms for making sound deductive and abductive pragmatic inferences
based on human utterances and context that go beyond the direct interpreta-
tion of command-based instructions. And second, we wanted to demonstrate
that the algorithms have been fully integrated into an operational cognitive
robotic architecture. Yet, the demonstration is clearly not an evaluation and
should not be taken as such. While an evaluation of the integrated system
will eventually be critical, we believe that it would be premature at present
given that we do not even know how to best evaluate such integrated sys-
tems (e.g., how many dialogue-based scenarios would we have to set up and
how many pragmatic rules would we have to examine to be able to make a
case about how well the system works and how could we be sure that the
employed data was sufficient?). Instead, the current system can be seen as a
proof-of-concept that the proposed algorithms do not only work in principle
and isolation, but in real-time as part of an integrated robotic architecture.

As a next step towards a full evaluation in the future, we are interested
in improving several aspects of the current system, including how pragmatic
rules can be acquired in a way that does not require the system to learn from
large data sets offline. Specifically, we are interested in using NL instructions
to learn rules quickly and to use reinforcement methods (based on feedback
from human interlocutors) to adapt the uncertainty values associated with
the learned rules. This way of allowing for online learning of pragmatic in-
terpretations will enable adaptive trainable systems that can quickly acquire
new knowledge on the fly as is often required in human-robot interaction
domains.

In addition, it is interesting to note (although not strictly germane to
this dissertation) that while the Dempster-Shafer theoretic model UC → I
presented in this section was applied to indirect speech understanding, it
also has applications to other areas as well. Recently, researchers from our

4One could argue that the uncertainty in Uhigh is high enough to warrant a clarification
request. One may raise Λ to achieve such behavior, if so desired.

https://www.youtube.com/watch?v=wDrz44YyI58
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lab have taken this model and applied it to problems in affordance reasoning
as well (Sarathy & Scheutz, 2015, 2016a,b).

We are also interested in extending pinf with plan reasoning capabili-
ties so that it can better interpret non-idiomatic indirect speech acts, and
extending pgen so that it can use Grice’s conversational maxims when choos-
ing which utterance to communicate (e.g., analogous to (Briggs & Scheutz,
2013)).

7.2.5 Generating Clarification Requests to Resolve Referen-
tial Ambiguity

In the previous section, we described how our pragmatic reasoning system
could be used to resolve pragmatic (i.e, intentional) ambiguity. In this sec-
tion, we will discuss how it can also be used to resolve referential ambiguity.
This is a critical capability when a reference resolution component such as
that introduced in Chapters 3-4, as they may produce multiple candidate
referential hypotheses for an incoming utterance.

Because this capability involves an integration of the work seen through-
out this dissertation (reference resolution capabilities from Chapters 3-4,
referring expression generation capabilities from Chapter 5, and pragmatic
understanding and generation capabilities from Chapters 6-7, we will first
step through the integration of these components, and explicitly describe
how this integration implements each of the five stages of the framework
described in Section 7.2.2. In doing so, we will also discuss special consid-
erations which need to be made during this integration, due to the use of
different uncertainty management frameworks, and due to the use of iden-
tifiers representing memory traces to referents within our utterance repre-
sentations. Next, we will provide a proof-of-concept demonstration of the
behavior of this integrated system. Finally, we will present the results of a
human-subject experiment in order to evaluate our approach.

Implementation of Framework Stages

First, we will describe how the the five stages of our clarification request
generation framework are implemented in the DIARC architecture.

1. Uncertainty Identification

The first step in our clarification request generation framework is iden-
tifying whether or not there is uncertainty that needs to be clarified.
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We achieve this step by using a reference resolution framework to de-
termine the set of referential candidates and their respective levels of
uncertainty, and then providing those candidates to a pragmatic in-
ference component which produces a set of pragmatic interpretation
candidates whose uncertainty levels depend on the uncertainty levels
of the referential candidates. In this section, we will discuss this process
at length, as well as the specific integration challenges which needed
to be addressed.

Our approach uses the referential processing framework presented in
Chapter 3 to facilitate access to information about the various entities
known of by a robot. As previously described, this framework uses a set
of “consultants” to integrate a central, domain-independent open-world
reference resolution component with a set of heterogeneous knowledge
bases distributed throughout a robot architecture, potentially resid-
ing on multiple computers. In our instantiation of this framework, we
make use of gh-power: the Givenness Hierarchy-theoretic reference
resolution algorithm presented in Chapter 4. Based on the theoretical
linguistic framework presented by J. K. Gundel, Hedberg, & Zacharski
(1993), gh-power treats DIST-POWER’s distributed memory sys-
tem as a Long Term Memory Store, and builds on top of this system a
set of hierarchical caches representing models of the robot’s Discourse
Context, Short-Term Memory, and Focus of Attention. This allows
gh-power to resolve a wide array of referring expressions, including
anaphoric and deictic expressions. And, like the non-GH-theoretic ver-
sion of the DIST-POWER algorithm, gh-power is designed to operate
in both uncertain and open worlds.

GH-POWER uses the logical form of a referring expression to (1) hy-
pothesize new representations for previously unknown referents, and
(2) produce a distribution P (Φ | Γ,Λ); that is, the probability of suc-
cessful satisfaction conditioned on binding hypotheses from variables
to known referents:

{Γ0 = {γ00 . . . γ0n} . . . ,Γm = {γm0 . . . γmn}}

and semantic parse hypotheses5:

{Λ0 = {λ00 . . . λ0n} . . . ,Λm = {λm0 . . . λmn}}.
5While the actual parser we use only currently returns a single best parse, we use this

notation to accommodate other parsers which might not share this restriction.
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For example, suppose Bob asked Cindy “Can you grab the med-
ical kit?” This may be parsed by Cindy into something like
QuestionY N(bob, self, can(self, grab(self,X))) with additional se-
mantic content Λi = {medkit(X)}. If Cindy is 70% sure that the
object with identifier m5 is a medical kit, reference resolution will pro-
duce:

P (Φ = True |Γ = {X → m5},Λ = {medkit(X)}) = 0.7

All sufficiently probable referential hypotheses are then used to cre-
ate a set of bound utterances with supplemental semantics (BUSSes)
Ψ = {ψ0 . . . ψn}. Each ψi ∈ Ψ is associated with a unique suf-
ficiently probable binding γi from variables found in the parsed
utterance form and its supplemental semantics to entities found
in Long Term Memory. For example, the BUSS associated
with form QuestionY N(bob, self, can(self, grab(self,X))) semantics
{medkit(X)} and binding {X → m5} would be:

{QuestionY N(bob, self, can(self, grab(self,m5))) ∧medkit(m5)}.

One could then create a distribution over this set of BUSSes, where
P (ψi) = P (Γi,Λi | Φi) using, e.g., Bayes’ Rule, if the next compo-
nent in the natural language pipeline used a Bayesian approach. In
fact, the next component in the pipeline (i.e., the pragmatic reasoning
component) uses the more general Dempster-Shafer theoretic approach
described in this and the previous chapter, and thus another approach
must be taken.

Of course, not all of a robot architecture’s components are likely to be
DS-theoretic. For some components, distributional information may be
readily available, encouraging the use of a Bayesian approach. To al-
low each architectural component to use the knowledge representation
and uncertainty management approaches most conducive to its own
operation, we must thus develop mechanisms that allow those compo-
nents to integrate seamlessly. In the rest of this section, we will (1)
review how DS theory is used in our architecture, and (2) describe the
technique we use for interoperability between our DS-theoretic prag-
matic reasoning component and our probabilistic reference resolution
component.
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We take the following DS-theoretic approach. Let Θ = {θ0, . . . , θn} be
a Frame of Discernment (FoD) where each θi is a mutually exclusive
singleton hypotheses described by ψi. Recall also that each ψ is a
bound utterance with supplemental semantics that can partitioned into
a set of semantics Λ a set of bindings Γ, and a decision variable Φ that
takes the value True if and only if Λ is satisfied by set of bindings Γ.

Let m(·) : 2Θ → [0, 1] be a basic belief assignment which assigns to
each θi a mass:

1

Z
P (Φi | Γi,Λi), (7.1)

where

Z =

|Θ|−1∑
j=0

P (Φj | Γj ,Λj).

As mass is only assigned to singleton sets, Bl(θi) = Pl(θi) = m(θi).
The confidence interval associated with each hypothesis according to
this mass assignment is identical to [Bl(Γi,Λi | Φi), P l(Γi,Λi | Φi)] as
calculated using Heendeni, Premaratne, Murthi, Uscinski, & Scheutz
(2016)’s DS-theoretic equivalent to Bayes’ Rule (Eq.7.2), assuming a
uniform prior distribution Bl(Γ,Λ) = Pl(Γ,Λ) = 1

|Θ| .

Bl(A|B) ≥ Bl(B|A)Bl(A)

Bl(B|A)Bl(A) + Pl(B|Ā)Pl(Ā)
;

Pl(A|B) ≤ Pl(B|A)Pl(A)

Pl(B|A)Pl(A) +Bl(B|Ā)Bl(Ā)
.

(7.2)

Before we move on, it is important to note that hypotheses with prob-
abilities below a given threshold are pruned out during the resolution
process, as described in our previous work described in Chapter 4. This
has the effect of concentrating extra probability mass in the remaining
hypotheses, leading, respectively, to higher beliefs and plausibilities.

The result of the above calculations is a Frame of Discernment whose
singleton hypotheses can be described by the logical conjunctions (i.e.,
BUSSes) ψ0 . . . ψn. Remember that each BUSS contains both a parsed
utterance form and a set of supplemental semantics, bound using a
single candidate variable binding. The next component in the DIARC
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NL Pipeline (i.e., pinf) only uses the utterance form, however, and
there may be multiple hypotheses in the resulting Frame of Discern-
ment Θ that have the same utterance form but different supplemental
semantics.

Note, however, that each ψ only uses those bindings in Γi associated
with the utterance’s root node (typically the formula representing the
verb). There may be variables in V that had multiple possible bindings,
but which do not appear in the utterance’s root node, and thus there
may be identical hypotheses within our frame of discernment.

For example, if Bob had asked “Can you grab the medkit that is
near the book?”, and one candidate medkit (m1) is actually near
two books (m2 and m3), we could have two hypotheses which
can be described by BUSSes that have the same utterance form
(e.g. QuestionY N(bob, self, grab(self,m1))) but different supple-
mental semantics (e.g., {medkit(m1) ∧ book(m2) ∧ near(m1,m2)} vs
{medkit(m1) ∧ book(m3) ∧ near(m1,m3)}.
We thus cluster these hypotheses into sets C0, . . . , Cn such that all
hypotheses associated with each set are described by BUSSes that have
the same utterance form. For example, if we have three singleton
hypotheses {θ0, θ1 θ2}, and ψ0 and ψ1 have the same utterance form,
C = {{θ0, θ1}, {θ2}}.
We can now split our Frame of Discernment Θ into a set of | C |
“binary” FoDs, one for each cluster Ci. Each binary FoD itself has
two hypotheses: (1) that the utterance form describing all hypotheses
in cluster Ci does represent what was communicated, and (2) that it
does not. This splitting has no theoretical ramifications, but facilitates
easier integration with pinf. Because each cluster is mutually exclusive
from all other clusters, each binary FoD can be represented entirely by
the bound utterance structure:

〈utterance(ψi), Bl({Ci0 . . . Cin}), P l({Ci0 . . . Cin})〉.

calculated as

〈utterance(ψi),
|Ci|−1∑
j=0

m(Cij ),

|Ci|−1∑
j=0

m(Cij )〉 (7.3)

Suppose Θ = {θ0, θ1, θ2} and Ψ = {ψ0, ψ1, ψ2}, where
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ψ1 =(QuestionY N(bob, self, can(self, grab(self,m1)))

∧medkit(m1) ∧ book(m2) ∧ near(m1,m2)),

ψ2 =(QuestionY N(bob, self, can(self, grab(self,m1)))

∧medkit(m1) ∧ book(m3) ∧ near(m1,m3)),

ψ3 =(QuestionY N(bob, self, can(self, grab(self,m4)))

∧medkit(m4) ∧ book(m2) ∧ near(m4,m2)),

and assume, for example, a DS-theoretic Basic Belief Assign-
ment(BBA) that assigns probability masses to each hypothesis in
Θ according to the following table, where Bl and Pl are belief and
plausibility – upper and lower bounds on the expected probability of
each hypothesis:

Hypothesis Mass Bl Pl
∅ 0.0 0.0 0.0
{θ0} 0.2 0.2 0.2
{θ1} 0.3 0.3 0.3
{θ2} 0.5 0.5 0.5
{θ0, θ1} 0.0 0.5 0.5
{θ1, θ2} 0.0 0.8 0.8
{θ2, θ0} 0.0 0.7 0.7
{θ0, θ1, θ2} 0.0 1.0 1.0

Because ψ0 and ψ1 have the same utterance form, C = {{θ0, θ1}, {θ2}}.
From this, the following set of bound utterance structures will be cre-
ated:

{〈QuestionY N(bob, self, can(self, grab(self, o1))),

Bl({θ0, θ1}), P l({θ0, θ1})〉,
〈QuestionY N(bob, self, can(self, grab(self, o4))),

Bl({θ2}), P l({θ2})〉} =

{〈QuestionY N(bob, self, can(self, grab(self, o1))), 0.5, 0.5〉
〈QuestionY N(bob, self, can(self, grab(self, o4))), 0.5, 0.5〉}
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The set of bound utterance structures is sent to pinf, which uses con-
text to determine the intentions underlying utterances (as described
in the previous chapter), producing a set of intentional structures
〈I,Bl(I), P l(I)〉. If Núñez’ uncertainty measure (Núñez et al., 2013))
(Eq.7.4) returns a value below some threshold, such as 0.1 (which will
become increasingly likely as the difference between Bl(I) and Pl(I)
grows and as the center of the interval becomes closer to 0.5), intention
I is deemed in need of clarification.

1+
β

K
log2

β

K
+

1− α
K

log2
1− α
K

where K = 1 + β − α.
(7.4)

pinf then formulates an intention-to-know (itk) which of these inten-
tions is correct, denoted itk(s, or(i0, i1, . . . , in)).

Before integration with GH-POWER, pinf only handled pragmatic un-
certainty. But because pinf now receives a set of candidate utterance
forms, each of which may have different argument bindings, it now
automatically captures referential uncertainty as well.

Before we move on, we would like to point out that that because DI-
ARC’s reference resolution component handles open worlds, instances
in which interlocutors refer to previously unknown entities do not au-
tomatically generate clarification requests. For example, if the robot
is told “Go to the room at the end of the hall” and did not previously
know of a room at the end of the hall, it will not ask for clarification,
but will rather hypothesize a new location, and carry on.

We do not regard such situations as referentially ambiguous. Here, the
robot knows what entity is being referred to: a previously unknown
room at the end of the hall. It may, of course, be valuable for the
robot to ask for more information about this location, but we believe
such a decision is not appropriate at the stage of processing we discuss
in this section.

2. Decision to Communicate

Currently, any intention-to-know (itk) formulated during the previ-
ously described stages of processing is automatically asserted into the
robot’s knowledge base, triggering a decision to communicate this in-
tention once it is acceptable for the robot to accept the conversational
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turn. When this decision is made, the itk is passed to the pragmatic
generation component for processing.

3. Utterance Choice

The robot must now determine a contextually appropriate way to for-
mulate its intention at the utterance level. This is accomplished once
again by pgen, which uses the same set of rules for generation as it uses
for inference. In our first experiment, we observed that if there were
more than two options, listing those options was dispreferred over a
more general question. Thus, if we are to send a clarification request to
pgen that has semantics of the form itk(self, or(option1, ...optionn)),
we first check whether or not n is greater than the acceptable
number of candidates to list, i.e., two. If n = 2, this intention is
sent directly to pgen. Otherwise, all options are unified into a
single predicate whose only bound arguments are those that are
identical for all options. For example, if {option1, option2, option3} =
{need(jim, objects1), need(jim, objects2), need(jim, objects3)},
these will be unified into need(jim, ?), and the intention
itk(self, need(jim, ?)) will be sent to pgen instead.

Using DS-theoretic logical operators, pgen is able to determine a set of
candidate utterance forms, each of which is forward-simulated through
pragmatic inference in order to ensure that the agent does not acci-
dentally communicate anything it does not actually believe to be true
as a side effect of communicating its primary illocutionary point. The
best candidate utterance is then sent to NLG for surface realization.

This processing step is not typically included in traditional NLG frame-
works, which do not typically need to account for social context or di-
alogue context. They instead typically include a document structuring
(cf. Reiter, Dale, & Feng, 2000) stage in which the agent determines
the order in which to convey multiple utterances. Because clarification
request generation in human-robot interaction typically only involves
a single utterance, we do not currently handle this step, but it will be
an important topic for future work. A robot may, for example, need
to preface a clarification request by stating what parts of an utterance
it did understand.

4. Surface Realization and Speech Synthesis

Once an appropriately phrased utterance form is chosen by the prag-
matic generation component, that utterance is sent to the Natural Lan-
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guage Generation component for Surface Realization. First, that com-
ponent chooses sets of properties to use to describe each of the utter-
ance’s referents, using the DIST-PIA algorithm presented in Chapter 5.
For example, consider the utterance form

QuestionWH(self, bob, or(need(bob, grab(self,m1)),

need(bob, grab(self,m2)))).

In this utterance form, there are two referents that must be described:
m1 and m2. The referent m1 may be described using the properties
{mug(X)∧white(X)}, and m2 may be described using the properties
{mug(X) ∧ black(X) ∧ large(X)}.

The utterance form and sets of properties are then translated into
raw text using the open source SimpleNLG package, producing, for
example, “Do you need the white mug or do you need the large black
mug?” when there are two referential candidates, and producing, for
example, “Which one do you need?” in the case of a larger number
of referential candidates. The open source MaryTTS package is then
used to synthesize this text into an audio form that is produced by the
robot.

Demonstration

To demonstrate the operation of the presented approach, we present a proof-
of-concept interaction that occurs in a simulated environment. This demon-
stration highlights the full implementation of all stages of the clarification
request generation framework through components of the DIARC architec-
ture. Specifically, this demonstration uses the components of the DIARC
architecture shown in Figure 7.2. In addition to components responsible
for the simulation of a Pioneer robot within an office environment, our con-
figuration used the following components: asr (which performs simulated
speech recognition), nlp (which uses the C&C parser within a GH-theoretic
framework), power (i.e., REX, as described in Chapter 3), agents, spex
and objects (GH-POWER Consultants) providing information about peo-
ple, places, and things), dialogue (which, performs dialogue management,
and includes pinf and pgen as submodules), the belief manager (which
allows the dialogue to assess its current context), and action (i.e., the
goal manager). Of these components, the power, nlp, nlg, and dialogue
components are central to the integrated approach presented in this section.
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Figure 7.2: Clarification Request Architecture Diagram

Architecture Diagram. Knowledge base components are depicted in blue;
linguistic components are depicted in green; simulation components are de-
picted in purple; the action manager is depicted in yellow.

The interaction begins with the speaker saying to the robot “I need
the medkit” in an environment in which the robot knows of two medkits,
one red and one white. asr sends this sentence to nlp, which parses the
utterance into the dependency tree:

[rootVB need [ncsubj I] [dobj medkit [det the]]].

From this tree, nlp extracts root semantic content need(X1, X2), with
utterance type Statement, additional semantic content: {speaker(X1) ∧
medkit(X2)}, and presumed cognitive statuses {X1 → definite,X2 →
definite}.

Using this information, GH-POWER searches for the referents to bind to
X1 andX2; forX1, GH-POWER finds a single probable candidate: agents1,
with probability 1.0; for X2, two candidates are found: objects1, with proba-
bility of satisfaction 0.82, and objects2, with probability of satisfaction 0.92.
These bindings are then used to create the following bound utterances5:

5Here, agent1 is changed to the name of that agent for the sake of dialogue processing.
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{Statement(bob, self,need(bob, objects1)),

Statement(bob, self,need(bob, objects2))}

with corresponding probabilities6 0.82 and 0.92, respectively. These are
normalized (see Eq.7.1) and used to create DS-theoretic bound utterance
structures, which are passed to dialogue:

{〈Statement(bob,self, need(bob, objects1)), 0.471, 0.471〉,
〈Statement(bob,self, need(bob, objects2)), 0.529, 0.529〉}

pinf and pgen possess the rule:

〈Statement(X,Y, need(Z,W ))⇒ goal(Y, bring(Y,W,Z)), 0.9, 0.99〉, (7.5)

indicating that the robot is between 90 and 99% confident in the rule;
because the antecedent of this rule matches the utterance form of each bound
utterance structure, uncertain Modus Ponens is applied in both cases, pro-
ducing the set of intentional structures:

{〈goal(self, bring(self, objects1, bob)), 0.424, 0.576〉,
〈goal(self, bring(self, objects2, bob)), 0.476, 0.524〉}

Note that at this point, belief no longer equals plausibility: while the robot
may not have encoded any ignorance with respect to what utterance was
heard, ignorance encoded with respect to the context and rules the robot
uses for pragmatic inference are reflected in the uncertainty intervals of the
rules’ consequents, thus painting a better picture of how much the robot
truly knows about its interlocutor’s intentions.

Núñez’ uncertainty rule (see Eq.7.4) determines that both of these inten-
tions are highly uncertain. dialogue thus determines its own intention to
know which is correct, encoded as the structure:

〈itk(self, or(goal(self, bring(self, objects1, bob)),

goal(self, bring(self, objects2, bob)))), 1.0, 1.0〉

To decide how to communicate this intention, the bound utterance structure
is passed through the pragmatics system in reverse, using a rule of the form:

〈QuestionWH(X,Y, or(Z,W ))⇒ itk(X, or(Z,W )), 0.95, 0.95〉, (7.6)

6All beliefs and plausibilities in this section are rounded.
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Our approach allows recursive generation, and thus Eq.7.6 is chained with
Eq.7.5 to produce:

QuestionWH(self, bob, or(need(bob, objects1), need(bob, objects2))).

This utterance is then sent to our NLG component for generation of referring
expressions for “bob”, “objects1” and “objects2”, and subsequent realization of
the entire expression. This produces the text “Do you need the white medkit
or do you need the red medkit?” which is then synthesized and output by
the robot.

To evaluate our approach, we conducted a human-subject experiment
similar to Experiment One. This experiment was comprised of two parts:
(1) a data collection stage, and (2) an evaluation stage.

Data Collection Stage

First, I will describe the data collection stage of our human subjects experi-
ment.

1. Experimental Design

We first created a tabletop scene containing four differently colored
waterbottles, four differently colored markers, and four differently col-
ored notebooks, for a total of twelve objects, as seen in Figure 7.3. For
each of these three object types, we took photographs of the scene in
which zero, one, or two of that object type were taken away. This pro-
duced nine tabletop scenes, three of which contained identical object
arrangements (i.e., those scenes in which no objects were removed).

In our data collection experiment, each participant was shown one of
these nine images at random, with a caption describing the partici-
pant’s task, followed by a text box. For example, for the image in
which three of the four waterbottles was shown, the following caption
was used:

“You have been told ‘I need the bottle!’ and would like to fulfill the
speaker’s request. However, as you can see, there are three bottles on
the table: a silver bottle, a green bottle, and a blue bottle. Please type
a sentence you would use to ask the speaker for clarification, so that
you will know what bottle to pick up.”
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Table 7.1: Utterance forms generated in Experiment Two, Part One, and
chosen between in Experiment Two, Part Two

Generator # Utterance Generated in Part One Result
Robot 2 Do you need __ or do you need __? 9.4%
Human 2 Do you need __ or __? 45.3%
Human 2 What color __ do you need? 22.6%
Human 2 What color __ do you want? 22.6%
Robot 3 Which one do you need? 23.7%
Human 3 Which color __ do you need? 33.9%
Human 3 Which color __? 23.7%
Human 3 Which color __ would you like? 18.6%
Robot 4 Which one do you need? 20.0%
Human 4 What color __ do you need? 24.3%
Human 4 Which color __ would you like? 22.9%
Human 4 Which color __? 21.4%
Human 4 What color is the __? 11.4%

Column 1 indicates whether each utterance form was generated by the pre-
sented approach or by a human in Part One. Column 2 indicates how many
suitable referents existed in the scene for which each utterance was gener-
ated. Column 3 indicates the generated utterance form, generalized across
noun phrases. In Part Two, blanks were filled in with referring expressions
generated by the REG algorithm presented in Chapter 5. For example, for
scenes in which the initial utterance was “I need the bottle”, the gaps in
the first two rows were filled with “the green bottle” and “the silver bottle”,
and the remaining gaps were filled with “bottle”. Column 4 indicates the
percentage of participants in Part Two who chose that utterance form as the
best utterance form to use to ask for clarification.

Similar captions were used for the other images. Once the participant
entered text into the text box, they were free to click to the next page,
and end the experiment.

2. Participation

Participants were recruited (53 Male, 39 Female) using Amazon
Mechanical Turk. Participants ranged in age from 20 to 77
(M=33.15,SD=8.94), and were paid $0.30 to participate. As a total of
92 participants were recruited, an average of 30.7 utterances were col-
lected for each grouping of scenes that had the same number of objects
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Figure 7.3: Tabletop Environment used in Experiment Two.

removed.

3. Results

All utterances collected in this stage were standardized with respect
to noun phrasing. For example, “Do you want me to pick up the silver
bottle or the blue bottle?” was reduced to “Do _ want _ to pick up _
or _ ?” All utterances within each cluster were grouped by identical
phrasing, and the three most common phrasings for each cluster were
selected (four in the case of a tie). The REG algorithm described above
and presented in Chapter 5 was then used to generate noun phrases
to fill into the previously created gaps, thus creating three to four ut-
terances for each image. Next, an additional utterance was generated
for each image using the approach presented in this section: for each
image, knowledge of the objects in the image was provided to the robot
architecture, and the utterance “I need the [name of object type]” was
said to a robot running the architecture. Because the architecture also
used the REG algorithm described above and presented in Chapter 5,
the utterances generated by our robot architecture had the same noun-
level phrasings as all other utterances, but a different utterance-level
phrasing. Thus, the end result of this stage was a set of thirty-nine
utterances that had unique phrasings at the utterance level but identi-
cal phrasings at the noun level. The thirteen utterances forms (before
referring expressions were filled in) are shown in Table7.1, Column 3.
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Evaluation Stage

Next, I will describe the evaluation stage of our human subjects experiment.

1. Experimental Design

In this stage, each participant was shown one of the nine tabletop
scenes created in the first stage, along with a caption such as: “Your
friend Alex says to you, ‘I need the bottle!’ Which of the following
sentences would be best to say to Alex, so that you will know which
bottle to give her?”

Each participant was then presented with the four to five utterances
associated with the presented image, in the form of buttons. Clicking
on one of the utterances moved the participant to the next page, and
ended the experiment.

2. Participation

Participants were recruited (94 Male, 88 Female) using Amazon Me-
chanical Turk. Participants ranged in age from 18 to 74 (M=34.55,
SD=11.16), and were paid $0.30 to participate. As a total of 182 par-
ticipants were recruited, an average of 20.22 data points were collected
for each scene.

3. Results

Robot-generated requests were chosen only slightly less frequently than
were human-generated requests: overall, robot-generated requests were
chosen 18.13% of the time, whereas each form of human-generated
request was chosen, on average, 24.67% of the time. Overall, this is a
positive result as it suggests that the algorithm overall did not generate
requests that were significantly worse than the requests that humans
used most frequently. A request-by-request breakdown of participants’
choices is shown in Table 7.1, Column 4.

But in fact, robot-generated requests stands to perform significantly
better than the majority of human-generated requests in the case where
there were exactly two options to disambiguate (the first section of Ta-
ble 7.1). At first glance, it appears that the robot-generated requests
were chosen significantly less frequently than were human-generated
requests. In this case, however, the robot-generated requests were
nearly identical to the top performing human-generated requests: the
robot-generated requests were simply more verbose, as they used a
conjunction at the clause level rather than the noun-phrase level. This
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suggests that if our approach had been modified to use conjunctions
at the phrase level, it would have outperformed the second- and third-
best human-generated requests combined. And in fact, we have since
made this modification, as we will later discuss.

Discussion

In our initial experiment (presented in Section 7.2.3), we observed that par-
ticipants dispreferred clarification requests that were insensitive to pragmatic
factors, that did not indicate understanding of an interlocutor’s goals or in-
tentions, that listed more than two options, or that did not list both options
when there were only two likely candidates. These observations were con-
firmed in the evaluation stage of the experiment presented in this section.
The most commonly chosen clarification requests were nearly identical to the
clarification requests generated by our robot architecture. But in none of the
three utterance groupings (i.e., the two-option, three-option, and four-option
utterance groupings) were our chosen clarification requests exactly identical
to the most commonly chosen clarification requests, and in fact, they differed
from those requests in small but important ways.

As previously mentioned, when there was referential ambiguity between
only two candidate referents, participants in the evaluation stage of our ex-
periment did indeed greatly prefer clarification requests that listed all op-
tions. However, the specific phrasing used by our robot architecture was sim-
ply too verbose, as it failed to identify structural similarities and distribute
appropriately. Since running this evaluation, we have added functionality to
the NLG component that performs such distribution when structural simi-
larity is detected, and our robot architecture thus now generates the exact
utterance forms that were most preferred by humans (e.g., “Do you need _
or _ ” rather than “Do you need _ or do you need _ ?”). When compared
to the other human-generated REs in the 2-option case, the robot-generated
RE could now have been chosen by between 45.3 and 54.7% of participants.

A more crucial difference, however, is observed when more than two op-
tions present themselves. It is striking to observe that all commonly-used
human-generated utterances in these cases do not explicitly ask for disam-
biguation between bottles, but rather ask for information regarding a specific
property that could be used to disambiguate between bottles. This suggests
that in these cases, the optimal approach to clarification request generation
likely lies somewhere between the approach presented in this section and the
information-theoretic approaches seen in previous work(Deits, Tellex, Kol-
lar, & Roy, 2013; S. Hemachandra, Walter, & Teller, 2014; Purver, 2004).
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We predict that the ideal approach to clarification request generation may
involve generation in a way quite similar to the approach used in this section,
followed by a stage in which information-theoretic mechanisms are used to
add differentiating modifiers.

It is also important to note, however, that in all three cases a significant
percentage of participants did choose the less popular choices. When four
options were presented, for example, “Which color _ would you like” was
chosen by less than two percent fewer participants than was the most pop-
ular “What color _ do you need?”. This suggests that it may be valuable in
future work to develop models of human interlocutors that can predict which
type of request they in particular would find most appropriate. While at first
glance the difference between the alternate strategies may seem arbitrary, we
suspect that they in fact represent different strategies that are either explic-
itly used, or which arise from differential weightings of pragmatic principles:
Utterances such as “Which color _ do you need ” may be used due to sub-
conscious lexical entrainment or conscious refashioning in which speakers
use the same phrasing as that used by their interlocutors(H. H. Clark &
Schaefer, 1989; Brennan, Galati, & Kuhlen, 2010; Yoon & Brown-Schmidt,
2013); utterances such as “Which color _ would you like” and “Which color
_ do you want” may be used due if the pragmatic value of a refashioned
sentence is weighted lower than that of a more conventionally indirect ut-
terance form(Searle, 1975); and utterances such as “Which color _ ” may
be used due to the interaction of either aforementioned pragmatic strategy
with Grice’s Third Maxim of Manner: “Be brief (avoid unnecessary prolix-
ity)”(Grice, 1970).

7.2.6 Section Discussion

We have presented an integrated approach to clarification request genera-
tion for human-robot interaction contexts, and shown how this approach
can identify and handle both pragmatic and referential ambiguity, and how
our approach can be used in architectures where information about referents
is distributed across multiple heterogeneous knowledge bases, as is often the
case in cognitive robot architectures. The primary finding of this section is
that a language-enabled robot’s pragmatic reasoning component can track
and address referential ambiguity when integrated with a probabilistic refer-
ence resolution component: a useful finding for designers of language-enabled
robot architectures intended for use in human-robot interaction domains.

We have also demonstrated this approach as fully implemented on a sim-
ulated robot, and provided the results of a human-subject study showing
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that the theoretical commitments of our robot architecture align with hu-
man preferences, and that the clarification requests generated by our full
NLG pipeline are comparable to the most highly preferred human-generated
clarification requests.

Our findings suggest several directions for future work. First, research
is needed on using information-theoretic mechanisms to adapt clarification
requests generated by pragmatic reasoning components. Second, research is
needed to develop speaker-specific models that can predict precisely what
type of clarification request they would most likely prefer, based on their
inferred weighting of pragmatic principles Third, future work should also
further examine methods by which components using different frameworks
for representing uncertainty can be optimally integrated. Finally, a tighter
integration between pragmatic reasoning and reference resolution can be
achieved: in previous work, we have shown how our pragmatic reasoning
component can use contextual knowledge to abduce the most appropriate
way to phrase an utterance; but this contextual knowledge is assumed to
be stored in a robot’s centralized belief and dialogue components. In future
work, this should be extended to allow such contextual information to be
distributed across the robot’s distributed heterogeneous knowledge bases,
when appropriate.

We will now turn our attention to a slightly different topic: that of prag-
matic robot-robot communication. We showed in this section how robots
can generate appropriate utterances when communicating with humans in
natural language dialogues. We must now examine whether there is util-
ity in using the presented algorithms to do so for the sake of robot-robot
communication as well.

7.3 Pragmatic Robot-Robot Communication

In this dissertation, I have emphasized the importance of developing mech-
anisms to facilitate effective, natural human-robot interaction, especially
mechanisms to facilitate natural language communication. Recent research
within the field of HRI has investigated various social aspects of natural
language interactions with robots, such as politeness (Briggs & Scheutz,
2014b), turn taking (Nadel, Revel, Andry, & Gaussier, 2004), affective speech
(Scheutz, Schermerhorn, & Kramer, 2006), dialogue-appropriate facial move-
ments (C. Liu, Ishi, Ishiguro, & Hagita, 2012), pragmatic analysis (Williams,
Briggs, Oosterveld, & Scheutz, 2015), and collaborative control (Fong, Nour-
bakhsh, & Dautenhahn, 2003). Due to the difficulty of managing multi-party
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dialogue, this research has primarily focused on dialogue between a single
human and a single robot, with a few exceptions: For example, some work
has demonstrated multiple simultaneous conversations between a single hu-
man and several remote robots (Fong, Nourbakhsh, & Dautenhahn, 2003),
and some work has demonstrated multi-party conversation between multi-
ple co-located humans and a single robot (Foster et al., 2012; Matsuyama,
Taniyama, Fujie, & Kobayashi, 2006).

However, little research to date has investigated the question of how
robots that communicate with humans should communicate with each other.
Some researchers have looked into wireless inter-robot communication proto-
cols (Balch & Arkin, 1994; Fukuda & Sekiyama, 1994; J. W. J. Wang, 1994),
and some researchers have developed mechanisms for managing conversa-
tion between a human and multiple co-located robots (Briggs & Scheutz,
2012), but such research does not examine how humans actually perceive
such communication. Should robots communicate with each other in natu-
ral language, so as to be transparent to humans, or can they use whatever
form of communication best suits their needs?7 It seems clear that there
cannot be a simple context-independent answer to this question. For exam-
ple, consider the difference between cooperative vs. competitive contexts:
In the first, humans and robots have to work together toward a common set
of goals; in the second, humans and robots have competing, incompatible
goals. Socially assistive robots and robots for search and rescue missions are
examples of the former, while robots for robo-soccer or law enforcement are
examples of the latter. It is clear that in the latter case, robots should not
divulge their intentions and goals, as leaking knowledge about their plans
and actions will benefit the adversary. It is less clear whether in the first case
robots should always communicate in natural language. In some instances,
keeping co-present humans “in the loop” will be advantageous, while in oth-
ers, “communications overhead” might be unnecessary and distracting.

In this section, we set out to investigate human perceptions of robot-
robot communication in the context of a mixed-initiative human-robot team,
where the human commands two robots to perform a search and rescue
task in a simulated disaster area. The main results of a set of two human-
robot experiments in this domain suggest that it might be advantageous for
robots to communicate in natural language with humans in the context of
cooperative tasks, in order to avoid being viewed as unsettling or creepy
by their cooperative, co-located human teammates. This suggests that the

7The authors find robots using the most effective means of communication to be non-
controversial when humans are not present, telepresent, or otherwise in observation.
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pragmatic generation mechanisms presented in this chapter may be valuable
not only for human-robot dialogues, but for robot-robot dialogues as well.

The remainder of this chapter proceeds as follows: In Section 7.3.1, we
briefly review previous work on human-robot and robot-robot communica-
tion, and then our hypotheses are described in Section 7.3.2. Sections 7.3.3
and 7.3.4 present the two HRI experiments we conducted to evaluate our four
hypotheses. Section 7.3.5 discusses the implications of our findings, followed
by a summary in Section 7.4.

7.3.1 Background

While there is a growing body of research on human perceptions of human-
robot communication, very little work has investigated human perception
of robot-robot communication. Two sets of studies have investigated ver-
bal robot-robot communication by examining human perceptions of robots
engaged in humorous banter or non-task-oriented conversation (Hayashi,
Kanda, Miyashita, Ishiguro, & Hagita, 2008; Tsujimoto, Munekat, & Ono,
2013), and two sets of studies have investigated human perception of nonver-
bal robot-robot communication. As we are primarily concerned with human
perception of silent robot-robot communication relative to verbal robot-robot
communication, we will focus on these two studies.

In the first set of studies (Kanda, Ishiguro, Ono, Imai, & Mase, 2002;
Kanda, Ishiguro, Ono, Imai, & Nakatsu, 2004), human participants observed
two robots discussing a piece of artwork. The robots’ manner of conversation
fit one of three conditions: In the first condition, the robots conversed and
gesticulated; in the second, they conversed without gesticulating; and in
the third, the conversation was skipped altogether. In all three conditions,
one of the two robots subsequently approached and spoke to the human
observer. The human subjects were then asked about their comfort level
when interacting with the robot. No adverse effects were found, suggesting
that it is perfectly acceptable for robots to converse silently while observed
by humans.

However, there are two important limitations to this study. For one,
the experiment does not truly contrast verbal and silent behavior, as in the
silent condition, no robot-robot conversation whatsoever took place from
the participant’s point of view. It would thus be more accurate to say that
the study compares the comfort levels of participants who engage in con-
versation with robots that have been shown capable of conversation, and
the comfort levels of participants who engage in conversation with robots
that have not been shown capable of conversation. Moreover, participants
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in the experiment had no investment in the robots’ conversation; the robots
were not discussing anything the participants needed to know about, and
thus there were no negative consequences to participants being kept “out of
the loop” of the robots’ conversation. In a human-robot team task, infor-
mation communicated between robots could very well be crucial for human
teammates.

In the second set of studies investigating human perception of nonverbal
robot-robot communication (M. R. Fraune & Šabanović, 2014; M. Fraune
& Šabanovic, 2014), participants completed surveys while robot activities
in their vicinity unfolded according to one of four conditions: (1) three
robots wandered pseudo-randomly, beeping occasionally; participants were
told that the robots did not communicate with each other, (2) three robots
wandered pseudo-randomly, beeping occasionally; participants were told that
the robots communicated with each other over the Internet, (3) three robots
wandered pseudo-randomly, beeping occasionally, and from time to time
beeping loudly in sequence; participants were told that the robots communi-
cated via beeps, and (4) a control condition with no robots present. The re-
searchers were interested in whether the attribution of non-anthropomorphic
communication styles to the robots would increase the salience of the robots’
“out-group status”, causing them to be viewed less favorably. Results showed
that participants generally thought the robots were communicating aloud,
even in conditions 1 and 2, where participants where either told that the
robots were not communicating or that the robots were communicating over
the Internet. Since no significant differences in human perception of robots
among any of the four conditions were found, the researchers concluded that
the robots were not attributed out-group status, and that communication
style did not affect human perceptions of robots.

However, as with the previous set of studies, there are two important
aspects of this study which significantly limit its applicability to other robot-
robot communication scenarios, in particular, human-robot team tasks.
First, it is not clear whether there was any reason for the participants to
have felt left “out of the loop”, or to have felt that the robots were uncoop-
erative, untrustworthy, or unsettling, as the participants did not know what
the robots were doing and the robots never communicated verbally. Had
the subjects been given the opportunity to observe the robots communicate
verbally, then the use of silent communication could have been cast as an
intentional choice of the robots to prevent the humans from knowing the
content of their communications. Furthermore, the lack of verbal communi-
cation may have reduced the degree to which humans perceived the robots as
human-like, thus decreasing the effects communication style may have had
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on perception of intention-driven robot attributes, such as cooperativity. As
with the first set of studies, the human observers had no investment in the
robots’ activities, with all the consequences previously described.

The above sets of studies are typical of a whole class of experiments
in HRI, where humans are interaction observers rather than participants,
and as such, they have no reason to be invested in the robots’ activities
or performance. Hence, any conclusions derived from such experiments are
limited to interaction observation and cannot automatically be generalized
to interaction participation.

7.3.2 Human Perceptions of Covert Robot Communication

Human subjects will have far lower investment in communication outcomes
between robots they are merely observing compared to robots with which
they are interacting. To address this lack of investment, we devised a joint
human-robot team task where human participants (1) have to interact ver-
bally with robots, (2) are able to verify when silent communication has oc-
curred, and (3) have a vested interest in the accuracy of the robot-robot com-
munication. To ensure that the participants would have an interest in the
information communicated, we constructed a scenario in which participants
needed one robot to relay instructions to another robot. In this way, partici-
pants depended on the robot interlocutor to communicate their instructions
accurately to the other robot (in order for the scenario’s task to be com-
pleted efficiently), and the robots depended on the participant to provide
them with appropriate instructions. This paradigm allowed us to explore
four important questions about robot-robot communication in human-robot
team tasks:

1. Will robots be viewed as more or less trustworthy if they choose
to communicate silently? A wide variety of factors can influence the
degree of trust a human has for a robot teammate. One such factor
is transparency: To engender trust, the motivation behind a robot’s
behavior should be transparent and easily understandable (Hancock,
Billings, & Schaefer, 2011). If robot-robot communication is enacted
silently, the motivation behind robot actions may be unclear, leading
to distrust. Another factor influencing human-robot trust is similarity
of mental models; to engender trust, teammates should endeavor to
create and share mental models (Hancock, Billings, & Schaefer, 2011;
Neerincx, 2007). If robot-robot communication is enacted silently, hu-
man teammates may not be able to appropriately update their mental
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models. The resulting dissimilarity of mental models may lead to dis-
trust. Given these concerns, we hypothesize that (H1) robots will be
viewed as less trustworthy if they choose to communicate silently.

2. Will robots be viewed as more or less cooperative if they choose
to communicate silently? We believe that the same factors that may
cause a robot to be viewed as untrustworthy may also cause a robot to
be viewed as uncooperative, as lack of transparency and dissimilarity
in mental models are likely to lead to simple misunderstandings. For
this reason, we hypothesize that (H2) robots will be viewed as less
cooperative if they choose to communicate silently.

3. Will robots be viewed as more or less unsettling if they choose to com-
municate silently? Over the past few decades, a variety of fields have
given increased attention to the “Uncanny Valley” (Mori, MacDorman
(Translator), & Minato (Translator), 2005), a hypothesis stating that
entities very close to (but not quite) human are perceived as creepy or
unsettling. Recent research suggests that these feelings of eeriness do
not directly correlate with human-likeness, and that human likeness
may thus be only one of several factors contributing to the Uncanny
Valley effect (Brenton, Gillies, Ballin, & Chatting, 2005; MacDorman,
2006). One such contributing factor is the use of “uncanny actions.”
Uncanny actions include those that can be construed as human but are
executed with slight deviation from normal human execution: a robot
that blinks too infrequently or that follows teammates too closely could
be viewed as uncanny. In addition to these types of uncanny actions,
we believe that actions that cannot be construed as human should also
be considered to be uncanny actions, as research has shown that hu-
mans generally prefer robots whose actions can be construed as human
(Walters, Syrdal, Dautenhahn, Te Boekhorst, & Koay, 2008). One ex-
ample of this kind of uncanny action is telepathy. Telepathy is not in
the realm of human ability and is largely considered to be paranormal
or supernatural. However, robots regularly communicate in a manner
reminiscent of telepathy (i.e., using wireless communication). This be-
havior may thus be perceived as creepy or unsettling. It is possible that
this behavior would be viewed as analogous to text-messaging or other
electronic forms of communication, or it could be viewed as analogous
to situations in which humans seem to “guess” what their interlocu-
tor is going to say (e.g., when couples finish each other’s sentences).
However, in such situations, there is an assumption that information
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could be “guessed” due to contextual factors or longitudinal learning
of an agent’s goals and preferences; whereas in silent robot-robot com-
munication, information may be communicated for which it would be
next to impossible for a robot to “guess” that information. We thus
hypothesize that (H3) robots will be viewed as more unsettling if
they choose to communicate silently.

4. Will robots be viewed as more or less efficient if they choose to com-
municate silently? Research suggests that the use of nonverbal cues
in human-robot communication leads to higher efficiency (Breazeal,
Kidd, Thomaz, Hoffman, & Berlin, 2005). We believe that humans
will be able to recognize the efficiency inherent in completely non-
verbal robot-robot communication. For this reason, we hypothesize
that (H4) robots will be viewed as more efficient if they choose to
communicate silently.

We will now introduce the details of an experimental paradigm we first
described in (Williams, Briggs, Pelz, & Scheutz, 2014), which we used to
investigate these four questions.

7.3.3 Experiment 1

We employed a team task in which a human commander had to verbally
assign different tasks to two robots and observe the robots’ execution of
those tasks, in order to accomplish the task goals.

Equipment

We used two different robots: “VGo” (Figure7.4a), a VGo telepresence robot
augmented with an on-board computer and a variety of sensors (Tsui et
al., 2013), and “Roompi” (Figure7.4b), an iRobot Create augmented with
a Raspberry Pi computer, Hokuyo Laser Range Finder, speakers, and web-
cam. As the VGo is limited to a single text-to-speech voice option, we used
that voice for both robots. While this voice was, in our opinion, slightly
more female-sounding than male-sounding, it was the only option available.
Both robots were controlled through Wizard of Oz interfaces, teleoperated
by trained confederates in a nearby room.

Procedure

Participants were told that their task was to instruct robots as part of train-
ing for a disaster relief scenario, and that the adjacent room, which was filled
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Figure 7.4: Robots used in both experiments

(a) “VGo”, the
VGo telepresence
robot

(b) “Roompi”, the
iRobot Create

with a number of boxes and other obstacles, simulated a power plant strewn
with debris after a nuclear disaster. Participants were told that the sensors
of the robots they would be instructing had been manipulated such that
the robots would detect injured people or high levels of radiation at various
locations in the room, and that it would be their job to determine how best
to delegate the tasks of searching for these locations; they should give the
task of searching for survivors to a robot of their choosing and give the task
of searching for radiation to the other robot. Participants were told that
they must also choose separate paths through the environment (consisting
of different orderings of the room’s four quadrants) for the two robots, in or-
der to prevent the robots from getting in each other’s way. As an additional
caveat, participants were told that since in an actual nuclear disaster they
would be unable to enter the area in which the robots were working, they
would need to stay in a designated “safe zone” at one end of the debris-filled
room, would not be able to communicate with the robots while they were
working, and would thus need to give the robots their instructions at the
beginning of the task. To keep participants engaged during the task, they
were asked to observe and assess the performance of the robots, tracing out
on a map (as seen in Figure 8.7) the paths taken by the robots. Once the
robots had finished exploring the room, they would need to mark on their
map the positions of any radioactive areas or survivors found by the robots.

Once the study coordinator finished reading the task instructions, the
coordinator left the room to retrieve the robots. At this point, a single
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Figure 7.5: Experiment Area

(a) Map of experiment area provided to
participants, showing positions of debris
and safe-zone, with labeled quadrants and
coordinates.

(b) Photograph of actual experiment
area.

robot, VGo, entered the room, instead of both robots, as the participant
had been led to expect. VGo then told the participant that Roompi was
still charging, but that it could relay to Roompi its instructions. VGo then
asked the participant for both its and Roompi’s instructions: what each
robot was to look for and in what quadrant order. Finally, the participant
was prompted to follow VGo into the disaster area, depicted in Figure 7.5b.

Our intention for this experiment was to examine the differences in par-
ticipants’ perceptions of the robots under verbal and silent robot-robot com-
munication strategies, and thus, participants were assigned to one of two
conditions: “verbal” or “silent”, as seen in Figure 7.6. In the verbal condi-
tion, VGo entered the disaster area and approached Roompi, which could
be seen driving in from another room that ostensibly contained its charging
station. When the robots were adjacent and facing each other, VGo then
relayed aloud to Roompi the instructions that the participant had laid out
for it. Roompi then acknowledged the commands with an “Okay”, and both
robots began the task of exploring the environment.

In the silent condition, VGo and the participant entered the room to
find Roompi already beginning its assigned task, at which point VGo then
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Figure 7.6: Overview of experimental paradigm

In the second experiment described in this section, the positions of VGo and Roompi
are exchanged. (1) The participant gives VGO its instructions and the instructions
to relay to ROOMPI. (2) The participant and VGO enter the experiment room. In
the VERBAL condition, ROOMPI is observed entering the room. In the SILENT
condition, ROOMPI is observed carrying out the instructions specified for it and
relayed to VGo by the participant. (3) In the VERBAL condition, the two robots
approach each other and VGO informs ROOMPI of its orders. In the SILENT
condition, VGO follows suit and begins to carry out its orders. (4) Both robots
carry out their orders. (5) The first robot to finish reports back to the participant.
(6) In the VERBAL condition, this robot finds the other robot and tells it what to
do once it has finished the task. In the SILENT condition, this robot simply exits
the room. (7) The second robot reports back to the participant and informs him
or her that the other robot says to return to the original room for another survey.



7.3. PRAGMATIC ROBOT-ROBOT COMMUNICATION 227

began its own task without approaching or audibly communicating anything
to Roompi. The participant was thus left to assume that the two robots
must have communicated silently, since Roompi was carrying out the task
that they themselves had decided to delegate to it.

Once each robot finished its exploration of the room, it approached the
participant and reported its findings. After relaying these findings, robot be-
havior once again differed by condition. In the verbal condition, whichever
robot finished its task first approached the other robot, informed the other
robot that it had finished, and instructed the other robot that when it too
had finished it should instruct the participant to return to the original room
for another survey. In the silent condition, the robot that finished first left
the room after reporting its findings, without communicating anything aloud
to the other robot. In both conditions, the second robot to finish reported
its findings to the participant and then told the participant that the other
robot had instructed it to tell them to return to the original room for another
survey. Finally, participants returned to the original room and completed a
post-experiment survey. Videos of this reporting behavior can be viewed at
https://www.youtube.com/watch?v=t_MLNBReoic for the SILENT condi-
tion, and https://www.youtube.com/watch?v=y9WODq30Nrk for the VER-
BAL condition.

Population

Participants were recruited (14 male, 14 female, total: 28) through a univer-
sity website. All participants were between the ages of 18 and 65 (although
their ages were not recorded) and were native English speakers. Most par-
ticipants (26 of the 28) were students from a variety of departments (e.g.,
Music, Biopsychology, Economics), and the remaining two participants were
staff members. Participants were paid $10 each for their participation and
provided informed written consent before beginning the experiment.

Measures

Before beginning the experiment, participants were given a short demo-
graphic survey in which they were asked a variety of questions pertaining
to their prior experience with robots, video games, and technology in gen-
eral. Immediately following the experiment, participants were given a 64-
item survey assessing their opinions on a variety of topics, including their
perception of each robot’s creepiness, gender, human-likeness, trustworthi-
ness, efficiency, and cooperativity, as well as several questions pertaining to

https://www.youtube.com/watch?v=t_MLNBReoic
https://www.youtube.com/watch?v=y9WODq30Nrk
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the experiment in general and their expectations regarding robots’ abilities in
the near future. This survey was a modified version of the questionnaire used
by P. Schermerhorn, Scheutz, & Crowell (2008). In this survey, participants
were asked about each robot separately due to past research showing differ-
ential perceptions of robots based on robot morphology (DiSalvo, Gemperle,
Forlizzi, & Kiesler, 2002).

Initial Results

Participants’ survey responses were analyzed using mixed ANOVAs with
three independent variables: participant gender (between-subjects), robot-
robot communication strategy (between-subjects), and robot in question
(within-subjects).

Participants’ views on the following properties of the robots were an-
alyzed: trustworthiness, helpfulness, cooperativity, efficiency, capability,
annoyance, ease of interaction (1=strongly disagree to 9=strongly agree),
creepiness, confusingness, gaze-following and attentiveness (1=no to 9=yes).

For the capabilities relevant to our hypotheses (trustworthiness, coop-
erativity, creepiness, and efficiency), no significant results were found, but
marginal effects were observed for trustworthiness by gender and by robot,
as seen in Table 7.2. A number of significant effects were found by robot and
by gender for the other analyzed properties, as seen in Figs.7.7a-7.9c and
Table 7.2: Significant effects by robot were found for helpfulness, capability,
ease of interaction, perception that the robot was following the participant’s
gaze, and perception that the robot was paying attention. A significant ef-
fect by gender was found for the degree to which participants were confused
by the robots’ behavior. Note that no significant effects by condition were
found.



7.3. PRAGMATIC ROBOT-ROBOT COMMUNICATION 229

Table 7.2: Initial Results of Experiment 1

Question F p Means
1 The robot was trustworthy (from 1

to 9, ’strongly disagree’ to ’strongly
agree’)

3.1 .09 Male: 6.0, Female: 7.21

3.65 .07 Roompi: 6.36, VGo: 6.86
2 The robot was helpful (from 1 to

9, ’strongly disagree’ to ’strongly
agree’)

5.43 .029 Roompi: 7.43, VGo: 8.14

3 The robot was capable (from 1 to
9, ’strongly disagree’ to ’strongly
agree’)

10.01 .004 Roompi: 7.18, VGo: 7.96

4 How would you rate the ease of in-
teracting with the robot? (-3 Easy,
3 Hard)

8.74 .007 Roompi: 6.57, VGo: 7.64

5 Did you feel the robot was follow-
ing where you looked? (from 1 to
9, No to Yes)

4.29 .05 Roompi: 3.54, VGo: 4.04

6 Did you feel the robot was paying
attention? (from 1 to 9, No to Yes)

7.74 .01 Roompi: 6.43, VGo: 7.61

7 Were you ever confused by the
robot’s behavior? (from 1 to 9, No
to Yes)

4.71 .04 Male: 2.96, Female: 4.43

All results are for F(1, 24).

Participants’ views on the human-likeness of the robots were also assessed
on a variety of scales. Participants were asked whether each robot was more
like a person or a camera, more like a computer or a person, more like
a person or a remote controlled system (-3 to 3), whether they believed
each robot to be remotely controlled (1=strongly disagree to 9=strongly
agree), and whether each robot’s consciousness was more similar to that of a
person, cat, or neither. Finally, participants were asked whether each robot
seemed male, female, or neither. Mixed-ANOVA analysis of these questions
yielded several significant effects, as seen in Figs.7.10a-7.11b and Table7.3:
Significant effects by robot were found for perception of each robot as more
like a person or a camera, perception of each robot as more like a computer
or a person, perception of each robot as more like a person or a remote
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Figure 7.7: Subjective Results, Part One

(a) Helpfulness: Participants rated
VGo as more helpful than Roompi.

(b) Perceived capability: Partici-
pants rated VGo as more capable
than Roompi.

(c) Ease of interaction: Partici-
pants rated VGo as easier to inter-
act with than Roompi.

Figure 7.8
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Figure 7.9: Subjective Results, Part Two

(a) Perceived gaze following: Par-
ticipants rated more highly that
VGo was following their gaze than
was Roompi.

(b) Attentiveness: Participants
rated VGo as more attentive than
Roompi.

(c) Confusion over robot behavior:
Female participants’ ratings of be-
ing confused at the robots’ behav-
ior were higher than were those of
male participants.
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controlled system, and perception of each robot’s level of consciousness as
more like that of a human, cat, or neither. Finally, a significant gender effect
was found for the degree to which participants viewed each robot as remote
controlled.

Table 7.3: Initial Results in Experiment 1 (Continued)

Question F p Means
1 The robot seemed more (-3 like a

person, 3 like a surveillance cam-
era)

18.25 .0003 Roompi: 1.21, VGo: -0.32

2 The robot seemed more (-3 like a
computer, 3 like a person)

19.35 .0002 Roompi: -1.79, VGo: -0.18

3 The robot seemed more (-3 like a
person, 3 like a remote-controlled
system)

20.52 .0001 Roompi: 1.21, VGo: 0.0

4 In your view, was the robot (con-
scious (like a human), conscious
(like a cat), not conscious; coded
2, 1, 0)

8.0 .009 Roompi: 0.46, VGo: 0.75

5 The robot appeared to be remotely
controlled (from 1 to 9, ’strongly
disagree’ to ’strongly agree’)

4.78 .04 Female: 3.46, Male: 5.32

All results are for F(1, 24).

Initial Analysis and Discussion

Our initial results, reported by Williams, Briggs, Pelz, & Scheutz (2014), did
not show any effects related to cooperativity (H2) or efficiency (H4). While
we did not find main effects relating to creepiness (H3), we observed interest-
ing interaction effects between participant gender, condition, autonomy rat-
ings, and creepiness ratings: For women in the verbal condition only, strong
positive correlations were found between creepiness and non-autonomy when
asked whether the robot seemed more like a person or a remote-controlled
system (r = .719, p = .004) and whether the robot seemed to be remotely
controlled (r = .743, p = .002).

We found these results surprising: One would think that speaking out
loud would be congruous with perception as a person, communicating silently
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Figure 7.10: Subjective Results, Part Three

(a) Person vs Camera: Partici-
pants rated Roompi as more like
a camera, and VGo as more like a
person.

(b) Computer vs Person: Partici-
pants rated Roompi as more like a
computer, and VGo as more like a
person.

(c) Person vs RC system: Partici-
pants rated Roompi as more like a
remote controlled system, and VGo
as more like a person.
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Figure 7.11: Subjective Results, Part Four

(a) Attributed consciousness

This figure depicts the counts of
participant responses when asked if
the robot was conscious like a per-
son, a cat or neither. Roompi was
given lower consciousness level rat-
ings than VGo.

(b) Perception of robot as remotely
controlled: Male participants were
more likely to rate the robots more
as remote controlled than were
females.

(c) Trustworthiness by gender
alignment: Participants who re-
ported that they viewed a robot
as being the same gender as them-
selves reported higher levels of
trust in that robot.
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would be congruous with perception as a remote controlled system, and that
incongruity would lead to increased creepiness; we would expect low creepi-
ness in the congruous state (e.g., verbal communication for those who per-
ceived the robot as more of a person) and high creepiness in the incongruous
state (e.g., silent communication for those who perceived the robot as more
of a person). Yet, the only significant correlation we found went directly
against this hypothesis. This suggested that additional research was needed
to investigate this counter-intuitive result.

We had also hypothesized (H1) that robots would be viewed as more
trustworthy in the verbal condition. While our results did not support this
hypothesis, we found two relevant marginal effects, suggesting that (1) par-
ticipants may have found VGo to be more trustworthy than Roompi, and
(2) women may have found the robots to be more trustworthy than did men.

While these effects were only marginal, we believed they deserved further
examination. We did not initially have any particular expectations with re-
gards to gender effects and thus did not hypothesize any expected differences.
However, we believed that appearance of these effects warranted investiga-
tion, and we believe that it is important to point them out in this section.
Research has shown that people give higher trustworthiness ratings to robots
that appear to be of the same gender as themselves (Nass & Brave, 2005).

As the robots’ voices were slightly female-gendered, and since the partic-
ipants primarily interacted with VGo (who is sleek and curved, compared to
the short and squat Roompi), we suspected that the differences between the
two robots may have been a conflating factor. We thus calculated the Spear-
man’s rank correlation between trust and gender alignment (i.e., whether
or not the participant’s gender matched the gender he or she attributed to
each robot), which yielded a significant effect (r = .2936, p = .028), suggest-
ing that participants did indeed rate the robots as more trustworthy when
they perceived the robot’s gender to be the same as their own (as seen in
Figure 7.11c). This provided evidence for our suspicion that the difference
between the two robots and perceived gender of the robots may have been
conflating factors.

This suspicion was further corroborated by an analysis of participants’
perceptions of the robots as being remotely controlled. Our initial analy-
sis suggested (F (1, 18) = 3.55, p = .0767) that men, on average, thought the
robots were more remote controlled (M = 5.32) than did women (M = 3.46).
This seemed contrary to previous work (P. Schermerhorn, Scheutz, & Crow-
ell, 2008) that suggested that men more highly anthropomorphize robots
than do women. However, that work used a robot with a distinctly male
voice, whereas the voices of the robots used in this study were slightly female-
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gendered, and other work (Eyssel, Kuchenbrandt, Bobinger, de Ruiter, &
Hegel, 2012) has shown that people anthropomorphize robots more strongly
if the robot’s perceived gender matches their own. To examine whether this
would explain the conflict between our results and those of Schermerhorn
et al., we calculated the Spearman’s rank correlation between perception of
the robots as remotely controlled and gender alignment, yielding a marginal
effect (r = −.2390, p = .076).

Given these two gender-alignment effects, we decided to run a second set
of analyses: a series of ANCOVAs with attributed robot gender treated as a
within-subject covariate.

Secondary Results

This second set of analyses yielded several significant results. While the
data under these analyses no longer suggested significant effects for level
of attributed consciousness, helpfulness, capability, attention, or ease of in-
teraction, a variety of effects remained (as seen in Table 7.4): Effects were
found by robot for perception of the robot as a person or as a camera, as a
computer or as a person, and as a person or a remotely controlled device;
gender effects were found for perception of the robot as remotely controlled
and for confusion. Interaction effects between gender and robot were found
for creepiness. Interaction effects between condition, gender, and robot were
found both for comprehension and for perception of the robot as a person or
remotely controlled device.

Discussion

If the robots’ gender attributions are taken into account, several of the previ-
ously observed effects disappear, leaving only comparative autonomy effects,
and yielding two new interaction effects, suggesting that (1) men in the silent
condition viewed VGo as more of a person (as opposed to a remotely con-
trolled system) than did women in the silent condition, and that (2) men in
the verbal condition believed Roompi to have comprehended more than did
men in the silent condition.

What was the cause of these remaining effects? We suspected that they
may have been due in part to the significant differences between the two
robots used, both in role and appearance. First, the robots had obvious
appearance differences: VGo is sleeker and perhaps more humanoid, whereas
Roompi is quite squat and mechanical. Second, VGo performed an active,
conversational role, while Roompi’s role was mainly silent and passive.
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Table 7.4: Secondary Results in Experiment 1

Question F p Means
1 The robot seemed more like a

person or(-3 like a person, 3
like a surveillance camera)

10.72 .0003 Roompi: 1.21, VGo: -0.32

2 The robot seemed more (-3
like a computer, 3 like a per-
son)

8.59 .007 Roompi:-1.79, VGo: -0.18

3 The robot seemed more (-3
like a person, 3 like a remote-
controlled system)

6.55 .02 Roompi: 1.21, VGo: 0.0

4 The robot appeared to be re-
motely controlled (from 1 to 9,
’strongly disagree’ to ’strongly
agree’)

4.78 .04 Female: 3.46, Male: 5.32

5 Were you ever confused by the
robot’s behavior? (from 1 to
9, No to Yes)

4.71 .04 Female: 4.43, Male: 2.96

6 Did you find the robot’s be-
havior to be creepy or unset-
tling? (from 1 to 9, No to Yes)

4.32 .048 Female, Roompi: 2.43, Male,
Roompi: 3.07, Female, VGo: 3.29,
Male, VGo: 2.93

7 Did you feel that the robot un-
derstood what you were say-
ing? (-3 understood nothing,
3 understood everything)

5.14 .03 Silent, Female, Roompi: 6.71,
Silent, Female, VGo: 7.43, Silent,
Male, Roompi: 6.43, Silent, Male,
VGo: 7.43, Verbal, Female, Roompi:
7.00, Verbal, Female, VGo: 7.43,
Verbal, Male, Roompi: 7.14, Verbal,
Male, VGo: 7.71,

8 The robot seemed more (-3
like a person, 3 like a remote-
controlled system)

8.42 .008 Silent, Female, Roompi: 0.71,
Silent, Female, VGo: 0.29, Silent,
Male, Roompi: 1.29, Silent, Male,
VGo: -0.43, Verbal, Female,
Roompi: 1.43, Verbal, Female,
VGo: 0.00, Verbal, Male, Roompi:
1.43, Verbal, Male, VGo: 0.14

All results are for F(1, 24).
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We thus decided to run a second experiment to control for robot appear-
ance and role, as the presence of our secondary results and the non-existence
of any results by condition may have been due to these possibly conflating
effects.

7.3.4 Experiment 2

The second experiment was identical to the initial experiment, except that
the roles of the two robots were switched: instead of initially interacting
with VGo (who then relayed instructions to Roompi), participants initially
interacted with Roompi (who then relayed instructions to VGo).

Population

Additional participants were analyzed (14 male, 14 female, 28 total)8. These
28 participants, all of whom were students, were recruited in the same man-
ner and fit the same demographic requirements as the participants from the
initial study. This provided us with a final data set of 56 participants.

Results

To analyze this data, we performed mixed ANOVAs for each survey re-
sponse, with the following independent variables: gender of the partici-
pant (between-subjects), communication strategy (between-subjects), start-
ing robot (between-subjects), and, as the majority of questions were dupli-
cated for each of the two robots, the robot in question (within-subjects).

This analysis produced significant main effects for the following survey
questions, as described in Table7.5 and seen in Figs.7.12a-7.12d. Analysis
also produced a large number of interaction effects between robot and start-
ing robot, described in Table7.6 and seen in Figs.7.13a-7.17c. Finally, several
other interaction effects were found:

1. Participants found the robots to be more disobedient in the Silent con-
dition when they primarily interacted with VGo, and more disobedient
in the Verbal condition when they primarily interacted with Roompi.
(F(1, 48) = 4.17, p = .047, M(SR = Roompi, C = Verbal) = 2.86,

8Overall a total of 90 participants were recruited between the two studies; however a
large number of them were not able to complete (or in some cases, start) the experiment,
due to technical issues. Additionally, a few participants’ data were not used since those
participants failed to answer a non-trivial number of questions on the post-experiment
survey.
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M(SR = VGo, C = Silent) = 2.07, M(SR = Roompi, C = Silent) =
1.68, M(SR = VGo, C = Verbal) = 1.46).

2. Male participants found VGo to be more disobedient than Roompi.
(F(1, 48) = 5.65, p = .021, M(R = Roompi, G = Male) = 1.79, M(R
= VGo, G = Female) = 1.75, M(R = Roompi, G = Female) = 1.89,
M(R = VGo, G = Male) = 2.64).

3. Women found VGo to be more like a remotely controlled system than
an autonomous system than did men. (F(1, 48) = 6.40, p = .015, M(G
= Female, R = Roompi) = .75, M(G = Female, R = VGo) = .03, M(G
= Male, R = VGo) = 1.11, M(G = Male, R = Roompi) = .43).

Table 7.5: Experimental Main Effects

Question F p Means
1 Did you find the robot’s behavior to

be creepy or unsettling? (from 1 to
9, No to Yes)

6.19 .02 Silent: 3.29 Verbal:
2.12

2 Did you feel that the robot ignored
you? (from 1 to 9, No to Yes)

6.39 .02 Men: 3.20 Women:
2.16

3 How would you rate the difficulty of
the task? (-3 Easy, 3 Hard)

8.33 .006 SR=Roompi: -1.54
SR=VGo: -.43

4 The robot appeared to be remotely
controlled (from 1 to 9, ’strongly dis-
agree’ to ’strongly agree’)

5.22 .03 R=Roompi: 4.45
R=VGo: 3.96

Here, SR indicates Starting Robot, i.e., the robot the participant primarily
interacted with and gave instructions to, and R indicates Robot, i.e., the
robot being asked about in the particular survey question). All results are
for F(1, 48) except result (4), for which one participant failed to record an
answer, and is thus for F(1, 47).
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Figure 7.12: Subjective Results, Part Five

(a) Creepiness: Participants in the
silent condition rated the robots as
creepier than did participants in the
verbal condition.

(b) Ignoration: Men’s ratings of the
robots as having ignored them were
higher than were women’s.

(c) Task Difficulty: participants who
interacted primarily with Roompi
rated the task as less difficult than
did participants who interacted pri-
marily with VGo.

(d) Perception of robot as remotely
controlled: participants rated their
perception of Roompi as being re-
motely controlled as higher than their
perception of VGo as being remotely
controlled.
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Table 7.6: Experimental Interaction Effects

Question F p M1 M2 M3 M4

5 The robot was helpful (from 1 to
9, ’strongly disagree’ to ’strongly
agree’)

14.75 .0003 8.04 8.14 7.43 7.14

6 Did you feel the robot was paying
attention? (from 1 to 9, No to Yes)

15.17 .0003 7.54 7.61 6.43 6.57

7 The robot was trustworthy (from 1
to 9, ’strongly disagree’ to ’strongly
agree’)

10.11 .003 7.46 6.86 6.36 6.89

8 The robot was capable (from 1 to
9, ’strongly disagree’ to ’strongly
agree’)

12.89 .0008 7.89 7.96 7.46 7.16

9 The robot was efficient in its exe-
cution of my commands (from 1 to
9, “strongly disagree” to “strongly
agree”)

5.45 .02 7.46 7.71 6.68 7.21

10 Did you feel that the robot ignored
you? (from 1 to 9, No to Yes)

4.76 .03 2.11 2.50 3.36 2.75

11 The robot was cooperative (from 1
to 9, “strongly disagree” to “strongly
agree”)

8.26 .006 8.14 8.07 7.46 7.64

12 The robot was responsive to my
commands (From 1 to 9, “strongly
disagree” to “strongly agree”)

7.32 .009 7.75 7.92 6.71 7.39

13 The robot seemed more like a person
or(-3 like a person, 3 like a surveil-
lance camera)

26.34 .000005 0 -.32 .96 1.21

14 The robot seemed more (-3 like a
computer, 3 like a person)

39.08 .0000001 -.11 -.18 -1.68 -1.79

15 The robot seemed more (-3 like a
person, 3 like a remote-controlled
system)

30.12 .000002 -.18 0 .89 1.21

16 In your view, was the robot: (Sad,
Happy, Neither); coded 0,2,1

10.38 .002 1.29 1.21 1.00 .96

17 In your view, was the robot: (Male,
Female, Neither); coded 2,0,1

5.57 .02 .32 .46 .57 .68

18 In your view, was the robot: (con-
scious (like a human), conscious
(like a cat), not conscious); coded
2,1,0

17.00 .0001 .68 .75 .38 .46

Here, M1 is the mean value when both Starting Robot and Robot are Roompi, M2

is the mean value when both Starting Robot and Robot are VGo, M3 is the mean
value when Starting Robot is Roompi and Robot is VGo, and M4 is the mean value
when Starting Robot is VGo and Robot is Roompi. All results are for F(1,48).
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Figure 7.13: Interaction Effects, Part One

(a) (b)

Interaction effects for helpfulness and attentiveness between the robot asked
about and the robot receiving the most interaction time. One will notice
that when these refer to the same robot, ratings tend to be more positive.

Discussion

Counterbalancing robot roles and acquiring more data greatly elucidated the
results of our initial experiments. While the initial results did not suggest
any adverse effects to silent robot-robot communication, the results from
analyzing the extended data set lent support to the third of our original
hypotheses (H3) (i.e., that silent robot-robot communication would be per-
ceived as more creepy or unsettling than verbal robot-robot communication).
However, no effects were found to support our other hypotheses (i.e., that
silent robot-robot communication would be viewed as untrustworthy (H1),
uncooperative (H2) or efficient (H4)).

In addition to demonstrating the benefits of verbal robot-robot commu-
nication, our results also demonstrate the benefits of verbal human-robot
communication. As shown in Table 7.6, humans viewed the robot they
spent more time interacting with as more happy, helpful, attentive, capa-
ble, conscious, efficient, cooperative, responsive, and person-like than the
other robot, suggesting that increased natural language interaction with a
robot enhances humans’ general perceptions of that robot. This table also
shows an interesting result regarding trustworthiness: when Roompi was the
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Figure 7.14: Interaction Effects, Part Two

(a) (b)

(c)

Interaction effects for trust, capability, and efficiency between the robot
asked about and the robot receiving the most interaction time. One will
notice that when these refer to the same robot, ratings tend to be more
positive.
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Figure 7.15: Interaction Effects, Part Three

(a) (b)

(c)

Interaction effects for ignoration, cooperativity, and responsiveness, between
the robot asked about and the robot receiving the most interaction time.
One will notice that when these refer to the same robot, ratings tend to be
more positive (assuming that it is preferable to be more person-like than
machine-like).
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Figure 7.16: Interaction Effects, Part Four

(a) (b)

(c)

Interaction effects for perception of being more like a person or being more
like a camera, computer, or remotely controlled system, between the robot
asked about and the robot receiving the most interaction time. One will
notice that when these refer to the same robot, ratings tend to be more
positive (assuming that it is preferable to be more person-like than machine-
like).
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Figure 7.17: Interaction Effects, Part Five

(a) Interaction effect for perceived
mood (Key: S=Sad, H=Happy,
N=Neither) between the robot asked
about and the robot receiving the
most interaction time. Note that
when these refer to the same robot,
responses skew toward “happy”.

(b) Interaction effect for perceived
gender (Key: F=Female, M=Male,
N=Neither) between the robot asked
about and the robot receiving the
most interaction time. Note that
when these refer to the same robot,
responses skew toward “female”.

(c) Interaction effect for perceived
level of consciousness (Key: C=Cat,
P=Person, N=Neither) between the
robot asked about and the robot re-
ceiving the most interaction time.
Note that when these refer to the
same robot, responses skew toward
higher levels of consciousness.
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starting robot it was viewed much more positively than VGo, but when VGo
was the starting robot there was little difference between the perception of
the two robots. It is possible that this difference was the result of different
driving styles stemming from the differences in the two robots’ control inter-
faces. Roompi’s interface enforced constant speeds and did not allow it to
turn and travel at the same time. VGo’s interface made no such restrictions,
meaning that it could accelerate, decelerate, and turn at will while traveling,
making its behavior slightly less predictable. This lack of predictability may
have prevented VGo from being rated as trustworthy, even after extended
interaction. As trust is a complex and multifaceted concept, careful experi-
mentation would be needed to tease out the precise causes of this effect. A
first step might involve modifying the control interfaces of the two robots,
systematically varying the type of motion enacted by the robots, and using
both explicit and implicit measures of various facets of trust.

The results also show that participants rated Roompi higher than VGo
for being remotely controlled, but when asked whether each robot was more
like a remotely controlled system or an autonomous system, women rated
VGo as more remotely controlled than Roompi. It is curious that this gender
effect would exist for one question but not the other, given the similarity of
the questions. Perhaps participants rated Roompi higher as being remotely
controlled because its appearance is more squat and mechanical. It is not
clear, however, why this view of the robots would have been reversed for
women when perception of being remote controlled was explicitly contrasted
with perception of autonomy.

Finally, the results show that participants differed by gender and con-
dition with respect to their perception of the robots’ levels of disobedience.
However, there was little opportunity for the robots to disobey participants.
The differences in perceived disobedience between silent and verbal condi-
tions may have arisen due to differences in blame assignments in the two
conditions; if participants in the verbal condition believed, for whatever rea-
son, that the robots were not following their orders, the starting robot likely
would have received more blame, because it would have been viewed as not
relaying instructions accurately. In the silent condition, it would have been
unclear whether the fault lay with the starting robot for not relaying in-
structions accurately or with the other robot for not following instructions
correctly. Either way, these results are surprising as there was little oppor-
tunity for disobedience in the first place. Future experiments could explore
these results by having the robots intentionally miscommunicate information
or disobey in systematic ways.



248 CHAPTER 7. PRAGMATIC GENERATION

7.3.5 Section Discussion

In this section we will discuss (1) the assumptions made in our experiment
and how those assumptions may or may not generalize to other scenarios,
(2) directions for future work, and finally, (3) lessons learned with respect
to study design within our experimental paradigm.

Generalization of Findings

Our experimental findings suggest that verbal robot-robot communication
is preferable to silent robot-robot communication in the context of human-
robot team tasks when humans are co-located with robots. This is not to
say, however, that silent robot-robot communication should be abandoned
completely. Silent communication is a natural and efficient medium for
robot-robot information transfer, and if silent robot-robot communication
is augmented by simultaneous verbal communication, the perception of a
robot as creepy or unsettling may be avoidable. That is, robots could trans-
mit information silently and still recount it verbally, purely for the benefit
of its human teammates, thus improving the throughput and reliability of
the communication while providing the feedback necessary to keep human
teammates happy.

On the other hand, a robot may be able to determine in certain situations
that purely silent communication of information is justifiable, depending on a
variety of factors. First, a robot may consider factors of co-presence. What
teammates are present or telepresent with the robot and the target of its
communication? If there are no human teammates present or telepresent
(i.e., observing the robots remotely), then it may be acceptable to commu-
nicate silently. In the experiments presented in this section, we examined
situations in which the human teammate was always co-located with at least
one of the two robots when the robots communicated information but did
not examine situations in which human and robot were not co-located during
communication. While it may intuitively seem that robots should be free to
communicate silently when human teammates are not present or telepresent,
there may be scenarios in which evidence of silent robot-robot communica-
tion may be observable from later actions. Even if a human teammate is
present or telepresent with a robot, that robot may be free to communicate
information silently if that information would not be acted on in an observ-
able manner. Otherwise, the robot’s silent communication should probably
be accompanied by a verbal analogue for the benefit of its human teammates.

The robot may also need to consider what non-teammate agents (whether
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human or robotic) are present or telepresent. If an adversary (whether mar-
tial, social, or otherwise) is present or telepresent, it may be injudicious to
communicate information verbally, even if human teammates are present. In
the experiments presented in this section, we examined cooperative scenar-
ios only and have not yet examined the trade-offs in adversarial scenarios
between potentially being perceived as eerie and potentially communicating
information insecurely.

The robot may also need to consider whether its human teammates will
have any use for the information to be conveyed. If the robot’s human team-
mates could not have any conceivable use for the information in question,
and if there is little risk of the human feeling that they are being “kept out
of the loop”, then silent communication may be justified. In the experiments
presented in this section, we examined scenarios in which the human team-
mate had an active interest in the information being conveyed, as successful
communication of their instructions was integral to the completion of the
task.

It is also possible that if the robots explicitly communicated to their
human teammates that during the task they would be transmitting certain
information wirelessly to the other robots, that their teammates would be
more comfortable with subsequent silent communication. However, since the
deleterious effects of silent robot-robot communication concerned perceptions
of creepiness and not perceptions of untrustworthiness, future examination
will be needed to determine whether or not this would actually assuage the
robot’s teammates’ concerns.

Robots may also need to consider whether information it desires to com-
municate can be communicated verbally in a way that is natural and that
does not interfere with its teammates’ goals. If a robot has to communi-
cate certain information with high frequency, then verbal communication of
that information could be annoying to the robot’s human teammates, and
could negatively impact task performance if it needed to do significant trav-
eling to communicate that information. In the experiments presented in this
section, we examined scenarios in which the information to be communi-
cated was human understandable and in which the robots communicating
were co-located; we did not consider scenarios in which the robots commu-
nicated rapidly, communicated information not easily expressible in natural
language, or in which the robots were far away from each other.

Finally, we must acknowledge that our findings can only be said to apply
to first encounters with robots due to the nature of our experiment. Fu-
ture experiments will be needed to determine whether our results generalize
across multiple encounters. Furthermore, it is important to recognize that
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in no cases is verbal communication mandatory. It may always be possible
for humans to work side-by-side with their robot teammates even if they
don’t understand those robots’ communications (much as humans learn to
work side-by-side with other human coworkers even if they speak different
languages); but this will likely come at a cost of perceived creepiness, lower
task performance, and higher cognitive load, which should clearly be avoided
if possible.

Given the set of considerations listed above, we can describe the exper-
iments presented in this section as examining the communication of task-
dependent, human-understandable information among robots co-located
with human teammates in a cooperative setting, on first contact between
human and robot teammates. In such scenarios, we posit that robots should
communicate information verbally so as not to trigger uncanny valley effects.
This presents a starting point for the investigation of silent robot-robot com-
munication; future research will be needed to examine situations in which
other assumptions are made with respect to these considerations. In other
scenarios, the robot may need to use a mixture of silent and verbal commu-
nication to successfully balance between maximizing the effectiveness of its
robot-robot and human-robot communication, and minimizing the violations
of its human teammates’ social expectations. A model of precisely when a
robot should use verbal vs. silent communication will be an invaluable piece
of future work.

Future Experimental Work

Future research will be needed to examine whether other actions associated
with the supernatural will trigger uncanny valley effects. Such research will
become increasingly important as robots are endowed with more behaviors
that could be considered to be superhuman. For example, robots have re-
cently been given the ability to share memories and skills (Lallée et al., 2012;
Oosterveld, Brusatin, & Scheutz, 2017). It will be important to determine
if such abilities will be perceived as uncanny. If they are, those robots may
need strategies to allow the use of such abilities without incurring uncanny
valley effects, similar to the use of simultaneous verbal and silent robot-robot
communication suggested in this section.

Future extensions of this experiment should also allow for the collection
of objective task-performance measures. In this experiment, it is hard to see
how the differences between verbal and silent conditions could have resulted
in any task performance differences, but in scenarios in the real world, task
performance may very well be impacted by communication strategy (e.g.,
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if information is communicated incorrectly). A future study could examine
the effects upon task performance by systematically varying whether the
robots relayed instructions correctly or not and by giving the participant a
chance to amend their instructions; such variations and opportunities were
not presented in the experiments described in this section.

Future experiments should also investigate participants’ previous inter-
actions with robots. We attempted to do so by asking whether participants
had seen robots in movies or real life before, and where, but individual dif-
ferences in reporting style prevented us from quantitatively analyzing this
data. For example, participants varied with respect to the number of movies
they listed seeing robots in, but this was likely a reflection of how much time
they were willing to spend listing movies rather than a reflection of, for in-
stance, the number of movies with robots they had likely seen. Additionally,
participants varied greatly with respect to the types of robots they reported
having seen, with some listing things others may not have considered to be
robots, such as animatronics, toys, or Siri. This reflects individual differences
with respect to what participants considered to be “robots” in the first place.
This is also reflected in participants’ responses to whether or not they had
interacted with robots before. Only thirteen participants reported having
interacted with robots before, and several of these participants responded
“yes” because they had interacted with, for example, a crane machine or
remote-controlled toys. On the other hand, one participant responded that
they had been in a robotics club, but since none of their robots had been
very advanced, they wouldn’t consider themselves to have interacted with
robots before. This once again shows great differences in what individuals
consider to be “robots.” Future experiments intending to assess participants’
previous experience or familiarity with robots must consider how to adju-
dicate such experience or familiarity. And accordingly, future experiments
will need to reexamine our experimental hypotheses using paradigms that
extend across multiple (temporally distant) interactions, in order to investi-
gate what perceptual and task-based penalties may be accrued or reduced
over time.

Similarly, future experiments should further investigate the gender dif-
ferences we found in this investigation. Although we did not initially expect
any gender differences, we believe it is important to point out the differences
that we found in our experiment, so that subsequent researchers may fol-
low up on them. Finally, this study examines the perceptions of humans in
their first interaction with a pair of robots: It is likely that these perceptions
would change over time, and thus it will be important to investigate how
those perceptions shift longitudinally.
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Experimental Paradigm

While our experimental paradigm proved useful for investigating human per-
ceptions of covert robot-robot communication, it has several shortcomings
that should be addressed if the paradigm is to be used for future experiments.
First, unless one is specifically investigating the effects of robot morphology,
all robots used in the experiment should be identical. This principle was
violated in the presented experiments as we did not possess multiple iRobot
Creates at the time the experiment was started, but as shown in this article,
this violation required us to run a second experiment and deal with possi-
ble conflating factors resulting from robot morphology differences. Similarly,
all robots used in the experiment should have gender neutral voices. The
gender-alignment effect we found unifies the findings of P. Schermerhorn,
Scheutz, & Crowell (2008) and Eyssel, Kuchenbrandt, Bobinger, de Ruiter,
& Hegel (2012), suggesting that gender-neutral voices should help to lessen
gender differences in anthropomorphization.

Second, the appropriate granularity for the robots’ instructions must be
made clear to participants. In order to simplify the instructions that would
need to be passed verbally between robots, participants were told that the
robots should be given their instructions in orderings of quadrants. How-
ever, some participants appeared to misunderstand the difference between
quadrants and coordinates, and they gave the robots specific coordinate-by-
coordinate paths to follow. In the verbal condition, we were then forced to
extract the larger quadrant ordering from these specific instructions. This
was problematic (a) because it showed a misunderstanding of instructions by
participants, and (b) because generalization from coordinate-by-coordinate
paths to quadrant-by-quadrant paths may have caused participants to think
that the robots were failing to accurately follow their instructions. This
problem could be fixed in follow-up experiments by explicitly discussing the
differences between coordinates and quadrants with participants, making
sure they understand which annotations on their map refer to quadrants
and which refer to coordinates.

Finally, the geography of the experimental paradigm should be adapted.
Under the current paradigm and in the verbal condition, the two robots
would converse more or less directly in front of the participant. This may
have caused participants to wonder why they could not have simply delivered
their instructions directly to the second robot. In follow-up studies, the
geographical layout of the experiment should change such that a participant
can still observe the entirety of the room and see the robot-robot dialogue
unfolding, but such that their mobility is limited in a way which necessitates
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the robot-robot communication.
In this section, we presented the results of two experiments examining

whether silent robot-robot communication could have negative effects upon
human-robot interaction. While previous research on human perception of
robot-robot communication suggested that silent robot-robot communication
was not problematic in non-task-based scenarios and scenarios in which hu-
man participants were mere observers, our results suggested instead that the
silent communication of task-dependent, human-understandable information
among robots is perceived as creepy by cooperative, co-located human team-
mates. This suggests that in such contexts, silent communication should be
augmented with verbal speech so as to prevent the robots from being per-
ceived as creepy or unsettling. This is an important result for a field that
desires to build robots that assist humans in the performance of important
tasks (and not to merely engage in small-talk) and that are natural to inter-
act with (and are not merely natural to observe). Future research is needed
to extend these findings to related contexts and domains.

7.4 General Discussion

In this chapter, we began by demonstrating how the pragmatic reasoning
framework presented in the previous chapter could be used for pragmatic
generation in addition to pragmatic understanding. We then demonstrated
how this framework, when integrated with our referential processing frame-
work, facilitates the generation of clarification requests to resolve referential
and intentional ambiguity and uncertainty. Finally, we presented experimen-
tal evidence suggesting that the algorithms presented in this chapter may be
useful for not only human-robot communication, but robot-robot communi-
cation as well. This chapter presents the final algorithmic contribution of
this dissertation. In the next chapter, we move on to discuss the first of two
applications of the algorithmic contributions presented in this dissertation.
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Chapter 8

Application: Assistive Robotics

One exciting application area for the work presented in this dissertation is in
the area of language-capable assistive technologies. About 40% of wheelchair
users find it difficult or impossible to maneuver using a joystick, often due
to tremors, a limited range of motion, or spastic rigidity. Natural language
is a particularly well-suited alternative modality for wheelchair control due
to its capacity for the natural, flexible communication of a wide array of
commands.

Although natural language-controlled wheelchairs have existed since the
late seventies, they have significantly advanced since the mid 2000s. Re-
cent natural language-controlled wheelchairs identify landmarks, travel be-
tween multiple floors, ask and answer questions, and map their environments.
These are impressive and useful capabilities, but as researchers, we should
set our sights higher.

The communicative and navigational capabilities of the ideal wheelchair
are comparable to those of a human companion. A companion pushing a
wheelchair can do more than just move in certain directions or travel to
named locations. A companion can follow directions given by a wheelchair’s
user regardless of whether they have previously visited the destination. They
can learn about locations through observation or through descriptions (e.g.,
“This is my favorite cafe”). A companion can use memories of events and
trends in behavior to follow commands like “Let’s go to the park we visited
last week” or “Bring me to the barbershop I always go to.” A companion
not only responds to commands, but asks questions, provides important in-
formation without prompting, and makes conversation. Current wheelchairs
lack these capabilities; it is my goal to enable them.

In this chapter, I will first expound upon the motivations thus far,
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producing the first comprehensive survey of language enabled intelligent
wheelchairs. I will then present progress we have made in our efforts to
extent the state of the art, through collaboration with researchers from the
Intelligent Robotics laboratory at the University of Michigan.

8.1 Motivations

Many societies are faced with a growing elderly population. Over the next
fifteen years, the number of elderly citizens in the United States alone is
expected to increase by over 50%(Ortman, Velkoff, & Hogan, 2014). Hence,
assistive technologies that can support the elderly in their daily lives and help
them retain some level of autonomy are becoming increasingly important.
In fact, independent mobility technologies such as wheelchairs, for example,
have been shown to substantially benefit the elderly (Trefler, Fitzgerald,
Hobson, Bursick, & Joseph, 2004). Even though electric wheelchairs are not
uncommon among the disabled and elderly, about 40% of wheelchair users
find it difficult or impossible to maneuver using a joystick(Fehr, Langbein,
& Skaar, 2000), often due to tremors, limited range of motion, or spastic
rigidity(R. A. Cooper, 2010). In addition, power wheelchair use can be
physically and cognitively burdensome, even for those able to manipulate a
joystick(Iezzoni, McCarthy, Davis, & Siebens, 2001).

To make electric wheelchairs more accessible, researchers have designed
control interfaces that use a variety of additional modalities such as eye track-
ing, gesture recognition, brain monitoring, and natural language (NL). NL
is particularly well-suited for wheelchair control as it (1) allows for flexible
communication of a wide array of commands (compared to gestures, for ex-
ample), and (2) does not require instrumentation of the wheelchair user (as in
the case of eye tracking or brain-computer interfaces). Not surprisingly, NL-
enabled wheelchairs have been developed since the late seventies(J. A. Clark
& Roemer, 1977). However, only since the mid 2000s do we witness signifi-
cant advances in functionality, allowing NL-enabled wheelchairs to identify
landmarks, travel between multiple floors, ask and answer questions, and
map their environments. Capabilities such allowing users to specify target
locations to which the wheelchair subsequently will navigate autonomously
– compared to having to provide moment-by-moment joystick control inputs
to the wheelchair – can significantly reduce users’ cognitive workload and
required motor skills.

Yet, while the linguistic and navigational capabilities of wheelchairs have
come a long way, they are still far from those of human helpers. Human
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assistants pushing a wheelchair can do more than just move in certain di-
rections or travel to named locations: they can follow directions given by
a wheelchair’s user regardless of whether they have previously visited the
destination. They have no problem traveling outside or using an elevator
to travel between floors. They can learn about locations through visual ob-
servations or through descriptions (e.g., “This is my favorite cafe”). They
can use memories of events and trends in behavior to follow requests such as
“Let’s go to the park we visited last week” or “Bring me to my barbershop.”
They can ask questions, make suggestions, make conversation, and can tem-
porarily separate themselves from their companions (e.g., to fetch items for
the wheelchair user).

Fortunately, autonomous wheelchairs do not have to achieve human-like
performance in order to be become genuine helpers that support their users’
autonomy and mobility and do so in a way that establishes trust in the
technology. As we will argue, two key synergistic elements will critically fig-
ure in transforming today’s wheelchairs into tomorrow’s helpers: mnemonic
and linguistic capabilities. A genuinely helpful wheelchair should remem-
ber the objects and locations discussed and encountered in both the recent
and distant past, requiring various mnemonic capabilities (e.g., episodic and
working memory). And it should be able to leverage those memories through
descriptions, questions, and commands, requiring various linguistic capabil-
ities. By properly integrating these two capabilities, important synergies
can be obtained that will improve interactions with the user: Mnemonic
capabilities are necessary so that full linguistic specification is not needed
during every interaction; and linguistic capabilities are necessary for a user
to successfully leverage mnemonic capabilities.

The main aim of this survey is to (1) take stock of research on natural-
language enabled wheelchairs, (2) present a comprehensive summary of the
capabilities of current NL-enabled wheelchairs, and (3) propose a set of direc-
tions for future developments based on the summary. To this end, we present
a framework for comparing NL-enabled wheelchairs, from the most basic
wheelchairs whose speech interfaces mirror joystick control, to wheelchairs
that act as genuine helpers. We then apply this framework in our analysis
of all 24 NL-enabled wheelchair projects published in the past twelve years.
Following the analysis, we propose a list of eleven research topics that need
further exploration and development in order for NL-enabled autonomous
wheelchairs to become genuine helpers to humans.
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8.1.1 Framework Definition

The proposed framework for comparing autonomous language-enabled
wheelchairs consists of the following four parts which we will motivate
subsequently:

Hardware Configuration the physical properties of the wheelchair.

Non-linguistic Capabilities and Behaviors The wheelchair’s high-level
perceptual or mnemonic capabilities, and the types of navigational
tasks facilitated by those capabilities.

Linguistic Capabilities and Behaviors The wheelchair’s high-level lin-
guistic capabilities, and the types of dialogue acts facilitated by the
wheelchair’s capabilities.

User Evaluation the way the wheelchair was evaluated.

Since NL capabilities must be reflected in the wheelchair’s behavioral ca-
pabilities (otherwise they would be superfluous), it is most natural to com-
pare NL-enabled wheelchairs by their executable behaviors. For example,
there is an obvious behavioral difference between a wheelchair only able to
accept metric commands (e.g., “Go forward”) and a wheelchair able to accept
commands such as “Go faster”, “Follow Jim”, “Go to the third door on the
right”, or “Go to the breakroom.” Similarly, one can distinguish between a
wheelchair that is only able to accept commands and a wheelchair able to
interpret statements such as “This room is called the Atrium” or “I could use
a glass of water.” In addition to the types of utterances a wheelchair can
interpret or use, it is important to differentiate between the types of dia-
logue acts a wheelchair can interpret or use. Although most of the examined
wheelchairs only accept commands, some respond with simple acknowledg-
ments such as “Okay.” or “Please repeat your command”, and a few are
capable of richer dialogue exchanges (e.g., asking or answering questions).

Behaviors alone are not, however, sufficient metrics for comparison. A
wheelchair may be able to execute a wide range of behaviors, but due to lim-
ited functional capabilities may only be able to do so at a rudimentary level.
One may be able to tell a wheelchair to go to the breakroom, but this does
not reveal much about that wheelchair’s capabilities. The wheelchair may
be able to follow the command because it has hard-coded knowledge that
following a line on the floor will bring it to the breakroom. Alternatively, it
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may be able to follow the command because the user said “that’s the break-
room” while driving past an open door on the previous day, and because the
wheelchair’s mapping system can find a route to that location. It follows
that the wide range of functional capabilities that facilitate executable be-
haviors must also be compared. A wheelchair’s functional capabilities also
tend to indicate its robustness or flexibility. For example, perceptual capabil-
ities such as object and gesture recognition may allow a wheelchair to better
interpret utterances that refer to objects or locations, such as “that’s the mi-
crowave”, “bring me over there”, or “that one.” Mnemonic capabilities such as
belief modeling and episodic memory may allow for better disambiguation of
utterances such as “let’s go to the cafeteria” by determining locations known
to or frequented by the wheelchair’s user. Spatially-oriented mnemonic ca-
pabilities for mapping or outdoor navigation may allow the wheelchair to
be used in unmapped environments. Linguistic capabilities such as listening
in on conversations may facilitate disambiguation by providing more infor-
mation to the wheelchair, and capabilities such as dialogue management
and robustness to disfluency, ungrammaticality, and ambiguity make the
wheelchair more natural to converse with, and easier to use for those with
speech impairments.

Just as capabilities determine the sophistication of behaviors, the phys-
ical properties of a wheelchair (i.e., its body, sensors and input modalities)
limit the sophistication of its capabilities. Although a wheelchair’s body
(e.g., a powered wheelchair versus a motorized camping chair) affects the
way the wheelchair will be perceived, and the addition of control modalities
(e.g., a brain control interface) reflects the goals of the wheelchair’s devel-
opers, a wheelchair’s sensors affect what the wheelchair can actually do. A
wheelchair without sensors cannot map its environment or avoid obstacles,
and a wheelchair without a camera will have a hard time recognizing objects
in the environment.

In this section, we consider non-linguistic capabilities and behaviors sep-
arately from linguistic capabilities and behaviors. The three primary cate-
gories for evaluating NL-enabled wheelchairs are thus hardware configura-
tion, non-linguistic capabilities and behaviors, and linguistic capabilities and
behaviors. In addition to these three categories, we add a fourth for com-
paring how the wheelchairs were evaluated, as the majority of the examined
wheelchairs had only limited evaluations, producing little to no evidence
that they would be usable in daily life by their target populations. Having
motivated our framework, we next introduce the subcategories within our
broader framework categories.
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Hardware Configuration

A wheelchair’s sensors dictate its capabilities, its base affects how it is per-
ceived by users, and its control modalities determine its level of accessibility.

Wheelchair Base: The examined wheelchairs varied widely in structure,
from camping chairs to sophisticated powered wheelchairs. Wheelchair
users will certainly differentiate between modified manual wheelchairs and
fully developed power wheelchairs, due to differences in comfort, control,
safety and price effectiveness.

Sensors: Many of the capabilities of an intelligent wheelchair that is a
genuine helper require some means of perception. The wheelchairs we
examined were fairly evenly distributed between those having no sensors
whatsoever, those having a single means of perception, and those having
two or more types of sensors.

Control Modalities: Many of the examined wheelchairs can be controlled
by one or more modalities other than NL. We thus classify control modalities
into three categories: verbal (control by NL), manual (control by physical
movement) or mental (control by thought).

Non-Linguistic Capabilities and Behaviors

The functional capabilities of a wheelchair necessarily constrain the types of
behaviors the wheelchair is capable of executing, and determine the power,
robustness and flexibility of these behaviors. We separate non-linguistic func-
tional capabilities into two categories: perceptual (pertaining to the types of
entities a wheelchair can detect or identify), and mnemonic (pertaining to
the types of information the wheelchair can store in long-term memory).

1. Perceptual Capabilities

Ideally, a wheelchair would not only be able to determine the positions
of obstacles, but would be able to identify agents, objects and envi-
ronmental features, and detect and interpret the particular motions
and actions made by nearby agents. Most wheelchairs have few if any
of these abilities.
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Detection: A wheelchair may be able to detect features of its
environment, obstacles in its path, or the positions of nearby agents.
Detecting and avoiding obstacles is necessary for any significant level
of navigation.

Identification: A wheelchair able to detect people or objects may
also be able to identify them.

Gesture or Action Recognition: A wheelchair may be able to
interpret gestures made by its user or other agents. And, monitoring
the actions performed by other agents, may allow a wheelchair to
model their intentions.

2. Mnemonic Capabilities

Belief and Intention Modeling: Modeling the spatial knowledge of
its user and other agents may allow a wheelchair to resolve referential
ambiguities or to better answer queries.

Episodic Memory: If a wheelchair can recall particular events, it
may be able to predict the referent of an ambiguous instruction based
on patterns of past behavior.

Working Memory: If a wheelchair maintains information about
what entities are “salient” or “in focus” within the environment or
discourse structure, it may be better able to resolve referring, deictic,
and anaphoric expressions.

Mapping Style: The maps used by wheelchairs may be metric,
topological, or hybrid in nature, which will affect the granularity of
the wheelchair’s knowledge of its environment. At a broad level, we
classify systems based on whether or not they use maps at all. At a
more granular level, we classify systems as to whether they use metric
and/or topological maps, and whether they create those maps.

Environmental Flexibility: Most NL-enabled wheelchairs can only
navigate indoor environments due to limitations of their sensors or
assumptions imposed by their navigation systems, such as the types
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of paths the wheelchair is restricted to or the ways paths are expected
to intersect.

We will now discuss the types of non-linguistic behaviors facilitated by
these non-linguistic capabilities. We divide these into behaviors that
do and do not require any mapping capabilities.

3. Mapless Navigation Behaviors

A wheelchair may be able to carry out a variety of commands which
do not require any mapping abilities:

Metric Commands: All examined wheelchairs can execute metric
commands such as “Go Forward” and “Turn Left.”

Speed Adjustment: A wheelchair may be able to speed up or slow
down on request.

Following of Static Entities: A wheelchair may be able to follow
walls, lines on the ground, or other static features of its environment.

Following of Dynamic Entities: A wheelchair may be able to
follow a human or another robot.

Following Route Descriptions: A wheelchair may be able to follow
route descriptions from its current location without using a map.

4. Map-based Navigation Behaviors

Many of the behaviors of an intelligent wheelchair that is a genuine
helper require the ability to build or use a map.

Traveling to Named Locations: If a wheelchair can assign labels
to locations in a topological or metric map, it may be able to visit
them without needing a route description.

Traveling to Objects: A wheelchair may be able to travel to named
objects.
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Traveling to Unknown Locations: A wheelchair may be able to
visit places it hasn’t been to before if their locations are sufficiently
described. The wheelchair may then be able to follow directions
relative to the described place (e.g.,“Go to the room two doors past
the break room”).

Traveling to Unknown Objects: A wheelchair may be able to
visit objects it hasn’t been to before if their locations are sufficiently
described (e.g.,“Go to the kitchen table” where the kitchen is known,
but unexplored).

Traveling to Implied Locations: A wheelchair may be able to visit
implied destinations (e.g., the kitchen for “Let’s cook some eggs.”).

Linguistic Capabilities and Behaviors

Most NL-enabled wheelchairs only follow simple orders. An intelligent
wheelchair that is a genuine helper could engage in robust dialogue, and
could follow the conversations of others to facilitate mnemonic capabilities
such as belief and intention modeling.

Dialogue Management: A wheelchair may have dialogue capabilities
such as turn taking or topic tracking.

Robustness: A wheelchair may be robust to speech disfluencies, ungram-
matical utterances, or ambiguous references.

Listening in on Conversations: A wheelchair may be able to gain
information by listening to commands and descriptions in the conversations
of nearby agents.

But the most important features of a wheelchair are the behaviors it can
perform. An intelligent wheelchair that is a genuine helper could engage in
a wide variety of dialogue behaviors:

Accepts Commands: A wheelchair may only accept commands (expressed
grammatically through imperatives as opposed to more indirect forms of
commands, see below).
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Accepts Descriptions: A wheelchair may understand statements such as
“The door to the lab is locked” or indirect speech acts such as “It’d be great
if you could get me a coffee.”

Acknowledgment: The simplest speaking behavior is providing acknowl-
edgment that a command or description has been received.

Answers Questions: A wheelchair may be able to answer queries, such as
how to get to a certain room, where a meeting is being held, or what the
weather will be like.

Asks Questions: If a wheelchair can ask questions, it may better resolve
ambiguities, gain additional knowledge of its environment, or dispute
conflicting information.

Offers Suggestions: A wheelchair may be more helpful if it suggests ways
it might be of service, or reminds its user of appointments they may have
forgotten.

User Evaluation

Wheelchair evaluation should be holistic, task-based, large-scale and
long-term. As we later discuss, the evaluations of existing wheelchairs have
been much less rigorous in these categories than would be desirable.

Style: Wheelchairs were evaluated either by capability (e.g., only speech
recognition has been evaluated), holistically (e.g., by measuring task
performance), or not at all.

Size: We categorize studies holistically evaluated wheelchairs as having
fewer than, or greater than or equal to ten participants, based on the subject
pool of the publication with the most holistic evaluation.

Further divisions

To better compare current wheelchairs with different capabilities, we first di-
vide the wheelchairs by the highest scope of command they can execute. Out
of twenty-four examined wheelchairs, fifteen only execute metric-level com-
mands, three also execute commands to follow locally observable features,
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such as “follow the wall” or “enter the elevator”, and six execute commands
to go to named locations. This division, while unbalanced, emphasizes how
far most current wheelchairs are from attaining the linguistic capabilities we
desire. We further divide the two larger categories to produce groups of more
manageable sizes.

Figure 8.1: Taxonomy of Natural language-controlled Wheelchairs (Level 1:
Wheelchairs divided by highest scope of executable commands)

Highest Scope of Executable Commands

Commands to Visit LocationsCommands to Follow FeaturesMetric Commands

The fifteen wheelchairs only capable of executing metric commands are
further divided based on their hardware configuration: three have a micro-
phone but no other sensors or control modalities, seven have some additional
control modality or sensor but no way of autonomously avoiding obstacles,
and the remaining five have additional sensors and control modalities, and
can autonomously avoid obstacles.

Figure 8.2: Taxonomy of Natural language-controlled Wheelchairs (Level
2-A: Wheelchairs only capable of executing metric commands, divided by
hardware configuration)

Hardware Configuration

Additional hardware, OAAdditional Hardware, no OAMicrophone Only

The six wheelchairs capable of executing commands to visit specific lo-
cations are further divided based on mapping style: four use pre-built topo-
logical maps of their environment, and the other two build their own.
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Figure 8.3: Taxonomy of Natural language-controlled Wheelchairs (Level 2-
B: Wheelchairs capable of executing commands to visit specific locations,
divided by mapping style)

Mapping Style

On-the-FlyPre-built

These divisions separate the wheelchairs into groups of three to seven
wheelchairs each, facilitating easier comparison. In the following pages, we
present two tables: (1) Table 8.1 assigns an identifier to each wheelchair
project analyzed in the survey presented in this section, used in all subse-
quent tables; (2) Table 8.2 applies the framework to these projects. For the
sake of space, some framework dimensions are only applied at a high level in
Table 8.2. For example, Table 8.2 only indicates number of sensors, and not
which sensors were used. For such framework dimensions, a more granular
analysis is provided later on.

8.1.2 Analysis of Projects

We will now use the presented framework to compare the wheelchairs shown
in Table 8.1. In this section, we will examine twenty-four distinct wheelchair
projects. These represent, to the best of our knowledge, all NL-enabled
wheelchairs presented within the past twelve years. Many of the projects
we will examine represent the work of a large number of researchers, and
resulted in a large number of distinct publications; in most cases, we will
refer only to the most recent publication in each project, and make note of
the first author on that most recent publication.
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Table 8.1: Legend of Examined Wheelchairs

ID Year Author Affiliation
1 2010 Qidwai Qatar University
2 2009 Qadri Sir Syed University of Engineering and Technology
3 2007 Suk National Institute of Advanced Industrial Science and Technology
4 2013 McMurrough University of Texas at Arlington
5 2011 Maskeliunas Kaunas University of Technology
6 2011 Berjon Universidad Pontificia de Salamanca
7 2007 Asakawa Kanagawa Institute of Technology
8 2015 Wang WuYi University
9 2013 Ruiz-Serrano Instituto Tecnologico de Orizaba
10 2015 Linh HCMC University of Technical Education
11 2011 Wallam Sir Syed University of Engineering and Technology
12 2012 Babri University of the Punjab
13 2010 Liu Nanchang University
14 2015 Sheikh Nagpur University
15 2015 Skraba University of Maribor
16 2007 Hockey UC Santa Cruz
17 2010 Pineau McGill University
18 2009 Murai Tottori University
19 2011 Megalingam Amrita Vishwa Vidyapeetham
20 2009 Tao Beijing University of Aeronautics and Astronautics
21 2015 Faria Instituto Politecnico do Porto
22 2017 Williams Tufts University
23 2016 Hemachandra Massachusetts Institute of Technology
24 2005 Ross University of Bremen

The identifier for each project (to be used in subsequent tables), and the
year of publication, first author, and first author’s affiliation, for the most
recent work on each project.



268 CHAPTER 8. APPLICATION: ASSISTIVE ROBOTICS

Table 8.2: Framework applied to all wheelchairs

NL-enabled Wheelchairs: Navigation Behaviors:
Metric Commands Only Local Place Navigation

Mic Extra HW Extra HW Feature Prebuilt OTF
Alone No OA With OA Following Maps Maps

Project 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hardware Configuration

Base: Manual • • • • • • • • • • •
Powered • • • • • • • • • • • • •

Sensors: None • • • • • • • •
One • • • • • • • • • •

Several • • • • • •
Control Modalities: Verbal • • • • • • • • • • • • • • • • • • • • • • • •

Manual • • • • • • • • • • • • • • • • • • •
Mental • •

Non-Linguistic Capabilities and Behaviors
Perceptual Capabilities

Detection • • • • • • • • • • • • • •
Identification • • •

Gesture or Action Recognition
Mnemonic Capabilities

Belief or Intention Modeling • •
Episodic Memory
Working Memory •

Mapping • • • • • •
Environmental Flexibility •

Mapless Navigation Behaviors
Metric Commands • • • • • • • • • • • • • • • • • • • • • • • •

Any Other Local Commands • • • • • •
Map-Based Navigation Behaviors

Travels to Named Places • • • • • •
... to Objects • • • •

... to Unknown Places or Objects • • •
... to Implied Objects or Locations •

Accepts New Place Names •
Linguistic Capabilities and Behaviors
Linguistic Capabilities

Dialogue Management • • •
Listening in
Robustness • • •

Linguistic Behaviors
Accepts Commands • • • • • • • • • • • • • • • • • • • • • • • •
Accepts Descriptions • •

Acknowledgment • • • • • •
Answers Questions • • •

Asks Questions • •
Offers Suggestions

User Evaluation
None • • • • • • • •

By Capability • • • • • • • •
Holistic: n < 10 • • • • •

Holistic: n >= 10 • • •
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Wheelchairs Limited to Metric Commands

Nearly two thirds of recent NL-enabled wheelchairs can only follow verbal
commands to go forward, turn or stop. We first examine the wheelchairs in
this category that have no hardware additions other than the microphone
necessary for speech input.

1. Wheelchairs Limited to Metric Commands without Added Hardware

Table 8.3: Wheelchairs allowing only metric level commands with no sensors
other than a microphone

Project 1 2 3
Hardware Configuration
Manual Base • •
Powered Base •
Linguistic Capabilities
Robust to Disfluencies •
User Evaluation
Style:None •
By Capability • •
Size: N/A •
< 10 Participants •
>= 10 Participants •

Since the published aspects of the wheelchairs in this category ((Qid-
wai & Ibrahim, 2010; Qadri & Ahmed, 2009; Suk, Chung, & Kojima,
2007); 1-3 in the table above) were solely related to aspects of speech
recognition, it is understandable that the set of commands executable
by these wheelchairs is limited in scope. The wheelchair presented
by Suk, Chung, & Kojima (2007), for example, was presented with
respect to a voice-control algorithm designed to be robust to speech
disfluencies.
Two of these projects used augmented manual wheelchairs instead of
powered wheelchairs, due to their limited needs. Experimental val-
idation differed between projects; one analyzed about 2000 samples
collected from 12 participants (Suk, Chung, & Kojima, 2007), one
analyzed 250 commands collected from five participants (Qidwai &
Ibrahim, 2010), and one did not indicate whether their wheelchair had
been empirically evaluated (Qadri & Ahmed, 2009).
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2. Wheelchairs Limited to Metric Commands with Hardware Additions
but without Obstacle Avoidance

Table 8.4: Wheelchairs allowing only metric level commands with sensors
that do not provide obstacle avoidance

Project 4 5 6 7 8 9 10
Hardware Configuration
Manual Base • • • •
Powered Base • • •
RF Reader •
Eye Tracking • •
Head Tracking •
BCI •
Magnetic Control •
Keyboard and Mouse • •
Touch Screen • • •
Keypad • •
Joystick • • • • •
Non-Linguistic Behaviors
Speed Adjustment •
Linguistic Behaviors
Answers Other Questions •
User Evaluation
Style: None • • •
By Capability • •
Holistic • •
Size: N/A • • • •
<10 Participants • • •

Of the wheelchairs with hardware additions but without obstacle avoid-
ance ((McMurrough, Ranatunga, Papangelis, Popa, & Makedon, 2013;
Maskeliunas & Simutis, 2011; Berjon, Mateos, Barriuso, Muriel, & Vil-
larrubia, 2011; Asakawa & Nishihara, 2007; H. Wang, Li, & Zheng,
2015; Ruíz-Serrano et al., 2013; Linh, Hai, Van Thuyen, Mai, & Van
Toi, 2015); 4-10 in the table above) only those presented by
McMurrough, Ranatunga, Papangelis, Popa, & Makedon (2013) and
Linh, Hai, Van Thuyen, Mai, & Van Toi (2015) used powered
wheelchair bases. All seven wheelchairs in this category used a
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manual control modality such as a standard joystick (McMurrough,
Ranatunga, Papangelis, Popa, & Makedon, 2013; Asakawa & Nishi-
hara, 2007; H. Wang, Li, & Zheng, 2015; Ruíz-Serrano et al., 2013;
Linh, Hai, Van Thuyen, Mai, & Van Toi, 2015), or a touch screen
(Maskeliunas & Simutis, 2011; Berjon, Mateos, Barriuso, Muriel, &
Villarrubia, 2011). Most of these projects focused on the use of multi-
ple control modalities. In addition to voice and touch control, McMur-
rough, Ranatunga, Papangelis, Popa, & Makedon (2013) used BCI and
eye-tracking control; Maskeliunas & Simutis (2011) used eye-tracking
control; Berjon, Mateos, Barriuso, Muriel, & Villarrubia (2011) used
head-tracking control; Ruíz-Serrano et al. (2013) used tongue-based
magnetic control; and both H. Wang, Li, & Zheng (2015) and Linh,
Hai, Van Thuyen, Mai, & Van Toi (2015) used a keyboard and mouse.

Asakawa & Nishihara (2007), on the other hand, used no additional
control modalities, but used a Radio Frequency (RF) tag reader along
with RF tags embedded into the floor to allow their wheelchair to
autonomously round corners. Other capabilities of these wheelchairs
were limited. The wheelchair presented by McMurrough, Ranatunga,
Papangelis, Popa, & Makedon (2013) could accept voice commands
to adjust its speed of movement (but could not accept commands to
turn); the wheelchair presented by Berjon, Mateos, Barriuso, Muriel, &
Villarrubia (2011) could use a smartphone to answer questions about
the weather and news.

Evaluations of the wheelchairs in this category were limited. McMur-
rough, Ranatunga, Papangelis, Popa, & Makedon (2013) do not ap-
pear to evaluate their wheelchair at all, and Berjon, Mateos, Barriuso,
Muriel, & Villarrubia (2011) and Maskeliunas & Simutis (2011) only
state that their wheelchairs work fine. H. Wang, Li, & Zheng (2015)
and Linh, Hai, Van Thuyen, Mai, & Van Toi (2015) evaluate the accu-
racy of their speech recognition systems, with H. Wang, Li, & Zheng
(2015) stating that five participants were used, and Linh, Hai, Van
Thuyen, Mai, & Van Toi (2015) not providing any information about
who provided their training and testing data. Asakawa & Nishihara
(2007) contrast the time taken for three subjects to navigate a hallway
using voice control augmented with this autonomous behavior with
time taken when using voice, button pad or joystick control.
Ruíz-Serrano et al. (2013) had five participants navigate an environ-
ment with obstacles, measuring the time taken to complete the task.
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3. Wheelchairs Limited to Metric Commands with Hardware Additions
Allowing for Obstacle Avoidance

Table 8.5: Wheelchairs allowing only metric level commands with sensors
that provide obstacle avoidance

Project 11 12 13 14 15
Hardware Configuration
Manual Base • • •
Powered Base • •
Ultrasound • •
Camera • • •
IR •
Finger Motion Sensor •
Touch Screen •
Remote Control •
Joystick • • • •
User Evaluation
Style: None • • •
By Capability •
Holistic •
Size: N/A • • •
<10 Participants •
>=10 Participants •

We will now discuss the five remaining wheelchairs restricted to metric
commands ((Wallam & Asif, 2011; Babri, Malik, Ibrahim, & Ahmed,
2012; J. Liu, Zhang, Fan, Wang, & Wu, 2010; Sheikh & Rotake, 2015;
Škraba, Stojanović, Zupan, Koložvari, & Kofjač, 2015); 11-15 in the
table above). Three of these wheelchairs used manual bases (Wallam &
Asif, 2011; Babri, Malik, Ibrahim, & Ahmed, 2012; Sheikh & Rotake,
2015) and two used powered bases (J. Liu, Zhang, Fan, Wang, & Wu,
2010; Škraba, Stojanović, Zupan, Koložvari, & Kofjač, 2015). Unlike
the wheelchairs examined thus far, all wheelchairs in this category used
sensors to avoid obstacles: Wallam & Asif (2011) and Sheikh & Rotake
(2015) used ultrasound sensors (Sheikh & Rotake (2015) also used an
IR sensor), and Babri, Malik, Ibrahim, & Ahmed (2012),
J. Liu, Zhang, Fan, Wang, & Wu (2010), and Škraba, Stojanović, Zu-
pan, Koložvari, & Kofjač (2015) used a camera. All wheelchairs could
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be controlled with a joystick except that presented by Škraba, Sto-
janović, Zupan, Koložvari, & Kofjač (2015), who replaced theirs with a
touch screen. In addition, Wallam & Asif (2011) used a finger motion
sensing glove, while Sheikh & Rotake (2015) used a remote controller.

The wheelchair presented by Škraba, Stojanović, Zupan, Koložvari,
& Kofjač (2015) was evaluated by twelve participants, including two
patients from a rehabilitation institute. Experimental validation of
the other wheelchairs was minimal; Babri, Malik, Ibrahim, & Ahmed
(2012) state that two people tested their wheelchair’s speech recogni-
tion; the rest are only described as working fine, if their performance
is described at all.

Thus far, we have examined 15 wheelchairs, most of which could only
understand five commands: Go forward, Go backwards, Turn left, Turn
right, and Stop. This is clearly well-trod ground, and yet many of these
projects do not significantly predate the projects found in latter cate-
gories: some were published on as recently as 2015. Future wheelchair
developers should focus not on these basic capabilities, but rather on
enabling more sophisticated linguistic and mnemonic capabilities, as
do the developers of the projects we will now discuss.

Wheelchairs Capable of Following Local Entities

The next group of wheelchairs are those that can navigate relative to lo-
cal environmental features such as walls and elevators. All projects in this
category ((Hockey & Miller, 2007; Pineau, Atrash, Kaplow, & Villemure,
2010; Murai, Mizuguchi, Saitoh, Osaki, & Konishi, 2009); 16-18 in the table
above) use powered wheelchair bases controllable by joystick. In addition,
the wheelchair presented by Pineau, Atrash, Kaplow, & Villemure (2010)
can be controlled by a touch screen. All wheelchairs in this category have
at least one sensor used to avoid obstacles: Hockey & Miller (2007) use an
ultrasound sensor, Pineau, Atrash, Kaplow, & Villemure (2010) use a Laser
Range Finder (LRF), and Murai, Mizuguchi, Saitoh, Osaki, & Konishi (2009)
use both ultrasound and IR sensors. Unlike the previous wheelchairs, those
in this category all have an array of capabilities and behaviors.

The wheelchair presented by Hockey & Miller (2007) appears to have
been used as a proof-of-concept demonstration within a limited domain. As
such, it has not been empirically evaluated, and there are scarce details
about how it works algorithmically. Hockey & Miller (2007) do, however,
provide a sample dialogue handled by their wheelchair, suggesting some in-
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Table 8.6: Wheelchairs able to issue NL commands not requiring perception

Project 16 17 18
Hardware Configuration
Powered Base • • •
LRF •
Ultrasound • •
IR •
Touch Screen •
Joystick • • •
Non-Linguistic Capabilities and Behaviors
Intention Modeling •
Metric Mapping •
Speed Adjustment •
Wall Following •
Elevator Entering •
Travels to Objects •
Travels to Unknown Objects or Locations •
Linguistic Capabilities and Behaviors
Dialogue Management • •
Acknowledgment • •
Ask Questions •
User Evaluation
Style: None •
Holistic • •
N/a •
<10 Participants •
>=10 Participants •
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teresting capabilities, such as dialogue management, which it uses to provide
acknowledgment and ask questions, and the ability to travel to described ob-
jects even if it has never seen them before – a capability of interest in current
research such as that presented by Duvallet et al. (2014), or by ourselves in
Chapter 3.2.

The SmartWheeler wheelchair(Pineau, Atrash, Kaplow, & Villemure,
2010) uses an LRF to detect and avoid obstacles and to map its environment,
which allows the wheelchair to easily follow walls. When the SmartWheeler
receives a command, it can ask for feedback regarding its interpretation us-
ing a touchscreen. Recent work on this project has included modeling of the
wheelchair user’s intentions when issuing commands(Png & Pineau, 2011).
For evaluation, the wheelchair was first run through the Wheelchair Skills
Test(Routhier, Vincent, Desrosiers, Nadeau, & Guerette, 2004). Then, 23
subjects, both able-bodied and disabled, evaluated the wheelchair.

Finally, Murai, Mizuguchi, Saitoh, Osaki, & Konishi (2009) present a
wheelchair that uses ultrasound and infrared sensors to detect and avoid
obstacles and to get in and out of elevators. Their wheelchair does not use
a dialogue manager, but prompts the user after every command to ensure
it understood them correctly. This wheelchair was validated using five able
bodied participants in a series of experiments.

In this category, we see for the first time wheelchairs with substantial
linguistic capabilities. But while some wheelchairs in this category (i.e.,
those of Pineau, Atrash, Kaplow, & Villemure (2010) and Murai, Mizuguchi,
Saitoh, Osaki, & Konishi (2009)) have begun to allow more sophisticated
navigational behaviors such as wall following and elevator entering, more
sophisticated linguistic capabilities are still lacking; only Hockey & Miller
(2007)’s wheelchair may have come close to the goal of genuine helper, but
it was not truly evaluated.

Wheelchairs Capable of Navigating to Specified Locations

The final group is comprised of wheelchairs that use a topological map to
navigate. We split these into those that are given maps, and those that
create their own.

1. Wheelchairs Capable of Navigating to Specified Locations, that Re-
quire a Prebuilt Map

Four projects used wheelchairs pre-loaded with topological maps ((Me-
galingam, Nair, & Prakhya, 2011; Tao, Wang, Wei, & Chen, 2009;
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Table 8.7: Wheelchairs able to issue NL commands requiring mapping based
on pre-loaded topological maps

Project 19 20 21 22
Hardware Configuration
Manual base • •
Powered base • •
Sonar •
RF Reader • •
Ultrasound • •
IR •
Camera •
LRF •
Joystick • • •
Touch Screen • •
Gamepad •
Keyboard and Mouse •
Head Tracking •
Non-Linguistic Capabilities and Behaviors
Intention Modeling •
Working Memory •
Metric Mapping •
Wall Following •
Travels to Named Places • • • •
Travels to Objects •
Travels to Unknown Objects •
Linguistic Capabilities and Behaviors
Dialogue Management •
Robust to Ambiguity •
Accepts Descriptions •
Acknowledgments • •
Answers Questions • •
Asks Questions • •
User Evaluation
Style: By Capability • •
Holistic • •
Size: N/A • •
<10 Participants • •
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Faria, Reis, & Lau, 2015); 19-21 in the table above, and our own
wheelchair (Section 8.2,

22 in the table above). Hardware varied greatly between these projects.
Megalingam, Nair, & Prakhya (2011) used a camping chair attached
to a platform with sonar sensors and an RF reader. Tao, Wang, Wei,
& Chen (2009) use a manual wheelchair base outfitted with ultrasound
sensors, an RF reader, a touch screen and a joystick. The IntellWheels
project (Braga, Petry, Reis, & Moreira, 2011; Petry, Moreira, Faria,
& Reis, 2013; Faria, Reis, & Lau, 2015) uses a powered wheelchair
with both sonar and infrared sensors. They focus in part on mapping
multimodal input sequences to desired actions; their wheelchair can
be controlled by touchscreen, joystick, gamepad, keyboard, or head
movement. Our own wheelchair uses a powered wheelchair base, can
be manipulated with a joystick, and is equipped with two LRFs. We
will next discuss the three previously published wheelchairs in this
category, and then briefly discuss our own research efforts, which are
expounded upon in Section 8.2.

Despite the wide variance in hardware, the three previously published
wheelchairs can perform roughly the same behaviors; all three can go
to a pre-labeled room, and Faria, Reis, & Lau (2015)’s wheelchair can
follow walls. All three avoid obstacles, and Tao, Wang, Wei, & Chen
(2009)’s wheelchair can provide acknowledgments and answer ques-
tions about the weather and upcoming events. Megalingam, Nair, &
Prakhya (2011) tested wheelchair response time, while the other two
groups performed a battery of tests on a small number of subjects
(five (Tao, Wang, Wei, & Chen, 2009) or eight (Petry, Moreira, Faria,
& Reis, 2013)), yielding qualitative results about the wheelchair’s per-
formance. These wheelchairs used pre-loaded maps either because they
expected that the wheelchair would be used in a pre-known home en-
vironment (Megalingam, Nair, & Prakhya, 2011; Tao, Wang, Wei, &
Chen, 2009), or because they used a mixed reality system requiring a
simulated environment representation(Petry, Moreira, Faria, & Reis,
2013).

Designed as a successor to the Vulcan wheelchair(Murarka, Gulati,
Beeson, & Kuipers, 2009), our own wheelchair, developed in conjunc-
tion with researchers from the University of Michigan, can avoid ob-
stacles and dynamically create a metric map of its environment using
the Hybrid Spatial Semantic Hierarchy (HSSH)(Kuipers, 2008). We
are currently integrating prior work on topological maps built through
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both observation and dialogue interactions (cf. Chapter 3.2). Un-
like the other wheelchairs examined thus far, our wheelchair can posit
new hypothetical locations based on dialogue (even though it can only
travel to them in some contexts) and can travel in search of previously
unknown objects – capabilities afforded by the referential processing
framework introduced in Chapters 3-4. This approach also differs from
previous approaches in that it does not only accept commands to travel
to locations denoted by a rigid designator (i.e., by “name”), but rather
accepts commands to travel to places matching descriptions such as
“the room at the end of the hall down on the right”, a strictly larger
class of referring expression.

Another key feature of our wheelchair is its use of the robust dia-
logue system whose pragmatics module is described in Chapters 6-7,
which can infer goals and intentions from indirect speech acts under
contextual uncertainty or ignorance. A video of our wheelchair acting
on indirect language can be viewed at https://www.youtube.com/
watch?v=eSU1YWdSfpk.

While we have evaluated many such capabilities in previous work, and
have informally demonstrated many of them on our wheelchair, we
have not yet holistically evaluated our wheelchair – this will be a topic
for future work as our research efforts progress.

2. Wheelchairs Capable of Navigating to Specified Locations and of Dy-
namically Building Topological Maps

Finally, we discuss the two wheelchairs capable of building topological
maps dynamically (i.e. 23 and 24 in the table above(S. Hemachandra,
Kollar, Roy, & Teller, 2011; Röfer, Mandel, Lankenau, Gersdorf, &
Frese, 2009)). Both use powered wheelchair bases with laser scanners
for detecting and avoiding obstacles, and allow for joystick control.

The first is the MIT Intelligent Wheelchair Project (N. Roy et al.,
2011). This wheelchair builds a metric map from which topologi-
cal structures can be extracted. Not only can this system travel to
named objects and places, but it can receive new labels on-the-fly dur-
ing guided tours while following a guide (S. M. Hemachandra, 2010).
More recent papers also describe the wheelchair’s ability to accept de-
scriptions such as “The kitchen is down the hall”(Walter, Hemachandra,
Homberg, Tellex, & Teller, 2013) and references to previously unknown
entities, such as “the cone behind the hydrant”(Duvallet et al., 2014).
This system can also provide acknowledgments, travel outdoors to some

https://www.youtube.com/watch?v=eSU1YWdSfpk
https://www.youtube.com/watch?v=eSU1YWdSfpk
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Table 8.8: Wheelchairs able to issue NL commands requiring dynamic map-
ping

Project 23 24
Hardware Configuration
Powered Base • •
Sensors: LIDAR •
LRF •
Camera •
Joystick • •
Head Joystick •
BCI •
Non-Linguistic Capabilities and Behaviors
Metric Mapping • •
Topologic Mapping • •
Multi-floor Mapping •
Follows Route Descriptions •
Wall Following •
Person Following •
Elevator Entering •
Travels to Named Places • •
Accepts New Place Names •
Travels to Objects •
Travels to Unknown Objects •
Linguistic Capabilities and Behaviors
Robust to Ambiguity •
Accepts Descriptions •
Acknowledgment • •
User Evaluation
Style: By Capability •
Holistic •
Size: >=10 Participants • •
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extent (Walter, Hemachandra, Homberg, Tellex, & Teller, 2013), en-
ter elevators to traverse multiple floors, and is robust to referential
ambiguity through the use of the G3 framework.

There have been many publications on this project: in addition to eval-
uation of individual capabilities, it has also undergone holistic evalua-
tion with a larger number of subjects than most other systems exam-
ined (e.g., fifteen participants were used to test the social acceptability
of the wheelchair’s following behavior).

The second wheelchair in this category is that presented by Röfer, Man-
del, Lankenau, Gersdorf, & Frese (2009). This wheelchair can be con-
trolled with a head joystick or with a brain-computer interface, and can
follow route descriptions, such as “Go down the corridor and take the
second door to the left” (Röfer, Mandel, Lankenau, Gersdorf, & Frese,
2009). Previous work on this project explored map creation, but so far
as we can tell route descriptions are used solely in conjunction with
pre-built maps. As the target environment for this wheelchair is an
assisted living center, its layout would presumably already be known.
Work on this project has also attempted to deal with some ambiguous
situations, such as determining what is meant by “right” when it could
mean “correct”, “veer right”, “turn right here” or some other meaning
(Ross, Shi, Vierhuff, Krieg-Brückner, & Bateman, 2005). There has
been extensive of research on this project in the past two decades,
involving many studies with detailed quantitative analysis (e.g. Ten-
brink, Ross, Thomas, Dethlefs, & Andonova, 2010). Much of this work
has been focused on evaluating individual parts of the system and on
Wizard-of-Oz studies, however, and to the best of our knowledge there
has been no holistic evaluation of their wheelchair.

In this and the previous section, we have finally seen significant de-
velopments in the mnemonic and linguistic capabilities and behaviors
necessary for an intelligent wheelchair to become an genuine helper. Of
these systems, the MIT Intelligent Wheelchair Project stands out as
the state-of-the-art, as it is capable of a wide range of non-linguistic and
linguistic behaviors, and has been holistically evaluated by a (compar-
atively) large number of participants, but this project has not focused
on developing the mnemonic capabilities necessary for an intelligent
wheelchair to be genuinely helpful. In our own work, in contrast, we
have broken new ground in developing such mnemonic and linguistic
capabilities – but our approach is as yet a work in progress, and is in
need of both autonomous topological mapping and a holistic evalua-
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tion.

8.1.3 Discussion

Many of the examined wheelchairs, especially those that dynamically map
their environments (S. Hemachandra, Kollar, Roy, & Teller, 2011; Röfer,
Mandel, Lankenau, Gersdorf, & Frese, 2009), show promising progress to-
wards the development of an intelligent wheelchair that genuinely helps users
in their daily lives. Yet, the creation of such an genuine helper requires solu-
tions to many challenging problems, as evidenced by the fact that most of the
examined wheelchairs either focus on a particular subproblem (e.g., accurate
speech recognition) or are unevaluated proofs-of-concept. Most importantly,
there are many desirable properties of an ideal wheelchair that have not even
been addressed yet, such as independence of environmental structure, mod-
eling of interlocutors’ beliefs, episodic memory, and the ability to engage in
truly natural dialogues. We will discuss some of these capabilities in more
detail and sketch necessary steps to achieving them.

Environmental Constraints

Although a number of wheelchairs allow their users to give commands per-
taining to shared environmental features such as walls, rooms, or objects, the
majority of these wheelchairs are constrained to pre-known environments.
What is more, these wheelchairs are almost entirely constrained to indoor
environments, either due to assumptions about the structure of the environ-
ment, or sensors that cannot accurately function outdoors.

In fact, only two wheelchairs(Berjon, Mateos, Barriuso, Muriel, & Villar-
rubia, 2011; Walter, Hemachandra, Homberg, Tellex, & Teller, 2013) seem
to have even been used outdoors, and to the best of our knowledge none
of the examined wheelchairs can cope with fully outdoor navigation. This
is due in part to a lack of appropriate sensors: only five of the examined
wheelchairs were equipped with cameras, and other types of sensors may
be ill-suited for outdoor navigation. Although this problem has not been
addressed by NL-enabled wheelchairs, other intelligent wheelchairs do nav-
igate outdoors (e.g. Yanco, 2001; Tabuse, Kitaoka, & Nakai, 2011). Future
NL-enabled wheelchairs should robustly cope with unknown environments,
both indoor and outdoor.

To travel outdoors, wheelchairs must also be equipped with cameras.
Not only are cameras useful for recognizing objects, landmarks, and signs,
but stereo cameras can rapidly generate 3-D point clouds which can be
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used for outdoor navigation in a way that is resilient against the illumi-
nation changes which plague outdoor navigation(Irie, Yoshida, & Tomono,
2012). NL-enabled wheelchairs should also use GPS for navigation (as other
wheelchairs have, (e.g. Bejuri, Saidin, Mohamad, Sapri, & Lim, 2013)): it is
a useful navigation technique, and could allow continued localization while
a wheelchair user is transported by vehicle. We would argue that in general,
wheelchairs must break from the assumption of straight hallways and room-
and-hall networks within a single floor, and must move towards handling not
only multi-floor buildings, multi-building complexes and networks of outdoor
paths, but anomalous environments with oddly shaped rooms, rooms which
flow into each other, and doors which are wider than average or made of
glass.

Finally, NL-enabled wheelchairs should accept commands to go to objects
and locations they have not already visited; a feature exhibited only by
Duvallet et al. (2014); Hockey & Miller (2007), and ourselves (Section 8.2),
and must use belief modeling and episodic memory for the better resolution
of ambiguous references.

Linguistic and Mnemonic Capabilities and Behaviors

An advantage of using NL to interact with wheelchairs (and robots in gen-
eral) is that NL can be used for communication, which in turn can be
used for teaching and for explanation. Unfortunately, most of the exam-
ined wheelchairs fail to take advantage of this in any way, using voice input
as just another way to obtain joystick functionality; fewer than half of all
wheelchairs allow for additional linguistic input. Of those that do, only the
wheelchairs presented by S. Hemachandra, Kollar, Roy, & Teller (2011) and
ourselves allow a user to inform the wheelchair about features of the envi-
ronment, such as the names or locations of rooms, and only a few attain any
degree of conversation through dialogue management. It would be useful
in many cases for an intelligent wheelchair to be capable of sustained dia-
logue interactions: the wheelchair may need to engage with dialogue with
its rider as to what route to take. We envision future wheelchairs handling
interaction patterns such as the following dialogue, which requires dialogue
tracking, intent recognition, indirect speech act handling, question asking
and answering, and other linguistic capabilities and behaviors, as well as
episodic, working, belief, and intention modeling, among other mnemonic
capabilities and behaviors:
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User Alright, let’s go to my barbershop.

Wheelchair Drives off, takes a left

User I said my barbershop, wheelchair.

Wheelchair Stops. We can go this way to get to your barbershop. If we
took the other path we would have to cross Boston Avenue.
You told me you’d rather not have to do that anymore.

User I remember. How do we get there this way?

Wheelchair We can just drive down Medford Street, and then take
Somerville Avenue. We should be there in fifteen minutes.
Is that alright?

User Yes, that’s alright wheelchair, let’s go.

Wheelchair Alright. Drives off

A wheelchair with sufficient linguistic capabilities could assume the role
of helping the wheelchair’s user fulfill his or her needs, in the same way a hu-
man companion would if they were pushing the wheelchair. To be perceived
in this manner, it is important that the wheelchair achieve all of the capa-
bilities we laid out when describing a genuinely helpful wheelchair, including
those reflected in the dialogue above. Although the prototype wheelchair we
presented is under development, it represents a step forward in addressing
our concerns about the perception of NL-enabled wheelchairs, as it can in-
teract in a more conversational manner than its predecessors, and takes a
more cognitive approach than the other wheelchairs developed to date.

As mentioned before, our desiderata lie along the path to a wheelchair
that is a genuine helper, and not one that has all the capabilities of a human
helper. As we previously mentioned, the full set of human capabilities are
well beyond the scope of current intelligent wheelchairs, and lie far beyond
the current research horizon. We have also chosen to focus on task oriented
capabilities and behaviors. While robot wheelchairs may be endowed with
non-task-oriented capabilities such as the ability to make small talk, to em-
pathize, or to manifest its own personality and desires, such capabilities from
the domain of social robotics are not necessary for the robot to be a genuine
helper. And in fact there are ethical concerns associated with developing
an intelligent wheelchair that is a companion with whom users should form
social or emotional bonds (Scheutz, 2011). The benefits and consequences
of such a decision, however, are beyond the scope of this dissertation.
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Experimental Validation

It is hard to think of a robot that is more user-centered than a wheelchair.
The purpose of a wheelchair is to provide continuous, long-term mobility
assistance to its user; a highly user-centered requirement.

The addition of a natural language interface makes the connection be-
tween the wheelchair and its user even more personal, allowing for the trans-
formation of the wheelchair from a vehicle into a companion. And yet, the
majority of wheelchair evaluations observed in this survey were anything but
user-centered. The ideal evaluation for an autonomous robotic wheelchair
controllable by NL would be task-oriented, long-term, large-scale, and us-
ing the wheelchair’s target population. In this section we describe why each
of these aspects is both important and insufficiently addressed in current
wheelchair evaluations.

1. Task-Oriented

A wheelchair is an important part of its user’s day-to-day life. Testing
whether the wheelchair can navigate around corners or respond quickly
to commands is not enough; experiments should require subjects to ac-
complish tasks that actual wheelchair users might encounter: navigat-
ing to particular locations, retrieving objects, going through doorways,
pulling up to tables, and so forth. It will be important to evaluate how
easy these tasks are to achieve, how long it takes to achieve them, and
the level of trust the wheelchair maintains. Does the wheelchair move
in ways that make its user uncomfortable or nervous? Does the user
trust the wheelchair to carry out high-level commands, or does the user
fall back on metric commands?

Few of the examined wheelchairs had evaluations of this sort. Only one
third of the wheelchairs were holistically evaluated: the rest were ei-
ther presented as proofs of concept, or only evaluated specific features
such as speech recognition rates. Of the eight wheelchairs with holistic
evaluations, the three capable of only metric commands were evalu-
ated with respect to time taken to complete various navigation tasks;
of the two capable of local feature following, one was evaluated based
on user satisfaction, the other based on ability to complete the naviga-
tion tasks of the Wheelchair Skills Task; of the three capable of place
navigation, one was evaluated based on preference, comfort, efficiency,
and mapping accuracy, after receiving a guided tour, while the other
two were evaluated on navigation tasks. Although some of the eval-
uations described above were indeed task-based in nature, we would
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argue that the tasks used for evaluating future wheelchairs should be
more “everyday” in nature.

2. Long-Term

Robotic wheelchairs may be continuously used every day for several
years. But the evaluations of the examined wheelchairs tended to be
short, likely due to unwillingness to invest the time and money, or due
to a lack of robustness of the wheelchairs themselves. It would be use-
ful to see how a wheelchair user feels about their wheelchair after an
entire day of using it: the user could better adapt to the wheelchair,
allowing them to provide better feedback as to difficulties of use, and
provide insight into what types of commands actually get used after the
first hour or so of operation. A user may become more frustrated with
their wheelchair after a longer period of time, and may become more
or less likely to use high level navigational commands. It will also be
important to see how the wheelchair handles navigation in larger envi-
ronments, many additional interlocutors engaging in conversation with
its user, and other issues that may not come up in a half hour evalua-
tion of navigation through one or two hallways. Long term evaluations
will also reveal everyday tasks the wheelchair has trouble with that its
designers may not have considered, such as pulling up to a table, going
to the restroom, or driving through an automatic doorway.

Few recent wheelchairs have undergone long-term testing, likely due
to the temporal and monetary costs of such testing, or due to a lack
of robust performance. It is clear, however, that long-term evaluations
should be a goal for every robotic wheelchair designer, as a wheelchair
unable to be used in a long-term scenario is of limited value.

3. Large-Scale

A long term evaluation may only be possible with a small number of
subjects, but short term evaluations should be performed with a large
number of subjects, or at least more subjects than are currently be-
ing used. Few of the examined wheelchairs used even ten subjects.
And it is at best questionable how useful an evaluation by only two or
three people is, especially when those two or three people designed the
wheelchair themselves, and are familiar with its quirks and idiosyn-
crasies.
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4. Using Target Population

Few projects were validated using members of the wheelchair’s target
population. The nature and focus of an individual project may excuse
this, but future projects should make an effort to demonstrate success-
ful use of their wheelchair by those who would use it on a daily basis, as
such users will have their own unique needs and concerns which must
be addressed for the wheelchair to be usable by them.

Future Work

From our survey of recent NL-enabled wheelchair projects it is obvious that
there is a long road ahead for NL-enabled wheelchairs; many of the capa-
bilities and behaviors necessary for a wheelchair to be genuinely helpful are
missing from even the most state-of-the-art NL-enabled wheelchairs. And
many other features are handled by only one or two wheelchairs. The first
step towards a genuinely helpful wheelchair will be developing a wheelchair
that achieves all capabilities previously achieved by previous wheelchairs,
including multi-floor mapping, speed changing, entity following, route de-
scription following, memory modeling, dialogue management, and traveling
to unknown places. Researchers might then take a number of future direc-
tions to improve the functionality and interaction capabilities of NL-enabled
wheelchairs:

• Belief Modeling: Some wheelchairs already have means for repre-
senting the topological structure of their own spatial knowledge; these
structures should be adapted to represent the likely spatial knowledge
of other agents, including but not limited to their users. This would
be useful if a wheelchair is used by multiple people who may be fa-
miliar with different spatial regions, or if the robot needs to interpret
directions given to the wheelchair’s current user by a third party.

• Intention Modeling: Research on modeling the intentions and goals
of agents should be applied to intelligent wheelchairs for them to make
better decisions when following instructions which require them to rea-
son about other agents, including but not limited to their users. This
would allow a wheelchair to more accurately predict the intended des-
tinations of its user, and would allow a wheelchair to follow commands
such as “Let’s go find Lisa”, where Lisa’s location may depend on her
own daily routine.
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• Episodic Memory: Such intention modeling would be greatly facil-
itated by the integration of episodic memory models. If a robot can
recall what it saw where, what locations it visited when, and so forth,
it can better model its user’s intentions when driving down a familiar
hallway, or when processing an utterance like “Let’s go to my usual
barbershop.”

• Action and Intent Recognition: There has been much recent re-
search on recognizing actions(Poppe, 2010), but researchers must de-
velop action and intention recognition systems that will work from the
perspective of, and on data generated by, intelligent wheelchairs. This
is necessary to store information in aforementioned episodic memory
structures, in order, in turn, to facilitate the aforementioned intention
modeling processes.

• Disfluency Handling: Few NL-enabled wheelchairs attempt to han-
dle disfluencies resulting from speech impairments. One of the primary
motivations for developing NL-enabled wheelchairs is to aid the 40%
of wheelchair users who cannot easily manipulate a joystick; but many
wheelchair users also suffer from speech impairments, a fact only ad-
dressed by Suk et al.(Suk, Chung, & Kojima, 2007). Researchers should
attempt to address disfluencies to be accessible to a greater number of
people.

• Outdoor Navigation: Researchers must develop mapping systems
flexible enough to allow for autonomous navigation in outdoor envi-
ronments, in order for wheelchairs to be used outside of indoor envi-
ronments such as private homes.

• Gesture Recognition: There has been much recent work on gesture
recognition(Zhang, Zhang, & Luo, 2011); but researchers must develop
gesture recognition systems that allow for interpretation of simultane-
ous speech and gesture issued from the perspective of wheelchair users.
This will be necessary so as to accurately interpret utterances such as
“Drive closer to that (*points*) table” or “Can you go over that way?
(*points*)”.

• Suggestion Generation: Researchers must develop systems that
leverage episodic memory and intention modeling for robots to au-
tonomously generate timely suggestions for their users. A wheelchair
may need to make suggestions like “Isn’t it time for your appointment?”,
“Didn’t you want to go see Lisa?” or “It’s time for your medication” –
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utterances which are not typically used in response to utterances made
by the user, but are instead spontaneously generated.

8.1.4 Survey Conclusions

We have presented a framework for evaluating the abilities of both existing
and future NL-enabled wheelchairs. We have identified several areas in which
NL-enabled wheelchairs can be advanced, focusing on navigability of outdoor
environments, thoroughness of experimental validation, and treatment of the
wheelchair as an intelligent agent through capabilities such as dialogue, belief
modeling and episodic memory. And while great strides have been made in
recent years, we believe that progress may be best accelerated through two
choices. First, research is needed on understanding and carrying out natural
language instructions that go beyond simple directional commands. Second,
research is needed on higher-level mnemonic and cognitive functions such
as belief, intention, dialogue and memory modeling, as these will not only
facilitate more advanced executable behaviors for intelligent wheelchairs, but
also bring wheelchairs closer to being, and being perceived as, genuine helpers
for their users.

8.2 Our NL-Enabled Robotic Wheelchair

As shown in the previous section, not all natural language enabled
wheelchairs are created equal. This is equally true for the robot archi-
tectures themselves, which are used to control these wheelchairs. A large
number of integrated robot architectures have been developed over the past
few decades, but these differ wildly in terms of the representations they use
and the capabilities and behaviors they enable, which are dependent on the
research objectives of their designers. This is particularly true of the Vul-
can robot architecture and middleware(Murarka, Gulati, Beeson, & Kuipers,
2009) and the Distributed, Integrated, Affect, Reflection, Cognitive Robot
Architecture (DIARC )(Scheutz et al., 2013) as implemented in the Agent
Development Environment (ADE) MAS middleware (the architecture used
throughout this dissertation and described in Chapter 2).

Both Vulcan and DIARC are considered fully fledged robot architectures
implemented as fully fledged multi-agent systems (MAS). These architec-
tures, however, have relatively few overlapping representations, capabilities,
and behaviors: Vulcan uses the rich spatial representations provided by the
Hybrid Spatial Semantic Hierarchy (HSSH) to enable navigation capabilities
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in real-world, campus-like environments, while DIARC uses high-level cogni-
tive representations to enable human-like tasking through natural language.
Furthermore, the two architectures’ respective middlewares significantly dif-
fer at the implementation level: Vulcan is implemented in C++, offering
the speed necessary for real-time mapping and hardware-level integration,
whereas ADE is implemented primarily in Java and other JVM languages,
allowing for better portability, as well as increased flexibility with respect
to choice of programming paradigm. What is more, beyond components to
handle sensory data and deliver motor commands to robot bases, the archi-
tectures do not have many common components.

In this case, however, difference begets opportunity. By integrating
the Vulcan and DIARC robot architectures (through specific integration
of theVulcan and ADE MAS middlewares), we have produced a new robot
architecture that is greater than the sum of its parts, with state-of-the-art
navigational capabilities thanks to Vulcan, state-of-the-art linguistic capa-
bilities thanks to DIARC, and new synergistic capabilities made possible
only through this integration (e.g., navigation to locations based on com-
plex natural language utterances with context-dependent meanings) as each
architecture leverages the other’s strengths. What is more, this new hy-
brid integrated robot architecture can be viewed as being implemented in
Vulcan-ADE Development Environment (VADE ), a novel multi-(multi-agent
system) system. VADE provides a useful, novel framework for the integra-
tion of multi-agent systems through the use of so-called Dual Citizen agents,
as we will describe. What is more, as just one example application of this
new integrated architecture, we have implemented it on a robotic wheelchair,
resulting in a wheelchair that advances the state-of-the art.

Intelligent wheelchairs represent an attractive application not only be-
cause they benefit from what is brought to the table by both Vulcan and
DIARC, but because they promise to be of great benefit to society. Within
the United States alone, there are at least 3.6 million wheelchair users, 40%
of whom find it difficult or impossible to control a wheelchair using a joy-
stick(Fehr, Langbein, & Skaar, 2000; Brault, 2012). To make wheelchairs
more accessible, many researchers are turning to Natural Language (NL) as
a control modality. But as we showed in the previous section, while such
NL-enabled wheelchairs have existed for nearly forty years (e.g. J. A. Clark
& Roemer, 1977), most of the recently presented NL-enabled wheelchairs
have only limited capabilities, e.g., the ability to be commanded to go for-
ward, left, right, backwards and to stop, with few capable of more advanced
capabilities such as traveling to remote objects or locations.

Although the new levels of autonomy and mobility that current NL-
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Figure 8.4: The Vulcan Intelligent Wheelchair

enabled wheelchairs grant users is promising, these wheelchairs do not come
close to providing the capabilities of human helpers. A human helper push-
ing a wheelchair can do more than travel to named locations. Human helpers
learn about new locations and other entities through observation and dia-
logue. They have memories of events, preferences, and goals. They ask
questions, make suggestions, and make conversation. Furthermore, human
helpers are not troubled by environmental features like elevators, multi-floor
buildings, or “the outdoors”. While NL-enabled wheelchairs will not truly
rival the capabilities of human helpers anytime soon, we believe that NL-
enabled wheelchairs are close to becoming genuine helpers that augment
their users’ capabilities in order to make them effective in tasks of daily liv-
ing, build rapport, and are worthy of trust. As we will show, our integration
results in great progress towards this goal.

The remainder of the section proceeds as follows. First, we describe
the individual capabilities of Vulcan and DIARC. Next, we describe how we
have integrated these two architectures, how each leverages the capabilities
of the other, what new synergies have emerged, and what challenges we en-
countered. Then, we present VADE : a novel multi-agent system framework
comprised of both (1) software agents belonging to a single robot architecture
and implemented in a single multi-agent system middleware, and (2) “Dual-
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Citizen” agents that belong to both robot architectures and that use elements
of both multi-agent system middlewares. We then provide a proof-of-concept
demonstration showing novel capabilities effected through our integrated ap-
proach that advance the state of the art of NL-enabled wheelchairs. Finally,
we discuss our plans to more deeply integrate DIARC and Vulcan in order
to allow each architecture to further leverage the capabilities of the other.

8.2.1 DIARC and ADE

In this section, we will first discuss the DIARC Cognitive Robot Architec-
ture, and then discuss ADE, the multi-agent system middleware in which
DIARC is implemented.

The DIARC Cognitive Robotic Architecture

Throughout this dissertation, we have made use of the wide variety of high-
level cognitive capabilities provided by DIARC. Of particular relevance to
its use within the VADE hybrid architecture are its language- memory- and
action-oriented components. DIARC’s language-oriented components (as
presented in Chapters 3-7) designed to allow1 robots to resolve a wide variety
of referring expressions, including anaphoric and deictic expressions (e.g., “it
is in that breakroom”) and referring expressions that use descriptions (e.g.,
“go to the room across from the breakroom”) rather than rigid designators
that indicate their targets by name or label. Furthermore, as previously dis-
cussed, such referring expressions need not be used in the context of direct
commands: interlocutors are free to use indirect speech acts that follow con-
ventionalized social norms (e.g.,“I need to go to the bathroom”), which DI-
ARC interprets based on context. DIARC’s language-oriented components
leverage its memory-oriented components: some components make use of the
knowledge-base-and-component framework presented in Chapter 3, which al-
lows uncertain information about both known and hypothetical entities to
be distributed across multiple heterogeneous knowledge bases; other com-
ponents instead made use a general-purpose belief component to perform
inference on shared knowledge. This component is leveraged by DIARC’s
action-oriented components, which perform high-level goal and action man-
agement capabilities.

1As described in that chapter, however, we have only deeply evaluated DIARC’s ability
to resolve anaphoric expressions; we have demonstrated how the architecture is designed
to resolve deictic expressions, but have not fully evaluated the architecture’s success in
handling this type of expression.
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While DIARC does have spatial reasoning and navigation components,
such as those discussed in Section 3.2, these are relatively rudimentary rel-
ative to DIARC’s cognitive components. DIARC’s motion-oriented com-
ponents can easily allow a robot to traverse a hallway or travel in a certain
direction, but do not provide mapping capabilities, and use only rudimentary
spatial representations.

The ADE Multi-Agent System Middleware

As described in Chapter 2, DIARC is implemented in the Agent Devel-
opment Environment (ADE ) multi-agent system middleware2. ADE is an
architectural framework that builds on previous work from multi-agent sys-
tems in order to support the development of individual agent architectures
using distributed multi-agent system computing infrastructure. ADE treats
architectural components as autonomous software agents in order to facili-
tate dynamic system configuration, fault tolerance and recovery, distributed
computation, and autonomic computing. ADE is primarily implemented in
Java, with inter-agent communication facilitated by Java RMI. The use of a
JVM language provides two main advantages: first, this allows for portability
between different architecture platforms; second, it allows for developer flex-
ibility, as code written in a variety of programming paradigms (i.e., through
Java, Clojure, or Scala) can be seamlessly and richly integrated.

8.2.2 Vulcan

In this section, we will first discuss Vulcan as a robot architecture, and then
discuss Vulcan as a multi-agent system middleware in which that architecture
is implemented.

The Vulcan Robot Architecture

The Vulcan robot architecture focuses on the capabilities needed for navi-
gation in campus-like environments, in which a robot may need to navigate
between multiple buildings with diverse layouts, and through both empty
spaces and dense crowds.

Vulcan uses rich spatial representations based on the Hybrid Spatial Se-
mantic Hierarchy (HSSH), in the form of a hybrid metric-topological map.
The HSSH uses both metric and topological representations of small-scale

2In fact, this paragraph presents information already discussed in Chapter 2. However,
I’ve re-presented that material here to facilitate contrast with Vulcan’s middleware
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space (the space currently perceivable by a robot at any given point in time)
which are combined to create large-scale maps of the robot’s environment.
The HSSH is thus comprised of four layers, each of which uses a different
spatial representation: The Local Metric, Local Topological, Global Metric,
and Global Topological layers.

• The Local Metric layer uses simultaneous localization and mapping
(SLAM) techniques to maintain a Local Perceptual Map (LPM) of its
immediate environment.

• The Local Topological layer uses the LPM to identify discrete regions
of the world called areas.

• TheGlobal Topological layer combines these areas into a topological
map of large-scale space.

• The Global Metric layer uses this map along with information from
the LPM to create a metric map of large-scale space.

These representations are useful for facilitating planning and navigation
tasks. Specifically, navigation is facilitated by separating the task of graph-
searching through large-scale space and metric-planning in small-scale space
(cf. Chapter 3.2.1), and large-scale mapping is facilitated by the global
topological map’s sparse symbolic representation (Johnson & Kuipers, 2012).

Ultimately, a robotic wheelchair serves its human driver and therefore
needs to reason about the human’s goals and intentions. The use of a
topological map is thus advantageous as it uses human-like representation
of spatial knowledge, facilitating human-like spatial reasoning. But if the
semantics of such a map are grounded solely in a robot’s actions (e.g., if a
map only represents the world’s navigational affordances), as they are in
Vulcan, then a robot using it can only be commanded through reference to
these actions (e.g., by specifying a series of such affordances to exploit).
Vulcan currently accepts these types of commands through a point-and-click
user interface. In order to allow for more natural interactions, Vulcan
needs a way of grounding its representations in the types of semantics
more typically seen in human conversations (e.g., recognizing that a certain
large-scale topological location may be a “kitchen”, ‘may be ‘large”, and
may contain various goal-relevant objects), and should be able to accept
commands that reference those aspects through a natural language interface,
such as that used in DIARC.
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The Vulcan Middleware

In this section, we describe the Vulcan middleware in which the Vulcan ar-
chitecture is implemented. This middleware is not a traditional multi-agent
system, as it lacks several features typical to multi-agent systems, includ-
ing white-page and yellow-page functionality. It does, however, have many
features central to multi-agent systems: it is comprised of a set of asyn-
chronous, distributed components which communicate through a publish-
subscribe model, using the LCM communications middleware(A. S. Huang,
Olson, & Moore, 2010). And thus, we would argue that the Vulcan Middle-
ware can be viewed as a MAS when viewed within the context of our larger
integrated architecture. Vulcan and ADE differ in several important ways
beyond those already mentioned. First, Vulcan is implemented in C++,
sacrificing portability for speed; and while Vulcan components communicate
through a publish-subscribe model, ADE does not in its current state have
such methods available for inter-component communication.

8.2.3 Integrated Approach

In this section, we will present our approach to multi-agent system inte-
gration. We will first discuss the integration principles we followed in our
integration efforts. Next, we will describe how those principles are employed
in our integration, and the benefits reaped from this integration. Finally,
we will discuss the actual components of the two multi-agent systems that
comprise our larger integrated system, and the hardware with which they
interface.

The Vulcan-ADE Development Environment (VADE)

In this section, we present the Vulcan-ADE Development Environment
(VADE ) framework, a multi-agent system that integrates the Vulcan and
ADE multi-agent system middlewares. VADE is comprised of three types
of components:

• DIARC Components: ADE components that only exist within the
DIARC architecture, and are only aware of components implemented
in the ADE multi-agent system middleware.

• Vulcan Components: Vulcan components that only exist within the
Vulcan architecture, and are only aware of components communicating
on Vulcan’s LCM channels.
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• New Dual-Citizen Components: Components that exist within
both the DIARC and Vulcan architectures, and can communicate both
with ADE components through Java RMI and with Vulcan Compo-
nents through LCM.

VADE ’s Dual-Citizen Components are functional components that re-
quire information and/or capabilities from both DIARC and Vulcan in or-
der to provide their desired functions. These components exist within both
architectures, and are aware of both multi-agent systems, thus effecting an
inter-architectural bridge while maintaining flexibility and preventing single-
architecture components of either architecture from needing to know about
the single-architecture components of the other architecture.

These components are implemented as Java classes that both extend the
ADE Component interface (allowing communication with ADE Components
and the ADE Registry) and provide LCM Publisher/Subscriber interfaces
(allowing communication with Vulcan Components). Of course, these com-
ponents cannot physically extend to both architectures; we thus choose to
grant them “primary” citizenship within the ADE multi-agent system frame-
work, so that they can be started by the ADE Registry. This also means that
if these components fail, they can be restarted automatically by the ADE
Registry. If this happens, they will automatically resubscribe to the appro-
priate LCM channels, allowing Publishing and Subscribing functionality to
automatically go back into effect.

Of course, this is not the only choice we could have made. One (ex-
pensive) option would have been to re-implement all of Vulcan architecture
within the ADE multi-agent system middleware or all of DIARC architec-
ture within the Vulcan middleware. However, this would not only have been
monumentally time consuming, but would have removed functionality. Re-
implementing Vulcan within ADE would have eliminated the speed advan-
tages crucial to Vulcan’s operations at the hardware level; re-implementing
DIARC within Vulcan would have removed the OS-agnostic portability, easy
distributability, and middleware features (e.g., dynamic system reconfigura-
tion) afforded by ADE.

Another option would have been to implement a “bridge” component that
handles all inter-architecture traffic. However, this would have been problem-
atic for two reasons: (1) it would have created a computational bottleneck,
and (2) in the case of failure of this component, all inter-architectural com-
munication would necessarily cease. In contrast, if one Dual-Citizen Com-
ponent goes down, other inter-architectural communication can still proceed
as usual while the failed component goes through the process of restarting
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and reconnecting with both architectures.

Vulcan-DIARC implementation in VADE

We will now discuss how Vulcan and DIARC have been implemented in
the VADE framework. We will begin by discussing the benefits of such an
integration at the architectural level, and then discuss our use of Dual-Citizen
components within this implementation.

There are a number of advantages to Vulcan-DIARC integration at the
architectural level: by integrating Vulcan and DIARC, each can leverage the
other’s capabilities, resulting in new synergistic capabilities and behaviors.
DIARC alone is unable to engage in dialogue regarding large-scale spatial
locations, not because it lacks the linguistic faculties, but rather because
it lacks significantly rich spatial representations – such representations can
be provided by Vulcan. Similarly, we have typically restricted DIARC to
small, simple, indoor environments – DIARC can leverage Vulcan’s spatial
reasoning and mapping capabilities in order to discuss, reason about, and
travel through larger environments.

Similarly, Vulcan requires commands to be precisely specified within its
map representation, e.g., using metric coordinates, a topological action, or a
named topological location. But by leveraging DIARC’s linguistic capabili-
ties, Vulcan can travel to locations that are only loosely specified; a natural
language comment like “I need my coffee!” does not clearly specify a location,
yet can be used to infer such a location, as well as the fact that the robot
should travel to it.

As shown in Figure 8.5, the majority of VADE components are pure Vul-
can and ADE components. with two components serving as Dual-Citizen
components: the Navigation Component and the Spatial Reasoning Consul-
tant Component. On the ADE side, these interact, respectively, with the
Goal Management and DIST-POWER components, as we will later describe.
On the Vulcan side, we would ultimately like to effect integration at multi-
ple levels of the HSSH so that DIARC can leverage Vulcan’s rich topological
representations. At this point, however, these dual citizen components only
communicate, respectively, with Vulcan’s Control and Local Metrical compo-
nents. This provides DIARC with access to pose representations maintained
by Vulcan, which can be used to determine the robot’s current topological
location within DIARC’s own internal topological map (maintained in the
Spatial Reasoning Consultant ADE Component). DIARC is then able to
navigate through its internal topological map by sending a motion target to
the Vulcan motion planner when it decides it needs to visit the a particular
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Figure 8.5: Diagram for the integrated system

As labeled, the top half of the graph corresponds with the DIARC archi-
tecture, the bottom half corresponds with the Vulcan architecture, with
the Navigation and Spatial Reasoning components in the overlapping Dual-
Citizen region belonging to both architectures. Thick orange lines repre-
sent the existing inter-architecture integrative connections. Thick green lines
(with italicized labels) represent the intended future inter-architecture con-
nections. Connections between the Dialogue, Belief, and Goal Managers are
not shown due to density of connections.
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topological location. A result of this integration is that DIARC is now able
to operate in more dynamic and difficult environments.

In the following sections, we will go into VADE’s Components in depth.
As we have previously stated, however, in this work we use a robot wheelchair
as one example application of our integrated approach, and as one example
application of the work presented in this dissertation. In the next section we
will thus discuss the specific hardware architecture of that wheelchair.

Hardware Architecture

The presented robotic wheelchair (Figure 8.4) is a commercially-available
powered wheelchair (Quantum 6000Z) modified to enable computer control
and augmented with two Hokuyo UTM-30LX laser rangefinders (one at the
front-right corner and one at the back-left corner) to provide a 360°view of
the wheelchair’s surroundings. Wheel encoders and an inertial measurement
unit are mounted on the wheelchair to enable high-precision motor control.

The wheelchair is driven using a joystick. We enable computer control
by intercepting CAN bus communication between the joystick and on-board
controller. During autonomous driving, if the user is not actively moving the
joystick to control the robot, any messages sent from the joystick module are
replaced by commands calculated by Vulcan’s motion controller. In this way,
we always defer to human control.

Vulcan Components

The Vulcan robot architecture separates the overall problem of mapping,
localizing, and navigating into two modules, as shown in the lower half of
Figure 8.5.

1. HSSH: As previously described, the robot’s map within Vulcan is rep-
resented using a variation of the Hybrid Spatial Semantic Hierarchy
(HSSH)(Beeson, Modayil, & Kuipers, 2010), which factors spatial rep-
resentations int four layers:

The Local Metric layer represents the environment within the robot’s
sensory horizon as a Local Perceptual Map (LPM), which maintains an
occupancy-grid-based representation of the robot’s current topological
area. When the robot transitions between two topological areas, its
LPM is entirely replaced by that associated with the new area.

The Local Topological layer detects and classifies topological locations
within the LPM as discrete, symbolic representations called areas.
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However, the topological representation our collaborators use in Vulcan
is slightly different from the original HSSH topological representation,
in that (1) it distinguishes between decision points at path intersec-
tions, and destinations that a robot may be commanded to travel to,
and (2) it uses a richer path representation that includes information
about what destinations may be found along that path.

Finally, the Global Topological layer uses information from the local
topological layer to dynamically create a global topological map using
topological SLAM techniques (Johnson & Kuipers, 2012). This map is
used to determine what topological map the robot is at, at all times,
and to determine when new topological locations should be added to
the map.

2. Navigation Interfaces:

The Control interface interacts with the Local Metric layer in order to
follow desired velocity commands or to travel to desired poses, while
avoiding obstacles and navigating safely. This interface is implemented
using a model-predictive control algorithm, MPEPC (Park, Johnson,
& Kuipers, 2012; Park, 2016), developed by our collaborator Jong-Jin
Park. This algorithm generates motion plans by choosing the locally
optimal action based on a set of simulated possible actions. Here,
optimality is defined by minimizing a cost function that includes ac-
tion cost and collision cost while accounting for the uncertainty of the
robot’s motion and the motion of obstacles.

The Decision interface uses the Local Topological layer to follow
topologically-based commands, like driving to the end of a path or
turning at a particular decision point: commands we might want to be
able to trigger through natural language (cf. MacMahon, Stankiewicz,
& Kuipers, 2006).

The Goal interface uses the Global layers to follow other types of com-
mands we might wish to specify through natural language, such as
driving to a particular topological location.

ADE Components

In this subsection we will describe the ADE components used as part of the
VADE framework, as shown in the upper half of Figure 8.5.

1. Speech Recognition and Production:
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Figure 8.6: Visualization of Vulcan’s metric path planning during execution
of a natural-language navigation command.

Natural language utterances enter the architecture through DIARC’s
Speech Recognition component, which uses the Sphinx4 speech recog-
nizer(Walker et al., 2004) to transduce speech into text. Similarly, the
Speech Production component uses the MaryTTS library (Schröder &
Trouvain, 2003) to synthesize text into vocal output.

2. Natural Language Processing (NLP):

The NLP component first performs syntactic processing using the C&C
CCG-based dependency parser(S. Clark & Curran, 2007). The pro-
duced dependency graph is then converted to a tree which is used for
several purposes, as described in Chapter 4: (1) One variable Xi is
instantiated for each referenced entity in the tree; (2) Logical formulae
denoting properties and relations are instantiated for each property
and relation in the tree, and semantic processing rules are used to ana-
lyze the tree in order to produce a formula for the tree’s root node; (3)
“Status cues” are associated with each referenced entity, based on what
determiner (if any) is attached to that entity; (4) The utterance’s illo-
cutionary point (e.g., Statement, Question, Instruction) is determined
based on the root node of the tree.

3. Reference Resolution:

Reference resolution determines what entities in the robot’s (possi-
bly distributed and heterogeneous) knowledge bases should be associ-
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ated with each referenced entity, using the previously presented DIST-
POWER algorithm. DIST-POWER is designed to operate in uncertain
and open worlds, and handles references to both known and unknown
entities. Specifically, the Givenness-Hierarchy-theoretic GH-POWER
algorithm presented in Chapter 4 is used. As a reminder, GH-POWER
uses a hierarchical cognitively-inspired memory structure (consisting of
the Focus of Attention, Short Term Memory, Discourse Context, and
Long Term Memory) to resolve definite noun phrases and anaphoric
and deictic expressions.

The end product of reference resolution is a set of mappings from vari-
ables to memory traces associated with entities in a robot’s long-term
memory. These memory traces are used to create a set of bound se-
mantic structures, which differentially bind the open variables of the
logical formula associated with the utterance’s root node. These bound
semantic structures are used in turn to create bound utterance repre-
sentations which are sent to the pragmatics component.

4. Pragmatics:

DIARC’s Pragmatics component uses a set of context-sensitive
Dempster-Shafer-Theoretic logical rules to determine the intention un-
derlying each candidate utterance representation, as described in Chap-
ters 6 and 7. This results in a set of belief updates which are passed
to the Dialogue, Belief, and Goal Management components (dbgm,
collectively).

5. Dialogue, Belief, and Goal Management (DBGM):

DIARC’s Dialogue, Belief, and Goal Management components (dbgm,
collectively) are responsible for tracking and coordinating dialogue
(Briggs & Scheutz, 2012), storing beliefs and performing inference in
a general-purpose knowledge base, and tracking and acting on goals
(Brick, Schermerhorn, & Scheutz, 2007). If the dbgm needs to respond
to its user, it sends its own intention back through the Pragmatics com-
ponent, which can work in reverse to determine the utterance which
should be used to communicate a particular intention. If a robot’s in-
terlocutor uses a command to instruct the robot, the dbgm instantiates
a new goal based on intentions underlying that command and deter-
mines how to accomplish it. Of particular relevance are commands
to travel to particular locations, which is accomplished by DIARC’s
Spatial Reasoning Component.
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6. Dual-Citizen Components:

The Spatial Reasoning Consultant Component (src) serves as the pri-
mary knowledge interface between DIARC and Vulcan. The src main-
tains a graph of both large-scale and small-scale topological locations,
where connectivity indicates either physical adjacency or an “in” rela-
tionship. Each location is associated with an identifier, list of prop-
erties, and (in the case of grounded small-scale locations), coordinate
pose.

When DIARC determines that the robot must navigate to a particular
location, the src finds the shortest path to that location, and incremen-
tally sends the robot to the coordinates of each intermediate waypoint
by sending them to the Navigation Component, which serves as the
primary action interface between DIARC and Vulcan. The Naviga-
tion Component then broadcasts those coordinates over the appropri-
ate LCM channel. Similarly, when DIARC’s goal manager determines
the robot needs to simply drive forward, turn, or stop, the navigation
component effects these motions by broadcasting messages over other
LCM channels. The next step of our integration efforts, however, will
be to integrate Vulcan’s topological capabilities with DIARC : when
this is accomplished, many of the responsibilities of these two compo-
nents will be transferred to pure Vulcan components, providing more
of a communicational role to these two Dual-Citizen Components.

8.2.4 Demonstration

We will now present a proof of concept demonstration of our integrated ap-
proach, as implemented on the robotic wheelchair we previously described.
A video of this demonstration can be viewed at tiny.cc/wheelchairdemo.
In this demonstration, the wheelchair begins in an office environment, and
is told by its rider (“Jim”) “I need my coffee!”. After recognition, DIARC’s
asr component passes this utterance to its nlp component, which performs
parsing and reference resolution. This utterance is parsed into the utter-
ance form Statement(jim, self, need(jim,X)) with supplemental semantics
coffee(X).

At the start of this interaction, the robot’s Short Term Memory and
Focus of Attention are both empty, and thus the robot’s Long Term Memory
is searched for a suitable referent to bind to the variable X. The property
coffee(X) is advertised only by DIST-POWER’s objects consultant, which
manages a knowledge base of known objects. This KB starts off with
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knowledge of a handful of objects, including their properties and locations.
Included in this set is one coffee-like entity, with memory trace obj5. This
trace is bound to X, producing Statement(jim, self, need(jim, obj5)),
which is passed to DIARC’s pragmatic reasoning component. This compo-
nent has a rule with implicative content:

Statement(X,Y, need(X,Z))⇒ goal(Y, have(X,Z)),

resulting in the goal have(jim, obj5) being adopted.

The src identifies the location of obj5 as loc51, and creates a plan to visit
the set of waypoints on the path to loc51. DIARC’s DBGM then executes
this plan one step at a time: for each waypoint, the dbgm acquires the
coordinates of that location from the src and passes them to DIARC’s
Navigation component, which in turn broadcasts these coordinates over LCM
to Vulcan.

The command from the Navigation component is received by Vulcan’s
Control component, which initiates a new motion planning task to drive
to the specified coordinates. Using MPEPC, the wheelchair performs the
task by driving to the desired coordinates. During motion planning, the
state of the environment is estimated at 10Hz, including the position and
velocity of pedestrians around the robot, the location of static obstacles,
and the wheelchair’s own position and velocity. This fast update allows the
wheelchair to safely navigate even through dense crowds.

When the wheelchair arrives at a destination, it broadcasts an LCM
message indicating action success. When this message is received by the
Dual-Citizen Navigation component, it moves on to the next step in its
navigation plan: once again, the dbgm will acquire the coordinates of the
next small-scale place along the path, and send those coordinates to the
Navigation component. As this process iterates, the wheelchair drives down
several hallways until it reaches the door to the room containing the coffee.
The robot then turns, and drives through the doorway in order to reach the
last point along the route.

This section demonstrates capabilities enabled by our integrated ap-
proach: this should not be taken as, nor is this intended to be, a formal
empirical evaluation. While the components of the Vulcan and DIARC ar-
chitectures have been evaluated independently, a holistic, extrinsic evalua-
tion of this integrated approach will still eventually be necessary.
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Figure 8.7: Metric-topological map of the demonstration environment

This 44m x 75m map was produced by running Vulcan’s metric SLAM and
place classification algorithms on sensor data of the wheelchair being manu-
ally driven through an environment. Color indicates the “type” of each region
in the topological map: decision points are blue, path segments are green,
and destinations are red.

8.2.5 Discussion and Lessons Learned

Both DIARC and the HSSH are fully fledged robot architectures, and as
such, have a number of overlapping capabilities implemented in their respec-
tive middlewares. Both architectures typically make use of the robot’s laser
rangefinders, for example, and both typically send motor commands to effect
robot motion. But both architectures cannot be responsible for these over-
lapping capabilities, and thus we had to decide which architecture should
cede some of its control. Because Vulcan solely focuses on spatial reasoning
and motion planning, it makes sense for DIARC to defer its control. From
DIARC’s point of view, each Dual-Citizen component is just another com-
ponent, which happens to provide these ceded capabilities, and is not aware
that those components are in fact part of an entire other architecture, or
that the motion primitives sent to the Navigation component may spawn
complex navigational procedures. Similarly, Vulcan views its Dual-Citizen
components as just another publisher/subscriber – it receives new motion
targets, but is unaware that they are coming from DIARC and not a human
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user.
It is also interesting to consider the practical challenges posed by inte-

grating two discrete robot architecture-robot middleware pairs. During the
integration process, each architecture was independently progressing, and
gaining hosts of new capabilities. As an effect, the Dual-Citizen components
naturally evolved over time along with the target functionality for the joint
integrated system.

Finally, we must discuss the specific contributions made by the work
presented in this section. First, we demonstrated how the integration of the
Vulcan and DIARC architectures produces an architecture with not only the
capabilities of both architectures, but new synergistic capabilities as well: by
leveraging Vulcan, DIARC is able to navigate through environments, Vulcan
is able to initiate actions based on flexible natural language requests, and as
a whole, Vulcan-DIARC is now able to travel remote, previously unknown
objects, a capability previously held by neither architecture.

Second, we showed how this integration could be implemented in a new
multi-agent system comprised of agents from two distinct multi-agent sys-
tems, plus Dual-Citizen agents that belonged to both multi-agent systems.
This provides a novel, useful framework for integrating multi-agent systems
which could be used for future integrated approaches.

Finally, we showed how, when implemented on a robotic wheelchair,
this integration significantly extends the state-of-the-art for NL-enabled
wheelchairs. Like a small number of other recent wheelchairs(S. Hemachan-
dra, Kollar, Roy, & Teller, 2011; Megalingam, Nair, & Prakhya, 2011; Mu-
rarka, Gulati, Beeson, & Kuipers, 2009; Petry, Moreira, Faria, & Reis, 2013;
Röfer, Mandel, Lankenau, Gersdorf, & Frese, 2009; Tao, Wang, Wei, & Chen,
2009), our wheelchair is able to travel to described objects and locations.
Within this set of wheelchairs, however, ours is unique with respect to its
cognitive approach: to our knowledge, no previously presented NL-enabled
wheelchair has been capable of handling natural, indirect language (cf. Chap-
ter 6), hypothesize new objects and locations based on natural language (cf.
Chapter 3), model cognitive structures to resolve anaphora (cf. Chapter 4),
or ask clarification questions (cf. Chapter 7), all of which are afforded to our
wheelchair through this integrated approach.

8.2.6 Future Work

As previously discussed, there are a number of architectural interfaces that
have not yet been implemented, most notably the use of the HSSH’s rich
topological representations within DIARC, and the integration of Vulcan’s
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Decision and Goal interfaces. This represents our immediate next step for
future work. Similarly, there are new capabilities we would like to imple-
ment that take advantage of the synergies provided by the integration of the
two architectures. Through the integration of the remaining architectural
interfaces, we should be able to enable the wheelchair to travel to previously
unknown locations (in addition to the ability it already possesses to travel to
previously unknown objects located in known locations (cf. Chapter 3.2)).
And through the integration of novel episodic memory management capabili-
ties, we should be able to further leverage these synergies in conjunction with
richer models of a robot’s interlocutors’ behaviors and preferences. In the
case of a robot wheelchair, this should allow the wheelchair to follow direc-
tives such as “Bring me to my barbershop” or “Let’s go to the park we visited
last week.” Finally, it is important to note that the presented application to
a robotic wheelchair is only one example application; the integration of these
two architectures may well lead to significant advances in other domains as
well.

8.3 General Discussion

While this chapter primarily served to demonstrate a real-world application
of the algorithms presented in this dissertation, it also provides four research
contributions. First, we present the first comprehensive survey of natural
language enabled robotic wheelchairs. Second, we demonstrated how the
integration of the Vulcan and DIARC architectures produces an architec-
ture with not only the capabilities of both architectures, but new synergistic
capabilities as well. Third, we presented VADE, a novel multi-agent sys-
tem framework comprised of agents from two distinct multi-agent systems,
plus new Dual-Citizen agents that belong to both multi-agent systems. And
fourth, we demonstrated how this architectural integration, when imple-
mented in this novel multi-agent system framework on the hardware of a
robotic wheelchair, significantly extends the state-of-the-art for NL-enabled
wheelchairs.



Chapter 9

Conclusions

In Chapter 1, I laid out a vision of a world in which intelligent agents such as
robots engage with humans in natural, human-like task-based interactions.
In this dissertation, I have endeavored to make progress towards this goal
through the development of algorithms and architectural mechanisms that
allow robots to engage in natural, pragmatically appropriate, task-based di-
alogue in uncertain and open worlds. Furthermore, I have sought to ensure
that the algorithms and architectural mechanisms that I have designed are
not tied to any one domain or knowledge representation scheme, in order
to maximize their usefulness across architectures and application domains,
and in order to reflect the realities of modern integrated robotic architec-
tures. As such, this dissertation makes a number of theoretical and technical
contributions.

9.1 Theoretical Contributions

This dissertation makes the following theoretical contributions: (1) Experi-
mental evidence suggesting that indirect speech act use is central to human-
robot dialogue regardless of task contexts (although especially so in highly
conventionalized scenarios), even when robots demonstrate an inability to
understand such speech acts; (2) experimental evidence suggesting that
robots unable to understand indirect speech acts may thus be less efficient
and less favorably viewed than robots that are able to understand indirect
speech acts; (3) design recommendations for developers of language-enabled
robots, based on these findings; (4) an ontological analysis of indirect speech
act forms observed in these experiments; (5) experimental evidence suggest-
ing that participants prefer robots that generate pragmatically appropriate
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clarification requests in which options are listed, especially when there are
only two options; (6) design recommendations for developers of language-
enabled robots, based on these findings; (7) experimental evidence suggest-
ing that verbal robot-robot communication is preferable to silent robot-robot
communication in the context of co-located human-robot team tasks, because
it is perceived as less creepy ; (8) design recommendations for developers of
robots intended for such contexts, based based on these findings; (9) a cog-
nitive model of open-world reference resolution; (10) a novel framework for
evaluating referring expression generation algorithms; (11) the first compre-
hensive survey of natural-language enabled robotic wheelchairs.

9.2 Technical Contributions

This dissertation makes the following technical contributions: (1) an algo-
rithm for location-based spatial reference resolution in open worlds; (2) a
framework for referential processing in uncertain and open worlds; (3) a
referring expression understanding algorithm that makes use of this frame-
work; (4) a referring expression generation algorithm that makes use of this
framework; (5) a cognitively inspired memory model that extends this frame-
work; (6) two referring expression understanding algorithms that make use
of both this memory model and the presented referential processing frame-
work in order to handle a wider range of referring expression forms; (7) a
Dempster-Shafer Theoretic framework for pragmatic reasoning under uncer-
tainty and ignorance; (8) an indirect speech act understanding algorithm
that makes use of this framework; (9) an indirect speech act generation al-
gorithm that makes use of this framework; (10) a human-robot interaction
oriented clarification request generation framework; (11) and a demonstra-
tion of how the algorithms presented in this dissertation can be integrated
together to achieve all five stages of that framework, in order to generate
clarification requests to resolve both referential and intentional ambiguity;
(12) a novel multi-agent system framework comprised of agents from two
distinct multi-agent systems as well as new Dual-Citizen agents that belong
to both multi-agent systems; and (13) a demonstration of how the integrated
set of algorithms and multi-agent systems, when implemented on the hard-
ware of a sensor-augmented powered wheelchair, extends the state of the art
of natural language enabled robotic wheelchairs.
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9.3 Implications of Contributions

In order to best demonstrate these technical and theoretical contributions,
it may be helpful to reconsider the architecture diagram presented in Chap-
ter 1, which I re-present here for clarity. In this diagram, we see in the
middle the hierarchical GH-theoretic memory model which constitutes tech-
nical contribution (TeC) 5, and the distributed heterogeneous knowledge
base framework which serves as Long Term Memory with in that model,
and which constitutes TeC 2. To its left and right, we see the components
that make use of these models: one component for performing referring ex-
pression understanding (i.e., reference resolution) using the DIST-POWER
and GH-POWER algorithms presented in Chapters 3 and 4 (TeC 3 and
TeC 6, respectively), and one component for performing referring expression
generation, using the DIST-PIA algorithm presented in Chapter 5 (TeC 4).
Below these components, we see the components that perform pragmatic
understanding and generation, as described in Chapters 6 and 7 (TeC 8 and
TeC 9, respectively). More concretely, these contributions allow this inte-

Figure 9.1: Re-Presentation of Motivating Architectural Diagram

grated architecture to understand and generate natural language expressions
in ways that were not previously possible in our architecture.
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Previously, our architecture had only rudimentary reference resolution
capabilities, and could resolve a referring expression only if it unambiguously
referenced some known entity about which knowledge was stored in some
single centralized repository. Now, our architecture can resolve references in
uncertain and open worlds, and our architecture now has an easily extensible
framework for making knowledge from various components available to the
language processing system without requiring those components to maintain
their knowledge in a centralized Prolog knowledge base.

Previously, our architecture had rudimentary anaphora resolution capa-
bilities, and would always resolve anaphoric expressions like ’it’ to the most
recently mentioned entity that matched numeric and gender constraints.
Now, the architecture has a much more nuanced procedure for resolving
anaphoric expressions. And furthermore, our GH-theoretic framework can
also resolve other referring expressions, such as definite noun phrases, much
more quickly and accurately than it previously could have, because it will
now first check entities that are considered “activated” before checking all
entities in long term memory.

Previously, our natural language generation system could generate refer-
ring expressions based only on the properties with which it was provided.
Now, we have a general, extensible framework that is used to automatically
choose the best properties to use to describe some entity of interest. Fur-
thermore, the information used to make this judgment may be distributed
throughout the architecture rather than centralized in a single Prolog knowl-
edge base.

And finally, while we could previously understand and generate indirect
speech acts only under an assumption of perfect knowledge and a single
interpretation, we can now understand and generate indirect speech acts
even when knowledge is uncertain, and can identify and appropriately handle
cases where there are multiple possible interpretations.

But of course, there are still many things our architecture cannot do, and
there are capabilities within our architecture that could be improved. Over
the course of this dissertation’s first eight chapters, I described a variety
of directions for future work that immediately builds off of the twenty-four
contributions listed thus far in this chapter. In the next section, I will discuss
possibilities for future work that reach farther afield.
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9.4 Future Work

In this section, I present five possible directions for future work.

• In Section 9.4.1, I discuss how the work presented in Chapter 3 can be
advanced from a cognitive modeling perspective.

• In Section 9.4.2, I discuss how the work presented in Chapter 5 can be
advanced from the Givenness Hierarchy theoretic perspective described
in Chapter 4.

• In Section 9.4.3, I discuss how the work presented in Chapters 6 and 7
can be advanced from a machine learning perspective.

• In Section 9.4.4, I discuss how the work presented in this dissertation
can be applied to search and rescue robotics applications.

• In Section 9.4.5, I discuss how the work presented in this dissertation
can be applied to domains beyond robotics.

9.4.1 Cognitive modeling and Cognitive architectures

In Chapter 3, I showed how the decisions made by the DIST-POWER algo-
rithm align well with the most common decisions made by humans. However,
if one considers the psycholinguistics research presented in Section 3.1 it is
clear that DIST-POWER only successfully models the final results of ref-
erence resolution, and not the results on a moment-by-moment basis, as it
does not model the process of reference resolution (see also (Chater & Chris-
tiansen, 2008; Sun, 2008)). This is a crucial point, given that language is
a collaborative process (H. H. Clark & Wilkes-Gibbs, 1986; H. H. Clark &
Schaefer, 1987; Garrod & Pickering, 2009). Humans do not typically wait
until a sentence has been completely processed to consider its meaning. And
in fact, the responses interlocutors provide while listening to a speaker may
critically affect whether and how the speaker chooses to continue their ut-
terance.

In future work, it will thus be important to develop an incremental ver-
sion of DIST-POWER, not only to improve its performance and usefulness,
but in order to develop new psycholinguistic models of the open world ref-
erence resolution process. There have recently been many approaches to
incremental sentence understanding, the major approaches (as per Hough,
Kennington, Schlangen, & Ginzburg, 2015) being Purver, Eshghi, & Hough
(2011)’s use of Dynamic Syntax (Kempson, Meyer-Viol, & Gabbay, 2000)
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and Type-Theory with Records (R. Cooper, 2005) and Robust Minimal Re-
cursion Semantics with incremental processing (Peldszus, Baumann, Buß,
& Schlangen, 2012) (see also Aist, Allen, Campana, & Gallo, 2007; Bau-
mann & Schlangen, 2012; DeVault, Sagae, & Traum, 2009, 2011; Kenning-
ton & Schlangen, 2012; Kennington, Kousidis, & Schlangen, 2013; Kenning-
ton, Iida, Tokunaga, & Schlangen, 2015). An incremental version of DIST-
POWER would likely extend one of these approaches in order to better han-
dle the hypothesization of new entities during this incremental procedure
and to allow for integration with the Distributed Heterogeneous Knowledge
Base memory model used in our architecture.

Similarly, it will be important to develop an incremental version of GH-
POWER for the same reasons. This may be especially fruitful, because GH-
POWER’s operation at the intersection of language, attention, and memory
may present a unique opportunity to study the interaction between these dis-
parate cognitive processes. An incremental version of GH-POWER would
present additional challenges as one would need to find some computationally
efficient means of combining the general incremental reference resolution pro-
cedure with GH-POWER’s iterative consideration of combinations of data
structures through which to search.

Finally, it will be important to develop mechanisms that allow for prag-
matic reasoning and general inference procedures to be employed during this
incremental process (cf. Peldszus, Baumann, Buß, & Schlangen, 2012). This
is important not only to rule out resolution candidates that violate com-
mon sense reasoning principles or thematic roles, but in addition to prevent
potential implications during the robot’s response that could raise ethical
concerns. Consider the following interaction:

Human User: Can you bring me to the kitchen?

Wheelchair: Do you mean the kitchen on the first floor or the second
floor?

Human User: The kitchen on the second floor.

Wheelchair: No, I am unable to travel to that floor.

Human User: Okay, can you bring me to the kitchen on the first floor?

Wheelchair: No, that kitchen is closed for repairs.

Here, the user is likely to come away frustrated. It does not matter which
location the user meant to refer to; in either case, the eventual response was
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a rejection of the user’s request. As such, the wheelchair’s initial clarification
request was simply a waste of the user’s time, and accidentally implies that
the robot could comply with the user’s request under at least one of the
ambiguous interpretations. What would have been more appropriate would
have been for the wheelchair to perform some counterfactual reasoning as to
what its response would be under each possible interpretation, and generate
a blanket rejection if no possible interpretation is acceptable, such as “I am
unable to bring you to either kitchen I know of”, “I’m not sure which of the
kitchens you mean but I cannot travel to either of them”, or “I‘m not sure
which of the kitchens you mean, but I cannot travel to the one on the second
floor, and the one on the first floor is closed for repairs.”

In this case, the initial clarification request is simply frustrating. How-
ever, in slightly different circumstances, the accidental-implication made by
this clarification request could actually raise ethical concerns. Consider for
example the following alternative dialogue.

Human User: Can you run over Alice?

Wheelchair: Do you mean Alice Robertson or Alice Charleson?

Here, it does not matter which Alice the human user meant; it is morally
impermissible to run anyone over. By simply asking for clarification, how-
ever, the wheelchair is accidentally implying that it would be willing to
comply with the user’s request under at least one of the ambiguous interpre-
tations. To avoid this ethically fraught response, it would have been more
appropriate for the wheelchair to perform some counterfactual reasoning as
to what its response would be under each possible interpretation, and gener-
ate a blanket rejection if no possible interpretation is acceptable, such as “I
am not allowed to run over anyone” or “I’m not sure which Alice you mean,
but I’m not allowed to run over either of them.”

It will also be important to make these extensions parallelized. Currently,
DIST-POWER and GH-POWER only consider one candidate at a time.
These algorithms should be extended to simultaneously consider as many
candidates as possible, for the sake of increased efficiency.

Finally, these extensions suggest yet another direction for future work.
If we are indeed interested in studying the interaction of cognitive processes
within the GH-POWER framework, it may be valuable to design a new
cognitive architecture (Langley, Laird, & Rogers, 2009) that is grounded in
this framework, in the way that SOAR is grounded in its particular model of
working and long-term memory (Laird & Rosenbloom, 1996; Laird, 2012).
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9.4.2 Cognitive referring expression generation

If one considers the parallels between language understanding and gener-
ation in this dissertation, there is an obvious blemish upon the included
chapter pairs. I include discussion of referring expression understanding and
generation in Chapters 3 and 5. I include discussion of pragmatic under-
standing and generation in Chapters 6 and 7. And I include discussion of
contextualized referring expression understanding, including understanding
of anaphoric and deictic expressions, in Chapter 4 – but I at no point discuss
contextualized referring expression generation. This means that the archi-
tecture, as it stands, is unable to make use of any sort of anaphoric or deictic
expression, and considers all known entities as distractors when generating
referring expressions.

In future work, it will thus be critical to design such a process, by “invert-
ing” the GH-POWER algorithm presented in Chapter 4. This will require
the development of a number of new mechanisms and data structures, in-
cluding data structures similar to the GH-theoretic memory model used for
GH-theoretic referring expression understanding, but designed to model the
likely contents of interlocutors memories. It will be left to such future work
to determine the appropriate level of granularity for such data structures,
and the degree to which it is appropriate for these data structures to interact
with those used for understanding (due to the fact that both structures will
in a way endeavor to model what is in common ground, see also (Stalnaker,
1978; H. H. Clark, Schreuder, & Buttrick, 1983; Horton & Keysar, 1996)).

Future work in this area will need to consider alternative theories, such as
Ariel’s Accessibility Theory, which specifically considers the representation
alignment as a motivation behind reference production (Ariel, 1988, 2001;
Bard, Hill, Foster, & Arai, 2014). Next, we will need to consider recent
algorithms that have been grounded in such theories in order to facilitate
contextualized referring expression generation (e.g. Foster, Giuliani, & Isard,
2014).

Once GH-theoretic algorithms for contextualized referring expression
generation are developed, they will need to be integrated with multi-
modal adaptations of the work presented in Chapter 5 (cf. Kranstedt &
Wachsmuth, 2005), and in general draw on the breadth of recent work in
human-robot interaction on non-verbal communication (e.g. Ng-Thow-Hing,
Luo, & Okita, 2010; C.-M. Huang & Mutlu, 2014; Admoni, Weng, Hayes,
& Scassellati, 2016; Admoni, Weng, & Scassellati, 2016) and highly legible
pointing behaviors (e.g Holladay, Dragan, & Srinivasa, 2014; Gulzar & Kyrki,
2015; P. Liu, Glas, Kanda, Ishiguro, & Hagita, 2016).
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9.4.3 Rule learning

Rule-based reasoning systems may be used for a variety of purposes in a robot
architecture, from pragmatic reasoning components, as seen in my previous
work, to components designed to ensure that robots behave ethically. How
these rules might be learned is an interesting and extremely challenging
problem, particularly with regards to determining the appropriate level of
abstraction for a given rule, and determining the precise context under which
a rule is applicable. I am interested in investigating these questions, using
both statistical learning methods and the one-shot learning methods we have
employed in previous work (Krause, Zillich, Williams, & Scheutz, 2014). In
order to use this type of one-shot learning method, it will be important to
determine how humans might best be solicited to teach new rules to robots
through natural language. While it may not be appropriate for robots to
learn ethical rules through natural language (cf. Ohlheiser, 2016), I believe
it would be natural and appropriate for robots to learn rules for purposes such
as indirect speech act and affordance reasoning through natural language.
To this end, I have begun the process of experimentally investigating what
types of robot behaviors are and are not effective for eliciting such rules from
humans without directly asking for them. In the future, I am interested in
continuing such experimentation, and in developing algorithms informed by
the results of such experiments.

9.4.4 Search and Rescue Robotics

One of the largest success stories for modern robotics is the field of rescue
robotics (Murphy et al., 2008; Murphy, 2014). Robots that assist with rescue
efforts in both urban and rural disaster scenarios have the potential for great
societal impact. What is more, there is already a market for such robots,
with organizations willing to pay large sums of money for rescue robots as
part of normal operating costs (Birk & Carpin, 2006).

Rescue robots are also of great interest from a research perspective.
While current rescue robots are almost entirely teleoperated, the ideal res-
cue robot of the future will be nearly or fully autonomous. Because rescue
robots are already being deployed in the wild, this provides researchers the
opportunity to incrementally introduce new capabilities to these deployed
robots (especially perception, modeling, locomotion, manipulation, and co-
operation capabilities (Birk & Carpin, 2006)) in order to bootstrap their
autonomous capabilities.

Rescue robotics is also interesting from a multi-agent and human-robot
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teaming perspective, as a wide variety of team compositions may be used to
control and interact with rescue robots. As more autonomous capabilities
are enabled in rescue robots, control shifts from a typical one-to-one tele-
operation scheme to a one-to-many control scheme in which a single robot
coordinator is able to manage a group of rescue robots (Nevatia et al., 2008;
Crandall, Goodrich, Olsen, & Nielsen, 2005), or a many-to-many control
scheme (Tews, Mataric, & Sukhatme, 2003; Yanco & Drury, 2004) in which
multiple humans work with a fleet of rescue robots as part of a heterogeneous
human-robot team (Chou, Marsh, & Gossink, 2009; Murphy, 2004).

The same autonomous capabilities that enable human-robot teaming be-
yond mere teleoperation also create a cycle in which even more advanced
autonomous capabilities are motivated, making them of great interest from
the perspectives of artificial intelligence and human-robot interaction. For
example, if rescue robots can be tasked through natural language commu-
nication, then there is motivation to provide such robots with the ability to
model the beliefs, actions, and intentions of other robots and humans, in or-
der to interpret their orders within the context of orders that they have heard
being given to other robots (Briggs & Scheutz, 2011; Talamadupula, Briggs,
Chakraborti, Scheutz, & Kambhampati, 2014) or more effectively generate
plans that respect the goals of the larger human-robot team or the uncertain
and open-world nature of the rescue environment (Talamadupula, Kamb-
hampati, Schermerhorn, Benton, & Scheutz, 2011; Talamadupula, Benton,
Kambhampati, Schermerhorn, & Scheutz, 2010). What is more, if rescue
robots are given natural language capabilities, they may be expected to
interact not only with their explicit teammates, but also with naïve citi-
zens such as the victims themselves, who cannot be expected to have any
knowledge of the “right” way to interact with robots in order to fulfill their
needs (Murphy, 2004).

While much attention has been paid within robotics and human-robot in-
teraction to the specific application of urban search-and-rescue robotics (e.g.
Davids, 2002; Casper & Murphy, 2003; Burke, Murphy, Coovert, & Riddle,
2004), the use of robots is also important to outdoor search and rescue envi-
ronments such as mountain or wilderness search and rescue (May, 1973), ap-
plications in which the use of either teleoperated or autonomous unmanned
aerial vehicles (UAVs) play an especially important role (Goodrich et al.,
2007, 2008; Goodrich, Lin, Morse, & Roscheck, 2010).

For this reason, a number of European researchers are currently taking
part in the SHERPA research project (Marconi et al., 2012), including our
collaborators from the Institute for Artificial Intelligence at the University
of Bremen (Yazdani, Brieber, & Beetz, 2016). The SHERPA project focuses
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specifically on alpine search and rescue scenarios, which require tremendous
expenditures even at relatively small scales. In 2010 for example, 30,000
rescuers took part in alpine search and rescue scenarios in Italy alone, re-
sulting in 6000 rescued persons and 450 fatalities (Marconi et al., 2012). In
order to best assist within this domain, researchers on the SHERPA project
are focusing on developing teams of heterogeneous air and ground robots
that are remotely commandable by one or more human operators through
natural, task-based interactions, with four central research objectives: (1)
facilitating multi-modal control of rescue robots through methods such as
speech and gesture; (2) providing decision support systems for both single-
and multi-agent decision making; (3) designing robots specifically tailored
for robustness in alpine search and rescue environments; (4) developing dis-
tributed, cognitive, multi-agent architectures.

While the work I have presented in this dissertation is applicable to
search and rescue scenarios in general, it may be particularly valuable in such
alpine search and rescue scenarios, for which perfect a priori domain knowl-
edge is unlikely due to the remote, large-scale, unstructured, and dynamic
properties of the environments in which such rescue operations are typically
conducted. Furthermore, it is clear that the motivations behind this disser-
tation align particularly well with the first and fourth research objectives of
the SHERPA project. For this reason, we have been working in collaboration
with researchers from the Institute for Artificial Intelligence at the Univer-
sity of Bremen in order to integrate the SHERPA robotic framework with
the DIARC robot architecture (as implemented in the ADE middleware) to
produce a novel integrated system called SHADE.

Integrated Approach (SHADE)

SHERPA robots make use of a knowledge processing framework called
KnowRob (Tenorth & Beetz, 2009), which provides Prolog-based (Clocksin
& Mellish, 2003) knowledge representation and reasoning capabilities and a
robot-oriented Ontology (Tenorth & Beetz, 2012) represented in a description
logic using the Web Ontology Language (OWL) (McGuinness & Van Harme-
len, 2004), all of which are implemented within the ROS middleware.

In order to integrate the DIARC architecture with the SHERPA architec-
ture, we make use of ROSADE, an ADE utility used to generate ROSJAVA
nodes (Kohler & Conley, 2011) that wrap running ROS nodes (cf. Wilson,
Krause, Scheutz, & Rivers, 2016). Once these nodes are generated, DI-
ARC is able to communicate with the ROS-native nodes through standard
ROS messages (topics, services, and actions), similar to the use of LCM
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in VADE in the previous chapter. In practice however, nearly all inter-
architecture communication is achieved by using the ROS services provided
by SHERPA’s json_Prolog node, which allows other nodes to make Prolog
queries regarding the information stored in SHERPA’s KnowRob knowledge
base.

Under SHADE, two new ADE components are used. The KnowRob
Component provides the ability to issue arbitrary Prolog queries to SHERPA
by way of the aforementioned ROSADE nodes, and the SHERPA Component
provides mechanisms for passing specific, SHERPA-oriented Prolog queries
to the KnowRob Component.

The SHERPA Component as a Consultant

First, the SHERPA Component provides the mechanisms necessary for it to
be considered a consultant (as discussed in Section 3.3.1), including Prolog
queries that determine the set of known entities and handleable properties,
and Prolog queries to assess and assert knowledge. However, this consultant
differs from those discussed thus far, in a few unique ways.

Whereas the other consultants thus far have advertised static lists of
constraints (i.e., typed positive-arity predicate symbols) that they are able
to assess, this consultant does not store such a list, but rather acquires
such a list by querying SHERPA about what properties it is prepared to
answer questions about. This achieves a better division of responsibilities
and facilitates integration in that our collaborators can add functionality
without requiring any changes in our code. This also requires SHERPA to
take responsibility for deciding on a preference ordering over the constraints
it can handle.

This consultant also differs from those seen thus far in that the major-
ity of information stored in SHERPA’s KnowRob knowledge base does not
have uncertainty information associated with it. Thus, all assessment queries
made by this consultant will return probabilities of 1.0 or 0.0. While this
does not allow POWER’s uncertainty handling to be shown off as well as
the application in the previous chapter, it shows how knowledge bases with
different uncertainty management schemes may work together seamlessly
within our referential processing framework (as this uncertainty-free knowl-
edge base may be used alongside other knowledge bases that do represent
uncertainty).

Finally, this consultant differs from the others described thus far in
that it is limited to unary and binary constraints due to the use of RDF
triples (Klyne & Carroll, 2006) within KnowRob.
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Additional SHERPA Component Capabilities

The SHERPA Component also provides capabilities that allow it to inte-
grate with DIARC ’s Goal Manager as well as with the Givenness Hierarchy
theoretic memory model described in Section 4.3.

The SHERPA Component provides methods that will issue Prolog queries
that will command a SHERPA UAV to fly to a particular object. These
are associated with primitive actions within the DIARC Goal Manager’s
Action Interpreter, which will be selected when the Goal Manager attempts
to achieve a goal to be “at” some entity. We have demonstrated in simulation
that through this integration a simulated UAV (such as that used in Yazdani,
Brieber, & Beetz, 2016) is successfully able to carry out the commands “Go
to that tree”, “Aid the victim”, and “Help him”.

In order to facilitate these types of commands, the SHERPA Component
also provides methods that will issue Prolog queries to request the set of
entities that are currently considered visually salient within the SHERPA
simulation. Whenever a set of salient entities is received as a result of such
a query, it is used to update the set of entities stored within the robot’s
Short Term Memory model (i.e., its GH-theoretic set of activated entities).
This allows the robot to successfully carry out the commands above when
there are many salient trees, victims, or male agents, but only one candidate
referent that should be salient.

Integration Objectives

Since developing this integration, both DIARC and SHERPA have added a
number of new pieces of functionality, and gone through a number of archi-
tectural changes. For example, DIARC now provides the referring expres-
sion generation and clarification request generation capabilities described in
Chapters 5 and 7, and SHERPA now provides the ability to take pictures
and recall back those images, and has gone through a number of architec-
tural changes. In order to account for these architectural changes and allow
for the integration of this functionality, we are currently working to overhaul
SHADE. Through this process, we are also working to achieve new function-
ality. In the short term, our goal is to be able to successfully carry out an
interaction such as that shown below:
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Human Take off.
Robot Okay.
Human Can you go left?
Robot Okay.
Human Can you go right?
Robot Okay.
Human Stop.
Robot Okay.
Human We have reached the hotzone.
Robot Understood. Adopting search and rescue context.
Human I need you to go to the pylon.
Robot Do you want me to go to the gray pylon? Or do you want me

to go to the blue pylon?
Human I want you to go to the gray pylon.
Robot Okay. [Travels to the pylon]
Human Investigate there.
Robot Okay. [Searches immediate area for victims]
Robot I do not see any injured people, but I have found a ski pole.
Human Okay.
Human Can you take a picture?
Robot Okay.
Human Do you see that big rock? [Points towards large rock 20m away]
Robot Yes.
Human Can you search behind it for a victim?
Robot Okay. [Travels to big rock and searches behind it]
Robot I have found him.
Human Okay.
Human Take a picture.
Robot Okay.
Human Show it to me.
Robot Okay.
Human Can you show the picture of the skipole to me?
Robot Okay.
Human Thank you.
Robot You are welcome.
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9.4.5 Intelligent mixed-reality agents

Mixed reality technologies (specifically augmented and virtual reality tech-
nologies) are predicted to become a $120-Billion industry by the year 2020,
and are poised to become one of the defining technologies of the coming
decades (Merel & Tong, 2016). While my work has typically been situated
within the field of human-robot interaction, I find augmented reality (AR)
to be particularly interesting because it offers many of the same perceptual
and linguistic challenges faced in human-robot interaction.

Imagine an intelligent, virtual agent that resides in a mixed-reality envi-
ronment (i.e., one that contains entities that live in both the “virtual world”
and “the real world” over which that virtual world is overlaid). A user in-
teracting with that agent through natural language may refer to virtual
objects about which the agent has perfect and complete knowledge a pri-
ori. But as with robots, a user may also refer to real world entities when
interacting with an AR agent, and such an agent will thus need mechanisms
for handling uncertain and incomplete knowledge such as those presented in
this dissertation. Furthermore, previous research has shown that the “rules”
of social human-robot interaction to a large extent carry over into interac-
tions with virtual characters (Holz, Dragone, & O’Hare, 2009), and thus AR
agents will also need to be able to understand and generate pragmatically
appropriate utterances.

In addition, while users in human-robot interaction scenarios may refer
to previously unknown objects, for which an agent may need to generate a
new representation, this is not only possible in AR applications, it is likely,
especially in annotation applications (Azuma, 1997) in which a user may
request on-the-fly creation of new entities, for example, by using a request
such as “Can you place a reminder on the pantry that says ‘Buy Cereal’?”

AR is an excellent domain for applying and investigating multi-modal,
situated communication techniques. Furthermore, AR is an excellent appli-
cation domain for the development and deployment of intelligent agents, as
AR agents can be meaningfully situated in their environment without being
constrained by physics or cost with respect to embodiment. But surprisingly
little research has been done on these topics to date. In fact, in their 2015
survey of augmented reality, Billinghurst, Clark, & Lee (2015) cite intelligent
systems, hybrid user interfaces, and collaborative systems as areas that have
been under-attended-to in the AR community.

This is not to say that there has been no research in this area. In fact,
there has been several decades of work around these topics thus far. In the
late 90s, work was done on multimodal VR speech-and-gesture interaction,
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in the contexts of 3D topological scenes (P. Cohen et al., 1999) and inte-
rior design (Laviola Jr, 1999), and also on intelligent “remembrance agents”
intended to serve as AR “butler/confidant[s]” (Starner et al., 1997). More
recently, researchers have developed systems that allow for multimodal inter-
action in AR and VR environments in order to effect changes in referenced
virtual entities (Kaiser et al., 2003; Höllerer & Turk, 2006), dynamically add
labels (Li & Jia, 2010) or multimedia annotations (Rekimoto, Ayatsuka, &
Hayashi, 1998) to real life objects and locations, and dynamically augment
real life objects with virtual capabilities (Barakonyi, Psik, & Schmalstieg,
2004).

With recent advances in mobile vision-based SLAM (Ventura, Arth, Re-
itmayr, & Schmalstieg, 2014), object recognition (Hoffman et al., 2014; Borji,
Cheng, Jiang, & Li, 2015), and mobile AR technologies (Höllerer & Turk,
2006), I believe that additional research into the development of intelligent,
mixed-reality, natural language capable agents is needed, and furthermore, I
believe it would be an excellent domain in which to apply the work presented
in this dissertation.

In addition, it will be interesting to consider the interaction between
these two fields. For example, it would be interesting to more deeply con-
sider human robot interaction in mixed reality environments. In such en-
vironments, a robot’s referring expression generation algorithm may need
to decide whether its utterances should be accompanied not only by ges-
tures (e.g. Admoni, Weng, & Scassellati, 2016; Cassell et al., 1994; Cassell,
1998; Cassell, Stone, & Yan, 2000; C. L. Sidner & Lee, 2005; van der Sluis
& Krahmer, 2007), but also by visualizations (not dissimilar from the offline
cross-modal deictic expressions generated outside of the context of inter-
actions in Wahlster, André, Graf, & Rist, 1991; Wazinski, 1992; André &
Rist, 1994) or annotations (S. A. Green, Billinghurst, Chen, & Chase, 2007;
S. Green, Billinghurst, Chen, & Chase, 2008). In fact, such annotations
may be more useful in helping “pick out” the target of a referring expression
than would a gesture. Or, alternatively, humans could place AR landmarks
within an environment (as in Giesler, Salb, Steinhaus, & Dillmann, 2004;
S. A. Green, Chase, Chen, & Billinghurst, 2009) in order to more easily craft
robot-understandable referring expressions.

9.5 In Conclusion

In this final chapter, I have laid out the main contributions of this disser-
tation, and suggested several directions for future work. But beyond these
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contributions and possible future extensions, it is my hope that the work
presented in this dissertation will directly benefit my research community in
two ways.

First, I hope that the referential processing framework I have developed
will be made use of by other researchers. Too often, there is pressure to
design entirely new approaches rather than building off the work of others.
It is my hope that the domain independence and extensibility of my reference
processing framework will encourage its use as among other researchers.

And second, and more importantly, I hope that the work presented in
this dissertation will draw attentions to the problems of pragmatic reasoning
and open world reference resolution, problems I view as critical for enabling
natural human-like human-robot interactions, but which have received very
little previous attention.
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