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1 Abstract

The Between-Pathway Model (BPM) motif identifies pairs of fault-tolerant gene pathways
within the yeast interactome. In BPMs, many gene pairs between the two pathways con-
tain synthetic lethal interactions, meaning if you knock out one gene or the other only, the
yeast lives, while knocking out both is lethal. This suggests that each pathway in a BPM
compensates when an opposite pathway is suppressed, defective, or absent. Algorithms have
been used to find suggested BPMs in the Saccharomyces cerevisiae and Schizosaccharomyces
pombe species of yeast. Here we identify and apply a method for finding conservation of BPMs
across these two species. By mapping orthologous genes between the two yeast species, we
are able to identify BPM pathways which are highly conserved. Furthermore, with Gene
Ontology (GO) enrichment, we can infer functional conservation as well. Given the large
evolutionary distance between S. cerevisiae and S. pombe, a high rate of rewiring within the
interactome is generally expected. However, in certain BPMs we found a large percentage of
gene conservation and GO enrichment. Some of the pathways we identified were even found
in the literature to be conserved across mouse and human. With this research, we hope to
identify pathways which are evolutionarily conserved across S. cerevisiae and S. pombe, and
encourage continued study of Between-Pathway Models.
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2 Introduction

In 2005, A. Kelly and T. Ideker[1] published their seminal paper first describing the structure
of Between-Pathway Models (BPMs). The BPM motif in the Saccharomyces cerevisiae yeast
interactome is a pair of redundant gene pathways based on protein-protein interaction data.
More specifically, BPMs are a graph-theoretic interpretation of genetic interactions, thought
to indicate fault-tolerance (see the Background sections below for more information). The
work of Kelly and Ideker has sparked substantial research on Between-Pathway Models.
Three subsequent papers have been published[2, 3, 4] in which the authors developed their
own algorithms to find BPMs in S. cerevisiae.

Recently, A. Roguev et al published a method for finding nearly genome-wide genetic
interaction data in Schizosaccharomyces pombe yeast[5]. A group at Tufts University modified
the algorithm developed by A. Brady et al [4] on the new genetic interaction data to predict
novel BPMs in the S. pombe genome[6]. The results from this algorithm are still unpublished,
but can be found at http://bpms.heroku.com/bpms. With this new set of BPMs, we can
begin to compare the BPMs between S. cerevisiae and S. pombe. In this study, we present
a method for detecting BPM conservation using gene relationships across the the two yeast
species.

3 Background

3.1 Protein-Protein Interactions

The study of Between-Pathway Models (BPMs) involves examining the interactions of genes
in yeast to find putative redundant pathways. One method employed by biologists to study
the yeast genome is to perform gene knockout studies on every gene in a particular yeast
species. The gene knockout study deletes (or suppresses) individual genes and subsequently
determines if the yeast is still viable on rich media. If the yeast is not viable after the deletion
of a particular gene, it is said that the gene is essential. If the yeast is still viable after the
deletion of a gene, the gene is non-essential. Gene knockout studies of the Saccharomyces
cerevisiae genome has shown that around 18% of the genes are found to be essential genes[8].
Further gene knockout studies determine the viability of yeast after knocking out not one, but
two non-essential genes from the genome. The resulting effects show an interaction between
the two genes called a genetic interaction, a measure of epistasis[9].

The protein-protein interaction (PPI) network is the system of all known connections
between proteins in a given species. These connections come in the form of physical inter-
actions and genetic interactions. Using the double-gene knockout studies described above,
biologists have found many varieties of genetic interactions. One case is the interaction of
synthetic rescue in which knocking out one gene or the other makes the yeast less healthy
while knocking out both genes restores the yeast to a wildtype phenotype. Another genetic
interaction, synthetic growth defect is found when knocking out either gene individually pro-
duces a viable yeast, while knocking out both leaves the yeast unhealthy. The final category
of genetic interaction is the synthetic lethal interaction. This is the case when deleting one
gene or the other results in a viable yeast, while deleting both genes results in an inviable
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yeast[10].
Figure 1 shows a theoretical example of a synthetic lethal interaction. The nodes are

genes, while the solid lines represent physical interactions between genes and the dotted line
represents a synthetic lethal interaction. The pathway in (a) shows a healthy pathway where
all the genes are active. These genes produce a functional pathway as all the genes are able
to physically interact normally. In (b), gene B is suppressed, or knocked out, however the
interactions still form a viable pathway through genes A, C, D, and E. The same is true in
(c) where gene C is knocked out and the pathway is formed through genes A, B, D, and E.
However, in (d), both genes B and C are knocked out, leaving no connections between gene
A and genes D and E. The pathway is now inviable.

A

(a) (b) (c) (d)

A A A

D

E
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D D D

E E E

= Gene

= Knockout = Physical interaction = Synthetic lethal interaction
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Figure 1: Viability of a theoretical pathway containing a synthetic lethal interaction.

Commonly used resources for genetic interactions data, such as the BioGRID[10] database,
classify protein-protein interactions in distinct categories- “Synthetic Lethality”, “Synthetic
Growth Defect”, “Synthetic Rescue”, etc. Recently, a scalar representation of the genetic
interaction data was published which provides a gradient for the level of synthetic lethality
and rescue that results from double gene knockouts[5, 11]. The method used to find this
data is called epistatic miniarray profiling, or E-MAP. Instead of a categorical classification,
the E-MAP data gives a positive or negative score based on the level of genetic interaction
taking place. Positive scores indicate a synthetic rescue interaction. Negative scores indicate
synthetic lethal or synthetic growth defect interactions. Thresholds can be set to determine
how positive or negative each score needs to be to classify an interaction as rescue, growth
defect, or lethal. E-MAP data has been generated for both S. cerevisiae[11] and S. pombe[5]
species.

As opposed to the genetic interaction, a physical interaction within the PPI network
is defined as one in which two proteins are connected in one of three ways: one protein
physically binds to the other protein, one protein binds upstream on the DNA strand from
the other protein, or the two proteins are enzymes that operate on at least one metabolite in
common[1]. These physical interactions are what define a gene pathway.

With this protein-protein interaction data within the yeast interactome, we can detect a
motif called the Between-Pathway Model, which is the basis for this study.
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3.2 Between-Pathway Models

The Between-Pathway Model (BPM) is a description of two sets of genes thought to exist
as functionally redundant pathways[1]. By redundant, we mean that the pathways provide
the same or similar function so as to acquire a fault-tolerant mechanism. In other words, if
one pathway is defective or destroyed, the other pathway will be able to perform a related
function to compensate. This sort of mechanism makes sense evolutionarily. If genes within
one pathway mutate or are damaged, the redundant pathway is able to take over the first
pathway’s function. Thus, the pathways in BPMs are thought to make the interactome more
robust and increase the yeast’s fitness.

Using the protein-protein interaction network, we can deduce areas of fault-tolerance
within the yeast interactome by finding the Between-Pathway Model motif. Think of the
PPI network in terms of a mathematical graph. In this graph, each node represents a
protein and the edges between nodes represent the protein-protein interactions. Because
there are two types of interactions, there are two types of edges: physical and genetic. The
Between-Pathway Model motif in this graph of interactions is defined as pairs of gene path-
ways containing many physical interactions within each pathway and many synthetic lethal
interactions between the two pathways. Conversely, the two pairs of pathways have very few
synthetic lethal interactions within each pathway and very few physical interactions between
each pathway. The idea behind this structure is that synthetic lethal interactions show a
measure of compensation between two gene pathways.

Suppressing a gene in one pathway may reduce or destroy that pathway’s functionality[1].
If this functionality is essential to the yeast’s survival, another pathway with redundant func-
tionality is needed to compensate or the yeast will be inviable. If genes in this compensatory
pathway are also suppressed, then the yeast will again be inviable. Synthetic lethal interac-
tions show pairs of genes where knocking out one gene or the other produces a viable yeast,
but knocking out both leaves the yeast inviable. One explanation for this phenomenon is
that these two genes exist in compensatory pathways like the ones just described. Thus, by
finding BPM motifs in the interactome with many synthetic lethal interactions between pairs
of pathways, we are finding pathways that are likely to be compensatory.

Figure 2 shows a theoretical BPM. As described before, genes within the two pathways
are thought of as nodes on a graph and the two types of interactions are edges between nodes.
In this case, pathway 1 and pathway 2 form a connected subgraph of physical interactions
within each pathway and a clique (every node is connected to every other node) of synthetic
lethal interactions between each pathway. These pathways are thought to be functionally
redundant. The mutation of a gene in one pathway or the other may destroy that pathways
functionality, but the opposite pathway is able to compensate for it.

R. Kelly and T. Ideker, and I. Ulitsky and R. Shamir first detected BPMs using both
physical and synthetic lethal interaction data[1, 2]. As described above, the goal of this
algorithm is to find pairs of gene sets where many synthetic lethal interactions exist between
the two sets and many physical interactions exist within each set. Subsequent papers use
only genetic interaction data so as to reduce pathway bias[3, 4]. As a method of verifying the
BPMs, physical interactions within each pathway are checked after the BPMs were produced.
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Pathway 1 Pathway 2

= Physical interaction

= Synthetic lethal interaction

= Gene

Figure 2: A theoretical Between-Pathway Model. Pathway 1 and Pathway 2 are thought to
be fault-tolerant, or redundant, based on the physical interactions within each pathway and
the many synthetic lethal interactions between the two pathways.

3.3 GO enrichment

To verify their findings, each paper that produced BPMs had methods of validating their
Between-Pathway Models[1, 2, 3, 4]. As mentioned above, papers following Kelly and Ideker,
and Ulitsky and Shamir predicted physical interactions in pathways using their BPM identifications[3,
4]. Brady et al also ran algorithms on old versions of PPI data to see if the BPMs would
correctly predict interactions in the newer version. As well, Hescott et al developed a method
to use gene expression data to validate previously identified BPMs[12]. What all the papers
had in common, though, is they check the Gene Ontology (GO) enrichment to determine if
many genes in BPM pathways perform the same biological function. Gene Ontology is struc-
tured vocabulary used by biologists to annotate gene function[13]. GO works by creating
universal terms for all manually curated, high-throughput, and computational annotations
of gene functions. GO is structured as a hierarchy. Well studied genes with known function-
ality are assigned more specific GO terms that exist farther down the hierarchy. Genes with
little-known functionality, on the other hand, will have very general GO terms in high levels
of the hierarchy.

With the structured vocabulary, GO terms can be precisely compared to determine func-
tional similarity between genes. The farther down in the GO hierarchy similar GO terms
are, the closer the functionality of the compared genes. If a pathway is GO enriched, that
pathway is said to contain many genes that perform the same or similar function. The GO
enriched pathway is given a p-value to indicate the confidence of the enrichment classification.
The closer the p-value is to 0, the higher the confidence of the GO enriched pathway[14].

BPMs from all four studies above use GO enrichment as a measure of validating their
BPM sets. Showing that a substantial fraction of their BPMs are GO enriched verifies
that genes in BPM pathways perform similar functions. It does not, however, verify that the
pathways in the BPM are redundant or fault-tolerant. Still, by verifying functional coherence
of individual gene pathways, we can say with more confidence that a BPM exists in nature.
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GO enrichment is still today the most accepted method of BPM validation[12].

3.4 Homology

In this research, we are attempting to find conservation of BPMs across two species of yeast.
To do so, we use information on the relationships between genes in the two species. This
data can tell us how related the genes are between the two species’ BPMs.

Two genes that derived from a common ancestor gene are called homologs. Homologous
genes are classified as one of two types: paralogs and orthologs.

Paralogs are defined as two genes separated by a gene duplication event. Gene duplication
occurs when a gene is copied, usually through a transcription error, onto two sections of the
species’ genome. If the species with the duplicated genes survives, then both copies of the
gene will continue to evolve as they undergo evolutionary pressure. The two duplicated genes
will evolve separately and attain unique genetic sequences, but will still be evolutionarily
related.

Orthologs are defined as two genes separated by a speciation event. Take for instance
part (a) of Figure 3, where gene A exists in some ancient species. At some point, this species
undergoes a speciation event where the ancestor split into two new species. Now gene A
still exists in both of these species, but each gene is undergoing separate evolutionary pres-
sures. These evolutionary pressures change the two genes uniquely, causing their sequences
to diverge and become genes B and C. The genes may be different now, but they are still
evolutionary related. Genes B and C are classified as orthologs.
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Figure 3: Homologous relationships between genes. (a) Gene B is a normal ortholog of C.
(b) Gene B is an in-paralog of genes C1 and C2. This is still an orthologous relationship. (c)
Genes B1 and C1 are out-paralogs of genes B2 and C2. This is not an orthologous relationship.

Things get more complicated when gene duplication and speciation events are combined.
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To describe the result of these evolutionary events, Tong et al [15] coined the terms in-paralog
and out-paralog. An in-paralog occurs when a gene splits at a speciation event, and then one
or both of the new genes undergo gene duplication. To better describe this we will refer to
part (b) of Figure 3. Gene A diverges at the speciation event to form genes B and C. Then,
gene C is duplicated into genes C1 and C2. Genes C1 and C2 are then in-paralogs of gene B.
Because gene B and genes C1 and C2 share the same ancestor gene at the speciation event,
the gene B is orthologous to C1 and C2. An out-paralog occurs from a gene that duplicated
before a speciation event. Part (c) of Figure 3 shows the relation of an out-paralog. The
gene duplication of gene A creates genes A1 and A2. Afterwords, a speciation event occurs,
splitting both genes to species B and C. In the case of out-paralogs, the genes of B1 and
C1 are not orthologous to B2 and C2. This is because the genes of each subscript set have
different ancestor genes. From these definitions we can say that we want to find normal
orthologs as well as in-paralogs to determine orthologous relationships between two species.

4 Data

Four papers produced original BPMs based on PPI data for S. cerevisiae, all of which are
used in this research. The first was the seminal paper in 2005 by R. Kelly and T. Ideker[1]
that defined the BPM motif. Subsequent papers by I. Ulitsky and R. Shamir[2], X. Ma, A.M.
Tarone, and W. Li[3], and A. Brady, K. Maxwell, N. Daniels, L.J. Cowen[4] produced novel
BPMs as well. Using S. cerevisiae E-MAP data from Collins et al [11] and S. pombe E-MAP
data from Roguev et al [5], M. Leiserson, D. Tatar, L. Cowen, and B. Hescott[6] used the
algorithm from Brady et al [4] to produce more BPMs in cerevisae and S. pombe. These two
sets of BPMs have not yet been published, so we refer to them as Collins and Roguev in
reference to the origins of the E-MAP data.

S. cerevisiae to S. pombe ortholog data is from two sources: InParanoid[15] and PHOG[16].
InParanoid ortholog data was retrieved from the InParanoid7 website,
http://inparanoid.sbc.su.se. PHOG ortholog data was graciously uploaded at our request to
their website at http://phylofacts.berkeley.edu/orthologs/downloads/.

Gene Ontology enrichment information was retrieved from a site built by Max Leiserson
of Tufts University, http://bpms.heroku.com/bpms. This site allows the user to check the
GO enrichment of any BPM in the datasets listed above. The GO information on the website
was retrieved from the Gene Ontology Consortium[13].

5 Methods

To detect the conservation of Between-Pathway Models across yeast we perform the following
procedure on every BPM of every dataset:

• Map each gene in the BPM to its ortholog, creating an “ortholog BPM” with “ortholog
pathways”

• Calculate similarity scores of ortholog pathways when compared against every previ-
ously investigated BPM pathway in the opposite yeast species
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• Validate highly conserved pathways by checking GO enrichment

All of the code was scripted in the python programming language. The source code is attached
as Supplement 1.

5.1 Reading in BPM and ortholog data

Ortholog data between S. cerevisiae and S. pombe is read in from one of two datasets,
InParanoid[15] and PHOG[16]. The naming conventions on the PHOG data varied from the
rest of the data, so we used the BioMART on Fungi Ensembl[17] to translate gene names.
Genes are stored as pairs in an array, allOrthologs. As stated above, there can exist a
many-to-many orthologous relationship between genes. Therefore, each gene with more than
one ortholog is added multiple times for each unique orthologous relationship.

Between-Pathway Model data is then read from one of the six available S. cerevisiae
datasets described in the Datasets section. Each individual dataset of BPMs is given in a
text file containing pathways of comma-separated genes on each line. Every two pathways
make up a unique BPM within the dataset. The program reads the input file sequentially
two lines at a time for every BPM. BPMs are stored in a large array called cereBPMs, with
the index of the array correlating to the BPM number given in the dataset. Each BPM index
contains two arrays of genes representing the two gene pathways. Every gene is stored as a
Gene object containing the name of the gene and a list of its orthologs. As the gene is read
in, the allOrthologs list is searched to find all pairs containing the gene name. For every
gene found in a pair in the list, the orthologous gene is added to the Gene object’s ortholog
list. This is done for every gene in the current dataset of BPMs until every BPM is contained
in the cereBPMs array. This process is then repeated for the S. pombe BPM dataset and read
into an array called pombeBPMs.

5.2 Mapping BPMs to their ortholog genes

Each BPM is mapped to an orthologous BPM in the opposite species. Without loss of gener-
ality, we will refer only to mapping S. cerevisiae to S. pombe, but the process is performed in
the reverse direction as well. Only BPMs with pathways of length 3 or greater are considered
when detecting for conservation. This is to avoid pathways of size 1 and 2 that may be hubs
of synthetic lethal interactions rather than actual redundant pathways[18].

To map a BPM to its ortholog, the orthologs of each gene within the BPM are placed
into another theoretical BPM. So for every BPM in the current S. cerevisiae dataset, both
pathways are mapped to an “ortholog pathway” in S. pombe. The ortholog pathway is made
up of genes orthologous to the originals. The two ortholog pathways therefore comprise an
“ortholog BPM”. Figure 4 shows a visual interpretation of this mapping. You can see that
some genes map to multiple orthologs in S. pombe, while some do not map to any. This
ortholog BPM is entirely theoretical and was not produced by previous researchers. The
thought is, however, that if this ortholog BPM of S. cerevisiae is similar to an actual BPM
of S. pombe, then it has been conserved through evolutionary time.

With this ortholog BPM, we can compare it to every S. pombe BPM and find those with
high similarity. In practice, there is no actual ortholog BPM being created in the program.
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Figure 4: Theoretical ortholog mapping from S. cerevisiae to S. pombe. Orthologs are listed
in the allOrthologs array. Note that genes B and F do not have orthologs in S. pombe,
while gene G has three.

The similarity of one BPM to another using orthologs happens in real time, so no new memory
is used up. The theoretical ortholog BPM is just a way to visualize the comparison taking
place.

5.3 Determining similarity using Jaccard indexes

To determine the similarity between an original BPM and an ortholog BPM, we used a
Jaccard index. A Jaccard index is a statistical tool for measuring similarity between two
sets. In this case, the genes within the original and the ortholog BPM comprise each set.
The Jaccard index is found by taking the intersection of the two sets and dividing it by the
union of the two sets as shown below. In other words, it is the number of genes that occur
in both sets, divided by the total number of genes not counting duplicates twice.

Jaccard index = ∩ / ∪

Using a Jaccard index we can treat genes from either the entire BPM as a set, or just an
individual pathway as a set. This allows us to find various similarity scores based on which
pathways we choose to map over and which pathways we choose to compare the mapping
against. For this research, we found Jaccard indexes for every combination of mapping and
comparing between S. cerevisiae and S. pombe. This includes mapping from both pathways in
one species and comparing against both pathways the other species (Both→Both), mapping
from one pathway and comparing against both pathways (Pathway→Both), mapping from
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both pathways and comparing against one pathway (Both→Pathway), and mapping from one
pathway and comparing against one pathway (Pathway→Pathway). This is done for every
BPM of the current dataset against every BPM the opposite species’ dataset.

The Jaccard indexes are stored in an array named jaccardIndexes that is of equivalent
size to the current BPM set being mapped. Again, for the purposes of explaining this concept
we will assume the BPM dataset being mapped is the S. cerevisiae, cereBPMs, and it is being
compared to the S. pombe, pombeBPMs. Each index in the jaccardIndexes array indicates
the S. cerevisiae BPM number for which the Jaccard indexes are found. At each index is
another large array of size pombeBPMs. The index of the subarray represents the S. pombe
BPM number that the S. cerevisiae BPM is being compared against. Finally, at each index
of the subarray is a final array containing all the Jaccard indexes found between the two
BPMs. The following shows the organization of the final array. The each box represents a
unique Jaccard index value, where the first letter stands for the set of genes mapped from the
S. cerevisiae BPM and the second letter stands for the set of genes compared against in the
from S. pombe BPM. B stands for the set of both pathways in the BPM, P1 stands for a set of
just pathway 1, and P2 stands for a set of just pathway 2. For example, B→B is the Jaccard
index found when mapping both S. cerevisiae BPM pathways and comparing against both
S. pombe BPM pathways, P1→P2 is the Jaccard index found when mapping pathway 1 of
the S. cerevisiae BPM and comparing to pathway 2 of the S. pombe BPM pathway, etc.

finalArray =

{ B→B , B→P1 , B→P2 , P1→B , P2→B , P1→P1 , P1→P2 , P2→P1 , P2→P2 }

The top results for each of these scores are found and displayed with the correlating S.
cerevisiae and S. pombe BPM numbers. These results can be found in Supplement 2-a and
Supplement 2-b.

5.4 Validating conserved BPMs with GO enrichment

Those BPMs shown to have high Jaccard indexes are thought to be conserved across species.
As with the original BPM papers, we can validate the conserved BPMs using GO enrichment[1,
2, 3, 4]. If compared pathways receive high Jaccard indexes, then it is known that many genes
within each pathway are evolutionarily related. However, it does not necessarily show func-
tional conservation. Checking the GO enrichment of pathways with high Jaccard indexes
allow us to see if these pathways are found in literature to be functionally conserved as well.

On the site http://bpms.heroku.com/bpms, you can navigate to a particular BPM and
view its gene pathways and protein-protein interaction information. Underneath each path-
way, if the pathway is GO enriched, it will say so with a link to the GO enriched terms for
the set. A pathway is considered GO enriched if the GO term has a depth of at least three
in the hierarchy and the pathway has a p-value of ≤ 0.01. After running the program to find
pairs of BPMs with high Jaccard indexes, we went to the BPM website and checked the GO
enrichment for each. If conserved pathways are GO enriched for similar functions with low
p-values, this is a more clear indication of conservation.
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6 Results

6.1 Similarity scores

Running the program on every BPM dataset found many pathways to be conserved across
S. cerevisae and S. pombe. Supplement 2-a and 2-b contain the results for running the
program on InParanoid and PHOG ortholog data respectively. The results provide the top
similarity scores for each type of pathway mapping and comparing from S. cerevisiae to S.
pombe (the types of mapping-comparisons being Both→Both, Pathway1→Pathway2, etc, as
described in part 3 of the Methods section). Next to the Jaccard index score are the BPM
numbers for the S. cerevisiae and S. pombe BPMs. These BPMs can be found on the website,
http://bpms.heroku.com/bpms.

For the purposes of this study, a Jaccard index ≥ 0.10 is considered to indicate conser-
vation. Studies have shown the S. cerevisiae and S. pombe PPI networks data to conserve
only 17.3% of synthetic lethal interactions[19]. Furthermore, the S. cerevisiae and S. pombe
genomes diverged between 300 and 400 million years ago[20] and PPI networks have been
shown to have a high rate of rewiring in eukaryotic species[21]. These numbers suggest that
a high percentage of the physical and synthetic lethal interactions that form the structure of
the BPMs will not be found in both S. cerevisiae and S. pombe. Therefore a relatively low
threshold of 0.10 Jaccard index score is enough to indicate conservation for the purposes of
this study. Even so, many BPMs were shown to be conserved with Jaccard indexes much
higher than the 0.10 cutoff. The example in Figure 5 shows the I. Ulitsky and R. Shamir[2]
BPM 22 mapping to Roguev et al [5] BPM 80. Mapping from both pathways of S. cerevisiae
and comparing to both pathways of S. pombe, the BPMs were shown to be conserved with
a Jaccard index of 0.2727. Mapping from pathway 1 of S. cerevisiae and comparing to both
pathways of S. pombe, the Jaccard index produced a score of 0.375.

6.2 Conservation of BPM pathways across S. cerevisiae and S. pombe

A total of 1279 pathways were found to be conserved (Jaccard index ≥ 0.10) when map-
ping pathways from S. cerevisiae and comparing to S. pombe using the InParanoid[15] and
PHOG[16] ortholog data sets. 707 pathways were conserved using the InParanoid ortholog
data and 572 pathway were conserved using the PHOG ortholog data. These numbers can
not be made into a percentage of the total number of BPM pathways because they include
S. cerevisiae pathways that are conserved in many S. pombe pathways and vice-versa. For
example, the full BPM of R. Kelly and T. Ideker[1] BPM 305 maps with a high Jaccard index
to pathway 2 of A. Roguev et al [5] BPMs 11, 13, 55, 69, 86, 116, and 138. This increases the
number of Both→Pathway2 mappings by 7 even though there is only 1 S. cerevisiae BPM
being mapped- in order to find the percentage, we would have to divide by all of the potential
mappings, the size of the S. cerevisiae dataset times the size of the S. pombe dataset. This
data is not useful to us as it is comparing the results to every pathway in S. cerevisiae being
conserved in every pathway in S. pombe, which is impossible in nature. More useful than
this is the percentage of unique pathways that are conserved across species and out of those
pathways, how many are GO enriched.

Table 1 shows the number of unique S. cerevisiae pathways that are found to be conserved
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Pathway 1

Pathway 2 Pathway 2Pathway 1

BPM 22, Ulitsky et al

BPM 80, Roguev et al
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= Physical interaction
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Figure 5: Example BPMs found to be conserved across S. cerevisiae and S. pombe. Mapping
both pathways of Ulitsky 22 and comparing to both pathways of Roguev 80 found a Jaccard
index of 3/12 = 0.25. Mapping pathway 2 of Ulitsky 22 and comparing to both pathways of
Roguev 80 found a Jaccard index of 3/8 = 0.375.

in S. pombe. There are a total of 4706 unique pathways in all of the BPM datasets used in
this research. This is found by taking the total number of BPMs and multiplying by two
because each BPM contains two pathways. Of these unique pathways, 182 were found to
be conserved when mapped and compared in some way to S. pombe. This shows that only
3.87% of the S. cerevisiae BPM pathways are conserved in the S. pombe BPMs.

The low percentage of conservation can be attributed to to many factors. As mentioned
above, studies have shown that only 17.3% of synthetic lethal interactions are conserved
between S. cerevisiae and S. pombe[19]. Additionally, S. cerevisiae and S. pombe are evolu-
tionarily distant[20] and the interactome has been shown to have a fast rate of rewiring[21].
Furthermore, the BPM datasets are bloated and noisy. This can be seen in the sheer number
of BPMs found in the S. cerevisiae interactome. In the entire genome, S. cerevisiae contains
6275 genes[22]. The number of BPMs used from the datasets in this study totals 2353. If
we treat each BPM as a true biological structure, that is saying that there are a total of
4706 pathways of genes, each performing a redundant function, in a genome of only 6275.
This simply can not be true. Considering all of these factors, the low rate of BPM pathway
conservation found in this study is to be expected.
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Table 1: Unique pathways found to be conserved when mapping from S. cerevisiae and
comparing to S. pombe.

6.3 Validation of BPMs found to be conserved

To validate the existence of their BPMs, all four BPM-finding algorithm papers used GO
enrichment to measure what fraction of their BPMs exhibit functional coherence[1, 2, 3, 4].
Here, we apply the same approach to validate the BPMs we found to be conserved using
our method. Table 2 shows the number of unique S. cerevisiae BPMs found to be conserved
when mapping the full S. cerevisiae BPM and comparing to the full S. pombe BPM (a B→B
mapping, as described in part 3 of the Methods section). Using the InParanoid[15] ortholog
data, a total of 26 unique BPMs were found to be conserved from a B→B mapping. With
the PHOG[16] ortholog data, a total of 16 unique BPMs were found to be conserved. From
those unique S. cerevisiae BPMs, the table also shows the number of BPMs who are doubly
GO enriched (GO enriched on both pathways), singly GO enriched (GO enriched on one
pathway) and not GO enriched (GO enriched on neither pathway). Using the InParanoid
data, 96.2% of conserved B→B mappings were found to be GO enriched. 73.1% were doubly
GO enriched, 23.1% were singly GO enriched, and 3.8% were not GO enriched for either
pathway. Of all the individual pathways found, 84.6% were GO enriched using InParanoid
data. The PHOG data found 100% of B→B mappings to be GO enriched. 68.8% of these
were doubly GO enriched and 31.3% were singly GO enriched. Of all the pathways found
conserved using PHOG ortholog data, 84.3% were GO enriched

84% GO enrichment is an extremely strong indicator that the BPMs found to be conserved
are functionally coherent. To put these numbers in perspective, we can compare them to the
GO enrichment validation statistics of BPMs found by the original papers. Table 3 shows the
GO enrichment results for BPMs identified by Kelly and Ideker[1], Ulitsky and Shamir[2],
and Brady et al [4]. These results were compiled by Brady et al to use an equal definition
of GO enrichment. As stated in Brady et al [4], the BPM generation of Ma et al [3] bias
the pathway samples and not enough of their data is available for comparison, so they were
omitted from the table.

The GO enrichment results show Kelley and Ideker BPMs and Ulitsky and Shamir BPMs
to receive GO enrichment on about 35% of their pathways. Brady et al BPMs found 50.6%
of their pathways to be GO enriched. Of course, these statistics are not meant for a direct
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Table 2: Unique BPMs conserved when mapping both pathways in S. cerevisiae and com-
paring to both pathways in S. pombe. The results show the number of BPMs that are doubly
enriched (enriched on both pathways) and singly enriched (enriched on one pathway). The
final column shows the percentage of all the pathways in the BPMs that are found to be
enriched.

Table 3: GO enrichment statistics for BPMs identified in previous papers.
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comparison between the conserved BPMs and the set of BPMs generated by the original
papers. The numbers represent the GO enrichment statistics of the source BPMs used for
detection. From these sets of BPMs, we detected conservation on pathways with over 84%
GO enrichment.

Beyond GO enrichment, further validation of BPM conservation can be found by checking
the literature for conserved biological pathways. For example, pathway 2 of Brady BPM
1051 was found to map to pathway 1 of Roguev BPM 1 with a Jaccard index score of 0.1739.
Each pathway is GO enriched with very low p-values (< 1.9−5 for both) as a DNA damage
checkpoint. The enriched GO term is defined as: “A signal transduction pathway, induced
by DNA damage, that blocks cell cycle progression (in G1, G2 or metaphase) or slows the
rate at which S phase proceeds”[13]. Lab studies researching genes in this pathway have
found them to be conserved not only across S. cerevisiae and S. pombe, but all the way
across the mouse and human genomes as well[23, 24, 25]. Bluyssen et al [23] states that for
the function described in the GO enriched term, S. pombe requires six genes, rad1+, rad3+,
rad9+, rad17+, rad26+, and hus1+. Three of these genes –rad1+, rad17+, and rad26+–
are found in pathway 1 of Roguev BPM 1. Bluyssen et al also states that S. cerevisiae
requires the seven genes RAD9, RAD17, RAD24, DDC1, MEC1, MEC3, and RAD5 for the
same function. The five genes RAD9, RAD17, RAD24, DDC1, and RAD5 are all found in
pathway 2 of Brady BPM 1051. Furthermore, genes from these complexes contain orthologs
in mice and humans[23, 24, 25]. Just as in S. cerevisiae and S. pombe, three of these genes
have been found in humans to be central components of a DNA damage-response complex[25].
The ability of this study to detect conservation of BPMs found to be conserved all the way
across mouse and human indicates significant validation of our result.

7 Discussion

The purpose of this research was to develop a method to detect BPM pathway conservation
across S. cerevisiae and S. pombe yeast. Using the technique described here, we found
conservation of BPMs based on similarity scores when mapping gene orthologs from one
species to another. The method detected conservation in many pathways from S. cerevisiae
BPMs in the given datasets to BPMs found in S. pombe.

Checking the GO enrichment of BPMs gives us a method of validating the functional
coherence of pathways found to be conserved using our method. The fact that we are able to
pull out a higher percentage of GO enriched pathways than the BPM-identifying papers shows
the ability of this conservation detection method to identify functionally coherent pathways.
Examples such as the Brady 1051 and Roguev 1 BPM pathways being found in literature to
be conserved across mouse and human genomes further validate this claim.

Still, continued study of BPM conservation across S. cerevisiae and S. pombe is required.
As BPM detection algorithms are refined and new interaction data is produced, more accurate
BPMs can be identified. With this new data, we expect to see better conservation of BPMs
and higher similarity scores across species. Furthermore, extended coverage of E-MAP data
to additional species would provide the means to detect novel BPMs. This new dataset would
allow comparisons across more species and provide stronger evidence of BPM conservation.
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