Discovering and Searching Loosely Coupled
Subproblems in Dou Shou Qi

Joseph Burnett
May 27, 2010

Abstract

We present a technique for discovering, isolating and searching loosely coupled
subproblems in the game of Dou Shou Qi. Subproblem discovery utilizes a minimum
weight spanning tree to find clustering structure [10] in a complete graph of causality,
which captures the distance between pieces in terms of a lower-bound on time-to-
effect. A heuristic extends the duration of the split by isolating subproblems, effectively
trimming branches of the game tree which do not conform to the clustering structure.
Searching loosely coupled subproblems in Go has been explored by Berlekamp [2]. Basic
Dou Shou Qi strategy is outlined and used to develop a position evaluation function for
the minimax algorithm. Additionally an algorithm to update a minimum spanning tree
in O(n) time per off-line set of neighborhood updates is proposed, conditional upon
its being rooted in some simple transform of a Euclidean or Manhattan metric, and
upon a maximum edge weight change which is constantly upper-bound. The minimum
spanning tree updating algorithm, which uses simple data structures, improves on
the more general result of Frederickson’s O(+/|E|) time per update [5] by allowing
n — 1 neighborhood updates to occur in O(n) time on a complete graph, effectively in
constant time per update.

1 Introduction

In this thesis we are going to explore a method of breaking apart a board game into sub-
problems to allow the minimax algorithm to search a position more efficiently [7]. The space
in which we will explore this technique is the Chinese game of Dou Shou Qi (pronounced
doe show chee) which is popular among Chinese children and is similar to chess [1]. We will
first introduce the history, rules and strategy of Dou Shou Qi, and then propose a heuristic
position evaluation function. Then we will define our problem and establish the causality
space in which we will use a minimum spanning tree to discover subproblems. We will also
propose an algorithm to maintain a minimum spanning tree in linear time per ply, and a
heuristic to artificially maintain a partition, allowing deeper searching of the game tree. Af-
ter outlining the logistics of running a split search and the issues involved in implementation,
we will present the results of our testing and our analysis of the data.

1.1 Definitions

Graph A graph is a set of vertices (points) and edges (lines between points). An edge is
a relationship between two vertices and can have a numeric weight associated with it. Two
vertices connected by an edge are said to be adjacent to one another. All our graphs will
be simple graphs (zero or one edge per pair of vertices and exactly two distinct vertices per
edge) and undirected (edges go both ways). A complete graph has an edge for every pair of
vertices, where the edges number exactly §(n* —n) and n is the number of vertices in the
graph.

Minimum Spanning Tree A spanning tree is a graph in which there is a path between
every pair of vertices and there are no cycles (more than one path between two vertices). A
spanning tree of a graph, GG, will include all of its vertices and n—1 of its edges. A minimum
spanning tree is a spanning tree of a graph such that the sum of the minimum spanning tree
edge weights is less-than or equal-to the sum of the edge weights of any other spanning tree
of G. Minimum spanning trees are not always unique.

Game Tree A game tree is a map of every possible sequence of moves in a game, where
vertices are positions and edges are moves. The branching factor of the tree is the maximum
number of moves available at any position. Game trees are usually terminated at a prede-
termined depth because there are an exponential number of vertices, too many to extend
the tree to the end of the game. In fact, because the rules of Dou Shou Qi allow the players
to repeat their moves endlessly, the game tree is infinite. Positions at the leaves are called
terminal positions.

Depth First Search A depth first search is a search algorithm for a game tree which
explores the subtree below each move from a position until it reaches a terminal position.
Then it backtracks to the last position with unexplored moves, explores the next move, and
repeats until all positions have been searched.

Zero-Sum Game A zero-sum game is a closed system in which everything won by a
player is lost by another player[11, page 11]. Dou Shou Qi and chess are both zero-sum
games because only one player can win.

a9(b9(c9|d9|e9|f9|g9
a8|b8|c8|d8|e8|f8|g8
a7|b7|c7|d7|e7|£7|87
a6|b6|c6|d6|e6|f6|g0
ab|b5|c5|d5|e5|f5|g5
ad|bd|c4|dd|ed|f4|gd
a3|b3|c3|d3|e3|f3|g3
a2|b2|c2|d2|e2|f2|g2
al|bl|ci|dl|el|fl|gl

Figure 1: Algebraic notation for the Dou Shou Qi board. Columns are identified
by the letters a through f and rows identified by the numbers 1 through 9 with
square al in the lower-left corner of the board.

Minimax Algorithm Minimaz is an exponential search algorithm based on the Minimax
Principle of game theory. It considers every possible move from a given position to a
predetermined depth by running a depth first search on the game tree and scoring the
terminal nodes with an evaluation function. As Minimax searches, it alternately minimizes
and maximizes the best possible score at each ply (level of the tree) to find the continuation
(sequence of moves) which leads to the best possible terminal score.

Coupling Coupling is how two objects interact with each other. Tight coupling is when
there are a lot of dependencies between objects and loose coupling is when dependencies
are sparse. Loosely coupled subproblems are subsets of a game’s pieces that have little or
nothing to do with each other for some fixed period of time.

1.2 Conventions

Players A and B We will refer to the two players of Dou Shou Qi as players A and B.
Player A’s pieces are red and begin on the lower half of the board, while player B’s pieces
are black and begin on the upper half of the board. Player A makes the first move at the
beginning of the game and all of our examples are written such that A is the next player to
move.

Algebraic Notation We use the algebraic notation of chess to address the squares of the
Dou Shou Qi board. Figure 1 gives the address of each square. Columns are identified by
the letters a through £ and rows identified by the numbers 1 through 9 with square al in
the lower-left corner of the board.

The Editorial "We’ This thesis uses the editorial 'we’ because it conveys a sense that
the reader is along for the ride and is sharing ownership of the material. Hopefully this
document is accessible and entertaining enough to make this a reality.

2 Dou Shou Qi

The game of Dou Shou Qi is likely derived from Xiang Qi, the Chinese version of chess. It
has been suggested that the modern game of Stratego took some of its form from Dou Shou
Qi [1] and there are similarities between the two, such as the pivotal role of the spy and
the mouse in Stratego and Dou Shou Qi, respectively. The signature feature of the Statego
terrain, two central bodies of water, is also present on the Dou Shou Qi board. However,
in Dou Shou Qi all of the pieces are known, making it a game of complete knowledge,
unlike Stratego in which there is a large element of deception [3]. From a game theoretical
perspective, this makes the two games highly dissimilar.

For the purposes of this paper, the history of the game and its cultural content are of no
consequence. Dou Shou Qi was selected primarily because it is sufficiently complex to make
a polynomial-time algorithmic solution infeasible while remaining simple enough to provide
a rich environment for the development of a new heuristic. Unlike the game of chess, Dou
Shou Qi strategy and theory is relatively unexplored.

2.1 Rules of the Game

D | den T|D|T ®© T 0
\; traf T [4) T [
water

1 | mouse 0 6 e @
2 | cat WI|W W|W W|W WIW

3 | wolf W|W W|W W|W WIW

4 | dog WIW WIW WIW WIW

5 | hyena e © 60 o
6 tllger T 9 T e

7 | lion — — — —

8 | elephant I'|D|T 0 17T @
(a) The squares (b) The board (c) The initial setup
and pieces

Figure 2: The game of Dou Shou Qi. Pieces are labelled with their strength from
the mouse (1) to the elephant (8). The seven by nine Dou Shou Qi board has
two bodies of water (W) in the middle and two dens (D) at the top and bottom,
surrounded by traps (T). The initial setup is always the same with player A’s red
pieces in the bottom half and player B’s black pieces in the top half.

Dou Shou Qi is a two-player, zero-sum strategy game that looks like a cross between
chess, checkers and Stratego in which the players move vertically and horizontally. Pieces
are labelled with their strength from the mouse (1) to the elephant (8). The seven by nine
Dou Shou Qi board has two bodies of water (W) in the middle and two dens (D) at the

top and bottom, surrounded by traps (T). The initial setup is always the same with player
A’s red pieces in the bottom half and player B’s black pieces in the top half (see Figure 2).
The objective of the game is to place a piece in the opponent’s den which is surrounded
by traps. Each of the pieces represents a jungle animal and is numbered in a hierarchy
from 1 to 8 according to its relative strength. The pieces of the game are as follows: the
mouse (1), cat (2), wolf (3), dog (4), hyena (5), tiger (6), lion (7) and elephant (8). (On all
diagrams we will label the pieces by their strength for ease of reference.) Each animal can
take those pieces of equal or lesser strength with two exceptions: the elephant can take any
piece except the mouse, and the mouse can take the elephant.

While standing on an opponent’s trap a piece has an effective strength of zero and is
therefore vulnerable to capture by any opposing piece; however, a player’s own traps have
no adverse effects. Water squares can be occupied only by mice (1) which cannot attack
across the land-water boundary. The lion (7) and tiger (6) can jump vertically or horizontally
across the water (even capturing while doing so) but cannot jump over a square occupied
by any mouse. The den can only be occupied by an opposing piece at which point the game
is over.

2.2 Strategy and Position Evaluation

An analysis of the strategy of Dou Shou Qi is necessary to define an objective function
that can input a position and assign it a numerical value based on some set of strategic
considerations. Such a function is used to evaluate the terminal nodes of a minimax search.

The basics of Dou Shou Qi gameplay were learned by printing out the board on a 8.5 by
11 inch sheet of paper, labelling a set of eight pennies and eight nickels with the numbers 1
through 8, and hauling the whole arrangement to every coffee shop, dinner party and pub
that the author was invited to. That is to say, the strategy of Dou Shou Qi presented in
this thesis is just a starting point and does not benefit from a dedicated body of theoretical
research or even an expert player, so we will start with the more familiar game of chess and
assimilate the relevant elements of its strategy.

2.2.1 Chess Strategy

Czechoslovak Grandmaster, Ludek Pachman, defines six factors in his book Modern Chess
Strategy that can be used to evaluate a Chess position [12, page 2]:

1. The material relationship; that is, material equality or the material superiority of one
side.

2. The power of the individual pieces.

3. The quality of the individual pawns.

4. The position of the pawns; that is, the pawn structure.
5. The position of the kings.

6. Co-operation amongst the pieces and pawns.

Pachman’s first factor is directly applicable to Dou Shou Qi in which material superiority
is enough to tip the balance in favor of one player or another. This is partly due to the
fact that any piece may enter the opponent’s den and therefore even the smallest piece
can be important in maintaining the balance of power. Pachman’s second factor can be
incorporated into the first by considering the relative worth of each piece. In chess a rough
standard of material worth evaluates the pieces in terms of one pawn. A knight or bishop
is worth 3, a rook is worth 5, a queen is worth 9 and a king has infinite worth because he is
the objective of the game [12, page 11]. Likewise, we can place relative values on the pieces
of Dou Shou Qi and use those values to calculate the material relationship of a position.
The absolute value of such assignments does not matter; only the ratio between them is
important.

Dou Shou Qi does not have pawns (a piece which can move forward only, attacks along
a diagonal and requires the support of other pawns,) but it does have pieces whose quality
increase and decrease with position and material. The mouse (1) is the weakest piece and
cannot hold its own against the others. However, it is the only piece capable of swimming
in the water, blocking the jump of a tiger (6) or lion (7) and, most importantly, taking
an elephant (8). The importance of the mouse in counterbalancing the strength of the
elephant is acknowledged in their initial positions, directly across from each other. The most
important job of a mouse is to keep the elephant in check. For that reason, an elephant which
does not have an opposing mouse can be considered a piece of "higher" quality. Likewise, a
mouse without an opposing elephant is a piece of "lower" quality because it cannot fulfill its
primary role. Additionally, a mouse that has been "passed" or is further from its den than
an opposing elephant is severely degraded and therefore of lesser quality. In this small way,
Pachman’s third and fourth factors have a parallel consideration in Dou Shou Qi strategy.

The position of the kings (or dens,) is irrelevant because the game’s objective is in a fixed
position for both players. However, cooperation among the pieces is important. Consider
the vulnerability of the mouse, who must be accompanied or protected by a stronger piece
in order to pursue the elephant.

2.2.2 Dou Shou Qi Strategy

Through the adaptation of Pachman’s chess factors, we propose four factors with which
to evaluate a Dou Shou Qi position.

Material relationship is exactly as Pachman defined, the equality or superiority of one
side’s material or the other’s. Evaluation of material relationship is a simple matter of
assigning a value to each piece type and tallying the pieces of both sides.

Development of the pieces takes into account the time required to move a piece into
its strongest position. For example, a lion and tiger are often most effective when placed at
the edge of the water where they can leap across into enemy territory, and so a lion or tiger
at the base of the water is "more developed". Likewise, the mouse is often most effective in
the water where it can block jumping animals and is not vulnerable to attack by stronger
pieces. Development is the general notion that pieces have had time to get where they need
to go. It is also the sum of the development of each individual piece, therefore each piece

is a subproblem that can be evaluated independently and rapidly. (There are at most 62
possible places for a given piece to be.)

Quality of the elephant and mouse consists of observing whether each elephant has
an opposing mouse and which is closer to the mouse’s den. Mouse and elephant quality
involves tallying and measuring distance, also a trivial task.

Cooperation among the pieces is a measure of how the pieces support each other. It
is the most difficult factor to represent and evaluate because cooperation could involve any
combination of 8 pieces on any subset of the 62 squares. It requires a higher level of thinking
than the other factors because it takes into account the power structure of the board as well
as possible attacking and defending scenarios.

Limited aspects of cooperation can be encoded in the development factor by making
squares "highly developed" for certain pieces which, when occupied by those pieces, also
creates a supporting relationship. For example, from the starting position, moving the
elephant (8) from a3 to b3 and the cat (2) from b2 to a2 creates a supporting relationship
between the cat, which protects the elephant from the opposing mouse (1), and the elephant
which protects the cat from the lion (7) who could leap over the water. Therefore the square
b3 can be considered developed for an elephant and the square a2 developed for a cat.

In our position evaluation function, we will use the first two factors because they are the
most versatile and the easiest to represent:

1. Material relationship.

2. Development of the pieces.

2.3 Representing Dou Shou Qi Strategy

Representation of Dou Shou Qi material factors is easily accomplished by assigning a
positive, integer value to each type of piece. Development factors differ from piece-to-piece,
SO we can assign an integer value to each square for each type that can occupy it. A piece-
by-piece analysis of basic Dou Shou Qi strategy suggests reasonable values for each of the
tables, given in Figure 3.

2.3.1 Assigning Material and Development Values

Each piece has its own unique characteristics and roles to play in the game as a function
of its strength and initial position. Our classification of these pieces is based on observation
and experience playing the game and is therefore intuitive and heuristic in nature. We assign
pieces a material value on a scale from 200 to 1000 and squares a development value on a
scale from 0 to 50 (with the exception of the den which is valued at +o00.) The material
scale is higher because, in general, having pieces is more important than occupying squares.

By convention we assign the starting position of a piece the value of 10. Values generally
increase toward the opposing den because, in the absence of other considerations, moving
forward is a good thing. A game cannot be won without advancing some of a player’s pieces
across the board to the opposing den.

11|13|50{c0(50|13|13 11{15|50{c0(50(15|11
. 11|112|13(50(13|13|13 11{11|15|50({15(11|11
Piece | Value
10|111|11{13(13|13|13 10(11|11|15({11|11|10
Mouse-1 | 500

Cat—2 | 200 8199 |11|12{12|13 10{0|0(10{0 (0|8

Wolf-3 | 300 8199 (1112|12{12 10{0|0|8]0(0|8

Dog-4 | 400 81919 (10|12{12{11 10(0|0|8]0(0|8

Hly_ena*g ggg 8|8|s8]9]1o0[10[10] [10[10[10[8[8[8]8

iger—

Lion-7 | 900 8(8(8[9(9]|919 13|10/ 8 |8 |8 (8|8
Elephant-8 | 1000 8(8|8|0[8|8(8 8(8(8|0[8|8|8
(a) Material Values — (b) Mouse Values - (¢) Cat Values -
Material(t) Development(1, s) Development(2, s)
11{15(50|c0(50]|15(11 11|15(50|(50]|15(11 14|15|50{0c0|50(15|14
10{11(15|50(15(11|10 10|11{15|50|15{11|10 13|14|15|50|15{14|13
9 (10{11|15(11|10(9 9 (10|11|15(11|10|9 13|13|14|15|14{13|13
9/0(0(10{0|0|9 9(0|0(10{0|0|9 12|00 15/ 00|12
8/0({0|8[0|0|8 8(0|{0|8[0|0|8 11{0(0(14|/ 0|0 |11
8(0/0|8|0(0|8 8/0(0|8|0]0|8 1010|013/ 0| 0|10
8(8|10/8|8|8(8 8888|888 9191(9(10|10{919
812|138 |8 |88 8|88 |8]13{10(8 919191919919
812|112/ 0|8 |88 818(8|0]12{12|8 919191019919
(d) Wolf Values - (e) Dog Values - (fy Hyena Values -
Development(3, s) Development(4, s) Development(5, s)

25|30({50|c0[50(30(25| [25|30(50({00|50({30|25| |25(30|50(>0|50|30(25
25|25(30|50(30|25|25| |25|25(30|50|30{25|25| |25|25|30(50|30|25|25
18{20{20|30|20|20|18| |18|20|20|30|20|20|18| |18|20|20|30|20|20|18
15{0|0|15|/0| 0|15 |15{0|0|15/0|0 |15 16/0| 0|16/ 0|0 |16
15{0|0|15|/0| 0|15 |15{0|0|15/0|0 |15 14{0|0 (14| 0|0 |14
15/0|0|15|/0| 0|15 |15{0|0|15/0|0 |15 12/ 0|0 |12{ 0|0 |12
14|16/16|14|16|16|14| |14|16|16{14|16(16|14| |10(15|14|14(14|14|12
12(14|12|12|12{12|12| |12{12|12(12|{12|14|12 11|1111j11j11j11|11
10({12|12| 0 (12{12|10| |10{12|12| 0 |12|12{10| |11|11|{11|0 (11|11|11

(g) Tiger Values - (h) Lion Values - (i) Elephant Values —
Development(6, s) Development(7, s) Development(8, s)

Figure 3: Dou Shou Qi positional and development values. Each piece has a
material value from 200 to 1000 and each square for each piece has a development
value from 0 to 50 (and infinity for opponent’s den.)

The Mouse (1) The mouse’s primary job is to oppose the elephant. If player B’s elephant
were to try and circumvent player A’s mouse by using the center or opposite aisles', A’s
elephant would have plenty of time to intercept. Therefore the mouse should remain on its
initial side. Moving into the water is a good development because it protects the mouse
from the attack of stronger pieces and allows it to block the jumping lion and tiger. We
assign the mouse a material value of 500 and the squares g3, £3 and e3 a development value
of 10 because movement along the bottom of the water is strategically neutral. The squares
on the right side of the board are more highly valued to encourage the mouse to stay on
that side. All of the water squares on the right side are slightly elevated at a value of 12 to
encourage the mouse to seek safety in the water.

The Cat (2) The cat is a relatively weak piece but its placement opposite the mouse
provides it with a valuable supporting role. We assign it a material value of 200 and the
square a2 a value of 13 to encourage the cat to move into a supporting position for the
elephant (which will highly value the square b3.) Most of the other squares around the cat
are valued at 10 because they are strategically neutral.

The Wolf (3) Because of the defensive nature of the cat, the wolf is unlikely to be a
pivotal defender because the only pieces it can master, the mouse and the cat, will remain
on their own side. The wolf is also not a useful aggressor because of its relative weakness.
However, because an opposing piece must pass through a trap to enter the den, the wolf
can play a guarding role by occupying square c2 which is adjacent to two traps. The wolf
is assigned a material value of 300 and the square c2 a development value of 13. The four
squares of b2, c2, bl and c1 are elevated to encourage the wolf to move away from the
water, allowing the elephant and tiger to maneuver.

The Dog (4) The dog, like the wolf, is not a strong enough piece to play a central role
as an aggressor. It is best utilized as a guard for the two traps adjacent to square e2. If a
piece is to be moved up the center aisle, the hyena is the logical choice because it is as close
as the dog and is the stronger piece. The dog is valued at 400 and it is kept out the way by
elevated values at squares e2, £2, el and f1.

The Hyena (5) The hyena is the best piece to use in the center aisle because it can stop
the advance of any piece except the lion and tiger, who are more likely to be jumping over
the water, or the elephant, who is more likely to be lumbering up the side. A developed
hyena is usually centered at square d3 or moving forward along the center aisle. The hyena
is assigned a material value of 500 and the center aisle squares are increasing rapidly in
value as they move toward the opposing den.

The Tiger (6) Because of its jumping capabilities, the tiger is an excellent offensive piece.
Positioned at the base of the water, it can be on the opposing side in one move. In the
center aisle it can block the advance of any lesser piece through all three aisles. When on
the enemy’s side, a tiger can leap back across the water to safety, provided there is not a
mouse blocking its path, and can be used to exert pressure on the enemy position without
committing to the slow and long-lasting movements of the elephant. For these reasons,
positions along side the water are considered developed and positions on the enemy’s side

Lthe narrow passages between the water (squares a4, a5, a6, d4, d5, d6, g4, g5 and g6)

are highly valued. The tiger is assigned a material value of 800 and the base of the water
(squares b2, c3, e3 and £3) is valued at 16. All squares across the water are at least 20.

The Lion (7) The lion has all the benefits of a tiger with the added capability of forcing
a tiger from the middle aisle or its own territory. The lion is an excellent piece to have
across the water and is most valuable in assaulting the opposing den, so its development is
similar to the tiger’s. It is assigned a material value of 900 and, like the tiger, the squares
at the base of the water are valued at 16 and the far side of the water at least 20.

The Elephant (8) Significant development of the elephant can only occur when its oppos-
ing mouse is either taken or by-passed. For that reason, the elephant’s initial development
is to assume a defensive posture against an aggressing lion at square b3. However, once its
opposing mouse has been neutralized, the elephant can move forward into enemy territory to
cause massive disruption that can only be stopped by the opposing elephant. An elephant is
valued at 1000 and the square b3 assigned a development value of 15. The aisles are rapidly
increasing in value and the squares past the water on the opponent’s side are valued at least
18.

3 Minimax

Minimax is a versatile algorithm for computing a sequence of moves, called a principal
continuation, which will lead to the least amount of regret[7]. It is based on the minimax
principle which is the first and most important proof of Game Theory, first given in John
von Neumann and Oskar Morgenstern’s seminal work, Theory of Games and Economic Be-
havior[16]. An understanding of basic game theory is necessary to appreciate the theoretical
underpinnings of the minimax algorithm.

3.1 The Minimax Principle of Game Theory

Game theory is not a field that concerns itself with the play of a particular game but
rather with all games[13]. Consider the game of "Matching Pennies" in which two players
secretly place a penny on the table, either head’s up or tail’s up, and then simultaneously
reveal their choice to their opponent. Player A will win the game if the pennies match sides,
while player B will win if they do not. Since the game is two-player and zero-sum, the
pay-off structure can be stated in terms of benefit to player A.

Figure 4 (a) shows the pay-off structure for player A and B as a two-by-two matrix in
which each strategy provides the opportunity to either win or lose 1, depending on what
strategy their opponent chooses. Each player will rationally know that their opponent will
select the strategy with the best pay-off and will choose the best strategy to counter. There
can be pairs of strategies that will minimize the damage for both parties which are called
saddle points. At such points both players can minimize their maximum loss, thus the name
of the minimax principle. Figure 4 (b) shows a slightly modified pay-off structure which
creates a saddle point when player A chooses the tails strategy and player B chooses the
heads strategy.

10

Anatol Rapoport explains the meaning of the minimax principle in terms of saddle
points[13, page 60]:

If a two-person zero-sum game has a saddle point, the best each player can
do (assuming both to be rational) is to choose the strategy which contains a
saddle point.

| A A | A A

By, 1 -1 By, -2 -1

B | -1 1 B | -1 4

(a) Penny (b) Pay-off

game pay-off structure with

structure saddle point at
A, Bp,

Figure 4: The game of matching pennies. Figure (b) has a saddle point when
player A chooses the tails strategy and player B chooses the heads strategy.

Matching pennies is an example of game with imperfect information because each player
is unaware of the move their opponent has selected until both have committed to their
respective moves. A game of perfect information is one in which both players know the
exact state of the game at any point. Chess and Dou Shou Qi are both games of perfect
information because the players take turns and can see all the pieces. Games of perfect
information also have saddle points which remain the best pair of strategies for both players
[13, page 62]. Each strategy contains all of the moves that will be made in the face of every
move of the opponent [13, page 44] so for a game such as chess or Dou Shou Qi, the number
of strategies is exponential in the number of plies until the game is ended. As long as there
are a finite number of plies in the game, the number of strategies is also finite, but they are
just too many to compute. If there are only two moves available at each ply and a game
lasts 50 plies, the number of strategies for each player is more than the number of atoms in
the earth, an unmanageable amount of information.

3.2 The Minimax Algorithm

The minimax algorithm stops the play at a certain depth (number of plies) and creates
an artificial pay-off structure through a position evaluation function. Winning the game is
still paramount so we assign a win for A the value of +00 and a win for B the value of —co
so that our evaluation function can spit out whatever numbers it wants and winning will
still be the best pay-off.

The following is the pseudocode for the minimax algorithm [17][7]:

11

MINIMAX (position, depth)

1 if game is over or depth =0

2 do return EVALUATE(position)

3 a4+ —©

4 for each mowve € position

5 do p’ + MAKE-MOVE(position, move)

6 a < mazx(a, —MINIMAX(p', depth — 1))
7 return a

Minimax is a depth first search of the game tree which alternately selects the maximum
and minimum scores attainable at each ply. The result is a principal continuation that
minimizes the maximum loss (or regret) over the depth searched. The time complexity is
O(b™) where n is the search depth and b is the maximum branching factor of the game tree,
but the space complexity is O(n) because it doesn’t need to retain all the information about
each branch. Figure 5 shows an example of a minimax search.

(co+) p1 doag

)
—
L
10
—
2
[
=
wn

Figure 5: An example of a minimax search. Depth-first searching begins at the root
and moves down along the left-most edges, representing individual moves from each
position. Scores are backed up from the terminal nodes, alternately maximizing
and minimizing at each level.

The minimax search shown in Figure 5 demonstrates how the algorithm performs a depth-
first search, beginning at the root and moving down along the left-most edges. Terminal

12

nodes are scored using the function from Section 3.3 and backed up the tree, alternately
maximizing and minimizing the gains for player A at each level. At step 11 which moves
upward from a terminal node, the minimal value of —19 was retained over —17, an event
which did not occur at step 5 which replaced the previous value of 8 with the smaller value
of —96. After the completion of the search, the move a4-a5 will be selected because it
is the continuation that leads to the maximum score, —18. A search for player B’s best
move would alternately minimize and maximize from the root instead of maximizing and
minimizing.

If the search depth were increased beyond two plies, the continuation through a4-ab
would likely return a much lower score because B’s mouse at a7 can advance downward,
forcing A’s elephant at ab to retreat. A search depth of two was not sufficient to foresee this
situation and demonstrates the advantage provided by deeper searching of the game tree.

3.3 An Evaluation Function for Dou Shou Qi Positions

W|W W|W
W|W W|W
W|W W|W

TID|T

Figure 6: The OppositeSquare function which rotates the board. Piece b is at at
OppositeSquare[a).

At the heart of the minimax algorithm is the position evaluation function. Because Dou
Shou Qi is zero-sum, we can represent the position in terms of benefit to player A. The same
set of values can be used for both players by rotating and negating the development tables
when we consider player B’s pieces.

In practice, the use of both positional and development values is redundant because the
development tables are specific for each piece. The material values could be added to all the
entries in their respective development tables, and the material table done away with. We
retain the material table for clarity only. The composite set of factors is C[t, s] for a piece
of type t at square s.

Clt,s] = Material[t] + Development]t, s]

13

Evaluation of a position sums the composite factors for all pieces belonging to player A,
{aj...a;} where [is the number of pieces that player A has on the board, and subtracts
the sum of the composite factors for all pieces belonging to B, {by...b,,} where m is the
number of pieces that player B has on the board. Player B’s summation uses the func-
tion OppositeSquare to "rotate" the board so we can use one set of development values.
OppositeSquare returns the square on which the piece would be if it belonged to A instead
of B (as seen in Figure 6.)

ap bm
Evaluate[position] = Z C[Typela], Square|a]] — Z C[Typel|b], OppositeSquare[b]]
ai b1

4 Split Searching

Our technique to discover, isolate and search subproblems takes advantage of Dou Shou
Qi’s naturally occurring subproblems which are loosely coupled and derive from the relatively
slow piece movement of the game. Unlike chess, in which a bishop or a rook can traverse
the length of the board in one move, Dou Shou Qi animals must move only one square at a
time. Even the lion and tiger move slowly when they are not leaping over the water.

Using a function which establishes a lower-bound on time-to-effect between two given
pieces, we will do subproblem discovery in a complete graph with a clustering algorithm. A
minimum spanning tree can perform clustering and also provide a gauge to determine how
far apart two clusters are. The largest edge in the minimum spanning tree can be used as
a threshold to detect when natural subproblems are likely to be present. Clusters can then
be isolated and searched independently.

4.1 Faster Searching

When a minimax search is conducted using limited time resources, split searching can see
further ahead, an advantage which could lead to stronger game play. Because splitting the
board into two separate minimax searches reduces the base of the exponent, it reduces the
work required to search to a given level in the game tree.

The number of nodes in a game tree with branching factor, b, and depth, d, is expressed
as follows:
bitt —1
b—1
Splitting a position produces two game trees to be searched to a new depth of d’ with
branching factors of b; and by. If the split places an equal number of pieces in each half,

the game trees for both halves will be the same size and by = by = b/2. The total search
space can be expressed as:

S (@2t -1
(b/2) 1

14

If both split and non-split searches are given the same amount of time, the size of the
trees they can search will be the same. (We can drop the —1 in the numerator because b?
is assumed to be large enough that it doesn’t matter.)

) [(b/?)d/+1‘| _ pa+1
(b/?) -1 b—1

In the game tree b is approximately 32, the number of pieces (8) times the number of
moves for each piece (4). When searching a game tree, deeper is always better, and the
depth of a split search should increase over a non-split search by approximately 25%.

) (32/2)4+t)d+ o (32)d!
(32/2) -1 32-1
lo 2(16)4+1) = 1o (&£(32)7+1)
916 15 (916 (31
logis () +d' +1 = logie (35) +d+ 1+ logis (2*1)
d = d+ % +C

(C is a small .198 ply penalty for splitting, but it is a constant factor.)

Alternately, we can consider the time required to search to a given depth. Setting d’ = d,
we evaluate the ratio of split search time to global search time as a function of depth. (We
begin with the expressions from step 2 of the previous calculation.)

t 2 (32)d+1
B @ (16)d+1
- 15 (16)d+1(2)d+1
62 1
15 (2)d+1

4.2 Limitations

If no subproblems naturally exist, then the board is not split and searching remains global.
If a split is forced on a position along lines which do not represent natural subproblems,
the resulting split search could be suboptimal because the pieces across subproblems cannot
interact. The splitting threshold is a key factor for the success of this technique.

5 Subproblems

In this section we define the space in which we conduct subproblem discovery. Our
function is based on the physics concept of causality and captures time-to-effect between

15

every pair of pieces in a position. To establish a causality function, we define a Dou Shou
Qi effect cone and several operations for them.

Definition 5.1 A Dou Shou Qi subproblem is one of two disjoint subsets, S1 or Sa, which
result when the pieces of a Dou Shou Qi board position are split such that S1 will not affect
So for a minimum time, the splitting threshold, and vice versa.

We have left the length of time during which S; and S; should remain separate an un-
defined function because it is a property of the game itself and will be discovered through
gameplay. We could declare the splitting threshold to be only one move and create half
a dozen subproblems, none of which are likely to correspond with a naturally occurring
subproblem. Such a partition would be unlikely to lead to success because the pieces of
the subproblems could not work together. Alternately we could define the splitting thresh-
old to be the entire course of the game which will surely yield zero subproblems because,
given enough time, every piece can affect every other piece (which is what makes the game
interesting.)

5.1 Natural Subproblems

There are several factors which contribute to the natural development of subproblems.
Pieces move one square at a time with the exception of the tiger and lion who are limited
to a fixed distance. Interaction only occurs at close proximity so, as the pieces spread out,
they tend to affect each other less. The two dens are the twin objectives toward which the
pieces gravitate, and the nuclei for clusters which can become subproblems. In addition
to the divided objectives, the water provides three separate avenues of approach (or aisles)
down which the non-jumping and non-swimming pieces can move. This allows assaulting
forces to circumvent each other rather than meeting in the middle, further contributing to
the clustering effect of the dens.

5.2 Examples

Figure 7 shows examples of several subproblems a human might identify. The first example
position contains three subproblems, two of which will result in the end of the game. One
is in the upper-right corner of the board with player A’s mouse (1) and hyena (5) against
player B’s tiger (6), next to player B’s den. The second subproblem is in the lower-right
corner and contains player B’s elephant (8) and lion (7) against player A’s dog (4), next to
player A’s den. The third subproblem is in the lower-left corner with player A’s mouse (1)
against player B’s elephant (8), next to player A’s den. The second example position is near
the beginning of a game when there are subproblems to be resolved between the mice and
the elephants. The mice have advanced to within two squares of the elephants.

6 Causality

By Definition 5.1 we are concerned about the time during which two subsets will remain
separate rather than their physical distance. For that reason, we use the concept of causality
as defined in physics, which states that, because nothing can travel faster than the speed
of light, bodies that are separated by a distance cannot affect each other in less than the
time it would take their light to travel between them. Effects of one body on another are

16

9 T|ID|T|@ o@ T DT @

s @ |10 s @ 1| O

0 0 7 ® 6 6

6 WIW WIW 6 WIW WIW

5 |WIW| |[WW 5@wW Wl |(Wwie

4 W|W WIW 4 W{W WIiW

5 O (8) 20 O 6

2 000 2| @ |1 @

1 T|D|T 1@ |T|(DITH @
a b cde f 8 a b cde f &

(a) A position with three subprob- (b) A position with two subprob-

lems {d7 e8 £9}, {b3 c2}, {e2 £2 lems {al a3 ab b2 c3}, {e7 £8 gb

£3}, and two extraneous pieces at g7 g9}, and extraneous pieces at

b7 and b8 a9 b8 c7 e3 £2 and g1

Figure 7: Some example positions with subproblems. Blue squares outline the
subproblems that a human might identify.

all the physical forces, electromagnetic, strong nuclear, weak nuclear and gravitational. The
concept of causality can be visualized as a "light cone" in which space occupies a hyperplane
along two axes and time a third. A light cone is projected to show the space-time in which
a body can exert its effects, as seen in Figure 8 (a). A body at the origin can only affect
bodies within its effect cone, which expands as it is projected upward.

6.1 Dou Shou Qi Effects

To adapt the principle of causality to the game of Dou Shou Qi, we define the effects that
one piece may have on another. An effect is defined as follows:

Definition 6.1 One piece, u, affects another, v, when it prevents v from making a move it
would have been able to in the absence of u. Generally these include up, down, left, right
and a non-move (or pass.)

Definition 6.2 u can affect v by:
1. taking v
2. blocking v by preventing a move without taking
3. forcing v to move or not to move
Skipping a turn is not allowed in the rules of Dou Shou Qi, but we are thinking about

individual pieces, some of which will not be selected to move. To allow some pieces to stay
in the same place, we allow individual pieces the use of a non-move.

17

time .
time

7
space
(a) A physics light cone with space as (b) A discrete Dou Shou Qi ef-
a hypersurface on two axes. A body at fect cone for a cat from its start-
the origin can affect only those bodies ing position. Animals that jump
that fall within the cone. or swim will have different effect
cones.
time
time
‘/ 7 A
(c) A discrete Dou Shou Qi effect (d) A discrete Dou Shou Qi effect
cone for a tiger from its starting cone for a mouse from its start-
position. ing position.

Figure 8: The concept of a light cone extended to Dou Shou Qi. A body at the
origin can only affect bodies within its effect cone, which expands as it is projected
upward.

18

During subproblem discovery, we are concerned with only effects 1 and 2 which involve
two pieces interacting directly. Effect 3 is more subtle and occurs across subproblems, which
we will handle by relaxing the rules of the game during searching and allowing a non-move
(or a pass) from any position. This accounts for the fact that not every subproblem will
receive a move during actual game play (in fact, only one can) and allows us to search each
subproblem for a move and a non-move score.

6.2 Dou Shou Qi Space and Movement

The space in which we discover subproblems is Dou Shou Qi space and is the board on
which the game is played. Dou Shou Qi space consists of 63 discrete squares as shown in
Figure 9.

W (W WIW
W (W WIW
W|W WIW

TID|T

Figure 9: Dou Shou Qi Space which is the Dou Shou Qi gameboard.

Movement in Dou Shou Qi space is dependent on piece type. The mouse is able to swim,
the lion and tiger can jump, and the rest of the pieces move around the water. We represent
the three movement types by three undirected graphs, G, G; and G, for swimming, jumping
and normal moving respectively, in which vertices represent all reachable squares and edges
connect, vertices that are one move apart, shown in Figure 10. The length of the shortest
path between pieces, d[u,v], can vary as seen in Figure 11 in which piece u is a different
distance from piece v depending on piece u’s movement type.

6.3 Dou Shou Qi Effect Cones

Definition 6.3 A Dou Shou Qi effect cone is a discrete, three-dimensional projection of
every location a piece can occupy in Dou Shou Qi space-time.

Effects 1 and 2 in Dou Shou Qi space require adjacency, so effect cones will follow piece
movement. We begin our analysis of Dou Shou Qi causality with the free-body assumption,
which allows a piece to move at every turn and behave as though it were the only piece on
the board.

Definition 6.4 A Dou Shou Qi free-body piece can move at every ply according to the
movement graph for its piece type and behaves as though it were the only piece on the board.

19

#[D[# 3 [D[# 3 [D[#
¢ [Wiwlewlwle Gt
¢ [wiw|e|w[w]e¢ e e
¢ (Wiw|e[wlwle [uD Girai GE OTY Gy

s|D|# s |D|# s |D|®

(a) Gn (b) G, (c) Gs

Figure 10: Movement graphs in Dou Shou Qi space. G,, defines the movement for
normal pieces which must move around the water. G; defines the movement for
jumping pieces which leap over the water. G defines the movement for swimming
pieces which move through the water.

Fay
i aEas:

Dl oD@ o D| e

(a) d(u,v) =3 for G; (b) d{u,v) =5 for Gs (¢) d(u,v) =7 for Gn

Figure 11: Different types of pieces yield different distances. Piece w is a different
distance from piece v depending on piece u’s movement type.

A free-body effect cone is the projection of every square that free-body can occupy and
is the starting point for our analysis of the effects one piece can have on another over time.
We will define several functions to transform free-body effect cones into other effect cones
that follow the rules of Dou Shou Qi.

An effect cone starts at the vertex representing the current location of the free-body.
With each discrete time unit (one ply) all vertices adjacent to the cone are added to the
cone. The projection of an effect cone can generate a counter-intuitive shape because of the
underlying movement graph. For example, the cat effect cone in Figure 8 (b) wraps around

20

the water and the den, which it cannot enter. The tiger effect cone in Figure 8 (c¢) jumps
across the water and encompasses the square b7 at t = 4, seemingly in the middle of the
air. Nevertheless, free-body effect cones accurately capture the set of Dou Shou Qi squares
which can be occupied over time.

Effect cones can be represented by a 7-by-9 matrix (representing Dou Shou Qi space) in
which each entry is the height of the effect cone’s surface over that square. Once a square
has been added to the cone, it never leaves, so the point in space-time where that square is
added is the only information that needs to be recorded.

6.4 FEffect Cone Functions

Our objective is to build a function to capture minimum time-to-effect between pieces
in a given Dou Shou Qi position. We will use several sub-functions that operate on effect
cones.

6.4.1 Function A()

A free-body effect cone assumes that a Dou Shou Qi body is free to move at every turn,
but the rules of Dou Shou Qi allow a player to move only every other ply. We define a
function, A(U), which takes a free-body effect cone, U, for a piece belonging to player A
and returns an effect cone that moves only at odd plies.

Definition 6.5
(A(U))” = max((), 2. ul-j —].)

Each matrix element is multiplied by two and reduced by one because all odd ply moves
belong to Player A. We are projecting effect cones only into the future, so we force every
element to be non-negative. A() of a cat’s effect cone at square £8 is as follows:

[6 5 4 oo 2 1 27 [11 9 7 oo 3 1 3]
5 4 3 2 1 0 1 9 7 5 3 1 0 1
6 5 4 3 2 1 2 1 9 7 5 3 1 3
7 o0 oo 4 oo oo 3 13 oo oo 7 oo oo 5
A 8 oo oo 5 oo oo 4 = 15 0o 0o 9 oo oo 7T
9 oo oo 6 o o0 H 17 oo oo 11 oo oo 9
10 9 8 7 8 7 6 19 17 15 13 15 13 11
1 10 9 8 9 8 7 21 19 17 15 17 15 13
| 12 11 10 9 10 9 8 | | 23 21 19 17 19 17 15 |

6.4.2 Function B()

We define B() which translates a free-body effect cone for a player B piece into an effect
cone which also follows the rules of Dou Shou Qi.

Definition 6.6
(BU))ij = 2wy

21

Each element is multiplied by two because player B can move only at even plies. B() of
a tiger’s effect cone from square al is as follows:

(7 6 7 8 9 10 10] [14 12 14 16 18 20 20]
6 5 6 7 8 9 9 12 10 12 14 16 18 18
5 4 5 6 7 8 8 10 8 10 12 14 16 16
5 oo 0o 6 o0 oo 7 10 0o o0 12 oo oo 14
B 4 oo oo H oo oo 6 = 8 oo oo 10 oo oo 12
3 oo o 4 o oo H 6 oo oo 8 o0 oo 10
2 3 4 5 6 7 6 4 6 8 10 12 14 12
1 2 3 4 5 6 7 2 4 6 8 10 12 14
L0 1 2 oo 6 7 8 | | 0 2 4 oo 12 14 16 |

6.4.3 Maxima of Effect Cones

Given two pieces, u and v, which belong to players A and B respectively, we can find
the minimum time required for them both to reach a given square. First, we project their
free-body effect cones, U and V', and calculate A(U) and B(V). By comparing the same
elements in their respective effect cones, we can discover who will arrive last, which must
be the minimum time required for both pieces to occupy the same square. The function
Max(U, V) applies max() between each element of two effect cones.

Definition 6.7
(Mazx(U,V))i; = maz(uij, vij)

The minimum time required for a player A’s cat at £8 and player B’s tiger at al to reach
any given square is as follows:

14 12 14 oo 18 20 20]
12 10 12 14 16 18 18
11 9 10 12 14 16 16
13 0o o0 12 oo o 14
Max(A(U),B(V)) = 15 00 oo 10 oo oo 12
17 o0 oo 11 oo oo 10
19 17 15 13 15 14 12
21 19 17 15 17 15 14
23 21 19 oo 19 17 16

Notice that the element representing square b7 is the smallest element in the matrix. This
is the first square that both pieces could occupy.

6.4.4 Minimum Height of an Effect Cone

The function MinHeight() reports the minimum element of the matrix representing an
effect cone. MinHeight of the previous result would return a value of 9.

22

7 A Causality Function

Given two free-body effect cones, we can apply a series of functions to determine the
minimum time before two pieces can reach the same square. Because effects occur with
adjacency, we are looking for what happens just before that point, so we subtract one ply
from the result. When two pieces are on the same side, it takes twice as long for them to
reach a given square because they must wait for the other player to move.

We define a piecewise causality function that takes two pieces and determines their min-
imum time-to-effect.

Definition 7.1

MinHeight(Max(A(U), B(V) ifue AandveB
MinHeight(Max(B(U), A(V) ifueBandve A
2- MinHeight(Max(A(U), A()) 1 ifueAandved
2- MinHeight(Max(B({U), B(V)))—-1 ifueBandveB

Tu,v] =

7.1 A Complete Casuality Graph

With our causality function for Dou Shou Qi space, T[u,v], we can analyze a complete
Dou Shou Qi position and have some sense of the distance between each pair of pieces in
terms of minimum time-to-effect. The next part of this thesis will be the proposal of an
algorithm to discover loosely coupled subproblems in Dou Shou Qi causality space. The
problem is best phrased as a graph problem so we translate a position and its occupying
pieces into a complete graph.

Definition 7.2 Let G be a complete, undirected graph with vertices V' for each piece in a
Dou Shou Qi position and edges E with weight T[u,v] for each u,v € V,u # v.

8 Finding Subproblems

We defined a Dou Shou Qi subproblem in terms of disjoint subsets pieces which would
remain separate for a minimum time, the splitting threshold. We adapt that definition to be
a graph problem whose solution we will either accept or reject based on whether is crosses
the threshold. Given the undirected, complete graph G with vertices V and edges F, we
want to find a partition of V' into disjoint subsets S; and S such that the minimum edge
between S; and Sy is maximized. The minimum edge between S; and Ss is the greatest
length of time we are guaranteed that the two subsets will not affect each other and is the
variable we are trying to maximize, called T},4,. The magnitude of T},,, must cross the
splitting threshold at which point we expect to find subproblems.

8.1 Using Minimum Spanning Trees

Our clustering problem can be solved by computing a minimum spanning tree of Gp
and retrieving S7 and Sy by traversing the two subtrees attached to the largest edge. The
use of minimum spanning trees to identify clustering structure in Euclidean space has been
previously proposed by Florina et al[10]. Our algorithm will partition the graph into only
two subsets, but additional partitioning could be done recursively to find more subproblems.

23

8.1.1 Using Kruskal’s minimum spanning tree Algorithm

To prove that finding an minimum spanning tree tree of G provides the correct solution
to our partitioning problem, we will define a slightly modified version of Kruskal’s minimum
spanning tree algorithm which runs until there are two sets remaining, S; and Ss.

Kruskal’s minimum spanning tree algorithm is a greedy algorithm that makes every vertex
into a set and then works its way through the edges in order from smallest to largest. Each
time it encounters an edge that connects two vertices not in the same set, it unions the sets
and adds the edge to the minimum spanning tree. This continues until only one set remains
and the minimum spanning tree is completely known [15, page 569].

MST-PARTITION(G, w)

for each vertex v € VI[G]

do MAKE-SET(v)
setcount «+ |V|
tmaz < 0
sort the edges of E into nondecreasing order by weight w
for each edge (u,v) € E, taken in nondecreasing order by weight

do if FIND-SET(u) # FIND-SET(v)

then tmaz < w
if setcount > 2
then UNION(u,v)
setcount < setcount — 1

12 else return S, Sy, tmax

© 00 O Ui W N

— =
- O

8.1.2 Proof of MST-Partition

The proof of the correctness of MST-Partition is done by contradiction. Tpess is defined
as the maximum attainable value of T}, for a given position.

Proof 8.1 Suppose there exists an ideal partitioning of V into two non-empty, disjoint sets,
S1 and Sy, that yields Tyesi. It is true that every set is a subset of either Sy or Ss which
is the invariant of the algorithm. Initially the invariant is trivially true because every set
consists of one vertex and every vertex must be in either S1 or So. Between every pair of sets
there exists a limiting edge such that every other edge between the two sets is greater-than
or equal. As long as there are more than two sets remaining, choose the smallest limiting
edge, emin, and union the two sets it connects, U and V. U UV must be a subset of either
S1 or So. If it was part of both, the weight of €pin would be Tyes since every other limiting
edge is greater-than-or-equal to e,;,. However, we could have attained a higher value of
Thest by unioning U and V' as S| and unioning the remaining sets as S4. The limiting edge
between S| and S} would then be greater-than-or-equal to ey, so we could have had a larger
value of Tpest, which is impossible by definition. (At the very least, we could have had an
equivalent partitioning.) So by contradiction, U UV must be either a subset of either Sy or
Ss, not both.

8.1.3 Any Minimum Spanning Tree Algorithm Will Do

Our algorithm optimally partitions the graph by finding an minimum spanning tree, which
we could have computed using any minimum spanning tree algorithm. The configuration

24

of a Dou Shou Qi board changes very little from ply to ply so we don’t need to recompute
an minimum spanning tree each time we move a piece. Section 8.2 proposes an algorithm
to update an minimum spanning tree in O(n) time which is a significant time savings over
the O(n?) time required to compute.

8.2 Maintaining an Minimum Spanning Tree in O(n) Time

Updating a minimum spanning tree is a difficult problem that is sensitive to the density
of the graph, and in our complete causality graph, |E| = ©(n?). Previously researched algo-
rithms allow for adding edges, removing edges and making arbitrary edge weight changes in
O(|E|) per update using a simple DRD? tree[14] or O(\/|f|) per update using more complex
dynamic data structures[5]. Our algorithm operates under a special set of constraints that
allow it to make n — 1 off-line updates in O(n) time, an improvement over the more general
case.

8.2.1 Special Constraints

Our problem places five special constraints on the location, number and magnitude of
edge update operations.

1. We are performing exactly n — 1 off-line® updates.
2. All updates are neighborhood* updates.
3. Weights change by exactly +1 or 0.

4. The maximum degree of an minimum spanning tree vertex is upper bounded by a
constant factor.

5. Equal edge weights are upper bounded by a linear factor.

1. n—1 offline updates We have defined a complete graph and every vertex is attached
to exactly n—1 other vertices. When a piece is moved, the distance from that piece to every
other piece changes and requires the respective edges to be updated. The rest of the edges
remain unchanged.

2. Neighborhood updates Because we are moving one piece, only the edges attached
to the vertex representing that piece will change. Since they all share a common vertex, we
can perform our updates on just the neighborhood of that vertex.

3. Weights change by exactly 1 or 0 Our causality function calculates the distance
in time between two pieces in Dou Shou Qi space. When moving a piece, one unit of time
expires and therefore the distance could not have changed by more than 1. All edge weights
are integer values, therefore all edge updates must be plus/minus 1 or 0. Some pieces can
jump the water and cover four squares, but that is taken into account in the movement
graph such that a single jumping move is given a weight of 1.

2doubly-linked reversed dynamic tree
3the minimum spanning tree is returned only after all updates have been completed
4edges are attached to a common vertex

25

4. Maximum degree upper bounded To show that the maximum degree of an mini-
mum spanning tree vertex in Dou Shou Qi causality space is upper bounded we will begin
with Euclidean metric-space in which the maximum degree of an minimum spanning tree
vertex is 6.

(a) A Euclidean minimum
spanning tree vertex of de-
gree 6. The blue triangle is
equidistant and equiangu-
lar.

(b) A Manhattan mini-
mum spanning tree ver-
tex of degree 8. The blue
triangle is equidistant and
the dotted line represents
all points equidistant from
the center vertex (a circle.)

(c) A causality minimum
spanning tree vertex of de-
gree 16. The blue trian-
gle could be equidistant.
Note: causality space can-
not be drawn to scale on a
plane.

Figure 12: Vertices of maximal degree. The maximum degree of an minimum
spanning tree vertex depends on the metric which is used to calculate its edge
weights.

Proof 8.2 Given a complete graph G in Euclidean plane with vertices V and edges E,
consider any three vertices € V and the three edges that connect them. The minimum
spanning tree of G cannot contain the largest of the three edges. If it did, one of the other
two smaller edges could have been used to obtain a lighter minimum spanning tree which is
impossible by definition. If the two smaller edges are part of the minimum spanning tree
then the angle between them cannot be less than 60 degrees or they would not be the smaller
edges. If a vertex in the minimum spanning tree is of mazimal degree then it cannot have
more than 6 adjacent edges or some of the angles between them will be less than 60 degrees.
Therefore the mazimum degree of an minimum spanning tree in Euclidean space is 6.

To extend this proof to our causality function, we need another metric as a stepping stone.
In accordance with the rules of the game, Dou Shou Qi pieces can move only vertically and
horizontally, making the Manhattan metric, in which movement is limited to one axis at
a time, the most natural metric to describe the distance between two pieces. We define
the Manhattan metric M[u,v] where u and v are two pieces with coordinates (z1,y;) and
(22, y2) respectively as follows:

M(z1,91), (T2,92)] = |z2 — 21| + [y2 — 91

26

The limiting factor of the maximum minimum spanning tree vertex degree in Proof 7.3
is the angle at which the opposite side can no longer be the largest edge. Extending the
proof to a Manhattan metric, we find that the maximum degree for a vertex in a Manhattan
minimum spanning tree is 8. In a Manhattan metric-space an equidistant triangle is not
necessarily equiangular[8] and the angle across from the largest side of a triangle can be as
small as 45 degrees. See Figure 12 (b).

Lemma 8.3 The angle opposite the largest side of a triangle in Manhattan metric-space
cannot be smaller than 45 degrees. Therefore by Proof 8.2 the mazimum degree of a vertex
in a Manhattan minimum spanning tree is 8.

Our causality function is based on the minimum time that it would take two pieces to
reach the same square. When the pieces are on opposite sides, they can close the distance
between them at least as fast as one square per ply. Jumping and swimming pieces are never
further from each other than the Manhattan distance because the mouse uses Manhattan
movement, and the lion and tiger can jump the water to travel faster than the mouse.
Only normal pieces have to travel around the water which is a diversion of at most four
plies. Therefore, when pieces are on opposite sides, their causality distance is at most the
Manhattan distance plus four. When pieces are on the same side, they can close the distance
between them at a rate no less than one square every two plies, so their causality distance
could be double.

Tlu,v] <2 (Mlu,v] +4)

The fastest movement on the board is jumping horizontally over both bodies of water to
get to a square across the board, which shortens the distance by four squares. Therefore
the shortest causality distance is no less than the Manhattan distance minus four.

Tlu,v] > M[u,v] — 4

Within a constant, a causality distance will be a least the Manhattan distance and no
more than twice the Manhattan distance. In the worst case, the two tree edges adjacent
to v could be minimum (the Manhattan distance) and the farthest side of the triangle
could be maximum (twice the Manhattan distance), thus creating an equidistant triangle.
The adjacent edges would then create an angle of 22.5 degrees, half the 45 degrees of
the Manhattan metric, establishing an upper-bound on the degree of a causality minimum
spanning tree of 16. See Figure 12 (c).

Lemma 8.4 The angle opposite the largest side of a triangle in Dou Shou Qi causality space
cannot be smaller than 22.5 degrees. Therefore by Proof 8.2 the mazimum degree of a vertex
in a Dou Shou Qi causality minimum spanning tree is 16.

A maximum degree of 16 may sound like a lot but we are only concerned with how that
number relates to the number of vertices in the graph. By Lemma 8.4 the degree of the
vertices of an minimum spanning tree in Dou Shou Qi causality space is upper bounded by

o(1).

27

5. Equal edge weights upper bounded In a complete graph in Euclidean space the
number of equal edge weights is upper bounded by O(n). We prove this by induction.

Proof 8.5 Consider a complete graph of points in Euclidean space with three vertices whose
three edges have a equal weight w;. This case is trivially true because there are n vertices and
O(n) edges of weight w;. Now consider a complete graph with n vertices and O(n) edges of
a equal weight, w;. When adding one vertex v to the graph, it can form a cluster of vertices
of at most 7 that are equidistant by edges of weight w;. This follows from Proof 8.2. v adds
at most O(1) edges to the set of w; edges but adds O(n) edges to the complete graph, so a
complete graph of n+ 1 vertices will have O(n+1) = O(n) edges of weight w;. Repeat this
argument for all edge weights in the limited or unlimited universe of possible edge weights
wo... Wj.

Extending Proof 8.5 to the Manhattan metric and causality function is a simple matter
of adjusting the largest possible cluster of equidistant vertices.

Lemma 8.6 The mazimum number of equidistant points in a cluster in Manhattan metric-
space is 9, which follows from Lemma 8.3. Therefore according to Proof 8.5 the number of
equal edge weights in a complete Manhattan graph is upper bounded by O(n).

Lemma 8.7 The mazimum number of equidistant point in a cluster in Dou Shou Qi causal-
ity space is 17, which follows from Lemma 8.4. Therefore according to Proof 8.5 the number
of equal edge weights in a complete Dou Shou Qi causality graph is upper bounded by O(n).

8.2.2 Minimum Spanning Tree Update Operations

To show that our minimum spanning tree update algorithm runs in O(n) time we must
show that its operations run in O(n) time. These operations include changing edge weights,
adding vertices and removing vertices. We will address edge weight changes in four cases,
increasing and decreasing both tree and non-tree edges.

To facilitate the management of our off-line updates, we create a reduced set of edges E’
which initially contains all n — 1 tree edges. We add O(n) edges to E’ and then recompute
our minimum spanning tree from the reduced edge set, a technique used by David Eppstein
in his off-line minimum spanning tree updating algorithm[4]. The best minimum spanning
tree algorithms can run in O(|E|)[14] time so there is no penalty for our final recomputation
since |E’| = O(n).

We also root the minimum spanning tree at vertex v which represents the piece being
moved, a technique used on the DRD trees of Ribeiro and Toso[14]. All of the updates are
then between the root and its children which allows us to consider the subtrees of which
there are O(1) by Lemma 8.4. Rooting the minimum spanning tree at v takes an O(n)
traversal and therefore causes no penalty.

When representing a graph with an adjacency list, we can hash the edges of each vertex
by weight, allowing us to access edges of a given weight in constant time.

28

Increase Non-Tree Edge Increasing a non-tree edge e is a trivial case. e runs from v to
one of the subtrees which is already attached to v by a smaller edge. Increasing a non-tree
edge guarantees that it will remain a non-tree edge.

Decrease Tree Edge Decreasing a tree edge is also a trivial case. It was the smallest
edge connecting the subtree to the rest of the minimum spanning tree. Decreasing the edge
guarantees that it will remain the smallest edge to connect the subtree and therefore it
remains part of the minimum spanning tree.

Decrease Non-Tree Edge Decreasing a non-tree edge could displace another tree edge
somewhere in the subtree that it connects to. The correct way to fix the minimum spanning
tree is to add e, creating a cycle, and then remove the largest edge in the cycle[14, page 4],[4,
page 3]. We will do this indirectly by simply adding e to E’ and allowing the recomputed
minimum spanning tree to leave out the largest edge of the cycle we create.

Increase Tree Edge Increasing a tree edge e is the most difficult case because, if we need
to remove e from the minimum spanning tree, there are ©(n?) candidate edges to consider
when replacing it. In the worst case all of the tree-edge updates will be increases and we will
have to remove all but one of them from the minimum spanning tree. In this case we must
search all of the ©(n?) edges of the subtrees to reconnect the graph. This is made easier by
Lemmas 8.4 and 8.7 which place upper bounds on the number of subtrees and equal edge
weights respectively.

Any edge that will reconnect a disconnected subtree will be one less than the new weight
of the increasing tree edge.

Proof 8.8 Consider a subtree whose connecting edge e with weight w must be increased by
1. If it is necessary to remove e, there will be a minimum edge €' from the subtree to the
rest of the graph which will take its place. The weight of €' cannot be less than w or it would
have been part of the minimum spanning tree instead of e. The weight of ¢’ also cannot be
greater than w or e could remain part of the minimum spanning tree after being increased.
Therefore any edge €' that replaces e must be the same weight as e.

In accordance with Proof 8.8 we only have to look at edges of weight w in each subtree
where w is the weight of the edge adjacent to v. There are O(1) subtrees that can be
disconnected so we must traverse each subtree and add the O(n) edges of weight w to E'.
(Remember that there are at most O(n) edges of a given weight in the graph.)

Adding a Piece Adding a piece is against the rules of the game but most implementations
would want to have this feature so the user can undo a move. This operation is a trivial
case. We simply add the new vertex and add its edges to the reduced edge set of E’. There
will be O(n) new edges and so recomputation of the minimum spanning tree will run in
O(n) time.

Removing a Piece Removing a piece after a capture is a more difficult case. Consider
each subtree of the removed vertex v, being captured by vertex u. If the root of the subtree,
s, belonged to the same player as u, then we are guaranteed that it belongs to a different

29

player than v (because capturing always happens by the other player’s pieces.) In that case,
v is closer to s than u was to s, so the edge from s to v can safely be added to the minimum
spanning tree. If s belonged to a different player than u, then we are guaranteed that v
is further from s than u (probably twice as far.) In this case, we must search the subtree
under s to find a minimum edge to reconnect that subtree.

Searching a subtree of O(n) vertices for a minimum edge to another subtree can take
O(n?) time in the worst case. We can mitigate the worst case by keeping track of the size
of the subtrees and traversing the smallest disconnected subtree first to increase the odds
of finding an edge outward, but it is still O(n?). We cannot currently prove that removing
a vertex can be done in O(n) time, so Update-MST can only be used for piece movement,
not capture.

8.2.3 Update-MST

Given a complete graph G, a minimum weight spanning tree 7" and a vertex v which has
been moved, the following algorithm will update the edges adjacent to v and update T to
be the new minimum weight spanning tree.

UpPDATE-MST(G, T, v)

1 FE’ « Edges[T]
2 A«
3 root T at vertex v
4 for each subtree s of T'
5 do Weight[s] < weight of edge adjacent to v
6 for each edge e adjacent to v
7 do
8 if e ¢ T and is decreasing
9 do F' + F'Ue
> Add increasing non-tree edges to reduced edge set
10 if e € T and is increasing
11 do A + AU Subtreele]
> Remember subtrees to reconnect
12 UPDATE-EDGE(e)
13 for each subtree s € A
14 do for each vertex u in s
15 do add edges adjacent to u of Weight[s] to E’

16 T’ + CoMpPUTE-MST(V, E")
17 return T’
8.2.4 Optimization of MST-Update

The algorithm given in Subsection 8.2.3 establishes an O(n) running time but has at least
one inefficiency that can be easily corrected. The asymptotic running time will not change
but we can significantly reduce the number of edges added to E’ at Line 15.

Line 15 adds all of the edges of weight w to E’, but we only require enough edges to
guarantee the connectivity of each subtree. When rooting the minimum spanning tree at v

30

we perform a traversal during which we can label each vertex according to its subtree. Any
edge added to E’ must satisfy both subtrees it connects, s; and s3. Proof 8.8 establishes
that an edge reconnecting a subtree must be of weight w, therefore Weight[si] = Weight[ss]
and we need only reconnect subtrees of equal Weight values.

We can assume that subtrees with different Weight values are connected via v and focus
exclusively on subtrees of the same Weight value. Given a set of k subtrees to reconnect,
{s1,..., 8k}, we can make each subtree its own set, union sets that are connected and stop
when there is one set remaining (just as in Kruskal’s minimum spanning tree algorithm.)
Therefore the number of edges we need to reconnect {sq, ..., si} is k— 1. Because k is upper-
bounded by O(1) by Lemma 8.4, we can add a constant number of edges to E’ rather than
O(n) to replace increasing tree edges.

9 Searching Beyond 7,

In this section we propose a way to isolate subproblems discovered by our previous al-
gorithm. Forcing a subset of pieces to remain separate from another subset of pieces is
effectively trimming branches of the game tree which involve interaction between subsets,
so subproblem isolation is heuristic in nature. Previously we established T},,, as the max-
imum number of plies during which our subproblems remain strictly unaffected by each
other, placing a relatively shallow upper-bound on the maximum depth of a split minimax
search. We want a means of isolating subproblems so we can extend the split search.

Our graph partitioning algorithm uses a minimum spanning tree to find subproblems
and, based on Definition 5.1, requires that the pieces of one partition be unable to affect
the pieces of another. After the time represented by T},q., this guarantee can no longer be
upheld because if the pieces of one subproblem were allowed to stray close enough to the
pieces of another, our minimax search may count on using the same square twice.

[2)
0o 6

T|D|T
a b c de f 8

9 T|D|T

8 T
00 O

6| |WW|l |@W
50 |[WIW| |[W[W
4 |WIW| |[WW
3

2

1

Figure 13: Two subproblems that should not affect each other.

The position shown in Figure 13 has two distinct subproblems, one in the lower-left corner
with B’s mouse (1) and A’s cat (2) and hyena (5), and another in the upper half with B’s

31

cat (2), dog (4) and elephant (8) and A’s mouse (1). Given a Ty,q, threshold of 3 or 4, the
pieces will be partitioned into subproblems {a2,b3,c2} and {b7,c7,e7,e6}, each of which will
be unaware of the other. If the search is not stopped at a particular depth or the movements
of the pieces restricted, player A’s cat at b3 might be tempted to turn away from the mouse,
who is no real threat with the hyena at c2, and run toward to enemy’s den for an easy win.
In fact, the situation isn’t that simple because there are a lot of pieces to contend with on
player B’s side. (The best strategy for player A is to kill the mouse at a2 using the cat and
the hyena, thereby freeing the hyena to aggress.)

The imposition of a sustained split of the board is a reasonable extension of our algorithm.
Assuming the correctness of our subproblem detection algorithm, each subset of pieces
should accurately encapsulate a subproblem and the pieces therein should not be running
willy-nilly toward other partitions. A subproblem is a tightly knit set of pieces that must
maintain their relative proximity to support a resolution of the problem. If two pieces are
moving rapidly toward one another, it is unlikely they are in separate, naturally occurring
subproblems.

To maintain the integrity of the subsets, we can either contain them dynamically or
statically. A dynamic approach would involve repartitioning G at intervals during the
minimax search. A static solution could forcibly maintain the partition as they existed
when the search began, only updating the partitioning when a piece is moved during game-

play.

9.1 Dynamic Repartitioning

Dynamic partitioning would involve keeping track of where the pieces are "on-the-fly". If a
pair of pieces, v and v, in separate subproblems come too close to one another, we might want
to remove the partition that separates them, combining v and v into one subproblem at a
particular depth of the tree. Repartitioning at depth requires the program to know the state
of the board at that depth, which is not feasible. Minimax is exploring each subproblem
for a continuation that leads to the minimum maximum loss and a split search allows
both partitions to unfold simultaneously. The appearance of u and v in close proximity
at a particular depth is deceiving because their respective subproblems cannot develop
simultaneously in actual game play and there is no guarantee an equal amount of time will
be spent on each subproblem.

Additionally, the principal continuation is not known for each partition until the minimax
algorithm has completed. Therefore only positions along the principal continuation are
worth considering in a repartitioning of the board because the rest of the intermediate
positions were discarded by the algorithm. Repartitioning the board according to a position
in the principal continuation may lead to a different set of terminal positions and therefore
a different principal continuation, an apparent paradox. Such circular reasoning makes the
problem of dynamic repartitioning beyond the scope of this thesis.

9.2 Static Partitioning

A simpler approach, and the one taken here, is to forcibly maintain the original parti-
tioning of G throughout the minimax search. This places certain areas of the board "off

32

limits" to subproblems and thereby excludes large portions of the game tree from the mini-
max search (which are those branches whose roots are off-limit moves.) The risk is that the
globally best continuation lies within one of those discarded branches, making the result of
the minimax search suboptimal.

Static partitioning is much easier to implement than dynamic repartitioning because we
don’t have to worry about the subproblems on the fly or the correctness of a dynamic
algorithm. We just have to guarantee that each partition doesn’t interfere with the others
and vice versa.

9.3 Voronoi Diagrams

In order to keep the partitions separate we will fence them in with a variation of a
Voronoi diagram® in Dou Shou Qi causality space. Instead of generating points we will use
subproblems, partitioning the squares of Dou Shou Qi space such that each square in a given
polygon is closer to its generating subproblem than any other (see Figure 14.)

ol1|1|1|{D|1|@1

s1@1 1@ 1 1

7116 1@ 1|1 1

6(1]13|3(1|1|1]1

511(3(3(1(1]1(2

4(313[3(1]1]1(2

3@ 3|2 2@ 2

21313102 O@ 2

1{3(3[3|D|2]|2]|2

a b c de f &

(a) A Voronoi Diagram. Ev- (b) A partitioning of the exam-
ery point in a given poly- ple given in Figure 7 (a). Ev-
gon is closer to its generating ery square in a given polygon is
point than any other generat- closer (or as close) to a piece in
ing point. its subproblem than any piece in

any other subproblem. Note: b7
and b8 are part of subproblem 1
because Tipresh is set at two plys.

Figure 14: Voronoi diagrams extended to board partitioning.

5"The partitioning of a plane with n points into convex polygons such that each polygon contains exactly
one generating point and every point in a given polygon is closer to its generating point than to any other."

(9]

33

The dens are a special case because their occupation signals the end of the game, therefore
we leave them accessible to any subproblem that contains an adjacent trap. Allowing only
one subproblem to access a den would preclude the other subproblems from finding a winning
(or losing) continuation.

9.4 Partition-Board

To partition a Dou Shou Qi board like a Voronoi diagram, we would like know which
subproblem is closest to any given square. For that purpose we define a new operation for
effect cones.

9.4.1 Minima of Effect Cones

We would like to project an effect cone from all of the pieces of a subproblem simultane-
ously and record only the smallest values for each square. To accomplish this, we project
effect cones from each piece independently and then use the function Min(U, V) to take the
minima of them all.

Definition 9.1
(Min[U,V])ij = min(uij,vij)

9.4.2 Cumulative-Effectcone

CUMULATIVE-EFFECTCONE(S)

1 L« 0
> list of effect cones
2 C+

> infinite effect cone

L <~ L U B[PROJECT-EFFECTCONE(p)]
FoLp(Min(),C,L)
> take the min of all cones

3 for each piece p € S

4 doifpe A

5 L <+~ LU A[PROJECT-EFFECTCONE(p)]
6 else

7

8

Cumulative-Effectcone returns a matrix which identifies the minimum time needed for a
piece from that subproblem to arrive at a given square. By projecting cumulative effect
cones from each subproblem, we can determine which subproblem is closest to each square
by comparing the same element in each effect cone.

We can isolate pieces for a while to search deeper than T),,., but subproblems are not
strictly decoupled and they will eventually interact. The benefits of split searching must
be balanced against the detriment of searching a split position too deeply. This must be
taken into account when setting the splitting threshold, which must take into account the
available resources.

34

Our partitioning algorithm adds a term, linear in the size of the board, to the overall time
complexity of a split search. We can run a partitioned search of a position to any depth in
O(n+b+2%) time, where n is the number of pieces in the position, b is the size of the board
and d is the search depth. The O(2%) term will dominate the other two, so taking the time
to partition the board is not detrimental to the time complexity of the overall algorithm.

10 Putting it all together

Our program’s entry point is the Search-Position function which inputs a position and
returns a suggested move. It uses several modules to 1) generate a complete graph, 2)
compute the minimum spanning tree, 3) divide the given position into subproblems, 4)
search each subproblem and evaluate the results to return a single move.

10.1 Search-Position

Search-Position can be divided into two phases, the decomposition of a position into
subproblems and the searching of the respective subproblems. The first phase can run in
O(n+D) time because we can maintain a minimum spanning tree in O(n) time and partition
the subproblems in O(b) time where n is the number of pieces in the position and b is the
size of the board. The second phase runs in O(2") time because the minimax algorithm is
exponential. We must provide the splitting threshold Tij.esn to indicate the granularity at
which Find-Subproblems should partition the board.

SEARCH-POSITION(P, Tipresh)

1 Grp < COMPLETE-GRAPH(P) > Compute complete graph with T[u, v]

2 M + ComPUTE-MST(Gr) > Compute or update minimum spanning tree

3 S+ BUILD-SUBPROBLEMS(T}presh, Py M) > Use the minimum spanning tree to find subproblems
4 move <~ SEARCH-SUBPROBLEMS(S) > Search the subproblems (Phase 2)

5 return move

10.2 Complete-Graph

The Complete-Graph module creates a vertex for each piece in the position and an undi-
rected edge for every u,v € P with weight T'[u,v]. We established the function T'[u,v] in 7
where T represents the distance in time that one piece is from another. Complete-Graph is
just a preprocessing step to translate the position into Grp.

10.3 Compute-MST

It does not matter what algorithm we use to compute the minimum spanning tree of
Gt because the O(2") term of minimax dominates any minimum spanning tree finding
algorithm’s run time. We can even recompute the minimum spanning tree from scratch
rather than updating it, which makes the implementation more simple. If we elect to
implement the Update-MST algorithm from Section 8.2, Compute-MST could determine
which vertex has moved, update the previously computed minimum spanning tree and
return the result in O(n) time.

35

We will use Prim’s minimum spanning tree algorithm which starts at any given node and
continuously adds the lightest edge in the minimum spanning tree’s periphery until every
vertex has been reached[15, page 572]. The running time of an adjacency list implementation
of Prim’s is O(n?) and will suffice for our purposes. (Remember the best minimum spanning
tree algorithms runs in O(|E|) which is ©(n?) in our complete graph.)

MST-PrRIM(G, w,)
1 for each u € V[G]

2 do keylu] + o

3 mu] < NIL

4 keylr]+0

5 Q <« V|G|

6 while Q #0

7 do u +— EXTRACT-MIN(Q)

8 for each v € Adj[u]

9 do if v € Q and w(u,v) < key[u]
10 then 7[v] < u

11 key[v] + w(u,v)

10.4 Find-Subproblems

Given Typresn, and the minimum spanning tree of a position, we can find subproblems
by removing the largest minimum spanning tree edge crossing the threshold, creating two
disconnected components, m; and ms. New positions can be built by traversing m; and
ms, adding the pieces in each component and setting off-limits squares using the algorithm
Partition-Board algorithm given in Section 9.4. Each subproblem will consist of a discon-
nected component (now the minimum spanning tree of the subproblem,) a set of pieces in a
position and a partition of the board which marks the in and out-of-bound squares. If a split
occurred, each of the new subproblems can be fed back into Find-Subproblems recursively
to make additional splits as necessary. Figure 15 demonstrates the recursive decomposition
of a position in which a position is broken into two subproblems, one of which is recursively
broken into two more subproblems.

After recursive binary splitting, a position will be decomposed into subproblems with
minimum spanning trees containing no edges of weight greater than Tip,csp. Rather than
splitting recursively, we can remove all edges greater than Tij..sn, and make subproblems
from the disconnected components.

BUILD-SUBPROBLEMS (Typnresh, P, M)

S0
while Largest Edge[M| > Tipresn
do Remove LargestEdge[M]
for each component ¢’ € M
do
Create new position p’ with pieces in ¢
S+ Sup
return S

0 1 O U i W N

36

Figure 15: Finding the subproblems of a position. A position is broken into two
subproblems, one of which is recursively broken into two more subproblems.

10.5 Search-Subproblems

Running minimax against each subproblem is done with iterative deepening® to guarantee
that a principal continuation will be available when the allotted time expires. Iterative
deepening also allows the search to give higher priority to wins at shallower depths by
stopping the search if a principal continuation leading to a win is found. Prioritizing shallow
wins over deep wins is an essential part of split searching because the difference between
winning and losing is often the depth at which a win and a loss occurs in two subproblems.
The losing subproblem can be abandoned if the winning one will be resolved in less time.

10.5.1 Non-Moves

We have discussed the two effects that pieces can have in close proximity, but when a
piece is forced to move or not move, the effect can span any distance. Only one piece can
move at a time across all subproblems, so every subproblem must consider the possibility
that a turn will not be taken. When searching a subproblem, a non-move is a legitimate
option at each ply. So we relax the rules of the game to artificially insert a non-move to the
generated list of moves at each ply.

To justify the use of non-moves, we must consider the motivation for their use in a
continuation. The minimax algorithm will be selecting the move at each level that leads to

6searching repeatedly at increasing depths of {2,4,6,...}

37

9 T|D|T 9 T|D|T

8 T (1) 8 T

7 7 (5)

6 |WWE@WWEa 6 |WWE@WWE

5| [W|W| |W|W 5@ MWW |[WW

41 |[WIW|@W|W 41 |WWl |[WWE

3 30

2 T 2 T

1 T|D|T 1 T|D|T
abcdef 8 a b cde f 8
(a) A parity situation (b) A hopeless situation

Figure 16: Non-move biased positions. In Figure (a), player A must move but
cannot advance on player B. In Figure (b), player A cannot advance or get around
B by using another aisle.

the best continuation and will include non-moves only when they are beneficial. According
to our evaluation function, as defined in Section 3.3, there is always a marginal benefit to
advancing one’s pieces toward the opponent’s den. Even if the search does not run deep
enough into the game tree to see a move across the board, four to six plies should be enough
to see some advantage to movement. There exists an inherent bias toward moving one’s
pieces because a non-move will not result in a better score.

We will address only the exceptions in which a non-move is preferable to a move. These
exceptions are when 1) the game has been reduced to parity and 2) all paths leading to higher
scores are blocked. Consider the parity situation presented in Figure 16 (a) in which the first
player to move will be forced to retreat and eventually lose the game. It is advantageous
for Player A to make a non-move and defer to player B. The second situation presented in
Figure 16 (b), in which all paths to higher positions are blocked, is similar to the parity
situation. In the short-run, retreating with a3 and g4 will avoid higher losses to player A,
but in the long-run the game belongs to player B. Player A may opt for a non-move to wait
and see what will happen because there is no advantage to getting a head start on a retreat.

The parity situation will likely result in a principal continuation of entirely non-moves, but
according to the rules of the the game, Player A must move. To provide for this eventuality,
we search each subproblem twice, first with a move and then with a non-move. The result is
a move,/non-move pair of scores which can be used to select the subproblem into which the
player’s turn should be invested. Electing to move in one subproblem is implying non-moves
in the others. Because each piece is an atomic part of the positional evaluation function,
scores from separate subproblems can be summed and compared.

For a set of subproblems {sq, $a, ..., S, } the implied score of each subproblem is the sum
of its move score and every other non-move score.

38

ImpliedScorels;] = MoveScore[s;] + Z NonMoveScore[s;] | — NonMoveScore[s;]
j=1

10.5.2 Search-Subproblems Algorithm

SEARCH-SUBPROBLEMS(S)

1 PC«+0
2 while time remains > Search a long as time permits
3 do for each d € {2,4,...} > Iterative deepening
4 max < —oo > Maximum implied score
) for each subproblem s € S with position p
6 do
7 MoveScorels] + —o0
8 for each move m € p > Search all moves and a non-move
9 do
10 p’ < MAKE-MOVE(p, m)
11 a + —MINIMAX(p',d — 1)
12 if a > MoveScore[s]
13 then MoveScore[s] < a
14 Movel[s] < m
15 NonMoveScorels] <— —MINIMAX(p,d — 1)
16 for each subproblem s € S
17 do if ImpliedScore[s] > maz
18 max < I'mpliedScore|s]
19 PC <+ Movels]
20 if max = oo return PC > Prioritize shallow wins

21 return PC

11 Results

To test our split-searching idea, we compare it to an alternative approach, the standard
heuristic enhancement of minimax, alpha-beta pruning with move-ordering.

Alpha-beta pruning is a simple modification of the minimax algorithm that does not
search branches of the game tree that cannot lead to a better score. It reduces the average
number of moves explored at each position which increases the depth that can be searched.
Figure 17 shows a tree with a branching factor of two and a depth of two. The left side
terminates with nodes valued at 1 and 2 and the right side terminates with nodes valued
at 0 and the variable x. When the tree is searched to maximize the root score, alpha-beta
pruning will trim the branch under x because its value cannot affect the outcome of the
search. The left side will return a value of 1 and the right side will return a value less-than
or equal-to 0 and, because the algorithm is maximizing the root, it will never choose the
right side.[6] Alpha-beta pruning trims all branches that follow this pattern by keeping track
of the best score found at each level throughout the search.

39

max
min min

SN SN

Figure 17: Alpha-beta pruning trims branches that do not affect the outcome of
the minimax search. The left side returns a value of 1 and the right side will return
a value less-than or equal-to 0. The branch under z is trimmed because minimax
will not select the right half.

Move-ordering is an enhancement of alpha-beta pruning which searches the moves at
each position in a specific order based on how likely they are to cause a refutation. We search
capturing moves first, then lion, tiger, elephant and mouse moves, and then all remaining
moves. On average, searching with move-ordering increases the depth of our searches by
16%. Move-ordering is a useful heuristic to compare to split-searching because it is relatively
easy to implement and, like split-searching, its benefits are from increased search depth.

We ran tests on four configurations of split-searching and move-ordering:

1. Move-ordering vs. no heuristic
2. Split-searching vs. no heuristic
3. Split-searching vs. move-ordering

4. Split-searching and move-ordering vs. move-ordering

Our tests consisted of two computer simulated players, each with different searching
heuristics, starting from a variety of interesting positions. Twenty positions were selected
for testing, eight of which were modified starting positions in which one of player B’s pieces
was removed to put it at a disadvantage. One position was the unmodified starting position
and eleven were scenarios from games in which one player had made a mistake or the board
had become imbalanced for some reason. An example of an interesting position is given in
Figure 18 where Player A has advanced too quickly with its mouse (1) up the right aisle
and its elephant (8) up the left aisle. Player B’s elephant is capable of running down the
center aisle, bypassing player A’s mouse and elephant. (Recall that only a mouse or an
elephant can kill an elephant.) All of the 20 positions are given in Appendix A along with
explanations of their significance.

The two players of a configuration played every position twice, once with the first player
on side A and the second player on side B, and then again with the first player on side B
and the second player on side A. Even though some of the positions were more advantageous
for one side or the other, two equal players should have an equal number of wins and losses
because they played both sides of every game.

40

T|D

W|W|@|W[W
Owiwl |Wlw

2))

® [T|/DT

Figure 18: Player A has advanced too quickly with its mouse (1) and elephant (8).
B’s elephant can by-pass A’s mouse and drive down the center aisle or B’s tiger
(7) could leap across the water before A’s elephant can move down to defend.

Information was recorded in a text file for every game played, including every position
of the game, every split-search and the subproblems it used, and the search depth of each
player. Queries were written in Perl to parse the files for statistics about wins and losses,
average search depth, game duration, split frequency, split timing and subproblem size. The
algorithms for subproblem discovery and searching were implemented as presented in this
thesis with addition of the alpha-beta pruning heuristic, which was written into the minimax
module.

We played over 250 games using approximately 8.7 days of CPU time. Players were given
30 seconds per move and the game was called a draw if it lasted more than 200 moves,
which was a reasonable cut-off point because almost all completed games had 98 moves or
less. All games were played on a Linux cluster of Intel Xeon nodes running at 2.83 Ghz and
each game was given access to only one CPU.

11.1 Win/Loss Record

A summary of the win/loss/draw record of all four configurations is given in Figure 19.
Because every player had a chance to play both sides of every position, a configuration with
equal players should show an equal number of wins and losses. Configurations 1 and 2 did
well against no heuristic, but split-searching in configurations 3 and 4 was detrimental.

Conlf. Player ‘ Wins Draws Losses ‘ Opponent
1. move-ordering 15 18 7 no heuristic
2. split-searching 10 24 6 no heuristic
3. split-searching 3 20 17 move-ordering
4 both heuristics 6 20 14 move-ordering

Figure 19: Win/loss/draw record for all configurations. Equal players should show
equal number of wins and losses. Configurations 1 and 2 did well against no
heuristic, but split-searching in configurations 3 and 4 was detrimental.

41

Figure 20 shows the average search depth over all games for each player. Each additional
heuristic increased search depth.

Player | Avg. Depth (plies)
no heuristic 7.76
move-ordering 8.97
split-searching 8.06
both heuristics 9.28

Figure 20: Average search depth for the four players. Each additional heuristic
increased search depth.

11.2 Analysis

Move-ordering is better than nothing because it won eight more games than it lost. The
move-ordering player was able to search 16% deeper which was enough to give it an edge over
its non-move-ordering opponent. Increased search depth was expected and this configuration
serves as a baseline for comparing move-ordering to split-searching.

Split-searching was also an improvement over nothing, winning four more games than it
lost. However, its performance was inferior to move-ordering, a fact which follows logically
from the lesser increase in depth, which was only 4%. Split searching was most frequently
conducted on a 2-way split of the board, but splits of up to 6-ways were recorded. The
performance of split-searching fell far short of the theoretically possible 25%, established
in Section 4.1. This was due to the infrequent occurrence of splitting and the imbalanced
nature of the subproblems.

Figure 21 (a) charts split frequency, which is the ratio of split-searched positions to all
positions, per game, per splitting-player. No player was able to split more than one-third of
the positions in a game and most of the games saw very infrequency split-searching. The lack
of consistent splitting meant that there was not a consistent benefit from increased search
depth. Additionally, the distribution of pieces among the subproblems adversely affected
the efficiency of the split-search which benefits most from an even split. A subproblem of
15 pieces is not much of an improvement over a subproblem of 16 pieces. Figure 21 (b)-(f)
show the histograms of n-way split subproblem sizes. Most of the splits were 2-way and a
large portion of all splits created subproblems with only one piece.

When split-searching was played against move-ordering, the latter was shown to be more
effective, winning by a large margin. This was expected after analysis of the first two con-
figurations, which showed move-ordering to be a greater improvement than split-searching
over nothing.

Both move-ordering and split-searching were independently successful, but split-searching
on top of move-ordering was detrimental to performance. This was surprising because both
heuristics benefit from increased search depth and together they were able to search more
deeply on average than any other configuration. The underlying theory of split-searching
involves finding and searching loosely coupled subproblems, which cannot affect each other

42

Subproblem Size

(e) 5-way splits

Subproblem Size

(f) 6-way splits

£ 1,500 -]
= 40| | §
3 1,000 y
S :
° <
20 | = <
% % 500
o e
=
0 | | | n O
0 0.1 0.2 0.3 0.4) 10 15
Splitting Frequency Subproblem Size
(a) Split frequency for splitting players (b) 2-way splits
- = 300
= :
8 400 = 8
200 8
= =
< <
< . <
g 200 © 100 -
2 2
e a
= =
« 0 « 0
0 5 10 15 0 5 10 15
Subproblem Size Subproblem Size
(¢) 3-way splits (d) 4-way splits
= 100 = 100
= =
g 80 | g 80| |
O O
g 60 = g 60 |- 1
< <
= 40 : £ 40 |- h
£ 20 . £ 20/ .
g G glm_m |
0 5 10 15 0 5 10 15

Figure 21: Splitting frequency and subproblem size by n-way split. Most splitting
players found subproblems less than one-third of the time. Most of the splits were
2-way and a large number of the subproblems consisted of one piece, a split which
does not provide much depth increase. However there were a significant number of
somewhat evenly split 2-way subproblems between 5 and 10 pieces each.

43

for as long as the splitting threshold. In all of our tests, we set the threshold at four, so
searching beyond four plies started trimming large parts of the game tree. The average
search depth when using both heuristics was 9.28 plies, well beyond the splitting threshold.

Sec/Move ‘ Wins Draws Losses

30 6 20 14
5} 10 21 9
2 8 19 13

Figure 22: Win/loss/draw record for configuration four tests. Five-second searches
out-performed both two and thirty-second searches.

Sec/Move | Avg. Depth (plies)

30 9.28
5 8.19
2 7.85

Figure 23: Average search depth for configuration four tests. Decreasing search
times led to decreasing search depths.

It is our conjecture that the effectiveness of a split-search is related to our search depth
and separation of the subproblems. When setting the splitting threshold, we should take
the intended search depth as an input to determine how decoupled subproblems must be
before they can be split-searched. If enough resources are available to search far beyond a
threshold value, split-searching should not be used.

To test the relationship between depth and split-search performance, configuration four
was tested two more times, allowing five and two seconds per move instead of 30, to decrease
the depth searched by the combined heuristic player. The results are given in Figures 22
and 23 in which five-second searches out-performed both two and thirty-second searches,
even through decreasing search times always led to decreasing search depths.

While it appears that search depth has some correlation to the performance of move-
ordering with split-searching, it is not clear what the relationship is. A more linear increase
in performance was expected from 30-second searching to 2-second searching as search depth
decreased, but 5-seconds had the best performance.

11.3 Conclusion and Future Work

In this thesis we were able to use a physics-inspired model of causality, the intersection of
effect cones, to capture minimum time-to-effect between every pair of pieces in a Dou Shou
Qi position. Using a minimum spanning tree of this complete graph, we found clustering
structure that corresponded to loosely coupled subproblems and searched them indepen-
dently and more deeply, leading an improved performance of the minimax algorithm.

44

The depth to which subproblems can be searched independently appears to be limited
by how far apart they are. Increased depth is a benefit of split-searching, but we cannot
search subproblems too deeply. When combined with a depth-increasing heuristic like move-
ordering, the benefits of split-searching are lost.

The splitting threshold controls the granularity of subproblem discovery such that split-
searching is not over or under utilized and we believe that it should take depth into account.
Throughout the thesis and our testing, when a splitting threshold was needed, it was set to
3 or 4. It remains undiscovered what the ideal function to determine a splitting threshold
is and what exactly its inputs are.

The game theoretical consequences of relaxing the rules of Dou Shou Qi to allow non-
moves are not fully known. It would be useful to conduct a more formal analysis of the role
that non-moves play in searching loosely coupled subproblems.

45

Appendix A - Interesting Positions

The following are the 20 positions used for testing:

®© T 0O T|D|T T|D|T

®e

e ' o 0 O o 0 06
O 6 6 0 (6) (8)

WIW| [W|W WIW|@ W W@ WIW @ W W@
WIW| |W|W W W|@|W|W WIW| [W|W
WIW| |[W[W ow [(wlw 0\ We ww

O 6 6 6 ©6 o (2]

o I O T © 00 o0
O "7 @ TID|T ® 17(D|T

(a) The Dou Shou Qi
starting position.

(b) Player A is putting
pressure on the upper-
right quadrant of the
board with its mouse (1)
and lion (7), but A needs
to get its elephant (8) at
a3 past B’s mouse at b4
to win the game.

46

(c) Player A has moved
its elephant (8) away
from the water and
player B has not. Be-
cause an elephant along
the water is essential for
preventing the opposing
lion (7) from jumping
over the water, this posi-
tion should be disadvan-
tageous for player A.

TID|T TID|T| |@
(4)03)(2)6 O 6
(7] (8 ® 6
WW| (WW|@ WIW| |[W[W
WIW| |[W[W WIW| |[W[W
W(W|@|W|W WIW| |[W[W
(1) (5} (1) (8,
061 100 0100
00D T T|D|T

(d) Player B has de-
veloped the board more
than player A, who has
wasted moves and al-
lowed B’s mouse (1) to
move down to a3.

(e) A slightly modified
version the working ex-
ample from the thesis in
which player A’s mouse
(1) is at g9 instead of £9.
A should win in exactly
five moves.

DT

@ W |wW

W|W

T
(L3
(5)

w
W
W

WIW

(7]
(3)
W
W
W
(3)
(4)

N 2)

0 1100

(f) Player B has moved
down the right aisle
while A was moving up
the left. Both players
need to bring their tigers
(6) into play to win.

T|D|T

T

e
o

TIDIT @
(2]

e ©

,_]
oo)+2)()

W@ w|w

W{iW|@

Wl |[WIW

99

0

W|W

D

T
0600
(5

W@ W|w

W (W W@

WIiW W|W

(3]

(4]

(7]

W

wiw| [wlw
W

(8)

(2]

T @

0or o

(8 o
(2]

(7]
(1)
W
wiw] [wlw
(3)
061 O

O 71D T |@

T|D|T

TID|T

(g) Player B has allowed
A’s hyena (5) to advance
too far and now B’s lion
(7) is stuck. B’s hyena
should have moved over
sooner to give the lion
room to operate.

(h) Player A has let B’s
lion (7) get too close to
its tiger (6) and he is go-
ing to lose its hyena (5)
in the retreat. A should
have seen this coming
when B moved b4-b5.

47

(i) This position imme-
diately precedes position
(h). If player A moves
g5-g6, B will move its
lion over and chase A’s
tiger.

T DT @ © 'O 0 © D1

06 60 e ' O o

T
(3] (2]
(7] O o ©o (5)(3) 000
W W

(1 1200 W W|W| [W[wW WwW| (WW|@®
WIW @ W|wW WiW|l |[WW|@® WIW|@|W|W
Oww (Ww WiW| [W[w 0w w |(ww

® 6 0 6 6 O 12)(3)
0o 1 0 O T (7] (8] 1000
® 70T ® 171DT7TO Q71 DT

(j) Player A has been

too aggressive. B’s ele-
phant (8) can by-pass
A’s mouse (1) and drive
down the center aisle or
B’s tiger (7) could leap
across the water before
A’s elephant can move
down to defend.

(k) Player B seems to
have forgotten that a
mouse (1) can capture
an elephant (8) and is
going to be chased all
the way back to its side.
Player A should sacrifice
its mouse to kill the ele-
phant so its lion (7) can
jump over the water.

(1) Player A has left its
hyena (5) at d5 as B
brought down its tiger
(6) to g6. B’s tiger will
be able to come down
the center aisle and take
a few pieces.

T|D|T

(6) DT @ TIDIT @

0O 6 6 O 0O 606 0o 6 (2]
(8 (8] (8]
W{W|@|W|W WIW|@|W|W WIW |@|W|W
W{W| [W[wW WW| |[W[W WIW| |[W[W
W|W|@|W|W 0OV W W w 0OV Wwe w|w

0 70 ©

0 710 ©

0 670 0

® (1D T

® 1T

® 1|D|T

(m) Player B is missing
its mouse (1).

(n) Player B is missing
its cat (2).

48

(o) Player B is missing
its wolf (3).

TDT @ TIDlT @ T|D|T
(7] e O O 60 0 © O 60 6 ©
(8 (8] (8]
WIW|@|W|W W{W| [W[W WIW|@|W|W
W{W| [W[W W{W| [W[W WIW| |[W[W
0V We W w 0OV W& W 0OV We ww
(2] (2 (2
0 010 0 0 010 0 0 0710 0
® T|D|T ® T|D|T ® T/DT
(p) Player B is missing (q) Player B is missing (r) Player B is missing
its dog (4). its hyena (5). its tiger (6).
T DT @ TIDIT @
(4 J0000 3 JI) 0O 0 6 ©
(8 (8
W{W|@|W|W WIW|@|W|W
W|W| |[W[W WIW| |[W[W
O\ W@ W W QW W
(2] (2
6 60 0 0 60 0
® 1T ® 1T
(s) Player B is missing (t) Player B is missing
its lion (7). its elephant (8).

49

References

[1] AnchientChess.com. Dou shou qi. http://ancientchess.com/page/play-doushouqi.htm.
Accessed 3/19/2010.

[2] Elwyn Berlekamp and David Wolfe. Mathematical Go. A K Peters, Ltd, 1994.

[3] Vincent de Boer. Invincible: A Stratego Bot. PhD thesis, Delft University of Technology,
2007.

[4] David Eppstein. Offline algorithms for dynamic minimum spanning tree problems.
Journal of Algorithms, 17:237-250, 1994.

[5] Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees.
Proceedings of the fifteenth annual ACM symposium on Theory of computing, 1:252—
257, 1983.

[6] John Hughes. Why functional programming matters. Chalmers memo, 1984.

[7] David Levy and Monty Newborn. How Computers Play Chess. Computer Science
Press, 1991.

[8] Joe Malkevitch. Taxi. http://www.ams.org/featurecolumn/archive/taxi.html. Accessed
3/19/2010.

[9] Wolfram Mathworld. Voronoi diagrams. http://mathworld.wolfram.com/VoronoiDiagram.html.

Accesses 3/19/2010.

[10] Chiara Casolino Michele Florina, M. Concepcién Cerrato Oliveros and Monica Casale.
Minimum spanning tree: ordering edges to identify clustering structure. Analytica
Chimica Acta, 515:43-53, 2004.

[11] Guillermo Owen. Game Theory, Third Edition. Academic Press, 1995.
[12] Ludek Pachman. Modern Chess Strategy. Dover Publications, Inc., 1963.
[13] Anatol Rapoport. Two-Person Game Theory. The University of Michigan Press, 1966.

[14] Celso C. Ribeiro and Rodrigo F. Toso. Experimental analysis of algorithms for updating
minimum spanning trees on graphs subject to changes in edge weights. Lecture Notes
in Computer Science, Experimental Algorithms:393-405, 2007.

[15] Ronald L. Rivest Clifford Stein Thomas H. Cormen, Charles E. Leiserson. Introduction
to Algorithms, Second Edition. The MIT Press, 2001.

[16] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1953.

[17] Wikipedia. Minimax. http://en.wikipedia.org/wiki/Minimax. Accessed 3/19/2010.

30

