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Abstract

Asset-exchange models (AEMs) are mathematical representations of
the movement of wealth within a system of economic agents. In this
work, we focused on one particular AEM, the Yard-Sale Model (YSM), in
which transactions are pairwise between agents and exchanges are always
fractions of the poorer agent’s wealth.

In recent work, Boghosian derived a Boltzmann equation for the YSM
and showed that with a kinetic approach to wealth distributions, the YSM
exhibits qualitative agreement with Pareto’s Law and may indeed be the
first explanation of this macroeconomic observation since it was first pro-
posed nearly a century ago. One of the shortcomings of the YSM is its
symmetric trading assumption wherein both agents in a transaction have
an equal likelihood of winning. In this work, we reconsidered the YSM in
the presence of a trading bias based on the idea that economic agents may
have an advantage or disadvantage due to their intrinsic characteristics
such as race, gender, etc. We assigned agents within the YSM to have
a single valued parameter representing their trading advantage and we
derived a pair of coupled Boltzmann equations and the resulting Fokker-
Planck equations. We considered the effects of this Bias due to Agent
Attributes (BAA) on the kinetics of wealth and the implications this may
have on the dynamics of inequality and the relationships between redis-
tribution and trade.
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1 Introduction

Reconciling microeconomic processes with macroeconomic trends remains one
of the most important challenges in economic theory. In the particular case
of the economics of wealth distributions, efforts have spread beyond the social
sciences in order to describe the way that transactions between two individuals
act as “microfoundations” to generate realistic distributions of wealth.

In recent work, inspired by the methodologies of statistical physics, Boghosian
[1] devised a Boltzmann equation for wealth exchange, offering what may be the
first microfoundational explanation of Pareto’s Law in nearly a century of study
on the subject. In this paper I will rederive Boghosian’s kinetic model in the
presence of a trading bias to account for the way an economic agent’s intrinsic
characteristics may help or hurt them financially, based philosophically on the
idea that who someone is affects their ability to trade.

1.1 Wealth distributions

One of the first serious considerations of the way in which wealth distributes
came from the Italian economist and sociologist Vilfredo Pareto, in 1916. In
his seminal work “Trattato di sociologia generale” [2], an expansive survey of
wealth and income in Europe spanning several centuries of data, Pareto found
that wealth accumulates in a distinct way almost invariably across economies
and cultures. The shape of the distribution, shown in Fig. 1, has since come to
be known as the Pareto Distribution.

The Pareto Distribution is primarily characterized by its tail: as wealth w
increases, the number of agents with wealth w decreases like a power law. Pareto
found this to be a reasonable approximation to the data he collected, though it is
important to note that the decay is not exactly like a power law [3]. Nonetheless,
this approximation was the impetus for further analysis: This power law rule
gave way to a simple new comparative method for wealth distributions.

1.2 Measuring wealth inequality

The way in which Pareto visualized his famous distribution was by plotting
wealth w versus the fraction of economic agents A(w) with wealth greater than
w. He found that for a lower bound wmin on wealth, A(w) could be approximated
by

A(w) ≈

{
1 if w < wmin(
wmin

w

)α
otherwise ,

(1)

where α is referred to as the Pareto index. After some thought, one can see
that α → ∞ corresponds to a perfectly uniform distribution of wealth where
each agent has the same net wealth given by wmin. On the other hand, α →
1+ corresponds to an increasingly concentrated distribution, where almost all
wealth has accumulated in the hands of a smaller and smaller fraction of the
N agents. To see that this is the lower bound of α, we consider a distribution
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Figure 1: Examples of the Pareto distribution, with α = 1, 1.5, 2, and ∞. When
α =∞, the Pareto distribution becomes to Dirac δ-function, corresponding to an even
distribution of wealth.

P (w) which describes the spread of wealth across a given population, with P (w)
normalized to N , so that the quantity A(w) may be defined in the following
integral form,

A(w) :=
1

N

∫ ∞
w

dx P (x) . (2)

P may be more appropriately thought of as an agent density function over
wealth space. Now, by differentiating Eq. (2) and reconsidering Eq. (1) we find
that

P (w) ≈

{
0 if w < wmin

αN
wmin

(
wmin

w

)α+1
otherwise .

(3)

If we assume the total wealth of our system, given by the first moment of P , to
be finite, then we may conclude that indeed α > 1.

One reasonable objection to the Pareto index as a metric for wealth inequal-
ity is that it is a good approximation of the distribution of wealth only on the
tail, the wealthiest in a given system, and is less accurate for the poorer bulk of
the population. To introduce an alternative measure, first consider the Lorenz
curve shown in Fig. 2. The American economist Max O. Lorenz, a contemporary
of Pareto, devised this representation of the distribution of wealth in 1905 [4],
which plots the fraction of the wealth of economic agents against the fraction of
agents in the system. Mathematically, this can be thought of as a parametric
relationship between two cumulative distribution functions F of agents and L
of wealth, defined as

F (w) :=
1

N

∫ w

0

dx P (x) (4)

L(w) :=
1

W

∫ w

0

dx P (x)x , (5)
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Figure 2: The Pareto-Lorenz
curve is plotted with the cumulative
distribution of agents F (w), ver-
sus the cumulative distribution of
wealth L(w). The wealth parame-
ter w varies from zero (the lower left
corner) to ∞ (the upper right cor-
ner). The blue diagonal then repre-
sents an even distribution of wealth,
and the orange curve below the di-
agonal represents a system in which
the distribution is largely inequal.
The Gini coefficient is equal to one
half of the area of the shaded region.

where P is as previously defined, and W is the total wealth of the system. In
the above, we have defined the quantities

N :=

∫ ∞
0

dw P (w) (6)

W :=

∫ ∞
0

dw P (w)w , (7)

where w varies from 0 to∞. Note that F is the lower incomplete zeroth moment
that complements Pareto’s distribution term A, in the sense that F = 1−A.

The diagonal of Fig. 2 then corresponds to an even distribution of wealth,
where each of the N agents possesses the same fraction W/N of wealth. In real
economies, the Lorenz curve lies provably below the diagonal, and the area of
the shaded region, as a fraction of the area of the lower triangle, thus represents
the deviation of a given wealth distribution from equality. This measure of
inequality is referred to as the Gini coefficient, and is formally defined as

G :=

∫ 1

0
dF (F − L)∫ 1

0
dF F

= 1− 2

∫ 1

0

dF L . (8)

Accordingly, when wealth is uniformly distributed, G = 0, and when a single
agent owns all the wealth in the system, G = 1. Since the Gini coefficient is
defined across the entire wealth spectrum, it has become a popular measure of
wealth inequality as an alternative to the Pareto index.

It is important to understand what is mathematically described by the term
inequality. Consider, for example, the two different economies described by
the Lorenz curves as shown in Fig. 3. It is easy to see that both of these
economies have identical Gini coefficients, and yet it would not be unreasonable
to consider Population 1, which has a very poor lower quantile - as less fair than
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Population 2, in which there is a larger middle quantile and the upper quantile
is less economically dominant. The Gini coefficient is thus a measurement of
net inequality, but should not be interpreted as a measure of unfairness.

Thus far both the Pareto index and Gini coefficient have been considered as
snapshots of inequality, but a more interesting measurement is surely the rate
at which inequality changes. Consider the fact that in 2011, the wealthiest 388
people in the world had the same net worth as the poorest 3.5 billion, and that
by earlier this year that number had dropped to 80 [5]. Indeed, the distribution
of wealth is anything but static, and understanding the forces that shift wealth
has rarely been more pertinent.

1.3 A kinetic theory of wealth

Despite Pareto’s efforts and the paradigmatic shift he caused in the way eco-
nomics was studied, the theory of wealth distributions did not have any signif-
icant progress in terms of microfoundational understanding for some time. In
the mid-twentieth century, mathematicians Champernowne [6] and Mandelbrot
[7] separately published works on stochastic models of wealth, but it was not
until 1986 that a kinetic approach began to unfold, with a publication by Angle
in the sociological literature [8].

Angle conceptualized asset exchange models (AEMs) as simple systems of
pairwise transactions, based on fundamental assumptions about the way in
which two random economic agents might trade. Mathematically, AEMs are
representations of wealth exchanges between N agents that yield wealth distri-
butions of a given population, where each agent shares some fraction of the total
wealth W of the system. For simplicity, N and W are generally considered to be
conserved quantities and for now we will consider them as such. This makes for

Figure 3: The two graphs below are hypothetical Pareto-Lorenz curves for two dif-
ferent populations. Despite identical Gini coefficients for the two economies and thus
identical inequality, one might reasonably claim that the inequality of Population 1 is
less fair because its lower class is far poorer than the lower class of Population 2.
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an easily understood model - for conserved wealth, one agent’s gain is another
agent’s loss. It should be noted that this is not entirely realistic; in the presence
of consumption, production, immigration and emigration, N and W would fail
to be conserved, and these are naturally areas of future interest. In the con-
tinuum limit of wealth w, the wealth distribution generated by the model may
be described by the agent density function P (w, t) as previously formulated in
Section 1.2, though now with an added dependence on time.

In this work I consider one particular AEM, the Yard-Sale Model (YSM),
proposed by Chakraborti in 2002 [9]. In the YSM, the wealth exchanged in
a given pairwise transaction is a fraction of the poorer agent’s wealth. This
is a reasonable assumption, as it is exceedingly rare that we ever gain more
than our net worth in a single transaction. Additionally, in the simplest version
of the YSM, two agents have equal chances of “winning” in any transaction.
Henceforth, I consider the value in a given transaction not to be determined
by the amount the buyer is willing to spend (as is economics convention), but
rather determined objectively. In this way, it becomes clear that an economic
agent can make “mistakes” and that the wealth exchanged in a given transaction
is not the total value of the good, but the magnitude of the mistake.

One interpretation of this model, in order to visualize its kinetic behavior, is
of economic agents as particles, wealth as energy, and transactions as collisions.
In this sense, a system of economic agents ‘bounce’ off one another exchanging
wealth (though our model does not in fact depend on any spatial locality). This
conceptualization then lends itself immediately to the field of statistical physics
and its methodologies, especially those developed by the Austrian physicist
Ludwig Boltzmann.

2 Prior Work

2.1 The Boltzmann equation and the Fokker-Planck equa-
tion

Given a few general principles of pairwise transactions, can we generate an entire
dynamic distribution of wealth? An analogous problem was solved in the second-
half of the nineteenth century when Boltzmann, Maxwell and Gibbs developed
statistical physics in order to explain macroscopic phenomena due to kinetic
models of the nascent atomic theory. In particular, in 1872, Boltzmann [10]
devised an eponymous equation that describes non-equilibrium thermodynamics
in dilute gases, and in the appropriate limit captures features of the atomic
behavior on which it is founded. Today, in the physics literature, a Boltzmann
equation may be any in which a macroscopic quantity changes due to underlying
kinetic principles of binary interactions.

Nearly sixty years after Boltzmann first devised his equation, Andrey Kol-
mogorov developed what is known as the Fokker-Planck equation, which de-
scribes the effects of various physical forces on the evolution of a probability
density function over time. In fact, if considered in the appropriate limit, the
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integrodifferential Boltzmann equation may reduce to the simpler differential
form of the Fokker-Planck equation [11].

Inspired by both Boltzmann and Kolmogorov, in 2013 Boghosian [12] derived
a Boltzmann equation for the YSM, and found a corresponding Fokker-Planck
equation describing the time evolution of the YSM where the appropriate limit
is the small transaction limit. This is not an unreasonable assumption: in the
majority of transactions that we engage in as economic agents, the amount of
wealth exchanged is a small fraction of our net wealth. Boghosian’s next step was
to introduce redistribution into the model, and, after some numerical analysis,
he was able to demonstrate substantial agreement with Pareto’s distribution,
especially in the limit of small but non-zero redistribution. This is nothing short
of remarkable, and it could very well be the first microfoundational explanation
of Pareto’s findings since they were first published in 1916.

Before formally deriving these equations, let us take a deeper look at what
these models might tell us. What can be said about the forces in the Fokker-
Planck equation that establish the shape of the wealth distribution? What role
does redistribution play in determining this shape?

2.2 An H-theorem for the Boltzmann equation

One of the beautiful successes of the Boltzmann equation was its resulting agree-
ment with certain features of the second law of thermodynamics. Known as the
H-theorem, this consequence describes an entropically-behaving quantity H in
a dilute gas. More generally, just as a Boltzmann equation may be an inter-
mediate kinetic equation between microscopic and macroscopic phenomena, an
H-theorem may describe the tendency for some quantity of the kinetic system
to increase or decrease in a statistically irreversible way.

In recent work, Boghosian, Marcq and I [13] proved an H-theorem for the
YSM in the absence of redistribution, with the Gini coefficient as the corre-
sponding H-functional. Specifically, we noted that the rate of change of the
Gini coefficient is given by an infinite-dimensional version of the chain rule,

dG

dt
=

∫ ∞
0

dw
δG[P ]

δP (w)

∂P

∂w
≥ 0 , (9)

where δG[P ]/δP (w) is the Fréchet derivative of G[P ], and may be thought of
as an infinite-dimensional analog of the gradient in function space. G is then
a Liapunov functional tending inexorably toward the value 1, corresponding to
complete oligarchy.

This is a fascinating consequence of the YSM. Modern economic thinking
contends that market-forces maintain the steady-state of the wealth distribution
- the YSM alternatively suggests that not only is the supposed “steady-state” in
fact unsteady, but that without redistribution it would tend invariably toward
oligarchy. This is even more remarkable if we recall that this simple version
of the YSM assumes a symmetric probability of winning for either agent in
any transaction. This is almost difficult to believe - with symmetric chances of
winning, one agent still comes out on top.
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In fact, what is happening here is that those agents lucky enough to win
their first few transactions will never again be forfeiting a large portion of their
wealth, because the stakes in their following transactions will be a fraction of
the wealth of the poorer agents with whom they are now statistically likely to
trade. These agents may then withstand a longer string successive losses. The
unlucky agents who happen to lose their first few transactions will be unable to
re-accumulate enough wealth to break out of poverty.

This is, of course, still dependent on the symmetric trading probability.
What happens if we break this symmetry, and in what ways can it be broken?

2.3 The advantage of the wealthy

Despite the implicit advantage of the rich emergent from the YSM with sym-
metric probability, the model does not account entirely for their advantages.
Consider that the wealthy can hire better tax lawyers, can more readily hide
money offshore and can influence public policy in their favor. These are not
happenstance effects of having more money and not spending it proportionally
to those of less wealth, these are explicit advantages that the rich exploit to get
richer.

Earlier this year, Boghosian, Marcq, Wang and I [14] devised a Boltzmann
equation using an asymmetric trading probability in order to account for what
we termed a Wealth-Attained Advantage (WAA), and found the corresponding
Fokker-Planck equation in the small-transaction limit. One can quickly imagine
the effects of the WAA on the wealth dynamics of the Fokker-Planck equation.
Already prone toward oligarchy, the WAA only encourages this tendency, speed-
ing up the rate at which the distribution unbalances. As redistribution plays
the role of stabilizing the wealth distribution, it’s influence must be increased
in the presence of the WAA in order to maintain the same Gini coefficient.

However, this is by no means the only bias present in trade. Consider, for
example, that women earn about 88 cents for every dollar that men earn [15]
1, or that there is a distinct racial bias in the mortgage lending market [16].
These are biases based on the inherent characteristics of a given trader; these
are Biases due to Agent Attributes (BAA). There are, of course, an inordinate
number of characteristics that may help or hurt one’s ability to trade. In order
to statistically encapsulate these features we may consider them as a single
parameter z corresponding to an agent’s trading advantage. To introduce the
BAA to the YSM, each agent may be imbued with some random value of z,
referred to as a ‘quenched attribute’, representing a given characteristic that
each agent maintains across transactions.

The BAA is indeed the focus of this work. The following sections will involve
a more formal look at the Boltzmann equation and Fokker-Planck equation, first
in the absence of trading biases and then in the presence of the BAA, before a
final consideration of the role that this bias plays in the dynamics of wealth.

1There remains some dispute on the exact difference between the wages of women and
men, and on the forces involved in forming it. Nonetheless, the existence of this disparity
suggests a bias.
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3 Deriving the Boltzmann and Fokker-Planck
Equations for the Yard-Sale Model in the Ab-
sence of Biases

3.1 The Boltzmann equation

In a given AEM, some amount ∆w of wealth is exchanged in a pairwise trans-
action between two randomly selected agents. In the specific case of the YSM,
we assume that ∆w must be some fraction β of the wealth of the poorer agent.
Observably this is almost always true; it is exceptionally rare that we ever gain
more than our net worth in one transaction. Thus, if the wealths of two agents
are given by w and w′, then we may write

∆w = βmin(w,w′) (10)

where β is some fraction sampled from a symmetric distribution η(β), where∫
dβ η(β) = 1, its first moment equal to zero, and its second moment finite. It

is important to note that this symmetry of η is what guarantees equal chances
for each agent to walk away from a transaction with more wealth, and is exactly
what we will alter in adding a bias in the following section.

If we consider w and w′ to be the respective post-transaction wealths of the
agents starting with w and w′ then we have a transformation from R × R to
itself given by

w = w + βmin(w,w′) (11)

w′ = w′ − βmin(w,w′) (12)

with inverse

w = w − β

1− β
min

(
1− β
1 + β

w,w′
)

(13)

w′ = w′ +
β

1− β
min

(
1− β
1 + β

w,w′
)
, (14)

and with Jacobian

J(w,w′, β) :=
∂(w,w′)

∂(w,w′)
= 1

1+β θ
(
w′ − 1−β

1+βw
)

+ 1
1−β θ

(
1−β
1+βw − w

′
)
. (15)

To derive the Boltzmann equation for the YSM, we want to find the rate
of change of the agent distribution P (w, t). To do this we first consider the
small interval [w,w + dw] in the wealth spectrum. The flow of agents into this
interval will originate from transactions between agents of wealth in [w,w+dw]
and those with wealth in [w′, w′ + dw′]. The flow of agents out of this interval
will of course be due to transactions between agents of wealth in [w,w + dw]
and agents of wealth in [w′, w′ + dw′]. Thus, we find the rate of change of the
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agent distribution P (w, t) by integrating the transaction terms corresponding
to inflow and outflow with respect to w′ and w′ over their domains,

∂P (w, t)

∂t
=

1

N2

∫ ∞
0

dw′
∫ ∞
0

dw′
∫
dβ η(w,w′, β)

[
P (w, t)− P (w, t)

]
P (w′, t)P (w′, t) .

(16)

Recall that we demanded for the complete zeroth moment of P (w, t) to be
the total number of agents in the system, that is, N =

∫∞
0
dw P (w, t). Applying

this to (16) and then employing the Jacobian we may rewrite it in the following
form

∂P (w, t)

∂t
=

1

N

∫ ∞
0

dw′
∫
dβ η(w,w′, β)

[
P (w, t)P (w′, t)J(w,w′, t)−P (w, t)P (w′, t)

]
.

(17)
Combining Eqns. (13), (14), (15) and (17) yields

∂P (w)

∂t
=

∫ +1

−1

dβ η(β)

{
−
[
P (w)− 1

1 + β
P

(
w

1 + β

)]

+
1

N

∫ w
1+β

0

dx P (x)

[
P (w − βx)− 1

1 + β
P

(
w

1 + β

)]}
. (18)

Eq. (18) is the integrodifferential Boltzmann equation for the fundamental
form of the YSM.

3.2 Deriving the Fokker-Planck equation in the small
transaction limit

To derive the Fokker-Planck equation, we begin by considering Eq. (18) in the
small transaction (or small β) limit. First, note that when β = 0, the right-
hand side of Eq. (18) vanishes. Additionally, recall our demand that the first
moment of η equal zero. Thus, if we expand the inner terms of the right-hand
side of Eq. (18) in a Maclaurin series in β, the first contributing term will be of
order β2 and the higher order terms may be considered negligible. After some
calculations, our Boltzmann equation then reduces to the simpler differential
form given by

∂P (w)

∂t
=

∂2

∂w2

[
γ

(
B(w) +

w2

2
A(w)

)
P (w)

]
, (19)

where A is defined as before and B is the following incomplete wealth moment,

B :=
1

N

∫ w

0

dx P (x, t)
x2

2
, (20)

and γ is defined as the second moment of the η distribution,

γ :=

∫
dβ η(β)β2 . (21)
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3.3 An expression for redistribution

The prior conclusion of the Gini coefficient as an H-functional of the Boltzmann
equation for the YSM extends to the Fokker-Planck equation as well [13]. Thus,
the precarious balancing act of maintaining the distribution in a non-oligarchical
state must come in the form of redistribution. As a simple model of redistribu-
tion, we introduce a taxation τ on all economic agents. A given agent will gain
or lose proportional to the difference between their wealth w and the average
agent wealth W/N of the system. Accordingly, redistribution manifests itself as
an additional term in Eq. (19) in the following way,

∂P (w)

∂t
+

∂

∂w

[
τ

(
W

N
− w

)
P (w)

]
=

∂2

∂w2

[
γ

(
B(w) +

w2

2
A(w)

)
P (w)

]
. (22)

Indeed, the introduction of this redistribution term yields an agent distri-
bution convincingly akin to the Pareto distribution. A deeper consideration of
this can be found in [1].

Henceforth, we omit the redistribution term, though we return to it in later
sections to reintroduce it to the Fokker-Planck equation with the BAA. Addi-
tionally, the derivation of the WAA term in the Fokker-Planck equation is in
many ways similar to the following derivation of the BAA and thus we also omit
it until Section 6. For further reading and a full derivation of the WAA, refer
to [14].

4 A Boltzmann Equation for the Yard-Sale
Model with a Bias Due to Agent Attributes

In order to derive a Boltzmann equation for the YSM including the BAA term,
two critical changes must be made to the prior derivation of (18). As articulated
in Section 2.3, the BAA manifests itself through a new quenched attribute
ascribed at random to each agent. Thus, we allow our agent density function P
to now depend on a third variable z ∈ R that represents the trading advantage of
an agent. If z is a quantification of a unchanging characteristic of an agent, then
z = z. Our second alteration is to demand some asymmetry of the distribution
η(β). As aforementioned, the symmetry of η in the absence of bias terms is
what allowed for even trading odds between agents; thus, to introduce bias we
introduce asymmetry. Indeed, we generalize Eq. (17) as follows,

∂P (w, z, t)

∂t
=

1

N

∫ ∞
0

dw′
∫
dz′
∫
dβ η(w,w′, z, z′, β)

[
P (w, z, t)P (w′, z′, t)J(w,w′, t)

− P (w, z, t)P (w′, z′, t)
]

(23)

where the distribution η now also depends on the trading advantage of the two
agents, z and z′, with wealths w and w′, respectively. We make the following
assumptions about η: For any w,w′,∈ R+ and for any z, z′ ∈ R, we demand
that η be normalized, ∫

dβ η(w,w′, z, z′, β) = 1 ,
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that its first moment be odd under simultaneous interchange of w and w′ and
of z and z′, ∫

dβ η(w,w′, z, z′, β)β = R(z, z′) = −R(z, z′),

and that its second moment be finite,∫
dβ η(w,w′, z, z′, β)β2 <∞ .

Of the first moment we should note that the simultaneous interchange of w
and w′ and of z and z′ is natural; this can more appropriately be thought of
as an interchange of agents rather than an interchange of only the wealth or
only the trading advantage of agents which would make little physical sense.
Conservation of agents, wealth, and trading advantage are demonstrated in the
Appendices A, B, and C, respectively.

Substituting Eqs. (11), (12) and (15) into Eq. (23) and reversing the order
of integration once yields

∂P (w, z, t)

∂t
= −P (w, z, t) (24)

+
1

N

∫
dβ

1

1 + β

∫ ∞
1−β
1+β

w

dw′ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)

+
1

N

∫
dβ

1

1− β

∫ 1−β
1+β

w

0

dw′ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)

Now R(z, z′) must be asymmetric and must vanish when agents have equal
trading advantage. To maintain a certain degree of simplicity we choose to use
a linear R. Though this is by no means the only possible choice of R, the linear
term is the only one that will matter in the small-transaction limit. Thus, the
distribution η becomes

η(w,w′, z, z′, β) =
1 + r(z − z′)

2
δ(β − α) +

1− r(z − z′)
2

δ(β + α) (25)

where α ∈ [0, 1). With this choice of distribution and the first z moment of P
given by

Z(w, t) :=

∫
dz P (w, z, t)z , (26)

and we derive the following pair of coupled Boltzmann equations

∂P (w, t)

∂t
=

∫
dz

∂P (w, z, t)

∂t
= S0(w, z, t;α, r) (27)

∂Z(w, t)

∂t
=

∫
dz z

∂P (w, z, t)

∂t
= S1(w, z, t;α, r) , (28)

where we define the right-hand side of (27) as
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S0(w, z, t;α, q, r) = −P (w, t) (29)

+ 1
2N(1+α)

∫
dz

∫
dz′
∫ ∞

1−α
1+α

w

dw′
[
1 + r(z − z′)

]
P
(

w
1+α

, z, t
)
P
(
w′ + α

1+α
w, z′, t

)
+ 1

2N(1−α)

∫
dz

∫
dz′
∫ ∞

1+α
1−αw

dw′
[
1− r(z − z′)

]
P
(

w
1−α , z, t

)
P
(
w′ − α

1−αw, z
′, t
)

+ 1
2N(1−α)

∫
dz

∫
dz′
∫ 1−α

1+α
w

0

dw′
[
1 + r(z − z′)

]
P
(
w − α

1−αw
′, z, t

)
P
(
w′

1−α , z
′, t
)

+ 1
2N(1+α)

∫
dz

∫
dz′
∫ 1+α

1−αw

0

dw′
[
1− r(z − z′)

]
P
(
w + α

1+α
w′, z, t

)
P
(
w′

1+α
, z′, t

)
and the right-hand side of (28) as

S1(w, z, t;α, q, r) =

∫
dz z

{
− P (w, z, t) (30)

+ 1
2N(1+α)

∫
dz′
∫ ∞

1−α
1+α

w

dw′
[
1 + r(z − z′)

]
P
(

w
1+α

, z, t
)
P
(
w′ + α

1+α
w, z′, t

)
+ 1

2N(1−α)

∫
dz′
∫ ∞

1+α
1−αw

dw′
[
1− r(z − z′)

]
P
(

w
1−α , z, t

)
P
(
w′ − α

1−αw, z
′, t
)

+ 1
2N(1−α)

∫
dz′
∫ 1−α

1+α
w

0

dw′
[
1 + r(z − z′)

]
P
(
w − α

1−αw
′, z, t

)
P
(
w′

1−α , z
′, t
)

+ 1
2N(1+α)

∫
dz′
∫ 1+α

1−αw

0

dw′
[
1− r(z − z′)

]
P
(
w + α

1+α
w′, z, t

)
P
(
w′

1+α
, z′, t

)}
.

5 Deriving the Fokker-Planck Equation in the
Presence of the BAA

Similar to the derivation of the Fokker-Planck equation for the YSM in Sec-
tion 3.2, we now Taylor expand S0(w, z, t;α, r) and S1(w, z, t;α, r) in r and α,
treating those two quantities as of the same order. For simplicity, we suppress
notation of t. The zeroth and first-order derivatives can be verified to vanish.
At second order, we find

∂2S0

∂r2
(w, z; 0, 0) = 0 (31)

∂2S0

∂r∂α
(w, z; 0, 0) =

1

2

∂

∂w

[
Ξ

N

(
Λ + wΘ)

)
P −

(
wA+

W

N
L

)
Z

]
(32)

∂2S0

∂α2
(w, z; 0, 0) =

1

2

∂2

∂w2

[(
w2A+ 2B

)
P

]
(33)
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and

∂2S1

∂r2
(w, z; 0, 0) = 0 (34)

∂2S1

∂r∂α
(w, z; 0, 0) =

1

2

∂

∂w

[
Ξ

N

(
Λ + wΘ

)
Z −

(
wA+

W

N
L

)∫
dz z2P (w, z)

]
(35)

∂2S1

∂α2
(w, z; 0, 0) =

1

2

∂2

∂w2

[(
w2A+ 2B

)
Z

]
(36)

where we have defined the auxiliary quantities

L(w) :=
1

W

∫ w

0

dx P (x)x

Ξ :=

∫ ∞
0

dx Z(x)

Θ(w) :=
1

Ξ

∫ ∞
w

dx Z(x)

Λ(w) :=
1

Ξ

∫ w

0

dx Z(x)x .

Now, consider the variance σ2 of P where

σ2 =

∫
dz P (z)(z − Z)2 .

It follows that∫
dz P (z)z2 =

∫
dz P (z)

[
Z + (z − Z)

]2
=

∫
dz P (z)Z2 + 2

∫
dz P (z)Z(z − Z) +

∫
dz P (z)(z − Z)2

= 2Z

∫
dz P (z)z − Z2

∫
dz P (z) + σ2

= Z2 + σ2 .

We make the assumption that P is a narrow distribution, based on the idea
that the differences in trading behavior of agents are slight. Thus, P has a low
variance, and the above accordingly yields the approximation∫

dz P (w, z)z2 ∼= [Z(w)]
2
. (37)

We now reassemble the expansions of S0 and S1 into a Fokker-Planck equation,
employing Eq. (37), giving us

∂P

∂t
=

∂2

∂w2

[
γ

(
w2

2
A+B

)
P

]
+

∂

∂w

{
σ

[
Ξ

N

(
Λ + wΘ

)
P −

(
wA+

W

N
L

)
Z

]}
(38)

∂Z

∂t
=

∂2

∂w2

[
γ

(
w2

2
A+B

)
Z

]
+

∂

∂w

{
σ

[
Ξ

N

(
Λ + wΘ

)
Z −

(
wA+

W

N
L

)
Z2

]}
(39)
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where we have defined the constants γ and σ to quantify the overall transaction
rate and the BAA, respectively.

6 Reintroducing Redistribution and the WAA

The WAA term as derived by Boghosian [14] in earlier work is given by

∂

∂w

{
ζ

[(
B(w)− w2

2
A(w)

)
+
W

N
w

(
1

2
− L(w)

)]
P (w)

}
. (40)

This is straightforward to derive from (18) using the distribution

η(w,w′, z, z′, β) =
1 + q(w − w′) + r(z − z′)

2
δ(β − α)

+
1− q(w − w′)− r(z − z′)

2
δ(β + α) (41)

and following the procedures of Sections 2 and 3. Master versions of the Boltz-
mann Eqs. (30) and (31) with both the WAA and BAA terms are given in full
in Appendix C.

Now, in order to reintroduce the redistribution term and the WAA term
into the set of coupled Fokker-Planck equations, we must take their zeroth and
first z moments as follows. The zeroth moments are straightforward to compute
(they are identical to their representations in the absence of the BAA). The first
z moment of the redistribution term is∫

dz
∂

∂w

[
τ

(
W

N
− w

)
P (w, z)

]
z =

∂

∂w

∫
dz

[
τ

(
W

N
− w

)
P (w, z)

]
z

=
∂

∂w

[
τ

(
W

N
− w

)
Z(w)

]
(42)

Taking similar steps, we find the first z moment for the WAA to be

∂

∂w

{
ζ

[(
B(w)− w2

2
A(w)

)
+
W

N
w

(
1

2
− L(w)

)]
Z(w)

}
. (43)

Thus, our full coupled Fokker-Planck equations, with τ , γ, ζ and σ quanti-
fying the rate of redistribution, rate of transactions, the WAA and the BAA,
respectively, are
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∂P (w)

∂t
=

∂2

∂w2

[
γ

(
w2

2
A(w) +B(w)

)
P (w)

]
− ∂

∂w

[
τ

(
W

N
− w

)
P (w)

]
(44)

+
∂

∂w

{
ζ

[(
B(w)− w2

2
A(w)

)
+
W

N
w

(
1

2
− L(w)

)]
P (w)

}

+
∂

∂w

{
σ

[
Ξ

N

(
Λ(w) + wΘ(w)

)
P (w)−

(
wA(w) +

W

N
L(w)

)
Z(w)

]}

∂Z(w)

∂t
=

∂2

∂w2

[
γ

(
w2

2
A(w) +B(w)

)
Z

]
− ∂

∂w

[
τ

(
W

N
− w

)
Z(w)

]
(45)

+
∂

∂w

{
ζ

[(
B(w)− w2

2
A(w)

)
+
W

N
w

(
1

2
− L(w)

)]
Z(w)

}

+
∂

∂w

{
σ

[
Ξ

N

(
Λ(w) + wΘ(w)

)
Z(w)−

(
wA(w) +

W

N
L(w)

)
Z(w)2

]}
.

7 Results

To simulate the effects of the BAA on the dynamics of wealth, I used a Monte-
Carlo method to generate wealth distributions over a system of 2000 agents,
where each agent is given an initial wealth W/N = 10. I assume trading advan-
tage to be distributed like a Gaussian, and thus imbue each agent with a random
value of z pulled from a normal distribution under an affine transformation such
that it is centered at 0.5 and has support on the unit interval.

Figure 4: Scatter plots of trading advantage vs. wealth in the absence (left
plot with σm = 0) and presence (right plot with σm = 1) of the z bias. Data was
generated using Monte-Carlo simulations of 100,000 transactions in a system of 2000
agents with W/N = 10 and τm = 0.1.
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The first and perhaps most obvious way to explore the effects of the BAA is
in the form of a scatter plot of the system, where the wealth of an agent is plot-
ted against its trading advantage. Fig. 4 then offers an immediate qualitative
realization of the BAA, where the left plot is a control population without any
trading bias, and the right plot is generated in the presence of a moderate BAA
normalized to the width of the z-distribution. Both plots were created by run-
ning the Monte-Carlo script for 100,000 transactions, with the amount traded
in a given transaction bounded above by 10% of the poorer agent’s wealth (in
accord with the YSM). The parameters τm and σm represent redistribution and
the strength of the BAA, though the m subscripts specify them to be parame-
ters specifically of the Monte-Carlo script and they are indeed uncalibrated with
the τ and σ of the Fokker-Planck equations in Section 6.

In order to explore the effects of the bias and to observe its behavior, we
amplify the effect of the bias. Fig. 5 demonstrates more severe results, where
the left plot is for a strong bias at σm = 5, and the right plot is for a very strong
bias with σm = 10 where agents are all but guaranteed to win a transaction in
which they have the dominant z. The results are stark and demonstrate the
extremes of the BAA. The height of the cluster of poorer agents at the bottom
of both plots is maintained by the magnitude of τm, set to 0.1, corresponding
to a 10% transaction tax.

For a more qualitative inspection of the BAA, consider the cumulative dis-
tribution of wealth against the cumulative distribution of agents with respect
to trading advantage. The shape of the resulting curve may accordingly be ti-
tled a z-Lorenz curve, where the fraction of agents with trading advantage in
the interval [zmin, z] is plotted on the abscissa, against the fraction of wealth of
said agents plotted on the ordinate. A corresponding measure of inequality is
then the z-Gini coefficient, defined naturally as the fraction of the triangular

Figure 5: Scatter plots of trading advantage vs. wealth in the presence of a
strong BAA (left plot with σm = 5) and a BAA in which the agent with higher trading
advantage is all but guaranteed to win (right plot with σm = 10). Data was generated
using Monte-Carlo simulations of 100,000 transactions in a system of 2000 agents with
W/N = 10 and τm = 0.1.
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area beneath the diagonal represented by the region between the diagonal and
z-Lorenz curve.

Plotted in Fig. 6 is a z-Lorenz curve for τm = 0.1, in the presence of the
BAA; σm = 1. The Monte-Carlo code was truncated after 80,000 transactions
at which point the z-Gini had reached its asymptotic limit. Fig. 6 corresponds
to the right scatter plot of Fig. 4.

Figure 6: z-Lorenz curve and Table of z-Gini plotted for four different levels of
transaction, with τm = 0.1, σm = 1 and 95% confidence intervals. The distribution
reaches a steady-state in terms of z-Gini in 80,000 transactions, for 2000 agents.

Transactions z-Gini

20,000 0.0786

40,000 0.107

60,000 0.111

80,000 0.118

Once again, in order to understand the limits and potential of the BAA,
we extremize it, setting σm = 10 so that in any given transaction, the agent
with higher trading advantage is all but guaranteed to win. The results are
plotted in Fig. 7. The obvious and predictable result is the higher degree of
wealth inequality, given by a larger z-Gini coefficient. The subtler but no less
interesting result is the acceleration of the z-Gini toward its asymptotic limit.

Figure 7: z-Lorenz curve and Table of z-Gini plotted for four different levels of
transaction, with 95% confidence intervals. τm = 0.1 and a strong bias where σm = 10.
The distribution reaches a steady-state in terms of z-Gini in 60,000 transactions, for
a system of 2000 agents.

Transactions z-Gini

20,000 0.279

40,000 0.325

60,000 0.337

80,000 0.337
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Figure 8: z-Lorenz curve in the ab-
sence of tax and the presence of BAA,
with 95% confidence intervals for a sys-
tem of 2000 agents. The orange diago-
nal is the initial distribution of wealth.
The leftmost blue curve required 50,000
transactions. Each successive curve to
the right required twice the transactions
of the former; the rightmost curve used
1.6 million transactions. This numeri-
cally supports the claim made below that
the z-Gini tends towards 1 in the absence
of redistribution.

To reiterate one of the important conclusions of the H-theorem for the Boltz-
mann and Fokker-Planck equations, redistribution is critical in establishing a
steady-state of the wealth distribution, and it thus dictates the upper bound
on the asymptotic Gini coefficient. This must also be true of the z-Gini, sug-
gested numerically by Fig. 8, in which the curves diverging from the diagonal
correspond to higher and higher numbers of transactions. I leave this open as a
conjecture for future analysis; in the absence of redistribution and the presence
of the BAA, the asymptotic limit of the z-Gini must be 1.

Figure 9: Asymptotic z-Gini as a function of τm, with a parametric dependence
on the BAA for a system of 2000 agents. The σm values corresponding with the various
plots are as follows: teal = 10, blue = 4, purple = 2, red = 1, orange = 0.5, and black
= 0, with 95% confidence intervals. Note that the asymptotics are approximate, and
for τm ≈ 0, the upper 5 curves should more accurately tend toward 1.
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Now, to further investigate the relationship of redistribution and the asymp-
totic z-Gini, consider Fig. 9 in which z-Gini is plotted as a function of τm with
a parametric dependence on the BAA. All curves were generated by the Monte-
Carlo script, run with a tolerance to detect the asymptotic limit, or run for
an upper limit of 500,000 transactions if this tolerance was not met. For this
reason, all curves are not the true asymptotic limit of z-Gini, but rather an
approximation. Indeed, by the above prediction, all curves should intersect in
the upper left corner as z-Gini tends toward 1 without redistribution. The σm
values corresponding with the various curves are as follows: teal = 10, blue =
4, purple = 2, red = 1, orange = 0.5, and black = 0.

8 Conclusions

The goal of this work was to quantify the BAA and to carefully consider its
effects on the dynamics of wealth within the kinetic framework laid out by
Boghosian. More generally, this work was intended to serve the larger goal of
developing this model toward a more realistic representation of distributions of
wealth.

To these ends, I was able to rederive a pair of coupled Boltzmann equations
and the corresponding Fokker-Planck equation in the presence of the BAA. I
numerically simulated its effects on wealth dynamics through a Monte-Carlo
algorithm. I showed the influence of the BAA by demonstrating its resulting
deviation from a uniform distribution of wealth. I considered these results in the
proposed z-Lorenz curve and conjectured that in the absence of redistribution,
the corresponding z-Gini coefficient must tend toward 1. Lastly, I explored
the parametric relationship between redistribution and z-Gini coefficient, and
showed that the BAA is a concentrating force on the distribution of wealth.

The kinetic model of the YSM expounded in this work is still in its nascent
stage. The prior introduction of the WAA, and the introduction of the BAA pre-
sented above represent important steps toward a quantitative model of wealth
distribution, and are in support of real macroeconomic observations. I believe
that this model and, more generally, that this approach borrowed from statisti-
cal physics founded on underlying principles of the way in which people trade,
will play an influential role in our future understanding of wealth. Indeed, it
may only be through this lens that Pareto’s hopes of understanding the forces
that shape the distribution of wealth may be met, and that his macroeconomic
observations may be reconciled with the microfoundations that support them.
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A Conservation of Agents

To confirm that the YSM with BAA conserves agents, first we recall our defini-
tion of the η distribution where∫

dβ η(w,w′, z, z′, β) = 1 .

We then integrate Eq. (23) with respect to both w and z,

dN

dt
=

1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)[P (w, z, t)P (w′, z′, t)J(w,w′, t)

− P (w, z, t)P (w′, z′, t)]

=
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)

− 1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)

=
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t)

− 1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t)

=
1

N

(∫ ∞
0

dw

∫
dz P (w, z, t)

)(∫ ∞
0

dw′
∫
dz′ P (w′, z′, t)

)
− 1

N

(∫ ∞
0

dw

∫
dz P (w, z, t)

)(∫ ∞
0

dw′
∫
dz′ P (w′, z′, t)

)
=

1

N

(∫ ∞
0

dw P (w, t)

)(∫ ∞
0

dw′ P (w′, t)

)
− 1

N

(∫ ∞
0

dw P (w, t)

)(∫ ∞
0

dw′ P (w′, t)

)
=

N

N

∫ ∞
0

dw′ P (w′, t)− N

N

∫ ∞
0

dw′ P (w′, t)

= N −N
= 0 ,

demonstrating that agents are conserved by the Boltzmann equation.

B Conservation of Wealth

To show that the Boltzmann equation conserves wealth, first recall that for the
distribution η we demanded that∫

dβ η(w,w′, z, z′, β) = 1

and that ∫
dβ η(w,w′, z, z′, β)β = R(z, z′) .
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We multiply Eq. (23) by w and then integrate with respect to both w and z,

dW

dt
=

1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)[P (w, z, t)P (w′, z′, t)J(w,w′, t)

− P (w, z, t)P (w′, z′, t)]w

=
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)J(w,w′, t)w

− 1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)w

=
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)(w + βmin(w,w′))

− 1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t)w

=
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t)w

+
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t) min(w,w′)R(z, z′)

− 1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t)w

=
1

N

(∫ ∞
0

dw

∫
dz P (w, z, t)w

)(∫ ∞
0

dw′
∫
dz′ P (w′, z′, t)

)
− 1

N

(∫ ∞
0

dw

∫
dz P (w, z, t)w

)(∫ ∞
0

dw′
∫
dz′ P (w′, z′, t)

)
+

1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t) min(w,w′)R(z, z′)

= W
N

N
−W N

N

+
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t) min(w,w′)R(z, z′)

=
1

N

∫
dz

∫ ∞
0

dw

∫
dz′
∫ ∞
0

dw′ P (w, z, t)P (w′, z′, t) min(w,w′)R(z, z′)

= 0 .

where the last steps follows from the assumption we made on R to be odd
under simultaneous interchange of w with w′ and of z with z′, while the rest of
the integrals remains symmetric under these interchanges, thus demonstrating
conservation of wealth.
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C Conservation of Trading Advantage

To show that the YSM conserves trading advantage, we first multiply Eq. (23)
by z and then integrate with respect to both w and z,

dΞ

dt
=

1

N

∫ ∞
0

dw

∫
dz

∫ ∞
0

dw′
∫
dz′
∫
dβ η(w,w′, z, z′, β)

[
P (w, z, t)P (w′, z′, t)J(w,w′, t)

− P (w, z, t)P (w′, z′, t)
]
z

=
1

N

∫ ∞
0

dw

∫
dz

∫ ∞
0

dw′
∫
dz′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t) z

− 1

N

∫ ∞
0

dw

∫
dz

∫ ∞
0

dw′
∫
dz′
∫
dβ η(w,w′, z, z′, β)P (w, z, t)P (w′, z′, t) z

=
1

N

∫ ∞
0

dw

∫
dz

∫ ∞
0

dw′
∫
dz′ P (w, z, t)P (w′, z′, t) z

(∫
dβ η(w,w′, z, z′, β)

)
− 1

N

∫ ∞
0

dw

∫
dz

∫ ∞
0

dw′
∫
dz′ P (w, z, t)P (w′, z′, t) z

(∫
dβ η(w,w′, z, z′, β)

)
=

1

N

(∫ ∞
0

dw

∫
dz P (w, z, t) z

)(∫ ∞
0

dw′
∫
dz′ P (w′, z′, t

)
− 1

N

(∫ ∞
0

dw

∫
dz P (w, z, t) z

)(∫ ∞
0

dw′
∫
dz′P (w′, z′, t)

)
=

N

N

(∫ ∞
0

dw

∫
dz P (w, z, t) z

)
− N

N

(∫ ∞
0

dw

∫
dz P (w, z, t) z

)
=

∫ ∞
0

dw Z(w, t)−
∫ ∞
0

dw Z(w, t)

= Ξ− Ξ

= = 0 ,

demonstrating that trading advantage is conserved by the Boltzmann equation.

D Master Boltzmann Equations Including the
WAA and BAA Terms

For η defined in (25), we derive the following pair of coupled Boltzmann equa-
tions

∂P (w, t)

∂t
=

∫
dz

∂P (w, z, t)

∂t
= S0(w, z, t;α, q, r) (46)

∂Z(w, t)

∂t
=

∫
dz z

∂P (w, z, t)

∂t
= S1(w, z, t;α, q, r) (47)

where we define the right-hand side of (46) as
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S0(w, z, t;α, q, r) = −P (w, t) (48)

+ 1
2N(1+α)

∫
dz

∫
dz′
∫ ∞

1−α
1+α

w

dw′
[
1 + r(z − z′) + q

(
1−α
1+α

w − w′
) ]
P
(

w
1+α

, z, t
)
P
(
w′ + α

1+α
w, z′, t

)
+ 1

2N(1−α)

∫
dz

∫
dz′
∫ ∞

1+α
1−αw

dw′
[
1− r(z − z′)− q

(
1+α
1−αw − w

′
) ]
P
(

w
1−α , z, t

)
P
(
w′ − α

1−αw, z
′, t
)

+ 1
2N(1−α)

∫
dz

∫
dz′
∫ 1−α

1+α
w

0

dw′
[
1 + r(z − z′) + q

(
w − 1+α

1−αw
′
) ]
P
(
w − α

1−αw
′, z, t

)
P
(
w′

1−α , z
′, t
)

+ 1
2N(1+α)

∫
dz

∫
dz′
∫ 1+α

1−αw

0

dw′
[
1− r(z − z′)− q

(
w − 1−α

1+α
w′
) ]
P
(
w + α

1+α
w′, z, t

)
P
(
w′

1+α
, z′, t

)

and the right-hand side of (47) as

S1(w, z, t;α, q, r) =

∫
dz z

[
− P (w, z, t) (49)

+ 1
2N(1+α)

∫
dz′
∫ ∞

1−α
1+α

w

dw′
[
1 + r(z − z′) + q

(
1−α
1+α

w − w′
) ]
P
(

w
1+α

, z, t
)
P
(
w′ + α

1+α
w, z′, t

)
+ 1

2N(1−α)

∫
dz′
∫ ∞

1+α
1−αw

dw′
[
1− r(z − z′)− q

(
1+α
1−αw − w

′
) ]
P
(

w
1−α , z, t

)
P
(
w′ − α

1−αw, z
′, t
)

+ 1
2N(1−α)

∫
dz′
∫ 1−α

1+α
w

0

dw′
[
1 + r(z − z′) + q

(
w − 1+α

1−αw
′
) ]
P
(
w − α

1−αw
′, z, t

)
P
(
w′

1−α , z
′, t
)

+ 1
2N(1+α)

∫
dz′
∫ 1+α

1−αw

0

dw′
[
1− r(z − z′)− q

(
w − 1−α

1+α
w′
) ]
P
(
w + α

1+α
w′, z, t

)
P
(
w′

1+α
, z′, t

)]
.

Both S0 and S1 verifiably conserve agents and wealth, though the proof of this
is omitted as it is very similar to those found in Appendices A and B.
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