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ABSTRACT 

A dynamic interactive framework for person construal is proposed. It argues that 

the perception of other people is accomplished by a dynamical system involving 

continuous interaction between social categories, stereotypes, high-level cognitive states, 

and the low-level processing of facial, vocal, and bodily cues. This system permits lower-

level sensory perception and higher-order social cognition to dynamically coordinate 

across multiple interactive levels of processing to give rise to stable person construals. A 

recurrent connectionist model of this system is described, which accounts for a wide 

range of experimental findings from a computer mouse-tracking technique that examines 

social categorization in real time. These include evidence for a) continuously evolving 

category representations and a dynamic competition process underlying categorization 

(Studies 1–4); b) continuous face–voice interaction during categorization (Studies 5–6), 

and c) the continuous top-down influence of stereotype activations on categorization 

(Studies 7–8). Together, across 8 studies, mouse-tracking and computational simulations 

provide converging evidence for the dynamic and interactive nature of person construal. 

Implications and new predictions arising from this framework are discussed. 
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INTRODUCTION 

With only a fleeting glimpse, a constellation of near-instant judgments are often 

made about another person. Although frequently warned not to “judge a book by its 

cover,” our tendency to make meaning out of the sensory information availed by others is 

typically beyond our conscious control. From minimal cues afforded by the face, voice, 

and body, we unwittingly infer the intentions, thoughts, personalities, emotions, and 

category memberships (e.g., sex, race, age) of those around us. While some of these 

judgments may be expectancy-driven and biased by our stereotypes (Brewer, 1988; Fiske 

& Neuberg, 1990; Macrae & Bodenhausen, 2000), others may be surprisingly accurate 

and expose humans’ exquisite ability to perceive other people from only the briefest of 

observations (Ambady, Bernieri, & Richeson, 2000). 

This unique ability to perceive other people, however, is plagued by a basic 

contradiction. As readily and rapidly as we may dispel our judgments of others, each 

judgment requires an astonishing complexity of mental processing; and despite their 

complexity, however, they occur with remarkable ease. From a single face, for example, 

any number of perceptions (e.g., sex, emotion) are immediately available, but each 

requires the integration of an enormous amount of information. Unlike objects, other 

people are highly complex stimuli, embedded in a rich set of contexts and grounded in 

multiple sensory modalities. All the features and configural properties of a person’s face 

must be bound together, along with that person’s hair and array of bodily cues. Auditory 

cues of a person’s voice are available as well, and these must be bound together with the 

person’s visual cues to form a coherent social percept. Such a complexity of bottom-up 

sensory information is matched, however, by a similar complexity in top-down 
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information sources that are uniquely present in person perception. For example, people 

bring a great deal of prior knowledge, stereotypic expectations, and affective and 

motivational states to the process of perceiving others. The influences of these top-down 

factors may often, I will argue, seep down into the perceptual process itself. In person 

perception, therefore, there is a vast array of information—bottom-up and top-down—

that must rapidly conspire to drive perceptions in the impressively short time it takes to 

arrive at a simple judgment of another person.  

If person perception is characterized by, on the one hand, being highly complex, 

and on the other being highly efficient, research has historically placed a great deal of 

focus on the latter. Seminal work in social psychology by Allport (1954), Sherif (1967), 

and Tajfel (1969), for example, argued that individuals perceive others via spontaneous, 

perhaps inevitable, category-based impressions that are highly efficient and designed to 

economize on mental resources. Since then, a vast array of studies have demonstrated that 

such category-based impressions bring about a host of cognitive, affective, and behavioral 

outcomes. Mere exposure to another person has long been known to automatically trigger 

a relevant social category (e.g., sex, race, age), and along with that category, its 

corresponding knowledge structure. Activating category knowledge, it has been shown, 

then spontaneously changes how individuals think about others, feel about them, and 

behave towards them, often in ways that may occur nonconsciously (e.g., Bargh, 1994; 

Bargh, 1999; Brewer, 1988; Devine, 1989; Dovidio, Kawakami, Johnson, Johnson, & 

Howard, 1997; Fazio, Jackson, Dunton, & Williams, 1995; Fiske & Neuberg, 1990; 

Gilbert & Hixon, 1991; Sinclair & Kunda, 1999). For example, activated category 

representations shape subsequent encoding and representation of any information relevant 
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to the target (Bodenhausen, 1988). Their associated knowledge structures (e.g., 

stereotypes) become a lens that molds the judgments perceivers make and impressions 

they form (Brewer, 1988; Fiske & Neuberg, 1990) and distorts perceivers’ memories of a 

target (Hamilton & Sherman, 1994). Perceivers’ behavior is even subject to these 

influences as well (Bargh, 1997). For instance, activation of the category, elder, can lead 

perceivers to walk more slowly (Bargh, Chen, & Burrows, 1996) and activation of the 

category, professor, can boost performance on general knowledge tests (Dijksterhuis & 

Van Knippenberg, 1998). Unquestionably, social category activation is highly 

consequential.  

It became clear with such findings that social categorization had a powerful role in 

shaping interpersonal interactions. Naturally, therefore, social psychological research 

placed a great deal of focus on the downstream implications of categorization. Given this 

focus, research on person perception by and large investigated how perceivers make 

judgments from written behavioral descriptions, often in ways that influence downstream 

processing (but see McArthur & Baron, 1983). Real-world social targets, however, are 

not generally encountered through behavioral descriptions. Rather, in real life perceivers 

encounter other people first through sensory cues of the face, voice, and body. The 

theoretical and empirical work examining the links between lower-level perceptual 

processing and higher-order social cognition began only recently (see Bodenhausen & 

Macrae, 2006; Zebrowitz, 2006). Although it was long understood that perceivers 

frequently categorize other people along a variety of dimensions (e.g., sex, race, age) 

from mere exposure to their face (Brewer, 1988; Fiske & Neuberg, 1990; Strangor, 
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Lynch, Duan, & Glas, 1992), the mechanisms and perceptual determinants underlying 

these categorizations received considerably less attention.    

While social psychologists were documenting the downstream implications of 

perceiving others, cognitive psychologists and neuroscientists were examining person 

perception from a different perspective. They were concentrating their efforts on 

investigating the perceptual mechanisms of face processing (Bruce & Young, 1986; 

Burton, Bruce, & Johnston, 1990; Calder & Young, 2005; Farah, Wilson, Drain, & 

Tanaka, 1998; Haxby, Hoffman, & Gobbini, 2000). Recently, by integrating the social 

cognitive framework of person perception with insights from the cognitive literature on 

face processing, a growing body of research has begun to link lower-level perceptual 

processing with higher-order social cognition. This emerging body of work has come to 

be referred to as “person construal” research. Traditional social cognition research 

focused on the relatively high-level cognitive processes involved in person categorization 

and individuation, especially how these shape downstream phenomena (e.g., stereotyping, 

behavior). Person construal research, on the other hand, seeks to understand the lower-

level perceptual mechanisms that produce these social cognitive phenomena in the first 

place.  

A Dynamic Interactive Framework for Person Construal 

Over the past two decades, researchers have developed a number of models of 

person perception, including models that explain how we reason about other people and 

infer their personality traits, how we categorize and individuate, and how explicit 

knowledge and memory of other people is learned, stored, and accessed (Bodenhausen & 

Macrae, 1998; Brewer, 1988; Chaiken & Trope, 1999; Conrey, Sherman, Gawronski, 
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Hugenberg, & Groom, 2005; Fiske, Cuddy, Glick, & Xu, 2002; Fiske & Neuberg, 1990; 

Higgins, 1996; Kunda & Thagard, 1996; Read & Miller, 1998b; Smith & DeCoster, 

1998; Srull & Wyer, 1989; van Overwalle & Labiouse, 2004). These models tend to place 

categorization as a starting point, after which subsequent interpersonal phenomena are 

richly explained (e.g., impressions, memory, behavior). Thus, the focus of these models is 

not to explain the categorization process; it is to explain the higher-order social cognitive 

processing that comes after. 

Person construal research seeks to examine the lower-level perceptual 

mechanisms and determinants of categorization, including how categories and stereotypes 

are activated from cues of the face, voice, and body. Here, I will propose a framework 

that details how such lower-level perceptual processing contributes to higher-order social 

cognitive phenomena. This framework utilizes popular approaches to cognition, namely 

connectionism and dynamical systems theory (Kelso, 1995; Port & van Gelder, 1995; 

Rogers & McClelland, 2004; Rumelhart, Hinton, & McClelland, 1986; Smolensky, 1989; 

Spivey, 2007). Recently, researchers have applied connectionist models to understand 

social cognitive phenomena as well (e.g., Kunda & Thagard, 1996; Read & Miller, 1993, 

1998a; Read, Vanman, & Miller, 1997; Smith & DeCoster, 1998, 1999; van Overwalle, 

2007; van Overwalle & Labiouse, 2004; Zebrowitz, Fellous, Mignault, & Andreoletti, 

2003). In the present work, I will apply connectionism and dynamical systems theory to 

explain the process of person construal. As such, I aim to provide a framework that 

explains social categorization processes at a perceptual level and links these processes to 

the higher-order social cognitive phenomena emphasized in prior models of person 

perception.  
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Top-Down and Bottom-Up Interactivity 

In perceiving the world, we are continually extracting sensory information to 

guide our attempts in discerning what it is that lies before us. Even with the most 

mundane kinds of construal, such as perceiving objects or environments, we bring a great 

deal of knowledge to the perceptual process. This is only truer in the case of perceiving 

other people. Our rich set of prior experiences with another person or the regularities in 

our experience with whole groups of people (e.g., sex, race, age) undoubtedly provide a 

lens through which we construe others. Beyond the prior knowledge that might 

contextualize perception, our everyday encounters with others are also replete with 

complex affective and motivational states. Though there is much prior knowledge about 

the objects or environments we might encounter, this only pales in comparison to what is 

brought to the table when perceiving other people. We may have stereotypic beliefs about 

people of a certain sex, we may feel disdain for someone who has made us cry, or we may 

be motivated to make a good impression in order to land the job. In short, there is an 

enormity of prior knowledge and high-level states that may be brought to bear on the 

perception of our social world. Although traditionally it was long assumed that perception 

is primarily a bottom-up phenomenon and insulated from any top-down influence of 

higher-order processes (e.g., Fodor, 1983; Marr, 1982), it is becoming increasingly clear 

that perception arises instead from both bottom-up and top-down influences, likely 

mediated by large-scale neural oscillations (e.g., Engel, Fries, & Singer, 2001; Gilbert & 

Sigman, 2007). Even the earliest of responses in primary visual cortex, for example, are 

altered by top-down factors (Li, Piëch, & Gilbert, 2004). I argue, therefore, that our prior 

knowledge and expectations about people, our stereotypes, and our affective and 
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motivational states may all interact with incoming sensory information in the perceptual 

process to shape person construal.  

 The person construal process invites another form of interactivity as well, one that 

is driven directly by the incoming sensory information itself. Whereas the perception of 

an object, for example, generally affords only one focal type of construal (e.g., “that’s a 

table”), multiple construals are simultaneously availed to person perceivers, including 

sex, race, age, emotion, or inferences of personality characteristics, to name a few. Given 

how many construals are available, sometimes the perceptual cues supporting certain 

construals will, by chance, overlap. For instance, the cues specifying another person’s sex 

and emotional state can overlap (Becker, Kenrick, Neuberg, Blackwell, & Smith, 2007). 

An adult’s facial features might by chance happen to overlap with the facial features more 

common in babies or with the facial features of another person we know, in turn shaping 

our inferences of his or her personality characteristics (Zebrowitz & Montepare, 2008). 

Thus, certain person construals may be thrown into interaction with one another because 

they are directly confounded in the bottom-up sensory information itself. 

Time Dependence and Continuous Temporal Dynamics 

 I argue that the process of person construal is dynamic, in the sense that it takes 

time and fluctuates over time, and that representations triggered during this process are 

inherently time-dependent. Accordingly, after catching sight of another person, 

representations of social categories and stereotypes would be dynamically evolving across 

hundreds of milliseconds until stabilizing over time. Thus, at each moment during the 

categorization process, representations would be varying as a function of time, making 

time-dependent transitions between, for instance, ~0% activation and ~100% activation. 
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This is not particularly surprising when considering how a social categorization would be 

implemented in an actual human brain.  

For instance, there is now a great deal of evidence suggesting that mental 

representations, as realized in the brain, are neuronal populations that convey information 

(e.g., “he’s a man!”) through patterns of activity distributed across many neurons (Rogers 

& McClelland, 2004; Spivey, 2007; Spivey & Dale, 2004). This was confirmed with 

regard to representations of the face by studies that recorded populations of temporal 

cortex neurons in nonhuman primates (Rolls & Tovee, 1995; Sugase, Yamane, Ueno, & 

Kawano, 1999). Thus, most modern-day accounts assume that mental representations, 

such as a representation of a social category, involve continuous changes in a pattern of 

neuronal activity (e.g., Rogers & McClelland, 2004; Smith & Ratcliff, 2004; Spivey, 

2007; Spivey & Dale, 2004; Usher & McClelland, 2003). For instance, about 50% of a 

face’s identity is transiently represented in macaque temporal cortex as early as only 80 

ms after a face’s presentation, but the remaining 50% of its representation gradually 

accumulates over the following hundreds of milliseconds (Rolls & Tovee, 1995). Thus, in 

early moments of processing representations of a face’s category memberships would 

reflect a rough “gist,” because the initial rough sketch of the face is partially consistent 

with multiple interpretations (e.g., both male and female). As the ongoing accrual of more 

and more information continues, however, the pattern of neuronal activity would 

gradually sharpen into an increasingly confident representation (e.g., male) while other 

competing, partially-active representations (e.g., female) are pushed out (Freeman, 

Ambady, Midgley, & Holcomb, 2011; Smith & Ratcliff, 2004; Spivey & Dale, 2004; 

Usher & McClelland, 2003). 
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This approach proposes therefore that a single category representation (e.g., male) 

would not discretely activate at an instantaneous moment after a target’s presentation, nor 

would a single category representation transition from zero activation to full activation 

across time. Instead, this approach suggests that person construal would involve 

alternative, competing categories that are simultaneously and partially active, and these 

would evolve over time until stabilizing onto ultimate construals. Given such proposed 

continuous dynamics, I argue that person construal is a temporally dynamic process and 

that person construal phenomena (e.g., a social categorization; activation of a stereotype) 

would be best understood as gradual time-dependent transitions between mental states 

(e.g., from state A, the initial sight of another person, transitioning to state B, the ~100% 

confident recognition that the person is a White man). Further, I argue that during this 

time-dependent process, representations of a person’s category memberships (e.g., male, 

White) as well as other candidate category memberships (e.g., female, Black, Asian) 

would be rapidly fluctuating over time until achieving a stable, steady state.  

Complex Integration 

 Person construal routinely involves complex integration. Even the simplest of 

construals, such as categorizing a person’s sex, requires simultaneous integration of an 

enormous amount of information. For instance, all the various cues of the internal face in 

addition to peripheral cues such as hair must be integrated into a coherent interpretation 

of a target’s sex. In many person construal tasks of the laboratory, this may be the only 

information available to perceivers—and even these simple tasks require already a 

substantial integration among cues. In everyday person construal and more complicated 

laboratory tasks, however, the integration is even more complex. For instance, perceivers 
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receive information from multiple sensory modalities at the same time. Thus, to perceive 

the sex of real-world social targets, all the sex-specifying cues of the face and body 

arriving in the visual system must be integrated together with the vocal cues arriving in 

the auditory system. Moreover, not only does bottom-up sensory information need to be 

integrated, so too do top-down information sources, as described earlier. For instance, 

high-level motivational states influence the perception of a face’s race (Pauker et al., 

2009). Moreover, priming context, expectations, stereotypes, cultural knowledge, among 

many other top-down factors, shape basic perceptions (e.g., Balcetis & Dunning, 2006; 

Eberhardt, Dasgupta, & Banaszynski, 2003; Hugenberg & Bodenhausen, 2004; Johnson, 

Pollick, & McKay, 2010; MacLin & Malpass, 2001; Pauker, Rule, & Ambady, 2010). 

Thus, there is a complexity of information involving many sources—some bottom-up, 

some top-down—that must be integrated together in a very short amount of time to 

perceive others.  

Summary of Theoretical Claims 

In consideration of the above, I propose that perceptions of other people are 

accomplished by a dynamical system in which they gradually emerge through the ongoing 

interaction between categories, stereotypes, high-level cognitive states, and the low-level 

processing of facial, vocal, and bodily cues. As such, this system permits lower-level 

sensory perception and higher-order social cognition to continuously coordinate across 

multiple interactive levels of processing to give rise to stable person construals. A 

computational model, introduced below, will capture this theory of person construal. 
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Introduction of the Model 

A general diagram of the proposed dynamic interactive model of person construal 

appears in Figure 1. It is a recurrent connectionist network with stochastic interactive 

activation (McClelland, 1991). The figure depicts a number of pools; in specific 

instantiations of the model, each pool will contain a variety of nodes (e.g., MALE, BLACK, 

AGGRESSIVE, FEMALE CUES). Specific details on the model’s structure as well as relevant 

background on connectionist networks of this type are found in Appendix A. The model 

provides an approximation of the kind of processing that might take place in a human 

brain (Rogers & McClelland, 2004; Rumelhart et al., 1986; Smolensky, 1989; Spivey, 

2007), specifically in the context of perceiving other people. An important aim of the 

present work is to demonstrate how this model can capture a wide range of person 

construal phenomena, including those explored in the current experimental studies. 
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Figure 1. A general diagram of the dynamic interactive model of person construal. The 

Cue Level contains two pools: a Face/Body Cues pool, which contains detectors for 

visual features, and a Voice Cues pool, which contains detectors for auditory features. 

Cue nodes are directly stimulated by bottom-up input from visual and auditory systems. 

The Category Level contains a number of competitive pools that correspond with social 

category dimensions, such as Sex, Race, Age, and Emotion (although any dimensions 

may be used, e.g., Occupation). Each of these pools contain category nodes (e.g., Female, 

White, Janitor, Happy). The Stereotype Level contains one pool that includes nodes for 

all category-related stereotypes (e.g., Aggressive). The Higher-Order Level contains 

nodes corresponding with high-level cognitive states, such as task demands, motivations, 

prejudice, goals, among others. Higher-order nodes are directly stimulated by input from 

higher levels of mental processing (e.g., motivational systems or top-down attentional 

systems). 

 

 

 

Initially, the network is stimulated simultaneously by both bottom-up and top-

down inputs (see Figure 1). For model instantiations in the present work, this will include 
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inputs such as visual input of another’s face, auditory input of another’s voice, or higher-

level input from a top-down attentional system that directs attention toward a given 

category dimension (e.g., sex or race) for a particular task. In other simulations, however, 

the network could be stimulated by other kinds of bottom-up (e.g., vocal cues) and top-

down (e.g., motivations, prejudice) inputs. Each model instantiation contains a variety of 

nodes that are organized into, at most, four interactive levels of processing (one level 

representing each of the following: cues, categories, stereotypes, and high-level cognitive 

states). Every node has a transient level of activation at each moment in time. This 

activation corresponds with the strength of a tentative hypothesis that the node is 

represented in the input. Once the network is initially stimulated, activation flows among 

all nodes simultaneously as a function of their connection weights. Activation is also 

altered by a small amount of random noise, making the system’s states inherently 

probabilistic. Because many connections between nodes are bidirectional, this flow 

results in a continual back-and-forth of activation between many nodes in the system. As 

such, nodes in the system continually readjust each other’s activation and mutually 

constrain one another to find an overall pattern of activation that best fits the inputs. 

Gradually, the flows of activation lead the network to converge on a stable, steady state, 

where the activation of each node reaches an asymptote. This final steady state, it is 

argued, corresponds to an ultimate perception of another person. Through this ongoing 

mutual constraint-satisfaction process, multiple sources of information—both bottom-up 

cues and top-down factors—are interacting over time toward integrating into a stable 

person construal. Thus, this model grounds the framework’s theoretical claims on the 
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dynamic and interactive nature of person construal. See Appendix A for specific details 

on the model’s structure. 

Overview of the Present Research 

Across 8 studies, I aim to provide converging evidence for the theory that person 

construal is a dynamic interactive process, and to show how the proposed computational 

model can capture this process.   

Part I focuses more on the dynamic aspects of person construal. First, in Studies 

1‒3, a computer mouse-tracking technique is used to test the existence of a dynamic 

competition process that is argued to underlie our ability to slot others into social 

categories, such as sex and race. In this process, partially-active categories (e.g., male and 

female; White and Black) continuously compete to stabilize onto single categorical 

outcomes over time. In Study 4, simulations are used to demonstrate how the 

computational model can account for such dynamic competition effects. Together, the 

studies of Part I aim to provide evidence for the dynamic nature of person construal. 

Part II focuses more on interactive aspects of person construal. First, in Studies 

5‒6, mouse-tracking and computational modeling are used to explore how the 

competition process underlying social categorization may be dynamically weighed in on 

not only by face processing, but also by voice processing in parallel. As such, face and 

voice processing may be thrown into interaction and may be able to influence one another 

across the categorization process. These studies examine the interaction between two 

bottom-up sensory modalities. Then, Studies 7‒8 extend the work beyond two bottom-up 

modalities, and examine the interaction between bottom-up face processing and a top-

down information source: activated stereotypes. Specifically, these studies use mouse-
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tracking and computational modeling to investigate how both face processing and 

activated stereotypes may simultaneously weigh in on categorization, thereby allowing 

stereotypes to exert a top-down influence on the categorization process. As such, a 

perceiver’s prior stereotypic expectations would be free to alter basic categorizations. 

Thus, the studies of Part II explore the ability for multiple bottom-up and top-down 

information sources to potentially interact across the person construal process. They also 

aim to show that the proposed model can account for this real-time interactivity.  

Together, across 8 studies, mouse-tracking and computational simulations are 

used to provide converging evidence for the dynamic and interactive nature of person 

construal. 
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PART I: DYNAMIC NATURE 

There is an ongoing line of inquiry in social psychology as to when and how 

social categories come to be activated because, as discussed earlier, the mere activation of 

a social category shapes a number of cognitive, affective, and behavioral outcomes. 

Investigations into the perceptual determinants that lead to social category activation are 

thus quite crucial, acknowledging the consequences that follow this activation. Recent 

work in the emerging area of person construal research has examined the role of 

perceptual features in determining both overt person categorization and category 

activation itself. Overall, such work has tended to focus on examining how low-level 

processing of stimulus features maps onto higher-level stages of the person processing 

pipeline. One series of studies, for example, showed that perceivers can more rapidly and 

efficiently extract category-cueing information as compared with identity-triggering 

information, and that the extraction of category cues is uniquely impervious to stimulus 

manipulation and degradation. The special ease with which perceivers can decode 

category cues has thus been interpreted as an important determinant of the predominance 

of categorical thinking at all later stages of person processing (Cloutier, Mason, & 

Macrae, 2005). Important consequences of perceiving category cues is reaffirmed by 

findings showing that such cues can function orthogonal to category membership itself in 

automatic evaluations (Livingston & Brewer, 2002) and stereotypic attributions (Blair, 

Judd, Sadler, & Jenkins, 2002). Moreover, category cues can automatically trigger 

category activation itself (Macrae & Martin, 2007). Thus, the extraction of a mere 

perceptual cue is sufficient to activate a social category representation per se. Thus, this 

emerging work has provided an important start in opening up the process of social 
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categorization, showing how perceptual cues and their bottom-up operations ultimately 

lead to the triggering of a social category. 

More recently, some researchers have moved beyond examining the perceptual 

conditions that determine whether a social category will simply be activated or not 

activated. Instead, they have begun to examine how features can affect the strength of 

category representations. Using racial morphing, for example, Locke, Macrae, and Eaton 

(2005) showed that exemplar typicality can modulate the strength with which perceivers 

activate social category representations in graded fashion. A handful of similar findings 

have recently been reported in the social psychological literature elsewhere (Blair, Judd, 

& Fallman, 2004; Livingston & Brewer, 2002; Macrae, Mitchell, & Pendry, 2002; 

Maddox & Gray, 2002). Indeed, as Locke et al. have noted, such findings raise problems 

for the dominant “all or nothing” account of social categorization, in which a category is 

limited to two dichotomous states of either on or off, active or inactive.  

The framework proposed here agrees with Locke et al’s (2005) view that social 

categories have graded states. However, it emphasizes that social categorization involves 

more than just one single graded category representation. It argues, instead, that there are 

always multiple category representations partially active in parallel, and each has a graded 

strength. Further it is through a dynamic competition process that such partially-active 

categories can resolve into a stable categorical outcome. The main rationale behind this 

argument is that it is consistent with current understandings of the human brain. 

Specifically , it is consistent with the competitive dynamics of a neuronal population 

dynamically settling into one of multiple potential patterns (e.g., a “male” pattern vs. a 

“female” pattern) in response to perceptual input such as a face, as described earlier 
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(Grossberg, 1980; Rogers & McClelland, 2004; Spivey & Dale, 2004). In the present 

work, I aim to provide evidence for such a dynamic competition process, which is argued 

to underlie our ability to categorize other people.  

Hand in Motion Reveals Mind in Motion 

One way to provide evidence for such dynamic competition would be to examine 

perceivers’ reaching hand movements as they make their way toward settling into one of 

multiple response options. Although motor responses are classically considered to be the 

end-result of a one-way route from perception → cognition → action (temporal cortex → 

“association cortex” → premotor areas), there is now a great deal of behavioral evidence 

showing that that cognition does not discretely collapse its processing onto movement 

execution; rather, movement is continually updated by cognitive processing over time 

(Goodale, Pelisson, & Prablanc, 1986). This is buttressed by neurophysiological 

evidence. Studies in humans, for example, suggest that the process of categorizing a face 

immediately shares its ongoing results with the motor cortex to continuously guide a 

hand-movement response over time (e.g., Freeman, Ambady, et al., 2011). Further, 

human reaching movements suggest that multiple motor plans are prepared in parallel, 

and that these cascade over time into visually-guided action (Song & Nakayama, 2006, 

2008). Monkey studies show that the hand’s position and velocity are tightly yoked to 

ongoing changes in the firing of population codes within motor cortex (Paninski, Fellows, 

Hatsopoulos, & Donoghue, 2004), and when a monkey must generate a hand movement 

based on a perceptual decision, these motor-cortical population codes are yoked to the 

evolution of the decision process. In short, the dynamics of action do not simply reside in 

the aftermath of cognition; rather, they are part and parcel with it, and show systematic 
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covariation (Dale, Roche, Snyder, & McCall, 2008; Song & Nakayama, 2009; Spivey, 

2007). Fortunately, then, continuous motor responses such as a hand movement may be 

informative as to what the perceptual system is doing across those fractions of a second 

between catching sight of another’s face and recognizing that person’s category 

memberships (see Freeman, Dale, & Farmer, 2011). 

Study 1: Real-Time Dynamics of Sex Categorization 

In the present study, a computer mouse-tracking technique is used to examine the 

real-time social categorization process. This technique measures participants’ hand 

trajectories via mouse movement as they make their way into settling into one of two 

social category alternatives. Consider a task where two categories appear in the top-left 

and top-right corners of a computer screen, and participants are asked to move the mouse 

from the bottom-center to either response. If social categorization indeed results from a 

dynamic competition process, then when participants are presented with faces containing 

some degree of cues tied to the opposite category (e.g., male face with slight feminine 

features), their hand trajectories should be continuously attracted toward the opposite 

category response (e.g., female) before settling into the correct one (e.g., male). This 

would be evidence for simultaneously and partially active representations of both 

categories, which dynamically compete over time until stabilizing onto a single 

categorical outcome. To easily measure these hand movements, the streaming x, y 

coordinates of the computer mouse may be used (Freeman & Ambady, 2010). The present 

study first focuses on the categorization of sex using sex-typical faces and sex-atypical 

faces, which bear some perceptual overlap with the opposite category. 
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Method 

Participants.  Twenty-five undergraduates participated for partial course credit or 

monetary compensation. 

Stimuli.  To generate highly realistic faces and morph along sex, FaceGen 

Modeler was used. This software uses a 3D morphing algorithm based on anthropometric 

parameters of human population (Blanz & Vetter, 1999), in which a continuum from 

male to female (among other dimensions) can be manipulated while holding other 

extraneous cues constant. The typical condition included 10 male and 10 female face 

stimuli whose respective sex was generated at the anthropometric mean. The atypical 

condition comprised these same male and female face stimuli, except that their sex was 

generated at a level systematically closer to the anthropometric mean of the opposite sex. 

This resulted in a total of 40 target faces for the task. See Figure 2 for sample stimuli. 

Procedure.  To begin each trial, participants were asked to click on a “Start” 

button located at the bottom-center of the screen. Once clicking this, the target face 

appeared in its place. Targets were presented in a randomized order and were categorized 

by clicking either the “male” or “female” response option, located in the top-left and top-

right corners of the screen (which category was on the left/right was randomized across 

participants). During this process, the streaming x, y coordinates of the mouse were 

recorded (sampling rate ≈ 70 Hz). To record, process, and analyze mouse movements, the 

freely available MouseTracker software package was used 

(http://mousetracker.jbfreeman.net). Details about the software and a discussion of 

analytic techniques for mouse trajectory data can be found in Freeman and Ambady 

(2010). 
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Results 

Data preprocessing.  All trajectories were rescaled into a standard coordinate 

space (top-left: “-1, 1.5”; bottom-right: “1, 0”) and normalized into 100 time bins (101 

time steps) using linear interpolation to permit averaging of their full length across 

multiple trials. For comparison, all trajectories will be remapped rightward. To obtain a 

by-trial index of the degree to which the mouse was attracted toward the opposite sex 

category (indexing the simultaneous activation of that category), Area Under the Curve 

(AUC) was compute: The area between the observed trajectory and an idealized response 

trajectory (a straight line between the trajectory’s start and endpoints).  

Spatial attraction. Mean trajectories were computed for typical and atypical male 

targets and for typical and atypical female targets. Plotted in Figure 2, trajectories for 

atypical targets revealed distinct curvature towards the opposite category. Trajectories for 

atypical male targets showed a continuous attraction towards “female” relative to 

trajectories for typical male targets, and trajectories for atypical female targets showed a 

continuous attraction towards “male” relative to trajectories for typical female targets. 
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Figure 2. Mean mouse trajectories for sex-atypical faces exhibit a continuous attraction 

toward the opposite sex-category response (Study 1). Trajectories for male targets were 

remapped leftward, and trajectories for female targets were remapped rightward. Sample 

face stimuli are also depicted next to their respective mean trajectories. 

 

 

 

To assess these attraction effects statistically, AUC values were submitted to a 2 

(target sex) × 2 (typicality) repeated-measures ANOVA. A main effect for sex did not 

reach significance, F(1, 24) = .07, p = .79, nor did the interaction, F(1, 24) < .01, p = 

1.00. More critically, however, a main effect for typicality was significant, F(1, 24) = 

15.82, p = .001, such that trajectories for atypical targets were more attracted towards the 

opposite category relative to trajectories for typical targets. Specifically, trajectories for 

male targets were more attracted towards “female” when targets were atypical (M = .70, 

SE = .04) relative to typical (M = .54, SE = .04), t(24) = 3.24, p < .01, and trajectories for 
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female targets were more attracted towards “male” when targets were atypical (M = .69, 

SE = .03) relative to typical (M = .53, SE = .03), t(24) = 4.16, p < .001. 

Distributional analysis. It is possible that such continuous attraction effects in 

reality reflected the averaging together of some trials involving movement straight to the 

correct category, with other trials involving movement initially directed straight at the 

incorrect category, followed by a discrete reanalysis and corrective movement redirecting 

the trajectory straight to the correct category. If true, the continuous attraction effects 

would be the product of several discrete-like errors biasing the results. This spurious 

pattern can be detected by inspecting the distribution of trial-by-trial AUC values for 

bimodality (see Freeman & Ambady, 2010). A bimodal AUC distribution would suggest 

that the mean graded attraction effect spuriously reflects one population of trajectories 

with zero attraction and a separate population of trajectories with extreme attraction (i.e., 

discrete-like errors). A unimodal AUC distribution would suggest, instead, a single 

population of trajectories all exhibiting some degree of graded attraction, some high, 

some medium, and some low, reflecting dynamic competition as predicted. 

AUC values for typical male targets and atypical male targets were together 

converted into z-scores within a participant and then pooled across participants. For both 

distributions, the bimodality coefficient b (SAS Institute, 1989) was computed, which has 

a standard cutoff value of b = .555. Values that exceed .555 are considered evidence to 

reject unimodality in favor of bimodality. Neither distribution had any indication of 

bimodality (atypical male, b = .397; typical male, b = .425). Concerns that the distribution 

for atypical male targets might host underlying bimodality can be alleviated by obtaining 

evidence that the shapes of the distribution for typical male targets and distribution for 
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atypical male targets are statistically identical. To this end, AUC values were z-scored 

within each participant, separately for typical male and atypical male targets, and pooled 

across participants. The Kolmogorov-Smirnov test was used to evaluate any reliable 

departure between the respective shapes of these two distributions. This analysis 

confirmed that the distribution for typical male targets and distribution for atypical male 

targets were statistically indistinguishable, D = .04, p = .99, eliminating the possibility 

that the distribution for atypical male targets may be hosting latent bimodal features. 

These distributional analyses were applied to the distributions for typical and 

atypical female targets as well. Neither distribution had any indication of bimodality 

(atypical female, b = .420; typical female, b = .486), and the Kolmogorov-Smirnov test 

confirmed that the respective shapes of the distribution for typical female targets and 

distribution for atypical female targets were statistically indistinguishable, D = .06, p = 

.86, eliminating the possibility that the distribution for atypical female targets was hosting 

latent bimodal features. 

Discussion 

The present results suggest that sex categorization is a dynamic process and never 

discretely “occurs” in any single moment. Rather, a target’s multiple perceptual cues 

trigger multiple partially-active categories, which continuously evolve into a stable 

categorical outcome over time. In Study 2, the evidence for a dynamic competition across 

sex categorization is extended to another social category: race. There are a number of 

differences between these category dimensions that have theoretical importance for 

understanding the real-time dynamics of person construal more broadly. One difference is 

the symmetric nature of sex and asymmetric nature of race. Specifically, perceivers are 
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likely to routinely encounter similar amounts of men and women, and thus the functional 

significance of perceiving cues diagnostic of men and women should be similar. 

However, in most cases, perceivers are likely to routinely encounter disproportionate 

amounts of White and Black individuals. Because the White category represents a 

cultural “default,” and White individuals are generally encountered more often than Black 

individuals in the U.S., the White category tends to be assumed if no other dimension-

relevant information is provided (Smith & Zarate, 1992; Zarate & Smith, 1990). Thus, in 

a White-majority environment, the perceptual system may be biased towards Black-

cueing features, which are ecologically salient relative to White-cueing features (Levin, 

1996). Indeed, event-related potential evidence has shown that attention is preferentially 

directed to Black targets early in processing (Ito & Urland, 2003, 2005). Thus, it may be 

that more salient Black-cueing features and less salient White-cueing features drive the 

time-course of race categorization in potentially divergent ways. This was explored in 

Study 2.  

Study 2: Real-Time Dynamics of Race Categorization 

As in Study 1, participants were asked to categorize faces in a mouse-tracking 

paradigm. The typical condition included White and Black face stimuli whose level of 

race was generated at the anthropometric White and Black means. The atypical condition 

comprised these same White and Black stimuli, except their race was generated at a level 

closer to the other race. If perceiving race indeed results from a dynamic competition 

process, the mixture of White-specifying and Black-specifying cues on atypical targets 

would trigger partially-active race categories (White and Black) that simultaneously 

compete over time to stabilize onto ultimate categorizations. This would be evidenced by 
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a continuous attraction in participants’ hand movements toward the opposite race 

category before settling into eventual responses for race-atypical faces.  

Method 

Participants.  Twenty-six undergraduates participated for partial course credit or 

monetary compensation.  

Stimuli.  As in Study 1, faces were generated using FaceGen Modeler, allowing 

race-related cues to be manipulated while holding other extraneous cues constant. The 

algorithm does not make assumptions about what differs between White and Black faces; 

rather, by averaging across many faces, parameters that emerge as reliably different 

between the races become incorporated into the morphing (Blanz & Vetter, 1999). Ten 

unique White faces (5 male) were generated at the White mean and 10 unique Black faces 

(5 male) were generated at the Black mean, together composing the typical condition. The 

10 typical White faces were then morphed 25% toward the Black mean, and the 10 

typical Black faces were then morphed 25% toward the White mean, together composing 

the atypical condition. 

Procedure. The procedures were similar to those of Study 1, except here with 

“White” and “Black” category responses. One methodological limitation of Study 1 was 

that participants were not encouraged to initiate movement early. Thus, several trials’ 

movements were initiated relatively late in the categorization process, rendering the 

measure off-line with respect to a large portion of the process. To remedy this, in the 

present study and all subsequent mouse-tracking studies, participants were encouraged to 

begin initiating movement early. If initiation time exceeded 400 ms, a message appeared 
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after participants made their response, encouraging them to start moving earlier on future 

trials even if not fully certain about their response (see Freeman & Ambady, 2010).  

Results 

Data preprocessing. The preprocessing was identical to that of Study 1.  

Spatial attraction. The mean trajectories for typical and atypical White targets 

appear in Figure 3A and those for typical and atypical Black targets appear in Figure 3B. 

The mean trajectory for atypical White targets showed a continuous attraction toward the 

“Black” response, and the mean trajectory for atypical Black targets showed a continuous 

attraction toward the “White” response. AUC values were submitted to a repeated-

measures ANOVA using factors of typicality and target race. The main effect of typicality 

was significant, F(1, 25) = 22.87, p < .0001. Trajectories for atypical White targets (M = 

0.39, SE = 0.05) curved more toward the “Black” response relative to those for typical 

White targets (M = 0.28, SE = 0.04), t(25) = 4.34, p < .001, and trajectories for atypical 

Black targets (M = 0.43, SE = 0.06) curved more toward the “White” response relative to 

those for typical Black targets (M = 0.33, SE = 0.04), t(25) = 2.74, p = .01. Neither the 

main effect of race [F(1, 25) = 0.63, p = 0.43] nor the interaction [F(1, 25) = .02, p = .89] 

reached significance. This is evidence that, on the way to arriving at categorizations of 

atypical targets, both race categories (White and Black) were simultaneously and partially 

active in continuous competition across construal.
1
 

                                                           

1
 Overall, the mean trajectories of the present study and in subsequent studies are considerably more curved 

than those of Study 1. This is likely due to the present study’s methodological improvement of encouraging 

participants to initiate movement earlier in the categorization process. 



                                                                                                                                                           28 

 

Figure 3. Mean mouse trajectories for race-atypical faces exhibit a continuous attraction 

toward the opposite race-category response (Study 2). All trajectories are remapped 

rightward. Sample face stimuli are also depicted next to their respective mean trajectories. 

Bar graphs shows trajectories’ curvature toward the opposite race category, separately for 

race-typical and race-atypical trials (error bars denote standard error of the mean).  (A) 

Trajectories for White targets. (B) Trajectories for Black targets. 
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Distributional analysis. As in Study 1, it is possible that the continuous-

attraction effects reported here were spuriously produced by a bimodal population where 

some trajectories exhibit zero attraction and others exhibit extreme attraction (e.g., 

discrete-like errors). The distribution of AUC values for atypical White targets (b = .444) 

and for typical White targets (b = .378), however, were within the b < .555 bimodality-

free zone.  The Kolmogorov-Smirnov test also verified that the shapes of the distribution 

for typical White targets and for atypical White targets, once standardized, were 

statistically indistinguishable (D = .06, p = .86). Similarly, neither the distribution for 

typical or atypical Black targets showed evidence of bimodality: atypical Black (b = 

.476), and typical Black (b = .372), and the Kolmogorov-Smirnov test confirmed that 

their shapes were statistically indistinguishable (D = .08, p = .38). These analyses confirm 

that the continuous-attraction effects were not spuriously produced by a combination of 

discrete-like movements. 

Time-course analysis. Given the a priori hypothesis of a timing difference in the 

processing of White-specifying and Black-specifying cues, the time course of the 

attraction effects was examined. To that end, the Euclidean proximity of the mouse 

position to the opposite race category was calculated at each time step. Greater proximity 

to the opposite-race category in the atypical condition at any given time step would 

indicate that category’s partial and simultaneous activation as categorization unfolded 

over time. Separately for White and Black targets, difference scores were computed at 

each time step by subtracting the proximity of the typical condition from that of the 

atypical condition. The proximity differences are plotted in Figure 4, indexing across time 

the degree to which the hand traveled closer to the opposite race category. A casual 
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inspection of this figure indicates that while the attraction effects for both atypical White 

and Black targets were manifest continuously across the course of categorization, atypical 

White targets elicited an attraction effect more consistent throughout the time-course 

whereas atypical Black targets elicited an effect that was relatively small early on, but 

then rapidly grew in the later portion of the categorization process.  

 

 

Figure 4. Separately for the White and Black faces of Study 2, difference scores between 

the atypical and typical conditions [atypical – typical] in proportional Euclidean 

proximity (1 – distance/max(distance)) to the opposite race category are plotted as a 

function of normalized time. This indexes across the time the degree to which the hand 

traveled closer to the opposite race category for atypical targets relative to typical targets. 

The atypical White targets induced a relatively consistent continuous-attraction effect, 

with gradual increase and decrease of partial activation. The atypical Black targets, 

however, induced an effect with weak attraction at the beginning, which then rapidly rose 

in the later portion of the trial (and settled). These two different patterns of temporal 

dynamics were statistically distinguishable. 
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To more rigorously assess these two patterns of temporal dynamics, four time bins 

were computed for proximity distances (time-steps: 1-25, 26-50, 51-75, 76-101). These 

were then submitted to a 2 (typicality) × 2 (race) × 4 (time bin) repeated-measures 

ANOVA. Only effects involving the typicality factor are reported. Beyond the main effect 

of typicality [F(1, 25) = 36.62, p < .0001], this analysis revealed a marginally significant 

three-way interaction [F(3, 75) = 2.50, p = .07] and a significant typicality × time bin 

interaction [F(3, 75) = 18.06, p < .0001]. These interaction effects arose because, for 

White targets, trajectories in the atypical condition showed strong attraction to the 

“Black” response (relative to those in the typical condition) consistently throughout time 

bins 1 [t(25) = 2.71, p = .01], 2 [t(25) = 4.44, p < .001], and 3 [t(25) = 4.56, p = .0001], 

whereas, for Black targets, trajectories in the atypical condition showed relatively weak 

attraction at the beginning, with non-significant attraction at time-bin 1 and marginally 

significant attraction at time bin 2 [t(25) = 1.83, p = .08], but then a substantial rise in 

attraction later in time-bin 3 [t(25) = 4.36, p < .001]. These different patterns of temporal 

dynamics are best illustrated in Figure 4. Thus, although the atypical White and Black 

faces induced equivalent amounts of continuous attraction toward the opposite race 

category [as there was no typicality × race interaction: F(1, 25) = 0.80, p = .38], these 

effects were temporally distributed in different ways. This indicates that the partial and 

simultaneous activation of the opposite race category during categorization of atypical 

White versus atypical Black faces fluctuated across the course of construal in divergent 

ways.  



                                                                                                                                                           32 

Discussion 

When categorizing atypical White and Black faces, hand movements exhibited a 

continuous attraction toward the opposite race-category response. This is evidence that 

atypical faces triggered simultaneously and partially active race-category representations 

that dynamically competed across the course of categorization. This therefore extends the 

results of Study 1, showing that dynamic competition is a generalized process underlying 

perceivers’ ability to categorize along many social category dimensions, such as sex or 

race.  

Importantly, White-cueing and Black-cueing features had different temporal 

signatures during this competition process. Specifically, White-cueing and Black-cueing 

features on atypical targets induced an equivalent amount of partial and simultaneous 

activation of their respective race category, but differed in how this activation fluctuated 

across the course of construal. Whereas partial Black cues led the hand to travel closer to 

the “Black” response relatively consistently throughout the categorization process, partial 

White cues did not bear a substantial effect until approximately 40% of categorization 

had elapsed, at which point a partial activation of the White category rapidly grew and 

settled (see Figure 4). These different patterns of temporal dynamics are fitting given the 

asymmetric nature of White and Black categories, such that Black cues are more likely to 

capture attention and spontaneously activate category representations than White cues 

(Smith & Zarate, 1992). These results suggest that, when participants encountered an 

atypical White face, partial Black cues began biasing the competition early—as Black 

cues are highly salient—and this competition persisted across the course of categorization 

until participants finally settled onto a “White” response. However, when encountering an 
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atypical Black target, the majority of Black cues were dominant during the early portion 

of the competition—as Black cues are highly salient—while the White cues were not well 

represented. However, after a slight delay now-better-represented partial White cues 

exerted a strong bias that then yielded to the predominance of accruing perceptual 

evidence for the Black category. Thus, although prior work has investigated similar 

asymmetries on the outcomes of social categorization (e.g., Zarate & Smith, 1990), well 

before these outcomes are even realized, perceptual cues belonging to different sorts of 

social categories may exert different dynamic patterns of influence over the perceptual–

cognitive processing that creates those outcomes. 

Thus far, category-atypical targets have been exploited to examine a dynamic 

competition process underlying social categorization. When targets bear cues that 

partially overlap with an alternate category (e.g., slight Black-specifying cues on a White 

face), a competing representation of that alternate category is activated in parallel. But is 

this competition process truly sensitive to the natural perceptual gradations underlying 

social category dimensions? For example, an interesting difference between the 

dimensions of sex and race is the inherently fuzzy nature of race relative to the 

substantially less fuzzy nature of sex. While it is generally rare to encounter faces that are 

truly sex-ambiguous—an unlikely situation usually evoking anxiety or a few laughs (e.g., 

Saturday Night Live’s androgynous “Pat” skits)—person perceivers often encounter faces 

that do not fit squarely into any race category at all. Interactions with mixed-race 

individuals, for instance, involve the perception of faces that tend to contain major 

physiognomic overlap between multiple traditionally distinguished race categories (e.g., 

White and Black). Prior research indicates that, even in instances of extreme racial 
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ambiguity (e.g., mixed-race faces), perceivers readily extinguish this ambiguity by 

slotting faces into traditionally distinguished race categories (Pauker et al., 2009), 

particularly during rapid categorization (Peery & Bodenhausen, 2008). The following 

study examines how this resolution of racial ambiguity is accomplished in real time. 

Because perceptions of race can be fuzzy and can involve different levels of ambiguity, 

this afforded the opportunity to examine how graded increases in the ambiguity of a 

social category may have corresponding graded effects on the real-time evolution of 

social categorical responses. As such, it permits a test of whether the competition process 

underlying social categorization is sensitive to the full perceptual continuum underlying 

category dimensions such as race. 

Study 3: Sensitivity to the Perceptual Continuum: Racial Ambiguity  

As in Studies 1 and 2, participants engaged in a mouse-tracking task in which they 

were asked to decide whether a face was White or Black. Rather than using computer-

generated stimuli, however, real faces that varied along a continuum of racial ambiguity 

were used. It was hypothesized that as ambiguity increases, mouse trajectories would 

show an increasingly stronger attraction to whichever race category is not ultimately 

selected, indicating competition between alternate race categories settling over time onto 

a single categorical outcome. 

Method 

Participants. Thirty-two undergraduates participated for partial course credit or 

monetary compensation.  

Stimuli. Photos were obtained (40 male and 40 female images) of self-identifying 

White, Black, and mixed-race (half Black, half White) individuals who were participating 
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in a separate study on face memory. These individuals varied widely on how racially 

typical or ambiguous they appeared.  These faces were pre-tested (N = 16) on racial 

appearance using a Likert scale (“Does this person look African American or 

Caucasian?”), ranging from 1 – “Very African American” to 8 – “Very Caucasian.” These 

ratings were subtracted by a constant of 4.5, converted into absolute values, and rescaled 

to vary between –0.5 (typicality) and 0.5 (ambiguity).  

Procedure. Analogous procedures to Study 2 were used.  

Results 

 Trajectories were preprocessed using the same procedures as the previous studies. 

Trajectories were remapped (inverted along the x-axis) so that whichever race category 

was ultimately selected was located at the top-right. Regardless of whether participants 

perceived a face to be White or Black, of interest was whether the amount of racial 

ambiguity affected mouse trajectories en route to indicating that perception. To determine 

this, AUC values were regressed onto pre-test ambiguity scores using a generalizing 

estimating equations (GEE) regression analysis. This allows for the incorporation of trial-

by-trial data while accounting for the intracorrelations in a repeated measures design, 

thereby permitting more statistically efficient parameter estimates (Zeger & Liang, 1986). 

In this analysis and all subsequent GEE regression analyses, unstandardized regression 

coefficients are reported. As predicted, as racial ambiguity increased (i.e., as a face 

depicted the unselected race category more strongly), mouse trajectories’ attraction 

toward the opposite race category linearly increased, B = 0.44, SE = 0.07, p < .0001.  



                                                                                                                                                           36 

Discussion 

As targets became more racially ambiguous, the competition between race 

categories correspondingly increased. This was evidenced by increases in racial ambiguity 

leading to increases in trajectories’ attraction toward the unselected race category. This 

extends the results of Studies 1 and 2, showing that social category competition increases 

and decreases with the amount of ambiguity challenging the perceptual system. Thus, the 

competition is sensitive to the perceptual continuum underlying a category dimension, 

such as the natural diversity in others’ race-specifying facial cues. The present study also 

demonstrates that this category competition process generalizes beyond computer-

generated faces to more ecologically valid, real faces. In the following study, the 

processing underlying this competition process is more rigorously explored at the 

computational level. 

Study 4: Computational Simulation of Social Categorization Dynamics 

The present study aims to demonstrate how the proposed model naturally captures 

the dynamic competition process underlying social categorization explored in Studies 1–

3. It focuses specifically on the effects of Study 1 with sex categorization, although the 

results would be generalizable to race categorization as well. Figure 5 depicts a new 

instantiation of the general model (see Figure 1) developed for this purpose. Solid-line 

connections with arrows are excitatory (positive weight) and dashed-line connections 

with dots are inhibitory (negative weight). Connection weights appear in Appendix B. 

This instantiation of the model is intended to capture the experience of a perceiver 
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categorizing either sex or race for a particular task.
2
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Figure 5. An instantiation of the model presented in Study 4 to account for the results of 

Study 1. 
 

                                                           
2
 It should be noted that representations in the model are interactive rather than independent. The activation 

of one representation influences other representations in the system, as one node’s activation influences the 

activation of all other nodes. Consider the presentation of a male face. Stimulation of the MALE CUES node 

will facilitate the MALE category, which will inhibit the FEMALE category, which will inhibit the stereotype, 

DOCILE, in turn inhibiting the category, ASIAN, and so on and so forth. These influences gradually taper off 

as all nodes in the system come to settle into a steady state. Before the system stabilizes, however, 

representations are in continuous interaction over time. They are dynamically and probabilistically 

reconstructed in every new instance, and not static. They develop in continuous interaction with other 

activations across the system, both influenced by these activations and a source of influence over them. For 

example, there is no stand-still, discrete symbol-like representation of the “male” category. Rather, the 

system will gravitate toward a stable state involving strong activation of MALE, but this state is not a 

discrete symbol identically activated every time the system encounters a male target. Thus, the system may 

frequently visit a similar stable state involving strong activation of MALE every time it encounters a male 

target. But this is a dynamically reconstructed state of activation that could only approximate an idealized, 

linguistically identifiable representation of the “male” category (Spivey & Dale, 2006). See Appendix A. 
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Method  

Two simulations are conducted, both of which simulate a sex categorization task. 

One involves the presentation of a sex-typical face the other involves the presentation of 

a sex-atypical face. Because this is a sex categorization task and the demands of the task 

compel attention to sex, higher-level input would directly activate the SEX TASK DEMAND 

node. Accordingly, higher-level input into the SEX TASK DEMAND node was set at .9 and 

higher-level input into the RACE TASK DEMAND node at .1.
3 

This simulates the task 

context of sex categorization, where perceivers would be focusing on targets’ sex over 

their race. This thus facilitates activation of MALE and FEMALE category nodes, and 

inhibits activation of BLACK, WHITE, and ASIAN nodes. At the same time, nodes in the 

cue level receive direct input from visual processing of the face. To simulate the 

presentation of a sex-typical White male face, visual input into the MALE CUES node was 

set at .95 and visual input into the FEMALE CUES node at .05. Thus, this face is inherently 

95% masculine and 5% feminine. Because the face is White, visual input into the WHITE 

CUES node was set at .95 and visual input into the BLACK CUES and ASIAN CUES nodes at 

.025 each. The simulation was run 100 times, each time for 150 iterations, and the 

average activation level of each category node was examined over time, appearing in 

Figure 6. 

                                                           
3
 In all simulations, connection weights and input values were set according to intuitions regarding stimulus 

and task features. It may be possible in future work to derive these values empirically. However, I am 

confident given previous studies that the parameters are in accord with participant judgments and task 

features in these contexts, and parameters that best reflect these intuitions were chosen. In this sense, the 

current simulations serve as existence proofs for the kind of dynamic interactive processing that may take 

place during construal, though it is acknowledged that future work may advance these simulations by 

deriving network parameters empirically. 
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Figure 6. The activation level of the MALE and FEMALE category nodes as a function of 

time (iterations) following the presentation of a sex-typical male face (solid lines) and 

sex-atypical male face (dashed lines) in Study 4. 

 
 

Results 

The presentation of a sex-typical White male face sets a process into motion, in 

which visual processing of the face directly activates cue nodes. Cue nodes inconsistent 

with one another, such as the MALE CUES and FEMALE CUES nodes, compete for the 

visual input. The activation of cue nodes, in turn, places excitatory and inhibitory 

pressures on category nodes (see Figure 5). In this case, the highly activated MALE CUES 

node places strong excitatory pressure on the MALE category node and inhibitory pressure 

on the FEMALE category node. The highly activated WHITE CUES node places strong 

excitatory pressure on the WHITE category node and inhibitory pressure on the BLACK and 

ASIAN category nodes. At the same time, the higher-order SEX TASK DEMAND node places 

excitatory pressures on the MALE and FEMALE category nodes and inhibitory pressures on 
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the BLACK, WHITE, and ASIAN category nodes. These simultaneous pressures cause the 

activation levels of some category nodes to be pushed above their resting levels, whereas 

others are inhibited and pushed below their resting levels. Excitatory pressure from both 

the MALE CUES node and the higher-order SEX TASK DEMAND node leads the MALE 

category node to rise above its resting level. Positive feedback is then produced between 

these nodes, which causes the MALE category node to rapidly gain activation until 

gradually settling into a stable state. Because a small amount of feminine features were 

presented to the network (the FEMALE CUES node was initialized with .05 visual input), 

the FEMALE category node also becomes slightly active for a very brief moment early on, 

and then succumbs to strong inhibition from the MALE CUES node and the MALE category 

node, resulting in it being pushed below its resting level. Excitatory pressure from the 

WHITE CUES node leads the WHITE category node to rise above its resting level, but the 

WHITE category node is also inhibited by the SEX TASK DEMAND node. This leads the 

WHITE category node to gain a meager amount of activation until eventually settling into 

a stable state (and thus MALE is more strongly active than WHITE). Finally, inhibitory 

pressures from the WHITE CUES node and the SEX TASK DEMAND node lead the BLACK 

and ASIAN category nodes to be rapidly pushed below their resting levels. These 

dynamics are apparent in Figure 6.  

Note how each category node gradually works over time to settle into a stable 

state, such that its activation reaches some asymptotic level and tapers off. This stable 

state would correspond with the fully confident categorization of the target as male. 

However, before that 100% confident categorization is achieved, bear in mind that partial, 
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tentative evidence for that categorization actually accumulates gradually over time (the 

dynamics of the MALE category activation).  

Consider, on the other hand, how the person construal system settles into a stable 

state when presented with a sex-atypical White male face in a sex categorization task. To 

simulate this, visual input into the MALE CUES node was set at .55, input into the FEMALE 

CUES node at.45, input into the WHITE CUES node at .95, and input into the BLACK CUES 

and ASIAN CUES nodes at .025 each. As done previously, higher-level input into the SEX 

TASK DEMAND node was set at .9 and input into the RACE TASK DEMAND node at .1. This 

simulates attention on sex induced by the task context of sex categorization. The 

simulation was run 100 times, and the averaged activation level of each category node 

over 150 iterations appears in Figure 6. 

The activated MALE CUES node begins exciting the MALE category and inhibiting 

the FEMALE category, while the FEMALE CUES node begins exciting the FEMALE category 

and inhibiting the MALE category (see Figure 5). The MALE CUES and FEMALE CUES 

nodes also begin inhibiting one another as well. The highly activated WHITE CUES node 

excites the WHITE category and inhibits the BLACK and ASIAN categories. At the same 

time, the higher-order SEX TASK DEMAND node excites the MALE and FEMALE categories 

and inhibits the BLACK, WHITE, and ASIAN categories. The excitatory pressure from both 

the MALE CUES node and the higher-order SEX TASK DEMAND node leads the MALE 

category to rise above its resting level. The excitatory pressure from the FEMALE CUES 

node and the SEX TASK DEMAND node also leads the FEMALE category to rise above its 

resting level. Pressures from the cue nodes and higher-order nodes cause the WHITE 

category to gain a meager amount of activation and the BLACK and ASIAN categories to be 
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rapidly pushed below their resting levels. With the MALE and FEMALE categories now 

simultaneously activated, they begin competing with one another through mutual 

inhibition. In this case, the system is simultaneously attracted to be in two different states: 

one state involving ~100% MALE/~0% FEMALE and another involving ~0% MALE/~100% 

FEMALE. These are highly stable (leading the system to be attracted to them), whereas an 

earlier state such as ~55% MALE/~45% FEMALE is highly unstable. Over time, the mutual 

inhibition between competing MALE and FEMALE categories, in addition to feedback with 

the cue nodes, leads the FEMALE category to gradually decay while the MALE category 

gradually rises in activation until a stable state is achieved. This results in the MALE 

category winning the competition, while the FEMALE category dies off and is cleared from 

the processing landscape. Thus, simultaneously and partially active sex categories 

dynamically compete over time to settle onto a single categorical outcome (in this case, a 

male categorization).  

Discussion 

The present results show how the proposed computational model replicates effects 

of temporally dynamic competition, as found with human perceivers. In Study 1, it was 

found that participants’ mouse trajectories exhibited a continuous attraction toward the 

“female” response before settling into the “male” response when categorizing a sex-

atypical male face. Thus, a female category representation was simultaneously and 

partially active across construal, which led the mouse to partially curve toward the 

“female” response before clicking the “male” response. This is precisely what is reflected 

in Figure 6, which shows that the FEMALE category node was partially active, 

simultaneously with the MALE category’s activation, until the system settled into a stable 
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state involving strong MALE category activation and the FEMALE category below resting 

level. Thus, the mouse-tracking results and computational model converge on the finding 

that an ongoing competition process underlies our ability to categorize other people. 

Simultaneously and partially active category representations continuously evolve into 

single categorical outcomes over time, highlighting the dynamic nature of person 

construal. 



                                                                                                                                                           44 

PART II: INTERACTIVE NATURE 

One of the most remarkable features of perceiving other people, as compared with 

everyday objects, is that perceptions of people are frequently grounded in multiple 

sensory modalities and embedded in a rich set of contexts. The human voice, for 

example, always contextualizes the human face, continuously over time. The body’s 

motion, for instance, contextualizes the perception of its shape. A growing number of 

studies have shown that these prevalent contextual and cross-modal cues powerfully 

constrain the perception of the social percepts under the focus of perceivers’ attention. 

The studies of Part I showed that social categorizations continuously evolve over time, 

and they demonstrated a dynamic competition process underlying these categorizations 

that is weighed in on by facial cues. Here, the studies of Part II examine how this 

competition process is weighed in on not only by one bottom-up sensory modality (e.g., 

facial cues), but also in parallel by other extraneous information sources, such as other 

bottom-up sensory modalities (e.g., vocal cues) or top-down sources (e.g., stereotypes). 

By driving the competition process in parallel, these multiple information sources may 

interact with one another over time. As such, according to the proposed framework, 

extraneous factors well beyond the face, such as vocal cues or activated stereotypes, could 

potentially exert a real-time influence over the process of categorizing a face. 

Study 5: Face–Voice Interaction in Social Categorization 

The majority of person construal research has focused on visual features, such as 

facial cues, with little attention paid to auditory features, such as vocal cues. Recently, 

however, vocal cues were shown to give rise to categorical judgments and stereotypic 

inferences of others, and these inferences are sensitive to within-category variation (Ko, 
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Judd, & Blair, 2006), as is seen with facial cues (Blair et al., 2002). Thus, like the face, 

the voice plays an important role in social categorization.  How the face and voice are 

combined into a coherent social percept when categorizing others, however, remains 

poorly understood. Previous work provided clear evidence that perceivers do combine 

facial and vocal input. For instance, when a face appears sad but is accompanied by a 

voice that sounds happy, perceivers consistently report seeing the face as more happy than 

it really is. This remains true even when participants are instructed to disregard the voice 

(de Gelder & Vroomen, 2000). Furthermore, congruency between facial and vocal 

features tends to make the perception of identity or emotion more accurate and efficient 

(for review, Campanella & Belin, 2007). Very few studies, however have examined face–

voice interaction in social categorization. 

The present framework proposes that the biases of another person’s sensory 

information (e.g., facial and vocal cues) converge the moment they become available in 

the input to weigh in on multiple partially-active social category representations. These 

parallel representations then settle onto categorical outcomes across a process of 

continuous competition. Ongoing voice-processing results, therefore, should integrate 

with ongoing face-processing results over time. If true, processing of sex-specifying vocal 

cues should exert a temporally dynamic influence on face processing across the construal 

process. Indeed, such continuous cross-modal interactivity would be consistent with 

evidence for recurrent interactions between the visual and auditory cortices and top-down 

feedback from higher-order multimodal cortices (e.g., Ghazanfar, Chandrasekaran, & 

Logothetis, 2008; Kreifelts, Ethofer, Grodd, Erb, & Wildgruber, 2007).  
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 In the present study, mouse-tracking is used to track in real time how voice 

processing weighs in on resolving facial ambiguities, specifically in the context of sex 

categorization. By looking at instances in a mouse-tracking paradigm where there is a 

conflict between a category triggered by facial cues and an opposing category triggered by 

vocal cues—and how these might compete with one another over time—the process by 

which information from the face and voice interact and are integrated can be measured. 

The predicted continuous interaction and gradual integration of the face and voice would 

be evidenced by the hand’s continuous attraction toward the opposite sex-category 

response in instances where, although the face is categorized as the correct sex, vocal 

cues partly suggest the opposite sex. 

Method 

Participants. Forty-one individuals participated for partial course credit.  

Stimuli. Face stimuli were generated using FaceGen Modeler to appear somewhat 

sex-ambiguous. Ten male faces were generated at 60%-Male/40%-Female and 10 female 

faces at 60%-Female/40%-Male.  For voice stimuli, 10 male and 10 female speech 

samples of American dialect and neutral tone were obtained from the International 

Dialects of English Archive (http://web.ku.edu/~idea). Clips of 2000 ms were extracted 

from each sample, the content of which was selected to be naturalistic for a first-

impression encounter (e.g., “My family’s origins are pretty interesting.”). Praat software 

(http://www.fon.hum.uva.nl/praat) was used to morph each male voice into a sex-typical 

(masculine) version (formant shift ratio:1/1.1) and a sex-atypical (feminine) version 

(formant shift ratio:1.1), and to morph each female voice into a sex-typical (feminine) 

version (formant shift ratio:1.1) and a sex-atypical (masculine) version (formant shift 
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ratio:1/1.1), consistent with prior work (e.g., Groen et al., 2008). Median pitch was not 

manipulated because its alteration tends to sound computer-like and artificially 

synthesized. 

Procedure. Each face was presented twice in the experiment, accompanied by a 

same-sex voice (once sex-typical and once sex-atypical). Voice stimuli were randomly 

paired with face stimuli (without replacement). Participants were instructed to categorize 

the face’s sex (and only use the voice if it could help resolve the face’s sex, as correct 

responses were based on the face). The mouse-tracking task was identical to that of Study 

1, except that the additional voice stimulus began playing once the face stimulus 

appeared. 

Results 

Preprocessing was identical to that of Study 1. To index trajectories’ attraction 

toward the opposite response, maximum deviation (MD) was computed: the largest 

perpendicular deviation from an idealized straight line between the trajectory’s start and 

endpoints. This measure is highly correlated with the AUC measure, and they show 

negligible differences (Freeman & Ambady, 2010). The mean trajectories are plotted in 

Figure 7. 

Participants were more likely to misinterpret the face as the opposite sex when 

faces were accompanied by sex-atypical (M = 11.5%, SE = 1.0%) relative to sex-typical 

(M = 5.1%, SE = 0.8%) voices, t(40) = 5.38, p < .0001, a finding often cited as evidence 

of face-voice integration (e.g., Hietanen, Leppänen, Illi, & Surakka, 2004). To examine 

the temporal dynamics of this integration, trials that were correctly categorized were 

examined. 
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As indicated by MD, before participants settled into their correct categorizations, 

the hand was continuously attracted to the opposite sex category while categorizing faces 

accompanied by sex-atypical voices (M = 0.33, SE = 0.03) relative to sex-typical voices 

(M = 0.26, SE = 0.03), t(40) = 3.81, p < .001.  

 

 

Figure 7. Mean mouse trajectories of Study 5 (aggregated across male and female 

targets). Trajectories for all targets were remapped rightward, with the opposite sex 

category on the left and the sex category consistent with the face’s sex on the right. A 

sample male face stimulus is displayed. A voice stimulus typical for the face’s sex 

(masculine) is shown on the right (audio waveform depicted in blue), next to the mean 

trajectory for sex-typical trials. Its atypical (feminine) counterpart is shown on the left, 

next to the mean trajectory for sex-atypical trials (audio waveform depicted in purple). 

During an actual trial, a single face was centered at the bottom of the screen while the 

voice stimulus played. The bar graph shows trajectories’ maximum deviation toward the 

opposite sex category, separately for sex-typical and sex-atypical trials (error bars denote 

standard error of the mean). 
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 Distributional analysis indicated that the MD distribution for sex-atypical trials 

was within the bimodality-free zone (b < .555; SAS Institute, 1989), b = .407, as was the 

distribution for sex-typical trials, b = .428. Furthermore, the Kolmogorov-Smirnov test 

confirmed that the shapes of these two distributions were statistically indistinguishable (D 

= .02, p = .99), ruling out the possibility of latent bimodality. This ensures that the 

continuous-attraction effect was not the product of a subpopulation of discrete-like errors. 

Discussion 

While participants’ hands were moving en route to making a sex categorization of 

the face, the simultaneous processing of a sex-atypical voice led the hand to travel closer 

to the opposite sex-category, continuously across the course of construal. This suggests 

that processing of the voice continuously interacted with processing of the face. At each 

moment during the categorization of sex-atypical pairs, mouse movements were neither 

in a discrete pursuit straight to the male response, nor in a discrete pursuit straight to the 

female response. Rather, as seen with the conspicuous curving of the trajectory toward 

the opposite sex category in Figure 7, at each moment the location of the mouse was in a 

weighted combination of one pursuit consistent with face processing (e.g., male) and a 

simultaneous pursuit consistent with voice processing (e.g., female), while the mouse 

progressively stabilized onto ultimate interpretations of the face. Thus, mouse trajectories 

reflected an ongoing interaction between category information from the face and voice as 

they gradually integrated over time. In the following study, simulations are used to show 

the proposed model converges on this effect. 
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Study 6: Computational Account of Face–Voice Interaction 

The previous study found that, when perceivers correctly categorized the face’s 

sex, auditory processing of sex-specifying vocal cues exerted a temporally dynamic 

influence on the face-based categorization. Specifically, the simultaneous processing of 

sex-specifying facial and vocal cues triggered partially-active representations of both sex 

categories (male and female) that simultaneously competed over time to settle into 

ultimate categorizations. To account for this continuous face–voice interactivity in sex 

categorization, another instantiation (Figure 8) of the general model (Figure 1) was 

developed. Connection weights are provided in Appendix C. In this network, the cue 

level receives input from both visual processing and auditory processing and has separate 

nodes for facial and vocal cues. 

 

 

Figure 8. An instantiation of the model used in Study 6 to account for the results of Study 

5. 
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Method 

To simulate the presentation of a slightly ambiguous male face, visual input was 

set at .55 for MALE FACIAL CUES and at .45 for FEMALE FACIAL CUES. To simulate the 

simultaneous presentation of a sex-typical voice, auditory input was set at .95 for MALE 

VOCAL CUES and at .05 for FEMALE VOCAL CUES (see Footnote 3). Higher-level input 

was set at .9 for the SEX TASK DEMAND node to simulate a strong attentional state on 

targets’ sex required by the task. The simulation was run 100 times, each time over 75 

iterations, and the averaged level of activation of the category nodes was plotted over 

time (Figure 9). 

 

Figure 9. The activation level of the MALE and FEMALE category nodes as a function of 

time (iterations) following the presentation of  the same male face with a sex-typical male 

voice (solid lines) or sex-atypical male voice (dashed lines). 

 

 

 

Results and Discussion 

The slightly ambiguous activation of facial cues nodes fed forward activation onto 

the MALE and FEMALE category nodes. Simultaneously, the activation of the vocal cues 
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nodes also fed forward activation onto the category nodes. In doing so, the simultaneous 

processing of vocal cues placed an immediate constraint on the face-triggered activation 

of sex categories. This permitted ongoing updates from voice processing to immediately 

interact with ongoing updates from face processing, continuously over time. The strong 

activation of MALE VOCAL CUES was therefore immediately brought to bear on resolving 

the category competition induced by ambiguous facial input. Strong excitation of the 

MALE category and inhibition of the FEMALE category, due primarily to the unambiguous 

vocal cues nodes, led the system to rapidly converge on a stable state involving strong 

activation of MALE category, with FEMALE category pushed below resting level. 

When the voice is more atypical, however, the face-triggered category competition 

did not resolve so quickly. To simulate the presentation of a slightly ambiguous male face 

coupled with a sex-atypical voice, the input activation was kept the same except, this 

time, input into the MALE VOCAL CUES node was set at .6 and input into the FEMALE 

VOCAL CUES at .4. The simulation was run 100 times, each time over 75 iterations, and 

the averaged level of activation of the category nodes was plotted over time (Figure 9). 

The slightly ambiguous activation of facial cues nodes and slightly ambiguous activation 

of vocal cues nodes simultaneously fed forward activation onto the MALE and FEMALE 

category nodes. This induced a strong competition between the category nodes. Although 

the system eventually resolved the competition by arriving at a stable state involving 

strong activation of MALE and weak activation of FEMALE (i.e., a male categorization), 

the FEMALE category was partially-active in parallel strongly throughout the process. This 

partial activation of the FEMALE category was considerably stronger when the voice was 

sex-atypical rather than sex-typical (see Figure 9). 



                                                                                                                                                           53 

This pattern of results is consistent with the findings of Study 5. The stronger 

partial activation of the FEMALE category, which continuously competes with the MALE 

category, is clearly seen in the human mouse-tracking data of Figure 7. When sex-

categorizing a male face, the simultaneous processing of a sex-atypical voice led 

participants’ hands to be continuously attracted toward the “female” response before 

ultimately arriving at the “male” response. This reflects a stronger partially-active 

representation of the female category (induced by voice processing) that simultaneously 

competed over time with the male category during face-based categorization. Thus, in sex 

categorization, the model predicts (as experimental data show) that voice processing 

interacts with face processing by simultaneously weighing in on the dynamic competition 

inherent to the categorization process. As such, the simultaneous processing of facial and 

vocal cues place parallel constraints on sex categorization (which are dynamically 

satisfied over time), permitting the ongoing processing of vocal cues to continuously 

interact with the ongoing processing of facial cues. In short, the present results 

demonstrate how the proposed model naturally accounts for continuous face–voice 

interactivity in person construal. The following study examines how face categorization 

may be shaped by other kinds of extraneous information sources emanating from the top-

down rather than the bottom-up, such as stereotype activations. 

Study 7: Influence of Top-Down Stereotypes on Race Categorization 

In the present study, mouse-tracking is used to assess how stereotype activations 

may exert a top-down influence on the ongoing race categorization process. To trigger 

stereotypes during the categorization process, contextual cues were exploited. In many 

instances, stereotypes may be triggered by the contextual cues that often surround a face 
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in the real world, such as attire. Once activated via contextual cues, stereotypes could 

potentially alter the processing of a face’s category memberships.  

For example, businesspeople are stereotypically associated as high-status, whereas 

janitors are associated as low-status. However, White individuals, too, are associated as 

high-status, whereas Black individuals are associated as low-status (Devine, 1989). Due 

to this overlap in the stereotypes associated with both race and occupation categories, 

contextual cues to occupation (e.g., business attire) might potentially activate stereotypes 

(e.g., high-status) that then exert top-down pressure on the race categorization process, 

swaying it toward the associated category (e.g., White). For example, business attire 

could activate high-status stereotypes that then gradually push the race-category 

competition—primarily being driven by visual processing of the face—more toward the 

White category. Conversely, janitor attire could activate low-status stereotypes that then 

gradually push the race-category competition more toward the Black category. According 

to this approach, therefore, race categorization could be driven by both the bottom-up 

processing of facial features, and top-down stereotypes activated by contextual cues, 

which mutually constrain one another before a stable categorization is achieved.  

One implication of this tight exchange between bottom-up and top-down forces 

theorized here is that, as one force gets weaker, the other force is given sway to exert an 

increasingly stronger influence on categorization. Thus, as race-specifying facial cues 

become increasingly ambiguous, the bottom-up ambiguity opens the door wider and 

wider to stereotypes’ top-down influences. This is important because perceivers in the 

real-world regularly encounter racially ambiguous faces (e.g., multiracial individuals). 

Despite their ambiguity, however, perceivers rapidly resolve such faces into monoracial 
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categories, such as White or Black (Peery & Bodenhausen, 2008). The present study thus 

explored whether racial ambiguity might affect the degree to which contextual status cues 

are able to shift race categorization. Such a finding would provide a compelling 

illustration of the interactive nature of person construal, showing how bottom-up and top-

down forces work in conjunction with one another to drive the construal process. 

It is hypothesized that high-status business attire would tend to elicit White 

categorizations and low-status janitor attire tend to elicit Black categorizations. Further, 

these effects would be more pronounced as a face’s race increases in ambiguity. Even 

when a status cue would not influence an ultimate categorization response, however, it 

was predicted that it would still lead perceivers to partially, simultaneously activate the 

other race category with which it is associated. Such a partial parallel activation of the 

other race category—due to status cues tied to that category—would be evidenced by a 

partial attraction in participants’ hand movements toward the other category response 

(e.g., Black) before clicking their final response (e.g., White). Further, this attraction 

effect would grow stronger as a face’s race increases in ambiguity. Thus, this study aims 

to test how top-down stereotypes interact with the processing of bottom-up facial cues to 

shape race perception. 

Method 

Participants. Twenty-two undergraduates participated for partial course credit or 

monetary compensation. One participant did not follow instructions correctly, leaving 21 

participants for analysis. 

Stimuli. Face stimuli were comprised of 16 computer-generated face identities (8 

male) that were morphed along a 13-point race continuum, from White (morph −6) to 
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Black (morph +6), using FaceGen Modeler. Using various images of clothing obtained 

from public domain websites, each face was affixed to a high-status (business) and low-

status (janitor) attire (see Figure 10A). Half of the 16 face identities (each containing 13 

levels of race) were affixed to a high-status cue, whereas the other half were affixed to a 

low-status cue (which identities were affixed to which cue was counterbalanced across 

participants). 

Procedure. Participants categorized faces as White or Black as quickly and 

accurately as possible in a mouse-tracking paradigm. The procedure was identical to that 

of Study 2.  
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Figure 10. (A) Sample stimuli of Study 7. A high-status or low-status cue was affixed to 

13-point morph continua, where race was varied from White (−6) to Black (+6). (B) The 

likelihood of Black categorization is plotted as a function of morph values, separately for 

high-status and low-status faces. Note the canonical sigmoidal shape of the curves, 

consistent with the categorical perception of race (Levin & Angelone, 2002). Also note 

that the strongest influences of the status cue are in the middle of the continuum (most 

clearly shown in panel C).  (C) The same plot as in panel B, except here zooming in on 

the middle of the morph continuum, where race is most ambiguous.  

 

 

 

Results 

Data preprocessing.  Preprocessing was identical to the previous mouse-tracking 

studies. For comparison, all trajectories were remapped rightward, such that the selected 

response was at the top-right and the unselected response at the top-left.  
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 Categorization responses.  First, perceived race (0 = White, 1 = Black) was 

regressed onto morph values (−0.5 = most prototypically White [morph −6], 0.5 = most 

prototypically Black [morph +6]), status cue (−0.5 = high-status, 0.5 = low-status), and 

the interaction (using logistic GEE regression). Expectedly, as morph values rose from 

White to Black, the likelihood of Black categorization increased, B = 18.05, p < .0001, z 

= 15.22, confirming the morphing manipulation. Status cues, however, also influenced 

categorization. A low-status cue raised the likelihood of Black categorization relative to a 

high-status cue, which raised the likelihood of White categorization, B = 0.26, p < .05, z = 

2.42 (Figures 10B and 10C). The interaction was not significant, B = 0.85, p = .41, z = 

0.82.  

To directly examine whether racial ambiguity may have moderated the influence 

of status cues on categorization, an index of racial ambiguity was generated by converting 

morph values into absolute values, multiplying by −1, and centering around 0: −0.5 = 

most prototypical (morph ±6) to 0.5 = most ambiguous (morph 0). Perceived race was 

regressed onto racial ambiguity, status cue, and the interaction (using logistic regression). 

Increases in racial ambiguity overall led to increases in the likelihood of Black 

categorization, B = 0.64, p = .0001, z =3.88. This was due to an overall bias of 

categorizing racially ambiguous faces as Black rather than White, as the most ambiguous 

face (morph 0) had a likelihood of Black categorization in the 60−70% range, rather than 

50%. This is consistent with prior work on hypodescent (the tendency to assign 

individuals of mixed heritage to the social group of lowest status) in race categorization 

(e.g., Peery & Bodenhausen, 2008). As in the previous analysis, status cues influenced 

categorization as well, with a low-status cue raising the likelihood of Black categorization 
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and vice-versa for a high-status cue, B = 0.06, p < .05, z = 2.29. More importantly, a 

significant interaction indicated that the influences of status cues were exacerbated as 

racial ambiguity increased, B = 0.17, p = .05, z = 1.92 (Figure 11A). Thus, contextual 

status cues shaped race perception, and ambiguity moderated their ability to exert an 

influence.  

 

 

Figure 11. Racial ambiguity’s moderation of status cues’ influence on race categorization 

(Study 7). (A) The likelihood of Black categorization is plotted as a function of racial 

ambiguity, separately for faces surrounded by high-status versus low-status attire. (B) The 

degree of attraction toward the opposite race-category response (indexed by AUC) is 

plotted as a function of racial ambiguity, separately for trials where the categorization 

response was stereotypically congruent versus incongruent with the status cue. 

 

 

Although the above analysis shows that status cues affected a considerable 

number of categorizations, there were also many categorizations that remained unaffected 

by status cues. The account proposed here, however, argues that such seemingly 

unaffected categorizations are, in fact, still subtly influenced by those cues. This is 

because the processing of status cues would always partially weigh in on the 
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categorization process, as described above. Thus, even when a face with low-status attire 

is categorized as White or a face with high-status attire is categorized as Black, the status 

cue would still trigger the partial parallel activation of the other race category with which 

it is associated, thereby temporarily altering race perception. This was addressed using the 

mouse-tracking data. For mouse-trajectory analyses, trials were coded as congruent or 

incongruent based on whether the categorization response was stereotypically congruent 

vs. incongruent with the status cue. Thus, trials where a face with high-status attire was 

categorized as White or a face with low-status attire was categorized as Black were coded 

as congruent; trials where a face with low-status attire was categorized as White or a face 

with high-status attire was categorized as Black were coded as incongruent.  

Spatial attraction.  Trajectories’ AUC values were regressed onto racial 

ambiguity, congruency (−0.5 = congruent, 0.5 = incongruent), and the interaction (using 

normal GEE regression). As expected given the results of Study 3, there was a significant 

effect of racial ambiguity. Increases in ambiguity overall led to increases in the attraction 

toward the opposite side of the screen [B = 0.80, p < .0001, z = 9.03], suggesting that 

perceivers were tentatively considering the other race category. More importantly, there 

was a significant effect of congruency. When categorization responses were incongruent 

(i.e., not influenced by the status cue), hand trajectories nevertheless showed an attraction 

toward the other race category stereotypically associated with the status cue, relative to 

hand trajectories for congruent responses, B = 0.07, p < .01, z = 2.73 (Figure 12). 

Moreover, a significant interaction indicated that the hand’s attraction toward the other 

race category, due to the presence of a status cue tied to that category, became 

increasingly strong as racial ambiguity increased, B = 0.16, p < .05, z = 2.07 (Figure 11B). 
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Thus, en route to settling into the White response for a face with low-status attire, the 

hand showed an attraction to select the Black response; and en route to settling into the 

Black response for a face with high-status attire, the hand showed an attraction to select 

the White response.  Further, this attraction effect grew stronger as racial ambiguity 

increased. 
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Figure 12. Mean computer mouse trajectories of Study 7. Trajectories for all targets were 

remapped rightward, with the opposite race category on the left and the selected race 

category on the right. A sample face stimulus, surrounded by a status cue associated with 

the selected race category, is shown on the right, next to the mean trajectory for congruent 

trials (when faces with high-status cues were categorized as White or faces with low-

status cues were categorized as Black). On the left is shown that same face stimulus, but 

with a status cue associated with the opposite race category, next to the mean trajectory 

for incongruent trials. Panel A shows trajectories averaged across trials for the most 

ambiguous faces (morphs 0 and ±1), along with a sample ambiguous face stimulus. Panel 

B shows trajectories averaged across trials for the least ambiguous faces (morphs ±5 and 

±6), along with a sample unambiguously White face stimulus. 
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Discussion 

Low-status cues presented with a face increased the likelihood of Black 

categorization, and high-status cues presented with a face increased the likelihood of 

White categorization. Further, such influences grew stronger as a face’s race became 

more ambiguous, as the bottom-up ambiguity opened the door to top-down pressures 

from stereotypes triggered by contextual status cues. Often these influences affected 

categorization wholesale and drove ultimate responses. In cases where they did not, 

however, they nevertheless influenced categorization. Even in many cases in which faces 

with low-status attire were categorized as White or faces with high-status attire were 

categorized as Black, the processing of a status cue still triggered the partial parallel 

activation of the other race category with which it was stereotypically associated. This 

was evidenced by participants’ hands temporarily gravitating toward the other race-

category response before arriving at their ultimate decision. When status cues do not 

shape an ultimate categorization, therefore, they nevertheless exert a subtle influence by 

activating the other, associated race category. These results suggest that extraneous top-

down information sources, such as activated stereotypes, may interact with bottom-up 

face processing across the construal process. Further, the degree of bottom-up ambiguity 

moderates the ability for top-down information to enter into the categorization process. In 

the following study, such top-down effects are explored with the computational model. 

Study 8: Computational Account of Top-Down Interactivity 

To account for the pattern of categorization responses and mouse-tracking data of 

the previous study, a new instantiation (Figure 13) of the general model (Figure 1) was 

developed.  
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Figure 13. An instantiation of the model used in Study 8 to account for the results of 

Study 7. 
 

 

Method 

In this instantiation, all excitatory connections have a weight of 0.2 and inhibitory 

connections a weight of –0.1. Because non-normative categories (e.g., Black) and the 

stereotypes tied to those categories (e.g., low-status) tend to be more readily activated 

(Smith & Zarate, 1992), and because race categorization tends to be more strongly 

swayed by the Black category rather than the White category (e.g., Peery & Bodenhausen, 

2008), the bidirectional excitatory BLACK–HIGH-STATUS connection was given a slightly 

stronger weight of 0.203, thereby capturing this asymmetry. The level of noise also 

slightly differed from previous instantiations, with σ = 0.007 (see Appendix A). The 
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present instantiation of the model is also a simpler variant than the previous 

instantiations, in that there are considerably less between-node connections. A more 

complex instantiation was also used, but because the simpler variant was able to account 

for the empirical data well, it was adopted for parsimony. 

A total of 26 simulations were conducted: 13 morph values × 2 status cues. In 

each simulation, input into the RACE TASK DEMAND node was set at .9 and into the 

OCCUPATION TASK DEMAND node at .1, simulating the task demand that requires attention 

on race rather than occupation. For the high-status condition (where targets had business 

attire), input into the BUSINESS ATTIRE NODE was set at 1 and into the JANITOR ATTIRE 

node at 0, and vice-versa for the low-status condition (where targets had janitor attire). 

Based on a face’s morph value, input into the WHITE FACIAL CUES node was set at [1 − 

(morph + 6)/12] and input into the BLACK FACIAL CUES node at [(morph + 6)/12]. For 

example, for the most prototypically White face (morph −6), the WHITE FACIAL CUES 

node was initialized with 1 and BLACK FACIAL CUES node with 0, and vice-versa for the 

most prototypically Black face (morph +6). For a slightly less White face (morph −5), the 

WHITE FACIAL CUES node was initialized with 0.92 and the BLACK FACIAL CUES node 

with 0.08. For the most racially ambiguous face (morph 0), both nodes were initialized 

with 0.5. See Footnote 3. Each of the simulations was run 100 times. After 200 iterations, 

the race-category node with the highest activation was selected as the network’s 

categorization response. 

Results and Discussion 

When the network was presented with the task demand of race categorization and 

the face stimuli of Study 7, its categorization responses closely mirrored that of human 
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perceivers (R
2
 = 0.99, root mean-square-error = 0.03). As shown in Figure 14A, low-

status cues made a Black categorization more probable, whereas high-status cues made a 

White categorization more probable. Further, these influences of status cue grew stronger 

as racial ambiguity increased. For those categorization responses that were not affected by 

the status cue (incongruent responses), the processing of the status cue nevertheless 

triggered the partial parallel activation of the other race category with which it was 

associated. This is reflected in Figure 14B, showing the maximum activation level of the 

selected and unselected race-category nodes. When a status cue stereotypically tied to the 

other race category was present (i.e., incongruent trials), that other, unselected category 

was partially active in parallel. Further, this partial activation of the unselected race 

category became increasingly strong as racial ambiguity increased. Such partial activation 

accounts for why participants’ hand movements were simultaneously attracted toward the 

other race-category response (Figure 12), and why that attraction grew increasingly strong 

as racial ambiguity increased (Figure 11B). 
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Figure 14. Results of the computational simulations in Study 8. (A) The proportion of 

times that the network settled into a Black category (the BLACK category node won the 

competition) after presented with faces that varied along a continuum from White (−6) to 

Black (+6). Note the close correspondence with the data from human perceivers (Figure 

10B). (B) Maximum activation level of the winning WHITE or BLACK category node 

(selected category) and the losing WHITE or BLACK category node (snselected category) is 

plotted for incongruent trials (when the BLACK category won the competition for a face 

with a high-status cue, or the WHITE category won the competition for a face with a low-

status cue), across a continuum of racial ambiguity. Note that the unselected category is 

partially activated as well, and that as racial ambiguity increases the maximum activation 

level of the unselected category (the opposite race category) increases as well. This 

accounts for why participants’ mouse movements increase in attraction toward that 

unselected race category, especially as race becomes more ambiguous (Figure 11B). 

 

 

 

Consider, for example, the presentation of a relatively unambiguous White face 

with janitor attire. A process is set into motion where visual input of the face activates 

cue nodes and higher-level input of the task demand activates higher-order nodes (see 

Figure 13). Activation of the RACE TASK DEMAND node starts exciting the WHITE and 

BLACK categories and inhibiting the BUSINESSPERSON and JANITOR categories, leading the 

race categories to become partially active for the task. Strong activation of the WHITE 

FACIAL CUES node places strong excitatory pressure on the WHITE category. With both 

race categories simultaneously active, they begin competing with one another through 
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mutual inhibition to stabilize onto just one. As the competition unfolds, the WHITE 

category excites the HIGH STATUS stereotype and the BLACK category excites the LOW 

STATUS stereotype. Now with the conflicting LOW STATUS and HIGH STATUS stereotypes 

simultaneously active as well, they too begin competing with one another through mutual 

inhibition to stabilize onto just one. Meanwhile, activation of the JANITOR ATTIRE node 

excites the JANITOR category and inhibits the BUSINESSPERSON category (but the JANITOR 

category only gains a meager amount of activation because it is inhibited by the RACE 

TASK DEMAND node). Ongoing activation of the JANITOR category then excites the LOW 

STATUS stereotype. At this point, the Stereotype nodes are being continually fed activation 

by both race and occupation categories. Because activation in the network is mutually 

interactive, however, while the competition is still resolving itself the stereotype nodes 

also feed activation back to the category nodes. This leads the JANITOR category’s 

excitation of the LOW STATUS stereotype, in turn, to place excitatory pressure on the 

BLACK category and help it win against the WHITE category.  

In some cases, such pressures would be strong enough to make the BLACK 

category more likely to win the competition, driving ultimate categorization responses. In 

other cases, such pressures would not be strong enough to drive responses and would only 

lead to a stronger partial parallel activation of the BLACK category (until it gradually 

decays, succumbing to the WHITE category). Moreover, these top-down pressures from 

stereotypes would be given increasingly more room to shape race-category activation as a 

face’s race increases in ambiguity. The lack of bottom-up bias toward either the WHITE or 

BLACK category would open the door wider and wider to top-down influences, as the 

race-category competition is increasingly swayed by feedback from stereotype nodes. By 



                                                                                                                                                           69 

activating stereotype nodes, contextual attire cues readily influence race categorization. 

As such, the network incorporated status cues to categorize a face’s race, particularly 

when race was ambiguous. 

 Converging with the results of Study 7, the present results show how top-down 

stereotypes continuously interact in real time with bottom-up face processing. As such, 

one’s stereotypic expectations may enter in on the categorization process. In some cases, 

this can alter categorizations wholesale; in other cases, it only temporarily alters them by 

simultaneously activating an alternate race category. Moreover, such effects are more 

pronounced as a face increases in racial ambiguity, and these effects are evidenced in both 

the mouse-tracking experimental data and in computational simulations. Thus, although it 

is often thought that prejudice is a consequence of initially categorizing others (Allport, 

1954), the present results suggest that our prejudices also affect even initial categorization 

itself. These results also extend the findings of the previous studies by documenting yet 

another source of bottom-up information at play in driving the categorization process: the 

contextual cues that often surround a face in the real world. 
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GENERAL DISCUSSION 

Across 8 studies, converging evidence provided support for the dynamic and 

interactive nature of person construal. Specifically, the studies support the proposed 

theory that the perception of other people is accomplished by a dynamical system in 

which lower-level sensory perception and higher-order social cognition coordinate across 

multiple interactive levels of processing. The computational model presented here was 

intended to capture these theoretical claims, and simulations demonstrated that it can 

account for many of the experimental results. These include the finding of continuously 

evolving category representations and a dynamic competition process that underlies social 

categorization (Studies 1–4), the finding of continuous face–voice interaction during 

categorization (Studies 5–6), and the finding of activated stereotypes’ top-down 

influences on categorization (Studies 7–8). 

Studies 1-2 were used to test the existence of a dynamic competition process 

argued to underlie our ability to slot others into social categories, such as sex and race. 

This was evidenced by mouse movements’ partial, simultaneous attraction to the opposite 

category when categorizing a face bearing some overlapping cues tied to that category. 

These studies show that there is a competition process inherent to social categorization, 

which allows the natural diversity in others’ sensory cues to be translated into a rigid 

categorization. The was best evidenced in Study 3, where the strength of the competition, 

indexed by trajectory curvature, sensitively increased and decreased with the amount of 

racial ambiguity perceivers were presented with. Thus, this competition process is 

initially sensitive to the full perceptual continuum underlying a social category 

dimension, but then eventually slots it into a rigid category (e.g., White or Black).  
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Not only was the person construal process found to be highly sensitive to the 

bottom-up cues in one sensory modality, but also those originating from multiple 

modalities at the same time. Study 5 found that, when categorizing a face’s sex, the 

simultaneous processing of vocal cues exerted an ongoing influence on the categorization 

process (as evidenced in mouse movements). Study 7 then found that other extraneous 

information sources beyond cues from bottom-up modalities, such as an individual’s top-

down stereotypes, can also constrain categorization in dynamic fashion. For example, if a 

face surrounded by low-status attire was categorized as “White”, mouse trajectories 

exhibited a continuous attraction to the “Black” response (stereotypically tied to the 

surrounding cue). Thus, stereotypes triggered by contextual cues exerted top-down 

pressure on the categorization process as it was being driven by bottom-up face 

processing in parallel. As such, prior stereotypic expectations temporarily altered 

categorization. Together, these studies show how multiple bottom-up and top-down 

information sources interact and constrain one another in driving perceptions.   

Across the various mouse-tracking studies, the reader may have been tempted to 

inspect the mean trajectories (e.g., Figure 4) and attempt to pinpoint “when” a category 

decision occurred. For instance, perhaps the moment when the mouse first deviated from 

the horizontal center (x = 0) towards the correct response is when a decision was made. 

The present work argues, however, that there is no single moment at which a decision 

occurs; rather, all processing leading up to the mouse-click (including motor execution of 

the mouse-click itself) is argued to be temporally dynamic. As described earlier, during 

early moments of face processing a rough sketch of the face rapidly accumulates into 

neuronal populations, which would afford a quick-and-dirty interpretation of another’s 
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face that continuously sharpens across processing (Rolls & Tovee, 1995). Thus, early on, 

mouse movements could already begin heading in the direction of the correct response, 

but this need not indicate that a decision has already been made; it would simply indicate 

that, during these moments, the competition was predominantly swung toward the correct 

category. But the competition is likely not over. Although the mouse may start travelling 

in the correct direction, the other category may still be simultaneously active. Imagine a 

moment where the transient interpretation of a face’s race, for example, is 75% in support 

of the White category and 25% in support of the Black category. The mouse should 

already be heading in the direction of a “White” response (as the White category is 

predominantly activated), thus deviating from x = 0, but it should nonetheless still be 

partially attracted to the “Black” response (as the Black category is still 25% activated). 

Thus, I argue that there is no instantaneous moment to pinpoint at which one social 

category is discretely selected and other categories vanish from the processing landscape. 

Rather, an ultimate categorization could simply be the end-result of continuously 

fluctuating category representations that gradually settle into a stable, steady state (also 

see Dale, Kehoe, & Spivey, 2007; Spivey & Dale, 2004).  

Summary 

According to the proposed model, perceptions of other people gradually emerge 

through the ongoing interaction between social categories, stereotypes, high-level 

cognitive states, and the low-level processing of facial, vocal, and bodily cues. Internal 

representations of categories and stereotypes are dynamically and probabilistically 

reconstructed, rather than behaving like static, symbol-like structures that wait around 

inertly until discretely accessed (see Footnote 2). The real-time evolution of these 
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probabilistic representations is in continuous interaction with other activations across the 

system, both influenced by these other activations and a source of influence over them. 

The entire system’s prior history, its visual inputs (e.g., facial cues), auditory inputs (e.g., 

vocal cues), and top-down inputs (e.g., stereotypes, task demands), its internal 

constraints, and some random noise jointly determine the construal of other people. 

Taken together with the experimental mouse-tracking results, the present work 

suggests that perceptions of other people continuously evolve over fractions of a second 

and emerge from the mutually constraining interaction of multiple bottom-up sensory 

cues (e.g., facial, vocal, and contextual cues) and top-down social factors (e.g., 

stereotypes). Moreover, multiple conflicting perceptions may often be triggered during 

this process, and these gradually stabilize over time onto single categorical outcomes 

through dynamic competition. As such, person construal readily makes compromises 

between the variety of sensory cues inherent to another person and the baggage an 

individual perceiver brings to the construal process. Higher-order social cognition, 

according to this framework, is thus free to constrain and alter lower-level perceptual 

processes. This therefore furthers the emerging perspective that human perception is 

driven by an intimate interplay between both sensory and social phenomena (Adams, 

Ambady, Nakayama, & Shimojo, 2010; Balcetis & Lassiter, 2010).  

Comparison with Extant Models 

Extant social psychological models have described how perceivers form high-

level impressions of other people, whether they utilize category-based or individual-based 

information, and how knowledge about individuals and groups is learned, stored, and 

accessed (Bodenhausen & Macrae, 1998; Brewer, 1988; Chaiken & Trope, 1999; Conrey 
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et al., 2005; Fiske et al., 2002; Fiske & Neuberg, 1990; Higgins, 1996; Kunda & Thagard, 

1996; Read & Miller, 1998b; Smith & DeCoster, 1998; Srull & Wyer, 1989; van 

Overwalle & Labiouse, 2004). Models in the cognitive face-processing literature, on the 

other hand, have described the visual and perceptual mechanisms that permit face 

recognition (Bruce & Young, 1986; Burton et al., 1990; Valentin, Abdi, O'Toole, & 

Cottrell, 1994). The proposed dynamic interactive model helps unify these two literatures 

by describing how the lower-level perceptual processing modeled in the cognitive 

literature works together with the higher-order social cognitive processes modeled in the 

social literature to give rise to person construal. 

 Social psychological models have tended to use categorization as a starting point, 

with relatively little focus on the perceptual processing that gives rise to it. Thus, in Fiske 

and Neuberg’s (1990) influential model of impression formation it is argued that the 

utilization of stereotypes, which is derived from a dominant categorization, is prioritized 

over more individual-based information in forming impressions, unless the perceiver is 

motivated to move further and individuate the target. This model, like Brewer’s (1988) 

and Kunda and Thagard’s (1996) models of impression formation, provide 

comprehensive accounts of how top-down processes, such as stereotypic expectations, 

motivation, and attention, interact with the bottom-up process of learning explicit 

individuated characteristics about a target. In these models, therefore, a target’s category 

memberships are given, and their influence on subsequent interpersonal phenomena are 

richly described (e.g., impressions, behavior). This is also the case for other models of 

person perception, such as Bodenhausen and Macrae’s (1998) stereotype activation and 

inhibition model. As such, categorization (and corresponding stereotype activation) is the 
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initial input into these models. The focus of these models is not to explain the 

categorization process itself; it is to explain the higher-order social cognitive processing 

that comes after.  

The present framework builds on these important models by fleshing out the 

initial category and stereotype activation process and explaining how this process is 

dynamically driven by both bottom-up sensory information as well as high-level top-

down factors. Notably, this expands on extant models by explaining how initial category 

and stereotype activation may be influenced, sometimes considerably, by top-down 

factors. Although models of person perception have always emphasized the role of top-

down factors (e.g., expectations, motivation, and attention), these factors have not been 

readily acknowledged to seep down into lower levels of processing, into the initial 

category and stereotype activation process itself.  For example, such top-down factors had 

an important role in Studies 7–8, where status stereotypes activated by contextual attire 

cues altered the perception of a face’s race. The modeling of the reach of top-down 

influences into even lower levels of person perception, such as basic category activation, 

thus builds on extant models that have generally described only the reach of top-down 

influences into higher levels of processing. 

Beyond the importance of accounting for how perceptual processing brings about 

social cognitive phenomena in general, the modeling of perceptual processing is also 

important because it can bear a variety of downstream effects.  For example, as shown in 

the present studies, within-category facial or vocal variation affects the dynamic 

competition inherent to categorization. This can in turn affect the eventual stable category 

representations that perceivers settle into (Locke et al., 2005). Thus, more prototypically 
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masculine facial or vocal features (relative to less), for instance, affects the competition 

between male and female categories, which results in a stronger stable representation of 

the male category and weaker stable representation of the female category (see Figure 6). 

This can bear a variety of downstream effects, shaping trait attributions (Blair, Chapleau, 

& Judd, 2005; Blair, Judd, & Fallman, 2004; Blair et al., 2002; Ko et al., 2006; Maddox 

& Gray, 2002) as well as behavior (Blair, Judd, & Chapleau, 2004; Johnson, Eberhardt, 

Davies, & Purdie-Vaughns, 2006). Thus, the present framework builds on extant models 

by shedding new insights into the relationship between the higher-order processes these 

models have described and the lower-level perceptual processing that has received less 

attention.  

Implications 

The present findings and framework have several implications for present 

understandings of person construal, which are discussed here. 

Re-thinking the “Multiple Category Problem” 

Individuals naturally vary along any number of category dimensions (e.g., sex, 

race, age). Extant models have often emphasized that one category and the stereotypes 

tied to that category come to dominate the processing landscape, whereas others are 

actively suppressed, making the perceiver’s job easier and thereby solving the “multiple 

category problem” (e.g., Bodenhausen & Macrae, 1998; Macrae, Bodenhausen, & Milne, 

1995; Sinclair & Kunda, 1999). 

According to the present model, the selection of one category and winnowing of 

other categories is accomplished by top-down pressure from higher-order nodes. For 

instance, the task demands of sex categorization, expressed by higher-order nodes, exerts 
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excitatory pressure on to-be-attended categories (male, female) and inhibitory pressure on 

task-irrelevant categories (e.g., Black, White, Asian). However, the model introduces 

several nuances to an understanding of how the person construal system comes to arrive 

at focal categorizations of others. 

The present model assumes that these top-down task-demand pressures exert their 

differential influence on categories dynamically over time. Thus, although for the 

purposes of sex categorization an applicable sex category rises in activation (thus 

becoming focally attended) whereas an applicable race category falls (thus becoming 

ignored), this pattern of excitation and inhibition is not instantaneous. Rather, higher-

order task-demand nodes gradually exert excitatory pressure on certain categories while 

exerting inhibitory pressure on others. Thus, while these pressures are still at work the 

model predicts that multiple applicable category memberships (e.g., sex, race) are actually 

flexibly active in parallel. This places the model in line with neural dynamic models of 

visual attention (Desimone & Duncan, 1995), which assume a similar parallel activation 

of multiple representations.  

Because multiple applicable category memberships (e.g., Black, janitor) may be 

active in parallel while the system works toward stabilizing on a focal category (e.g., 

Black), non-focal categories also have the ability to influence perception. This is because 

their partial parallel activation can powerfully affect the system’s trajectory and the stable 

states it achieves. A clear demonstration of this, for example, is found in the stereotype-

mediated race–occupation interactive effects of Studies 7–8. Due to the context of a race 

categorization task, higher-order nodes exerted excitatory pressure on race-category nodes 

and inhibitory pressure on occupation-category nodes. While these top-down task-
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demand pressures were at work, for a great deal of processing time occupation categories 

were still partially active in parallel. This occupation-category activation had a powerful 

effect on the trajectory of the system and on race categorization in particular. The 

competition between race categories, which sometimes was initiated by a completely 

race-ambiguous face (and thus initially equibiased with respect to bottom-up visual input) 

was powerfully swayed one way (White) or the other (Black) based on the partial parallel 

activation of presumably task-irrelevant occupation categories. Specifically, when targets 

were surrounded by janitor attire, the partial activation of the JANITOR category biased the 

race-category competition toward a Black categorization. Thus, non-focal, presumably 

task-irrelevant categories (e.g., occupation in a race categorization task) can bear 

powerful influences on focal person construals. 

The model also implies that, in the absence of strong top-down factors that require 

all but one category to be inhibited (e.g., task demands, goals), the person construal 

system could settle into stable states that are quite flexible. For instance, without higher-

order nodes exerting inhibitory pressures on particular category nodes, the stable states 

that the person construal system settles into could easily involve multiple categories (e.g., 

White, male) that are flexibly active in parallel. Indeed, the quality of having multiple 

person characteristics (e.g., lazy, friend, lives nearby) partially active in parallel is a 

central feature of the content-addressable memory modeled in connectionist networks of 

person memory (Smith, 1996, 2000; Smith & DeCoster, 1998). Just as multiple 

categories have often been shown to simultaneously constrain high-level impressions and 

social reasoning (Kunda & Thagard, 1996; Read & Miller, 1998b), a dynamic interactive 

theory proposes that they also simultaneously constrain lower-level person construals. 
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Thus, the “multiple category problem” might best be characterized not so much as a 

“problem” that must be eliminated to keep cognitive efficiency (Allport, 1954), but rather 

as a reflection of the flexibility of interactive, parallel category representations.   

The Dynamic Coextension of Category and Stereotype Activation 

Recent research has found that variation in facial features may bear effects on 

stereotype activation that are independent of a target’s category membership. For 

instance, the presence of Black-specifying cues on a person who is not Black (e.g., a 

White face) increases Black-related stereotypic attributions (Blair et al., 2005; Blair et al., 

2002). These effects may thereafter influence behavior as well. For example, in court 

trials, targets with more Black-specifying features are punished more severely and more 

likely to be sentenced to death (Blair, Judd, & Chapleau, 2004; Johnson et al., 2006). 

Based on such findings, some accounts have argued that these independent feature-based 

effects on stereotype activation are accomplished by a special feature-based processing 

route, where features become associated with stereotypes unmediated by any category 

representation at all (Blair et al., 2002; Livingston & Brewer, 2002). This direct features 

� stereotypes route is theorized to be separate from a more typical categories � 

stereotypes route.
 

The present model agrees with these previous accounts that facial features can 

influence stereotype activation without a discrete categorization. However, because the 

model permits categorizations to be partially active in parallel, independent feature-based 

effects on stereotype activation could be mediated by the tentative, partially-active 

categorization of an alternate category.  Specifically, the model suggests that independent 

feature-based effects on stereotyping are a product of the dynamic processing cascade 
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inherent to the system. Cues of an alternate category (e.g., Black-specifying cues on a 

White target) trigger partially-active, competing category representations (e.g., “he’s 

[tentatively] White” versus “he’s [tentatively] Black”). Both category representations 

(e.g., White, Black) then immediately pass activation onward to their respective 

stereotypes before the competition in the category level has resolved and settled into just 

one alternative. This is reflected in Figure 6, where feminine cues on a man’s face 

triggered the partial and parallel activation of the FEMALE category, which continuously 

cascaded into the partial and parallel activation of the female-related stereotype, DOCILE, 

as was shown with human perceivers (Freeman & Ambady, 2009). Thus, the dynamic 

coextension of category and stereotype activation permits independent feature-based 

effects on stereotype activation. As such, the present model parsimoniously accounts for 

independent feature-based effects on stereotyping by one single route involving a 

dynamic processing cascade. 

A Rapidly Adaptive, Ecologically Valid Person Construal System 

Like the present model, the ecological approach to social perception (McArthur & 

Baron, 1983) emphasized the need to study directly the stimulus information that avails 

perceivers with functionally significant characteristics about other people. It also 

emphasized the inherently dynamic and multimodal nature of social stimuli. The dynamic 

interactive framework presented here is in the best spirit of this approach and builds on it 

in several ways.  

This framework brings new and helpful ways of thinking about ecologically-valid 

person construal. Specifically, it assumes that the person construal system’s processing is 

fully continuous and highly interactive, and that its representations are probabilistic, 
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active in parallel, and changing over time. This is exactly the sort of system required for 

the ecologically-valid person perceiver—the kind of perceiver that must make sense of 

others in real-time, on-the-fly, and in a rapidly changing social environment. In real-world 

social encounters the sensory stimulation of another person is almost always in 

continuous flux (Gibson, 1979). The most obvious example might be the perception of a 

face’s emotion, which continuously fluctuates over time. Rarely do perceivers encounter a 

static emotional expression. Rather, for just a few fleeting moments, another’s face 

displays slight anger, which then rapidly transitions into some other expression. By the 

time perceivers are finished processing that subtle anger, however, there are already 

hundreds of milliseconds of new visual information that needs to be accrued and dealt 

with. In real-world person construal, therefore, another’s face tends not to fit squarely into 

any one expression (e.g., angry), but is usually in some in-between state amidst one 

interpretable expression and the next, and rarely standing still. 

For simplicity, in the presented instantiations of the model external input was 

supplied to the network discretely (at iteration 1). However, the model is flexible to 

support the more ecologically-valid situation in which external stimulation to the network 

dynamically changes across time based on changing cues in the social environment. As a 

face’s emotion, a body’s subtle nonverbal behavior, or the ongoing stream of vocal cues 

fluctuate over time, the visual and auditory inputs into cue nodes would continually 

change across iterations accordingly. This would thereby continually change, iteration to 

iteration, the amount of excitatory and inhibitory pressures on category and stereotype 

nodes. As such, at any given moment while the system is trying to settle into one stable 

state, new sensory information bombarding the system would already start changing the 
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various stable states to which the system will start gravitating (Spivey, 2007). This leaves 

little time for the system to actually rest in any given stable state, since by the time it 

starts to stabilize it is already being pushed out of its stability by new constraints (e.g., 

changes of a face’s emotion, of the body’s behavior, of the voice stream). Thus, the 

network outlined here is a rapidly adaptive and dynamic person construal system. Its 

continually evolving states are able to be tightly yoked to the ongoing sensory stimulation 

of the social environment. 

This adaptive, dynamic person construal system is potentially stimulated by 

continuous top-down input as well. For instance, ecologically-valid, moment-to-moment 

changes in one’s goals or attentional states, among other top-down factors, would 

continually stimulate higher-order nodes, which thereafter continually change the amount 

of excitatory and inhibitory pressures on category and stereotype nodes. Thus, although 

for the sake of simplicity external inputs into the network were modeled as discrete 

occurrences, the system is inherently capable of supporting stimulation by a dynamically 

changing social environment as well as dynamically changing internal cognitive states. 

An ecologically-valid person construal system also needs to permit ongoing 

perceptions of other people to guide action continuously over time. In social interaction, 

something apparent on individual A’s face and gesturing elicits a reaction on individual 

B’s face and gesturing, which then elicits a reaction on individual A’s face and gesturing, 

and so on and so forth. Thus, there is no staccato series of static images and sounds that 

elicit particular reactions. Instead, ecologically-valid person construal would likely need 

to involve continuous millisecond-by-millisecond updates of facial, vocal, and bodily 

information, and these updates need to make their way onto the motor system 
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immediately, not once the system has 100% finalized the processing of each transient 

image or sound in a social interaction. Indeed, recent neurophysiological evidence 

suggests that this dynamic person processing is a likely possibility. In a series of event-

related potential studies, it was shown that the process of social categorization 

immediately shares its ongoing results with the motor cortex to guide action continuously 

over time (Freeman, Ambady, et al., 2011). This is consistent with multi-cell recordings 

in nonhuman primates (Cisek & Kalaska, 2005, 2010). Thus, person construal is 

characterized by continuous perceptual–cognitive–motor dynamics, such that perceptual, 

cognitive, and motor processing are coextensive. Cognitive representations of a face’s 

category memberships develop over hundreds of milliseconds while perceptual 

processing is ongoing, and these representations evolve alongside accruing perceptual 

evidence for category alternatives. Further, ongoing results of this social category 

processing are immediately cascaded into the motor cortex to guide relevant actions 

continuously over time. Thus, person construal is continuously coextensive with action. 

This is exactly the kind of processing required by the ecologically-valid person perceiver. 

In short, described here is a person construal system that is rapidly adaptive and 

dynamic. It is able to perceive others in an ecologically-valid, real-time social 

environment, while also able to coordinate with the motor system to act on ongoing 

perceptions. 

New Predictions and Future Directions 

Beyond the present model’s ability to explain a variety of experimental results, it 

also gives rise to a number of new and distinctive predictions, which future work could 
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directly examine. Below are a few examples of important predictions derived from the 

model that could serve as testable hypotheses in the future. 

Category Interactions due to Incidental Stereotypic and Phenotypic Overlap 

The present model makes the novel prediction that any incidental overlap in the 

stereotype or phenotype content of two category memberships would lead the system to 

throw those categories into interaction. As shown in Studies 7–8, overlapping stereotype 

content between the Black and janitor categories (e.g., low status) and between the White 

and businessperson categories (e.g., high status) created top-down pressure that gave rise 

to race–occupation interactions. However, any number of category interactions are 

possible and, in fact, quite likely. Many stereotypes are likely to be incidentally shared by 

multiple categories. In fact, the very existence of some categories may be predicated on 

the stereotypes of other categories, such as sexual orientation categories and sex-category 

stereotypes (Kite & Deaux, 1987), and this is evident in perceptual construals (Freeman, 

Johnson, Ambady, & Rule, 2010; Johnson, Gill, Reichman, & Tassinary, 2007). Future 

work could empirically estimate the degree of stereotype overlap between categories 

using explicit or implicit measures, and implement the estimated overlap into the 

stereotype and category levels. A variety of category interactions could arise in network 

simulations, and these could then be experimentally tested in the laboratory.  

Similarly, categories could also be thrown into interaction through bottom-up 

processes as well. For example, the perceptual cues contained in the face, voice, and body 

are likely to, by chance, partly covary between categories. This has been shown with sex 

and emotion categories (Becker et al., 2007), where angry male and happy female faces 

are characterized by more efficient processing. Future work could empirically estimate 
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the degree of phenotype overlap between categories and then implement this estimated 

overlap into the cue and category levels. For example, face-modeling software can derive 

precise estimates of hundreds of facial cues from a facial photograph (e.g., Blanz & 

Vetter, 1999). Thus, researchers could derive estimates of cue overlap using 

representative samples of faces for specific category memberships, and then implement 

these estimates into instantiations of the model. If category interactions arose in network 

simulations, these could then be experimentally investigated in the laboratory.  

Category interactions could also potentially be driven by both top-down and 

bottom-up overlap at the same time (see Johnson, Freeman, & Pauker, 2011). For 

example, not only do male and angry cues and female and happy cues overlap (Becker et 

al., 2007), but also men are stereotyped as angry and women are stereotyped as happy 

(Fabes & Martin, 1991). Simulations with the model are uniquely poised to assess the 

relative contribution of potentially coexistent top-down and bottom-up forces in driving 

category interactions. Such simulations could also be used to tease apart the time-courses 

of these two forces’ influence on perceptions. 

Social Category Blending and Multiracial States 

       In the mouse-tracking studies reported here, participants were constrained to 

making dichotomous categorical judgments. Such dichotomous judgments may have a 

great deal of real-world plausibility for some category dimensions, such as sex, but less so 

perhaps for other dimensions, such as race. Although recent work suggests that people 

effortlessly slot racially ambiguous faces into monoracial categories (Bodenhausen & 

Peery, 2009; Pauker et al., 2009; Peery & Bodenhausen, 2008), an increasingly 

heterogeneous racial landscape is leading to the recognition of more multiracial identities 
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at both an individual and institutional level (Jones & S., 2001; Lee & Bean, 2004; Pauker 

& Ambady, 2009; Renn, 2009; Rockquemore, Brusma, & Delgado, 2009). The present 

research provides perhaps a promising look at the future of race categorization in this 

heterogeneous landscape. Even when perceivers are constrained to making monoracial 

categorizations, the present work suggests that before a race-category decision is settled 

into, the story is a lot fuzzier. For the vast majority of race-category processing, it was 

found that perceivers entertain many dynamically changing in-between states amidst 

traditional race categories—even when targets are slotted into traditional categories if 

demanded by the task (or society). Thus, the present studies show that race categorization 

is inherently capable of supporting all sorts of fuzzy, graded mixtures of multiracial 

interpretations. Before perceivers ultimately fit another’s face into a traditional race 

category, it goes through an ongoing process of fluctuating interpretation that is, in a 

sense, inherently “mixed-race” (e.g., 60% White, 40% Black). The computational 

simulations were consistent with this dynamic process as well. That race categorization 

flexibly supports these sorts of graded categorical blends—even for fractions of a 

second—perhaps provides promise for the future of social categorization in a more 

heterogeneous cultural milieu, ripe with people that blur traditional categorical lines. It 

will be interesting for future research to apply a mouse-tracking paradigm and this 

dynamic interactive framework to understanding the resolution of racially ambiguous 

targets into explicitly multiracial, rather than monoracial, categories. 

Future research should also consider whether such graded categorical blends may 

have important downstream implications. Since the writings of Allport (1954), for 

example, a thorny issue that social psychology has had to tackle is the relationship 
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between race categorization and prejudice. Categorization was long thought to be an 

inevitable consequence of the perception of others (Allport, 1954), with recent work 

seeking evidence for the avoidable nature of categorization in the hopes that this could 

mitigate prejudice (e.g., Blair, 2002; Kurzban, Tooby, & Cosmides, 2001; Macrae & 

Bodenhausen, 2000). The present findings suggest, however, that although others are 

eventually slotted into monoracial categories, the fuzzy overlap with other tentative 

categories (e.g., White, for a mixed-race face seen as Black) is—although not reflected in 

the categorization outcome—dynamically retained in the process, in those fleeting 

moments between catching sight of another’s face and settling into an eventual category. 

Knowing that the race categorization process can support these transitory, categorical in-

between states, future research might examine whether these could ever manifest in 

ultimate categorization outcomes, potentially bearing implications for the tendency to 

prejudge others by oversimplified monoracial categories. 

Downstream Consequences of “Hidden” Parallel Activations  

Anderson (2002) argued for the importance of bridging psychological phenomena 

across multiple orders of temporal magnitude. Here a model of person construal was 

proposed, which fleshes out the process by which an ultimate perception crystallizes on 

the order of hundreds of milliseconds. But how do these relatively low-level, fine-grained 

dynamics relate to higher-order phenomena on the order of hundreds of seconds or hours, 

such as aspects of social interaction or other behavioral outcomes? There are likely many 

relationships to be uncovered. For example, the model predicts that several unforeseen 

category and stereotype representations may be simultaneously and partially active before 

perceivers arrive at an ultimate construal. Subtle bottom-up overlap with an alternate 
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category (e.g., slight feminine facial features on a man) can lead to partial parallel 

activation of that alternate category (e.g., female). Or, high-level cognitive states or 

stereotypes can exert top-down influences on category-level processing, in turn triggering 

partially-active representations of other candidate categories. The proposed model 

therefore predicts that, for a great many of our construals of others, a variety of “hidden” 

category and stereotype activations may be partially triggered in parallel—activations that 

are not reflected in an ultimate perceptual outcome.  

Such subtle activations triggered during real-time construal could likely give rise 

to a variety of unforeseen downstream consequences. The lasting effects of category and 

corresponding stereotype activation on higher-order social phenomena—even the briefest 

of kinds (e.g., priming)—have long been documented. Activated stereotypes change how 

we think about others, judge, and remember them (Bodenhausen, 1988; Brewer, 1988; 

Devine, 1989; Fiske & Neuberg, 1990). They also activate related attitudes and 

behavioral tendencies, in turn changing how we feel about others and evaluate them 

(Fazio, Sanbonmatsu, Powell, & Kardes, 1986) and how we interact with others and treat 

them (Bargh et al., 1996; Chen & Bargh, 1999). Thus, future work could investigate how 

“hidden” parallel activations of alternate categories and stereotypes computed during the 

construal process, or other aspects of this real-time process, relate to important 

downstream phenomena. Moreover, such work could test how variation in the presence of 

these parallel activations relates to measures of individual differences (e.g., levels of 

prejudice or motivation) or other behavioral outcomes. 
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Future Advances to the Model 

Future work could advance the model and simulations presented here in several 

ways. First, the simulations presented here were limited to focusing on how sensory 

information and high-level cognitive states temporally conspire to shape category and 

stereotype activations.  However, any given change in one node of the system will lead to 

changes in all other nodes, as the system works over time to maximally satisfy all of its 

constraints in parallel. Thus, the model is highly interactive and inherently bidirectional. 

It therefore assumes that, beyond high-level cognitive states shaping lower levels of 

processing, lower levels of processing also shape high-level cognitive states. As such, the 

model predicts that sensory information and category and stereotype activations should all 

lead to a variety of changes in high-level cognitive states. However, in the present work 

our focus was on category and stereotype activations as the dependent measures of 

interest. Future work could develop the model further by testing the reverse relationship, 

making high-level states the dependent measure of interest (e.g., motivation, prejudice, 

top-down attention, affect) and examining how these states are shaped by a rich 

interaction with lower levels of processing, as the model predicts. 

The model could also be advanced by deriving network parameters empirically 

(see Footnote 3), and experimental studies could be used to refine and expand the model. 

For example, data could be collected for estimating the connection weights between 

category nodes and potentially hundreds of stereotype nodes (e.g., via explicit or implicit 

measures) and hundreds of cue nodes (e.g., via face-modeling algorithms), and all these 

nodes and their weighting could be implemented in future versions. This would bring the 

model closer to the empirical rigor and level of quantification common to connectionist 
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models of speech perception (e.g., McClelland & Elman, 1986). Moreover, future work 

could opt to replace the cue level with more sophisticated approaches to modeling the 

uptake of sensory information, such as a pixel-based image processor (e.g., Burton, 

Bruce, & Hancock, 1999). This would make fewer assumptions about the role of specific 

features and instead rely more on the emergent properties inherent in other people’s 

sensory information. Together, such advances would allow the model to better reflect the 

real-world interrelatedness among cues, categories, stereotypes, and high-level states. 
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CONCLUSION 

A new approach to the study of person perception is on the rise, as evidenced by 

the two recent volumes, The Science of Social Vision (Adams et al., 2010) and The Social 

Psychology of Visual Perception (Balcetis & Lassiter, 2010). Social psychologists are 

working alongside researchers in the cognitive, neural, and vision sciences to provide a 

unified and more complete understanding of person perception. In the present work, I 

sought to open up the temporally extended, real-time process of person construal. In this 

real-time process, person construal is dynamic and interactive, and the connection 

between the “sensory” and the “social” is an intimate one. The theory, model, and studies 

presented here together show that many person construal phenomena may be accounted 

for by a dynamical system that permits lower-level sensory perception and higher-order 

social cognition to continually collaborate across multiple interactive levels of processing. 

Low-level sensory information and high-level social factors fluidly work together to give 

rise to stable and integrated perceptions of other people. Probabilistic and parallel 

construals gradually emerge through the ongoing interaction between categories, 

stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and 

bodily cues. My hope is that a dynamic interactive framework for person construal will 

provide a helpful guiding force in the burgeoning interdisciplinary effort to understand 

the perception of our social worlds. 
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APPENDIX A 

Details on Model Structure 

The model has a recurrent connectionist architecture that may be classified as a 

stochastic interactive activation network (McClelland, 1991; Rumelhart et al., 1986). In 

such networks, there are a number of nodes with connections that can be positive 

(excitatory) or negative (inhibitory). These nodes are not intended to represent individual 

neurons, but the overall structure of a network is often intended to be approximately 

neurally plausible (Smolensky, 1989). Most of these connections are bidirectional. Thus, 

as one node’s activation tends to excite the nodes connected to it, the excitation of the 

nodes connected to it send feedback to the original node. Indeed, feedback is highly 

pervasive across the human brain (e.g., Brefczynski & DeYoe, 1999; Dragoi, Sharma, & 

Sur, 2000; Lamme & Roelfsema, 2000, also see Spivey, 2007), and thus recurrent 

connectionist networks have relatively high neural plausibility (Smolensky, 1989). 

Initially, the network is stimulated by external input. This input could come from bottom-

up sources (e.g., facial or vocal cues) as well as top-down ones (e.g., task demands, 

prejudice, motivation). Activation then spreads among all nodes simultaneously as a 

function of their connection weights. Because many of the nodes receive feedback, 

complex feedback loops are produced within the system. This causes the system to 

gradually converge on an overall stable pattern of activation that best fits the input.  

Because a node’s activation is a function of all the positive and negative 

connections to other nodes that are activated in parallel (due to the feedback loops across 

the system), the final activation of a node (when the system stabilizes) can be thought of 

as the satisfaction of multiple constraints. The steady states that a recurrent network 
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eventually stabilizes on are end-solutions that maximally satisfy all the constraints in the 

network, including between-node connections (e.g., MALE–AGGRESSIVE) and the input 

(e.g., facial cues, vocal cues, task demands, prejudice). As such, nodes in a recurrent 

network constrain each other in finding a best overall pattern that fits the input.  

With respect to the present model, how the activation of a node changes over time 

is determined by three factors: the node’s prior activation, how quickly this activation 

decays, and the net input of activation into the node from other nodes. It is assumed that 

excitation and inhibition summate algebraically, and that the influence of input on a node 

is dependent on the node’s prior history of activation. It is also assumed that processing is 

stochastic rather than deterministic (see McClelland, 1991). On each iteration, therefore, 

the input to every node is altered by normally distributed random noise. Thus, the 

system’s activation states are inherently probabilistic. 

Before the presentation of each stimulus, activations of all nodes in the network 

are set equal to a resting activation value (zero), and external inputs are presented to 

certain nodes for processing. Processing occurs over a number of iterations. On each 

iteration, each node computes its net input from the nodes connected to it based on their 

latest activation. Specifically, the net input to node i is: 

 

where wij is the connection weight to node i from node j, oj is the greater of 0 and the 

activation of node j, exti is any external input to node i, and εσ is a small amount of 

normally distributed random noise with mean 0 and standard deviation σ. Once the net 

input into all nodes has been computed, the activation of node i is updated as: 
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such that M is the maximum activation, m is the minimum activation, r is the resting 

activation level, I is a constant that scales the influence of external inputs on a node, and 

D is a constant that scales a node’s tendency to decay back to rest. Unless otherwise 

noted, in instantiations of the model the parameters are as follows: M = 1, m = –0.2, r = 0, 

I = 0.4, D = 0.1, and σ = 0.01. These are standard values used in connectionist networks 

of this type (McClelland, 1991; Rumelhart et al., 1986).  Connection weights are 

specified for each instantiation of the model separately. In simulations, the network’s 

ultimate response is given by the response alternative associated with the node with the 

largest activation in a pool after a given amount of iterations (once the network has 

stabilized).  

It is assumed that the person construal system is organized into four interactive 

levels of processing: cue level, category level, stereotype level, and a higher-order level. 

Within each of these levels are one or several pools of nodes (Figure 1). Most nodes 

represent some feature or micro-hypothesis. For instance, the RACE pool would include a 

node for WHITE category and another node for BLACK category. Most of these pools are 

competitive in the sense that all the nodes are mutually exclusive and related by inhibitory 

connections. However, this is not necessarily the case for all pools. For instance, in the 

STEREOTYPES pool would be many nodes for different stereotypes. Some of these may 

inhibit one another (and thus be competitive), such as AGGRESSIVE and NICE, whereas 
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others might have no relationship with one another, and some others might excite one 

another, such as AGGRESSIVE and DANGEROUS.  Nodes that excite another node have a 

positively weighted connection, nodes that do not influence another node have no 

connection (zero weight), and nodes that inhibit another node have a negatively weighted 

connection.  

Each node has a transient level of activation at every moment in time. This level 

of activation corresponds with the strength of a tentative interpretation or hypothesis that 

the node is represented in the input (e.g., a face). Thus, in situations where a face is 

presented, the activation level of the MALE category node could be said to represent, at 

every moment in time, the strength of the hypothesis that the face is male. A node whose 

activation level exceeds a threshold excites other nodes with which it has an excitatory 

connection and inhibits other nodes with which it has an inhibitory connection. 

Importantly, most of the connections in our model are bidirectional, producing feedback 

and making the network highly interactive.  

Cue Level 

The cue level contains a set of detectors for visual features (facial and bodily cues) 

and auditory features (vocal cues), which are directly stimulated by bottom-up sensory 

information of another person. The cue level contains two pools: a FACE/BODY CUES pool 

and a VOICE CUES pool. Sensory information of another person arriving in the visual 

system (facial and bodily cues) directly activates nodes in the FACE/BODY CUES pool. 

Sensory information arriving in the auditory system (vocal cues) directly activates nodes 

in the VOICE CUES pool. Depending on specific modeling interests, these pools have the 

flexibility to contain different arrangements of nodes. For instance, the FACE/BODY CUES 
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pool could contain one node corresponding with all male facial features and another node 

corresponding with all female facial features. However, different strategies could be used. 

For instance, one node could describe a specific feature (e.g., LONG HAIR or DARK SKIN). 

Similarly, the VOICE CUES pool could contain a node corresponding with all male vocal 

features or it could contain a node corresponding with something specific such as 

FORMANT RATIO.  

Nodes for cues that are along the same dimension (e.g., MALE CUES and FEMALE 

CUES) are related by mutually inhibitory connections because they compete for the same 

visual/auditory input. Thus, excitation of the MALE CUES node will inhibit the FEMALE 

CUES node, and vice-versa. Nodes that have no direct relationship with one another (e.g., 

LONG HAIR and DARK SKIN) have no connection between them. Cue nodes excite all 

category nodes consistent with them and inhibit all of those inconsistent with them. For 

instance, the cue node for male facial features would activate the MALE category node 

and inhibit the FEMALE category node. Similarly, the cue node for female facial features 

would activate the FEMALE category node and inhibit the MALE category node. Note that 

the connections between cue nodes and category nodes are bidirectional. Thus, cue nodes 

both influence and are influenced by category nodes. This produces feedback and a 

recurrent flow of activation, as discussed earlier. 

Category Level 

The category level contains a number of competitive pools that correspond with 

social category dimensions. For instance, in Figure 1, there are 4 pools: SEX, RACE, AGE, 

and EMOTION. Any number of different categories could be used, however (e.g., SOCIAL 

CLASS, SEXUAL ORIENTATION, OCCUPATION, ETHNICITY). These could include categories 
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that are relatively static (e.g., sex) as well as categories that are dynamic (e.g., emotion).
 

Each of these pools contain category nodes. The pool for SEX would include a MALE 

node and a FEMALE node; the pool for RACE would include, for example, a WHITE node, a 

BLACK node, and an ASIAN node. Nodes within a pool compete with one another through 

mutual inhibition. In the broad model depicted in Figure 1, bidirectional connections exist 

between all 4 of the category pools. This is not required for all instances of the model, but 

they are depicted because in some instances category nodes may be directly related to one 

another. For instance, if perceivers have learned in their lifetime that women tend to be 

happy and men tend to be angry (see Fabes & Martin, 1991), then the node for MALE (in 

the SEX pool) may have a bidirectional excitatory connection with ANGRY (in the 

EMOTION pool). Similarly, the node for FEMALE may have a bidirectional excitatory 

connection with HAPPY.  

Category nodes receive input from cue nodes (which directly receive bottom-up 

sensory information) and they also send feedback to cue nodes. Category nodes activate 

stereotype nodes (e.g., MALE excites AGGRESSIVE and FEMALE excites DOCILE), and they 

also receive feedback from these nodes as well. Thus, not only will the category node, 

MALE, tend to activate the stereotype node, AGGRESSIVE, but activation of AGGRESSIVE 

will tend to activate the MALE category. Finally, category nodes may activate and be 

activated by higher-order nodes.  

Stereotype Level 

The stereotype level contains one pool including nodes for all category-related 

stereotypes (e.g., AGGRESSIVE or DOCILE). Within this, nodes could mutually inhibit or 

mutually excite one another. For instance, AGGRESSIVE and DANGEROUS would mutually 
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excite one another, but AGGRESSIVE and DOCILE may mutually inhibit one another. 

Stereotype nodes receive input from category nodes and send feedback to them. 

Stereotype nodes also receive input from higher-order nodes and send feedback to them 

as well.  

Higher-order Level 

Nodes in this level may correspond with any number of high-level cognitive 

states, depending on what is being modeled. They could include factors such as prejudice, 

motivations, processing goals, task demands, among others. It is assumed that these nodes 

receive direct input from higher levels of mental processing (e.g., motivational systems or 

top-down attentional systems). Higher-order nodes may influence category nodes or 

stereotype nodes, or both. Moreover, they may have a bidirectional connection with these 

nodes or simply a unidirectional top-down connection only.  

For instance, higher-order nodes could be used to model high-level task demands 

in a particular context. One higher-order node could denote SEX TASK DEMAND and 

another node could denote RACE TASK DEMAND. During a sex categorization task, the 

higher-order SEX TASK DEMAND node would be directly activated by higher-level input 

(e.g., top-down attentional systems, driven by memory of task instructions). Activation of 

this higher-order node would then have top-down excitatory connections with sex-related 

category nodes (MALE and FEMALE), but have top-down inhibitory connections with race-

related category nodes (WHITE, BLACK, ASIAN), since the task demand compels attention 

to sex and away from race. As such, attentional effects due to task demands (e.g., placing 

attention on sex and away from race in a sex categorization task) emerge out of the flows 

of activation between these higher-order task-demand nodes and the category nodes, 
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consistent with other computational models accounting for task demands (e.g., Cohen & 

Huston, 1994). This is one example of how the higher-order level could be used to model 

top-down effects from internal cognitive states, such as task demands, memory, affect, 

motivations, expectations, situational context, among others. 
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APPENDIX B 

Connection weights in simulations of Study 4 (see Figure 5) 

 

 

Connection Weight 

Category to Category inhibition -1 

Category to Cue excitation .75 

Category to Cue inhibition -.25 

Category to Higher-order excitation .25 

Category to Higher-order inhibition -.25 

Category to Stereotype excitation .8 

Category to Stereotype inhibition -.3 

Cue to Category excitation .25 

Cue to Category inhibition -.1 

Cue to Cue inhibition -.1 

Higher-order to Category excitation .8 

Higher-order to Category inhibition -.3 

Higher-order to Higher-order inhibition -.5 

Stereotype to Category excitation .8 

Stereotype to Category inhibition -.8 

Stereotype to Stereotype inhibition -.3 
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APPENDIX C 

 

Connection weights in simulations of Study 6 (see Figure 8) 

 

 

Connection Weight 

Category to Category inhibition -1 

Category to Cue excitation .5 

Category to Cue inhibition -.7 

Category to Higher-order excitation .33 

Cue to Category excitation .9 

Cue to Category inhibition -.4 

Cue to Cue inhibition -.8 

Higher-order to Category excitation .33 

 

 

 


