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Abstract

Wealth inequality has become one of the most pressing issues throughout the world

today. Among the different approaches trying to understand wealth inequality,

“Econophysics” applies methods from physics to establish microscopic models from

which macroeconomic wealth distributions can be derived. Asset Exchange Models

(AEMs) are some of the most successful models of this kind. In this thesis, we study a

particular AEM called the Yard-Sale Model (YSM). In Chapter 2, we further extend

the basic YSM to include redistribution and Wealth-Attained Advantage (WAA),

and we derive a Fokker-Planck equation for the resulting Extended Yard-Sale Model

(EYSM). In Chapter 3, we discuss the numerical method we use to solve for steady-

state solutions to the EYSM. In Chapter 4, we mainly discuss the existence of a

“duality” symmetry between the supercritical and the subcritical solutions to the

EYSM. In Chapter 5, we further extend the EYSM so that it allows for agents with

negative wealth, which are important empirically. We show how to derive and solve

the Fokker-Planck equation for the resulting Affine Wealth Model (AWM) based on

the tools and methods we used for EYSM. Finally in Chapter 6, we compare our

results with U.S. wealth distribution data from the Survey of Consumer Finances

(SCF). We first demonstrate the superiority of the AWM to the other models for its

remarkable faithfulness to the empirical data . We also compare our model results

from the AWM to U.S. wealth distribution data from 1989 to 2016. We argue that

the time series of model parameters thus obtained provides a valuable new diagnostic

tool for analyzing wealth inequality.
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Chapter 1

Introduction

1.1 Motivation and Background

The success of Thomas Piketty’s book “Capital in the Twenty-First Century” [44],

and its top placement on the New York Times bestseller list is evidence that eco-

nomic inequality has become one of the most pressing issues throughout the world

today. A substantial amount of economic study has been undertaken to explain the

dynamics of economic inequality. Although economic inequality might be estimated

differently within different contexts∗, all the studies seem to converge to one universal

conclusion: The level of economic inequality has become extremely high worldwide

and it is still increasing rapidly. There exists an urgent need to understand the

mechanisms behind economic inequality.

In spite of all this popular interest, the scale of inequality that exists in today’s

world is still staggering. For example, according to a study conducted by Oxfam

International, reported at the World Economic Forum in Davos in 2018: in 2017,

the richest 8 individuals in the world (led by Microsoft founder Bill Gates) have a

combined total wealth of $426 billion dollars, equivalent to the combined wealth of

the poorest half of the world’s population [24]. According to Oxfam’s past studies

on the same topic, this “number of richest individuals who own as much wealth as

the poorer half of world’s population” was 61 in 2016 and 380 in 2009 [24,25]. Even

more unbelievable is the fact that, even among the richest people in the world, there

is still substantial wealth inequality and their wealth continues to condense rapidly

to the hands of even fewer people.

Another recent study that has drawn much attention was done cooperatively by
∗The three most common metrics for economic inequalities are wealth, income, and consump-

tion. [17] In our research, we focus on wealth inequality.
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Michael I. Norton from Harvard Business School and Dan Ariely from Duke Uni-

versity, who focused on the wealth inequality in United States and tried to measure

the gap between American people’s perception of wealth inequality and the reality

of wealth inequality [40]. To achieve their goal, they conducted a survey by asking

people to describe in quintiles how much inequality they would expect in an ideal

society, as well as how much inequality they believe exists in reality. The result

shows that the level of inequality that people think exists in reality is much higher

than what they would prefer in an ideal society, yet still far below actual levels of

inequality. The result from Norton and Ariely’s work means that the level of wealth

inequality has been dramatically underestimated by the general population, even

though people are aware that reality must be worse than what they consider ideal.

There is clearly plenty of room left to improve our collective understanding about

inequality.

There is a long history of human’s effort to understand inequality. Dating back

to the Age of Enlightenment, the famous French philosopher Jean-Jacques Rousseau

published his thoughts on this topic in his work “Discourse on the Origin and Basis of

Inequality Among Men (French: Discours sur l’origine et les fondements de l’inégalité

parmi les hommes)”. According to Rousseau, inequality did not exist when humans

were in the “state of nature” – the hypothesized condition of the lives of people before

societies came into existence. Then inequality appeared and developed alongside

the development of civil society and the concept of private property. Rousseau

also pointed out the importance of wealth inequality compared to other forms of

inequalities: Since wealth can have the most direct impact on one’s well-being and is

also very convenient to exchange or trade with others, all other forms of inequalities

tend to finally transfer into inequality of wealth. Thus, from a strictly philosophical

point of view, we can find supporting arguments as to why wealth inequality is of

special interest to us and why it should be considered a dynamic process.

In the field of economics, some of the earliest and most important quantitative

work to measure empirical wealth inequality was done by the Italian sociologist

and economist Vilfredo Pareto in the early 20th century [42, 43]. By collecting and



4

studying the data on land ownership in Italy, Pareto found that nearly 80% of the

land was owned by only 20% of the population. Similar patterns were also found

in nearby European countries. Pareto’s finding is now widely known as the “Pareto

principle” or the “80/20 rule”. This principle is consistent with a power-law distri-

bution (the main asymptotic characteristic of a Pareto distribution) of wealth. In

other words, the decay of a wealth distribution is proportional to a power function

w−1−α with a parameter α, known as the “Pareto index”. The Pareto distribution has

more recently been widely used to describe different types of observable phenomena

beyond wealth distributions. In the meantime, there were people proposing a differ-

ent model of a wealth distributions almost at the same period of Pareto. In 1931,

Robert Gibrat claimed that, rather than a power-law, wealth distribution should

follow a log-normal distribution. [20] While both Pareto’s and Gibrat’s observations

can explain part of the empirical data observed in the world, no rules were found

governing which law one should apply under which circumstances.

Also in the early 20th century, the mathematical tools and metrics that can be

used to analyze inequality were also developed. In 1905, the American economist

Max O. Lorenz first introduced the Lorenz curve to describe inequality in wealth

(or income) [31, 37]. Given a wealth distribution, the Lorenz curve is defined by

plotting the cumulative fraction of wealth held versus the cumulative fraction of

people holding it. In this way, any distribution would be represented by a concave

up curve within the unit square and below the diagonal line. Based on Lorenz’s

work, the Italian statistician and sociologist Corrado Gini later invented the Gini

coefficient as a measure of quantifying inequality [21–23]. The Gini coefficient is

defined to be the ratio of the area between the Lorenz curve and the diagonal line of

the unit square and the total area under the diagonal line of the unit square. The

Gini coefficient is a real number between 0 and 1, where a higher value corresponds

to a higher level of inequality, and a lower value to the contrary. Owing to its

convenience and other advantages, the Gini coefficient has become one of the most

widely used measures for inequality since it was first introduced.
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In spite of all the work on the topic of wealth distribution and inequality, how-

ever, there were few if any attempts to find microeconomic models governing the be-

havior of individual agents that might underpin a particular macroeconomic theory

or phenomenon such wealth distribution. In other words, Macroeconomics lacked

microfoundations [2, 28]. The subject of economics had been divided into micro-

and macro-, and both divisions of the field developed their own models and the-

ories respectively. Most macroeconomic theories employ assumptions and models

that cannot be derived or reconciled with those used in microeconomics. A unified

foundation between the two is missing.

This discrepancy between the macro- and micro- theories is reminiscent of a

similar situation in the field of physics, with a very different ending. Classical ther-

modynamics was a well-established macroscopic theory that described the states of

thermodynamic systems. With the introduction of atomic theory in the early 19th

century, however, there was an urgent necessity to interpret macroscopic concepts

in classical thermodynamics (such as pressure, temperature, etc.) in terms of micro-

scopic concepts (such as atoms, particles, etc.). This work was successfully carried

out by Ludwig E. Boltzmann, Josiah W. Gibbs, James C. Maxwell, and others who

together developed the subfield knowns as statistical mechanics. In statistical me-

chanics, microscopic models were developed to describe the movements and collisions

of the atomic particles, and the rules of the macroscopic quantities in classical ther-

modynamics were derivable from those microscopic models. In that way, classical

thermodynamics was reconciled with atomic theory.

The above-described success in physics shed light on economics. Although there

was a long history of interaction between physicists and economists, the term “Econo-

physics” was not officially introduced until the mid-1990s by H. Eugene Stanley in

a conference on statistical physics, in order to summarize the collective work done

by several physicists applying tools and methods of statistical mechanics to analyze

financial markets and stock prices, and to explain more general economic phenom-

ena [18]. Since its inauguration, the field of Econophysics has become an active field

of study with many exciting findings [19,47].
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Our research lies in this field of Econophysics where we explore idealized micro-

foundations for the dynamics of wealth distributions. Following essential ideas from

previous work in the field, we apply mathematical tools from statistical physics and

thereby develop microscopic models for single economic agents, and we study how

these models can be used to analyze the dynamics of macroscopic wealth distribu-

tions. Among all the microscopic models, we focus on of one specific model called

the Asset Exchange Model, which has been proven to be very useful. In this thesis,

we will show results from various aspects of our research on this model, both theo-

retically and empirically. I hope my research can make a humble contribution to the

long-lasting human endeavor of understanding inequality.

1.2 Asset Exchange Models

Stochastic agent-based Asset-Exchange Models (AEMs) for wealth distribution were

first introduced in 1986 [1] by Angle in the social sciences literature. AEMs are

highly idealized but nonetheless very useful models for understanding the statics

and dynamics of wealth distributions. Though there are many variants of AEMs,

most consider a closed economy involving a fixed number of economic agents, each

possessing a certain amount of a resource, which we shall refer to as wealth. Pairs

of agents are chosen randomly to engage in binary transactions in which a small

amount of wealth w, might move from one agent to the other. In the limits of

large populations and long times, the agent density function may be described by a

continuous distribution, either classical or singular in nature.

In 1998, Ispolatov, Krapivsky and Redner [27] first applied the methods of kinetic

theory to a specific AEM, which was later named the Theft-and-Fraud model by

Hayes [26], and they derived a Boltzmann equation for the time evolution of the

agent density function. In the Theft-and-Fraud model, agents with single property

– wealth – repeatedly engage in binary transactions in which they exchange some

of their wealth. In a transaction, each agent has equal chance of either winning

or losing the transaction, as determined by the flip of a fair coin. Then, a fixed
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proportion of the wealth of the losing agent is transferred to the winning agent. One

may argue this model is unrealistic because it somehow disadvantages the rich. In

any transaction, the wealthier agent has to stake more wealth than the poorer agent

and therefore the expected income for the wealthier agent is negative.

The model discussed in my thesis is based on another more realistic AEM which

was first proposed in 2002 by Chakraborti [12], and was named the Yard-Sale Model

(YSM) later that same year also by Hayes [26]. This model is almost identical to the

Theft-and-Fraud model, but the amount of wealth transferred in each transaction is

a fixed proportion of the wealth of the poorer of the two agents. This assumption

is more realistic than that used in the Theft-and-Fraud model. If we compare it

to a game between two gamblers, the bet is usually determined before the game

begins, and gamblers are not allowed to stake more than they have. Therefore, a

fraction of the wealth of the poorer of the two gamblers would be a reasonable bet on

which both gamblers would agree. Numerical simulations indicated that the time-

asymptotic state of this model was one of complete wealth condensation [8, 10], in

which all the wealth falls into the hands of a single agent.

In 2014, inspired by the two studies mentioned above, Boghosian applied the

approaches of Ispolatov and his colleagues to the Yard-Sale Model and derived a

Boltzmann equation description for its agent density function [4]. Later in the same

year, he showed that the Boltzmann equation for the agent density function reduces

to a Fokker-Planck equation [16, 33, 45] in the limit of a large number of small

transactions – i.e., the small-transaction limit [3]. These observations facilitated the

study of the properties of these distributions, both analytically and by numerical

methods. A year later it was definitively proven that the time-asymptotic limit of

the evolution of either of these equations, from any initial condition at all, was the

state of complete wealth condensation [7].

In an effort to avert the state of complete wealth condensation and thereby make

the YSM more realistic, a model of redistribution was introduced whereby a flat

“wealth tax” χ per unit time was imposed on all agents on a per-transaction basis,

and redistributed uniformly to the entire population. It was shown that this has
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the effect of adding an Ornstein-Uhlenbeck [48] term to the Fokker-Planck equation

which stabilizes the wealth distribution, so that it remains a classical distribution

without wealth condensation [3].

A subsequent extension of the model introduced the idea of Wealth-Attained Ad-

vantage (WAA), in order to account for the well documented privileges that wealthier

agents enjoy over poorer agents, such as higher returns on investment and lower in-

terest rates on loans [5]. Mathematically, this was accomplished by biasing the coin

in favor of the wealthier agent. The amount of the bias was taken to be proportional

to the difference in wealth between the richer and poorer agent normalized to the

mean wealth, and multiplied by a coefficient ζ. Because the bias is proportional to

the wealth difference, it naturally reduces to zero when the transacting agents have

equal wealth.

The resulting Extended Yard-Sale Model (EYSM) [5], with redistribution rate χ

and WAA parameter ζ, admits much more interesting phenomenology. The agent

density function is a classical distribution in the subcritical regime defined by ζ <

χ. When ζ ≥ χ, this passes to a partially wealth-condensed supercritical regime,

characterized by coexistence between a classical distribution of agents with a fraction

χ/ζ of the total wealth, and an oligarchy with the remaining 1 − χ/ζ of the total

wealth [5,6]. The EYSM serves as the starting point of my research and a foundation

of this thesis.

1.3 Outline of the thesis

The main goal of my research is to try to relate the EYSM with empirical wealth

data and thereby solve the inverse problem for the model. Along the way, there have

been both theoretical contributions and empirical studies.

In Chapter 2, we shall review the development of the EYSM with redistribution

and WAA. I shall introduce all the mathematical symbols used and review the deriva-

tion of the Fokker-Planck equation for the agent density function. I shall also discuss

the existence of two invariants in the model, and how the steady-state Fokker-Planck
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equation for the EYSM can be reduced to its canonical-form – an ordinary differen-

tial equation with only two free parameters, namely the redistribution coefficient χ

and the WAA coefficient ζ.

In Chapter 3, I shall explain in detail the numerical method that we used to solve

the canonical-form of the steady-state equation for the EYSM. I shall also discuss

the numerical difficulties we encountered in using this numerical method.

In Chapter 4, I shall demonstrate the existence of a remarkable symmetry be-

tween the supercritical and subcritical regimes of the steady-state solutions to the

EYSM. This symmetry has to do with the replacement {χ → ζ, ζ → χ}, which

obviously has the effect of inverting the order parameter ζ/χ and thereby provid-

ing a one-to-one correspondence between subcritical and supercritical states. I will

show that the wealth distribution of the subcritical state is identical to that of the

corresponding supercritical state when the oligarchy is removed from the latter. I

will argue that this symmetry is an example of the phenomenon of “duality”, which

appears in other subfields of the physics of critical phenomena.

Toward the end of relating the model to the real world, one big flaw of the EYSM

is that it cannot model agents with negative wealth, which is however widely observed

in empirical data. Therefore, in Chapter 5, we introduce a further modification to the

EYSM to allow for agents with negative wealth. Realistic models for agent density

functions possess invariance properties under scalings of the total number of agents

and the total wealth; we accomplish the extension to negative wealth by additionally

requiring invariance of the wealth distribution under additive shifts. Because the new

model is invariant under both scalings and shifts, we refer to it as the Affine Wealth

Model (AWM). I will derive the Fokker-Planck equation obeyed by the agent density

function for the AWM, and describe its numerical solution for steady-state wealth

distributions in the subcritical regime (without an oligarchy). I will also explain how

numerical solutions in the supercritical regime (with an oligarchy) can be obtained

from their subcritical counterparts by exploiting the above-mentioned duality [36].

Finally, in Chapter 6, we present a detailed comparison of the results of the AWM

with empirical wealth data. In particular, we compare the steady-state solutions of
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the Fokker-Planck equation with data from the United States Survey of Consumer

Finances [9] over a time period of 27 years. In doing so, we demonstrate both that

(i) each of the extensions that we introduced in the basic AEM resulted in improved

agreement, and (ii) of all these models the AWM is the one most faithful to the

empirical data by a wide margin. Additionally, we present fitting parameters for the

U.S. wealth distribution data as a function of time over a thirty-year period, under

the assumption that the wealth distribution responds to changes in those parameters

adiabatically. We argue that this time series of model parameters provides a new

way to extract useful information about wealth inequality in an economy. As an

example, we demonstrate a precisely defined way of quantifying the extent to which

the U.S. wealth distribution is partially wealth-condensed.
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Chapter 2

The Extended Yard-Sale Model

In this chapter, We introduce the mathematics of the Extended Yard-Sale Model.

We begin by explaining the microscopic random walk process that models the trans-

actions between the economic agents of a basic Yard-Sale Model, from which we

can derive a deterministic, non-linear, non-local, integrodifferential Fokker-Planck

equation. We then discuss extensions of the basic Yard-Sale Model so that it can

model redistribution and Wealth-Attained Advantage (WAA). This extended model

is called the Extended Yard-Sale Model (EYSM). Finally, we focus on the steady-

state solution of the EYSM, introduce the so-called “canonical-form” solution, and

discuss its invariance properties.

2.1 The basic Yard-Sale Model

2.1.1 Microscopic random walk process

In the simplest version of the Yard-Sale Model, we consider a closed economy with

economic agents who have only a single attribute – the wealth w held by each of

them. We assume that w is non-negative for all the agents. By “closed economy”,

we mean two things: (i) no new agents will join the system nor there will be agents

exiting the system, and hence the total number of agents N is conserved; (ii) no extra

wealth will be produced or flux into the system nor will wealth be consumed or flux

out of the system, and hence the total wealth W is also conserved. Under these

assumptions, the dynamics of the wealth distribution of the agents can be described

by the evolution of the agents density function P (w, t). The two conserved quantities

in this closed economy can be written as the zeroth and the first moments of P (w, t):

N = ∫
∞

0
P (w, t)dw (2.1)
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W = ∫
∞

0
P (w, t)w dw. (2.2)

At the microscopic level of description, the agents engage in pairwise transactions

with each other in a sequential manner: At each time t, a pair of two agents are

randomly selected and some amount of wealth is transferred from one agent to the

other, then another pair of two agents will be selected and the process is repeated.

At each transaction, the amount of the wealth transferred is a fixed fraction β of

the wealth of the poorer of the two agents. The direction of the wealth transfer is

determined by a flip of a fair coin. Mathematically, at time t, we consider an agent

with wealth w transacting with another agent with wealth x, and at time t+∆t the

wealth of the first agent will become

w′ = w +∆w, (2.3)

where the change of the wealth of the first agent is given by

∆w = βmin(w,x)η. (2.4)

Here η is a scaled and shifted Bernoulli random variable that models the coin flip,

η =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+1 with probability 1
2

−1 with probability 1
2 .

(2.5)

If η = 1, ∆w is positive which means the agent with wealth w won the transaction

and wealth βmin(w,x) will be transferred to him/her. On the contrary, if η = −1,

∆w becomes negative and the agent with wealth w will lose that amount of wealth.

Since the coin flip is fair, the expected value of η equals 0, i.e. E[η] = 0. It is also

obvious that E[η2] = 1.
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2.1.2 Fokker-Planck equation

To derive a Fokker-Planck equation [16, 45], alternatively called Kolmogorov’s For-

ward equation [33], for the random walk process described by Eq. (2.4), we first

need to take the limit of large amount of small transactions, which we call the small

transaction limit. Mathematically, it means that let β → 0 as ∆t → 0. In order to

obtain a sensible scaling limit as will be shown later, we let β =
√
γ∆t, where ∆t

is the characteristic time associated with the transaction and γ > 0 is a parameter

which we will refer as the transaction coefficient.

We now rewrite Eq. (2.4) that describes the binary transactions and put it to-

gether with the expected values of η and η2 for a fair coin flip. These three equations

serve as a summary of the microscopic random walk process that underlines the basic

Yard-Sale Model,

∆w =
√
γ∆tmin(w,x)η (2.6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E[η] = 0

E[η2] = 1.

(2.7)

Next, we need to go over what is called the Kramers-Moyal expansion of the

Chapman-Kolmogorov equation [35, 39]. By taking the limit of ∆t → 0, the partial

derivative of the agent density function P (w, t) with respect to time t can be found by

averaging the transition probability described by the Chapman-Kolmogorov equation

over the distribution function P (w, t) itself. In specific, for a function f(η, x) of the

agent with wealth x and the coin flip η, we define its expectation E[f] as

E[f] = 1

N
∫

∞

0
P (x, t)E[f(η, x)]dx. (2.8)

Here, we use the scripted letter E to distinguished the expectation over the wealth of

the transaction partner x and the coin flip η, from the expectation E over the coin

flip alone.
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The Fokker-Planck equation has the general form

∂P (w, t)
∂t

= − ∂

∂w
[σP (w, t)] + 1

2

∂2

∂w2
[DP (w, t)] , (2.9)

where σ is called the drift term, and D is called the diffusion term. In our basic

YSM, these two terms can be obtained by calculating the following two limits:

σ = lim
t→0
E [∆w

∆t
] (2.10)

D = lim
t→0
E [(∆w)2

∆t
] , (2.11)

where E[f] is defined in Eq. (2.8) and ∆w is described in Eqs. (2.6) and (2.7). We

can plug in these two equations back into Eq. (2.10) and Eq. (2.11) to get the σ and

D in the Fokker-Planck equation. The calculations are as follows:

σ = lim
t→0
E [∆w

∆t
]

= lim
t→0

√
γ

N
√

∆t
∫

∞

0
P (x, t)min(w,x)E[η]dx

= 0 (2.12)

and

D = lim
t→0
E [(∆w)2

∆t
]

= γ

N
∫

∞

0
P (x, t)min(w,x)2E[η2]dx

= γ

N
∫

w

0
P (x, t)x2 dx + γ

N
∫

∞

w
P (x, t)w2 dx

= 2γ [B(w, t) + w
2

2
A(w, t)] , (2.13)

where we have defined A(w, t) and B(w, t) as partial moments of P (w, t):

A(w, t) = 1

N
∫

∞

w
P (x, t)dx (2.14)

B(w, t) = 1

N
∫

w

0
P (x, t)x

2

2
dx. (2.15)
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With Eqs. (2.9), (2.12) and (2.13), the resulting Fokker-Planck equation for the

basic Yard-Sale Model is a non-linear, non-local, integrodifferential partial differen-

tial equation which may be written

∂P (w, t)
∂t

= ∂2

∂w2
[γ (B(w, t) + w

2

2
A(w, t))P (w, t)] . (2.16)

2.2 Modeling redistribution

The basic Yard-Sale Model could be regarded as a model of a complete free-market

economy. However, in real economies, governments usually regulate macroeconomics

via monetary policy and public finance, taxation and welfare being the most com-

monly known methods. We can think of the overall effect of such policies as redis-

tributing of the wealth of the society. Therefore, it would be nice to extend the basic

Yard-Sale Model to add this feature.

Another reason to include redistribution in the model is that the time-asymptotic

solution to the basic Yard-Sale Model is complete wealth condensation [8,10], which

is unrealistic and not observed in real word economies. Wealth condensation will be

discussed in more detail later in Chapter 4. It will be shown that adding redistri-

bution to the model stabilizes the distribution to a non-trivial classical distribution

without singularity.

We model the redistribution of wealth by applying a flat wealth tax rate χ on

every agent, then evenly distributing the total tax thereby collected to every agent.

This constant tax rate χ will be called the redistribution coefficient. At the micro-

scopic level, at time t and within time interval ∆t, an agent with wealth w will pay

tax in the amount

T (w) = χw∆t, (2.17)

and hence the total tax collected from the entire society will be

∫
∞

0
T (w)P (w)dw = χ∆t∫

∞

0
P (w)w dw = χW∆t. (2.18)
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The total tax collected T (w) is then evenly distributed to every agent, so each agent

receives a share

I = χW∆t

N
. (2.19)

Therefore, the overall effect of redistribution on a single agent with wealth w in a

transaction time ∆t is to change their wealth by the amount

I − T = χ(W
N

−w)∆t. (2.20)

If we add the above term to the random walk process described by Eq. (2.6) and

retain Eq. (2.7), the microscopic random walk process that underlies the Extended

Yard-Sale Model with redistribution can be summarized as

∆w =
√
γ∆tmin(w,x)η + χ(W

N
−w)∆t (2.21)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E[η] = 0

E[η2] = 1.

(2.22)

To obtain the new Fokker-Planck equation with redistribution, we first notice that

adding redistribution to the random walk process will alter only the drift term. A

computation similar to that in Eq. (2.12) results in

σ = lim
∆t→0

E [∆w

∆t
]

= lim
t→0

√
γ

N
√

∆t
∫

∞

0
P (x, t)min(w,x)E[η]dx

+ lim
∆t→0

1

N
∫

∞

0
χ(W

N
−w)P (x, t)dx

= χ(W
N

−w) , (2.23)

The resulting Fokker-Planck equation involves one extra term compared to that of
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Eq. (2.16),

∂P (w, t)
∂t

= − ∂

∂w
[χ(W

N
−w)P (w, t)]

+ ∂2

∂w2
[γ (B(w, t) + w

2

2
A(w, t))P (w, t)] . (2.24)

We will refer to the new term with the first partial derivative with respect to w on

the right of the Eq. (2.24) as the redistribution term. For convenience, we also give

a name – the transaction term – to the second-order partial derivative term that

already appeared in Eq. (2.16). It is obvious that Eq. (2.24) reduces to Eq. (2.16)

when the redistribution coefficient χ is set to zero.

2.3 Modeling Wealth-Attained Advantage (WAA)

In the definition of η, we have assumed that each transaction is “fair” for both of the

agents, meaning each one has the same probability to either win or lose ∆w in the

pairwise transactions. In reality, however, the game between the rich and the poor

is never fair and usually favors the rich. There is much evidence that richer people

have an advantage over poorer people in economic activities. This advantage may

due to access to better education, health care and legal service, etc. We give the

name Wealth-Attained Advantage (WAA) to the overall effect of this advantage of

the rich over the poor, and we would like to further extend the Yard-Sale Model to

include this feature as well.

We model WAA by biasing the coin flip in each transaction. We assume that the

WAA gained by the richer agent over the poorer agent in a transaction is proportional

to the wealth difference between these two agents. More specifically, if an agent with

wealth w transacts with an agent with wealth x, we want the expected value of the

random variable η that models the coin flip, instead of being zero, to vary linearly

with w − x.

With this idea in mind, the microscopic random walk process that underlies the
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Extended Yard-Sale Model with both redistribution and WAA is updated to

∆w =
√
γ∆tmin(w,x)η +∆tχ(W

N
−w) (2.25)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E[η] = ζ
√

∆t
γ ( w−x

W /N )

E[η2] = 1.

(2.26)

In Eq. (2.26), we have introduced a new parameter ζ which will be referred as the

WAA coefficient. The wealth difference is divided by the mean wealth of the society

W /N so that it is dimensionless. As in Subsection 2.1.2, the scale factor
√

∆t/γ

is introduced to achieve the desired scaling limit. Therefore, the larger the wealth

difference between the two agents, the greater the advantage the richer agent would

gain in the transaction. Only in the case when w = x, i.e., the two agents have the

same wealth, will E[η] reduce to zero so that the transaction becomes fair.

To obtain the Fokker-Planck equation, we again notice that modeling WAA would

affect only the drift term of the Fokker-Planck equation, and therefore the Fokker-

Planck equation can be updated by recalculating the σ as follows

σ = lim
∆t→0

E [∆w

∆t
]

= lim
∆t→0

1

N
∫

∞

0
χ(W

N
−w)P (x, t)dx

+ lim
∆t→0

ζ
1

W
∫

∞

0
min(w,x)(w − x)P (x, t)dx

= χ(W
N

−w) − ζ[ −w 1

W
∫

w

0
xP (x, t)dx + 2N

W

1

N
∫

w

0

x2

2
P (x, t)dx

−2N

W

w2

2

1

N
∫

∞

w
P (x, t)dx +w 1

W
∫

∞

w
xP (x, t)dx]

= χ(W
N

−w) − ζ [2N

W
(B(w, t) − w

2

2
A(w, t)) +w(1 − 2L(w, t))] ,

(2.27)

where we have defined another partial moment of P (w, t) as:

L(w, t) = 1

W
∫

w

0
P (x, t)xdx. (2.28)



19

Finally, the Fokker-Planck equation of the Extended Yard-Sale Model with both

redistribution and WAA may be written

∂P (w, t)
∂t

= − ∂

∂w
[χ(W

N
−w)P (w, t)]

+ ∂

∂w
{ζ [2N

W
(B(w, t) − w

2

2
A(w, t)) +w(1 − 2L(w, t))]P (w, t)}

+ ∂2

∂w2
[γ (B(w, t) + w

2

2
A(w, t))P (w, t)] , (2.29)

where the partial moments A(w, t), B(w, t) and L(w, t) were defined in Eq. (2.14),

Eq. (2.15) and Eq. (2.28).

In analogy to the transaction term and the redistribution term, we call the newly

introduced term the WAA term. We also call the partial moments A(w, t), B(w, t)

and L(w, t) the Pareto potentials of the density function P (w, t).

In summary, Eq. (2.29) is the complete form of the Fokker-Planck equation that

models the EYSM with both redistribution and WAA. We have three terms on the

right of the equation that are associated with the redistribution, the WAA, and the

transaction respectively. We also have three free parameters χ, ζ and γ corresponding

to each of these three terms. While γ is always positive by definition, χ and ζ can be

set to zero, so the EYSM can be reduced to simpler models with certain feature(s)

switched off.

2.4 Steady-state equation and the canonical-form

2.4.1 Steady-state Fokker-Planck equation

The agent density function P (w, t) described by Eq. (2.29) is a function of both w

and t; in other words, the wealth distribution changes over time. To obtain a steady-

state distribution, we examine its long-time limit. The steady-state Fokker-Planck

equation can be derived by setting ∂P (w,t)
∂t = 0 and then integrating the rest of the

terms once with respect to w. Then the second-order partial differential equation

reduces to a first order ordinary differential equation with only one independent
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variable w. We can also drop the time variable t in the density function and write

P (w) instead of P (w, t). The same convention applies to the Pareto potentials

A(w), B(w) and L(w). Therefore the steady-state Fokker-Planck equation together

with the Pareto potentials are summarized by

d

dw
[γ (B(w) + w

2

2
A(w))P (w)]

= χ(W
N

−w)P (w) − ζ [2N

W
(B(w) − w

2

2
A(w)) +w(1 − 2L(w))]P (w),

(2.30)

where

A(w) = 1

N
∫

∞

w
P (x)dx (2.31)

B(w) = 1

N
∫

w

0
P (x)x

2

2
dx (2.32)

L(w) = 1

W
∫

w

0
P (x)xdx. (2.33)

Notice that in Eq. (2.30), we have three terms each lead by a scaling parameter. Since

γ is never zero, we can reduce the degrees of freedom in the number of free parameters

by dividing γ on both sides of the equation and defining two new parameters by:

χ̄ ∶= χ/γ (2.34)

ζ̄ ∶= ζ/γ. (2.35)

Then, Eq. (2.30) can be rewritten as

d

dw
[(B(w) + w

2

2
A(w))P (w)]

= χ̄(W
N

−w)P (w) − ζ̄ [2N

W
(B(w) − w

2

2
A(w)) +w(1 − 2L(w))]P (w).

(2.36)
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Remember that γ has the dimension 1/∆t where ∆t is the characteristic time of a

transaction. Therefore, γ has the dimension “transaction per unit time”. The newly

defined χ̄ and ζ̄ still measure the tax rate and the level of WAA, but now in the

sense of “per transaction” instead of “per unit time”. In order to avoid introducing

new symbols and parameters, we simply omit the bars on χ̄ and ζ̄ and still refer to

them as the redistribution coefficient and the WAA coefficient, keeping in mind that

their dimension has changed from “per unit time” to “per transaction”. By doing

so, we have reduced the number of parameters from three to two. We rewrite our

steady-state equation with the reduced number of parameters as:

d

dw
[(B(w) + w

2

2
A(w))P (w)]

= χ(W
N

−w)P (w) − ζ [2N

W
(B(w) − w

2

2
A(w)) +w(1 − 2L(w))]P (w).

(2.37)

Hereafter we will focusing on studying the solutions of Eq. (2.37), where A(w),

B(w) and L(w) are defined in Eqs. (2.31), (2.32) and (2.33). We will refer to this

system as the steady-state Fokker-Planck equation of the EYSM, or the steady-state

equation for short.

2.4.2 The canonical-form of the steady-state equation

There are two symmetries that instantaneously follow from Eq. (2.37). The first

symmetry is that the steady-state solution for P (w) is invariant up to a scaling

factor. One may think this is obvious because P (w) appear linearly on both sides

of Eq. (2.37). However, this reasoning is wrong because the definition of W , N , A,

B and L also depends on P (w) and hence Eq. (2.37) is a non-linear equation for

P (w).

The right way of reasoning is that, with the transformation P̄ (w) = αP (w), we

must first define W̄ , N̄ , Ā, B̄ and L̄ that associate to P̄ (w) the same way as their

unbarred counterparts do to P (w), and then we need to calculate the transformations
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forW , N , A, B and L. We have W̄ = αW and N̄ = αN , and therefore Ā(w) = A(w),

B̄(w) = B(w) and L̄(w) = L(w). We plug all these terms into Eq. (2.37) and write

it as an equation for the barred terms, and thereby find it invariant under this

transformation. Therefore, we have the following Lemma:

Lemma 2.4.1 Assume P (w) is a solution to Eq. (2.37). For any positive real num-

ber α, we define P̄ (w) ∶= αP (w). Then P̄ (w) also obeys Eq. (2.37) with W̄ , N̄ , Ā,

B̄ and L̄ defined the same way for P̄ (w) as their unbarred counterparts.

Proof: As described above. ◻

The other symmetry requires a little bit more insight. It turns out that Eq. (2.37)

is also invariant under a horizontal scaling of the independent variable w as well. So,

we have our second Lemma:

Lemma 2.4.2 Assume P (w) is a solution to Eq. (2.37). For any positive real num-

ber β, we define z ∶= βw and P̄ (z) ∶= P (w). Then P̄ (z) also obeys Eq. (2.37) with

W̄ , N̄ , Ā, B̄ and L̄ defined the same way for P̄ (z) as their unbarred counterparts.

Proof: The same reasoning that we used to prove Lemma 2.4.1 can be followed to

prove this Lemma as well. We define the transformation:

z = βw,

and we denote the function of z as:

P̄ (z) = P̄ (βw) = P (w).

Then the Pareto potentials of P̄ (z) as well as the total amount of wealth and the

total number of agents are defined in the same way as those for P (w), and are

denoted by Ā(w), B̄(w), L̄(w), N̄ , W̄ . We want to derive a equation for P̄ (z) from

the steady-state equation for P (w) by finding the relationships between the barred
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and unbarred symbols. Here are the calculations:

N = ∫
∞

0
P (w)dw = 1

β
∫

∞

0
P̄ (βw)d(βw) = 1

β
∫

∞

0
P̄ (z)dz = 1

β
N̄

W = ∫
∞

0
P (w)w dw = 1

β2 ∫
∞

0
P̄ (βw)βw d(βw) = 1

β2 ∫
∞

0
P̄ (z)z dz = 1

β2
W̄

A(w) = 1

N
∫

∞

w
P (x)dx = 1

N̄
∫

∞

z/β
P̄ (βx)d(βx) = 1

N̄
∫

∞

z
P̄ (y)dy = Ā(z)

B(w) = 1

N
∫

w

0
P (x)x

2

2
dx = 1

β2

1

N̄
∫

z/β

0
P̄ (βx)(βx)

2

2
d(βx)

= 1

β2

1

N̄
∫

z

0
P̄ (y)y

2

2
dy = 1

β2
B̄(z)

L(w) = 1

W
∫

w

0
P (x)xdx = β

2

W̄
∫

z/β

0
P̄ (βx)xdx = 1

W̄
∫

z/β

0
P̄ (βx)(βx)d(βx)

= 1

W̄
∫

z

0
P̄ (y)(y)d(y) = L̄(z),

and we also have:
d

dw
= β d

dz
.

Now, we can plug all the above back into Eq. (2.37) and thereby rewrite that equation

in terms of P̄ (z), N̄ , W̄ , Ā, B̄ and L̄:

d

dz
β [( 1

β2
B̄ + 1

β2

z2

2
Ā) P̄]

= χ( 1

β

W̄

N̄
− 1

β
z) P̄ − ζ [β 2N̄

W̄
( 1

β2
B̄ − 1

β2

z2

2
Ā) + 1

β
z(1 − 2L̄)] P̄ ,

or

1

β

d

dz
[(B̄ + z

2

2
Ā) P̄]

= 1

β
χ(W̄

N̄
− z) P̄ − 1

β
ζ [2N̄

W̄
(B̄ − z

2

2
Ā) + z(1 − 2L̄)] P̄ ,

or

d

dz
[(B̄ + z

2

2
Ā) P̄]

= χ(W̄
N̄

− z) P̄ − ζ [2N̄

W̄
(B̄ − z

2

2
Ā) + z(1 − 2L̄)] P̄ . (2.38)

Notice that Eq. (2.38) is identical to Eq. (2.37), so we know that P (βw) = P̄ (z) also

obeys Eq. (2.37). ◻
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With the two symmetries we described above, we know that for different positive

number pairs N and W the solutions to the steady state equation are actually a

two-parameter family of functions. Therefore, without loss of generality, we define

the canonical-form of the steady-state equation to be the one when both N and W

are set equal to 1, i.e.,

d

dw
[(B(w) + w

2

2
A(w))P (w)]

= χ (1 −w)P (w) − ζ [2(B(w) − w
2

2
A(w)) +w(1 − 2L(w))]P (w).

(2.39)

To distinguish the above from Eq. (2.37), We will refer to the latter as the general

form of the steady-state equation and we have the following theorem:

Theorem 2.4.3 Assume P (w) is a solution to the canonical-form of the steady-

state equation described by Eq. (2.39). Then, for any positive numbers W and N ,

P̄ (w) = N
2

W
P ( w

W /N
) (2.40)

is a solution to the general form of the steady-state equation described by Eq. (2.37),

with N agents and total wealth W.

Proof: It follows from Lemma 2.4.1 and Lemma 2.4.2 that Eq. (2.40) is a solution

to the general form of the steady state equation Eq. (2.37). Therefore, it is enough

to show that

∫
∞

0

N2

W
P ( w

W /N
)dw = N

and

∫
∞

0

N2

W
P ( w

W /N
)w dw =W.
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This can be accomplished by the transformation

y = w

W /N
,

whence

∫
∞

0

N2

W
P ( w

W /N
)dw

= N ∫
∞

0
P ( w

W /N
)d( w

W /N
)

= N ∫
∞

0
P (y)dy = N × 1 = N

and

∫
∞

0

N2

W
P ( w

W /N
)w dw

= W ∫
∞

0
P ( w

W /N
) w

W /N
d( w

W /N
)

= W ∫
∞

0
P (y)y dy =W × 1 =W,

and we are done. ◻

The scaling invariants and the canonical-form of the steady-state equation are

very useful. In reality, when we want to compare the wealth distributions between

two independent economies, it is usually the case that the total number of economic

agents and the total amount of wealth are different. Then, it is desirable that we

normalize N and W to 1 and compare canonical-form density functions. This idea is

inherent in the Lorenz curve and the Gini coefficient that will be discussed later in

Chapter 4. As we shall see, the Lorenz curve contains precisely as much information

as the canonical-form density function.

The canonical-form is also very useful in finding numerical solutions to the steady-

state equation. With Thoerem 2.4.3, we need only focus on finding the solution to
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the canonical-form of the steady-state equation; then any solution to the general

form of the steady-state equation can be obtained by applying Theorem 2.4.3.

In summary, we now focus on the steady-state equation of the agent density

function. By refreshing our definitions to the parameters, we have reduced the

number of parameters from three to two. The remaining free parameters are still

called the redistribution coefficient χ and the WAA coefficient ζ, but these now

measure the redistribution and the level of WAA in a “per transaction” sense. We

have also found that the solution to this steady-state equation has two invariants,

corresponding to vertical and horizontal scaling of the density function. Based on

these two invariants, we have defined the canonical-form of the steady-state equation

to that satisfied by steady-state density functions with N =W = 1.

It is worth pointing out that our canonical-form steady-state equation has two

free parameters and two invariants. Later in Chapter 5, we will extend our model

further to incorporate negative wealth and that will introduce a third parameter, the

affine transformation coefficient and a third invariant which is the invariance under

a horizontal shift.
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Chapter 3

Solving the steady-state equation with a

shooting method

In this chapter, we shall discuss the numerical method we used for solving the

canonical-form of the steady-state Fokker-Planck equation for the EYSM with redis-

tribution and WAA. The key idea is that the steady-state equation together with the

definitions of the Pareto potentials can be reduced to a system of ordinary differen-

tial equations with constraints, which can be treated as a boundary-value problem.

Then, we can apply a shooting method to turn the boundary-value problem into an

initial-value problem.

There are two main difficulties in applying this method: First, P (w) is non-

analytic at the origin where all its derivatives vanish; Second, the domain of P (w)

is [0,∞) which is not compact. We shall show how we overcome the first difficulty

by using asymptotic approximations near the origin, and the second by domain

compactification.

Finally, looking for the solution of the steady-state equation becomes equivalent

to looking for the correct constant multiplier C0 of the asymptotic solution in the

vicinity of the origin. We will also discuss issues of sensitivity in finding C0.

3.1 The shooting algorithm

We first focus on solving the canonical-form steady-state equation, Eq. (2.39), with

Pareto potentials defined by Eqs. (2.31), (2.32) and (2.33). Our first goal is to

turn these four equations into a set of simultaneous ordinary differential equations,

rather than an integrodifferential equation. We can differentiate Eqs. (2.31), (2.32)
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and (2.33) and also expand Eq. (2.39) to obtain the system of equations

dP (w)
dw

= 1

B(w) + w2

2 A(w)
{χ (1 −w) −wA(w)

−ζ [2(B(w) − w
2

2
A(w)) +w(1 − 2L(w))]}P (w) (3.1)

dA(w)
dw

= −P (w) (3.2)

dB(w)
dw

= w2

2
P (w) (3.3)

dL(w)
dw

= wP (w). (3.4)

This is a system of four simultaneous ordinary differential equations for four unknown

functions.

The boundary conditions that we would like to impose for P (w) are P (0) = 0

and limw→∞ P (w) = 0 and we consider the constraints N = 1 and W = 1 to obtain

the canonical form. We need to translate these conditions and constraints into a set

of initial conditions that we can use to initialize the shooting, and a final condition

that we need to check.

If we exploit the fact that N = 1 and take the origin as our starting point, we

can write the initial conditions as

P (0) = 0 (3.5)

A(0) = 1 (3.6)

B(0) = 0 (3.7)

L(0) = 0. (3.8)

Eq. (3.5) comes directly from our boundary conditions for P (w). Eq. (3.7) and

Eq. (3.8) are obvious from the definitions of B(w) and L(W ), and Eq. (3.6) comes

from the fact that N = 1.

Since all four functions vary simultaneously, only one final condition is needed
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to solve the system. We can simply use the fact that

lim
w→∞

A(w) = 0, (3.9)

which follows from the definition of A(w), as the final condition.

Theoretically, we could alternatively exploit the fact thatW = 1 and alternatively

use the final condition

lim
w→∞

L(w) = 1. (3.10)

As we will explain in Chapter 4, however, there are important cases when this

second final condition is not satisfied. Specifically, there exists a phase transition

that is determined by the two free parameters in the steady-state equation, the

redistribution coefficient χ and the WAA coefficient ζ. When χ ≥ ζ, the two final

conditions Eq. (3.9) and Eq. (3.10) always agree simultaneously. However, in the

regime χ < ζ, while A(∞) still converges to 0, L(∞) converges to χ/ζ instead of

1. This is due to the effect of wealth condensation or we call the “oligarchy” in the

system.

3.2 Asymptotic approximation near the origin

In applying the shooting method, we encounter a difficulty. Looking carefully at

our system of differential equations and we find that all the derivatives of P (w) are

zero at the origin. In fact, as we are going to show, the wealth distribution function

P (w) has a depleted region near the origin so that the solution at the origin is non-

analytic. A constant zero function is certainly a solution for P (w), however it will

not satisfy the final condition. To find non-trivial solutions for P (W ), we can use

an asymptotic analysis near the origin.

With our initial conditions Eqs. (3.6), (3.7) and (3.8), we can assume that A(w) ≈

1, B(w) ≈ 0 and L(w) ≈ 0 in the vicinity of the origin for w ∈ [0, δw]. Inserting these
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approximations back into Eq. (3.1) results in the differential equation

dP

dw
≈ 2

w2
[χ(1 −w) −w − ζ(−w2 +w)]P. (3.11)

Eq. (3.11) can be solved analytically, and the solution is given by

P (w) ≈ C0

w2χ+2ζ+2
exp(−2χ

w
+ 2ζw) , (3.12)

where C0 is a constant of integration. Hence, near the origin, P (w) is asymptotically

equal to exp(−1/w). This function is non-analytic at the origin because all of its

derivatives vanish there, hence its Taylor series vanishes at the origin. This is why

P (w) is depleted near the origin.

To find a non-trivial solution for P (w), We can use Eq. (3.12) in the vicinity of

the origin until P (w) is appreciable in magnitude. Then we can revert to the system

of differential equations described in Eqs. (3.1 – 3.4). Our numerical results confirm

that this method works very well in practice.

3.3 Domain Compactification

Another difficulty we encountered was due to the non-compactness of the domain of

P (w). The support of P (w) is [0,∞), and we cannot deal with ∞ numerically. One

way to get around this problem is domain compactification. We define a bijection

w = f(θ) (3.13)

θ = g(w) ∶= f−1(w), (3.14)

where w ∈ [0,∞), and θ ∈ [0,1]. Then we can transform all the functions in the

system of differential equations as described in Eqs. (3.1), (3.2), (3.3) and (3.4) in

terms of of θ instead of w. Then we can solve the system of equations on the domain

[0,1] and transform back to obtain P (w).

Similar to the proof of Theorem 2.4.3, we define our new function of θ to be P̄ (θ)
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as a transformation of P (w), and the desired relationship between the two is

1

N
∫

w

0
P (x)dx = 1

N
∫

f(θ)

0
P (x)dx = 1

N
∫

θ

0
P̄ (y)dy. (3.15)

Differentiating both sides, we obtain the desired relationship between P (w) and

P̄ (θ), which is

P (w) = P̄ (θ)
f ′(θ)

. (3.16)

Parallel to A(w), B(w), L(w), W and N defined for P (w), we want to derive the

equations of Ā(θ), B̄(θ), L̄(θ) for P̄ (θ) under the transformation between θ and w.

By the transformation Eq. (3.16), all the partial potentials are preserved, i.e.,

Ā(θ) = A(w) (3.17)

B̄(θ) = B(w) (3.18)

L̄(θ) = L(w). (3.19)

In other words, we can write explicitly the definitions for Ā(θ), B̄(θ), and L̄(θ) in

term of P̄ (θ) as

Ā(θ) = ∫
1

θ
P̄ (y)dy (3.20)

B̄(θ) = ∫
θ

0
P̄ (y)f(y)

2

2
dy (3.21)

L̄(θ) = ∫
θ

0
P̄ (y)f(y)dy. (3.22)

and we also have

dP (w)
dw

= dP̄ (θ)
dw

= dP̄ (θ)
dθ

1
dθ
dw

= dP̄ (θ)
dθ

1

f ′(θ)
(3.23)

Therefore, by using Eqs. (3.16 – 3.19) and (3.23) in Eq. (3.1) and also differentiating

Eqs. (3.20 – 3.22), the system of differential equations can be rewritten as functions
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of θ by

dP̄

dθ
= 1

(B̄ + f(θ)2

2 Ā)

⎧⎪⎪⎨⎪⎪⎩
χ (1 − f(θ)) P̄ − f(θ)ĀP̄

−2ζ [(B̄ − f(θ)
2

2
Ā) + f(θ) (1

2
− L̄)] P̄

⎫⎪⎪⎬⎪⎪⎭
(3.24)

dĀ

dθ
= −P̄ (θ) (3.25)

dB̄

dθ
= P̄ (θ)f(θ)

2

2
(3.26)

dL̄

dθ
= P̄ (θ)f(θ), (3.27)

with the initial conditions:

P̄ (0) = 0 (3.28)

Ā(0) = 1 (3.29)

B̄(0) = 0 (3.30)

L̄(0) = 0, (3.31)

We can also work out the approximation near the origin in the same way. Omitting

some straightforward calculations, we write the result

P̄ (θ) ≈ c0

f(θ)2+2χ+2ζ
exp(− 2χ

f(θ)
+ 2ζf(θ)) . (3.32)

Although there are many possible choices for the transformation function f and

its inverse function g, the following natural choice has been proven to work very well

in practice

w = f(θ) = θ

1 − θ
(3.33)

θ = g(w) = w

1 +w
. (3.34)

From this, we can easily find the specific form of the system of equations and the

approximation near the origin under this transformation by inserting Eqs. (3.33) into
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Eqs. (3.24 – 3.27). We obtain the results

dP̄

dθ
= 1

B̄ + θ2

2 Ā

⎧⎪⎪⎨⎪⎪⎩
χ(1 − θ

1 − θ
) P̄ − θ

1 − θ
ĀP̄

−2ζ [(B̄ − θ2

2(1 − θ)2
Ā) + θ

1 − θ
(1

2
− L̄)] P̄

⎫⎪⎪⎬⎪⎪⎭
(3.35)

dĀ

dθ
= −P̄ (θ) (3.36)

dB̄

dθ
= θ2

2(1 − θ)2
P̄ (θ) (3.37)

dL̄

dθ
= θ

1 − θ
P̄ (θ). (3.38)

The initial conditions are still given by Eqs.(3.27 – 3.31), and we have

P̄ (θ) ≈ C0(1 − θ)2+2χ+2ζ

θ2+2χ+2ζ
exp

⎛
⎝
− 2χµ

( θ
1−θ)

+ 2ζ

µ

θ

1 − θ
⎞
⎠

(3.39)

near the origin.

The above is a complete description of the domain compactification and hence

of the shooting method. We can apply our shooting method to P̄ (θ) on θ ∈ [0,1],

instead of to P (w) on w ∈ [0,∞). Then we can apply Eq. (3.16) to transform P̄ (θ)

back to obtain P (w).

3.4 Numerical instability in searching for C0

For any given non-negative χ and ζ, our shooting algorithm for the canonical-form

of the steady-state equation can be summarized as below

I stated the algorithm in terms of P (w) for consistency assuming the application

of domain compactification applied in practice. The small number δw were chosen

so that the distribution function can escape the depleted region so that it has nu-

merically non-zero derivatives. In practice, we use the approximation in Eq. (3.12)

until P (w) ≥ 10−4. This choice has been proven to be convenient and successful.

Since the wealth distribution is highly skewed, to obtain sufficient accuracy, the

differential equation solver used is the 6th-order Runge-Kutta-Butcher Method, which
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Algorithm 1 Shooting Algorithm for the canonical-form steady-state equation for
the EYSM
1. Choose an initial guess for C0 in Eq. (3.12)
2. In the vicinity of w ∈ [0, δw], for some small value δw > 0, use Eq. (3.12) with C0

chosen from step 1 and the initial values from Eq. (3.6 – 3.8) and solve the system
of ordinary differential equations.
3. For w ∈ [δw,∞], revert to Eq. (3.1) and use the final condition obtained from step
3 as the initial conditions; then solve the system of ordinary differential equations
with any accurate differential equation solver.
4. Check if the final condition is satisfied:

if true then
P (w) is a solution. Done.

else
Go back to step 1 and use a different initial guess for C0, chosen to bring the
final condition closer to A(∞) = 0.

end if

is summarized below

yi+1 = yi +
1

90
(7k1 + 32k2 + 12k4 + 32k5 + 7k6) , (3.40)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = f (ti, yi)

k2 = f (ti + 1
4h, yi +

1
4k1h)

k3 = f (ti + 1
4h, yi +

1
8k1h + 1

8k2h)

k4 = f (ti + 1
2h, yi −

1
2k2h + k3h)

k5 = f (ti + 3
4h, yi +

3
16k1h + 9

8k4h)

k5 = f (ti + h, yi − 3
7k1h + 2

7k2h + 12
7 k3h − 12

7 k4h + 8
7k5h) .

(3.41)

With the shooting method described above, we can see that for any given positive

parameters χ and ζ, solving the steady-state solution is equivalent to searching for

the correct value of C0 so that the final condition is satisfied. In practice, we found it

extremely difficult to automate the shooting method algorithm for searching C0. This

is mainly due to the high sensitivity of the final condition on the initial conditions.
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Figure 3.1: Final conditions limw→∞A(w) as a function of C0 for different scopes
of C0. The residual becomes numerically unstable very close to the correct value of
C0, which is about 0.2755.
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This sensitivity is envisioned in Figure 3.1, where we plot the final condition

limw→∞A(w) as a function of C0 for a specific pair of χ and ζ. From Figure 3.1,

we can see that the correct value of C0 is in the vicinity of 0.02755. However, it

becomes numerically unstable closely both to the left and right side of this value.

Therefore, automatically searching for C0 with a algorithm such as bisection is no

plausible. Also due to its sensitivity, C0 needs to have at least eight significant digits

to give results with sufficient numerical accuracy. In practice, the values of C0 can

be searched only by hand, and saved as a table of fine grid in the (χ, ζ) plane. This

is a serious flaw for the shooting method because searching by hand is very costly

in time, and it does not scale favorably when a large domain in the (χ, ζ) plane is

needed. Table 3.1 shows a tiny fraction of this C0 table.

In summary, the shooting method works well for solving for the canonical-form

of the steady-state equation with satisfactory numerical accuracy. All the numerical

results done in the scope of this thesis were done with the shooting method.
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Chapter 4

Duality

In this chapter, we are going to describe a remarkable symmetry in the model, called

duality. First, we shall explain the existence of a phase transition in the steady-

state solutions of the EYSM with redistribution and WAA. This phase transition is

determined by the model’s two free parameters, χ and ζ. In the regime χ ≥ ζ, which

we call the subcritical regime, the density function P (w) is a classical distribution.

However, in the regime χ < ζ, which we call the supercritical regime, we observe

partial wealth condensation resulting in what we call the oligarchy.

Then, digressing from the EYSM for a moment, we shall introduce the Lorenz

curve and the Gini coefficient. Beyond their popularity in analyzing inequality, it

turns out that these tools have a number of advantages over the classical distribution,

especially when describing wealth distributions with oligarchy. Our empirical work

in later chapters also employ these tools.

Finally, we shall describe duality in the model. In short, duality is a one-to-one

correspondence between the supercritical and the subcritical solutions to the steady-

state equation. More specifically, we have found that the non-oligarchical part of a

supercritical solution for P (w) is identical to that of a subcritical solution with the

two free parameters in the EYSM swapped, i.e. {χ → ζ, ζ → χ}. We will explain

this symmetry from both the microscopic and the macroscopic perspectives. We

will also explain how we can visualize this duality in the Lorenz curve. One direct

and practical application of duality is that it significantly reduces the workload

of tabulating numerical solutions discussed in the previous chapter. Finally, we

will discuss the origin of the term “duality” owing to its relationship with a similar

concept in physics.
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4.1 Wealth condensation and oligarchy

4.1.1 Complete wealth condensation

Recall that complete wealth condensation was first observed in the steady-state

solution to the basic YSM with neither redistribution nor WAA (i.e., χ = 0 and

ζ = 0). We can think the steady-state solution to Eq. (2.37) as a limit

P (w) = lim
t→∞

P (w, t). (4.1)

In the discrete case, when we have a positive integer N agents and total wealth W ,

our Monte-Carlo simulation tells us that the time-asymptotic limit of the density

function is when all the wealth concentrates to only one agent and the other N − 1

agents have no wealth at all, i.e.,

P (w) = lim
t→∞

P (w, t) = (N − 1)δ(w) + δ(w −W ) (4.2)

where δ(w) is the Dirac delta. More interesting things happen in the continuum

case, when the distribution P (w, t) will not stabilize as in Eq. (4.2), but keeps

concentrating further and it becomes possible that only a fraction ε of an agent

holds the amount of wealth W /ε, where 0 < ε < 1. So, what can happen when time

t→∞ and hence ε→ 0?

To properly describe the steady-state solution in the continuum case, we write

P (w) as

P (w) = Nδ(w) +WΞ(w),

(4.3)

where we have introduced the term Ξ(w), which can be thought of as the limit of a

sequence of functions

Ξ(w) = lim
ε→0

Ξε(w), (4.4)
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where we have introduced

Ξε(w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 for 1
ε −

ε
2 ≤ w ≤ 1

ε +
ε
2

0 otherwise.
(4.5)

The above definition is a descriptive one, it helps us to understand the intuition

behind this function but it lacks mathematical rigor. A formal and rigorous definition

of Ξ(w) was later provided by using Sobolev-Schwarz distribution theory [29] and

by non-standard analysis [14]. It is not the focus of this thesis to go deep into

the mathematics behind the Ξ(w) function, therefore we will just state two very

important properties of Ξ(w) that we are about to use later without any rigorous

proof.

Theorem 4.1.1 Ξ(w) has vanishing zeroth moment and unit first moment, i.e.,

∫
∞

0
Ξ(w)dw = 0 (4.6)

∫
∞

0
Ξ(w)w dw = 1. (4.7)

Theorem 4.1.2 Any incomplete moment of Ξ(w) vanishes, i.e.,

∫
w

0
Ξ(x)xk dx = 0, for k = 0, 1, 2, . . . (4.8)

for any finite w ∈ R.

Even without rigorous proof, the consistency between Theorem 4.1.1 and Theo-

rem 4.1.2 and the descriptive definition of Ξ(w) given by Eqs. (4.4) and (4.5) is

clear. Further intuition for and a more detailed mathematical treatment of the dis-

tribution Ξ(w) is provided in Appendix A of [5].

Now, we revisit Eq. (4.3) and think about what it really means. It indicates that

the steady-state solution for wealth distribution in the basic Yard-Sale Model is an

absolute oligarchy, where 100% of the population have no wealth at all, while an
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infinitesimal fraction of the population holds all the wealth of the society. In other

word, it is a complete separation of the agents and the wealth. While all the agents

concentrate at zero, as described by the term Nδ(w) in Eq. (4.3), all the wealth

concentrates to infinity for which we introduced the distribution Ξ(w).

4.1.2 Classical distribution

Complete wealth condensation is unrealistic, but, as noted earlier, it can be elim-

inated by introducing redistribution. Our numerical solutions show that, in the

EYSM with only redistribution (i.e., χ ≠ 0 and ζ = 0), the steady-state solution

becomes a classical distribution.

0 0.2 0.4 0.6 0.8 1
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P
(w

)

χ = 0.1

χ = 0.07
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χ = 0.01

Figure 4.1: A family of steady-state solutions to the EYSM with redistribution for
various values of χ.

Figure 4.1 shows a family of solutions to the EYSM with only redistribution. As

can be seen, the solutions for the agent density P (w) all have a depleted region near

zero, and decay after a single peak. We can also notice that the density function

becomes flatter with higher values of χ. When χ approaches zero, the wealth distri-

bution approaches a Dirac delta at zero as described in Eq. (4.3); unfortunately the

Ξ(w) term is impossible to envision in this same manner.
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4.1.3 Partial wealth condensation and oligarchy

While the solution of complete wealth condensation is obtained for the basic YSM,

and a classical distribution is obtained in the ESYM with only redistribution, the

more interesting case is the EYSM with both redistribution and WAA, which can

give rise to coexistence between oligarchical and non-oligarchical components of the

population.

In Section 3.1, solutions to Eq. (2.39) with the boundary conditions

P (0) = 0 (4.9)

and

lim
w→∞

A(w) = 1 (4.10)

were studied. From Eqs. (2.31) and (2.33), it is clear that Eq. (4.10) implies that

lim
w→∞

P (w) = 0, (4.11)

but remarkably it does not imply that limw→∞L(w) = 1. In fact, our numerical

method has shown that there are cases when limw→∞L(w) < 1 This is surprising

because we might have expected the total wealth to be conserved as 1. Now with

the discussion in Subsection 4.1.1, we know that this is actually due to a partial wealth

condensation or a coexistence of the classical distribution and the distributional Ξ(w)

function. More generally, we can write the solution in the form of:

P (w) = p(w) + c∞WΞ(w), (4.12)

where p(w) is a classical function defined on w ∈ [0,∞) and c∞ ∈ [0,1].

Intuitively, we may think of the second term of Eq. (4.12) as corresponding to

the presence of an “oligarchy” – a vanishingly small fraction of the total number of

economic agents who nevertheless possess a finite fraction of the total wealth. To

see this, note that the second term of Eq. (4.12) contributes nothing to N because
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of Eq. (4.6), whereas it contributes WΞ ∶= c∞W to the total wealth W because

of Eq. (4.7). We may therefore surmise that the zeroth and first moments of the

classical part of the distribution are given by

∫ p(w)dw = N (4.13)

∫ p(w)w dw = (1 − c∞)W. (4.14)

A distribution with the form of Eq. (4.12) with c∞ ≠ 0 will be called an oligarchical

distribution.

To summarize, the contributions of the classical and oligarchical terms to N and

W can be written

N = ∫
∞

0
P (w)dw = ∫

∞

0
p(w)dw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Np∶=N

+ c∞W ∫
∞

0
Ξ(w)dw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NΞ∶=0

(4.15)

and

W = ∫
∞

0
P (w)w dw = ∫

∞

0
p(w)w dw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Wp∶=(1−c∞)W

+ c∞W ∫
∞

0
Ξ(w)w dw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
WΞ∶=c∞W

, (4.16)

where we have used Eqs. (4.6) and (4.7) to evaluate the integrals over Ξ.

4.2 The Lorenz curve and Gini coefficient

It is important to note that in any graph of P (w) versus w, the second, oligarchi-

cal term in Eq. (4.12) will be essentially invisible – an imperceptible, measure-zero

adjustment to the extreme tail of the distribution. This is because this term con-

tributes nothing to the total amount of economic agents present, which is, after all,

the zeroth moment of the distribution. This term can not be neglected, however,

because it contributes significantly to the total amount of wealth present, which is

the first moment of the distribution.

If you had a way of knowing N and W in advance, you might be able to infer

the presence of the oligarchical term from the portion of the distribution p(w) that
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you can see as follows: If you take the zeroth moment of p(w), and you confirm that

the result is N , you can be sure that you have accounted for the full measure of the

classical distribution p(w). If you then take the first moment of p(w) and find that

the result is Wp < W , you can infer the existence of a second, oligarchical term in

Eq. (4.12) with c∞ = 1 − Wp

W .

A more direct way of recognizing the presence of an oligarchical term in Eq. (4.12)

is to employ the Lorenz curve, first introduced by Max O. Lorenz in 1905 [37] as

a way to represent inequality in wealth (or income). For a given distribution, the

Lorenz curve plots the cumulative share of wealth against the cumulative share of

economic agents. Hence a point (x, y) on Lorenz curve can be interpreted as the

bottom x% of the population of the society possessing y% of the total wealth of the

society.

The culmulative share of economic agents is given by

F (w) ∶= 1

N
∫

w

0
P (x)dx = 1 −A(w), (4.17)

while the cumulative share of wealth is just the function L(w) introduced in Eq. (2.33).

Hence, the Lorenz curve is a parametric plot of L(w) versus F (w), where the param-

eter w runs from zero to infinity. Going forward, we shall refer to this functional form

as L(F), defined so that L(F) = L(w) when F = F (w) ∈ [0,1], i.e., L(F (w)) = L(w).

Three important properties of the function L(F) follow from this definition:

1. It is easy to see that the graph of L(F) must include the points (0,0) and

(1,1), and must necessarily lie below the straight diagonal line connecting

those two points. In fact, twice the area between the Lorenz curve and the

diagonal is a commonly used measure of wealth (or income) inequality called

the Gini coefficient [21], introduced by Corrado Gini in 1912 [23].

2. It is also clear that if one is given the distribution P (w), one can straightfor-

wardly compute N , W , F and L and hence the Lorenz curve L(F). It is less

clear that the opposite is true: If one knows N , W and L(F), one can recover
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the distribution P (w). To see this, note that the slope of the Lorenz curve is

L′(F) = L′(w)
F ′(w)

= w

W /N
, (4.18)

which is the wealth, normalized to the average wealth. If you are given the

Lorenz curve, you can suppose that you know L′(F) as a function of F , and

hence this function of F must be equal to w/(W /N). Knowing W /N , you

can invert this relation to obtain F as a function of w. Differentiating that,

recalling that F ′(w) = P (w)/N , and knowing N , you can recover P (w). Hence

the triplet {N,W,L(F)} is equivalent in information content to P (w).

3. Finally, by examining the second derivative L′′(F) is possible to show that the

graph of L(F) must be concave up.

From the above observations, it follows that Lorenz curves corresponding to

subcritical solutions are continuous and concave up, extending from point (0,0) to

point (1,1). In the supercritical case, however, when the oligarchical term c∞Ξ(w)

is present, the graph of the Lorenz curve on the clopen domain F ∈ [0,1), though

still concave up, approaches the point (1,1 − c∞) on the right-hand boundary of its

domain, instead of (1,1); it then discontinuously jumps to the point (1,1) when

F = 1.

Figure 4.2 shows examples of Lorenz curves in both the supercritical and sub-

critical cases. The Gini coefficient can be defined either by the ratio of the shaded

areas as shown in Figure 4.2 or mathematically with the Lorenz curve L(F) as

G ∶= ∫
1

0
L(F)dF . (4.19)

It is not difficult to show that Eq. (4.19) is mathematically equivalent to

G = 1 − 2

W
∫

∞

0
P (w)A(w)w dw. (4.20)

In practice, we can either use Eq. (4.19) or use Eq. (4.20) to calculate the Gini
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(a) Lorenz Curve for subcritical state with classical wealth density function
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(b) Lorenz Curve for supercritical state with partial wealth condensation

Figure 4.2: In the EYSM, the Lorenz curve cannot go below zero and always ter-
minates at the point (1,1). The Gini coefficient is defined to be G = A

A+B , where A
and B are the areas of the shaded regions.
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coefficient, based on what kind of information we have.

It is also worth pointing out that, the Gini coefficient G is a number between 0

and 1, no matter whether a supercritical case or a subcritical case. This is due to

the fact that all the agents have non-negative wealth and hence L(w) cannot dip

down below 0. In Chapter 5, when we further expand our model to allow agents

with negative wealth. The fact that G ∈ [0,1] is then no longer true.

A property of Lorenz curves closely related to Property 2 above is that they are

invariant under scaling of both the abscissa and the ordinate of P (w). Both F (w)

and L(w) are invariant under scaling of the ordinate of P , because their definitions

in Eqs. (4.17) and (2.33) include division by N and W , respectively. Scaling of the

abscissa involves a scaling of w, which changes the parametrization of the Lorenz

curve, but not the functional form of the curve itself. This scale invariance is reflected

in the fact that W and N are needed along with the Lorenz curve L(F) to recover

the distribution P (w). This means that to each Lorenz curve there corresponds an

entire equivalence class of possible distributions, and that this equivalence class is

isomorphic to (R+)2 (sinceN andW are both positive). Conversely, each equivalence

class can be specified by a single representative distribution, obtained by taking

W = N = 1, which is what we referred to as the canonical form.

It was shown in Chapter 2 by Eq. (2.40) that the Fokker-Planck equation,

Eq. (2.37), is also invariant under the above-described equivalence relation. Eq. (2.40)

is therefore a two-parameter relation between every member of the equivalence class

and its canonical form representative. Because P and P are in the same equivalence

class in the sense described above, they will have exactly the same Lorenz curve. The

Lorenz curve may thus be thought of as a property of the entire equivalence class,

rather than of any single representative thereof, which makes it the most appropriate

metric for comparison with empirical results.

In the following section, we shall investigate the Lorenz curves for a subcritical

solution with parameters χ and ζ, with ζ < χ, and that of its dual supercritical solu-

tion with the two parameters swapped. We shall demonstrate that the two Lorenz

curves are identical to within an overall scale factor. Specifically, the supercritical



48

Lorenz curve is ζ
χ < 1 times the subcritical Lorenz curve. The proof of this assertion

will involve using Eqs. (4.30) and (4.32) to show that for a specific supercritical so-

lution, P (w) with total wealth W , its non-oligarchical population p(w) corresponds

to its dual subcritical solution with total wealth Wp, and the Lorenz curve of the

previous one is just a scaling of the latter. Together with the above-described in-

variance property of the Lorenz curve, this will establish that it is true between all

dual solution pairs, even though their total wealths, W and Wp, may differ. This

establishes the one-to-one correspondence between the subcritical and supercritical

solutions that is the hallmark of duality. After establishing this for the macroscopic

Fokker-Planck description, we shall trace the origin of the duality back to the un-

derlying microscopic process, where it is slightly more difficult to recognize.

4.3 Duality

The first and perhaps best known example of duality in physics is that which was

discovered by Kramers and Wannier in 1941 in the context of the two-dimensional

square-lattice Ising model of ferromagnetism, and which they used to make the first

prediction of the critical temperature of that model [34]. They did this by comparing

the high-temperature and low-temperature expansions of the partition function of

the model, and supposing that the partition function has a singularity at the critical

point and nowhere else. This forces a mathematical identity from which one can

back out the critical temperature. When Onsager presented an exact solution for the

two-dimensional Ising model in 1944 [41], Kramers’ and Wannier’s prediction for the

critical temperature was verified, and moreover it became clear that their approach

could be understood as establishing a deep one-to-one correspondence between the

subcritical and supercritical states of the model [32]. If the temperature is scaled

so that the critical temperature is equal to unity, the associated subcritical and

supercritical temperatures are multiplicative inverses of one another, just as the case

for χ/ζ in our economic model. This correspondence is not the least bit obvious,

especially because it associates highly disordered states with highly ordered ones.
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The notion of duality in physics exploded in importance after Maldacena’s 1997

conjecture that there is a duality between the anti-de Sitter (AdS) spaces used in

theories of quantum gravity, and conformal field theories (CFT) which are quantum

field theoretical descriptions of elementary particles on the boundaries of those AdS

spaces [38]. This conjectured association is sometimes called the AdS/CFT corre-

spondence. Because this association relates strongly coupled field theories which

can not be treated perturbatively with weakly coupled field theories which can, the

methodology has the potential to enhance our understanding of strongly coupled

field theories.

Given the importance attached to duality in modern physics, we find it fasci-

nating that the very same concept appears in a simple agent-based model of the

economy. In the following sections, we shall demonstrate this duality analytically,

both from the microscopic agent-level model and from its macroscopic Fokker-Planck

description, as well as numerically, using both Monte Carlo simulations and numer-

ical solutions of the Fokker-Planck equation.

4.3.1 Duality in the macroscopic, Fokker-Planck description

It has been demonstrated [5] that Eq. (2.37) exhibits a second-order phase transition,

in that the character of its solutions abruptly changes at the critical value ζ = χ.

When ζ < χ, the solutions are subcritical, and when ζ > χ they are supercritical. In

the framework of Eq. (4.12), we can write these two types of solutions in a unified

way by writing c∞ as follows:

c∞ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for χ ≥ ζ

(1 − χ
ζ )W for χ < ζ.

(4.21)

This phase transition corresponding to the sudden appearance of oligarchy as ζ is in-

creased is an example of a phenomenon sometimes known as wealth condensation [8].

To investigate the duality between the supercritical and subcritical solutions, we

begin by considering the supercritical case (i.e. ζ > χ). Then, as shown in Eq. (4.16),
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the total wealth of the society W can be written

W =Wp +WΞ. (4.22)

Then, by applying Eqs. (4.16) and (4.21) to the above equation in the supercritical

case, we have the wealth of the classical part of the distribution,

Wp = χ

ζ
W, (4.23)

and that of the oligarchical part,

WΞ = (1 − χ
ζ
)W. (4.24)

That is, a fraction of 1 − χ/ζ of the total wealth of the entire society is held by

the oligarchy, while the rest of the population holds the remaining fraction χ/ζ. In

the subcritical case, by contrast, the oligarchy vanishes and the non-oligarchical

population holds the entire wealth of the society, i.e., Wp =W .

Now, let us focus on p(w), the non-oligarchical population part of a supercritical

solution, and see if we can write an integrodifferential equation for it alone. Anal-

ogous to Wp, we can define variants of the Pareto potentials in Eqs. (2.31) through

(2.33), for p(w) alone,

Np = ∫
∞

0
p(x)dx (4.25)

Ap = 1

Np
∫

∞

w
p(x)dx (4.26)

Bp = 1

Np
∫

w

0
p(x)x

2

2
dx (4.27)

Lp = 1

Wp
∫

w

0
p(x)xκx. (4.28)

Using Eqs. (4.6) through (4.8), we can insert Eq. (4.12) back into Eqs. (2.31) through

(2.33) and derive the relationships between the Pareto potentials for p(w) and those

for P (w) as follows,

Np = N (4.29)
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Ap = A (4.30)

Bp = B (4.31)

Lp = ζ

χ
L (4.32)

Now, with the above equations established, we can insert Eq. (4.12) back into

Eq. (2.37) and rewrite the steady-state Fokker-Planck equation as

d

dw
[(Bp +

w2

2
Ap)p] + c∞

d

dw
[(Bp +

w2

2
Ap)Ξ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

= ζ(
Wp

Np
−w)p + c∞ζ(

Wp

Np
−w)Ξ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

−2χ[
Np

Wp
(Bp −

w2

2
Ap) +w(1

2
−Lp)]p

+2c∞χ[
Np

Wp
(Bp −

w2

2
Ap) +w(1

2
−Lp)]Ξ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
III

. (4.33)

When considering distributional solutions to the above equation, we can choose

any smooth test function φα(w) with compact support. By multiplying both sides

of Eq. (4.33) by φα(w), and integrating with respect to w, the contribution of the

terms I, II and III are all zero, leaving the equation:

d

dw
[(Bp +

w2

2
Ap)p] = ζ(

Wp

Np
−w)p − 2χ[

Np

Wp
(Bp −

w2

2
Ap) +w(1

2
−Lp)]p (4.34)

The principal observation of this chapter can be seen in the above equation. Notice

that Eq. (4.34) is of exactly the same form as the original Fokker-Planck equation

in steady-state Eq. (2.37), but with the redistribution and the WAA coefficients

swapped. Recalling that p(w) is the non-oligarchical part of a supercritical solution

P (w), we know from Eq. (4.34) that p(w) would correspond to a subcritical solution

of Eq. (2.37). Hence we have established the promised one-to-one correspondence

between subcritical and supercritical solutions, which we recognize as the key feature

of duality.
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4.3.2 Duality in the microscopic random process

The duality between the supercritical and the subcritical solutions can be also un-

derstood at the microscopic process level. Again, we begin by considering the su-

percritical case when χ < ζ, and we return to the random walk process described in

Eqs. (2.25) and (2.26). We rewrite these two equations in terms of Wp instead of W

by applying Eq. (4.23),

∆w =
√
γ∆tmin(w,x)η + ζ(

Wp

N
−w)∆t + (ζ − χ)w∆t (4.35)

E[η] = χ

√
∆t

γ

N

Wp
(w − x). (4.36)

Notice that the above two equations are of the very same form as Eqs. (2.25) and

(2.26), aside from redefinitions of parameters. If we were to apply Eqs. (2.10) and

(2.11) to compute the drift coefficient and diffusivity of the corresponding Fokker-

Planck equation, we would again end up with Eq. (2.29). To gain some insight into

the relationship between the non-oligarchical population and the oligarchy, however,

instead of directly averaging over P (w), we apply Eq. (4.12) to break up the average

defined in Eq. (2.8) into two contributions,

E[f(η, x)] = 1

N
∫

∞

0
dx P (x, t)E[f(η, x)]

= 1

N
∫

∞

0
dx p(x, t)E[f(η, x)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ep[f(η,x)]

+ 1

N
∫

∞

0
κx c∞Ξ(x)E[f(η, x)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EΞ[f(η,x)]

.

(4.37)

By breaking up the averages over the non-oligarchical population p(w) and the

oligarchy Ξ(w) in this way, we can likewise break up the drift coefficient and the

diffusivity into contributions from the non-oligarchical population and the oligarchy

separately, i.e., D =Dp+DΞ and σ = σp+σΞ, respectively. Straightforward calculation

yields

Dp = lim
∆t→0

Ep[
∆w2

∆t
] = 2(Bp +

w2

2
Ap) (4.38)
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DΞ = lim
∆t→0

EΞ[
∆w2

∆t
] = 0 (4.39)

σp = lim
∆t→0

Ep[
∆w

∆t
] = ζ(

Wp

N
−w) + (ζ − χ)w

−2χ[ N
Wp

(Bp −
w2

2
Ap) +w(1

2
−Lp)] (4.40)

σΞ = lim
∆t→0

EΞ[
∆w

∆t
] = (χ − ζ)w. (4.41)

If we write the Fokker-Planck equation in steady state using Eqs. (4.38) through

Eq. (4.41), we obtain Eq. (4.34) exactly.

From the above derivation, we can see that the random process within the non-

oligarchical population p(w) is equivalent to a subcritical random process with redis-

tribution coefficient χ and WAA coefficient ζ swapped, plus an extra term, (ζ −χ)w.

Remembering that we are considering the case ζ > χ, we see that this extra term is

positive. This extra term is the wealth flow into the non-oligarchical population due

to the tax on the oligarchy. To see this, we can compute the Ep average of the extra

term (χ − ζ)w, obtaining χ(ζ/χ − 1)Wp, which is exactly the amount of the tax per

unit time paid by the oligarchy at tax rate χ.

Conversely, when we compute the EΞ average of the extra term, we obtain a

negative term (χ − ζ)w, balancing the above-described wealth flow into the non-

oligarchical population. This is due to the transaction between the non-oligarchical

population and the oligarchy. Because the oligarchy is a vanishingly small fraction

of an agent possessing infinite wealth in the continuum limit, the WAA model guar-

antees that the oligarchy wins in every such transaction. Therefore, the WAA acts

like a “effective tax” on the non-oligarchical population which is balanced only by

the actual redistributive tax on the oligarchy.

The above argument provides a heuristic explanation of why there exists a sym-

metry between the redistribution and WAA coefficients. When the wealth flows

between the two systems balance each other, the steady-state is reached. The dis-

tribution of the non-oligarchical population p(w) then satisfies Eq. (4.34), and cor-

responds to a subcritical solution of Eq. (2.37).
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4.3.3 Numerical Results

Figure 4.3 confirms the presence of the duality by comparing two numerical solutions

of Eq. (2.37) with different parameters, corresponding subcritical and supercritical

cases. These numerical solutions are found using a shooting method, as described

in Chapter 3 of this thesis. We can see that the wealth distribution of a subcritical

solution when χ = 0.03, ζ = 0.02 and W = 1 (plotted in green) is identical to the

wealth distribution for the non-oligarchical population of a supercritical solution

when χ = 0.02, ζ = 0.03 and W = 1.5 (plotted in red).

0 0.2 0.4 0.6 0.8 1

w

0

1

2

3

4

5

6

P
(w

)

Duality between supercritical solution and subcritical solution

p(w) with χ = 0.03, ζ = 0.02, W = 1, N = 1

P(w) with χ = 0.02, ζ = 0.03, W = 1.5, N = 1

Figure 4.3: Comparison of the wealth distribution of a subcritical solution P (w) and
the wealth distribution of the non-oligarchical population of a supercritical solution
p(w), with the swapping of the redistribution coefficient χ and WAA coefficient ζ.

From a practical point of view, the duality provides an effective way to solve

for a supercritical distributional solution to Eq. (2.37). If we want to solve for

a supercritical distributional solution with redistribution coefficient χ and WAA
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coefficient ζ and total wealthW , we can instead solve for the dual subcritical classical

solution with the two parameters swapped and with total wealth equal to χ
ζW . Then

we can simply augment this solution by the addition of an oligarchy with wealth

(1 − χ
ζ )W .

Figure 4.4 shows the Lorenz curves between the subcritical solution and the

supercritical solution obtained by swapping the two parameters χ and ζ. We can

see that while the Lorenz curve for the subcritical solution is a curve from (0,0) to

(1,1), the Lorenz curve for the supercritical solution is just a scaling of the previous

one by a factor of χζ , and hence it intersects the right boundary at (1, χζ )
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Sub-critical χ = 0.03 and ζ = 0.02

Super-critical χ = 0.02 and ζ = 0.03

Figure 4.4: Comparison of the Lorenz curves of a subcritical solution (solid curve)
and its dual supercritical solution (dotted curve). When scaled vertically, the curves
perfectly coincide.

From a practical point of view, the duality provides a numerical algorithm for
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solving for the Lorenz curve. To compute the Lorenz curve for a supercritical distri-

butional solution, we can just compute that for its dual subcritical classical solution

and scale it appropriately.

4.4 Discussion and Conclusion

We have demonstrated a very non-trivial one-to-one correspondence between two

classes of steady-state solutions of the agent-based asset-exchange model considered

in [5]. The first are distributional solutions of the corresponding Fokker-Planck

equation, which are characterized by wealth condensation and oligarchy, and which

we refer to as supercritical solutions. The second are classical solutions of the cor-

responding Fokker-Planck equation, which exhibit neither wealth condensation nor

oligarchy, and which we refer to as subcritical solutions. We have identified this

one-to-one correspondence as an example of the phenomenon of duality.

More specifically, we have shown that the wealth distribution of the non-oligarchical

part of a supercritical distribution is precisely equal to the subcritical solution ob-

tained by swapping the redistribution and WAA coefficients. If we think of the ratio

of these two coefficients as the order parameter z = ζ/χ, then the swapping of the two

coefficients is equivalent to taking the inverse of z. As noted earlier, this is very sim-

ilar to the Krammer-Wannier duality where the free energy of an Ising model with a

high temperature is “dual” to an Ising model with the inverse of the temperature of

the previous one. Hence, the order parameter z = ζ/χ in this context plays the role

of temperature in the Ising model.

We presented two mathematical arguments explaining the origin of the above-

described duality, one based on the macroscopic Fokker-Planck description of the

agent steady state, and the other based on the microscopic process-level description

thereof. From the microscopic description, we were able to identify the crucial bal-

ance between the effects of taxation and redistribution on the oligarchy on one hand,

and those of biased transaction outcomes on the non-oligarchical population on the

other.
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It should be noted that hints of the existence of this duality were present in

earlier work. In [5], for example, it was noted that for very large values of w, the

distribution exhibits an asymptotic Gaussian tail of the form:

exp (−a∣ζ − χ∣w2 − bw) . (4.42)

With hindsight, it is evident that the above equation is indicative of the symmetry

described in this chapter – if you swap χ and ζ, the Gaussian tail would decay at

exactly the same rate ∗. From the results of this chapter, however, we can see this

symmetry is indicative of a much deeper exact symmetry between the subcritical

and supercritical steady-state solutions to the model.

As noted above, the presence of duality has already had practical benefit in

reducing the numerical work involved in finding supercritical solutions of the model.

We hope that it will also have theoretical benefit in allowing us to understand and

analyze the mathematical properties of this fascinating model of wealth distribution.

∗The reality is slightly more complicated than this because, although not mentioned in Refer-
ence [5], the parameters a and b in Eq. (4.42) will differ above and below criticality. Presumably,
this can be accounted for by the fact that the total wealth of a supercritical solution is different
from that of its dual subcritical partner, as described in this chapter.
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Chapter 5

The Affine Wealth Model

In this chapter, we further extend the EYSM to allow for agents with negative

wealth. This will introduce a third parameter κ and a third invariant – invariance

under horizontal shift. We call this new model the Affine Wealth Model (AWM).

Although the Fokker-Planck equation for the AWM is even more complicated than

that for the EYSM, luckily it can be derived by applying a straightforward func-

tion transformation to the Fokker-Planck equation for the EYSM. Better still, the

numerical solution to the AWM, including the form of its Lorenz curves, can also

be easily obtained by applying this transformation to the solutions to the EYSM.

Therefore, solving the AWM involves very little extra numerical work.

5.1 Definition of model

A key deficiency of the EYSM is its inability to account for negative wealth. Agent

wealth is initially positive, and the dynamics keep it so by design, so the agent density

function P is supported on [0,∞). However, negative wealth is widely observed

in real world economies. For example, according to data collected by the Federal

Reserve, roughly 10.9% of the population of the United States in 2016 had negative

wealth [9]. To overcome this deficiency, we generalize the EYSM by demanding a new

kind of symmetry. In addition to the multiplicative scalings described by Eq. (2.40),

we demand invariance under a certain additive shift of the wealth distribution, to be

described below. Because the new model is invariant under both scalings and shifts,

we refer to it as the Affine Wealth Model (AWM).

In the AWM, the agent density function P (w) is supported on [−∆,∞), where

the fixed positive quantity ∆ will be described shortly. At the beginning of each

transaction, the transacting agents both add ∆ to their wealths. With the positive

wealths that result, they perform an EYSM transaction. Finally, they both subtract
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∆ from their wealths to complete the transaction. A nice feature of this approach is

that it is unnecessary to modify the EYSM algorithm to deal with negative wealth.

Note that, even if both agents begin with positive wealths, w and x, the quantity

∆w =
√
γ∆t min(w +∆, x +∆)η (5.1)

may be larger than w and/or x, so that an agent may lose more wealth than he/she

currently possesses, and thereby end up with negative wealth. The overall effect is

to create an EYSM distribution in the “shifted wealth,” w̄ = w+∆ ∈ (0,∞), but then

to transform that distribution, P̄ (w̄), to be one in terms of w rather than w̄, which

is easily accomplished as follows,

P (w) = P̄ (w̄) = P̄ (w +∆), (5.2)

where P̄ is an EYSM distribution, since dw̄/dw = 1.

Now dw = dw̄, so it follows that

N = ∫
∞

−∆
dw P (w) = ∫

∞

0
dw̄ P̄ (w̄) = N̄ (5.3)

and

W = ∫
∞

−∆
dw P (w)w

= ∫
∞

0
dw̄ P̄ (w̄)(w̄ −∆) = W̄ −∆N̄ , (5.4)

and hence the average wealth, µ ∶= W /N is given in terms of the shifted average

wealth, µ̄ ∶= W̄ /N̄ , by

µ = µ̄ −∆. (5.5)

Going forward, we write ∆ as a fraction of the shifted average wealth, µ̄, which is

guaranteed to be positive, ∆ = κµ̄, where κ ≥ 0 is a new parameter of the model. It
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follows that µ = (1 − κ)µ̄, and hence

∆ = λµ = κµ̄, (5.6)

where we have defined

λ ∶= κ

1 − κ
(5.7)

for convenience. While there is nothing preventing κ from exceeding one in principle,

we shall see that empirically determined values of κ tend to be small.

In similar fashion, we can compute the Lorenz-Pareto potentials, F , A, L and

B, in terms of their barred counterparts as follows:

F (w) = F̄ (w̄) (5.8)

A(w) = Ā(w̄) (5.9)

L(w) = (1 + λ)L̄(w̄) − λF̄ (w̄) (5.10)

B(w) = B̄(w̄) − κµ̄2 [L̄(w̄) − κF̄ (w̄)
2

] . (5.11)

The corresponding inverse transformations are then

F̄ (w̄) = F (w) (5.12)

Ā(w̄) = A(w) (5.13)

L̄(w̄) = (1 − κ)L(w) + κF (w) (5.14)

B̄(w̄) = B(w) + λµ2 [L(w) + λF (w)
2

] . (5.15)

Note that the transformation reduces to the identity when κ = λ = 0. For the detailed

calculation process for the above relationships, please refer to Appendix A.

5.2 Fokker-Planck equation for the AWM

With the above transformations in hand, and restoring the time dependence of P

for a moment, we wish to derive the Fokker-Planck equation for the AWM. We do
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this by supposing that the shifted wealth distribution is the result of an EYSM, so

that P̄ and its associated barred Pareto-Lorenz potentials should obey a version of

Eq. (2.29).

We begin by writing Eq. (2.25) for the AWM,

∆w̄ =
√
γ∆t min(w̄, x̄)η + χ (µ̄ − w̄)∆t. (5.16)

Note that

µ̄ − w̄ = (µ +∆) − (w +∆) = µ −w, (5.17)

so that the redistribution term is invariant under the shift.

Next, we wish to modify Eq. (2.26). Clearly w̄ − x̄ = w − x, so the numerator of

the fraction in parentheses in that equation is invariant. In the denominator, we use

W̄ /N̄ since that is guaranteed to be positive. The modified version of Eq. (2.26) for

the AWM is then

E[η] = ζ
√

∆t

γ
( w̄ − x̄

µ̄
) . (5.18)

Since Eqs. (5.16) and (5.18) are identical to Eqs. (2.25) and (2.26) but for the

presence of the bars, the equation obeyed by P̄ is

∂P̄

∂t
+ ∂

∂w̄
{χ (µ̄ − w̄) P̄

−ζ [ 2

µ̄
(B̄ − w̄

2

2
Ā) + (1 − 2L̄) w̄] P̄}

= ∂2

∂w̄2
[γ (B̄ + w̄

2

2
Ā) P̄] . (5.19)

We now insert the transformation described in Eqs. (5.2)–(5.7), and Eqs. (5.12)–

(5.15) of section 5.1 to obtain, after some calculation, the Fokker-Planck equation

for the AWM,

∂P

∂t
+ ∂

∂w
{(χ − κζ) (µ −w)P − (1 − κ)ζ [ 2

µ
(B − w

2

2
A) + (1 − 2L)w]P}

= ∂2

∂w2
{γ [(B + w

2

2
A) + λµ (µL +Aw) + λ

2µ2

2
]P} .
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(5.20)

where w ∈ [−λµ,∞).

The equation for the steady-state agent density function can be derived by setting

∂P
∂t = 0 and integrating once with respect to w to obtain

d

dw
{γ [(B + w

2

2
A) + λµ (µL +Aw) + λ

2µ2

2
]P}

= (χ − κζ) (µ −w)P − (1 − κ)ζ [ 2

µ
(B − w

2

2
A) + (1 − 2L)w]P,

(5.21)

again for w ∈ [−λµ,∞). For a detailed calculation, please see Appendix A.

Eqs. (5.20) and (5.21) are one-parameter deformations of Eqs. (2.29) and (2.37),

respectively. The former reduce to the latter when κ (and hence λ = κ
1−κ) is set to

zero. Though the deformed equations appear more complicated, they have the same

basic structure – namely a transaction term, a redistribution term and a WAA term.

Furthermore, the WAA term and the redistribution term of Eqs. (5.20) and

(5.21) are of the exact same form as Eqs. (2.29) and (2.37), but with two interesting

changes: First, the WAA coefficient is scaled by 1 − κ; Second, the redistribution

rate χ is effectively reduced by κζ.

For the first observation, we need κ < 1 to keep the scaled WAA coefficient

positive. From Eq. (5.6), this is also equivalent to having a positive mean wealth

µ. As will be shown later in Subsections 6.4 and 6.5, empirical fittings suggest

that reasonable values of κ are all far less than 1. The effect of a negative WAA

coefficient on the solution to the differential equation is a mathematical question out

of the scope of this thesis.

For the second observation, we need χ > κζ to keep the reduced redistribution

coefficient positive. As will be shown in Eq. (5.33), given that κ < 1, this is also

equivalent to the Lorenz curve hitting the right boundary at a positive value. In

other words, the wealth held by the non-oligarchical population must be positive.

Again, empirical evidence shows that this inequality is always satisfied by a large
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margin in reality, and we leave the case when it breaks down as a mathematical

question for future study. Our current intuition is that this may cause an instability

or even nonexistence of solutions to the differential equation.

5.3 Lorenz curve and duality for the AWM

For the convenience of our discussion, we shall briefly review the model symmetries

and duality while giving them new expression in this context. We write the Lorenz

curve as

L(F) ∶= L(F−1(F)) (5.22)

for F ∈ [0,1]. The definitions of F and L are given by Eqs.(4.17) and (2.33).

Let P (w;χ, ζ;W,N) denote the solution to Eq. (2.37) for redistribution coefficient

χ, WAA coefficient ζ, total number of agentsN , and total amount of wealthW . Then

Eq. (2.40) can be rewritten as

P (w;χ, ζ;N,W ) = N

W /N
P ( w

W /N
;χ, ζ; 1,1) . (5.23)

Now, let

Lsup
⟨χ,ζ⟩(F) ∶= L(F−1(F ;χ, ζ);χ, ζ) (5.24)

denote a supercritical Lorenz curve function with redistribution coefficient χ and

WAA coefficient ζ > χ. It follows that swapping χ and ζ will result in a subcritical

Lorenz curve function Lsub
⟨χ,ζ⟩(F). Then the duality in terms of the Lorenz curve can

be written

Lsup
⟨χ,ζ⟩(F) = χ

ζ
Lsub

⟨ζ,χ⟩(F), (5.25)

for F ∈ [0,1), still assuming that ζ > χ.

To better understand the nature of the shift invariance, denote solutions to

Eq. (5.21) by P (w;χ, ζ, κ;W,N) for w ∈ [−λµ,∞). From the construction of Eq. (5.21),

it is clear that the shifted density function P̄ , obeys the Fokker-Planck equation for
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the EYSM, Eq. (5.19), which is the same as that for the AWM when κ = 0. It follows

that we have the new symmetry

P (w;χ, ζ, κ;W,N) = P (w + λµ;χ, ζ,0; (1 + λ)W,N), (5.26)

and so it is possible to solve the steady-state Fokker-Planck equation for the AWM

by solving the much simpler version for the EYSM and shifting the result.

The above observation gives us a complete strategy for solving for the agent den-

sity function for the AWM. When asked to find P (w;χ, ζ, κ;W,N) for w ∈ [−λµ,∞):

1. Use Eq. (5.26) to transform it to a problem for which κ = 0 and w ∈ [0,∞).

2. If ζ > χ so that the problem is supercritical, use Eq. (5.25) to transform it to

a subcritical one.

3. Finally, use Eq. (2.40) to transform the problem to one in so-called canonical

form, for which N =W = 1.

Hence, the only numerical solutions needed for solving the AWM are subcritical,

canonical-form solutions for the EYSM.

We can go one step further and directly relate the Lorenz curves of the three

stages of the above strategy. We first consider the subcritical case, for which Step 2

is unnecessary. Moreover, we suppose that we start in canonical form, so that Step

3 is unnecessary. We again denote the Lorenz curve of the subcritical AWM with

redistribution coefficient χ and WAA coefficient ζ < χ by Lsub
⟨χ,ζ⟩(F) = L(F −1(F)),

and that of the corresponding EYSM solution by L̄sub
⟨χ,ζ⟩(F) = L̄(F̄−1(F)). Then,

using Eqs. (5.8) and (5.10), we have

Lsub
⟨χ,ζ⟩(F) = L(F −1(F))

= L(F̄ −1(F))

= (1 + λ)L̄(F̄−1(F)) − λF̄ (F̄−1(F)),
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or

Lsub
⟨χ,ζ⟩(F) = (1 + λ)Lsub

⟨χ,ζ⟩(F) − λF , (5.27)

which directly relates the Lorenz curve of the subcritical AWM to that of the corre-

sponding EYSM. Note that

Lsub
⟨χ,ζ⟩(0) = (1 + λ)0 − λ0 = 0 (5.28)

and

Lsub
⟨χ,ζ⟩(1) = (1 + λ)1 − λ1 = 1, (5.29)

as expected.

We next consider the supercritical case in which ζ > χ, again using the canonical

form so that Step 3 is unnecessary. A line of reasoning similar to that used above

yields

Lsup
⟨χ,ζ⟩(F) = (1 + λ)Lsup

⟨χ,ζ⟩(F) − λF . (5.30)

We can now use Eq. (5.25) to rewrite this as

Lsup
⟨χ,ζ⟩(F) = (1 + λ)χ

ζ
Lsub

⟨ζ,χ⟩(F) − λF , (5.31)

It still follows that

Lsup
⟨χ,ζ⟩(0) = 0, (5.32)

but now we have

Lsup
⟨χ,ζ⟩(1) = (1 + λ)χ

ζ
− λ (5.33)

for the fraction of wealth held by the non-oligarchical part of the population, and

1 −Lsup
⟨χ,ζ⟩(1) = (1 + λ) (1 − χ

ζ
) (5.34)

for the fraction of wealth held by the oligarchy.

Notice that, given κ < 1, Lsup
⟨χ,ζ⟩(1) > 0 is equivalent to χ > κζ, and this is the
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condition we discussed in a different context in Subsection 5.2.

Using the methodology described in this subsection, we can plot the Lorenz curve

for the AWM for any given parameter triplet ⟨χ, ζ, κ⟩ by applying transformations

to Lorenz curves for subcritical solutions of the EYSM. This observation enormously

facilitated obtaining the fitting results presented later in this thesis. Examples of

subcritical and supercritical Lorenz curves for the AWM with negative-wealth agents

are presented in Figs. 5.1a and 5.1b.

A key difference between Figure 5.1 and Figure 4.2 is that, because we now allow

agents with negative wealth, the Lorenz curve can go below zero. Therefore, it is

necessary to modify the geometric definition of the Gini coefficient G as the ratio

between certain shaded areas, as shown in Figure 5.1. The mathematical definition

of G as described in Eq. (4.19) and Eq. (4.20), however, remains unchanged. That

means we can always use these two equations to calculate G, whether there are

agents with negative wealth or not. In particular, G is no longer bounded above by

one. In extreme cases, G could be greater than one.
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(a) Lorenz Curve for AWM subcritical state with negative wealth
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(b) Lorenz Curve for AWM supercritical state with negative wealth

Figure 5.1: In the subcritical case with negative wealth, the Lorenz curve dips below
zero but terminates at point (1,1). The Gini coefficient is defined to be G = A

A+B ,
where A and B are the areas of the shaded regions. With our AWM and in empirical
wealth distributions, the Lorenz curve can: (i), go negative due to the existence of
agents with negative total wealth; (ii), hit the right boundary somewhere below point
(1,1) due to the existence of oligarchy. The Gini coefficient in this case is defined to
be G = A−C

A+B−C , where A, B and C are the areas of the shaded regions.
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Chapter 6

Empirical Results

6.1 Description of data used

The data we used for the U.S. wealth distribution was taken from the U.S. Survey of

Consumer Finances (SCF) conducted by the Federal Reserve Board in cooperation

with the U.S. Department of the Treasury [9]. It is a triennial cross-sectional survey

of U.S. families, which includes information on families’ balance sheets, pensions,

income, and other demographic characteristics.

Among the data fields collected for the households surveyed in the SCF is one

called networth, which represents the total wealth of a household ∗ Because networth

is calculated as the difference between assets and liabilities, its value can be negative.

Indeed, as noted earlier, about 10.9% of the U.S. population has negative net wealth,

and so the Lorenz curve for the U.S. actually does dip below zero, as described in

Section 5.3.

In the remainder of this section, we will compare several different models with

empirical data from the SCF. Of these models, only the AWM is capable of producing

a Lorenz curve with negative values. For the other models considered, there will

necessarily be a significant error at low wealth, where the Lorenz curve of the model

is positive, but that of the data is negative.

For reasons of confidentiality, the published SCF data intentionally excluded

people listed on the so-called “Forbes 400” list of the wealthiest people in the U.S. [30].

Because this group of people, though small in number, are so wealthy as to have a

nonnegligible impact of the overall distribution especially in the upper tail, we felt

it important to add them back into the SCF data. Fortunately, the journal Forbes
∗Technically, networth is not contained in the original microdata of the SCF. Users of SCF data

must calculate it themselves by summing over a number of other financial variables that are among
the microdata. In fact, an example explaining how to do exactly this is provided with the SCF
data [9], and we followed this example closely when preparing the data for this study.
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publishes this list of people on an annual basis, including an estimate of their net

wealth, so we simply merged the Forbes 400 dataset with the SCF dataset and used

their union to conduct our analyses. We checked the resulting dataset by using

Eq. (4.19) and Eq. (4.20) to calculate the wealth Gini coefficient, and comparing

that to published values; for example, for the 2013 SCF data, we calculated a Gini

coefficient of 85.5%, which is very close to that which was reported (85.1%) in the

“Global Wealth Databook,” published by Credit Suisse in 2013 [46].

The empirical wealth distribution obtained in the manner described above is

discretized by groups of households. The jth such group is represented as having

net wealth wj , and weight pj . The weights pj are presumably proportional to the

number of households in each group, and are normalized over the population so that

∑j pj = 1. The density function of the wealth can therefore be written as a sum of

weighted Dirac delta distributions,

P (w) =
N

∑
j=1

pjδ(w −wj). (6.1)

It is clear that N = ∫ dw P (w) = ∑j pj = 1, and W = ∫ dw P (w)w = ∑j pjwj . The

wj can all be uniformly scaled so that this last quantity is also equal to one, so that

the empirical data is in canonical form, with N =W = 1.

To plot the Lorenz ordinates, we need to compute the cumulative sum of the

population with wealth less than w and their corresponding cumulative wealth. This

is equivalent to plotting the points (fj , `j), where

fj ∶= ∑
i ∶wi≤wj

pi (6.2)

and

`j ∶= ∑
i ∶wi≤wj

piwi. (6.3)

The empirical Lorenz curve to which we compare our models in this section is a linear

interpolation of the Lorenz ordinates (fj , `j), described above. Since SCF data is
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very fine, including tens of thousands of households, the interpolation appears as a

smooth curve, as does the numerical solution to our theoretical model.

6.2 Fitting method

The fitting was done by minimizing the L1 norm of the difference between the em-

pirical Lorenz curve and the theoretical Lorenz curve obtained by numerical solution

of our models. Consistent with notation we have already adopted above, if a model’s

parameters are the components of a parameter vector θ, we shall write Lθ(F) for the

theoretical (model) Lorenz curve corresponding to that parameter vector. If we then

write L(F) for the empirical Lorenz curve, our fitting methodology can be described

mathematically as

θoptimal = arg min
θ

J(θ), (6.4)

where we have defined the discrepancy

J(θ) ∶= ∫
1

0
df ∣L(F) −Lθ(F)∣ (6.5)

The choice of the L1 norm here is inspired by the definition of Gini coefficient; just

as the Gini coefficient is twice the area between the Lorenz curve and the diagonal,

the discrepancy is equal to the area between the theoretical and empirical Lorenz

curves.

The parameter vector θ will have different dimensions for different models. In

what follows, we shall consider models with between one and three parameters, so

the dimension of θ ranges from one to three. These models are described in detail

in Section 6.3. In all cases, there are no guarantees for the concavity of J(θ) and

therefore we employ a global numerical search for the optimal parameter(s).

For some of the results presented in Section 6.5, the model and empirical Lorenz

curves are so close that it is difficult to distinguish them graphically. For this reason,

we display the local error between the two curves, plotted versus F , in an inset to
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each of the figures presented. Since the slope of the Lorenz curve ranges from zero

(or slightly less) to infinity, defining the local error as the vertical distance between

the two curves would be misleading. Instead, we define the local error as the length

of a line segment connecting the empirical data point (fj , `j) to the model Lorenz

curve, constructed so as to be perpendicular to the latter, as shown in Fig. 6.1. If

there is more than one such line segment, the length of the shortest is used. In other

words, the local error is the shortest distance from the empirical data point to the

model Lorenz curve.

For model Lorenz curves in the supercritical regime, when L is greater than the

fraction of wealth held by the non-oligarchical population and less than one, the

solution will coincide with the boundary F = 1. A line segment perpendicular to

this part of the model Lorenz curve is, therefore, horizontal, so the local error is the

horizontal distance from the point (fj , `j) to the vertical boundary F = 1, i.e., it is

equal to ∣fj − 1∣. This is also shown in Fig. 6.1.

F

L

Fitting to Lorenz curve

(f
i
, l

i
)

(F
i
, L

i
)

(f
j
, l

j
) (1, L

j
)

Figure 6.1: Geometry of computing the local errors for the data points (fi, `i) and
(fj , `j) to the fitting curve L(F). For (fi, `i), we compute its perpendicular distance
to the point (f,Lθ(F)), which is the closest point on Lθ(F). While for (fj , `j), we
compute its horizontal distance to the boundary F = 1.
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6.3 Description of models used

6.3.1 Single-agent model

As a baseline for our comparisons, we use a linear model similar to one employed in

earlier work by a number of authors. (See, e.g., [8]). Instead of randomly selecting

pairs of agents to engage in binary transactions, the model selects single agents

to engage in unary transactions. For this reason, we henceforth refer to it as the

Single-Agent Model (SAM). In a transaction, an agent with wealth w has even odds

of winning or losing a fraction
√
γ∆t of his/her own wealth. If we again employ a

redistribution term of Ornstein-Uhlenbeck form, as in Eq. (2.21), the analog of that

equation is

∆w =
√
γ∆t wη + χ(W

N
−w)∆t. (6.6)

where E[η] = 0 and E[η2] = 1. This statistical process obviously conserves the total

number of agents, but it conserves wealth only in a mean sense. The easily derived

linear Fokker-Planck equation corresponding to this model,

∂P (w, t)
∂t

= − ∂

∂w
[χ(W

N
−w)P (w, t)]

+ ∂2

∂w2
[γw

2

2
P (w, t)] , (6.7)

however, conserves bothN andW . In the same spirit as our derivations of Eqs. (2.37)

and (5.21), we see that the steady-state solutions of Eq. (6.7) are described by

d

dw
[w

2

2
P (w)] = χ(W

N
−w)P (w), (6.8)

which can be solved analytically. If the constant of integration is chosen to satisfy

the normalization requirement of Eq. (2.1), and if we adopt transactional units by

taking γ = 1 as before, the result for the agent density function is

P (w) = N

µ

(2χ)2χ

Γ(2χ)
(µ
w

)
2χ+2

e−2χ µ
w , (6.9)
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where µ ∶=W /N is the mean wealth. Notice that near w = 0 this solution for P (w)

is very flat and depleted, while for w very large, it is asymptotically a power-law

consistent with the observations of Pareto.

From Eq. (6.9), it is straightforward to calculate

F (w) = Q(2χ + 1,
2χµ

w
) (6.10)

and

L(w) = Q(2χ,
2χµ

w
) , (6.11)

where Q ∶= Γ(a,z)
Γ(a) is the regularized upper incomplete gamma function. The inverse

of this function is typically denoted by Q−1(a, z), so that Q(a,Q−1(a, z)) = z, in

terms of which the one-parameter Lorenz curve function is

LSAM
⟨χ⟩ (F) = Q (2χ,Q−1 (2χ + 1, f)) (6.12)

Note that the parameter vector for this model, θ = ⟨χ⟩, is one-dimensional since the

Lorenz curve depends only on the redistribution coeffiient χ.

6.3.2 EYSM with redistribution

The second model that we consider is the EYSM as described in Section 2.2, with

redistribution coefficient χ, but without WAA so ζ = 0. Again, the parameter vec-

tor is one-dimensional, and we denote the functional form of the Lorenz curve by

LEYSM
⟨χ⟩ (F).

6.3.3 EYSM with redistribution and WAA

The third model that we consider is the EYSM as described in Section 2.3, but this

time with both redistribution coefficient χ, and WAA coefficient ζ. The parameter

vector is therefore two-dimensional, and we denote the functional form of the Lorenz

curve by LEYSM
⟨χ,ζ⟩ (F).
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6.3.4 AWM

The fourth model that we consider is the AWM as described in Chapter 5. The

parameter vector for that model is three-dimensional, θ = ⟨χ, ζ, κ⟩, and from the

discussion in Section 5.3, we know that we can write

LAWM
⟨χ,ζ,κ⟩(F) = (1 + λ)LEYSM

χ,ζ (F) − λf, (6.13)

where it should be recalled that λ is given by Eq. (5.7).

Now a global search in a three-dimensional parameter space would be compu-

tationally expensive. Notice, however, that if we were using the L2 norm to define

the discrepancy instead of the L1 norm, and if χ and ζ were held fixed, the optimal

value of λ would be given by

λL2
opt =

∫
1

0 df [LEYSM
⟨χ,ζ⟩ (F) − `(F)] [f −LEYSM

⟨χ,ζ⟩ (F)]

∫
1

0 df [f −LEYSM
⟨χ,ζ⟩ (F)]

2
,

(6.14)

where `(F) is the empirical Lorenz curve. From this we could compute

κL2
opt =

λL2
opt

1 + λL2
opt
. (6.15)

In our numerical simulations, we used κL2
opt as the initial guess in a line search for the

true optimal value κL1
opt, obtained by minimizing the L1 norm of the discrepancy.

In the above-described fashion, a three-dimensional optimization problem is re-

duced to a two-dimensional one in ⟨χ, ζ⟩ – albeit with a quick line search at each

point, for which we have an excellent initial guess. We have found this method to

work reliably and significantly reduce the computational work involved.
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6.4 Comparison of models

In this subsection, we apply the fitting technique of Section 6.2 to all four models

described in Section 6.3. For this purpose, we use the 2013 SCF data, including the

Forbes 400, as described in Section 6.1. All the fitting results are shown in Fig. (6.2),

and all the optimal parameters found as well as the comparisons between the fitting

Ginis and the empirical Ginis are summarized in Table.(6.1)

Fig. (6.2a) shows a fitting to the SCF data for the baseline SAM model. Although

the Gini coefficient of the fitting curve is close to the empirical Gini, the discrepancy

between the two curves clearly leaves something to be desired. The fit suggests that

the SAM is unable to capture the behavior of the actual Lorenz curve both in the

lower-wealth region and in the upper tail. It seriously overestimates the Lorenz curve

in the lower-wealth region, far beyond what can be explained by that fact that it

does not allow for negative wealth. Moreover, the SAM’s asymptotically power-law

tail is seen to badly underestimate the empirical upper tail. The local error incurred,

plotted in the inset, has an average in the vicinity of 2%.

Fig. (6.2b) shows the fitting to the SCF data for the EYSM with redistribution

only, as described in Section 2.2. This is the simplest nonlinear, binary-transaction

model that we considered that yields a stable distribution. Even though there is

only a single parameter in this model, namely the redistribution χ, just as there was

in the SAM, the extent to which the fit has improved throughout the entire range of

f is remarkable. This suggests that nonlinear models with binary transactions have

large advantages over linear models. Once again, the largest local error occurs in the

low-wealth region, but this time it may well be due to the fact that the model does

not allow for negative wealth.

Fig. (6.2c) shows the fit to the 2013 SCF data for the EYSM with both redistri-

bution and WAA, as described in Section 2.3. Recall that this model is capable of

wealth condensation. The result clearly demonstrates that the best fit to the data

lies in the supercritical regime, suggesting that the U.S. wealth distribution at that
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(d) Affine Wealth Model

Figure 6.2: Fits of four different models to the empirical Lorenz Curve for the 2013
U.S. Survey of Consumer Finances data, with the addition of the Forbes 400. For
each fit, we searched for the optimal parameter vector that minimizes the L1 norm
between the empirical and model Lorenz curves. The local error plotted in the inset
was computed as described in Section 6.2. The four fits demonstrate increasing
improvement in their ability to fit empirical data, in the order of their presentation.
The fit for the AWM, introduced in chapter 5, is for superior to the other three
models in its ability to capture the characteristics of the wealth distribution both in
the lower-wealth region (including negative wealth) as well as in the the upper tail.
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Models χopt ζopt κopt Fitting
Gini

Empirical
Gini

Single Agent Model 0.0066 - - 83.29%

85.50%EYSM w/ redist. 0.016 - - 83.85%
EYSM w/ redist. &
WAA

0.022 0.024 - 83.76%

Affine Wealth Model 0.046 0.064 0.076 85.59%

Table 6.1: Optimal values of the parameters and fitted Ginis found for each model
in Fig. 6.2

time was oligarchical, with 8.33% of the total wealth of the country held by a van-

ishingly small number of agents. Note that the upper tail of the fit is significantly

improved, as compared to the two previous fits. Still, the EYSM does not allow

for negative wealth, and hence there is still a large discrepancy in the lower-wealth

region.

Finally, Fig. (6.2d) shows the fitting to the 2013 SCF data for the AWM. Even a

glance at the figure is sufficient to tell that the AWM is better than any of the other

three models considered. Of course, it has more parameters than the others, but

three parameters does not seem like a high price to pay for this kind of faithfulness

to empirical data. Because the AWM allows for negative wealth, it is able to capture

what is happening in the low-wealth region of the Lorenz curve, yet without losing its

accuracy in the upper tail. The model and empirical curves lie nearly on top of one

another, the discrepancy is reduced by nearly an order of magnitude compared with

the other fits, and the average local error is reduced to about only one tenth percent.

In summary, we feel that the AWM has provided a reasonable way to extend the

EYSM to the negative wealth regime, enabling very accurate quantitative modeling

of empirical wealth distribution data.

6.5 Results for the SCF from 1989 to 2016

Having established the superiority of the AWM over the other three models consid-

ered in Section 6.4, we henceforth restrict our attention to the AWM and examine

empirical data from the SCF over the course of time. The SCF has been conducted
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Years χopt ζopt κopt Fitting
Gini

Empirical
Gini

fraction of wealth
held by oligarch

1989 0.088 0.112 0.092 79.17% 78.96% 23.60%
1992 0.102 0.134 0.100 78.72% 78.59% 26.53%
1995 0.104 0.146 0.096 79.27% 79.06% 31.82%
1998 0.096 0.134 0.098 80.20% 79.99% 31.44%
2001 0.074 0.100 0.080 80.86% 80.54% 28.26%
2004 0.070 0.092 0.080 81.07% 80.92% 25.99%
2007 0.070 0.100 0.076 81.81% 81.61% 32.47%
2010 0.046 0.058 0.076 84.59% 84.56% 22.39%
2013 0.048 0.066 0.078 85.24% 85.05% 29.58%
2016 0.036 0.050 0.058 86.18% 85.94% 29.72%

Table 6.2: Optimal values of the parameters and fitted Ginis found for each year in
Fig. 6.3

in three years intervals, from 1989 to 2016, so there are ten plots in total. For each

of these ten datasets, we solved the “inverse problem” of finding the AWM param-

eter vector θ = ⟨χ, ζ, κ⟩ that minimizes the L1 norm of the difference between the

empirical and model Lorenz curves.

The results of the fits are shown in Fig. 6.3, and all the optimal parameters

found as well as comparisons between the fitting Ginis and the empirical Ginis are

summarized in Table (6.2). For each year considered, we report the best fittings

as well as the optimal parameters. The plots indicate that the AWM fits to the

empirical data remarkably well. For all the three-parameter fits, the empirical and

model Lorenz curves are nearly indistinguishable, and average local errors are in the

vicinity of 0.15%. One key observation is that all fits fall into the supercritical regime

with χ < ζ. Therefore the Lorenz curves computed from the numerical solutions all

hit the right-hand boundary at ((1+λ)χ/ζ −λ,1), as described in Eq.( 5.33), instead

of at (1,1). The horizontal dotted lines indicate where the Lorenz curves hit the

right-hand boundary, and the model Lorenz curve is a vertical line above this point.

This strongly suggests that the U.S. wealth distribution has been in a state of partial

wealth condensation – or partial oligarchy – for all the years of the SCF. The fraction

of the total societal wealth held by the oligarchy is (1 + λ) (1 − χ/ζ), by Eq. (5.34).

From the plots, we can see that, this fraction is in the vicinity of 20% to 30%.



80

0 0.2 0.4 0.6 0.8 1

Cummulative population (F)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

m
u
la

ti
v
e
 w

e
a
lt
h
 (

L
)

Fitting Curve

SCF1989

0 0.5 1

F

0

0.005

0.01
L
o
c
a
l 
E

rr
o
r

Average Local Error: 0.16%

(a) Lorenz Curve Fit of SCF1989

0 0.2 0.4 0.6 0.8 1

Cummulative population (F)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

m
u
la

ti
v
e
 w

e
a
lt
h
 (

L
)

Fitting Curve

SCF1992

0 0.5 1

F

0

0.005

0.01

L
o
c
a
l 
E

rr
o
r

Average Local Error: 0.15%

(b) Lorenz Curve Fit of SCF1992



81

0 0.2 0.4 0.6 0.8 1

Cummulative population (F)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

m
u
la

ti
v
e
 w

e
a
lt
h
 (

L
)

Fitting Curve

SCF1995

0 0.5 1

F

0

0.005

0.01
L
o
c
a
l 
E

rr
o
r

Average Local Error: 0.14%

(c) Lorenz Curve Fit of SCF1995
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Figure 6.3: Optimal fits of the AWM to SCF data from 1989 to 2016. For each year,
we determined the parameter triplet ⟨χ, ζ, κ⟩ that minimizes the L1 norm of the difference
between the empirical and model Lorenz curves. Our results demonstrate that the AWM fits
the empirical data remarkably well for all ten datasets. All the fits are in the supercritical
regime, which strongly suggests that U.S. wealth distribution is partially wealth-condensed;
i.e., a finite fraction of the total wealth of the society is held by an infinitesimal fraction
of the agents. This fraction can be estimated by Eq. (5.34), which was consistently in the
vicinity of 30% for all the years of the study.
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The ten Lorenz curves from the different years appear very similar to one another,

but the fitting parameters have varied from year to year. Since each AWM fitting

curve is entirely determined by the three model parameters, we can study the trend

of the U.S. wealth distribution over time by plotting these optimal values of the

parameters versus time.

It should be kept in mind that all of our fits are to steady-state Lorenz curves

of the AWM. In plotting the AWM fitting parameters versus time, we are therefore

supposing that their time variation is adiabatic in nature; in other words, we suppose

that the variation of the fitting parameters is too slow to induce the ∂P
∂t term in the

Fokker-Planck equation to make any significant contribution.

In Fig. (6.4a), we plot the optimal values of the three parameters ⟨χ, ζ, κ⟩ of the

AWM, corresponding to the ten Lorenz curves plotted in Fig. (6.3) as a functions

of time. As mentioned earlier, we can confirm that χ < ζ throughout this entire

period, so the U.S. wealth distribution was oligarchical during the entire 27-year

period of the study. It should be pointed out that by “oligarchical” here, we mean

a very precise thing: In the space of all valid (classical and distributional) solutions

to our Fokker-Planck equation, Eq. (5.20), those solutions closest to the SCF data

(in the sense that the L1 norm of the discrepancy is smallest) are all distributional

solutions exhibiting wealth condensation, i.e., for which limf→1− L(F) < 1. This

gives a mathematically precise definition of the phenomenon of oligarchy.

A second feature we can observe from Fig. (6.4a) is that κ is much less variable

than either χ or ζ. Hence the ratio of the lower extreme of the negative-wealth region

to the average wealth is relatively constant over the years.

A third feature that is evident from the plot of the parameters versus time is

that there seems to be a correlation between χ and ζ. This may be because these

two parameters are, at least to some extent, redundant in their effect on the agent

density function. Increasing WAA is similar (though certainly not identical) in effect

to decreasing redistribution. Hence, an increase in ζ can be mitigated to some extent

by a simultaneous increase in χ. It is therefore perhaps not surprising that the ratio

of these two parameters, χ/ζ, is more robust than either one individually. Since both
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χ/ζ and κ are reasonably constant, from Eq. (5.34) one would expect the oligarchy

wealth fraction to be likewise, and this is verified by the lowest curve in Fig. (6.4b),

which indicates an oligarchy wealth fraction of between 20% and 30% over the course

of the study.

The upper curves in Fig. (6.4b) are plots of the empirical and model Gini co-

efficients. It is unsurprising that these two curves are nearly identical, given the

accuracy of our Lorenz curve fits. Over the 27-year time period of the study, the

Gini coefficient has increased from 79% to 86%. This is consistent with figures

published by leading economic institutes [13,46].

6.6 Conclusions and Future Work

The AWM, described in this work, provides a new model of wealth distribution that

is able to describe empirical data with unprecedented accuracy. Because the model’s

parameters are related to specific features of its agent-level description, the trends of

these parameters in time, as shown for example in Fig. (6.4), enable us to glimpse un-

derlying mechanisms for wealth distribution evolution. The AWM thereby, at least

to some extent, bridges the gap between microeconomics and macroeconomics. The

economic turbulence of 2008, for example, is clearly reflected in a sharp downward

movement of the agent-level parameters χ and ζ, accompanied by a pronounced

upward movement in the Gini coefficient – the latter arguably being a macroeco-

nomic indicator. For all of the above reasons, we feel that the approach shows

great promise, though we acknowledge that a precise relationship between the AWM

model parameters and more conventional economic indicators will probably require

the involvement of economists, political scientists and public policy specialists to

sort out.

Another observation that warrants future study is the nature of the tail of the

agent density function, P (w). It has been demonstrated that the non-oligarchical

part of the EYSM agent density function for positive χ and nonnegative ζ has a

gaussian tail [5, 11]. This seems at least somewhat at odds with – if not in outright
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(a) Trend for the three parameters ⟨χ, ζ, κ⟩ in the AWM from 1989 to
2016
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Year

0

0.2
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0.6

0.8

1
Fitted Gini Coeff.

Empirical Gini Coeff.

Wealth held by oligarch

(b) Trend for the Gini coefficient (theoretical and empirical) and the frac-
tion of the total wealth condensed to the oligarchy. from 1989 to 2016

Figure 6.4: Since the fitting curves are completely determined by the three parameters
of the AWM, the change in wealth distribution over time can be summarized by plotting
optimal values of these parameters found as a function of time, under the assumption that
they change adiabatically. Our plots demonstrate a correlation between the redistribution
parameter χ and the WAA parameter ζ. The affine transformation coefficient κ is less
variable than the other two parameters which suggests that the ratio of the lower extreme
of the negative-wealth region to the average wealth is relatively stable over the years. The
Gini coefficient of the model data is also very close to that of the empirical data. The
fraction of the wealth held by the oligarch can be computed by Eq. (5.34), and it is shown
that this ratio is relatively stable within the range of 20% to 30%.
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contradiction to – the conventionally held belief, dating back to Pareto [43], that

wealth distributions have power-law tails. We feel that there are a number of good

reasons to question this conventional belief. First, while there seems to be solid

empirical evidence for a power-law tail for income distributions [15, 49], much less

work has been done for wealth distributions, perhaps owing to the relative paucity of

available data †. Second, while the tail of EYSM distributions is always gaussian, the

midrange in the limit of small χ has been shown (albeit only for the case ζ = 0) to be

nearly power-law in nature [11]. Since our fitted values of χ are in the vicinity of 4%

to 10%, this suggests that it is probably very easy to confuse empirical and EYSM

distributions with power laws, especially if most of one’s data is in the midrange

– as is obviously always the case. Third, we have shown that it is mathematically

important to separate the oligarchy, which is best described by distribution theory

or by nonstandard analysis in the continuum limit [6], from the tail of the classical

part of the agent density function, since conflating these will make the the tail seem

longer than it really is. This requires delicate numerical analysis which no prior

work would have had the motivation to adopt. Because the accuracy of our fits in

Fig. 6.3 speak for themselves, we believe that it is time to take a fresh look at the

actual empirical evidence underlying the long-held belief in power-law tails of wealth

distributions.

There is plenty of room for future work in this area. As mentioned earlier, our

fits of the empirical data were made to steady-state solutions of the Fokker-Planck

equation for the AWM, Eq. (5.21). Yet the optimal model parameters ⟨χ, ζ, κ⟩ found

and plotted in Fig. 6.4 are changing in time. This is no doubt because levels of re-

distribution, WAA and extreme poverty, respectively, change in time due to public

policy and political decisions. Our approach is nonetheless valid under the assump-

tion that the changes in these parameters are slow enough to be adiabatic in nature

– i.e., not rapid enough for the time derivative, ∂P
∂t , to become appreciable. Still,

†As of this writing, only about twenty countries in the world directly collect wealth data on
their household surveys.
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future work might focus on taking the time evolution into account. For this pur-

pose, a more sophisticated fit would be necessary, including time as an independent

variable, and fitting to a parameter vector that is a function of time, probably with

some smoothness conditions. This would be a much more difficult fit, and we leave

it to future work.
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Appendix A

Derivation of the Affine Wealth Model

Recall the EYSM with redistribution and WAA as described in Section 2.3, and its

Fokker-Planck equation given by Eq. (2.29). In this section, we denote the solution

to Eq. (2.29) as P̄ (w̄, t), while the total number of agents, the total wealth and the

Pareto potentials associated with P̄ (w̄, t) are denoted as N̄ , W̄ , F̄ (w̄, t), Ā(w̄, t),

B̄(w̄, t) and L̄(w̄, t), respectively. Correspondingly, we denote the distribution func-

tion for the newly introduced AWM by P (w, t) and its associated quantities by N ,

W , F (w, t), A(w, t), B(w, t) and L(w, t).

The Affine Wealth Model is obtained by shifting the EYSM with redistribution

and WAA horizontally by the amount −κµ̄, where we have defined the mean wealth

µ̄ to be

µ̄ = W̄
N̄
. (A.1)

Therefore, we have the following transformation between the two independent vari-

ables w and w̄

w = w̄ − κµ̄, (A.2)

It is obvious that w ∈ [−κµ̄,∞) while w̄ ∈ [0,∞). We also have the following rela-

tionship between the two distribution functions

P (w, t) = P̄ (w + κµ̄, t) = P̄ (w̄, t) (A.3)

For convenience, we also defined a new parameter

λ = κ

1 − κ
. (A.4)
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To obtain the Fokker-Planck equation for the AWM, we need to be able to write

each barred quantity in terms of the quantities without bars. We use the variable

transformation described in Eq. (A.2),

x = x̄ − κµ̄. (A.5)

We carry out the following calculations for each quantity without bars. For N

N = ∫
∞

−κµ̄
P (w, t)dw

= ∫
∞

0
P̄ (w̄, t)dw̄

= N̄ . (A.6)

For W

W = ∫
∞

−κµ̄
wP (w, t)dw

= ∫
∞

0
(w̄ − κµ̄) P̄ (w̄, t)dw̄

= ∫
∞

0
w̄P̄ (w̄, t)dw̄ − κµ̄∫

∞

0
P̄ (w̄, t)dw

= W̄ − κW̄
N̄
N̄

= (1 − κ)W̄ . (A.7)

For F (w, t)

F (w, t) = 1

N
∫

w

−κµ̄
P (x, t)dx

= 1

N̄
∫

w̄

0
P̄ (x̄, t)dx̄

= F̄ (w, t). (A.8)

For A(w, t)

A(w, t) = 1 − F (w, t) = 1 − F̄ (w̄, t)

= Ā(w̄, t). (A.9)
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For B(w, t)

B(w, t) = 1

N
∫

w

−κµ̄

x2

2
P (x, t)dx

= 1

N̄
∫

w̄

0

(x̄ − κµ̄)2

2
P̄ (x̄, t)dx̄

= 1

N̄
{∫

w̄

0

x̄2

2
P̄ (x̄, t)dx̄ − κµ̄∫

w̄

0
x̄P̄ (x̄, t)dx̄ + κ

2µ̄2

2
∫

w̄

0
P̄ (x̄, t)dx̄}

= 1

N̄
∫

w̄

0

x̄2

2
P̄ (x̄, t)dx̄ − κµ̄2 1

W̄
∫

w̄

0
x̄P̄ (x̄, t)dx̄ + κ

2µ̄2

2

1

N̄
∫

w̄

0
P̄ (x̄, t)dx̄

= B̄(w̄, t) − κµ̄2L̄(w̄, t) + κ
2µ̄2

2
F̄ (w̄, t). (A.10)

For L(w, t)

L(w, t) = 1

W
∫

w

−κµ̄
xP (x, t)dx

= 1

(1 − κ)W̄ ∫
w̄

0
(x̄ − κµ̄) P̄ (x̄, t)dx̄

= 1

1 − κ
1

W̄
∫

w̄

0
x̄P̄ (x̄, t)dx̄ − κ

1 − κ
1

N̄
∫

w̄

0
P̄ (x̄, t)dx̄

= 1

1 − κ
L̄(w̄, t) − κ

1 − κ
F̄ (w̄, t)

= (1 + λ)L̄(w̄, t) − λF̄ (w̄, t). (A.11)

We can reverse the relationships to obtain

N̄ = N (A.12)

W̄ = W

1 − κ
(A.13)

F̄ (w̄, t) = F (w, t) (A.14)

Ā(w̄, t) = A(w, t) (A.15)

L̄(w̄, t) = (1 − κ)L(w, t) + κF (w, t) (A.16)

B̄(w̄, t) = B(w, t) + λµ2L(w, t) + λ
2µ2

2
F (w, t) . (A.17)
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We also define the mean wealth,

µ = W
N
, (A.18)

so we have

w̄ = w + κµ̄

= w + κW̄
N̄

= w + κ 1

1 − κ
W

N

= w + λµ . (A.19)

We can plug the above transformations back into the Fokker-Planck equation for the

EYSM with redistribution and WAA to obtain the equation for the AWM, Eq. (2.29),

which reads

∂P̄

∂t
+ ∂

∂w̄
[χ (µ̄ − w̄) P̄ ] − ∂2

∂w̄2
[γ (B̄ + w̄

2

2
Ā) P̄] (A.20)

= ∂

∂w̄
{2ζ [ 1

µ̄
(B̄ − w̄

2

2
Ā) + w̄ (1

2
− L̄)] P̄} . (A.21)

The time derivative term is unchanged,

∂P̄

∂t
= ∂P
∂t
.

The redistribution term is

∂

∂w̄
[χ (µ̄ − w̄) P̄ ]

= ∂

∂w̄
{χ [ W

(1 − κ)N
− (w + κ W

(1 − κ)N
)]P}

= ∂

∂w
{χ [((λ + 1)µ − λµ) −w]P}

= ∂

∂w
[χ (µ −w)P ] . (A.22)
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The transaction term is

∂2

∂w̄2
[γ (B̄ + w̄

2

2
Ā) P̄]

= ∂2

∂w2
[γ (B + λµ2L + λ

2µ2

2
F + (w + λµ)2

2
A)P]

= ∂2

∂w2
[γ (B̄ + λµ2L + λ

2µ2

2
F + w

2

2
Ā + λµw̄Ā + λ

2µ2

2
A)P]

= ∂2

∂w2
{γ [(B + w

2

2
A) + λµ (µL +wA) + λ

2µ2

2
] P̄} . (A.23)

The WAA term is

∂

∂w̄
{2ζ [ N̄

W̄
(B̄ − w̄

2

2
Ā) + w̄ (1

2
− L̄)] P̄} , (A.24)

where we can break down and show the calculations term by term. For the first term

in the bracket, we have

B̄ − w̄
2

2
Ā

= B + λµ2L + λ
2µ2

2
F − (w + λµ)2

2
A

= B + λµ2L + λ
2µ2

2
F − w

2

2
A − λµwA − λ

2µ2

2
A

= (B − w
2

2
A) + λµ (µL −wA) + λ

2µ2

2
(F −A) , (A.25)

so that

N̄

W̄
(B̄ − w̄

2

2
Ā)

= (1 − κ) 1

µ
(B − w

2

2
A) + (1 − κ)λ (µL −wA) + (1 − κ)λ2µ

2
(F −A)

= (1 − κ) 1

µ
(B − w

2

2
A) + κ (µL −wA) + κλµ

2
(F −A) . (A.26)

For the second term in the bracket, we have

w̄ (1

2
− L̄)
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= (w + λµ) (1

2
− (1 − κ)L − κF)

= 1

2
w − (1 − κ)wL − κwF + 1

2
λµ − κµL − κλµF. (A.27)

Now, combine the above two terms, we can simplify and obtain the expression for

the whole term in the bracket in the WAA term. The calculation follows

N̄

W̄
(B̄ − w̄

2

2
Ā) + w̄ (1

2
− L̄)

= (1 − κ) 1

µ
(B − w

2

2
A) + κµL − κwA + κλµ

2
F − κλµ

2
A

+1

2
w − (1 − κ)wL − κwF + 1

2
λµ − κµL − κλµF

= (1 − κ) 1

µ
(B − w

2

2
A) − κwA + κλµ

2
F − κλµ

2
A

+1

2
w − (1 − κ)wL − κwF + 1

2
λµ − κλµF

= (1 − κ) 1

µ
(B − w

2

2
A) − κw + κλµ

2
F − κλµ

2
A

+1

2
w − (1 − κ)wL + 1

2
λµ − κλµF

= (1 − κ) 1

µ
(B − w

2

2
A) − κw − κλµ

2
F − κλµ

2
A

+1

2
w − (1 − κ)wL + 1

2
λµ

= (1 − κ) 1

µ
(B − w

2

2
A) − κw − κλµ

2
+ 1

2
w − (1 − κ)wL + 1

2
λµ

= (1 − κ) 1

µ
(B − w

2

2
A) + (1 − κ)1

2
λµ − 1

2
κw + (1

2
w − 1

2
κw) − (1 − κ)wL

= (1 − κ) 1

µ
(B − w

2

2
A) + (1

2
κµ − 1

2
κw) + 1

2
(1 − κ)w − (1 − κ)wL

= (1 − κ) 1

µ
(B − w

2

2
A) + (1 − κ)w (1

2
−L) + 1

2
κ (µ −w) . (A.28)

Therefore, the whole WAA term can be written as

∂

∂w
{(1 − κ)ζ [ 2

µ
(B − w

2

2
A) +w (1

2
−L)]P} + ∂

∂w
[κζ (µ −w)P]. (A.29)
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Finally, combining every term from the above calculations, we obtain the full Fokker-

Planck equation for the Affine Wealth Model

∂P

∂t
+ ∂

∂w
[ (χ − κζ) (µ −w)P] − ∂

∂w
{(1 − κ)ζ [ 2

µ
(B − w

2

2
A) +w (1

2
−L)]P}

= ∂2

∂w̄2
{γ [(B̄ + w̄

2

2
Ā) + λµ (µL +wA) + λ

2µ2

2
]P} . (A.30)
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