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 Abstract 
This interactivity demonstrates Tern, a tangible 
programming language for middle school and late 
elementary school students. Tern consists of a 
collection of wooden blocks shaped like jigsaw puzzle 
pieces. Children connect these blocks to form physical 
computer programs, which may include action 
commands, loops, branches, and subroutines. With 
Tern we attempt to provide the ability for teachers to 
conduct engaging programming activities in their 
classrooms, even if there are only one or two 
computers available. In designing Tern, we focused on 
creating an inexpensive, durable, and practical system 
for classroom use.  
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Introduction 
Incorporating computer programming activities into 
classroom curriculum can be a daunting task. Students 
can hide behind large computer monitors where they 
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have easy access to digital distractions such as games, 
IM, and the Web. Furthermore, many classrooms have 
only a few working computers available. To implement 
a programming activity in such a setting requires 
shuffling small teams of students between computer 
and non-computer work. These student teams must 
crowd around a machine and work out ways to share a 
single mouse and keyboard. And, because learning the 
syntax of a computer language can be a frustrating 
experience for novice programmers, students may 
require frequent adult help.  

Our project attempts to address some of these issues 
with an educational programming language called Tern. 
Tern employs tangible user interface technology to 
allow teachers to conduct in-class programming 
activities while avoiding many of the problems 
associated with desktop computers.  

 

figure 1. Tern consists of a collection of wooden blocks shaped 

like jigsaw puzzle pieces.  

We designed Tern for middle school and late 
elementary school students. It consists of a collection 
of wooden blocks shaped like jigsaw puzzle pieces. 
Children connect these blocks to form physical 
computer programs that may include action commands, 
loops, branches, and subroutines. Unlike other tangible 
programming languages, Tern’s parts contain no 
embedded electronics or power supplies. Instead, we 
use a digital camera and reliable computer vision 
technology to compile Tern programs into digital code. 
This allows us to create inexpensive and durable parts 
that are practical for classroom use. Children work in 
offline settings, such as on their desks or on the floor, 
and use a portable scanning station when they are 
ready to compile. The scanning station consists of a 
standard digital camera connected to a laptop or tablet 
PC. Because teams of students no longer need to crowd 
around a computer screen to write programs, 
collaboration can be less formal and less constrained. 

Tern is based on the text-based language outlined in 
the book, Karel the Robot: A Gentle Introduction to the 
Art of Programming [6]. With Karel the Robot, students 
write simple, Pascal-like programs to navigate a robot 
through a grid world. We chose this language as a 
starting point because of its simplicity—it has no 
variables, no parameter values, and a small set of 
primitives. Like Karel the Robot, Tern programs also 
control robots that inhabit a grid world on a computer 
screen (figure 2).  We altered the Karel model to allow 
multiple robots to interact in the same world, thus 
allowing several teams of students to participate in a 
shared classroom experience.  
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figure 2. Tern programs control virtual robots which inhabit a 

grid world on a computer screen. Multiple robots can interact in 

the same world.  

Language Overview  
Simple Tern programs start with a START statement 
and end with a STOP statement. For example, the 
program in figure 3 starts a robot, moves it forward 
one square, turns it right, and then moves it forward 
again.  

 

figure 3. A simple Tern program that moves a robot forward 

one square, turns it right, and then moves it forward again.  

In the design of Tern we sought to minimize the 
possibility of creating programs with syntax errors. The 
shape of the blocks provides a physical constraint 
system that prevents many invalid language 
constructions from being assembled as physical 
constructions. For example, it is impossible to connect 
a STOP statement in the middle of a flow-of-control 
chain. It can only be attached at the end because it 
lacks an outgoing jigsaw puzzle connector. In a similar 
way, START statements can only be connected at the 
beginning of flow-of-control chains. Some syntax errors 
are still possible—leaving one statement disconnected 
from the others in a program is an example. When a 
syntax error occurs, the compiler displays a picture of 
the original program, an error message, and an arrow 
indicating the location of the problem. 

 

figure 4. START statements can only be connected at the 

beginning of a flow-of-control chain because they have no 

incoming jigsaw puzzle connector.  

Using a conditional block, we can program robots to 
respond to the state of their environment. For example, 
in the program in figure 5, the robot will move forward 
only if it is not blocked by a wall. Otherwise, it will turn 
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right first. Special JUMP and LAND statements allow the 
introduction of loops into a program’s flow-of-control. 
These statements are connected by coiled wire that 
represents the flow of execution as it moves from the 
JUMP statement to the LAND statement. This 
construction is similar to a GOTO statement in a text-
based language. Tern also offers structured loops that 
provide more controlled iteration. Like Karel the Robot, 
Tern includes the ability to create subroutines called 
Skills. Skills can be defined using a START SKILL block 
and can be invoked using a skill action block (see figure 
5).  

 

figure 5. This program includes a conditional branch, a loop 

(represented by coiled wire), and a subroutine.  

Tern’s technological predecessor is Quetzal [4], a 
tangible language we developed for controlling LEGO 
MINDSTORMS robots. Quetzal has the appealing 
property that both its application (physical robot 

control) and the language itself are disembodied from 
desktop computers. However, we found that evaluating 
Quetzal in educational settings was unnecessarily 
difficult. Students would spend the majority of time 
constructing LEGO robots and would typically write only 
one or two very simple Quetzal programs. Furthermore, 
much of the researchers’ time was spent organizing and 
managing the use of the LEGO kits. With Tern, we will 
project the grid world onto the wall of a classroom, 
allowing four teams of children to participate in one 
shared problem-solving activity. And, because the only 
way to control an on-screen robot is through a Tern 
program, we anticipate that students will spend much 
more of their time discussing and writing programs.  

Implementation 
The Tern compiler uses a collection of reliable image 
processing techniques to convert physical programs 
into digital instructions. Each block in the language is 
imprinted with a circular symbol called a SpotCode [2, 
3].  These codes allow the position, orientation, relative 
size, and type of each statement to be quickly 
determined from a digital image. The image processing 
routines use an adaptive thresholding algorithm [8] and 
work under a variety of lighting conditions without the 
need for human calibration. Our prototype uses a 
digital camera attached to a tablet or laptop PC. The 
camera has an image resolution set to 1024 x 768.  A 
programming surface approximately 26 inches wide 
and 20 inches high can be reliably compiled as long as 
the programming surface is white or light-colored. A 
Java application controls the flash, optical zoom, and 
image resolution. Captured images are transferred to 
the host computer through a USB connection and saved 
as JPEG images on the file system. With this image, the 
compiler converts a program directly into digital 
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instructions. Students initiate a compile by pressing a 
button on the scanning station, and the entire process 
takes a few seconds to complete. Any error messages 
are reported to the user with a picture of the original 
program and an arrow pointing to the cause of the 
problem.    

Related Work 
Several tangible programming languages inspired and 
influenced Tern. The earliest and most directly relevant 
language is Suzuki and Kato’s AlgoBlocks [7], which 
represents the commands of a language similar to Logo 
using interlocking aluminum blocks. More recently, 
McNerney [5], and Wyeth and Purchase [9] created 
tangible programming languages consisting of LEGO-
like bricks with embedded electronics. Students stack 
these bricks to describe simple programs.  Zuckerman 
and Resnick’s System Blocks project [10] provides an 
interface for simulating dynamic systems. Wood blocks 
with embedded electronics express six simple behaviors 
in a system. Blackwell, Hague, and Greaves developed 
Media Cubes [1], tangible programming elements for 
controlling consumer devices. Media Cubes are blocks 
with bidirectional, infra-red communication capabilities.  
Induction coils embedded in the cubes also allow for 
the detection of adjacency with other cubes.  

In each of these examples, the blocks that make up the 
programming languages contain some form of 
embedded electronic components.  When connected, 
these blocks provide real-time feedback, typically 
executing some algorithms through the sequential 
interaction of the blocks.  Our model differs from these 
languages in that Tern programs are purely symbolic 
representations of algorithms—much in the way that 
Java or C++ programs are only collections of text files. 

A compiler must be used to translate physical programs 
into digital instructions for controlling robots. This 
approach cuts cost, increases reliability, and allows us 
greater freedom in the design of the physical 
components of the language. 

Conclusions and Future Work 
Our work with Tern is ongoing. Our next step is to 
evaluate Tern’s effectiveness as a teaching tool in real-
life classroom settings. In addition, we hope to better 
understand the effect of tangible programming on 
student learning and collaboration. Part of this study 
might involve a direct comparison of Tern to a 
comparable visual or text-based programming language 
designed for classroom use. 

In this paper we introduced Tern, a tangible 
programming language for middle school and late 
elementary school students to use in classroom 
settings. We described the design and implementation 
of Tern, and we described how it differs from other 
tangible programming languages. Specifically, our 
languages consist of parts with no embedded 
electronics or power supplies.  Instead of real-time 
interaction, we use a compiler to convert physical Tern 
programs into digital instructions. This allows us to 
create durable and inexpensive parts that are practical 
classroom use.  
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