

Tangible Programming in the
Classroom with Tern

 Abstract
This interactivity demonstrates Tern, a tangible
programming language for middle school and late
elementary school students. Tern consists of a
collection of wooden blocks shaped like jigsaw puzzle
pieces. Children connect these blocks to form physical
computer programs, which may include action
commands, loops, branches, and subroutines. With
Tern we attempt to provide the ability for teachers to
conduct engaging programming activities in their
classrooms, even if there are only one or two
computers available. In designing Tern, we focused on
creating an inexpensive, durable, and practical system
for classroom use.

Keywords
Tangible UIs, education, children, programming
languages

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g.,
HCI): User Interfaces.

Introduction
Incorporating computer programming activities into
classroom curriculum can be a daunting task. Students
can hide behind large computer monitors where they

Copyright is held by the author/owner(s).

CHI 2007, April 28 – May 3, 2007, San Jose, USA

ACM 1-xxxxxxxxxxxxxxxxxx.

Michael Horn

Tufts University

Department of Computer Science

Medford, MA 02155 USA

michael.horn@tufts.edu

Robert J.K. Jacob

Tufts University

Dept. of Computer Science

Medford, MA 02155 USA

jacob@cs.tufts.edu

 2

have easy access to digital distractions such as games,
IM, and the Web. Furthermore, many classrooms have
only a few working computers available. To implement
a programming activity in such a setting requires
shuffling small teams of students between computer
and non-computer work. These student teams must
crowd around a machine and work out ways to share a
single mouse and keyboard. And, because learning the
syntax of a computer language can be a frustrating
experience for novice programmers, students may
require frequent adult help.

Our project attempts to address some of these issues
with an educational programming language called Tern.
Tern employs tangible user interface technology to
allow teachers to conduct in-class programming
activities while avoiding many of the problems
associated with desktop computers.

figure 1. Tern consists of a collection of wooden blocks shaped

like jigsaw puzzle pieces.

We designed Tern for middle school and late
elementary school students. It consists of a collection
of wooden blocks shaped like jigsaw puzzle pieces.
Children connect these blocks to form physical
computer programs that may include action commands,
loops, branches, and subroutines. Unlike other tangible
programming languages, Tern’s parts contain no
embedded electronics or power supplies. Instead, we
use a digital camera and reliable computer vision
technology to compile Tern programs into digital code.
This allows us to create inexpensive and durable parts
that are practical for classroom use. Children work in
offline settings, such as on their desks or on the floor,
and use a portable scanning station when they are
ready to compile. The scanning station consists of a
standard digital camera connected to a laptop or tablet
PC. Because teams of students no longer need to crowd
around a computer screen to write programs,
collaboration can be less formal and less constrained.

Tern is based on the text-based language outlined in
the book, Karel the Robot: A Gentle Introduction to the
Art of Programming [6]. With Karel the Robot, students
write simple, Pascal-like programs to navigate a robot
through a grid world. We chose this language as a
starting point because of its simplicity—it has no
variables, no parameter values, and a small set of
primitives. Like Karel the Robot, Tern programs also
control robots that inhabit a grid world on a computer
screen (figure 2). We altered the Karel model to allow
multiple robots to interact in the same world, thus
allowing several teams of students to participate in a
shared classroom experience.

 3

figure 2. Tern programs control virtual robots which inhabit a

grid world on a computer screen. Multiple robots can interact in

the same world.

Language Overview
Simple Tern programs start with a START statement
and end with a STOP statement. For example, the
program in figure 3 starts a robot, moves it forward
one square, turns it right, and then moves it forward
again.

figure 3. A simple Tern program that moves a robot forward

one square, turns it right, and then moves it forward again.

In the design of Tern we sought to minimize the
possibility of creating programs with syntax errors. The
shape of the blocks provides a physical constraint
system that prevents many invalid language
constructions from being assembled as physical
constructions. For example, it is impossible to connect
a STOP statement in the middle of a flow-of-control
chain. It can only be attached at the end because it
lacks an outgoing jigsaw puzzle connector. In a similar
way, START statements can only be connected at the
beginning of flow-of-control chains. Some syntax errors
are still possible—leaving one statement disconnected
from the others in a program is an example. When a
syntax error occurs, the compiler displays a picture of
the original program, an error message, and an arrow
indicating the location of the problem.

figure 4. START statements can only be connected at the

beginning of a flow-of-control chain because they have no

incoming jigsaw puzzle connector.

Using a conditional block, we can program robots to
respond to the state of their environment. For example,
in the program in figure 5, the robot will move forward
only if it is not blocked by a wall. Otherwise, it will turn

 4

right first. Special JUMP and LAND statements allow the
introduction of loops into a program’s flow-of-control.
These statements are connected by coiled wire that
represents the flow of execution as it moves from the
JUMP statement to the LAND statement. This
construction is similar to a GOTO statement in a text-
based language. Tern also offers structured loops that
provide more controlled iteration. Like Karel the Robot,
Tern includes the ability to create subroutines called
Skills. Skills can be defined using a START SKILL block
and can be invoked using a skill action block (see figure
5).

figure 5. This program includes a conditional branch, a loop

(represented by coiled wire), and a subroutine.

Tern’s technological predecessor is Quetzal [4], a
tangible language we developed for controlling LEGO
MINDSTORMS robots. Quetzal has the appealing
property that both its application (physical robot

control) and the language itself are disembodied from
desktop computers. However, we found that evaluating
Quetzal in educational settings was unnecessarily
difficult. Students would spend the majority of time
constructing LEGO robots and would typically write only
one or two very simple Quetzal programs. Furthermore,
much of the researchers’ time was spent organizing and
managing the use of the LEGO kits. With Tern, we will
project the grid world onto the wall of a classroom,
allowing four teams of children to participate in one
shared problem-solving activity. And, because the only
way to control an on-screen robot is through a Tern
program, we anticipate that students will spend much
more of their time discussing and writing programs.

Implementation
The Tern compiler uses a collection of reliable image
processing techniques to convert physical programs
into digital instructions. Each block in the language is
imprinted with a circular symbol called a SpotCode [2,
3]. These codes allow the position, orientation, relative
size, and type of each statement to be quickly
determined from a digital image. The image processing
routines use an adaptive thresholding algorithm [8] and
work under a variety of lighting conditions without the
need for human calibration. Our prototype uses a
digital camera attached to a tablet or laptop PC. The
camera has an image resolution set to 1024 x 768. A
programming surface approximately 26 inches wide
and 20 inches high can be reliably compiled as long as
the programming surface is white or light-colored. A
Java application controls the flash, optical zoom, and
image resolution. Captured images are transferred to
the host computer through a USB connection and saved
as JPEG images on the file system. With this image, the
compiler converts a program directly into digital

 5

instructions. Students initiate a compile by pressing a
button on the scanning station, and the entire process
takes a few seconds to complete. Any error messages
are reported to the user with a picture of the original
program and an arrow pointing to the cause of the
problem.

Related Work
Several tangible programming languages inspired and
influenced Tern. The earliest and most directly relevant
language is Suzuki and Kato’s AlgoBlocks [7], which
represents the commands of a language similar to Logo
using interlocking aluminum blocks. More recently,
McNerney [5], and Wyeth and Purchase [9] created
tangible programming languages consisting of LEGO-
like bricks with embedded electronics. Students stack
these bricks to describe simple programs. Zuckerman
and Resnick’s System Blocks project [10] provides an
interface for simulating dynamic systems. Wood blocks
with embedded electronics express six simple behaviors
in a system. Blackwell, Hague, and Greaves developed
Media Cubes [1], tangible programming elements for
controlling consumer devices. Media Cubes are blocks
with bidirectional, infra-red communication capabilities.
Induction coils embedded in the cubes also allow for
the detection of adjacency with other cubes.

In each of these examples, the blocks that make up the
programming languages contain some form of
embedded electronic components. When connected,
these blocks provide real-time feedback, typically
executing some algorithms through the sequential
interaction of the blocks. Our model differs from these
languages in that Tern programs are purely symbolic
representations of algorithms—much in the way that
Java or C++ programs are only collections of text files.

A compiler must be used to translate physical programs
into digital instructions for controlling robots. This
approach cuts cost, increases reliability, and allows us
greater freedom in the design of the physical
components of the language.

Conclusions and Future Work
Our work with Tern is ongoing. Our next step is to
evaluate Tern’s effectiveness as a teaching tool in real-
life classroom settings. In addition, we hope to better
understand the effect of tangible programming on
student learning and collaboration. Part of this study
might involve a direct comparison of Tern to a
comparable visual or text-based programming language
designed for classroom use.

In this paper we introduced Tern, a tangible
programming language for middle school and late
elementary school students to use in classroom
settings. We described the design and implementation
of Tern, and we described how it differs from other
tangible programming languages. Specifically, our
languages consist of parts with no embedded
electronics or power supplies. Instead of real-time
interaction, we use a compiler to convert physical Tern
programs into digital instructions. This allows us to
create durable and inexpensive parts that are practical
classroom use.

Acknowledgements
We thank the National Science Foundation for support
of this research (NSF Grant No. IIS-0414389). Any
opinions, findings, and conclusions or recommendations
expressed in this article are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

 6

References
[1] Blackwell, A.F. and Hague, R. Autohan: An
architecture for programming in the home. In Proc.
IEEE Symposia on Human-Centric Computing
Languages and Environments 2001, 150-157.

[2] de Ipina, D.L., Mendonca, P.R.S. and Hopper, A.
TRIP: A low-cost vision-based location system for
ubiquitous computing. Personal and Ubiquitous
Computing, 6 (2002), 206–219.

[3] High Energy Magic.
http://www.highenergymagic.com

[4] Horn, M. and Jacob, R.J.K. Tangible Programming
in the Classroom: A Practical Approach. Extended
Abstracts CHI 2006, ACM Press (2006).

[5] McNerney, T.S. From turtles to Tangible
Programming Bricks: explorations in physical language
design. Personal Ubiquitous Computing, 8(5), Springer-
Verlag (2004), 326–337.

[6] Pattis, R.E., Roberts J., Stehlik, M. Karel the Robot:
a Gentle Introduction to the Art of Programming, 2nd
edition. John Wiley and Sons, Inc. 1995.

[7] Suzuki, H. and Kato, H. Interaction-level support
for collaborative learning: Algoblock–an open
programming language. In Proc. CSCL ’95, Lawrence
Erlbaum (1995).

[8] Wellner, P.D. Adaptive thresholding for the
DigitalDesk. Technical Report EPC-93-110, EuroPARC
(1993).

[9] Wyeth, P. and Purchase, H.C. Tangible
programming elements for young children. Extended
Abstracts CHI 2002, ACM Press (2002), 774–775.

[10] Zuckerman, O. and Resnick, M. A physical interface
for system dynamics simulation. Extended Abstracts
CHI 2003, ACM Press (2003), 810-811.

