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A Companion Robot for Modeling the Expressive

Behavior of Persons with Parkinson’s Disease

Andrew P. Valenti

ADVIS0R: Matthias Scheutz

Emotions are crucial for human social interactions and as such people com-

municate emotions through a variety of modalities: kinesthetic (through facial ex-

pressions, body posture and gestures), auditory (through the acoustic features of

speech) and semantic (through the content of what they say). Sometimes however,

communication channels for certain modalities can be unavailable (for example in

the case of texting), and sometimes they can be compromised, for example due to a

disorder such as Parkinson’s disease (PD) that may affect facial, gestural and speech

expressions of emotions. As a result, it is not easy for caregivers to judge how PD

persons are coping with their condition. They may look as if they are unfeeling,

indifferent, sad or hostile and misinterpretation of their true internal state can lead

to depression.

In this dissertation, we present a situated emotion expression framework

which a robot can use to detect emotions in one modality, specifically in speech,

and then express them in another modality, through gestures or facial expressions.

This is part of a larger objective to develop a socially assistive robot for the social

self-management of people with PD. The framework compensates for ambiguities in

natural language, disfluencies that are often present in the speech of persons with

PD, and errors in the automatic speech recognition system. More generally, the

framework would be useful for any conversational AI agent and we demonstrate ways
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in which it can be extended to a bilingual environment. Finally, we demonstrate

a model of human language processing that can be used to monitor human-level

performance using a biologically-plausible model that uses dynamic neural fields.
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Chapter 1

Introduction

Table 1.1: Dissertation scope.

Overall project This dissertation

Objective Develop a socially assistive
robot for the social self-
management of health of peo-
ple with PD.

Develop a prototype for an
emoting robot that can de-
tect emotions in one modal-
ity (spoken language) and ex-
press them in another (ges-
tures).

Robot capabilities Simple interaction, observa-
tion of activities, mediation of
interactions.

Detection and expression of
emotion.

Hypothesis The assistive robot will reduce
stigma and improve commu-
nication between people with
PD and caregivers and health-
care providers.

Robust emotion expressions of
the robot can be correctly per-
ceived in both high and low
frequency emoting conditions.

Validation Clinical trial with people with
PD and their caregivers.

General population studies
with robot emoting in differ-
ent conditions.

Persons living with Parkinson’s disease (PD) often exhibit facial masking

(hypomimia), giving them a fixed, mask-like expression. This symptom results in

a disassociation between their true mental state and outward expression making it

difficult for those who interact with them to infer their true mental state. Ascer-

taining their true state can help guide interaction which can improve the person’s
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Figure 1.1: The Situated Emotion Expression Framework consists of the Large
Vocabulary Automatic Speech Recognizer (LVASR) which uses Topic Detection to
automatically select from among the Multi-domain Language Models. Transcribed
speech is passed to the Emotion Detection component which forwards its prediction
to the components as shown. Bilingual processing is implemented in the indicated
green components. Models of language performance can be implemented using a
Neural Field Model, which receives input from the LVASR. Dotted-line connections
indicate proposed functionality that has not yet been implemented.
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motivation in social and therapeutic situations. We suggest that an emoting robot

can help people with PD express their inner emotional states and thus improve

their communication with caregivers. In this dissertation, which is part of a larger

project (see Table 1.1), we develop an Situated Emotion Expression Framework for

a socially assistive robot which is robust to errors and can automatically infer the

mental state of a PD person from their speech (see Figure 1.1). We also demonstrate

how this framework can be extended to measure human language performance and

operate in a bilingual environment.

The objective of this dissertation is a step towards the longer-term goal in

which the framework can be embedded in an intelligent agent to monitor the inter-

action between the person and, for example, a caregiver. This agent might also be

used in clinical settings to assist the occupational therapist in, for example, patient

evaluation. The framework is not restricted to the domain of persons living with

PD; it should be able to generalize and serve as an intelligent agent useful for de-

tecting emotion and generating appropriate responses in the interaction between the

intelligent agent and the human. Research in the area of “affective computing”, has

been shown this ability to increase user engagement, a desirable goal for applications

including, health-care, tutorial systems, travel, financial services, and games.

This dissertation is organized in three parts. In the first part, we develop,

implement, and evaluate the theories which form the basis of the situated emotional

framework. In the second part, we discuss related research and demonstrate how

it can be used to usefully extend the framework. In the last part, we present our

conclusions.

1.1 Primary Contributions

1.1.1 Inferring Emotional State in Persons with Parkinson’s Dis-

ease

In Chapter 3, we lay groundwork for detecting sentiment in the continuous speech

in persons with PD by demonstrating the efficacy of using the Latent Dirichlet Al-

3



location (LDA) generative model to extract topic proportions from a collection of

written text documents which are then used as input features to train a classifier

to detect positive and negative sentiment. We chose LDA as a principled way to

learn features, unsupervised in the expectation that it will better generalize to other

domains than other approaches which use hand-engineered features or sentiment lex-

icons (e.g., Pennebaker’s Linguistic Inquiry and Word Count, “LIWC”). Takahashi

and Tickle-Degnen have shown that LIWC’s measure of positive and negative emo-

tional valence correlates to the words a PD person uses when asked to recount an

enjoyable and frustrating experience. Since the goal of our research was to measure

emotional content as best we could at the utterance level, as speech unfolds, we

evaluated the performance of LIWC and LDA for short sentences, i.e., average word

count of 13 (typical of spoken utterances) and found LDA to outperform LIWC.

1.1.2 Detecting Emotion Polarity from Continuous Speech in a

Robot

In Chapter 4, we use the experience gained using LDA to detect sentiment on the

document level to develop a version that can predict the emotion on a sentence by

sentence basis. In order to train the model, we need to collect written text which is

labeled incrementally (e.g., sentence by sentence). To this end, we built a Web-based

tool called the Emotional Inference Topic Model (EMIT) which presents lines of

text one at a time to a human evaluator. We next integrated the emotion detection

model in the DIARC robotic cognitive architecture which then gave a robot the

ability to express emotion using facial expressions, i.e., Robo-Motio’s Reddy robot.

We defined a three-state emotion detector that can predict positive, negative, and

neutral emotion from utterances that have been transcribed from the PD interviews

and used it to drive three facial expressions on the Reddy robot: smile, frown, and

neutral. We tested this using the ground truth labels obtained from the human

evaluators.

We extended this work by incorporating a Large Vocabulary Automatic

Speech Recognizer (LVASR) into DIARC in such a way that it can transcribe or-
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dinary conversational speech in real time and present the transcribed utterances to

the emotion detector. We used an already-trained acoustic and language model that

was developed using the Kaldi toolkit. We evaluated the entire emotion pipeline by

using a human speaking to the robot and conducting a human-robot interaction

experiment to evaluate how well the robot’s facial expressions match was it is being

said.

1.1.3 A Dynamical System for Expressing Fine-Grained Emotions

in a Robot

In Chapter 5, we note that a three-state emotion model may not be sufficient to

capture and express some of the more subtle human emotions. In the fourth part,

we expanded the three-state model to five-states. We further used the more fluid

bodily movements available through gestures in SoftBank Robotic’s Nao robot. We

developed a means to express increasing levels of emotional positivity using seven

gestures (five detected emotions plus two transitional gestures). We conducted an

HRI experiment to evaluate these seven new gestures to ensure that an observe can

recognize that they express increasing levels of positivity. In this part of our research,

we also identify and address the challenge of handling LVASR and emotion detector

performance. We build an expressor component that takes as input predictions from

the detector and uses the dynamical properties of a mass-spring model for smooth

transitions between emotion expressions over time. This novel method compensates

for varying utterance frequency from the LVASR and prediction errors coming from

the emotion recognition component. We conducted an HRI study to validate how

well the robot’s gestures matched what is being said in the with- and without- spring

model conditions by varying specific emotion detection errors.
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1.1.4 Improving Natural Language Understanding in Spoken Dia-

log Systems

In Chapter 6, we demonstrate a novel framework for understanding spoken dialog in

which utterance analysis is escalated through a multi-level system according to the

feedback retrieved at the syntactic, semantic, and contextual/topic level. Analysis is

applied incrementally at each level as the system attempts to resolve the uncertainty

surrounding utterance interpretation. We evaluate the accuracy of its semantic

interpretation of user utterances in two task domains against a control without such

a mechanism. We demonstrate how this system can extend the situated emotion

expression framework.

1.2 Related Research

1.2.1 Building a Bilingual Robot

In Chapter 7, we investigate and demonstrate two computational models that further

our understanding of how to extend the model framework to a bilingual environment.

The first is a computational model of the inhibitory control theory which states

that the non-target language of the bilingual is suppressed by top-down contextual

cue. The second is a computational model of bilingual memory which describes a

psychological theory of how words from the multiple languages interfere with each

other and how the desired word is selected using the top-down control mechanism.

Similarly, we demonstrate which parts of the model framework need to be modified

so that it can freely switch among syntactic and semantic components according to

the task demand and correctly interpret the meaning of the human utterance in the

target language.

1.2.2 Modeling Human Language Processing with Neural Fields

In Chapter 8, we introduce a biologically plausible model of human language pro-

cessing, the dynamic neural field and discuss two investigations. In the first, we cor-
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related the dynamics of the field to one measure of human language performance,

word repetition under two workload conditions. In the second, we demonstrated

how neural fields can be connected to create a computational model of the Cohort

theory of word recognition. We demonstrate how the neural field can be used in the

framework to measure human cognitive performance from the speech signal and how

this information can be used to monitor the workload and adjust task performance.
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Chapter 2

Sentiment Analysis

The design of the emotion detection component of the framework was informed by

prior investigations in the field of sentiment analysis. We designed the framework

for a particular application, a companion robot for persons living with Parkinson’s

disease. More generally, it can be applied to conversational agents which, like the

robot, assumes human interact with it using conversational speech. However, inter-

action may also be through conversational text. In this chapter, we survey sentiment

analysis as applied to conversational agents.

This chapter makes the following contributions. We systematically orga-

nize and review the existing literature on sentiment analysis models and develop

a framework for analyzing them. We describe the psychological models of emo-

tions We explain the most common approaches and challenges they were intended

to solve. Finally, we indicate which models are freely-available to the researcher or

are available for a fee.

2.1 Introduction

Conversational agents may be defined as software systems which interpret and re-

spond to statements made by users in ordinary natural language [Ram et al., 2018].

These agents, messaging apps, speech-based assistants (“smart speakers”), social-

bots, and chatbots, are becoming increasingly popular in health-care, travel, finan-
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cial services, gaming, and other market segments where they engage the user through

voice or chat in order to understand and correctly act on their inputs in real time.

As the technology for wearable devices continues to evolve, it is likely they too will

have some form of conversational agents. Conversational agents are computational

components that may receive either spoken or text input and generate the sentiment

predictions incrementally, in real-time, without relying on facial affect and gestures.

One way to generate engaging responses is by taking into account and responding

to the sentiments explicitly or implicitly expressed by users. This can increase user

engagement [Fraser et al., 2018] or help the system to better understand the user’s

intent and generate an appropriate response.

Rosalind Picard, founder and director of the Affective Computing Research

Group at the MIT Media Lab goes a step further and argues that in human cog-

nition, thinking and feeling are both present and there is a reciprocal relationship

between the human’s neurological center of emotion, the limbic system, and the

center of thinking, the cortex [Picard, 1995]. Thus, emotions play an essential role

in rational decision-making, perception, and problem solving. The implication is

that expressing and recognizing affect is important for human-computer interaction

because it allows conversational agents to be able to respond to the evolving human

affective state by modulating their responses and expressing their emotions. One

example where this can be useful is a tutorial system which dynamically adapts its

lessons to the students’ affective state, providing an easier approach if it detects

that the student is frustrated.

However, there are differences when detecting sentiment in conversational

speech and written text. Unlike detecting sentiment in certain social media (e.g.,

tweets, movie and product reviews, news opinion articles), unconstrained natural

language may contain no discernible ground-truth, making it difficult to train such

systems and evaluate how well they perform during a human conversation. In ad-

dition, the speech recognition system may generate errors or segment the speech

into small chunks, both outcomes presenting a challenge to sentiment detection. In

Section 2.3, we review some additional characteristics of human conversation that
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might constrain the performance of the sentiment detection model.

In this chapter, we review the models, methods and limitations of the most

common approaches for sentiment analysis. We characterize the articles according

to how they assume sentiment is represented, i.e., as a bag-of-words, sentiment

lexicon, topics, semantics, syntactic structure, or pre-trained language models. We

describe the algorithms used to extract sentiment from these. We describe the

dataset, experimental procedures and the performance metrics used to validate the

models and their limitations. We indicate which papers describe models that have

a reference implementation or make the source code freely available so that it can

incorporated in the researcher’s own work. This review does not attempt to be an

exhaustive survey of sentiment analysis as progress in this area is fast-paced. It

aims to illustrate the most widely-cited approaches for detecting sentiment analysis

that can be used by conversational agents.

Detecting sentiment in ordinary natural language comes down to deciding

which input modalities can be analyzed reliably. Assuming that the facial modality

is not available in conversational agents (thus excluding devices such as the Facebook

Portal, Amazon Alexa Show, and Google NestHub Max), the audio signal from

the voice channel is available as input. One challenge in using using the speech

signal directly is that different users have different physiological responses to the

same emotional state; for example, they are not reliable in individuals with certain

clinical conditions such as Parkinson’s disease. Another are privacy concerns in

which speaker identification may be performed using the acoustic characteristics

contained in the voice signal.

This chapter assumes the existence of an Automatic Speech Recognizer (ASR)

that converts, as accurately as possible, the speech signal to text. Alternatively, the

user may communicate with the system via a text input system such as a keyboard.

As a result, this review covers detecting sentiment in text, whether in transcriptions

of natural human speech or typed; emotion modeling is much wider and includes

using audio speech, gestures, and facial expression modalities either singularly or in

combination to detect emotions.
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This chapter proceeds as follows. We give some basic definitions of com-

monly used terms in the emotional modeling literature, indicate which are used

ambiguously, and describe terms we will use consistently in our review. The sen-

timent analysis computer-based systems (i.e., “computational models”) we review

were based on one or more psychological models of emotion. Therefore, we intro-

duce the three major traditions of psychological emotion and give some examples

of computational models that were influenced by a particular tradition. We then

briefly review the differences between detection emotion in typewritten text and

transcribed speech.

We then review the computational modeling approach to emotion detection.

We believe that an excellent way to understand the various models is to categorize

them according to the assumptions they make regarding the how emotion is rep-

resented in the language, e.g., by a bag-of-words, sentiment lexicons, latent topic

structure, semantic properties, syntactic structure, or through deep learning of the

features themselves. As a result, the reviews are organized according to these fea-

tures. Although we are primarily interested in detecting emotion in conversational

text, we briefly review related work which uses spectral features of the speech sig-

nal. We do so to gain a perspective as to how critical this information might be

to emotion detection. We conclude by reviewing the main challenges for sentiment

analysis and summarizing what we have learned.

2.1.1 Background

Traditionally, human communication may be partitioned to verbal and nonverbal

channels. The nonverbal channel may be subdivided into the paralinguistic (i.e.,

speech characteristics) and visible (i.e., facial expression, gestures) channels. It

might be assumed that the two nonverbal channels are important in communication

of affect and a study by Mehrabian [1972], the researchers estimated that about

7% of emotion is communicated via the verbal channel. However, this did not use

situations normally arising in natural conversation and the researchers cautioned

against generalizing their findings. In fact, in another set of experiments conducted
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by Krauss et al. [1981], the researchers found no support for the assumption that

nonverbal communication was the primary basis for communication of affect. In one

of the experiments, the researchers found that verbal information was the largest

single factor in evaluative judgments of affect. Even so, they caution that judging

affect may depend on a number of factors. For example, nonverbal channels may

take on more importance when gross discrepancies exist among channels; however

this may not be the case otherwise. In general, though, Krauss et al. [1981] conclude

that the common assumption that nonverbal communication is the primary source

of the human ability to infer affect does not appear to be true.

Pang et al. [2008] provide an excellent discussion of how the field of senti-

ment analysis evolved. This paper has been cited over 9,000 times and has influenced

most, if not all, of the models we review. The authors approach sentiment analysis

by analyzing responses to the question, “What do others think?” According to the

authors, prior to the pervasive reliance on the Internet as a means for obtaining

information that might help us, for example, buy a car, decide whom to vote for,

where to eat, we most likely relied on friends, colleagues or product review publi-

cations, e.g., Consumer Reports. At present, more and more people are willing to

rely on non-professionals for these decisions through the use of crowd-sourced, online

rating systems, which in many cases is in the form of unstructured text. Many times

though, the information is incomplete, confusing, hard to find, or overwhelming. As

a result, a research motivation is to create better systems that can automatically

sift through unstructured information and extract opinions on various aspects of a

product or service.

Opinion mining of text can be a challenging problem in natural language

processing, and is often used to push the state-of-the-art forward. For example,

identifying which aspect of a product is favorable or unfavorable is goal of the

research competition such as SemEval-2014 Task 4 in which the tasks is: given

a customer review, determine the aspect terms, aspect categories, and sentiment

towards these aspect terms and categories [Manandhar et al., 2014].

On the other hand, for a conversational agent which may expect input on
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any topic, a sentiment system that generalizes over many different domains is more

useful than a a model which extracts opinions from all aspects of a movie review,

for example. However, Pang and Lee use opinion mining as the basis for discussing

the challenges of extracting and processing opinions from subjective information

and many of these are the challenges driving research and development of most

recent models; thus we include these in our review. Moreover, we found that their

discussion of how salient information (i.e., emotion) in text can be represented in

several different ways as features, is useful in categorizing different sentiment analysis

models. We found this to be intuitive way to categorize the types of models discussed

in this review.

2.1.2 Basic Terminology

In this section we discuss research papers which sometimes uses terms interchange-

ably even though they have separate meanings. In this section, we define commonly

used terms and strive to offer a single consistent definition, according to where the

majority of our surveyed papers agree. We point out terms for which there seems

to be multiple usages.

Two frequently used terms in the literature are sentiment analysis and opin-

ion mining. According to the definition given in the Merriam-Webster Online Dic-

tionary [bya, 2020], opinion and sentiment are synonyms and mean a judgment one

holds as true. However, this does not imply they have identical meanings. Opinion

is used when the judgment is not yet final or certain but is founded on some facts.

Sentiment suggests a settled opinion reflective of one’s feelings. Opinion mining is a

popular term within the Web search and information retrieval technical communities

since its appearance in a paper by Dave et al. [2003].

Sentiment analysis arose in the Natural Language Processing (NLP) com-

munities where it was used to reference automatic analysis of text using natural

language processing in papers such as Das and Chen [2001] and Nasukawa and Yi

[2003]. In this context, sentiment analysis most often refers to the techniques used

to infer the binary emotional polarity (e.g., positive, negative) of a person as they
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Table 2.1: Basic terminology

Definition Resources

Affect Frequently used in the psychological and
computational literature to ground the
more “fuzzy” concept of emotion when
describing a model of emotion. In other
definitions, affect subsumes concepts not
traditionally considered emotion such as
mood.

[Russell, 1980]

Affective Computing Computing that relates to, arises from, or
influences emotions.

[Picard, 2000]

Arousal A physiological measure of how calm or
excited a person is, but can also be as-
sessed subjectively via self-report.

[Reisenzein, 1994, Picard,
2000]

Computational Model A technical design and/or computer-based
implementation that embodies descrip-
tions of psychological cognitive processes.

[Sun, 2008]

Emotion Originally: an agitation of mind; an ex-
cited mental state. Subsequently: any
strong mental or instinctive feeling, as
pleasure, grief, hope, fear, etc., deriving
esp. from one’s circumstances, mood, or
relationship with others.

[OED, 2020, Smith et al.,
1990]

Sentic computing An approach which relies on the ensem-
ble application of common-sense comput-
ing and the psychology of emotions to in-
fer affect in natural language.

[Cambria and Hussain, 2012]

Sentiment analysis Typically refers to the detection of the bi-
nary emotional polarity (positive or neg-
ative) of text, but may also include addi-
tional categories.

[Pang et al., 2008]

Valence A subjective measure of positivity, often
on a scale from displeasure to pleasure,
intended to evaluate the individual’s re-
sponse to emotion-eliciting circumstances,
or to measure subjective feelings or atti-
tudes.

[Harmon-Jones et al., 2011]

interact with a text or a document, rather than determining the specific human

emotion Pang et al. [2002]. However, sentiment analysis approaches may also at-

tempt to classify additional emotion labels. Rather than recognizing emotions as

belonging to discrete and often binary categories, emotion recognition attempts to
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infer a set of emotion labels such as happiness or satisfaction, both of which fall

under the positivity category. When categorizing the approaches in the papers we

reviewed, we follow Pang and Lee’s broad interpretation, and use the terms “senti-

ment analysis”, “opinion mining”, and “emotion recognition” interchangeably [Pang

et al., 2008].

Sentiment analysis is also connected to affective computing. Affective com-

puting is a term that Picard [1995] used to describe “computing that relates to, arises

from, or influences emotions.” It is a cross-disciplinary field that covers not only sen-

timent analysis, but emotion detection, interpretation, and simulation. In general,

it is concerned with how affective factors condition interaction between humans and

technology and, conversely how affective sensing and simulation techniques can in-

form the understanding of human affective processes. Thus, many of the papers we

reviewed situate themselves in the broader area of affective computing.

In a later section we will introduce the three traditions of psychological emo-

tion theory which provide the frame work for the papers we reviewed. We shall

use the term computation models to firmly distinguish the sentiment analysis tech-

nical design and implementation from the the underlying psychological models of

emotion.

Figure 2.1: The “modal model” of emotion.
[Gross and Thompson, 2007]
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2.2 Psychological Models of Emotion

Computational models of sentiment analysis must make some assumptions about

the nature of emotion, e.g., are emotions to be classified categorically or are they

real numbers along a dimension and, if so, how many dimensions? Since the purpose

of this paper is to review models suitable for conversational agents, we would like

them to understand and express emotions similarly to way the human would. Thus

in this section we will briefly discuss emotion theory and the major traditions from

which they arise.

In the early part of the twentieth century, psychologists defined emotion

based on observed specific behavior and physiological changes of the emotion ex-

pression (for a good historical perspective, see [Smith et al., 1990]). In this definition

emotion is a complex behavioral phenomenon involving many levels of neural and

chemical integration [Lindsley, 1951]. However, as Fehr and Russell [1984] reported:

“Everyone knows what an emotion is until asked to give a definition.” While there is

agreement among cognitive psychologist that states such as anger, sadness, and fear

can be regarded as emotions and others, such as hunger and thirst should not, there

are other states where there is little agreement, e.g., startle, interest, guilt [Ekman,

1984, Plutchik, 1984]. It is difficult to define the necessary and sufficient conditions

that would constitute something as being an “emotion”. Emotion theories attempt

to answer this question and to explain its purpose as a human condition. As of

yet, there is no single, unified theory as they have emerged from the writings of

different psychologists. From a historical point of view, the major contributors to

our thinking about the nature of emotions are Charles Darwin, William James, and

Sigmund Freud. Charles Darwin was the first major researcher to hypothesize on

the nature of emotions.

Darwin had come to recognize that the concept of evolution applied not only

to the the physical but also to animal behavior. In addition to intelligence, mem-

ory, and reasoning, the emotions expressed by humans and lower animals have also

evolved as a mechanism to allow the survival of most animal species [Darwin and
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Prodger, 1998]. Early in the evolutionary cycle these adaptations were more rigid

and reflex-based and emotions represented a move away from built-in responses to

environmental stimuli to a more flexible, complex and variable behavior. During

this evolutionary process, thought and judgment “emotional patterns” filled the

gap between environmental stimuli and action, allowing higher species to survive

by learning how to deal with their environments [Lazarus and Lazarus, 1991]. The

seven basic emotions described by Ekman and Cordaro [2011], (i.e., anger, fear, sur-

prise, sadness, disgust, contempt, happiness) are derived from the facial expressions

of emotion reported by Darwin. These influenced several approaches to the com-

putational models of sentiment analysis some of which use all or a subset of these

terms as their output.

Aside from the evolutionary tradition, there are two other major directions

from which to approach emotion theory. William James, a late nineteenth century

American psychologist developed the psychophysiological context which studies the

relationships between subjective feelings and physiological states of arousal [James,

1894]. In the purest form of James’ theory, the bodily response to stimuli is the

emotion, which is not accepted today. If one considers that people can experience

emotion without a corresponding physiological function (e.g., love), we begin to

appreciate how this may be complicated by a number of factors. For example,

the intensity of the emotion, its type (e.g., love for a particular food vs. romantic

love), the inducing state of the emotion, how the person expresses emotion [Picard,

1995, 2000]. We will later see the concept of arousal used in computational models

of emotion detection. Lazarus and Lazarus [1991] present a cognitive approach to

emotions called appraisal theory. In this theory, cognitive appraisals are precursors

of all emotional states. Thus, as a person experiences an event their thoughts must

precede the arousal and emotion, which happen simultaneously. The theory is the

basis for the computational model described in Balahur et al. [2011].

The third tradition is the dynamic context. This tradition is identified with

Sigmund Freud and suggests that emotions are part of a person’s biological nature

but can undergo a large variety of transformations during the course of the person’s
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life. Theories drawn from this tradition do not underlie the computational models

reviewed in this paper. For a comprehensive discussion on theories of emotion, see

[Plutchik and Kellerman, 2013].

Gross and Thompson [2007] give a highly abstract yet intuitive modal model

of emotion (see Figure 2.1): a person-situation transaction that compels attention,

has particular meaning to an individual, and gives rise to a coordinated yet flexible

multi-system response to the ongoing person-situation transaction. This model is

consistent with Gross and Thompson’s model does not contradict these theories and

we find its transactional nature is similar to the way a conversational agent operates.

The emotion labels to be detected computationally in text may be derived

from the various psychological theories of emotion. For example, Ekman [1992],

argues that humans have evolved emotions as a means for adapting to their envi-

ronment. In his theory, there are six basic emotions which all humans share: happi-

ness, sadness, fear, anger, disgust, and surprise. Plutchik [1980] also argued for the

primacy of emotion for evolutionary survival. In his theory there are eight primary

emotions: anger, anticipation, joy, trust, fear, surprise, sadness and disgust. Some

are polar opposites of one another (e.g., joy-sadness) and emotions can be combined

and their intensity measured. This trend towards measurability and continuity in

emotional models was solidified by Russell’s Circumplex Model of Affect [Russell,

1980]. In this model, emotions are arranged in a circle around two axes, arousal

and valence. This created a continuous space in which emotions could be plotted

according to their value along these two scales. Thus, there are some computational

models which attempt to detect continuous values of emotional valence or arousal

e.g., [Hutto and Gilbert, 2014, Tausczik and Pennebaker, 2010a, Socher et al., 2013].

2.3 Detecting Emotion in Naturally Occurring Conver-

sations

This review covers the methods and models used to extract sentiment (fine-grained

and coarse) in conversational agents and, as such, conversations can originate from
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speech or from typing. Depending on the originating modality, the efficacy of de-

tecting emotion is likely to be very different. For example, in business email com-

munications, people are likely to perceive negative emotions with greater intensity

than they do positive emotions [Byron, 2008]. And in social media, people present

different online identities that impact the impression that others have of them [DiM-

icco and Millen, 2007]. Many people read a message and infer the emotions that are

conveyed by the sender. The challenge is whether an conversational agent can detect

the emotions that are disclosed by a message accurately and automatically. Opinion

mining of product reviews and social media are practical applications of this chal-

lenge and they have motivated much of the research behind computational models

of sentiment detection. On the other hand, for some conversational agents, e.g.,

Amazon Alexa, improving human interaction with the agent while using naturally

occurring conversation is an active research project Ram et al. [2018].

However, there are three major differences between text and in-person inter-

action: (1) time-sensitivity (i.e., text is less sensitive than in-person), (2) interactiv-

ity (i.e., during in-person interaction, the listener can change the message as it comes

out), and (3) incrementalism (i.e., text interaction largely appears all at once). From

these, we can infer that for naturally occuring conversations, agents must be able

to process continuous input in real time while updating their sentiment predictions

incrementally. We now examine some of the challenges for detecting emotion in text

originating in naturally occurring conversation, drawing from the field of Conversa-

tional Analysis (CA), a qualitative method for studying human social interaction.

For this discussion, we review the works of Edwards [1999] in Emotion Discourse

and Hoey and Kendrick [2017] in Conversation Analysis.

As discussed in Section 2.2, emotions are complex reactions stemming from

natural bodily experiences, older than language and express genuine feelings rather

than thought. Edwards [1999] writes that in interpersonal, naturally occurring

conversations, emotions are invoked and descriptively built in such conversations.

Emotion discourse analysis gives us a feel of how events and a person’s state of mind

leads them to talking of temporary mental states by using emotional categories such
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as “angry” or “jealous” to situate the conversation. Rather than placing the focus

on the semantics of the emotion word a person uses, the emphasis now is on what

people are doing when they use these words. In his paper, Edward describes how

emotion are a means for studying how actions, reactions, motives, dispositions and

other psychological categories are assembled as part of a narrative and can explain

human conduct. In this view, emotional mental states do not cause what a person

talks about; the categories and concerns of the discourse are a reflection of their

mental state.

We draw two conclusions from Edwards’ paper. An emotional state can

be inferred from not only the words a person uses but also in their description

of the situations that have led to the emotion. This observation aligns with the

appraisal theory discussed earlier and also suggests that a computational model

of emotion detection could use a transcript of naturally occurring conversation to

capture the structure of the chain of actions leading to an emotion Balahur et al.

[2011]. The second conclusion is that people can use emotional words to do things

other than describe emotion, like supporting or undermining the ”sensibility” of their

(or another) person’s actions. This suggests that a computational model of emotion,

to be completely accurate, would have to capture the dynamic range of rhetorical

techniques and narrative sequences afforded to the speaker. To our knowledge,

no such computational model yet exists, although researchers in knowledge-based

computing attempt to do so: see for example, Balahur et al. [2011], Poria et al.

[2014]. Most of the other models in this review are therefore limited in the range

and resolution of emotions that they can accurately detect, typically to: varying

degrees of positivity e.g., Curry et al. [2018], Sun et al. [2019] or to a subset of

Ekman’s basic emotions (i.e., happiness, sadness, fear, anger, surprise, and disgust)

e.g., IBM [2019], Fraser et al. [2018], Mazzoleni et al. [2017]. In the models we

review, a fully incremental model of emotion detection remains a challenge.

While it remains a challenging and interesting research problem to recognize a

large variety of emotions and to do so incrementally, it may not always be necessary.

For example, in call centers it may be sufficient to recognize negative and non-
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negative emotions to improve the quality of services. Lee et al. [2005] describes

a computational model in which discourse is combined with lexical and acoustic

spoken language information to infer positive or negative emotion for a call center

application. By constraining the domain to call-center dialog and fusing several

spoken language features, the researchers showed improved emotion recognition for

this specific domain.

In summary, there are subtle but distinct differences between how human

express emotions depending whether they use text messages or inter-person, natural

conversation. When conversing in person, emotions may be revealed incrementally,

evolving from a course of actions. In the general case, computational models will

have a difficult time detecting entire range of evolving emotions. However, most

models to not aspire to such a general level of performance and the agent typically

limits the detected emotions to a set of categories (e.g., Ekman’s six emotions).

2.4 Extracting Sentiment from Features

In the following sections, we summarize prior research in computational models of

sentiment analysis and organize it by the assumptions made with respect to the

sentiment-bearing features in the natural language. Some approaches use features

from multiple categories; we point these out.

2.4.1 Bag-of-Words Models

In this section, we review investigations that make the assumption that words con-

tain sentiment-bearing information. In this category are models in which the fea-

tures are unigram, bi-gram or tri-gram terms. The characteristic that all models in

this category share is that the terms are independent from one another; this is called

a bag-of-words (BOW) model. More generally, n-gram models assume context or

grammatical structure are important characteristics and can be found in the syntax,

ontological, and language models categories.
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Amolik et al. [2016] describe a model in which the features are Twitter key-

words (unigram approach). Input is presented to a Näıve Bayes (NB) and Support

Vector Machine (SVM) classifiers which predict three classes: pos, negative, and

neutral. The class labels were manually entered. The model was trained on 1,800

tweets (600/label). Extracted features are individual words, after removing stop

words, punctuations, and repeated chars. The researchers concluded that the SVM

classifier was more accurate than NB and claim 75% and 65% accuracy respectively.

Lee et al. [2005] explore the detection of domain-specific emotions using lan-

guage and discourse information in conjunction with acoustic correlates of emotion

in speech signals. The experimental design objective is to detect negative and non-

negative emotions using spoken language data obtained from a call center applica-

tion. Most previous in emotion recognition have used only the acoustic information

contained in speech. In their investigation, a combination of three sources of in-

formation: acoustic, lexical, and discourse is used for emotion recognition. In their

model, acoustic and discourse features are computed separately. Three classifiers

each take the acoustic, language, and discourse features and their output predic-

tions are averaged. Admittedly, their input domain is highly constrained and they

assumed no ASR transcription errors, which is highly unlikely in practice. Under

these conditions, the researcher reported that significant improvements can be made

by combining these information sources in the same framework.

In [Pang et al., 2002], the researchers try to gain a better understanding of

how difficult sentiment classification is by investigating whether common machine

learning (ML) techniques outperform human evaluations. They found that for the

problem of classifying a document by overall sentiment, standard ML techniques

(SVM, Naive Bayes, Maximum Entropy) outperformed human baselines, but do not

perform as well as topic based categorization.

2.4.2 Sentiment Lexicons

A sentiment lexicon, is a database of lexical units for a language along with their

sentiment orientations. The orientations may be expressed as a set of tuples, e.g.,

22



(lexical unit, sentiment). The lexical units may be represented as words, word senses,

phrases, etc.. Sentiment, on the other hand, may be represented in several ways, for

example: fixed categorization into positive, negative, a finite number of graded sets,

e.g., strongly positive, mildly positive, neutral, mildly negative, strongly negative,

or a real value representing emotional valence in an interval such as [−1, 1] [Ahire,

2014].

Sentiment lexicons associate words in a document with a sentiment “score”

[Hutto and Gilbert, 2014, Svetlana et al., 2014, Tausczik and Pennebaker, 2010a].

Balahur et al. [2011] analyzes the syntactic structure of the text and consults

domain-specific data banks to capture and store the structure and semantics of

events in the text, and use it to predict the emotional responses triggered by a

chain of actions. In either of these approaches, language-specific knowledge and

hand-crafted lexicons are required for these techniques to be successful. This ap-

proach has limitations similar to that of the statistical approaches: different types

of text (e.g., blogs, newspaper articles, movie reviews, tweets) require specialized

methods [Balahur, 2013, Pang et al., 2008] and cannot be generalized. Finally,

some approaches to sentiment analysis combines sentiment lexicon and statistical

approaches. Pang et al. [2002] train several classifiers using features extracted from

the text using natural language processing tools; additional examples of the hybrid

approach can be found in [Calvo and D’Mello, 2010].

The lexicons may be hand-crafted using a dictionary or a corpus. Multiple

annotators are used and the inter-annotator agreement is calculated. The major

advantage of this approach is that human evaluators use their innate judgment to

label the data. From all the annotations for a give unit, statistics can calculated

which is helpful in identifying ambiguity (barring human error). Linguistic Inquiry

and Word Count (LIWC) [Pennebaker and Francis, 1996, Tausczik and Pennebaker,

2010a, Pennebaker et al., 2015a] is a fee-based textual analysis tool that uses human

“judges” to evaluate sentiment. It does much more than provide sentiment scores

and its creators psychometrically validated the LIWC dictionaries to ensure that

values across LIWC categories have been shown to correlate with big-five personality
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traits: openness, conscientiousness, extraversion, agreeableness, and neuroticism.

VADER [Hutto and Gilbert, 2014] is the sentiment analysis function in the

natural language processing toolkit (NLTK) for the Python programming language.

VADER is a sentiment lexicon tuned to microblog-like contexts sensitive to polarity

and sensitivity. The lexical features are combined with five syntactical and gram-

matical rules that embody how humans express intensity. The researchers report

that its sentiment lexicon is gold-standard quality as it has been validated by hu-

mans. They distinguish it from LIWC in that they report improved performance

in social media contexts and that is an open-source tool. The researchers evaluated

Vader against several other sentiment lexicon models (e.g., LIWC, GI, ANEW; see

below) using standard precision, recall and F1 metrics on four different test sets: so-

cial media, amazon product reviews, Pang et al. [2002] movie reviews, and NY Times

editorials. Vader performed better than all other methods in every test domain.

The disadvantage of the manually created lexicons is the sheer size of a typical

language corpus; the Oxford English Dictionary, 2nd Edition contains over 290,000

entries [Oxford University Press, 2020]. In response, automatic methods to create

sentiment lexicons have been developed. The typical approach is to create a set of

starting seed words with known sentiment orientation, and then expand that seed

set using an already existing lexical resource. One such freely-available approach

is SentiWordNet [Esuli and Sebastiani, 2006], an open-source lexical resource for

opinion mining. It assigns to each WordNet synset three sentiment scores: positivity,

negativity, objectivity.

There is a trade-off in accuracy between hand-crafted approach and the auto-

matic approach. Striking a balance between the two is an active area of research. In

one such approach, Hamilton et al. [2016] combine domain-specific word embeddings

with a label propagation framework to induce accurate domain-specific sentiment

lexicons using small sets of seed words. The researchers report state-of-the-art per-

formance and that their purely corpus-based approach outperforms methods that

rely on hand-curated resources such as WordNet.

Further more, sentiment lexicon performance can be improved by under-
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standing deeper lexical properties such as parts-of-speech; this provides more context

awareness. A lexicon can be fine-tuned using the process of word-sense disambigua-

tion (WSD), which identifies which sense of the word is being used. The VADER

researchers state that it is a goal to provide such a fine-tuned lexicon.

Other sentiment lexicons that have been widely-used include: Harvard’s Gen-

eral Inquirer (GI), designed as a tool for content analysis, providing sentiment po-

larity; Hu and Liu [2004] made publicly available a binary polarity sentiment lexicon

of nearly 6,800 words; Affective Norms for English Words (ANEW) a valence-based

lexicon [Bradley and Lang, 1999]; SenticNet, a publicly available semantic and affec-

tive valence-based lexicon for concept-level opinion and sentiment analysis [Cambria

et al., 2012a]. A detailed discussion of these is contained in [Hutto and Gilbert,

2014, 217]. Kiritchenko et al. [2014] describes a sentiment analysis system which

uses generally-available, manually created sentiment lexicons combined with auto-

matically generated social media-specific sentiment lexicons. These were used to

detect binary emotion in short, informal texts.

2.4.3 Topics as Features

Topic modeling use a bag-of-words approach to discover the topics contained in a

collection of documents. The idea is that the topic distribution in a document can be

correlated with emotion. For example, the extent to which one talks about different

topics (i.e., the topic proportions) when recounting a pleasurable experience is likely

to be significantly different than when talking about an unpleasant experience. Thus

we can infer emotion from the topics we talk about. This, in theory, might avoid

some of the challenges using language features whose sentiment polarity changes

depending on context. We discuss topic modeling in detail in Chapter 3, Section 3.2.

In this section, we review other models which applied topic modeling to extract

sentiment.

Shah et al. [2013], describe a speech-based emotion recognition framework

based on Latent Dirichlet allocation (LDA). The system finds topics using incoming

speech frames rather than from the text and uses an SVM classifier to identify seven
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emotions. Their model used test data from EMO DB, in which actors spoke highly-

exaggerated emotions. For this non-naturalistic experiment, the researchers report

their model achieves a classification accuracy of 80.7%. In an extension of this work,

Shah et al. [2015] use a novel acoustic feature extraction approach in which a super-

vised replicated softmax model is proposed to learn naturally discriminative topics.

Topic are then used to train a classifier for emotion recognition of four categories:

sad, happy, angry, and neutral. The researchers report a 16.75% improvement over

other methods.

Lin and He [2009] propose a novel probabilistic modeling framework based

on LDA, called joint sentiment/topic model (JST), which detects sentiment and

topics simultaneously from text. Unlike other approaches which often require labeled

corpora for classifier training, the proposed JST model is fully unsupervised. The

model has been evaluated on the Pang et al. [2002] movie review dataset to classify

the review sentiment polarity. To achieve performance close to 2009 ”state-of-the-

art” (i.e. BOW/SVM, 90%), requires incorporating prior information. While the

authors insist this does not violate, their ”unsupervised” model categorization, it

does require selecting sentiment-bearing words (”paradigm words”).

2.4.4 Using Semantics

In this section, we review approaches that assume sentiment can be correlated with

the context or meaning of words. This is done by encoding a word as a vector

in a process called word embeddings. These dense vectors generalize better and

tend to do a better job of capturing synonymy then sparse vectors (representing

a word as a “hot vector” whose dimension is all the words in the lexicon). In

this way, the word vector can capture the similarity between, for example, “car”

and “automobile” [Jurafsky, 2000]. One may think of these vectors as representing

similarity as distance in semantic vector space.

Mazzoleni et al. [2017] describe a simple way to detect emotional states using

word embeddings. Their model assigns the percentage of Ekman’s basic emotions

(“anger”, “disgust”, “sadness”, “happiness”, “fear”, “surprise”) to short sentences.
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The method has been tested on a collection of Twitter messages and on the SemEval

2007 news headlines dataset. The entire period is expressed as the mean of the

word’s vectors that compose the phrase, after preprocessing steps. The sentence

representation is finally compared with each emotion’s word vector, to find the

most representative with respect to the sentence’s vector. Their method predicts

“disgust”, “happiness”, “sadness”, and “surprise” labels with an average F1 = 55;

it struggles with “anger” and “fear” as they had no labels in the training set. The

method performs better predicting binary polarity: average F1 = 77.

Kim et al. [2010] describe a study which estimates a categorical and dimen-

sional model for the recognition of four affective states: “anger”, “fear”, “joy”, and

“sadness” that are common emotions in three datasets: SemEval-2007 “Affective

Text”, ISEAR (International Survey on Emotion Antecedents and Reactions), and

children’s fairy tales. In the first model, WordNet-Affect is used as a linguistic

lexical resource and three dimensionality reduction techniques are evaluated: La-

tent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis (PLSA), and

Non-negative Matrix Factorization (NMF). In the second model, ANEW (Affective

Norm for English Words), a normative database with affective terms, is employed.

Experiments show that a categorical model using NMF results in better perfor-

mances for SemEval and fairy tales, whereas a dimensional model performs better

with ISEAR.

Balahur et al. [2011] describe a model that utilizes semantics, semantic lexi-

cons, syntax, and an ontology to detect emotion in text. What makes their approach

stand out is the observation that detecting emotion in text is hard because expres-

sion of affect results from interpretation of meaning and from context as it interacts

with the text. Systems that operate that detect emotion at the word level and

cannot express what a human would perceive as emotion. Their model, EmotiNet,

provides a way to capture and store the structure and semantics of events and pre-

dict the emotional responses triggered by a chain of actions. It is based on the

Appraisal psychological theory of emotion, discussed in Section 2.2.

The model was evaluated using real life situations drawn from the “family
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situations” domain of the ISEAR data bank. Performance was better than chance

and the model is more flexible than systems which are sensitive to the vocabulary

they are trained on. However, performance of the model is limited by the quantity

of knowledge stored in the knowledge base, which requires further extension in order

to increase the precision of emotion classification and its successful applicability to

domains other than family situations.

Strapparava and Mihalcea [2008] describes experiments to automatically an-

alyze emotions in text. The researchers discuss construction of a large data set for

Ekman’s six basic emotions. They compared Sentiment and Semantic approaches to

a baseline Naive Bayes classifier. For the Sentiment Lexicon, WordNet-Affect was

used. For the semantic model: LSA; LSA augmented with words from WordNet

synset; LSA augmented with WordNet synset and sentiment labels from WordNet-

Affect. The evaluation was carried out on a dataset developed for SemEval 2007

(news headlines). The researchers reported best results using LSA + WordNet-

Affect: F1 = 17.57 (recall: 90.22; precision: 9.77; this suggests the model has a high

rate of false positives).

Turney [2002] discusses a simple unsupervised learning algorithm for classi-

fying reviews as recommended (thumbs up) or not recommended (thumbs down).

The classification of a review is predicted by the average semantic orientation of the

phrases in the review that contain adjectives or adverbs. The semantic orientation

of a phrase is calculated as the mutual information between the given phrase and

the word “excellent” minus the mutual information between the given phrase and

the word “poor”. A review is classified as recommended if the average semantic

orientation of its phrases is positive. The algorithm achieves an average accuracy

of 74% when evaluated on 410 reviews from Epinions, sampled from four differ-

ent domains (reviews of automobiles, banks, movies, and travel destinations). The

accuracy ranges from 84% for automobile reviews to 66% for movie reviews.
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2.4.5 Sentiment from Syntactic Structure

As demonstrated by Strapparava and Mihalcea [2008], unsupervised, semantic ap-

proaches alone usually perform no better than supervised bag-of-words models de-

pending on the test database, but when augmented with additional features, show

improvement. However, neither of these approaches can express the meaning of

longer phrases properly, without using a compositional approach. In this section,

we review models that use properties of the language grammar to infer sentiment.

On one hand, these approaches are more language-specific, but this allows a model to

use syntactic properties to detect sentiment of an aspect of a product, for example.

Socher et al. [2013] introduce a Sentiment Treebank. It includes fine grained

sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences. The

model is a Recursive Neural Tensor Network (RNTN) trained on the Treebank. It

is a deep neural network (DNN) that takes a phrase of any length and represents

it as word vectors and a parse tree. It computes vectors for higher nodes in the

tree using same tensor-based composition function. The researchers report that

the model pushes the state-of-the-art performance (as of 2013) in single sentence

positive and negative classification from 80% up to 85.4%. Fine-grained, 5-class

sentiment labels for all phrases reaches 80.7% accuracy, an improvement of 9.7%

over BOW baselines. The researchers claim that it is the only model that can

accurately capture the effects of negation and its scope at various tree levels for

both positive and negative phrases. A demo and the source code for the Sentiment

Treebank and model is available at [Chuang et al., 2013].

Kiritchenko et al. [2014] describe their model which participated in the

SemEval-2014 Task 4 competition on aspect-level sentiment analysis. The com-

petition challenges were to detect: aspect categories, sentiment towards aspect cat-

egories, aspect terms, and to detect sentiment towards aspect terms in the laptop

and restaurant domains, respectively. The researchers approached this as a “feature

engineering” problem, hand-crafting word, lexicon and syntactic features specifically

for this challenge. For word features, unigrams, bigrams were used. For lexicon fea-
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tures, they augmented the supplied training and development dataset with a large

corpora of restaurant and laptop reviews. These were used to create: sentiment

lexicons for laptops and restaurants; word-aspect association to identify aspect cat-

egories of restaurants; word-clusters were generated from the restaurant reviews and

publicly available tweets. For syntactic features they used: part-of-speech tags, and

for context, cluster ngrams. An SVM classifier was used to discriminate Aspect

Term Polarity (pos, neg, neu, conflict), Aspect Category Detection (food, price,

service, ambiance, misc) and Aspect Category Polarity (pos, neg).

The evaluation used standard machine learning metrics (accuracy, precision,

recall, F1) and across the subtasks, their lowest score was F1 : 0.68 and highest,

F1 : 0.88. However, the point of the challenge is to see how the author’s submission

compared to the other thirty. In that, their submissions stood first on 3 out of 4

subtasks, and within the top 3 best results on all 6 task-domain evaluations. This

demonstrates the importance feature engineering for the benefit of solving a specific

sentiment analysis task.

Agrawal and An [2012] used semantic and syntactic relationships to detect

Ekman’s six basic emotions. Unlike the approach of Kiritchenko et al. [2014], the

investigators do not rely on a hand-crafted lexicons which they claim give the ability

to generalize beyond the training data set. Their basic approach is as follows. In the

pre-processing stage, sentences are parsed for POS-tagging and syntactic dependen-

cies to identify context (e.g., adj complements: looks, beautiful; adjective modifiers:

meat,red; and negation: happy,not). Semantic-relatedness computes emotion vec-

tor of affect-bearing words by calculating relatedness to emotion concepts. In the

syntactic stage, phrase-level analysis uses context to adjust the emotion vectors.

Sentence analysis aggregates emotion vectors to label the sentence’s emotion.

The model was compared against: Keywords(WordNet-Affect), other seman-

tic models: Latent Semantic Analysis (LSA), Probabilistic LSA, Negative Matrix

Factorization (NMF). It was tested on ALM (Fairy-tales) dataset in which four

classes were predicted: “Happy”, “Sad”, “Anger-disgust”, “Fear”. The average F1:

0.61. ISEAR (persons with different cultural backgrounds asked about their emo-
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tional experiences) which has seven emotional labels but only four used: “Joy”,

“Sad”, “Ang-Dis”, “Fear”. The average F1: 0.55. ISEAR - all 7 emotions ( “Joy”,

“Sad”, “Anger, “Fear”, “Disgust”, “Shame”, “Guilt + Average”). The average F1:

0.43. This model performed better than the semantic approaches it was compared

against, thus providing some insight as to the level of performance that can be

expected in an unsupervised approach which augments semantic-relatedness with

context derived from analyzing syntactic-dependencies.

The IBM Tone Analyzer [IBM, 2019], a fee-based service, derives emotion

scores from text, using a stacked generalization-based ensemble framework; stacked

generalization uses a high-level model to combine lower-level models to achieve

greater predictive accuracy. Features such as n-grams (unigrams, bigrams, and

trigrams), punctuation, emoticons, profanity, greetings (such as “hello”, “hi” and

“thanks”), and sentiment polarity are fed into machine-learning algorithms to clas-

sify four emotion categories: ’“anger”, “fear”, “joy”, “sadness”.

The training set was labeled in a human evaluation of 200,000 sentences

culled from debate forums, speeches, and social media. The model was evaluated

using the ISEAR dataset with a reported avg F1 : 0.41 against a 0.37 claimed

prior state-of-the-art. It was also evaluated using SEMEVAL with a reported avg

F1 : 0.68 against a 0.63 claimed prior state-of-the-art.

2.4.6 “Common Sense” (Sentic) Computing

In this section, we review the concept of sentic computing. The concept of Sentic

computing is discussed in detail by Cambria and Hussain [2012] in their book Sentic

Computing: Techniques, Tools, and Applications. It relies on the ensemble appli-

cation of “common sense” computing and the psychology of emotions to infer the

affective information associated with natural language. What led to sentic comput-

ing is the need for better accuracy when switching between domains. The idea is to

use concepts to allow the system to perform opinion mining across domains. Key

to its processing are the linguistic dictionaries which are used to interpret emotion-

bearing indicators in the text. The processing also uses a parser which deconstructs
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text into concepts using a lexicon based on concepts extracted from knowledge

databases; these are then fed into a vector space of common-sense knowledge, called

AffectiveSpace. Concepts are used to find similarity with the knowledge already

stored in AffectiveSpace. The AffectiveSpace is clustered on the Hourglass psycho-

logical model of emotion [Cambria et al., 2012b], inspired by Plutchik. The idea is

to reason on the semantic and affective-relatedness of natural language concepts in

the input and in the AffectiveSpace and use this infer emotion.

Poria et al. [2014] describes these concepts in detail and describes an exten-

sion to improve Cambria’s original model. This model adds discourse patterns to

allow the sentiment to flow from concept to concept based on the dependencies in

the input text to gain a better understanding of the conceptual role of each concept.

Using this, the model generate an emotional valence polarity based on the speaker’s

feeling. The model was tested on a movie review data base of Pang et al. [2002] and

the researchers reported emotion polarity prediction accuracy results that exceeded

the then state of the art (by 0.8%) reported by Socher et al. [2013]. The model was

also tested on a corpus of product reviews from seven other domains and achieved

an accuracy of 87%, although a reference accuracy does not exist for comparison.

Precision, recall, and F1 classification metrics were not given.

From this experiment, sentic computing, achieves results superior to BOW

models at least when detecting emotional polarity (i.e., positive, negative). It

achieves this at the cost of utilizing rich knowledge databases which represent an ag-

gregation of conceptual and affective information available from the Web. Given the

claimed richness of the model and the fact that uses a categorical and dimensional

psychological emotion theory, we expected an evaluation of the model’s ability to

predict fine-grained emotions, as Socher et al. [2013] did. In addition, more chal-

lenging sentiment analysis problems, such as aspect and category detection, are not

explored by this model.
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2.4.7 Pre-trained Language Models

We saw in the previous section, an example in which feature engineering can signif-

icantly improve results is a specific language task: aspect-based sentiment analysis.

The goal of pre-trained language models is to automatically discover the features

that are needed to solve a language problem and, hopefully, push the state-of-the-art

performance levels while doing so. More formally, given a context, a language model

predicts the probability of a word occurring in that context. They do so by captur-

ing deep contextualized word representations that captures syntax and semantics

and how these uses vary across language contexts. This is effective because this

method forces the model to learn how to use information from the entire sentence

to infer the missing words.

Although there are several examples of such models under investigation, we

will look at two of the most notable examples. The first is ELMo (Embeddings from

Language Models) [Peters et al., 2018]. The word embeddings learned are from a

large text corpus and then applied to a number of existing models for language tasks.

Of particular interest to us is the result when ELMo was applied to the fine-grained

sentiment analysis task in the Stanford Sentiment Treebank that was described in

Section 2.4.4. ELMo word embeddings were applied to the biattentive classification

network (BCN) used in [McCann et al., 2017], which previously achieved state-

of-the-art-performance. The ELMo word embeddings replaced the original input

embeddings to BCN and achieved a 1% increase performance for the fine-grained

sentiment analysis task.

The second model, BERT (Bidirectional Encoder Representations from Trans-

formers), improves on ELMo by training deep bidirectional representations from

unlabeled text by jointly conditioning on both right and next context in all layers

of the network [Devlin et al., 2018]. In other words, it is deeply bidirectional, as

opposed to ELMo which uses the concatenation of independently trained left-to-

right and right-to-left LSTMs to generate features for the downstream task. The

approach to using BERT for a particular language task is to “fine-tune” the model
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by swapping out the appropriate inputs and outputs; the general pattern for do-

ing so is described in the paper. Sun et al. [2019] describe fine-tuning BERT for

aspect-based sentiment analysis. After doing so, the authors report performance

accuracy significantly exceeding benchmark methods used in SemEval-2014 paper;

their source code, as well as BERT and ELMo, is freely-available.

The paper that introduced BERT was published in 2018, as was ELMo. The

results reported so far in the research community have been highly-encouraging as

the models seem to be setting new performance benchmarks in natural language

processing. Anecdotally, BERT bests (acc. 94%) the performance of two models:

one that uses word embeddings and POS tags as features to a logistic regressions

classifier (acc. 91%) and one that uses a BOW model whose terms are weighted

by their importance as input to a convolutional neural network,(acc. 85%). On the

other hand, little has been published about which tasks these models are particularly

good at and what representations they are learning to make this so.

2.4.8 Using Audio Features in the Speech Signal

Although the primary focus of this chapter is detecting emotion in conversational

text, we now explore the extent to which speech transmits affective information from

the paralinguistic features of speech (i.e., how it is being said). Humans seem to be

able to infer basic emotions from prosody and non-linguistic vocalization (e.g., cries

or laughs) [Juslin and Scherer, 2005]. Calvo and D’Mello [2010, Table 2] compare

selected investigations where voice was used to recognized affect and we highlight

some of the findings as follows. Schuller et al. [2005] describe an approach where

acoustic and linguistic features are fused and presented as input to an ensemble

classifier. While the authors demonstrate that fusion approach offers improved

performance, they show this only when the acoustic features are speaker-dependent.

Furthermore, the researchers used “acted emotions” when extracting the acoustic

features, which may have exaggerated the affect in the voice signal, making it easier

to detect.

Acoustic features are also used to detect emotion; research has shown that
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parameters such as pitch, intensity, rate of speech and voice quality are important

features in detection emotion [Murray and Arnott, 1993]. Lee et al. [2005] fuse

acoustic correlates of speech, lexical, and discourse data to predict positive and

negative emotion in call center dialogues. They measured classification accuracy and

found that best performance was achieved when both acoustic and language sources

were combined. Furthermore, performance varied by gender, with classification

accuracy higher for those reporting as females. When acoustic-only features were

used, accuracy was approximately 10% lower than when language alone was used.

This suggests the primacy of the language channel.

Poria et al. [2017] is an excellent review of recent unimodal and multimodal

techniques for affective computing. In their review, the researchers point out that the

acoustic features that are used to detect emotion are dependent on the personality

traits of a person. In addition, the review also supports the results described in

Schuller et al. [2005]; the speaker dependent approach gives much better results than

the speaker independent approach. However, the researchers report that the best

accuracy achieved for speaker-independent emotion detection using acoustic features

is approximately 81%; this is about 10-15% lower than benchmarks reported when

using text. Human ability to recognize emotion in speech audio is approximately

60%; sadness and anger are more easily detected than joy and fear. [Scherer, 1996].

Thus, even though the computational approach appears to outperform hu-

mans, the results also suggest that acoustic features alone is insufficient to accurately

detect emotion in conversational language. This is consistent with the findings de-

scribed by Krauss et al. [1981] who suggest that there is no support for the assump-

tion that nonverbal communications for the primary basis for observing affect.

2.5 Challenges for Sentiment Analysis

There are several areas which can confound a sentiment analysis system and we

present the main one as follows. For further a comprehensive review, Mohammad

[2017] discusses several problems that are the focus of recent investigations in sen-
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timent analysis.

2.5.1 Language Structure

The prior polarity of a word can be used to deter whether a word conveys positive

or negative emotion be analyzing its prior polarity. However, the prior polarity

can change depending on the context in which the word appears. Further, negative

words can be used in phrases that express positive valence and vice versa. Detecting

negation in phrases is not always syntactically easy. There may be phrases in which

one word in the phrase is positive and at least one word is negative (e.g., “happy

accident”). Negation of positive words often make them negative, yet make negative

words less negative (not positive). There are subtle aspects of negation that are still

under investigation. For example: how to people in different cultures use negation

differently; to what extent does a given negator impact sentiment more and which

ones less? Other areas that remain unexplored include investigating how degree

adverbs (barely, moderately, slightly) and intensifiers (too, very) impact sentiment

of the predicate [Kiritchenko and Mohammad, 2017].

2.5.2 Reliability of the Ground Truth

Social media, movie, and product reviews often contain sentiment indicators such as

the number of stars, emoticons; for these there are labeled datasets, e.g., [Pang and

Lee, 2012]. The ground truth is not always readily available for sentiment occurring

in natural language, and as a result the approach is to “crowdsource” the evaluation,

(see Chapter 4 Section 4). However, two people, reading the same text in different

contexts will come to different conclusions about sentiment, especially on borderline

cases. Thus it is important for sentiment analysis researchers to report in detail

what measures were used to determine and ensure reliability of the ground truth,

through agreement of metrics, for example.
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2.5.3 Speech Transcription Errors

Transcription errors from the ASR can affect the accuracy of the sentiment analy-

sis computational model. State of the art ASR systems typically have a WER of

about 15% which is still means one word our of eight will be either deleted, sub-

stituted, or superfluously added to the transcription. In noisy environments the

error rates can be significantly higher, thus improvement of sentiment classifica-

tion on erroneous ASR transcription is necessary for a practical intelligent agent.

There few approaches that are discussed in the literature. Dumpala et al. [2018]

discusses system that combines transcripts with audio and visual modalities avail-

able during training to improve the ASR transcription during testing. Chen et al.

[2017] discusses how to reduce ASR errors in a chatbox using sequence-to-sequence

model. Sheikh et al. [2017] discusses the use of named entity recognition to improve

speech recognition when its input contains out-of-vocabulary words, most of which

are proper nouns.

2.5.4 Domain Generalization

Sentiment analysis models can be sensitive to the domain they were trained on. This

implies the need for a large amount of training data for a multi-domain model. One

reason that there can be words that have different sentiment polarities depending

on the domain. Cai and Wan [2019] gives an example in which the phrase “It is

easy” denotes positive sentiment and when used in the domain of movie reviews, it is

negative: “The end of the movie was easy to see coming”. The researchers leverage

the attention mechanism described in [Vaswani et al., 2017] which allows models to

focus on the more important words and phrases. The goal of Cai et al. is to pay

more attention to significant words in a text and identify their sentiment polarities

in each specific domain. Their work builds upon Multi-task learning [Caruana, 1997]

which has been used to solve multi-domain sentiment classification.
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2.6 Summary

In this chapter, we discussed the primary models of psychological emotion that

inspire many of the computational models of sentiment analysis. We then re-

viewed representative computational models, organized by the assumptions they

make about the emotion-bearing features of the text: bag of words, sentiment lex-

icons, topic, and semantics. We also reviewed examples from Sentic Computing

that use a richer, knowledge-based approach. Finally, we discussed two influential

pre-trained language models, ELMo and BERT which are at the forefront of setting

new performance benchmarks in language processing. We also showed how BERT

was applied to aspect-detection.

We also reviewed the contribution of using audio and prosodic features avail-

able in the speech signal. When the audio channel is available, recent research

suggests that it can improve the accuracy of emotion detection. However, maxi-

mum performance is achieved when the model is trained on an individual speaker’s

audio characteristics. For a general population conversational agent, this of course is

impractical. However, for an agent situated in a companion robot, individualization

to the person’s speech characteristics is entirely possible.

We discussed the main challenges in sentiment analysis. The ground truth in

conversational text is hard to come by; thus nearly every model has been trained and

tested on heavily opinion-bearing text (e.g., movie reviews, product reviews, news

headlines, social media). Reliably labeling conversational text is difficult because

several humans may come to different conclusions given the same text to analyze.

Thus ensuring inter-rater reliability is important. Alternatively, collecting all the

ratings, reliable or not, and measuring the model’s deviation from the rater mean

might be a better way to evaluate model performance.

Natural language is context sensitive and sentiment often arises from the

context in which it is situated. We noted better performance in models that take

context into account, such as the syntactic models which were state-of-the-art in

2013 until the pre-trained language models arrived on the scene in 2018.
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We observe that most of the peer-reviewed models were not developed to

analyze conversational text; they are trained and tested on data sets that have a

great deal of sentiment-bearing text. This presents a challenge when building a

companion robot or a spoken dialog system. On the other hand, the IBM Tone

Analyzer, for which there are no peer-reviewed publication, is an exception. It is

designed for conversation applications such as a call-center. Fraser et al. [2018] used

the IBM Tone Analyzer to detect “joy”, “anger”, and “sadness” as a user interacted

with an NPC (non-player character) in a video game. The idea was to see if a

conversational AI systems without emotional dialogue leads to less engagement (at

least in a role-playing game). The researchers found that users spent longer in the

conversation when using the emotional version.

We also note the existence of the Alexa Challenge competition [Ram et al.,

2018]. In this competition, participants are to design a dialogue system that engages

the users for as long a period as possible. Some competitors included an emotional

score to help evaluate the user utterance and the system’s response. The dialogue

system described by Curry et al. [2018] used the ratio of users’ turns containing some

predefined key phrases such as“that’s pretty cool”, “you’re funny”, “gee thanks” or

“awful”, “you’re dumb” together with the sentiment polarity of those turns as the

approximation of user feedback and engagement. The system used VADER to infer

a continuous level of positivity in the user’s utterance. Their emotional dialogue

system achieved consistently high user ratings and long conversations throughout

the semifinals period of the competition.
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Chapter 3

Inferring Emotional State in

Persons with Parkinson’s

Disease

Individuals with Parkinson’s Disease (PD) often exhibit facial masking (hypomimia),

which causes reduced facial expressiveness. This can make it difficult for those who

interact with the person to correctly read their mental state and can lead to problem-

atic social and therapeutic interactions. In this chapter, we develop a probabilistic

model for an assistive device which can automatically infer the mental state of an

individual with PD using the topics that arise during the course of a conversation.

We envision that the model can be situated in a device that could monitor the

emotional content of the interaction between the caregiver and the person living

with PD, providing feedback to the caregiver in order to correct their immediate

and perhaps incorrect impressions arising from a reliance on facial expressions. We

compare and contrast two approaches: using the Latent Dirichlet Allocation (LDA)

generative model as the basis for an unsupervised learning tool, and using a human

crafted sentiment analysis tool, the Linguistic Inquiry and Word Count (LIWC).

We evaluated both approaches using standard machine learning performance met-

rics such as precision, recall, and F1 scores (i.e., harmonic mean of precision and
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recall scores). Our performance analysis of the two approaches suggests that LDA is

a suitable classifier when the word count in a document is approximately that of the

average sentence, i.e., 13 words. In that case the LDA model correctly predicts the

interview category 86% of the time and LIWC correctly predicts it 29% of the time.

On the other hand, when tested with interviews with an average word count of 303

words, the LDA model correctly predicts the interview category 56% of the time

and LIWC, 74% of the time. Advantages and disadvantages of the two approaches

are discussed.

3.1 Introduction

Parkinson’s disease (PD) is a universal disorder with an incidence ranging from

9.7 to 13.8 per 100,000 population per year [WHO, 2006]. In the US, PD follows

Alzheimer’s disease as the most common neurodegenerative disorder, affecting at

least 500,000 Americans and perhaps 500,000 more if we include the undiagnosed

and misdiagnosed cases [NIH, 2018]. Tremors, muscle rigidity, bradykinesia (slow-

ness of movement), and loss of balance are symptoms which accompany the disease;

it is progressive, the symptoms worsening over time. The first three symptoms can

occur in the facial, respiratory, and vocal muscles, resulting in diminished control

of one’s facial and vocal expression which can dissociate one’s inner emotional state

from the outward facial appearance; this is known as facial masking and is called

hypomimia. Because people rely heavily on facial expression in attributing and in-

terpreting other’s emotions and motivational states, facial masking can deeply affect

the person’s ability to communicate which may lead to impaired social interactions

and reduced quality of life [Sturkenboom et al., 2013, Takahashi et al., 2010]. For

example, rehabilitation therapists often use a client’s verbal and nonverbal behavior

to infer the client’s emotional state; if the client is mostly silent or displaying little

facial expression, the therapist may infer the client to be more hopeless or apathetic

which may not be their true emotional state. In the home and community, desyn-

chronization between a person’s emotional state and her external expression can
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occur during any social situation, which might take place in the home, among fam-

ily and friends, and at work [Takahashi et al., 2010]. This may exacerbate feelings

of social incapacitation and stigmatization, which leads to reduced quality of life

and the vicious cycle of decreasing social engagement [Ma et al., 2016].

Given that facial expressiveness is a problematic channel for communicating

emotions and emotional states in people with PD, a more accurate channel might be

verbal communication: the words a person uses in their verbal or written speech [De-

Groat et al., 2006]. Since for humans it is very difficult to override the interpretation

of information transmitted through facial expression, which happens automatically

and instinctively, it would be helpful to have a reliable, automated way of analyz-

ing verbal communication that helps detect the valence of the emotion expressed.

This automated capability could be implemented in a communication-assistive tool

for improving social life. The tool could take the form of a robotic companion or

an application that would help people living with PD, their caregivers, and social

community by alerting conversation partners to misunderstandings coming from the

desynchronization the person with PD experience of emotion and its reflection in

the face. This device is meant to improve natural human interaction in the home

and community.

For text, detection of emotional content and its valence has been attempted

using an automated textual analysis software program called Linguistic Inquiry

and Word Count (LIWC) [Pennebaker et al., 2015b]. Tausczik and Pennebaker

[2010b] showed that LIWC’s categories for positive emotion, negative emotion, anx-

iety/fear, anger, and sadness/depression were correlated with external raters’ judg-

ments, demonstrating they can be used to assess emotional content in text. However,

there are several limitations to using the LIWC approach. The basis for LIWC’s

text analysis is a dictionary which in the latest version (i.e., LIWC2015) consists

of approximately 6,400 words, word-stems, and emoticons, i.e., a pictorial repre-

sentation of human facial expressions used to convey emotion in text [Pennebaker

et al., 2015b]. LIWC’s dictionaries are constructed by human scientists according

to evaluation data generated by human raters, rather than learned from the text
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automatically. This means that LIWC cannot be used with natural languages for

which the software has not been modified to accommodate (i.e., for which such

dictionaries have not been created). LIWC relies on word recognition, and needs

to be periodically updated as language usage evolves. Also, LIWC is not designed

for spoken language [Pennebaker et al., 2015b], while for the detection of emotional

content in a conversation, the ability to work with spoken language is crucial.

In this paper, we introduce a novel approach: using the Latent Dirichlet

Allocation (LDA) generative model as the basis for an unsupervised learning tool

which is trained to extract topic proportions from a collection of text documents

(see Sections 3.2 and 3.3 for details). When an unseen document is presented to

the model, it finds the document’s topic proportions and uses them as a set of

features. We then use a logistic regression (LR) classifier to associate these features

with training data having enjoyable emotional content (text obtained through the

prompt: talk about an enjoyable experience) or frustrating emotional content (text

obtained through the prompt: talk about a negative emotional experience). We

compare our model with the LIWC approach: the word count frequency of five

LIWC features associated with emotion is extracted from the text and these are

used to train another LR classifier to associate them with the emotion content

labels frustrating and enjoyable that have opposing valence.

The paper proceeds in the following way. In Background and Related Work,

Section 3.2, we review the LIWC and LDA approaches. In Methods, Section 3.3,

we show how interview transcripts from the Self-management Rehabilitation and

Health-Related Quality of Life in Parkinson’s disease database [Tickle-Degnen et al.,

2010] were used as text documents to train and test both models and we compare

the results of two experiments: the first using training and test documents from the

entire interview (average word count = 303) and the second using documents which

were edited to contain the first 20 seconds of the interview transcripts (average

word count = 13). The Results section shows that for longer text, the LDA model

correctly predicts the emotion label (frustrating or enjoyable) 56% of the time while

the LIWC model 74% of the time. However, in the case of shorter text, the LDA
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model outperforms the LIWC model. We then discuss advantages and disadvantages

of each approach and potential ways of using them to create emotion detecting

assistive conversation tools.

3.2 Background and Related Work

3.2.1 Human-curated approach: LIWC

A reliable method for analyzing the emotional content of text is useful in a wide

range of scenarios such as opinion mining where it is necessary to detect shifts in

customer sentiment as expressed in social media. One approach is to manually label

words according to their semantic valence, either positive or negative [Liu, 2010],

creating a sentiment lexicon. Generating a reliable sentiment lexicon manually is

time-consuming and thus most researchers rely on already-generated lexicons such

as LIWC [Hutto and Gilbert, 2014]. LIWC was first introduced in 1993 and has

been updated three times since; its latest version was released in 2015. As previ-

ously indicated, LIWC2015 contains an internal default dictionary that is used to

determine the words which should be counted in the documents. The dictionary of

approximately 6,400 words is associated with particular domains, such as negative

emotion, and these are called word categories. There are 41 word categories asso-

ciated with a psychological category (e.g., affect, biological processes), six personal

concern categories (e.g., home, work, leisure), five informal language markers (e.g.,

swear words, net-speak), and 12 punctuation categories. When a word in the text is

found in the dictionary, all the word categories that it belongs to have their counts

incremented [Pennebaker et al., 2015b]. The reliability of LIWC has been validated

internally (e.g., checking whether the more a person uses a word from a LIWC word

category in a text, the more the person uses other words from the same category).

The external validity of the LIWC categories have been assessed in contexts relevant

to daily living and mental and physical health [Tausczik and Pennebaker, 2010b].

With regards to emotional expression in PD, Takahashi et al. [2010], using

data from the same database as this study, measured expressive behavior in tran-
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scripts of 212 video clips of 106 persons living with PD by using LIWC to count the

number of motivation-related words in each transcript. The videos were recordings

of interviews in which the participants were asked to discuss an enjoyable or frustrat-

ing activity that occurred during the past seven days. The researchers reported that

when participants discussed enjoyable activities, they tended to use more words as-

sociated with the LIWC positive emotion category compared to when they discussed

frustrating activities. Conversely, participants tended to use more words associated

with the LIWC negative emotion category when discussing frustrating activities.

The research objective of the current study is to determine whether our machine

learning model can achieve similar results to LIWC, using the participants’ inter-

view transcriptions from the Takahashi et al. [2010] study and from Tickle-Degnen

et al. [2010] study.

3.2.2 Latent Dirichlet Allocation (LDA)

Generating and maintaining a sentiment lexicon suitable for reliably extracting emo-

tional content and its valence from text is a labor and time-intensive undertaking.

For example, there have been three major releases since LIWC’s initial release in

1993, each containing a new dictionary and improved software design, the result

of human testing and validation as well as software engineering effort [Pennebaker

et al., 2015b]. To this end, automated approaches to identifying and extracting

features from documents which are correlated with emotion valence and intensity

have been the subject of active research. We categorize these approaches as ma-

chine learning, i.e., the fields of study in which computers learn without explicitly

being programmed. In contrast to LIWC in which humans have carefully associated

words to emotion categories via its dictionary, the challenge for designing a machine

learning model is to identify the features contained in the text, i.e., characteristics

of the text that can be used to consistently identify distinctive categories, such as

enjoyable vs. frustrating emotional content. The goal is to find features such that

as words associated with emotion valence change or new ones are introduced, the

model’s features also adapt.
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Such features can be found in the thematic structure of a document. Topic

modeling is the detection of the thematic structure of a document collection; it is a

classic problem in natural language processing. One of the motivations for research

in this area is to find ways to reduce the dimensionality of large collections of text;

the goal is to find semantic structures in the text, which can be used to represent its

characteristics using a parsimonious amount of information. This lower-dimensional

representation can be used, for example, as an efficient way to retrieve the text.

If samples of text were obtained, we hypothesize that a collection of text

documents will contain a mixture of topics. The proportions of these topics in a

single document could reflect the enjoyable and frustrating topics contained in that

document. Thus, the model design goal is to detect thematic, topic information

contained in a sufficiently large sample of text (i.e., a document collection) so that

when a document the model has not yet seen is presented, it can identify the pro-

portion of topics contained therein. We then train a classifier to associate a large

sample of documents whose emotion valence is already known with these topic pro-

portions. Once that is done, we now have created a way to predict the valence of

the emotional content (e.g., enjoyable or frustrating) of any document for which we

have extracted its topic proportions. For the feature extraction component of our

model design, we will draw from the field of topic modeling, using a technique called

Latent Dirichlet Allocation [Blei et al., 2003a].

LDA is built around the intuition that documents exhibit multiple topics.

LDA makes the assumption that only a small set of topics are contained in a doc-

ument and that they use a small set of words frequently. The result is that words

are separated according to meaning and documents can be accurately assigned to

topics. LDA is a generative data model which as the name implies describes how

the data is generated. This idea is to treat the data as observations that arise from

a generative, probabilistic process, one that includes hidden variables, which repre-

sent the structure we want to find in the data. For our data, the hidden variables

represent the thematic structure (i.e., the topics) that we do not have access to in

our documents. Simply put, a generative model describes how the data is gener-
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ated, and inference is used to backtrack over the generative model to discover the

set of hidden variables which best explains how the data was generated. To express

the model as a generative probabilistic process, we start by assuming that there is

some number of topics that the document contains and each topic is a distribution

over terms (words) in the vocabulary. Every topic contains a probability for every

word in the vocabulary and each topic is described by a set of words with different

probabilities reflecting their membership in the topic. The LDA generative process

can be described as follows:

For each document:

1. Choose a distribution (i.e., list of topic proportions) over the topics in

the document: P (Θd), which is the per-document topic proportion drawn

from a Dirichlet distribution. Note that we have a collection of documents

and are choosing a distribution for one of the documents in the collection.

The eponymous Dirichlet in Latent Dirichlet Allocation is the name of the

distribution that can be used to sample from a collection of distributions.

2. Repeatedly draw a topic from this distribution. Draw a word, w, from

the distribution of words for that topic, with the probability P (w|Z, βk),

where Z is the hidden topic assignment and βk is the topic distribution

over all the words in the vocabulary. Note that βk is a Dirichlet distri-

bution as we have a collection of topics from which we are choosing a

distribution over words.

For another document repeat (1) and (2). The above process generates each

document on a word by word basis, according to the assumptions made about the

document’s thematic structure (i.e., topic proportions and word distribution), re-

gardless of word order; this latter characteristic is known as a bag of words model.

We never get to observe this structure, so it must be inferred by asking: (i) what are

the topics that generated these documents? (ii) for each document, what is the dis-

tribution over the topics associated with that document? (iii) for each word, which
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topic generated the word? In other words, we want to infer the topic structure which

can be thought of, in probabilistic terms, as computing the posterior distribution of

our generative model: P (Phv|Po) where Phv is the probability that the document

collection has a thematic structure given Po, the probability of observing the doc-

ument collection. Operationally, the hidden variables represented by Phv can be

computed several ways using a class of algorithms known as approximate posterior

inference. In our model, the LDA algorithm computes both the hidden variables

Z (per-word topic assignment) and Θd per-document topic proportion). We hy-

pothesize that the topic proportions are features which are reduced-dimensionality

representations of the original documents and preserve essential characteristics such

as the valence of the emotional content of the text. Our model uses a machine

learning classifier to systematically correlate these features with PD participants’

interviews, labeled according to their enjoyable or frustrating emotional content.

3.3 Methods

3.3.1 Materials

Input to our model is a document collection of de-identified transcribed inter-

views collected during a previously conducted randomized control trial called Self-

management Rehabilitation and Health-Related Quality of Life in Parkinson’s dis-

ease [Tickle-Degnen et al., 2010]. Data for the current study include responses to

open-ended questions about daily life events in the recent past that participants

had experienced as particularly frustrating or enjoyable. Participants (N = 117)

were people in the early to middle stages of PD, with mild unilateral or bilateral

symptoms, Hoehn & Yahr stages 1 through 3 [Goetz et al., 2004], were unassisted

for walking and communicating, non-depressed, and of normal mental status. Of

the 117 participants, 69.8% were male and 30.2% were female with an average age

of 65.6; on average, participants were diagnosed with PD seven years prior to the

study. At the time of the interview, participants were “on stage” (i.e., they were

taking their medication and their medication was working).
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Using a mood-manipulation protocol, the researchers examined the partici-

pants’ apparent emotional state by asking them to recall two types of experiences:

a frustrating one and an enjoyable one that they had during the past seven days.

The interviews were videotaped, later transcribed and the response to each prompt

was saved in a separate document. The interviews were conducted at the following

intervals: at the baseline, after six weeks, and then two months and six months,

post-intervention. Participants talked about typical activities with a focus on their

social life and interactions.

Since extracting features using LIWC requires at least some words to count

in order to correlate with the built-in emotion categories, we created one dataset

containing only documents with at least 130 words to be included in our models,

resulting in a document collection of 366 positive and negative interviews. Docu-

ments contained an average word count of 303 words, with the largest containing

1732 words and the smallest, 131. We also created a dataset of 448 documents

containing documents with an average word count of 258 words, with the largest

containing 1732 and the smallest, 2. We used this to see how well small documents

were classified by the LDA and LIWC models. To elicit responses containing enjoy-

able or frustrating content, the interviewer used the following prompt: talk about

an enjoyable/frustrating experience that happened in the last week.

3.3.2 Model Design

The overall approach to the model design consists of two processing steps: (1)

extract the features from each document in the set, and (2) use these features

to predict whether the interview described a frustrating (negative) or enjoyable

(positive) experience. The difference between our model and LIWC is the feature

extractor used in step (1): LDA topic proportions vs. LIWC word count. The design

of the LDA feature extractor is shown in Figure 1 and that of LIWC in Figure 2.

Prior to extracting features from the document set, the collection is split using a

90/10 proportion into a training and test set, shown in steps 1 and 2 in both figures.

This is to create “set-aside” test documents, which can be used to evaluate how well
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the model predicts whether an interview is enjoyable or frustrating for a document

that has not been used for training. The training set is used to build the generative

topic model which is then used to infer the topic proportions (i.e., features) of both

the training set as well as the set-aside test set. Once the training and test sets have

been created, feature extraction follows two distinct processes for LDA and LIWC.

Figure 3.1: Coherence score by number of topics. The LDA model was trained
repeatedly using the training set, starting with 2 topics. At the end of each iteration,
the coherence score was calculated and the number of topics was increased by 2
until 100 topics was reached. Eight local maxima are identified by cross-hairs on
the graph.

3.3.3 LDA Training and Feature Extraction

Once we have split our document collection, we can use the training set to generate

the topic model and infer its thematic structure, i.e., topic proportions. We use the

Gensim [Řeh̊uřek and Sojka, 2010] implementation of LDA, a robust, stable version

that is widely used in academic research for topic modeling and natural language

analysis. While it is possible to adjust many of the implementation’s parameters

(e.g., the Dirichlet priors for the per document distributions and for the per topic

word distributions), we accepted the default values. As mentioned earlier when we

introduced LDA, the generative model assumes a number of topics over which an
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initial distribution of documents (i.e., P (Θd)) is estimated. We now describe how

we selected the number of topics.

Recall that a topic model tries to discover a thematic structure in a document

collection; it is trying to find structure in otherwise unstructured text. One of the

characteristics of this type of machine learning method is that it does not guarantee

that the topics will be interpretable by humans. Thus a measure is needed to

automatically evaluate the topic quality of the topics generated by the LDA model.

We use the topic coherence pipeline available in Gensim which is an implementation

of the method described by Röder et al. [2015]. In the context of topic modeling,

a coherent model is one in which words are treated as facts; coherence can then

be evaluated on the basis of how well the words in a topic “support” one another,

as when we speak of a coherent set of facts. In the topic model, words support

one another based on their probability of co-occurring together. The coherence

measure produced by the framework described by Röder et al. [2015] is a real number

representing an aggregation of probability estimates; this number can be used to

compare the topic quality of different topic models.

The researchers report that the model has been extensively compared with

human gold-standard coherence measures using Wikipedia as a reference corpus and

has performed quite well. Figure 3.1 shows a plot in which the LDA model was run

with an increasing number of topics in steps of 2, from 2 to 100, against which the

coherence score was calculated. We can identify eight local maximum values at 4,

16, 24, 34, 44, 50, 64, and 91 topics respectively. We hypothesize that the interview

process, during which a participant was asked to recall a frustrating and enjoyable

activity, tends to generate a large set of words with different co-occurrences across

participant interviews. However, there are a set of topics which distinguish between

frustrating and enjoyable content, allowing the model to use these topics to predict

emotion valence. We will describe how these eight topic-number values were used

in the model evaluation in a subsequent section.

As shown in step 2 of Figure 3.2, once we have split the interview transcrip-

tions into training and test document sets, we set aside the test set and proceed
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Figure 3.2: LDA feature extractor.

Figure 3.3: LIWC feature extractor.
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to pre-process the training set. The purpose of pre-processing is to transform the

original text into a more efficient set of words, removing information that does not

help the LDA model infer its thematic structure. Pre-processing lemmatizes words

(i.e., words in the third person are changed to the first person; verbs are changed

to the present tense) and words are stemmed (i.e., reduced to their root). Common

“stop” words (e.g., the, is, at) and disfluencies (e.g., um) are removed. Document

text is split into sentences and then into words and word frequencies are computed.

It should be noted that during the pre-processing, the ordinal nature of the docu-

ment structure is broken and it becomes a bag of words. The LDA model does not

use grammatical structure to infer thematic structure.

Training is completed once the LDA model has estimated the hidden vari-

ables Z (per-word topic assignment) and Θd (per-document topic proportion), which

the LDA model in Gensim does automatically on our behalf. At this point we have

a trained topic model to which we can supply unseen documents and obtain topic

proportions; we can also extract the topic proportions already assigned to the docu-

ments it used for training. In either case, the topic model produces a set of feature

vectors, one for every document the size of each being the number of topics. How-

ever, we do not yet have an association between the topic proportions and the

classification of a document as “frustrating” or “enjoyable”. In a subsequent sec-

tion, we will describe how we can use a machine-learning tool known as classifier to

make this association.

3.3.4 LIWC Feature Extraction

Takahashi et al. [2010] used five LIWC dictionaries (categories) to measure par-

ticipants’ verbal expression of positive and negative emotion. They are: positive

emotion, anxiety or fear, anger, sadness or depression, and achievement. The re-

searchers used the 2010 version of LIWC to extract word counts in these categories

from participant interviews. An analysis of variance (ANOVA) was used to show

a statistically significant effect that participants used more words categorized by

LIWC as expressing positive emotion when talking about enjoyable activities rather
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than frustrating activities, and used fewer words expressing negative emotion. Al-

ternatively, participants used more negative words when asked to recall a frustrating

activity. Thus we chose these five categories to be used as features, hypothesizing

that they could be associated with the classification of an interview as being frus-

trating or enjoyable. As shown in step 2 of Figure 2, the participant interviews were

lightly processed to remove disfluencies and then input to the 2015 version of the

LIWC software. The resulting output is a set of feature vectors for every document,

each vector of size five and where each feature represents the word proportion of the

corresponding LIWC emotion category. The feature vectors generated by LDA and

LIWC were then used by a classifier to learn the association between the features

and the type of interview.

3.3.5 Using Features to Predict Emotion Valence

In machine learning, a classifier is a software tool used to predict classes of items

rather than values; the latter is performed using regression techniques. In our

model we use a logistic regression (LR) classifier to predict a set of two possible

interview classes, interview = frustrating, enjoyable. We use a stable, widely-used

implementation of an LR classifier from Scikit-learn, a free software machine learning

library [Pedregosa et al., 2011]. Logistic regression, developed by statistician Cox

[1958], computes the probability of output in terms of input and this can be used to

construct a classifier by choosing a cut-off probability value (i.e., 50%) and classifying

input values greater than the cut-off as one class and below the cut-off as the other.

The classifier is trained and used to predict the interview classes in exactly the

same way for both the topic features and LIWC features (see Figure 3.4); the only

difference is the feature set used, and the following discussion holds for both sets.

Training the logistic regression classifier consists of finding the parameters

θ of the model such that it sets high probabilities for enjoyable content and low

probabilities frustrating content. This is achieved by minimizing the cost function,

c(θ), where the probability estimate is p̂ and the training label is y:
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Figure 3.4: Logistic regression classifier. 1,2) Features are extracted from the train-
ing set using either LDA or LIWC. (3) Training proceeds until the model minimizes a
cost function, c(θ), which penalizes misclassification. (4,5,6) Features are extracted
from the set-aside documents and presented to the trained classifier for predicting
the interview type (yes = enjoyable, no = frustrating).

c(θ) =


−log(p) if y = 1

−log(1− p) if y = 0

(3.1)

Consistent with the goal of the classifier, log(x) grows larger when x ap-

proaches 0, and therefore, the cost will be large if the classifier estimates a probabil-

ity close to 0 for an enjoyable interview; likewise, it will also be large if it estimates a

probability close to 1 for a frustrating interview. Alternatively, −log(x) is close to 0

when x approaches 1 and the cost will be close to 0 when the estimated probability

is close to 0 for frustrating interview and close to 1 for an enjoyable interview. To

compute the value of θ that minimizes the cost function, the Scikit LR classifier

implementation uses an optimization method known as stochastic gradient descent

(a good discussion can be found in [Géron, 2017]). Once classifier training was com-

pleted, we evaluated the LDA and LIWC models’ performance using materials from

[Tickle-Degnen et al., 2010].
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3.4 Results and Evaluation

Table 3.1: Experiment 1: Model evaluation using 10-fold cross-validation for 332
training documents with average word count = 303; max = 1732; min = 131

LDA evaluation

Features Precision Recall F1

4 0.56 0.56 0.58

16 0.54 0.55 0.54

24 0.62 0.62 0.62

34 0.62 0.63 0.62

44 0.59 0.59 0.59

50 0.57 0.57 0.57

64 0.57 0.58 0.57

91 0.63 0.63 0.61

LIWC evaluation

Features Precision Recall F1

5 0.74 0.74 0.74

Table 3.2: Experiment 1: Model testing using 34 documents with average word
count = 303; max = 1732; min = 131.

LDA evaluation

Features Accuracy

4 0.71

16 0.65

24 0.59

34 0.68

44 0.65

50 0.53

64 0.56

91 0.74

LIWC evaluation

Features Accuracy

5 0.76
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3.4.1 Experiment 1: Predicting Interview Class Using Larger Word

Counts

For this evaluation, we used the document collection, from the Self-management

Rehabilitation and Health-Related Quality of Life in Parkinson’s disease database

where the average word count = 303 to train and test the model; there are 332 and

34 documents in the training and test sets respectively. The LDA feature extractor

(see Figure 3.2) as trained eight times by setting the LDA model’s parameter for

the number of topics according to the eight values identified by the coherence model

as local maxima (see Figure 3.1. Each training session i, where 1 ≤ i ≤ 8, and

ni = {4, 16, 24, 34, 44, 50, 64, 91} topics generates a feature vector of size ni for each

document in the training set. Each feature vector is associated with a document’s

target label (i.e.,, enjoyable = 1, frustrating = 0) and the (feature, target) pair is

used to train the logistic regression (LR) classifier using a method known as K-fold

cross validation. The results for each training session are shown in Table 3.1. In K-

fold cross validation, the training set is split into K distinct subsets called folds. We

set K = 10; this is typical for the size of our training set, which is considered small

compared to typical machine learning problems that can have several thousand

training instances. This process trains and evaluates the LR classifier ten times

choosing a different fold for testing every time and training on the remaining nine

folds.

We include more robust metrics than accuracy to evaluate the model per-

formance: precision, recall, and F1. Precision gives a measure of the accuracy of

positive predictions. It is computed as follows, where TP is the number of true

positives and FP is the number of false positives. Thus a model with a low pre-

cision will tend to signal a high number of “false alarms”. It is often used with

another measure called recall, also known as sensitivity or the true positive rate, the

proportion of positive instances correctly identified by the model. It is computed as

follows, where FN is the number of false negative instances.
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precision =
TP

TP + FP
recall =

TP

TP + FN

For example, referring to Table 3.1, when using four features and when the

model predicts that the interview is enjoyable, it is correct only 56% of the time;

when an interview is enjoyable, it predicts so 56% of the time. It is common when

evaluating classifier to combine precision and recall into a single statistic, called the

F1 score. This score is the harmonic mean of the precision and recall, which unlike

the arithmetic mean, balances both; you cannot get a good F1 if either are low. F1

gives its best score at 1, when precision and recall are perfect. Thus, the harmonic

mean will generate high F1 values when both the precision and recall are high. We

can see, for example, that the F1 score of 61 is highest when features = 24, 34.

As discussed, we have trained eight LDA feature extractors, corresponding

to the number of topics we presented as a parameter to the model and that we

have set-aside 10% of our documents (i.e., 34) which have never been used to train

either the LDA feature extractor or the LR classifier. For each of these feature

extractors, we present the test documents in order to extract their features and then

we present them to our trained classifier which predicts whether the documents are

either frustrating or enjoyable interviews (see Figure 3.4). The results are shown in

Table 3.2 which gives the classification accuracy for each feature set size used. The

accuracy is the mean score for across the 34 test documents.

The five emotion categories used by Takahashi and Tickle-Degnen [Takahashi

et al., 2010] were used to extract features from the 332 training documents as shown

in Figure 3.3. These feature vectors were paired with their corresponding document

target labels and we followed the same 10-fold cross validation procedure described

in the previous section to train the LR classifier (refer to Figure 3.4). The precision,

recall, and F1 evaluation metrics are shown in Table 3.1. We then used the LIWC

categories to extract the features from the set-aside test documents and presented
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them to the trained LR classifier in order to predict each document’s interview

category. The results are shown in Table 3.2 which gives the mean classification

accuracy across the 34 test documents.

Table 3.3: Model testing using 14 documents with average word count = 13; max
= 22, min = 2.

LDA evaluation

Features Accuracy Precision Recall F1

4 0.79 0.75 0.86 0.80

LIWC evaluation

Features Accuracy Precision Recall F1

5 0.64 1.00 0.29 0.44

3.4.2 Experiment 2: Predicting Interview Class Using Smaller Word

Counts

In this experiment, we investigated how well an LDA model trained on a collection

of 404 documents whose word count ranged from 2 to 1732, with an average of size of

258 could accurately predict the interview class using test documents representing

short bursts of dialog. For the test set, we used transcripts that were edited to

obtain the first 20 seconds of conversation. These documents have an average word

count of 13 words, and ranging from 22 to 2 words; this is the typical word count

found in the average sentence. The LDA feature extractor was trained using number

of topics equal to 4.

As can be seen in Table 3.3, the LDA model F1 score of 0.80 using the test

set is considerably better than the LIWC model score of 0.44. Presumably this is

because it has extracted the topics from the context of all the documents in the

training set and thus is able to use this information to situate the unseen document

in these topics. In contrast, LIWC only uses the words in the test document pre-

sented to it which may contain insufficient content to accurately predict the emotion

content. We do not report statistics for the training process since the training data
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is similar to what was used for Experiment 1 and the purpose was to evaluate short

test documents.

3.5 Discussion

The findings suggest that LDA can be used to discover a set of topics whose pro-

portions for any given document in the collection can be used to parsimoniously

represent the positive or negative emotion content of that document. It appears

that the number of topics used to extract the features does not greatly affect the

performance of the classifier. The most compact feature set using four topics, had

an F1 score of 0.58 and resulted in a test set accuracy of 71% whereas the largest

feature set of 91 topics had an F1 score of 0.61 and a test set accuracy of 74%. In

comparison, the LIWC model used five categories of words which have been previ-

ously shown to correlate with interview category [Takahashi et al., 2010]. Words

belonging to each category were tallied and used to calculate their category’s pro-

portions. This approach produced an F1 score of 0.74 and a test set accuracy of

76%. When faced with a number of choices of increasing complexity, all of which

have similar explanatory power in a model, it is reasonable to choose the least com-

plex explanation (i.e., Occam’s Razor). The least number of topics that can be

used to train the LDA model and generate features that separate the documents

into positive and negative emotion categories is four and in the remainder of the

discussion, we will assume this version of the LDA feature extractor.

Classification accuracy is only one part of the evaluation; precision and recall,

described earlier, are metrics that provide more nuanced on the models’ predictive

behavior. In Experiment 1, precision and recall are both 0.56 during the cross-

validation training. This gives us insight as to how the model will perform across

a variety of test sets. These metrics suggest that LDA does better than chance

predicting the interview category in two situations: (1) when it makes a prediction,

it is correct 56% of the time (precision) and (2) given the actual target, the model

makes the same prediction 56% as well (recall). The LIWC model, with an F1
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score of 0.74, performs better in both cases, 74% of the time. We note that for

both models, precision = recall and thus neither is biased toward giving more ‘false

positives’ (precision) or ‘false negatives’ (recall). These statistics suggest that the

LIWC model would more accurately classify new interviews whose average word

count is 303 words (approximately 22 sentences per document on average). The

performance differential may be due to the five dictionaries selected to be the source

of the features used in the LIWC model.

On the other hand, in situations where the model is likely to encounter one

or two sentences, Experiment 2 (Figure 3.3), which produced an F1 of 0.80, suggests

the LDA to be the better choice. We might, for example, create a communication

assistive tool to infer the emotion content of each interaction between a person with

PD and a caregiver, which most likely consists of short bursts of dialog. In this

experiment, the precision and recall metrics have different values in both LDA and

LIWC. In LDA precision = 0.75 and recall = 0.86 suggesting that the model is

biased away slightly from making false negative predictions and more towards false

positives. In an interaction with a PD person and a caregiver, the LDA model

will evaluate that turn in the conversation to contain more positive emotion (more

enjoyable) when it may in fact contain more negative emotion (more frustrating),

slightly more frequently (11%) than making a negative prediction when the turn is

positive. However, the LIWC precision of 100% suggest that it will almost never

make a false positive prediction, but when it does makes an incorrect prediction,

which it did in this experiment, 1.00 - 0.64 or 36% of the time, it is likely to be

a false negative. A higher level of false negative predictions is an example of the

desynchronization of mental state and facial expression which Tickle-Degnen et al.

[1994] report “Can have a profound effect on communication ability and quality of

life”.

Another characteristic of the LDA model is that it is not sensitive to the

language of the text and uses the entire document collection during training to infer

the hidden topic structure. Thus it can learn thematic structure from documents

in any language and use what it has learned to place documents it has not seen in
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the topic structure, even short, one or two sentence documents. LIWC, however,

would have to be modified to incorporate a new language and its dictionaries would

have to be updated to ensure the new language’s words were placed in the proper

emotion categories. Thus we suggest superior performance of LDA in spoken dialog

of persons with PD. Persons with PD have difficulty with enunciation and voice

volume, therefore automated speech recognition technology (ASR) at its current

level, 15% Word Error Rate, is likely to produce inaccurate transcripts. This will

make it difficult for LIWC to recognize words and process word counts. Since LDA

is not sensitive to the word orthography, it should still be able to use the imperfect

transcriptions to extract the topic features; this theory remains to be tested. At

present, we used the model to classify emotion valence categorically as enjoyable

(positive) or frustrating (negative); however it is also possible to use the model to

predict other discrete emotions including the level of arousal. In a future version of

the model, predicting both valence and arousal can be used to observe and inform

the emotion trajectory of a conversation as it unfolds between any two participants,

for example, in therapy or counseling sessions.

3.6 Limitations

The results of this study suggest that topic modeling could extract features as-

sociated with emotion valence using verbal transcriptions of interviews in which

participants were specifically asked to recall an enjoyable and a frustrating experi-

ence. We shall point out a few limitations of this approach. People living with PD

might have talked about frustrating things when describing enjoyable experiences,

this sometimes happens in the context of chronic illness, especially with people with

depression. However, our participants were screened for depression and were found

to not be clinically depressed.

Also, human emotional state can change in far more complex ways and in

more subtle gradations than the positive/negative emotional categories we have ex-

plored in this study. In addition, further research in how humans combine input from
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several modalities such as visual, auditory, and tactile to generate understanding of

complex mental states such as embarrassment, thinking or depression is needed to

inform a more naturalistic and incremental model. Furthermore, the topic model

infers the hidden thematic structure and the topics are not easily interpretable. The

topics cannot really tell us much in a way that makes sense to a human why a cer-

tain text has an enjoyable or frustrating emotional content. Finally, our training

and testing dataset was comparatively small. At most, we had 448 transcripts in

the document collection, a limited amount of data compared to typical machine

learning endeavors which may have thousands of training examples available. This

means that in order to generalize the test results to a domain beyond that described

in Tickle-Degnen et al. [2010], additional training documents will have to be used.

The initial purpose of this research was to investigate whether interview

data from persons with PD could be used to train a model to predict whether a

new utterance described something enjoyable or frustrating. We view this as a first

stage in building an assistive tool which a caregiver could use to infer the emotional

state of a person with PD. In order for the model to be useful in a clinical setting

as a communication assistive tool, it will have to be developed further to generate

the more incremental and subtle gradations of human emotional states. In addition,

clinical trials would need to be conducted to assess its usefulness.

3.7 Summary

We investigated an automated method for inferring the emotional state of a person

with Parkinson’s disease using a machine learning approach. Our results show that

the LDA model performs better with shorter text which makes it more suitable for

evaluating emotional content of short dialog turns. For longer documents, LIWC

performs better; however, it has the shortcoming of assuming a constant, non-

evolving language and is dependent on manually selecting the dictionaries to be used

as features in the problem domain. It is also non-generalizable to other languages

for which dictionaries have not yet been created.
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The LDA model is a first step towards creating an assistive tool which the

caregiver can use to infer the emotional state of a person living with PD. Given that

many people with PD live in the community, the caregiver is likely to be a member

of the family who is not necessarily trained or accustomed to the symptoms of the

disease and may make incorrect inferences about the person’s true emotional state.

Thus an assistive tool equipped with the ability to accurately and immediately

provide feedback on the emotion content of a conversation is not only beneficial for

improving the social interaction with the PD patient, it can improve the quality of

life in the home, including that of the family members. This capability can also be to

assist the rehabilitation therapist in, for example, during client evaluation, helping

preserve the client’s dignity in situations where the client’s claims to be happy is

belied by her affectless face. This technology is not restricted to the domain of

people living with Parkinson’s disease; it should be able to generalize and serve as

an intelligent agent useful for monitoring the emotional content of the interaction

between any two parties, providing real-time feedback on the emotional content as

the interaction unfolds
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Chapter 4

Detecting Emotion Polarity

from Continuous Speech in a

Robot

In this chapter we discuss how we used the experience gained from detecting senti-

ment from transcriptions of the interviews conducted with the Parkinson’s disease

persons to build a robot that can detect emotion in continuous speech and express

it though facial expressions. We did this in two parts: (1) infer sentiment from

transcription of the PD person’s utterance, and (2) extend this to use utterances

generated from continuous speech, in real-time.

In the first step, we defined a three-state emotion detector that can predict

positive, negative, and neutral emotion from utterances that have been transcribed

from the PD interviews and used it to drive three facial expressions on Robo Motio’s

Reddy robot: smile, frown, and neutral. As we did not have emotion labels for

the individual utterances of the interview transcriptions, we built a Web-based tool

called the Emotional Inference Topic Model (EMIT) which presents lines of text one

at a time to a human evaluator. The trained model was integrated into a robotic

cognitive architecture to perform real-time, continuous speech detection of positive,

negative, or neutral emotional valence that is expressed through the facial features
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of a humanoid robot. We tested the model using the ground truth labels obtained

from human evaluators. This formed the basis for developing a more robust model

with finer prediction resolution. In order to train the model, we needed to collect

written text which is labeled incrementally (e.g., sentence by sentence).

In the second step, we incorporated a Large Vocabulary Automatic Speech

Recognizer (LVASR) into the robotic cognitive architecture in such a way that it can

transcribe ordinary conversational speech in real time and present the transcribed

utterances to the emotion detector. We used an already-trained acoustic and lan-

guage model that was developed using the Kaldi toolkit. This model performs near

state-of-the-art with a word error rate (“WER”) of approximately 13%. As orig-

inally developed, input to the model is a .wav file; we adapted it to the on-line

ASR pipeline that DIARC uses. Once integrated, we evaluated the entire emotion

pipeline by using a human speaking to the robot and judging how well the robot’s

facial expressions match was it is being said. For ethical reasons (i.e., we would

have to recruit heavily from a vulnerable population), we did not use people with

PD for these initial stages. However, a clinical trial is advisable and desirable in the

future. For this reason, an actor read from the actual transcripts of the PD person’s

interviews and this was be recorded. The recordings were evaluated by Amazon

Mechanical Turk workers.

4.1 Introduction

Our prior research, described in Chapter 3 suggests that sentiment lexicons can

be ineffective when trying to track the emotional content of a conversation as it

unfolds (also see [Valenti et al., 2019c]). Approaches such as LIWC are not optimal

when using as input short pieces of text with few words, which is often the case

with speech utterances. We described a novel method to automatically track the

progression of the emotional content in a conversation. The method tries to fit the

utterance into the thematic structure of a set of documents on which the model

was previously trained. One might think of these documents as representing the
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conversational domain in which the intelligent agent can be expected to operate.

We used the Latent Dirichlet Allocation (LDA) generative model as the basis for an

unsupervised learning model, which we trained to extract topic proportions from a

collection of written text documents. When an unseen sentence was presented to the

model, it found its topic proportions and used them as a set of features. We then used

a Multi-Layer Perceptron (MLP) classifier to associate these features with training

data labeled according to emotion valence (positive or negative) and arousal (high

or low). Zhang et al. [Zhang et al., 2013] used a neural network to detect affect

from facial expression and a Latent Semantic Analysis model [Deerwester et al.,

1988], a non-generative predecessor of LDA, to detect topics embedded within the

human-robot conversation; however, the detected topics were not used to inform

affect detection.

This chapter proceeds as follows. Section 4.2.1 describes how the model

was trained for detecting emotion using sentences as input and summarizes how

the model forms an emotion pipeline in the robotic cognitive architecture. We also

describe how the embedded pipeline was tested using transcription of utterances

drawn from PD persons. In Section 4.3, we describe how the the model was ex-

tended in order to detect emotion from the continuous speech spoken to the robot

and transcribed by the ASR. In Section 4.4.3, we explain the human-robot inter-

action experiment we ran to validate the model. The results of the study suggest

that when embedded in the robot, participants recognized the connection between

the robot’s emotion expressions and the speaker’s utterances more when the robot

emoted based on the model’s predictions than when the robot emoted randomly.

Finally, in Sections 4.4.4 and 4.5, we discuss the advantages, disadvantages, and

limitations of this approach and the potential for embedding the model in emotion-

detecting assistive conversation tools.

67



Figure 4.1: Affective prediction model. (1) The LDA model is trained to extract
features from the interview documents (2) For each document’s sentence, its topic
proportions (features) are extracted and, along with its emotion target, is used to
train the classifier (3) Features are extracted from the utterance by the trained LDA
model, and (4) presented to the trained classifier to predict its emotional state

4.2 Detecting Emotion in Sentences

4.2.1 Methods

Our model was trained on the individual sentences drawn from 448 documents with

an average word count of 258 words, the largest containing 1732 and the smallest, 2

as described in Chapter 3. The documents were constructed from selected interview

transcripts from 106 male and female participants with PD, living in the community,

who participated in a study [Tickle-Degnen et al., 2010] which asked them to recall

two types of experiences: a frustrating one and an enjoyable one that they had

during the past week. Thus, the robot could be expected to accurately predict

emotion from utterances spoken in a similar contextual domain.

We used the interview documents to collect ratings of the emotional content

(i.e., valence and arousal) for each sentence of the document; these values were

used as the training targets for the model. We collected this data using Amazon
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Figure 4.2: Human-labeling of text using EMotion Inference Tool: EMIT. The
mouse is used to position the colored cursor anywhere in the field circumscribed
by the emotional circle. At a mouse-click, the tool records the valence & arousal
coordinates of the cursor and the elapsed time.
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Mechanical Turk (AMT). AMT workers used a Web-based application we created

to indicate their perceived emotion contained in text content (see Figure 4.2). To

ensure high-quality of the training data, we only used those sentences for which

at least 80% of the raters agreed on the label for valence (positive or negative)

and arousal (high, low). For valence this represented 1,058 sentences; for arousal

615 sentences. This shows, as expected, that humans had more difficulty inferring

arousal than valence in this dataset.

The model design consists of two processing steps: (i) extract the topic

proportions from each document in the set (items 1 and 3 in Figure 4.1), and (ii)

use these features to predict the emotion valence and arousal of individual sentences

as yet unseen by the model (items 2 and 4 in Figure 4.1). Training of the LDA

model and the classifier (items 1 and 2 in Figure 4.1) was done outside of the

robotic architecture and the results saved to files. These were subsequently used to

initialize the emotion pipeline. In principle, training could also take place in the

robotic architecture.

We trained the LDA topic model to generate vectors with 34 features. We

used a Multi-layer Perceptron (MLP) with one hidden layer and 34 artificial neurons

to associate the features produced by the trained LDA model with the training

targets collected from the human workers. Further detail on the model design and

parameter selection is given in [Valenti et al., 2019a]. MLPs can be configured as

multi-label classifiers which would allow us to configure the model to predict the

valence and arousal values either separately or jointly from a given feature vector.

As previously mentioned, predicting both valence and arousal simultaneously proved

problematic because there were relatively few training examples in which there was

high agreement for both valence and arousal in the same sentence. For the initial

phase of the investigation reported in this paper, we chose to predict valence only as

the state where there was high agreement among the human raters and had many

more training examples.

Even though we collected real-number values for valence and arousal from

the AMT workers, we used the MLP as a binary classifier rather than as a regressor.
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As a result, we took the mean of the raters’ valence (x-values) and converted all

positive real-number values to ’1’ and negative values to ’0’; these were used as

training targets for the classifier. If the binary value of the prediction is 0, it was

interpreted as negative valence and if was 1, it was interpreted as positive valence.

Figure 4.3: The Emotion Pipeline consists of the prediction and dynamical systems
components. It receives utterances from the Automated Speech Recognizer (ASR)
and sends its predicted affect to the Goal and Action Manager.

4.2.2 Architecture

Our supplemental emotion pipeline consists of two components, the Predict compo-

nent and the Dynamical System component, along with their incoming and outgoing

connections (refer to Figure 4.3). The Predict component receives a text utterance,

extracts its topic proportions and gives these features to the classifier which makes

a prediction as to the current emotional state (this corresponds to items 3 and 4

in Figure 4.1). The prediction is then passed to the Dynamical System component

which, at present, simply maps the prediction, {0, 1} onto a goal predicate string

as {0 : frown, 1 : smile}. The Dynamical system component, described in Chap-

ter 5, provides a means to smooth prediction errors; it sends the goal predicates

representing desired affective states to the Goal Manager.
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Figure 4.4: Robo Motio’s Reddy robot. a) Smiling b) Frowning

The Goal Manager maintains the systems’ beliefs about goals within the

world and uses those beliefs to decide upon the proper series of actions to take to

reach those goals. Actions the Goal Manger can execute are represented in a script

based format. When an affective goal predicate is submitted to the Goal Manger,

it uses an affective control script to select the appropriate primitive action which

sends messages to the robot controller component to move the robot’s actuators to

perform pre-specified behaviors.

Here, we are using Robo Motio’s Reddy robot (see Figure 4.4). We defined

action primitives for “smile” and “frown”, which correspond to the robot’s facial

motors moving to produce a smile or frown, respectively. The action script checks

to see if the goal predicate created a “smile” goal or a “frown” goal, and performs

the proper action primitive. Through this pipeline, therefore, our robot can change

its facial expression to match its belief about the world, as predicted by our model.

Using the cognitive robotic architecture to implement the emotion pipeline

gives us flexibility in how it can be used and insulates the pipeline from the imple-

mentation details of, for example, the robot’s affector motors or the type of speech

recognizer used. Furthermore, sending the prediction to the Goal Manager gives the

Reasoning system an opportunity to coordinate the robot’s facial expression with
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Table 4.1: Pipeline demonstration to predict valence using 16 sentences, unseen
during model training. Ground truth obtained from humans who rated the content
as 1 = postive or 0 = negative emotional valence.

Ground Predicted
No. Test Sentence Truth Affect

1 I’ve fallen and I cant get up. Neg frown
2 I am sure that he does not like to shop much Neg frown
3 Well, not right now because I cannot do a lot. Neg frown
4 Ahh well, we went off to do this and it turn out to be

a big ripoff
Neg smile

5 Yes, its, uh gotten more, it was, I didn’t tell the doctor
about it because it came and went.

Neg frown

6 My frustration is watching my husbands frustration. Neg frown
7 Well, I guess a complete lack of mobility Neg frown
8 And there isn’t much we can do because perception, a

persons perception becomes truth to them
Neg frown

9 Um, I love to read. Pos smile
10 The more things that I do on my own instead of having

people assist me, I find satisfying.
Pos smile

11 Well, actually I loved having many children Pos smile
12 Im retired for a year now. Pos smile
13 I went to a concert yesterday. We took the boat out

on the lake out this morning.
Pos smile

14 But just so when you go in there and you ask people
for help some of them are helpful.

Pos frown

15 Well, I enjoy driving. Pos smile
16 I, what I like doing is physical things like working on

my car.
Pos smile
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other activities and to include emotion as additional context in the human-robot

interaction.

4.2.3 Demonstration Using Text Input

We selected 16 sentences that had not been used to train the model and presented

each as textual input to the pipeline using SimSpeech, a speech simulator compo-

nent, in place of the ASR. We found that the accuracy of the technology currently

used in the ASR component was insufficient to adequately transcribe the sentences

used in testing. Swapping ASR components did not require any changes to the

pipeline implementation, which is an advantage of using the robotic architecture.

The test sentences, their ground truth valence and the predicted robot actions, smile

or frown, are shown in Table 4.1. For this test sample, the model correctly predicted

the emotional valence in all but two sentences (i.e., numbers 4 and 14), equating to

88% accuracy. Our analysis of why the model makes incorrect predictions is evolv-

ing as we gather more experience with different characteristics of our training set.

We discuss our thoughts about model performance in the following section.

The results of the demonstration suggest that the emotion pipeline can be

used to appropriately generate a smile or frown expression for the robot, and in

the Chapter 5, we train a model that automatically detects emotional content with

more resolution, moving beyond these coarse levels of valence, negative and positive.

Ideally the model could be improved to be able to detect various degrees of positivity

or negativity and calm or arousal. That way, the pipeline could be used to inform

the emotion dynamics of a conversation as it unfolds between any two participants,

such as in therapy. While the relatively high accuracy of 88% seems quite good,

further analysis is needed to determine under which circumstances the model makes

an incorrect prediction. Preliminary analysis seems to indicate that accuracy is not

impacted by sentence word count, but is greatly affected by the number of training

examples. The model is also somewhat sensitive the agreement among the human

evaluators. We have found that a training set which consisted of sentences in which

there was high agreement among the raters was likely to generate a model which
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was more accurate when given unseen, test sentences.

The method we explored to estimate arousal and valence based on semantics

only can, of course, be combined with other components of the robotic architecture,

e.g., visual and auditory cues, to get even better estimates, potentially improving

the detection of arousal, which we will leave as future work. Additionally, our

training and testing dataset was comparatively small. We used 448 transcripts to

train the LDA model and 953 sentences to train the classifier, a limited amount of

data compared to typical machine learning endeavors which may have thousands of

training examples available. We are in the process of collecting additional labeled

training examples using AMT for the purpose of developing the model’s ability to

predict additional emotional states beyond positive and negative. Furthermore, in

order to generalize the test results to a domain beyond that described in [Tickle-

Degnen et al., 2010], additional training documents from more general domains will

have to be used.

4.3 Detection Emotion from Continuous Speech

4.4 Design Challenges

The emotion detection component of our model is sensitive to proper speech to text

conversion and end-point detection. As a result, we wanted to ensure that the Auto-

mated Speech Recognizer (ASR) used by this component is robust to environmental

noise, performs well across a variety of speakers, and could operate “on-line”, i.e.,

transcribe speech in real-time. The ASR is based on the chain model developed for

the ASpIRE Challenge [Harper, 2015] and trained on Fisher English that has been

augmented with impulse responses and noises to create multi-condition training

[Varga, 2017]. The chain model uses Kaldi, a toolkit for speech recognition written

in C++ and licensed under the Apache License v2.0 [Povey et al., 2011]. Kaldi has

demonstrated low error rates in a variety of challenging acoustic environments using

conversational speech [iar, 2015b,a, Harper, 2015].
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Figure 4.5: k-means clustering identified center-points of the three classes: negative
(blue), neutral (green), and positive (red)
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The challenge for the ASR is to determine the endpoints of the utterances, in

which words are connected together instead of being separated by speech codes such

as pauses. Unknown boundary information about words, co-articulation, produc-

tion of surrounding phonemes, and rate of speech affect performance [Gulzar et al.,

2014] and the ASR may generate textual representations that vary depending on

the speaker, e.g., disfluencies, speech rate. As a result, the continuous speech will

likely generate utterance transcriptions from which the detector may generate an

incorrect prediction. Furthermore, persons with PD may have long pauses or other

speech anomalies depending on the disease progression. The mass-spring in the Ex-

pressor component described in Chapter 5 tries to smooth these prediction errors

and compensate for different emission frequencies from the ASR and predictor.

4.4.1 Materials

We used the interview documents to collect ratings of the emotional content (i.e.,

valence and arousal) for each sentence of the document; 2,781 sentences in total were

evaluated. A subset of these sentence evaluations were used as the training targets

for the model. We collected this data using Amazon Mechanical Turk (AMT). AMT

workers used a Web-based application we created to indicate their perceived emo-

tion contained in text content (see Figure 4.2). The Web application is described in

Section 4.2.1. To ensure high-quality of the training data, we only used those sen-

tences for which at least 70% of the raters agreed on the label for valence (positive

or negative). This represented 996 sentences. For the current study, we use emo-

tional valence alone for model prediction. In prior research using this same dataset

[Valenti et al., 2019b], we showed that humans had more difficulty inferring arousal

than valence, reducing the sentences for which there was agreement on arousal by

one-third, to approximately 600.

4.4.2 Model design

We used the model design described in Section 4.2.1 which consists of two processing

steps: (i) extract the topic probabilities from each document in the set (items 1 and 3
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in Figure 4.1), and (ii) use these features to predict the emotion valence of individual

sentences as yet unseen by the model (items 2 and 4 in Figure 4.1). Training of the

LDA model and the classifier (items 1 and 2 in Figure 4.1) was done outside of the

robotic architecture and the results saved to files. These were subsequently used to

initialize the predictor component in the robotic cognitive architecture; in principle,

training could also take place in the architecture.

We trained the LDA topic model to generate vectors with 100 features. We

used a stable, widely-used implementation of the MLP classifier from Scikit-learn

[Pedregosa et al., 2011] configured with two hidden layers and 50 artificial neurons to

associate the features produced by the trained LDA model with the training targets

collected from the human workers. Further detail on the model design and parameter

selection is given in Chapter 3. As previously mentioned, predicting both valence

and arousal simultaneously proved problematic because there were relatively few

training examples in which there was high agreement for both valence and arousal

in the same sentence. For the initial phase of the investigation, we chose to predict

valence only as the state where there was high agreement among the human raters

and had many more training examples. To allow the robot to credibly mimic basic

human facial affect, we made the assumption that a three classes of emotional states

would be needed: neutral, positive, and negative.

Using k-means clustering of the (x,y) data we collected from the AMT study,

we found three classification center points on the circumplex diagram, Figure 4.5.

This classification gives valence scores of -100 to -10 as negative, -10 to 25 as neutral,

and 25 to 100 as positive. Upon model evaluation, we found that classification by

constant valence scores of -100 to -24 as negative, -24 to 24 as neutral, and 24 to

100 as positive give the most predictive ranges to use for classification as evaluated

by its F1 score, a common measure of classifier performance. We hypothesize that

users view the circumplex as a square graph, with the center as true neutral. We

therefore use constant valence values away from the center to delineate classification

boundaries.
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Figure 4.6: Participants first
watched the video and then an-
swered the question: “Is the
robot’s behavior connected to
what is being said?” (yes/no)

Figure 4.7: Participants answered
the question: “How well do you
feel the robot’s facial expressions
matched what was being said?”
(5-point Likert scale from Not at
all to Always)

4.4.3 Results and validation

When evaluating valence, the trained LDA model was used to extract 100 features

for each of the 1,069 sentences in the training set obtained from the AMT workers.

Then, the classifier was trained to associate the feature vectors with the values

{neutral = 0, negative = 1, positive = 2} for the emotion valence. We used

Scikit Learn’s GridSearchCV parameter sweep for tuning the MLP hyperparameters

and ran a 10-fold cross validation to evaluate the model’s expected performance.

There were 445 examples of neutral affect, 226 examples of negative affect, and 398

examples of positive affect in our training set. We evaluated the model performance

using the F1 score weighted by the support for each class, and found F1 = 0.45 where

chance level is 0.33. We observed that when the model miss-classified emotion, it

tended toward classifying it as neutral or positive. In a model of emotion for persons

with PD, a bias towards neutral or positive rather than negative affect is desirable

given that it has been shown [Takahashi et al., 2010] that PD persons often become

depressed when are judged to have negative affect when they do not.

4.4.3.1 Model Validation

To validate our emotional pipeline, we conducted a study for which we recorded

videos of a person talking to the camera accompanied by a robot. The person in
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the video was a male actor who interpreted one of the interviews produced by a

person with Parkinson’s disease, that was set aside from the dataset used to train

the model. The interview contained an account of one enjoyable and one frustrating

experience from the previous week. The actor reproduced the facial masking and

affectless tone typical of Parkinson’s disease. The robot either used the model to

emote based on what the person was saying or emoted randomly. Each participant

saw just one of these two conditions and were asked two questions (see below).

Likert scale (1-5) and binary answers (which can be transformed into proportions

of yes/no) were our dependent variables. Chi-square tests were conducted only on

binary answers and we performed t-tests on the Likert scale variable. Although

Likert scales technically do not give continuous variables, we cite, as justification,

the central limit theorem which establishes that randomly generated independent

observations (variables) will tend to approximate a normal distribution.

A total of 54 participants completed the study on Amazon Mechanical Turk

and passed our attention checks (44.4% Female, Age Range: 21-69 years, Mean

age = 35.02 years, SD = 10.53). Participants first watched the video and then

answered questions about it: “Is the robot’s behavior connected to what is being

said?” (yes/no), “How well do you feel the robot’s facial expressions matched what

was being said?” (5-point Likert scale from Not at all to Always). When the

robot emoted based on what the person was saying, using the model, 65.5% of the

participants indicated the that robot’s behavior was connected to what was being

said, significantly more than when the robot emoted randomly, 36%, χ2 = 4.685, p =

0.03 (see Figure 4.6).

When the robot emoted based on what the person was saying, the mean par-

ticipant rating of how well the robot’s facial expressions matched what was being

said (Mean = 1.93, SD = 1.25) was significantly different than the mean partici-

pant rating when the robot emoted randomly (Mean = 0.96, SD = 0.93), t(52) =

3.187, p = 0.002 (see Figure 4.7). We used the Shapiro-Wilk test to check for nor-

mality of distribution of the data in the two groups (random: W = 0.916, p = 0.041;

model: W = 0.989, p = 0.990). Since the t-test is robust to small deviations from
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normality and because of the central limit theorem, we consider the test to accu-

rately reflect the difference between the two groups. However, as an additional check

we also performed a non-parametric Wilcox-Mann-Whitney test as an alternative,

which confirmed our results: z = 2.883, p = 0.0039.

As an additional control, we also created a condition in which the robot did

not emote at all but rather turned its head left and right randomly while the actor

was speaking. An additional 25 participants completed this condition and passed

our attention checks (48% Female, Age Range: 22-62 years, Mean age = 35.72 years,

SD = 9.75). Significantly fewer participants (24%) saw a connection between the

robot’s behavior and what the actor said, χ2 = 9.307, p = 0.002.

To further explore the effects of timing we also recorded one video in which

the robot used the model for emoting but the emoting was done with an average

delay of 5 s. A total of 26 participants completed this condition and passed our

attention checks (46% Female, Age Range: 24-51 years, Mean age = 31.96 years,

SD = 7.32). When the robot emoted with delay only 50% (chance level) of the

participants indicated that there was a connection between the robot’s behavior and

what the actor was saying, not significantly different from when the robot emoted

randomly χ̃2 = 1.018, p = 0.313. Also, there was no significant difference in how

well the facial expressions matched what was being said between delayed emoting

(Mean = 1.415, SD = 1.180) and random emoting, t(47) = 1.508, p = 0.138. We

used the Shapiro-Wilk test to check for normality of distribution of the data in the

two groups (random: W = 0.916, p = 0.041; model: W = 0.948, p = 0.252). Since

the t-test is robust to small deviations from normality and because of the central

limit theorem, we consider the test to accurately reflect the difference between the

two groups. However, as an additional check we also performed a non-parametric

Wilcox-Mann-Whitney test as an alternative, which confirmed our results: z =

1.359, p = 0.174.
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4.4.4 Discussion

Our study shows that when the robot emoted based on the model’s predictions,

participants recognized the connection between the robot’s emotion expressions and

what was being said more so than when the robot emoted randomly. Additionally,

proper timing made a big difference, suggesting that in order to have the desired

effect the system needs to run fast and emoting has to happen based on short

chunks of speech. This further shows that other approaches such as LIWC, which

might need longer chunks of text for correctly predicting emotions, would not be

appropriate for embedding in an assistive robotic system meant to emote in real-time

based on the person’s speech content.

While this suggest that the model can be used to appropriately generate a

neutral, smile, or frown affect, future work is needed to be able to automatically

detect emotional content with more resolution, moving beyond these three coarse

levels of valence: neutral, negative and positive. Ideally the model could be im-

proved to be able to detect various degrees of positivity or negativity and calm or

arousal. Additionally, our training and testing dataset was comparatively small.

We used 448 transcripts to train the LDA model and 1,069 sentences to train the

classifier, a limited amount of data compared to typical machine learning endeavors

which may have thousands of training examples available. We are in the process of

collecting additional labeled training examples using AMT for the purpose of devel-

oping the model’s ability to predict additional emotional states beyond positive and

negative. Furthermore, in order to generalize the test results to a domain beyond

that described in [Tickle-Degnen et al., 2010], additional training documents from

more general domains will have to be used.

4.5 Summary

We developed and evaluated an automated method for inferring the emotional va-

lence in the continuous speech of a person with PD and embedded it in our robotic

cognitive architecture. In our earlier research, we hypothesized that such a tool
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equipped with the ability to accurately and immediately provide feedback on the

emotion content of a conversation is not only beneficial for improving the social

interaction with the PD patient, it can improve the quality of life in the home.

Since human emotion is communicated via multiple modalities, and through dif-

ferent channels, e.g., voice, facial expressions, gestures, situating such a tool in a

robot that appropriately controls the robot’s facial motors could compensate for the

problematic visual modality of communicating emotion. We found encouraging re-

sults that showed participants in our study connected the robot’s facial expressions

to what was being said. Once enhanced with finer prediction resolution, a family

member/caregiver could use this as a way to infer the emotional state of a person

with PD. The device’s technology is not restricted to the domain of PD patients;

it should be able to generalize and serve as an intelligent agent useful for moni-

toring the emotional content of the interaction between any two parties, providing

real-time feedback on the emotion valence and arousal as the interaction unfolds.
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Chapter 5

A Dynamical System for

Expressing Fine-Grained

Emotions in a Robot

Emotions are crucial for human social interactions and as such people communicate

emotions through a variety of modalities: kinesthetic (through facial expressions,

body posture and gestures), auditory (through the acoustic features of speech) and

semantic (through the content of what they say). Sometimes however, communica-

tion channels for certain modalities can be unavailable (for example in the case of

texting), and sometimes they can be compromised, for example due to a disorder

such as Parkinson’s disease that may affect facial, gestural and speech expressions

of emotions. To address this, we developed a prototype for an emoting robot that

can detect emotions in one modality, specifically in the content of speech, and then

express them in another modality, specifically through gestures.

The system comprises of two components: detection and expression of emo-

tions, and in this paper we present the development of the expression component of

the emoting system. We focus on its dynamical properties that use a spring model

for smooth transitions between emotion expressions over time. This novel method

compensates for varying utterance frequency and prediction errors coming from the
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emotion recognition component. We also describe the input the dynamical expres-

sion component receives from the emotion detection component, the development

and validation of the output comprising of the gestures instantiated in the robot,

and the implementation of the system. We present results from a human validation

study that shows people perceive the robot gestures, generated by the system, as

expressing the emotions in the speech content. Also, we show that people’s percep-

tions of the accuracy of emotion expression is significantly higher for a mass-spring

dynamical system than a system without a mass-spring when specific detection er-

rors are present. We discuss and suggest future developments of the system and

further validation experiments.

5.1 Introduction

People communicate emotion using multiple modalities. We use language, tone

of voice, facial expressions and gestures to express our intentions and emotions.

By looking and listening to each other, we can infer each other’s emotional state

and even begin to feel what the other is feeling. However, in some situations, one

or more modalities may be absent, noisy, or damaged and these conditions may

degrade how the human body expresses emotions. Because people rely heavily on

facial expression in attributing and interpreting other’s emotions and motivational

states, compromised or missing modalities can deeply affect the person’s ability to

communicate which may lead to impaired social interactions and reduced quality of

life. Such is the case for people living with Parkinson’s disease (PD) which due to a

condition called facial masking, are impaired in their ability to express their inner

emotional state.

Our long-term goal is to develop a robot that could help people with PD ex-

press their inner emotional state and thus improve their communication with care-

givers. In this chapter, we describe the emoting system which uses two components:

an emotion detection component and an expression component. This paper focuses

on the latter. We extended the unsupervised emotion prediction model described in
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Chapter 4 and trained it to detect five different states of emotional positivity. The

detected emotional state drives a mass-spring dynamical system to smooth emissions

from the detection component, e.g., compensating for varying utterance frequency

and prediction errors. Detected emotions are expressed as gestures in the Nao robot

from SoftBank Robotics. The mass-spring also ensures that relatively more emo-

tional “force” is needed to move a person from a more extreme emotional state than

from a more neutral state. To test our system we conducted three experiments with

human participants.

This chapter proceeds as follows. In section 5.2, we review prior work in

applying dynamical systems to emotional modeling and discuss how emotions are

embodied in humans and robots. Section 5.3 discusses the development and imple-

mentation of the mass-spring dynamical system. In section 5.4, we explain the three

human-robot interaction experiments we ran to validate the full system and to high-

light the contribution of the mass-spring. The results of the study show that when

embedded in the Nao robot, participants recognized the connection between the

robot’s gestures and the speaker’s utterances more when the robot emoted based

on the model’s predictions than when the robot emoted randomly. Additionally,

the mass-spring dynamical system led to greater perceived association between the

robot’s gestures and the emotional content of the speaker’s utterances than a model

without a mass-spring element, when the emoting was done at a low-frequency (for

every third utterance). This indicates that the mass-spring dynamical system is

more robust to errors. Finally, in sections 5.6 and 5.7, we discuss the advantages,

disadvantages, and limitations of this approach and further improvements that can

be made to the system.

5.2 Background

5.2.1 Dynamical Systems of Emotion

Prior research suggests physical models, in particular the mass-spring, can be used

to simulate physical human movement and create “plausible” behaviors [Fdili Alaoui
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et al., 2014]. Given their capacity to simulate physical behaviors, mass-spring models

can also be used to simulate human movement qualities. Thus we have chosen to

use the mass-spring model to simulate human gesture movement when transitioning

from one emotion to another. Without this component, these movements would be

completely discrete, and would not give rise to the continuous transitions between

emotion states that we observe in humans. The goal of this component is to initiate

behaviors in the Nao which imply transitions through intermediate emotional states

on the way to more extreme goal states, or on the way back to neutrality from these

extremes.

Previous studies on dynamic emotional models have produced conclusions

which support the presence of continuity. Research by Xiaolan et al. [2013], for

example, models emotional transitions according to the probabilities that arise in

transition matrices between emotion states. The results of this study show that in a

given emotional state, some subsequent states are far more likely than others. Specif-

ically, under positive external influence, [Xiaolan et al., 2013] claims that negative

emotions are most likely to transition to neutral emotions, and neutral emotions are

most likely to transition to positive ones. In a discrete model based purely on the

affect of human speech, these necessary intermediary steps are skipped and negative

states may be forced to transition directly to positive ones. Similarly, an adap-

tive emotional model produced by Han et al. [2013] was developed by mimicking

the emotional behavior of a human agent over the course of a conversation span-

ning seven emotion-specific dialogues. When charted along the two-axis Circumplex

model, it is clear that their modeled agent undergoes continuous, incremental pro-

gression on its way to occupying the appropriate emotional region during each of

these dialogues.

In addition to producing the intermediate steps suggested for an emotional

transition by the research mentioned above, the mass-spring model for ensuring

continuity supports the theory of emotional decay proposed by Velsquez [1997].

According to this theory, an emotional state is not maintained for the exact duration

of the triggering stimulus and dropped when the stimulus disappears. Rather, the
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onset of a stimulus instigates the development of an emotional state, which slowly

reverts to neutrality over time. The application of this theory can also be observed

in the model developed by Yang et al. via a different implementation than the one

proposed here [Yang et al., 2012].

5.2.2 Emotional Embodiment in Humans and Robots

The challenge is to design the robot’s behavior so that it expresses the detected

emotion in a naturalistic way which compensates for the lack of facia and gestural

affect cues in the persons with PD. Research has shown that humans can successfully

estimate an agent’s emotional state purely from their body movements [de Gelder

et al., 2015]. For this study, we used the Nao robot to display the emotional state

inferred from continuous speech transcribed in real-time through manipulation of its

body movements. As discussed below, a number of studies regarding human affective

body language recognition as well as robotic affective body language production have

helped ground our approach.

Many recent studies regarding emotional body language fall into two cate-

gories: attempts to create models by which robots are able to estimate the emotional

state of a human agent through visual tracking, and attempts to assess how the same

neutral action is executed differently depending on the affect of the agent. In both

cases, the emotions examined were often a specific subset of the emotions described

by Russell’s Circumplex model, such as Fear, Anger, Joy, Excitement, and Sad-

ness [Russell, 1980]. As will be described in a later section, we chose to represent

only the valence axis of emotion, so the gestures designed are meant to represent

gradations of positivity or negativity, rather than specific emotions such as these.

For this reason, the poses and movements observed and produced in these other

studies could not be replicated directly, but do serve as the basis for our present

behaviors. In their research, Shan et al. use the FABO video database to develop

an algorithm by which to assess human emotion from body gestures. This research

provides evidence for the recognizability of raised arms and hands as an indicator

of joy and excitement [Shan et al., 2007]. Another study, which used the same Nao
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robot used in our study, confirms the recognizability of happiness through raised

hand and arm gesticulation [Park et al., 2010]. Similarly, research by de Silva and

Bianchi-Berthouze analyze the salience of various body-feature point collections as a

method of quantitatively describing body language in order to develop a classifier for

emotionally labeled body language performed by an actor. This data confirms the

recognizability of gestures such as drooping chest and raising hands towards one’s

face as an indicator of sadness [De Silva and Bianchi-Berthouze, 2004]. These stud-

ies provided static poses which could be generalized, and converted into animated

body movements, to emulate varying degrees of positivity.

Other studies focused on how specific poses or motions can be altered to

convey a given emotion. One such study experimented with how the upward or

downward angle of the robot’s head can help clarify the emotion it seems to display.

The results of this study suggested that a down-turned head and face helped convey

fear and sadness, while an upturned head and face helped convey pride, happiness

and excitement. This data manifests itself in our gestural design through an in-

crease in head angle change in the appropriate direction as an indicator of increased

negativity or positivity. Amaya et al. [2000] developed an algorithm for determining

the physiological effect of performing the same action (e.g., drinking from a cup or

kicking a ball) while conveying neutral, sad or excited affects. They determined that

when excited, an action is generally performed with higher joint velocity and more

direct movements, whereas when sad, the joints involved often move slower and less

efficiently.

5.3 Development of the Mass-spring Dynamical System

5.3.1 System Input From the Speech Recognizer

In Figure 5.1, we show the major building blocks of the robot’s emotional regulation

and natural language understanding systems of the DIARC [Scheutz et al., 2019a]

cognitive robotic architecture. The figure shows how we supplemented DIARC with

an emotion pipeline consisting of two components, the Detector and the Expressor,
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Figure 5.1: Within DIARC, the Emotion Pipeline consists of the prediction (Detec-
tor) and dynamical system (Expressor) components. It receives utterances from the
Automated Speech Recognizer (LVASR) and sends its predicted affect to the Goal
and Action Manager

along with their incoming and outgoing connections. The Detector component re-

ceives a text utterance from the Large Vocabulary Automatic Speech Recognizer

(LVASR) in the Perception layer and gives its prediction to the Expressor, dis-

cussed in Section 5.3.3. The Expressor component then sends the goal predicates

representing the desired affective states to the Goal Manager.

The LVASR is based on the chain model developed for the ASpIRE Challenge

[Harper, 2015] and trained on Fisher English that has been augmented with impulse

responses and noises to create multi-condition training [Varga, 2017]. The chain

model uses Kaldi, a toolkit for speech recognition written in C++ and licensed

under the Apache License v2.0 [Povey et al., 2011]. Kaldi has demonstrated low

error rates in a variety of challenging acoustic environments using conversational

speech [iar, 2015b, Harper, 2015].

The challenge for the LVASR is to determine the endpoints of the utter-

ances, in which words are connected together instead of being separated by speech

codes such as pauses. Unknown boundary information about words, co-articulation,

production of surrounding phonemes, and rate of speech affect performance [Gulzar

90



et al., 2014] and the LVASR may generate textual representations that vary depend-

ing on the speaker, e.g., disfluencies, speech rate. As a result, the continuous speech

will likely generate utterance transcriptions from which the detector may generate

an incorrect prediction. Furthermore, persons with PD may have long pauses or

other speech anomalies depending on the disease progression. The mass-spring tries

to smooth these prediction errors and compensate for different emission frequencies

from the LVASR and predictor.

5.3.2 Mapping System Output to Robot Gestures

In order to express the results of the emotion detector and mass-spring system in the

physical world, it was necessary to define behaviors in the Nao robot which would

best reflect the emotional data produced. All physical movement design took place

in the Nao’s companion software, Choregraphe. This software contains a method

entitled Animation Mode which allows for manual moving and recording of each of

the Nao’s joints at various time steps. While the gestures defined here are generally

based on observations of human gesticulation, prior research has produced specific

data which was used to improve their efficacy and accuracy.

To produce reliable and easily interpretable gestures in the robot, we incor-

porated the prior research described in Section 5.2.2 as follows. Gestures meant to

convey positivity incorporated raised arms and hands. This is supported by [Shan

et al., 2007] as well as [Park et al., 2010]. Gestures meant to convey negativity

include drooped chest and hands raised towards the robot’s face. This is supported

by research such as [De Silva and Bianchi-Berthouze, 2004]. Rotation of the head in

upward or downward directions was also used to further convey positivity or nega-

tivity respectively. This feature is supported by the work presented in [McColl and

Nejat, 2014]. Finally, the speed at which a gesture was performed was manipulated.

In following with research presented in [Amaya et al., 2000], more positive gestures

were carried out with higher joint velocity and swift, direct movements, while more

negative gestures involved slower, less direct motion. Still images displaying a frame

from each animation developed through this process can be seen in Figure 5.2.
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Figure 5.2: Individual gestures on the robot representing emotional valence. Top
row shows three levels of increasing positivity, starting with the least positive on
the left. The image in the center is neutral. The bottom row shows three levels
of positivity increasing from neutral. The M mean and SD standard deviations of
participant ratings are presented under each gesture.
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Having designed potential gestures for the Nao to execute in order to reflect

a specific internal emotional position along a valence scale, we sought to ensure that

these gestures successfully conveyed their target information. To accomplish this,

we carried out a validation study on these gestures in isolation from the rest of

the architecture and pipeline. We recorded 10 second videos of each of the seven

gestures show in Figure 5.2 which we showed to 25 human subjects (28% Female;

Mean age = 32.08, SD = 9.39) who participated in the validation study on Amazon

Mechanical Turk. The videos were presented in random order and four foil videos,

of gestures from the standard Choregraphe database, were interspersed in between.

After watching each video, participants answered the following question: “How posi-

tive or negative are the emotions expressed by the robot in this video?” The answer

was given on a seven0-point Likert scale from “Very Negative” to “Very Positive

with a middle point labeled “Neutral”. To note that each video was rated indepen-

dently, which is a more stringent test than simply ranking-ordering the videos from

most negative to most positive. Means and standard deviations of ratings for each

gesture are shown in Figure 5.2. When averaging across the positive gestures and

across the negative gestures separately, the positive gestures are rated as expressing

significantly more positive emotions than the negative ones, t(24) = 8.90, p < 0.001.

5.3.3 Mass-Spring Dynamical System

We have attempted to replicate the physical behavior of human expression by mod-

eling the Nao’s emotional position along the valence axis of emotion as a particle.

In the current study, this particle behaves as the mass in a mass-spring physical sys-

tem (see Figure 5.3). This physical model was selected because it aligns well with

the desired behavior of this particle. In the mass-spring system, an external force

applied draws the mass away from its neutral resting position and the restorative

force of the spring pulls it back. Additionally, the further that the particle is from

its resting position, the stronger the external force must be to increase this distance.

The model we used is represented by the following second order differential equation:
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Figure 5.3: Mass-spring model with emotion particle at neutral valence. Applying
a positive force F compresses the spring to move the particle toward a stronger
positive valence; applying a negative force stretches the spring, moving the particle
in a less positive direction. In the absence of a force, the spring’s restoring effect
will move the particle towards neutral.

ẍ =
−kx− bẋ

m
+ F (5.1)

where

� ẍ = the acceleration of the particle

� k = the spring constant, which defines how easily the spring is stretched or

compressed

� m = the mass of the particle, which in the current research is set to 1

� x = the position of the particle, relative to its resting position; this is the value

which is tracked internally to maintain current emotional state

� F = the force applied to the particle

� b = the damping constant applied to the velocity ẋ

The basic mass-spring model results in a system in which the particle under-

goes infinite oscillation between resting position and the farthest distance attainable
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under a given external force. As this fluctuation does not reflect standard human

emotional behavior, we incorporated a damping force into the model. The damping

constant, b, minimizes this oscillation by causing the particle to lose energy as it

returns to its resting point. Critical damping (bc), in which no oscillation occurs

whatsoever, is attained when b = 2
√
km. This is the formula used to determine the

value of the b term in Equation 5.1.

A number of the parameters provided to this model, such as k, m, and b,

have been determined through in-lab experimentation and tuning in order to produce

consistent and expected behaviors in the system. Future research which expands on

the utility of applying physical system constraints to emotional or social behavior

may include a more focused study on determining the optimal parameter set for the

mass-spring system to produce natural behavioral transitions.

5.3.3.1 Mapping Categorical Predictions to Force

Equation 5.1 depends on the force F which acts on the mass to move it in the

positive or negative direction, depending on the valence classification of speech. The

Detector component generates five possible classifications, of increasing positivity.

Calling get_prediction_value() method of TopicModel (see Figure 5.4) returns an

integer value in the range [0,4] for the predicted class (see Section 5.4.1). This integer

value ci is then used as the new input to the following Poisson-style exponential

smoothing equation:

e0 = c0, t = 0 (5.2)

et = αct−1 + (1− α)et−1, t > 0

Here, et represents the new emotional force. After et has been derived ac-

cording to this formula, it is scaled from range [0,4] to range [-100,100] when applied

to the mass in the physical model. The term α represents the smoothing coefficient,

which defines the relative weights of the raw classification input ct−1 and the most

recently calculated emotional force et−1. For the current research α was set to 0.6,
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but future research in this direction might consider experimentally determining the

optimal value for this constant.

Figure 5.4: Diagram displaying the overall process at work, beginning with the
speech act from a human agent and resulting in affective movement from the robot.

Figure 5.5: Emotion detector. (1) Document topic structure built (2) For each
sentence, topic probabilities are extracted & used to train the classifier (3) Features
are extracted from the utterance by the trained LDA model and (4) presented to
the trained classifier to predict emotional state
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5.3.4 Implementation

5.3.4.1 Emotion Detector Component

We enhanced the three-state sentiment detector described in Chapter 4 to infer five

states of emotional valence {strong negative, medium negative, neutral, medium

positive, strong positive}. Socher et al. [2013] reported that five levels of positivity

was sufficiently fine-grained to capture the continuous values human evaluators re-

ported and this informed the number of states we chose to detect. Our validation

suggests that humans do indeed distinguish the different categorical levels of posi-

tivity expressed through the mass-spring component which gives the appearance of

smooth transition from one emotion to another.

The model consists of two processing steps: (i) extract the topic probabilities

from each document in the set (items 1 and 3 in Figure 5.5), and (ii) use these

features to predict the emotion valence of individual sentences as yet unseen by the

model (items 2 and 4 in Figure 5.5). Training of the LDA model and the classifier

(items 1 and 2 in Figure 5.5) was done outside of the robotic architecture and

the results saved to files. These were subsequently used to initialize the predictor

component in the robotic cognitive architecture; in principle, training could also

take place in the architecture.

In Chapter 3, we demonstrated that Latent Dirichlet Allocation (LDA) has

been shown to be effective for inferring affect in conversational speech (also see [Shah

et al., 2013, Shah et al., 2015]). We used the Gensim [Řeh̊uřek and Sojka, 2010]

implementation of LDA as the feature extractor of our model; we used the default

hyper-parameter values. The generative model assumes a number of topics over

which an initial distribution of documents is estimated. For this implementation,

we set the number of topics to be 100, as described in Chapter 4.

We used a multi-layer perceptron (MLP) with two layers of 50 artificial neu-

rons each; these values were selected based on a parameter sweep using Scikit-learn’s

GridSearchCV method. We trained the model using the tanh activation function

with a constant learning rate with initial value 0.001 and adaptive moment estima-
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tion (i.e., “Adam”) as a fast optimizer. We used a stable, widely-used implementa-

tion of the MLP classifier from Scikit-learn [Pedregosa et al., 2011]. We trained the

LDA model and the classifier outside of the robotic architecture and the results were

saved to files. The Detector component used these files to instantiate the trained

model in the robotic cognitive architecture.

5.3.4.2 Model Training

Training input to the model used the dataset described in Chapter 4. This consisted

of individual sentences drawn from 448 documents with an average word count of

258 words, the largest containing 1,732 and the smallest, 2. The documents were

constructed from selected interview transcripts from 106 male and female partici-

pants with PD, living in the community, who participated in a study [Tickle-Degnen

et al., 2010] which asked them to recall two types of experiences they had during

the past week: a frustrating one and an enjoyable one. The robot running the emo-

tion detection model could then be expected to accurately predict emotion from

utterances spoken in a similar contextual domain.

Ground truth labels for our model were obtained as follows. Two-dimensional

(valence,arousal) emotion values for each sentence of the dataset were generated by

human evaluators who used a Web-based implementation of the Circumplex model

of emotion [Russell, 1980] as described in Chapter 4. In the Circumplex, valence and

arousal can range from -100 (most negative/calm) to +100 (most positive/aroused)

with 0 considered to be neutral. In that study, the researchers found inter-rater

reliability for arousal to be low and therefore used only valence for model training

and prediction. The human evaluators (N = 1,058) rated 439 documents of various

lengths (269 describing a frustrating experience and 170 describing an enjoyable

experience) for a total of 7,713 sentences. Each document was rated by at least

four evaluators who rated between two and four documents each depending on the

length. We used human evaluators drawn from the general population rather than,

for example, asking PD persons themselves to label the data in some assisted way

or ask some PD experts to conduct the task. The reason for this is as follows.
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Correctly detecting the emotion of PD persons is a challenge because their

facial expression do not match what they convey through words. Often, a person

with PD can have an angry or apathetic-looking expression even when they are

talking about joyful experiences. Research has shown that even specialists have a

very hard time inhibiting their incorrect impressions of the person with PD when

faced with dissonant emotion expressions across channels [Tickle-Degnen and Lyons,

2004]. When evaluating the emotion expression in the unaffected channel alone

(content of speech), people should have no issues with detecting the correct emotion.

This is exactly what our raters did: they read text transcriptions of interviews

conducted with people with PD - they never saw the facial masking in conjunction

with what was being said.

Using k-means clustering of the (x,y) data we collected from the AMT study,

we found five classification center points. This classification gives valence scores of

-100 to -10 as negative, -10 to 25 as neutral, and 25 to 100 as positive. Upon model

evaluation, we found that classification by constant valence scores of -100 to -24 as

negative, -24 to 24 as neutral, and 24 to 100 as positive give the most predictive

ranges to use for classification as evaluated by its F1 score, a common measure

of classifier performance. We suggest that users view the Circumplex as a square

graph, with the center as true neutral. We therefore use constant valence values

away from the center to delineate classification boundaries.

5.3.4.3 Expressor Component

In order for the mass-spring to operate in real-time as the robot engages in a hu-

man interaction, we built a Java component which uses a second order integrator

implemented by the Apache Commons Ordinary Differential Equations (ODE) pack-

age [The Apache Software Foundation, 2019]. Figure 5.4 displays the control and

data flow for this entire process. The component is constantly running in parallel

with the other processes in the pipeline. A method within the mass-spring, named

Ready_update is called with rapid frequency by the scheduler of the cognitive archi-

tecture. Each time it integrates Equation 5.1 over a given time step, it first updates
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F to reflect the current force derived from the most recent emotional valence pre-

diction received from the Detect component. Each time a prediction is generated,

this force attribute is modified accordingly for six seconds before reverting to 0.

It then saves the state of the particle at the end of this time-step, and begins the

next time-step from this saved state. This state data includes x, the position of

the particle, which is used to determine which gesture to send along to the Nao for

execution.

As is described in the previous section and displayed in Figure 5.2, the Nao

robot is able to produce seven different gestures, intended to be dispersed evenly

along the valence axis from extreme negativity to extreme positivity. In order to

translate from the x produced by the integrator into an embodied behavior, we

defined numerical thresholds between each gestural space along this axis, derived

through observation of the distance from neutral that the particle reached during

the application of various positive and negative forces. At each time step, after

integration, this component assesses whether the particle has crossed a threshold

from one gestural range into another, at which point the robot is instructed to

switch from one behavior to another. Each behavior is designed so that it may be

repeated continuously for the entire time that the particle occupies the correspond-

ing region. Whenever this position crosses one of the predefined thresholds into a

region associated with a different body language behavior, the new desired move-

ment is reported back to the Goal and Action manager component of the cognitive

architecture, which relays it to the Robot Controller Nao component for execution.

5.4 Methods

5.4.1 Design and Procedures

To validate our system we conducted three on-line experiments. The procedures

were the same for each of the experiments, but the robot emoting was varied as

explained below. In each experiment we asked participants to watch a video of

a person being accompanied by an emoting robot (see still shot in Figure 5.6).

100



Figure 5.6: Still photo of Nao robot and PD person (i.e., a confederate) used in
online evaluation of model.
We conducted the experiments on-line and used videos because we wanted, for a

fair comparison, to keep constant what the person was saying across conditions.

This would have been problematic in a natural interaction scenario between the

participant and the assisted person. Moreover, an in-person interaction presented

ethical concerns: using a confederate that actually suffered from PD for testing the

robot at this stage of prototyping would have put unnecessary burden on someone

vulnerable from a health-perspective, and would have created potential for stigma,

while using an actor to impersonate someone with PD mimicking all motor aspects

of the disorder would have constituted deception of the participant much beyond

what was needed for the purpose of the validation of the system. We thus opted

for a video in which a male actor speaks directly to the camera reproducing the

facial masking and the affectless tone of voice that is typical of PD. The script was

extracted verbatim from an actual interview with a person with PD who was talking

about one enjoyable and one frustrating experience they had had the previous week.

This interview was set aside from the dataset that was used to train the prediction

model.
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The emoting robot’s behavior was varied across experiments and conditions

in the following way: in Experiment 1 we compared the robot emoting based on the

model described above (including the Detector and Expressor components) with a

video in which the robot was emoting randomly. The purpose of this experiment

was to obtain a baseline of how much people associate the robot’s gestures with the

person’s speech. We hypothesized that a higher association to the content of speech

would be perceived for the model-based emoting an the random emoting. In Exper-

iment 2 we compared the robot emoting based on the mass-spring model described

in this paper, to the robot emoting using the model but without the mass-spring ele-

ment. The robot produced gestures corresponding to the emotional content of every

utterance made by the person. We hypothesized that there would be no differences

between the mass-spring and no mass-spring models when the emoting frequency

was high (for every utterance). In Experiment 3 we used the same comparison as

in Experiment 2, but this time the robot was emoting at a low frequency, only ex-

pressing the emotional content for every third utterance made by the person. This

experiment was meant to showcase the robustness of the mass-spring model. We

hypothesized that when the frequency of emoting drops, which might happen due to

failures of the LVASR or of the Detector component, the mass-spring model would

compensate for these errors. By returning to a neutral state instead of perseverating

on one particular gesture, it would improve the perceived emoting accuracy. In all

experiments participants were given the following instructions: “In this video you

will watch a person being interviewed about some enjoyable and some frustrating

experiences he’s had in the past week. Accompanying him is his assistive robot.

Please watch the video carefully. You will be asked questions about the person and

his assistive robot.”

The study used a between-group design, each participant being randomly

assigned to one of the conditions mentioned above. After watching the video, par-

ticipants answered the following questions: “Is the robot’s behavior connected to

what is being said?”, which participants answered with either “yes” or “no”; and

“How well do you feel the robot’s gestures matched what was being said?”, which
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participants answered on a five-point Likert scale from “not at all” to “very much

so”. Likert scale (1-5) and binary answers (which can be transformed into propor-

tions of yes/no) were our dependent variables. Chi-square tests were conducted only

on binary answers and we performed t-tests on the Likert scale variable. Although

Likert scales technically do not give continuous variables, we cite, as justification,

the central limit theorem which establishes that randomly generated independent

observations (variables) will tend to approximate a normal distribution.

Additionally, they answered further open-ended and multiple-choice ques-

tions about the robot’s behavior and the person in the video, but analyses of those

answers are beyond the scope of this paper. A total of 161 participants completed

the study on Amazon Mechanical Turk and also passed our attention checks (42.6%

Female, Mean age = 37.4 years, SD = 11.85). The research was approved by the

university’s Institutional Research Board (IRB), and participants were compensated

with $1.00 USD for their time.

5.5 Results

5.5.1 Experiment 1: High-Frequency Model Emoting/Random Con-

dition

When the robot was emoting based on our model, 80.7% of the participants indi-

cated that the robot’s behavior was connected to what was being said, significantly

more than when the robot was emoting randomly, 41%, χ2(2) = 8.86, p = 0.003

(see Figure 5.7). Also, when the robot was emoting based on the model, the mean

participant rating of how well the robot gestures matched what was being said

(Mean = 1.96, SD = 0.87) was significantly higher than the mean participant rat-

ings when the robot was emoting randomly (Mean = 1.14, SD = 0.91), t(53) =

3.41, p = 0.001 (see Figure 5.7). We used the Shapiro-Wilk test to check for normal-

ity of distribution of the data in the two groups (random: W = 0.955, p = 0.653;

model: W = 0.999, p = 1). This suggests that people understand the robot’s emo-

tive gestures as related to the content of the person’s speech.
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5.5.2 Experiment 2: High-frequency Model Emoting/No Mass-

spring Condition

In this high-frequency emoting comparison between our mass-spring model and the

same model without the mass-spring element, we found no differences between the

robot emoting based on the mass-spring model and the robot emoting without the

mass-spring element.

There was no significant difference between the two conditions in terms of

perceived connection between the robot’s gestures and what was being said (mass-

spring:76%, no mass-spring: 74%, χ2(2) = 0.03, p = 0.868), or between the mean

participant ratings of how well the robot’s gestures matched what was being said

(mass spring: Mean = 1.92, SD = 1.04, no mass-spring: Mean = 1.74, SD = 1.10),

t(46) = 0.58, p = 0.559. We used the Shapiro-Wilk test to check for normality of

distribution of the data in the two groups (no spring: W = 0.966, p = 0.595; spring:

W = 0.997, p = 1).

5.5.3 Experiment 3: Low-frequency Model Emoting Condition/No

Mass-spring Condition

When the frequency of emoting was low however, the robot emoting using the mass-

spring model outperformed the robot emoting without the mass-spring element.

The use of the mass-spring led to a higher perceived connection between the

robot’s gestures and what was being said (mass-spring: 85% no mass-spring: 48%,

χ2(2) = 8.65, p = 0.003) and participants rated the mass-spring emoting as better

matching what was being said (mass spring: Mean = 1.96, SD = 1.09, no mass-

spring: Mean = 1.16, SD = 0.90) t(56) = 3.07, p = 0.003. We used the Shapiro-

Wilk test to check for normality of distribution of the data in the two groups (no

spring: W = 0.929, p = 0.043; spring: W = 0.939, p = 0.117). Since the t-test is

robust to small deviations from normality and because of the central limit theorem,

we consider the test to accurately reflect the difference between the two groups.

However, as an additional check we also performed a non-parametric Wilcox-Mann-
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Whitney test as an alternative, which confirmed our results: z = 2.808, p = 0.005.

This suggests that the mass-spring emoting model is robust to potential LVASR or

recognition errors and is perceived by observers to be more accurate at expressing

emotions from speech content.

Figure 5.7: Ratings of perceived robot behavior in (A) high-frequency and (B) low-
frequency emoting conditions. Top and bottom rows indicate participant responses
to questions (1) and (2).

5.6 Discussion

We hypothesized that gestures could be an effective mode for conveying emotion

in a robot, and that the mass-spring would be a robust design that ensures high
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perceived accuracy of emoting even when emotions are detected at low frequency.

This might occur, for example, when utterances are spatially separated because

of pauses in speech or when detection frequency is reduced to conserve power in

an embedded system. We further recognized that emotion detection models are

fallible and that some means would be necessary to smooth the impact of erroneous

predictions on the robot’s expression or when critical, emotion-bearing utterances

are omitted or not recognized by the LVASR component. Therefore, we designed

the mass-spring component to mediate between the prediction component and the

gesture generation to serve this purpose.

Our findings support our hypotheses that humans do indeed distinguish the

different categorical levels of positivity expressed through the mass-spring compo-

nent which gives the appearance of smooth transition from one emotion to another.

Compared to random emoting, when evaluating the overall perception of the robot’s

behavior and gesticulations produced by the detector and mass-spring components in

concert, participants perceived a significantly higher association between the robot’s

emoting and the person’s content of speech. The findings suggest that this system

provides a suitable basis for a emoting robot companion for persons living with

Parkinson’s disease. Additionally, the mass-spring dynamical system led to greater

perceived association between the robot’s gestures and the emotional content of the

speaker’s utterances than a model without a mass-spring when the emoting was

done at a low-frequency (for every third utterance). This suggests that the mass-

spring provides necessary robustness for the emoting system, which is critical given

the targeted population - people with PD often have difficulties with speech produc-

tion, which might make the error rate of the LVASR component higher. Our results

suggest that the mass-spring could help compensate for this.

During in-lab system testing, we noticed some delay, not exceeding 1.5 s on

average between what the person uttered and the generated gesture depending on

how the speech end-point was detected by the ASR component. This also impacted

the accuracy of the predicted emotion. If there were disfluencies in the speech,

or the person paused, the utterances would be broken up into smaller segments.
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While this reduced the delay, this increased the likelihood of there being insufficient

context to accurately detect the intended emotion. As noted in Chapter 3, the LDA

method used in the detector has been shown to be more accurate than, for example,

a sentiment lexicon approach such as LIWC in detecting emotion in short bursts of

text. When evaluating the gesture set, we found that while overall the participants

were able to recognize the relative positivity of the set, within the three less positive

and three more positive sets surrounding the neutral gesture, there was some lack of

distinction. We attribute this to having insufficient context to situate the gestures.

Further research is needed to design a more definitive sequence.

5.6.1 Future Work

A future study would do well to investigate the contribution of each component of the

full system in an empirical experiment under varying conditions of emotion detection

frequency and error rates. Utterances containing high and low emotional variance

and sequences of abrupt transitions between positive and negative emotions would

further help in the analysis of mass-spring’s contribution. Furthermore, human

emotional state can change in far more complex ways and in more subtle gradations

than the five emotional categories detected in this system. Refining the emotion

detector to generate not only valence but arousal measures would could reproduce

more accurately the complexity of human emotion. The challenge, then, will be to

design suitable emotion expressions in the robot that reflect this complexity.

5.7 Summary

We developed and evaluated a model which detected five degrees of emotional va-

lence in the continuous speech of a person with PD and used a spatial-temporal

dynamical system to compensate for emotion detection errors and frequency of emis-

sion. We embedded the model in the DIARC robotic cognitive architecture running

in a Nao robot which expressed emotion using its body movement. The system

equips the robot with the ability to provide immediate feedback on the emotional
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state of the person with PD during conversations with their care-givers or in social-

situations. Prior research has shown providing feedback on the emotion content of

a conversation is not only beneficial for improving the social interaction with the

PD patient, it can improve the quality of life in the home. Since human emotion is

communicated via multiple modalities, and through different channels, (e.g., voice,

facial expressions, gestures) situating such a tool in a robot that appropriately con-

trols its expressive motors could compensate for the compromised vocal and facial

modalities when communicating emotion.

We found encouraging results that showed participants in our study con-

nected the robot’s gestures to what was being said. Once enhanced with finer

prediction resolution and further tuning of the dynamical system, the robot should

be able to express emotion using any bodily movement available in a natural way

and under a variety of conditions (e.g., noisy speech, rapid emotional changes).

We envision that this system can be generalized to serve as a conversational agent

which can monitor the emotional content between any two individuals and provide

immediate feedback on the emotion content during the course of the conversation.
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Chapter 6

Improving Natural Language

Understanding in Spoken

Dialogue Systems

Spoken dialogue Systems (SDS) are used to interact with intelligent agents through

natural language. As speech input is processed, problems may arise which may cause

the system to fail to generate an appropriate response. In this chapter, we show

a novel framework for understanding spoken dialogue in which utterance analysis

is escalated through a multi-level system according to the feedback retrieved at the

syntactic, semantic, and contextual/topic level. Analysis is applied incrementally at

each level as the system attempts to resolve the uncertainty surrounding utterance

interpretation. Links to other SDS components from each of the levels can affect the

agent’s beliefs and conversely, other components can signal the framework to rein-

terpret the utterance in the context of, for example, a new topic. We demonstrate

how our multi-level analysis approach can be integrated with other SDS components

to improve accuracy in the SDS’ ability to recognize spoken task commands. We

evaluate this by comparing the semantic interpretation accuracy of utterances from

two task domains given as input to an SDS, under two experimental conditions: one

with the multi-level framework and one without.
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Figure 6.1: Typical components of a spoken dialogue system. At each turn t, input
speech is converted to an utterance, ut, which the Natural Language Understanding
(NLU) component maps to an internal representation, st of the human’s intent.
The dialogue Manager uses this to update the agent’s belief state in the Knowledge
Base, bt and then infers an natural language form, nt from the Natural Language
Generation (NLG component) which initiates a response, rt to the Text-to-Speech
(TTS) component.
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6.1 Introduction

Humans use Spoken dialogue Systems (SDSs) to interact with intelligent agents

using speech-based natural language [Mori, 1997, Zue and Glass, 2000, Jokinen

and McTear, 2009]. Figure 6.1 shows components typically found in such systems

[Scheutz et al., 2019b, Young et al., 2013]. In this example, the Automatic Speech

Recognizer (ASR) recognizes the human’s utterance, ut, and sends it to the Natural

Language Understanding (NLU) component. The NLU analyzes the intent and

converts it to a semantic representation, st, passing it to the dialogue Manager

(DM). The DM communicates with the Knowledge Base (KB) to send it assertions

inferred from the input semantics that will be incorporated into the current belief

state bt. The DM determines its response based on the agent’s updated belief

state and obtains a natural language form, nt, by consulting the natural language

generation component, which then sends the response rt) to the Text-to-Speech

component.

However, problems may arise in the ASR component which can propagate

through the system and cause it to fail to generate an appropriate response. For

example, the ASR may recognize the word “Iraq” instead of “ a rock” [Sarma and

Palmer, 2004], or it may hear a novel word it has not yet learned [Scheutz et al.,

2017]. Alternatively, the user may believe the system to be capable of retrieving

the weather report when its domain is retrieving movie listings; in such a case, the

system will need to respond to the user’s out-of-domain (OOD) request [Tur et al.,

2014]. Finally, in a multilingual environment the SDS may switch between different

languages, e.g., a robot that a human can query in English or Japanese to initiate

a Wikipedia search [Wilcock and Jokinen, 2015].

The ASR cannot recognize what it does not know about, and in the cited

examples the researchers solved this problem by extending the ASR vocabulary or

by adjusting the prior probability of the hypothesized word sequences. However,

detecting and interpreting the user’s true intention, and selecting an appropriate

response given noisy human speech and ASR transcription errors, requires a method
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for communicating between SDS components. For example, the NLU, Knowledge

Base, and Dialogue components can request the recognition subsystem to reinterpret

the utterance in the event of say, a processing failure.

In this chapter, we show a novel framework for understanding spoken dia-

logue in which utterance analysis is escalated through a multi-level system involving

interpretation on syntactic, semantic, and contextual/topic levels (see Figure 6.2).

Analysis is applied incrementally at each level as the system attempts to resolve the

uncertainty surrounding utterance interpretation. Links to other SDS components

from each of the levels can affect the agent’s beliefs and, conversely, other compo-

nents can signal the framework to reinterpret the utterance. This may occur in the

context of, for example, a new topic. To our knowledge, no other approach has

demonstrated the use of such a multi-tiered system for improving accuracy in the

SDS’ ability to recognize spoken task commands.

This chapter proceeds as follows. In Section 6.2, we discuss prior approaches

to resolving out-of-domain requests, using context to improve ASR and parser per-

formance, and learning novel words. In Section 6.3, we place these approaches in

the context of the components in our framework and show how they can be linked to

existing SDSs to provide the multi-level escalation process. We also discuss how we

use Topic Detection to determine context and how it was evaluated. In Section 6.4,

we discuss a demonstration and evaluation of the framework using utterances drawn

from two task domains in two conditions: one with the framework and one without.

Finally, in Section 6.5, we discuss the advantages, disadvantages, and limitations of

this approach and further improvements that can be made to the system.

6.2 Related Work

Research in improving NLU in task-oriented dialogue systems and intelligent agents

can be motivated as follows. One way to ensure reliable performance of speech

recognition for SDSs is to make a closed-world design assumption, and limit their

operation to well-defined domains (for examples, see [Lane et al., 2005]). This could
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Figure 6.2: Multi-level framework for understanding spoken dialogue encompassing
prior approaches.

be accomplished by representing the dialogue model as a finite state system using a

pre-defined state transition network, which assumes that the dialogue is known in

advance [McTear, 1998]. This approach is not resilient to input outside the agent’s

domain, and so frame-based dialogue systems have been proposed. In these, the

model attempts to fit the dialogue into frame slots (i.e., a “form”) corresponding to

an action or utterance [Xu and Rudnicky, 2000]. However, these systems struggle

when utterances fail to fit into a frame.

It is desirable that the human be able to communicate in a natural and

flexible manner with the agent. To enhance usability, NLU systems are built on

open-world assumptions. In these systems, the user may provide both in-domain

and OOD inputs, the latter of which may be unsupported by the system. Accepting

OOD inputs could lead to errors propagating through the system, which may lead to

undesirable responses unless it can reliably distinguish between the two and process

them accordingly. Context detection is one approach researchers have used for OOD.

Veale et al. [2013] discuss a method for applying top-down contextual bias based

on the expected dialogue turn to a neural speech recognition system to improve its
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performance. Sarma and Palmer [2004] compute the likely contexts of all words

in an ASR system vocabulary by performing a lexical co-occurrence analysis using

a large corpus of output from the speech system. This is used to find the likely

context for query words, and the system uses this to identify similarly-sounding,

but erroneous query words.

Topic detection may also be used to infer context. Lane et al. [2006] pro-

posed a detection framework which makes use of the classification confidence scores

of multiple topics and applies a linear discriminant model to perform in-domain ver-

ification. Lane et al. [2005] describe an architecture which combines topic detection

with topic-dependent language models for use in a multi-domain SDS. According

to the researchers, their approach allows the user to freely switch among domains

while maintaining a high-level of accuracy.

However, topic approaches use a bag-of-words which, along with those that

are feature-based [Tur et al., 2014], have difficulty dealing with unknown words, e.g.,

rarely used expressions and neologisms. To overcome this problem, Oh et al. [2018]

describe a method in which OOD sentences occurring in a dialogue are detected

based on sentence distances. The distances are measured by sentence embedding

vectors using RNN (Recurrent Neural Network) encoders and incorporate an atten-

tion mechanism.

Alternatively, Scheutz et al. [2017] describe a mechanism for detecting the

intentional use of novel words in a one-shot learning system. Here, the ASR is

modified such that when an unknown token is generated by the acoustic model, its

corresponding word-level unit is discovered from the acoustic features. A nearest-

neighbor classifier is used to determine whether the discovered unit represents the

first member of a new word-class of the vocabulary and, if so, the class and example

are added; otherwise it is added to an existing class.

In addition to using context to switch among language models, topic model-

ing can be applied to syntactic SDS components. Mukherjee et al. [2017] use Latent

Dirichlet Allocation (LDA) to improve parser performance across multiple domains.

LDA is used to find the topic structure in a document, which is a single sentence
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here. The sentence is assigned to the most likely topic and an “expert” parser for

the topic is trained for syntactic analysis.

For situations where the domain is constrained, yet the user will be using

natural language with its attendant disfluencies and irregularities, the ASR is likely

to not recognize domain-specific commands. For this type of system, Leuski and

Traum [2010] describe a statistical classification component which, in order to auto-

mate natural and flexible human-agent dialogue, estimates semantic meaning if the

precise meaning cannot be found.

Finally, Chen et al. [2013] describe how information from multiple non-ASR

components in their conversational spoken language translation system can be com-

bined with strong baseline ASR error detector features and used to improve overall

ASR error rate. The system contains built-in error detection modules that pinpoint

regions in the input where the ASR is likely to fail, including a confidence estimator

of the language translation (i.e., English-Iraq). Interestingly, the researchers also

incorporate, as an input feature, the posterior word probabilities returned from a

named entity detector to improve out-of-vocabulary word recognition.

In this section, we reviewed literature representing the main approaches to

resolving OOD inputs and improving ASR performance. The contextual approaches

(e.g., topic modeling, word co-occurrence, statistical classification) have the effect

of changing the prior probabilities of the trained ASR by making a selection from

multiple language models [Mukherjee et al., 2017, Lane et al., 2006, 2005, Sarma

and Palmer, 2004], biasing the ASR word hypothesis [Veale et al., 2013], or discrim-

inating among similar interpretations [Leuski and Traum, 2010]. An alternative

approach is to extend the ASR vocabulary when a novel instance of a word class is

detected as in [Scheutz et al., 2017]. Chen et al. [2013] used a combination of the

two approaches. In the following section, we will discuss how these approaches have

been integrated with some, but not all, of the components of the SDS framework.
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6.3 Multi-level Framework

Our framework consists of three possible levels of utterance interpretation: syntactic,

semantic, and context. The purpose of the first level is to select an interpretation

of the user intent using the exact syntactic form of the utterance. The second level

assumes that the utterance may or may not fit into an expected syntactic format,

but that the semantic meaning of the user’s intent can still be identified. In this

case, a classifier is used to generate the most likely semantics based on previous,

similar utterances. The classifier returns a similarity score to allow the Hypothesis

component to select between the semantic form produced by the classifier and the

semantic form produced by syntactic analysis. At the third level, the context of

the utterance is used to restart and inform connected components to reinterpret the

utterance using, for example, a new language model, classifier, or parser.

In the legend of Figure 6.2, we situate selected prior work in the framework,

assigning them to the syntactic, semantic, or context levels in accordance with their

approach to improving SDS performance. We place Scheutz et al. [2017] “One-shot

Spoken Learning” in the syntactic level as they assume an unrecognized speech

token may be a novel word. After a pattern analysis of the acoustic features, their

system attempts to place the new token in the vocabulary. This flow is shown by

the solid red connections in the figure. However, to recover the label of the word so

that the natural language generation (NLG) can say it back using the agent’s speech

apparatus, the phonemic sub-units within the word feature must be recovered and

mapped to the pronunciation dictionary. The dotted red line indicates the required

connection for this capability.

We situate the NLG system described by Leuski and Traum [2010] in the

second, semantic level as it makes no assumption that the syntactic form is correct.

Level 2 uses the NPC Editor statistical classifier to generate multiple similar inter-

pretation of the utterance, selecting the one with the highest similarity score and

sending it to the Pragmatics component for intention analysis; these connections

are shown by the solid gold lines in the figure. The NPC Editor classifier could ask
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for a back-off and reinterpretation of the utterance if the highest similarity score

falls below a threshold; the connections for this additional capability are indicated

by the dashed gold lines.

The basis for the context level 3 is its ability to use topic detection to infer

utterance context and thus we situate the hierarchical topic classification of Lane

et al. [2005] in that level. In their implementation, the researchers describe a system

which can detect in- and out-of-domain utterances, and freely switch among several

topic-dependent language models. In the figure, the connections and components for

this system are shown in blue; however, we indicate by the blue dashed line that there

could be additional connections that could further improve the interpretation. New

connections from the Knowledge Base, Pragmatics, and NPC Classifier components

allow them to request a back-off and reinterpretation of the utterance by inferring

its context through topic detection. Connections from the selector back to those

components can signal that an alternative, topic-dependent classifier, pragmatics,

KB model should be used.

We also situate in level 3, the system described in [Mukherjee et al., 2017]

which creates topic-specific datasets that are then used to train expert parsers. This

system is shown in the green box in the figure with without a solid line connection to

the Selector because the researchers have evaluated the expert parsers individually

and do not specify a method for freely selecting from among language models. The

green dashed lines show the connections to Topic Detection and from the Selector

to indicate this added capability.

Finally, we situate the dialogue contextual bias signal system described in

[Veale et al., 2013] in level 3. Rather than using a topic model to infer bias, the

authors use the knowledge of common dialogue exchange patterns contained in the

dialogue Manager to develop a bias signal for the ASR component (shown as a solid

brown line in the figure). This is used to change the words’ prior probabilities in the

ASR, influencing word selection according to dialogue context. The authors describe

this system as a biologically plausible cognitive model based on human perceptual

decision making. As such, it provides an interesting avenue for further research into
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human-like ways to improve speech recognition.

Figure 6.3: Multi-level processing flow. Level 1: The spoken utterance is received
by the ASR which generates the textual utterance, passing it along to the Parser
and Classifier. Level 2: the Parser and Classifier analyze the utterance semantics
(2a) and send their interpretation and confidence scores to Pragmatics. Level 2b:
Pragmatics selects highest score and generates the interpretation; if there is an ERR,
Pragmatics requests a reinterpretation (2c) through the ASR/Topic Detector, which
infers the topic and switches the LM, only if the topic has changed. Level 3: The
utterance is reinterpreted through the new LM and sent to Pragmatics.

6.3.1 Implementation

We implemented the multi-level framework shown in Figure 6.2 in the DIARC

robotic cognitive architecture [Scheutz et al., 2019b]. The implementation consists

of the ASR, Topic Detection, Selector, Topic-Dependent Language Models, Parser,
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NPC Classifier components, and Pragmatics. The ASR is based on the chain model

developed for the ASpIRE Challenge and trained on Fisher English that has been

augmented with impulse responses and noises to create multi-condition training

[Harper, 2015, Varga, 2017]. The chain model uses the Kaldi ASR [Povey et al.,

2011]. For parsing, we used a symbolic, rule-based parser, and for the classification

component, an implementation which is part of the NPCEditor platform [Leuski

and Traum, 2010].

Figure 6.3 shows that the processing flow begins in Level 1, with a spoken

utterance that is transcribed by the ASR component. At Level 2a, the utterance is

sent to the parser and classifier which interpret its meaning as a semantic representa-

tion. The classifier returns all interpretations along with their similarity scores, and

the classifier selects the interpretation that is above a predefined similarity threshold

(0.6) and sends it to Pragmatics. The Parser, however, either successfully returns

a semantic predicate assigning it a confidence score of 1.0, or fails and returns 0.

In this level, simple, structured utterances (e.g., “Move to area Alpha”) are pro-

cessed quickly by the parser, whereas colloquial utterances such as, “Um can you

like come to Alpha”, can still be successfully interpreted by the classifier based on

its similarity to expected utterances.

At Level 2b, Pragmatics selects the highest score returned by the Parser and

Classifier and generates the interpretation. If the Parser fails (score = 0), or the

Classifier cannot find a semantic interpretation with a score > 0.6, then it requests

a reinterpretation (Level 2c) through the ASR/Topic Detector. If the topic has

changed (Level 3 ), the Topic Detector will switch to a generic language model that

is a mixture of topic unigrams, and the utterance will be reinterpreted. If there

was no topic change, the framework assumes there cannot be a valid interpretation,

and will generate an appropriate response to the user. The generic LM is used so

that the Topic Detector has a basic utterance to which it infers a topic distribution.

The Topic Detector uses the distribution to select a domain-specific LM, and the

utterance is reinterpreted using the new LM, passing once again to the Level 2

processing.
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6.3.2 Topic Detection

We used LDA [Blei et al., 2003b] to infer topics in a heterogeneous collection of

textual data. The intuition behind LDA is that documents exhibit multiple topics

and that only a small set of topics are contained in a document and that they use a

small set of words frequently. As a result, words are separated according to meaning,

and documents can be accurately assigned to topics. The LDA model can function as

a topic detector, which can generate the topic distribution contained in a document

(which in this case is a single utterance). It detects a topic shift from one utterance

to another by comparing the KL Divergence between the two topic distributions.

If the difference is above a pre-determined threshold, a shift is indicated. This is

used by the Topic Selection component to signal the Selector to switch to a new

language model. As stated previously, this mechanism can be extended to select

among alternative parsers, classifiers, knowledge base components, etc.

6.3.2.1 LDA Model Training

We used the Gensim [Řeh̊uřek and Sojka, 2010] implementation of LDA to train the

topic detector and extract the topic distribution from the utterances; we used the

default hyper-parameter values. The generative model assumes a number of topics

over which an initial distribution of documents is estimated. Once trained, the

model infers the thematic structure of the document collection, i.e., the per-word

topic assignment and the per-document topic proportion. The model can then be

given a previously unseen utterance and attempt to fit it to the thematic structure

of the document collection. The result of such a query is a vector representing

the topic distribution t of the input utterance u i.e., P (t|u). Also returned are the

words wj of the utterances that the model has assigned to each topic along with the

probability of it being in topic i, i.e., P (wj |ti).
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6.3.2.2 Topic Detection and Evaluation

The topic detector is implemented as a Python function which queries the trained

LDA model using utterances u1, u2 and returns their topic and word distributions

along with a Boolean indicator of whether the topic has changed. The indicator is set

by comparing the topic probability distributions of u1 and u2 using Kullback–Leibler

(KL) divergence, a measure of how one probability distribution is different from

another [Kullback and Leibler, 1951]. If the divergence falls below a pre-determined

threshold, the the function returns False, otherwise it returns True indicating a

topic shift. We tested the topic detector’s ability to distinguish utterances drawn

from one domain or the other as follows.

We used k-fold validation with k = 5 to train and test the LDA topic detector

using the document collection described in Section 6.3.2.1. Membership of a test

utterance in either of our two domains (see Section 6.4) indicates the ground truth

topic membership. We prepared the folds by separating all sentences into n equal

parts. For each fold, we reserved that fold as “testing”, and used the others as

“training” to train a new LDA topic model. The training sentences are recombined

into their respective files (so that the topic model is trained with each document

being an entire file). Thus, utterances are grouped together by file when training

occurs. For the sentences in a testing set, at most 100 random sentence pairs are

selected (e.g., [a, b, c, d] has pairs [(ab), (ac), (ad), (bc), (bd), (cd)]). Since the

number of pairs increases exponentially with the size of the original list, a limit is

imposed on the maximum number of sentence pairs to select. If a pair of sentences

come from different files, then this is considered ground truth of a topic change, and

vice versa. Sentence pairs are fed to the topic model, one after the other, and the

predicted topic change is compared against the ground truth topic change. If the

KL divergence of the two sentences is equal to or exceeds the input KL threshold

(0.5), then this is considered a topic change, and otherwise not.
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6.4 Framework Demonstration

To validate our system, we conducted an evaluation of its accuracy in interpret-

ing natural language utterances from different human-robot tasks. The goal was

to compare our multi-tiered system to one which only used syntactic parsing. Us-

ing the data collected in other human-robot interaction experiment environments,

we obtained two separate corpora of natural language utterances used to instruct

and otherwise communicate with a robot in a specific task environment. For this

implementation, we trained the topic detector on two topics, corresponding to the

domains we wish the detector to distinguish among. The first domain, SpaceStation

consisted of a transcription of 26 participants in an experiment in which they gave

commands in natural language to control several robots repairing components of

a space station [Gervits et al., 2020]. Out of 663 utterances, some of which were

duplicates, 363 unique utterances were chosen, out of which 50 were withheld for

the test dataset and 313 were used to train the LDA model.

The second domain, Diorama, consisted of a transcription of 33 participants

in an experiment in which participants taught new skills to a robot learner using

natural language [Bennett et al., 2017]. Out of 680 utterances, some of which were

duplicates, 525 unique utterances were chosen, out of which 50 were withheld for

the test dataset and 475 were used to train the LDA model. The sentences from the

SpaceStation domain comprised one document and those from the Diorama domain

comprised another. The LDA model was trained on a union of the two document

collections.

We set up a pipeline for incoming utterances wherein each utterance would

be processed in parallel by two different systems: our three-tier framework which in-

cluded topic-switching and a bag-of-words classifier, and a control framework which

possessed only the baseline tier of interpretation through syntactic parsing.

In both the control and multi-tier systems, parser rules were written by

hand based on 100 utterances from each corpus, which were also used to train the

language models for ASR. For the control framework, these syntactic parsing rules
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were combined into one parser dictionary, whereas for the multi-tier system, the

parser swaps between topic-specific dictionaries at the topic identifier component’s

signal. Similarly, the control system’s language model was trained on the combined

set of 200 utterances, while the multi-tier system contained two separate models each

trained on 100 utterances from the distinct tasks. For the multi-tier system, two

different classifiers were trained on the two different sets of utterance training data

that had been hand-labeled with the correct semantic interpretation in predicate

1st-order logic form for each utterance.

This pipeline was fed a test set of 50 utterances from each corpus (100 ut-

terances total) that were withheld from the training data. Relevant output such as

utterance transcription, semantic interpretation, and in the multi-tier framework’s

case, topic identification, were logged and manually annotated by the experimenter

with the ground truth values of these variables: the correct transcription of each

utterance, its intended interpretation in symbolic 1st-order logic form, and the task

(topic) from which it originated.

6.4.1 Results

To investigate the differences in accuracy between the transcriptive and interpre-

tive abilities of our multi-tier framework and control framework, we compared the

output of each framework per utterance to its respective ground truth value using

a Levenshtein distance metric. For transcription accuracy, we found the token-

based Levenshtein distance between each utterance and the ASR transcription of

that utterance1. In the multi-level framework, the mean of this value was 1.23,

meaning that the ASR transcription was off from the ground truth by a mean of

1.23 word deletions, insertions, or substitutions. The mean distance in the control

setup was 1.00. Assuming the variances are homogeneous, we conducted a paired

two-tailed t-test which showed no significant difference in transcription accuracy

between frameworks (t(99) = −1.707, p > .05). We then conducted Levene’s test

1This was token-based instead of character-based because we did not wish to reward misrecog-
nition of a shorter word over that of a longer word, i.e., “canned” and “can” vs “canned” and
“tanned”
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of the homogeneity of group variances which is a stricter test when the data is not

normally distributed. Since p− value = 0.062475 > p = 0.05, we cannot reject the

null hypothesis and conclude there is no significant difference between the two group

means and so the t-test satisfies the homogeneity of variance assumption.

For interpretation accuracy, we found the token-based Levenshtein distance

between each utterance and the system’s semantic interpretation of that utterance

to measure our dependent variable: how close was the predicate for of the utterance

interpretation to the ground-truth. In cases where the system was unable to come up

with any interpretation, the distance defaulted to 6. In the multi-level framework,

the calculated mean of this value was 1.57. The mean distance in the control setup

was 4.84. Assuming the variances are homogeneous, a paired two-tailed t-test found

a significant difference in these means (t(99) = 12.425, p < .001), demonstrating

that the multi-level framework is significantly much more accurate than the control.

We then conducted Levene’s test of the homogeneity of group variances which is a

stricter test when the data is not normally distributed. Since p−value = 0.911839 >

p = 0.05, we cannot reject the null hypothesis and conclude there is no significant

difference between the two group means and so the t-test satisfies the homogeneity

of variance assumption.

The control framework was generally only able to accurately identify the se-

mantic interpretation of the utterance in cases where the utterance matched exactly

to the grammatical rules specified in the parser. In addition, it occasionally made

the correct semantic interpretation in cases where it misrecognized an unexpected

utterance as an expected utterance with the same meaning. For example, the utter-

ance “hey robot one come fix this tube” was misrecognized as “fix the tube” by the

control framework and thus correctly parsed with the meaning of “repairTube()”.

In other cases of transcription inaccuracy, the control framework occasionally

recognized portions of utterances from the wrong task corpus. For example, it

recognized the utterance “robot one go to left four” as “robot one go left”, thus

interpreting the utterance as “move(left)”. While the diorama task has a need

for this level of directability in the robot’s movement, the space station does not,
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and the action “move(left)” is used exclusively in the diorama task. However, the

control framework had no reason to suppose that this command was less likely to

be uttered in this context, either on a speech recognition level or on a semantic

interpretation level. In all other cases, the control framework was unable to parse

the unexpected utterance, even if the ASR Component transcribed it completely

accurately. In contrast, the multi-level framework, even if unable to get a wholly

accurate transcription, was generally able to come up with a semantic interpretation

which, if not exact, was fairly close to the intended interpretation, on average only

off by one or two arguments. The topic identifier in the multi-level framework also

correctly identified the topic of the utterance 93% of the time.

6.5 Discussion

We hypothesized that the multi-level framework would be able to perform better

overall in semantic interpretation with no detriment to ASR accuracy. The re-

sults show that there was a statistically significant difference between the semantic

interpretation accuracy of the multi-level framework and that of the the control

framework, with the semantic interpretation being more accurate in the multi-level

framework. In addition, there was no significant difference between the transcrip-

tion accuracy of the multi-level framework and the transcription accuracy of the

control framework. The control framework performed very well on expected utter-

ances (speech that matched the syntactic structure of utterances from the training

set), but very poorly on unexpected utterances. Its success at semantic interpreta-

tion was binary: either 100% certainty or 0% certainty. In contrast, the multi-level

framework was able to guess in uncertain situations due to the classifier, leading to

far greater overall success at interpretation. Arguably, executing a wrong command

could be potentially worse than not understanding a command at all. However,

having an uncertain estimate of what the user wants is better than no estimate.

Rather than executing the command, further error recovery could begin based on

information from other components. For example, if the agent’s certainty regarding
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its interpretation is not above a certain threshold, its dialogue manager could initiate

a confirmation or clarification request, or its knowledge database could be solicited

for contextual information or dialogue history that might resolve uncertainty. This

would be a direction to explore in future work.

Accuracy is improved for interpreting full user tasks. The accuracy of the

human’s shorter replies in response to the agent’s clarification request, however,

were not included. For example:

Human: “Move to alpha left one”

Robot: “Which location?”

Human: “Alpha left one” (this short reply not included in testing)

The primary reason is that the context of the dialogue is maintained in this

architecture and as a result the Classifier might settle on “move to alpha left one”

(correct) but might equally settle on “fix tube alpha left one” (incorrect) instead,

having no idea that moving is preferred over fixing. Maintaining context would

be a useful cue to the NLU component and would help bias toward the preferred

interpretation.

We note that even in the control framework, the LM was trained on a selective

portion of data only containing the two topics. In contrast, the Aspire Chain Model

default LM is used for general dialogue. Thus, there is not a substantial difference

in the ASR word error recognition (WER) between the two. When run with the

default, the control’s WER is far worse. This will vary depending on how specific

to the task the utterances are. For example, utterances like “go to left four” or

“drive forward pushing box c” are transcribed as the irrelevant phrases “gonna last

for” and “dry forward pushing box see”, while “what are you doing right now” and

“knock down the yellow tower” are recognized correctly.

As mentioned in Section 6.4.1, the success of the multi-level framework de-

pends on whether or not the topic is identified correctly. If the topic is misidentified,

all other output from the system will also be incorrect. Though a 93% success rate
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of topic identification appears good, it is likely that this success rate would decrease

as more topics are introduced. For this reason, focus should be placed on how other

components of an autonomous dialogue system can be integrated into the process of

topic identification, so that the burden is not solely placed on ASR. There are sev-

eral examples of how this can be handled. For example, if the parser and classifier

both fail to come up with an interpretation above some threshold of certainty, they

could prompt the topic component to switch the topic to the second-place choice

and attempt another pass at NLU, or additional information could be solicited from

the system’s knowledge base about the dialogue history, previous goals, goal status,

or world state that may further assist with topic identification.

In Chapter 4, Section 4.2.1, we describe how topic modeling is used to detect

emotion from speech. It is also possible to use the detected emotion to improve

the user engagement with the SDS (for two examples, see Chapter 2, Section 2.6).

The detected emotion could be stored in the Knowledge Base which can be used to

modulate the agent response according to the current emotional state and how it

changes over time. Not only could this lead to increased engagement with the SDS,

an agent which understands the user emotional state can make the agent appear to

be more emphatic, increasing trust [Cramer et al., 2010].

We used only the similarity scores from the classifier and parser to determine

interpretation quality. However, it is possible to include other measures of uncer-

tainty that are available, such as the ASR’s word-level transcription confidence.

This might be used, for example, ahead of the semantic components to signal an

earlier switch to another language model. Alternatively, a more robust ASR error

detector might supplement the ASR confidence with additional metrics such as: LM

perplexity, number of competing words, acoustic model deviation from true scores,

parts-of-speech, word vs. grapheme disagreement, and homophone indicator. Chen

et al. [2013] used these features to predict error labels for ASR hypothesis. In addi-

tion, a more robust word boundary detection using acoustic-prosodic as described

by the researchers can be used to develop a confidence in the ASR-hypothesized

word boundary detection. This might have the greatest benefit for the framework
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when given OOD utterances. These utterances are often broken up into multiple

in-domain words and thus, word insertions are frequent, making up about 40% of

word errors according Chen et al. [2013].

6.6 Summary

Natural language interaction with SDS can result in errors which propagate through

the components, causing the semantic interpretation to fail. We developed a multi-

level framework in which utterance analysis is escalated according to feedback re-

ceived at the syntactic, semantic, and topic level. We situated this framework in

the context of prior research in improving speech recognition and natural language

understanding and showed how they have been integrated with some, but not all,

of the components of our framework. In a demonstration in which humans used

natural language to initiate commands controlling robots in two separate domains,

we showed how these approaches can be integrated with other SDS components. We

found improved accuracy in the SDS’ ability to interpret spoken task commands. By

integrating multiple different potential routes for understanding into the dialogue

system, we allow for better recovery across the system.
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Chapter 7

Building a Bilingual Robot

As of 2018, About 22% of the population in the United States is bilingual as are

other countries with a “national language” (i.e., France). The proportion of the

population in many other countries have a significantly higher rate of bilingualism. A

bilingual robot which could not only switch from one language to the other but “code

switch” within a dialog as humans do, would be more functional in a multilingual

environment.

In this chapter, we investigate and demonstrate two computational models

that further our understanding of how to extend the model framework to a bilingual

environment. The first is a computational model of the inhibitory control theory

which states that the non-target language of the bilingual is suppressed by top-down

contextual cue. This indicates the need to provide a way for our model framework

to provide a similar contextual cue to control the active language. The second is a

computational model of bilingual memory which describes a psychological theory of

how words from the multiple languages interfere with each other and how the desired

word is selected using the top-down control mechanism. Similarly, we demonstrate

which parts of the model framework needs to be modified so that it can freely switch

among syntactic and semantic components to correctly interpret the meaning of the

human utterance.
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Figure 7.1: Automated Speech Recognizer (ASR) model. Acoustic model (AM): In-
put is the audio signal and the outputs are typically acoustic feature and phonemes.
Lexicon: also called vocabulary or dictionary. The list of words that exist in the
language that the system can decode. Language model (LM): or grammar, defines
how words can be connected to each other. It can be defined by a set of rules, or a
large list of word tuples (n-grams) with assigned probabilities.
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7.1 Background and Related Work

Increasingly, our culture is becoming more diverse and bilingual. As of 2018, About

22% of the population in the United States is bilingual; this is on par with other

countries with a “national language” such as France, but about one-half of a multi-

lingual country such as Switzerland. Even so, there are U.S. cities such as Miami

and L.A. with a large population of bilinguals and for these population centers, a

socially assistive robot with a bilingual capability may improve user engagement.

This might be the case in an elder care environment where the resident feels most

comfortable code-switching among their two languages, for example.

While certain robots support multiple languages, most robotic architectures

are monolingual: i.e., language understanding and production is configured for one

language at a time. For example the SoftBank Pepper robot has the capability to

speak 12 languages but must be configured to one language during the set-up proce-

dure [pep, 2020]. For example, in a Robot Assisted Language Learning (RALL) on

English vocabulary learning and retention of Iranian children with high-functioning

autism, a SoftBank Nao robot was configured to use only English [Fdili Alaoui

et al., 2014]. Wilcock and Jokinen describe a demo of their multilingual WikiTalk

system in which a robot can switch languages upon prompting by a human who can

then query Wikipedia the new language [Wilcock and Jokinen, 2015]. According to

Laxström et al., the system uses separate speech recognition and synthesis modules

for different languages [Laxström et al., 2016].

Referring to Figure 7.1 we can see some of the challenges in designing a robot

to understand multiple languages at the same time. In a typical ASR design, there

are usually three logical components: the Acoustic model (“AM”), the Lexicon, and

the Language model (“LM”). Each component is generated during model training,

the AM responsible for mapping acoustic features to phonemes, the Lexicon pro-

viding the words in the vocabulary, and the LM, the underlying language structure.

A näıve implementation of a multilingual ASR would use different Lexicons, AMs

and LMs for every language the ASR could understand. However, research in deep
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neural network multilingual and cross-lingual acoustic models attempts to make it

easier to train and generate a single AM that is multilingual. While the impetus for

this research is creating ASRs for under-resourced languages, these techniques can

generalize to speech recognition and production for other language types. Under-

resourced languages (“ULs”), for example, lack a unique writing system or stable

orthography, have limited presence on the web, and lack linguistic expertise or elec-

tronic resources for speech and language processing. For an overview of the ULs,

their challenges, and technological approaches, see [Besacier et al., 2014].

Research in building ASRs for under-resource languages promises more effi-

cient ways to collect training data to generate multilingual language models. While

these approaches make it easier to bootstrap new acoustic language models from

common languages such as English, they still assume a lexicon and language model

for the new target language; Besacier et al. [2014] discuss approaches for the lex-

icon and language model when the training corpus is sparse. Holzapfel discusses

an approach to simplify multilingual grammar specification [Holzapfel, 2005]. He

introduces grammar interfaces, similar to interface concepts used in object oriented

languages, to improve compatibility between different grammar parts and to sim-

plify development. In an example of a multilingual ASR, Barnard et al. describe an

spoken dialog system which can recognize eleven South African languages with 54%

- 67% accuracy. However in a query application where the vocabulary was restrict

to 10 words, accuracy was expected to improve considerably, close to 90% [Barnard

et al., 2010, Van Heerden et al., 2009].

The mechanism allowing the ASR to switch among the ASR components

during continuous conversational speech, to allow for “code switching” (a practice

in which bilinguals freely switch between language either within or between sen-

tences [Myers-Scotton, 2006]) is an active area of investigation in speech recognition

[Yilmaz et al., 2016, Vu et al., 2012]. Hence, we suggest that our robots should

be trained to learn and process multiple languages simultaneously as bilinguals are

thought to do. Toward this goal, we investigated creating a computational model

of bilingual memory in which the language control processes adapt to the conversa-
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tional context and change as the second language is acquired. There are three parts

to this model which we desire to test empirically: (i) bilingual conceptual memory,

(ii) word selection, and (iii) language control. Respectively, these mean: (i) how the

model represents a word other words that are conceptually related to it, in both the

primary and secondary language, (ii) how a word memory is “chosen” from memory,

according to the language task, e.g., during speech production or reading, and (iii)

how the word in the intended language is chosen to be spoken or recognized rather

than its equivalent in the unintended language.

This chapter is divided into two sections. In Section 7.2, we investigate an

account of language control: Green’s regulatory processing model [Green, 1998]. We

simulated the Inhibitory Control theory to confirm whether or not the theory can

account for the language switching costs seen in an empirical experiment conducted

by [von Studnitz and Green, 1997]. Data from the model simulation supported the

empirical data, finding a language switching. Adjusting the connection weights on

the word-level inhibitory connections alone was enough to cause the model to fit

the empirical data suggesting that the inhibitory effect is primarily due to schema

inhibition and not language-tag inhibition in the bilingual lexico-semantic system,

for a language-specific lexical decision task, in accordance with Green’s hypothesis.

In Section 7.3 we describe a model of bilingual memory and demonstrate how

access is controlled base on the conversational context and speaker proficiency levels.

Finally, in Section 7.4 we demonstrate which components of the model framework of

Figure 7.12 have been modified to include what has been learned from the inhibitory

control and bilingual memory investigations.

7.2 Language Control

Over the years, a general consensus has emerged in bilingual research that both of

a bilingual speaker’s languages are active simultaneously and that there is a lexicon

unified across both languages. Experimental results have repeatedly shown that the

bilingual speaker’s two languages compete in terms of phonological representations
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(i.e., accents) and word meaning, but proficient bilingual speakers rarely confuse

words from the competing language and, despite the intrusion of an accent, can

usually be readily understood. Thus, there must be a cognitive process that allows

bilinguals to control what they are saying and understand what they are hearing,

when they are speaking, reading, or listening in the target language.

One theory proposes the existence of a “language switch” which, when set in

the correct position, effectively blocks the other language [Macnamara and Kushnir,

1971]. An implication of the language switch theory is that there would be a cost of

switching between languages (i.e., the cost of “throwing the switch”) and, moreover,

that the switching costs between L1 and L2 would be symmetrical (due to the very

nature of a “switch”). However, asymmetrical costs were found in an experiment

by Kroll and Stewart [1994], thus prompting the question of what cognitive process

might account for this asymmetry in switching costs? The Inhibitory Control (IC)

hypothesis of Green [1998] attempts to explain this asymmetry by proposing that

there is an increase in time needed to resolve competition among activated word

forms (i.e., lemmas) in L2.

In our investigation, we set out to provide evidence for the IC hypothesis

by constructing a computational “proof-of-concept” model that implements the hy-

pothesized inhibitory mechanism in the context of a lexical decision task. We start

by explaining the IC hypothesis and discussing some of its predictions as they relate

to this paper. Next, we review von Studnitz and Green [1997] study, the empirical

data used, and the experiment’s procedure. We then introduce the model framework

used to construct a computational simulation of language switching predicted by the

IC hypothesis, and report the model’s results, comparing them to the empirical data

and discussing the model’s advantages and disadvantages. Finally, we point to areas

in which the model might be extended in order to account for more of the effects

reported by Von Studnitz and Green and how the model might be generalized to

language switching in speech production.
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7.2.1 Language Control in Bilinguals

In the IC hypothesis, a set of language-specific processes and language task schemas,

operating under the control of a general cognitive supervisory process reactively in-

hibit competitors at the lemma level of the lexico-semantic system using its language

tags. A lemma is a representation in the lexico-semantic system that contains syn-

tactic information which Green [1998] identifies as the locus of language membership.

IC extends the Kroll and Stewart [1994] revised hierarchical model (RHM) which

proposes that a bilingual’s first and second languages (L1 and L2) are connected

bi-directionally through links whose strengths vary as a function of the language.

However, this model has some limitations. For example, RHM does not specify

how a bilingual engaged in a language translation task avoids naming the word to

be translated and the IC model suggests a plausible mechanism. Kroll and Stew-

art [1994] found that when asking individuals to translate words that were blocked

by category, for forward translations (i.e., L1 to L2) participants took longer to

translate those words than when they were randomly presented. No such effect was

observed for backward translations (i.e., L2 to L1). This suggests that in forward

translations, according to the researchers, [Kroll and Stewart, 1994, 168], blocking

words by category activates the conceptual element, creating difficulty in selecting

a single lexical entry for production. Green [1998, 73] hypothesizes that there is an

increase in time needed to overcome competition between L2 lemmas which have

become activated and suggests the presence of a control mechanism to account for

the observed effects.

Green [1998] develops the idea for a control mechanism by building upon the

observations of Grosjean [1997] that bilinguals operate in different language modes.

They may be speaking in L1, L2 or, in the appropriate context, mixing both their

languages. Green hypothesizes that there must be a regulatory mechanism that is

both sensitive to external input and has the capacity for internal control. Building

upon Green’s prior research derived from the “contention scheduling model” pro-

posed by Norman and Shallice [1986], Green developed the IC hypothesis. Norman
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and Shallice argue that most attentional conflicts occur in the initiation of an ac-

tion rather than its execution and propose a two-level control mechanism. The first

level is a contention scheduling process that selects from competing schemas; the

second is a supervisory attentional component that oversees and biases the selection

process. Incorporating this theory, IC hypothesizes that the intention to perform a

specific language task is executed by a supervisory attentional system (SAS) which

affects the activation of language task schemas that are themselves in competition to

control the output. Thus, a set of language-specific processes and general cognitive

skills determines how the bilingual responds to language tasks.

Green’s IC hypothesis predicts that language switching may take time be-

cause it involves a change in language schema for a given task and because of the

time it takes to overcome the inhibition of the previously activated language. IC

predicts that there will be such costs when switching among language tasks (i.e.,

translation and naming) as well as within specific tasks (i.e., language reception and

production). The specific task investigated in this paper is regulatory processing in

a lexical decision task for which there are empirical results from a study conducted

by von Studnitz and Green [1997, Experiment 1]. In this study, German-English

bilinguals are asked to decide whether or not a presented letter string (may be a

word or non-word) was a word in L1 or in L2 using an alternating runs paradigm

(i.e., there is predictable switching between languages). In the study, the color of the

background on which the word was presented served as an external cue informing

participants of the required language for decision. Figure 7.2 illustrates the rela-

tionship between this cue and two lexical decision schemas inhibiting one another,

and the lexico-semantic system.

The SAS establishes the schemas which map an output of the lexico-semantic

system (e.g., presence of an L2 tag) to a response (e.g., press left key if L2 word).

The control mechanism is driven bottom-up and once established, the SAS monitors

it to ensure desired performance. In the case of a new switch trial, a new schema is

triggered by the external cue and suppresses the previously active schema. Moreover,

a new word in a different language has to overcome the inhibition on its language
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tags from the previous trial. Thus, IC proposes two areas of inhibition: (1) schema-

level inhibition and (2) tag inhibition in the lexico-semantic system. IC predicts that

inhibiting a previously active schema and overcoming the inhibition of a previously

active language will take time, manifesting as a switch cost.

Figure 7.2: Regulatory processing in an LD task with language switching [Green,
1998]. The L1 task schema is suppressing the L2 task schema and inhibiting the L2
lemmas in the lexico-semantic system.

7.2.1.1 Empirically Testing the IC Theory

In the experiment [von Studnitz and Green, 1997, Experiment 1], language switches

occurred on alternating trials (EEGGEEGGEE,etc.), indicated by a change in the

color background which was counterbalanced across participants. Two types of

stimuli were used: word and non-word, although both the IC and the computational

model used only word stimuli. Each experimental block was preceded by a single

filler trial which served to provide a clear designation for the experimental trial and

in the case of the computational model, prime the lexico-semantic system and the

task schemas to a “resting” state (i.e., activate the control mechanisms associated

with either L1 or L2). Two sets of words were constructed with a total of 160 words

in each: 80 words were English and 80 words were German in each set. In each case,

half the words were high-frequency and half were of low-frequency. The words were
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matched for syllable length and letter length across the two languages. Words were

orthographically possible in either language. Neither cognates ( i.e., words that look

the same and have the same meaning) nor interlingual homographs, “false friends”

( i.e., words that look the same but have different meanings) were included. The

experimental procedure is shown in Figure 7.3.

Figure 7.3: Experiment 1 procedure [von Studnitz and Green, 1997]. After n practice
trials, participants are presented with a letter string and asked to decide whether
it is a string in either L1 or L2. Language switches occurred on alternating trials
indicated by a change in color background.

The experiment found an average switch cost of 118 ms for high-frequency

and low-frequency English and German words and that participants were also 63 ms

faster responding to German words compared to English words. The results from

the experiment are summarized in Table 7.1.

7.2.2 IC Model Development

The purpose of the computational model is to verify the inhibitory mechanism pro-

posed by Green [1998] and illustrated in Figure 7.2. Specifically, the goal is to verify

the model’s prediction of a cost when a bilingual switches from a required response

in German to an English response for a lexical decision task, as well as from English
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Table 7.1: Experiment 1 results [von Studnitz and Green, 1997]

Switch Non-switch
Word Type Mean RT Mean RT Cost

L1 German 805 ms 705 ms 100 ms
L2 English 887 ms 752 ms 135 ms
Mean 846 ms 728 ms 118 ms

Avg. cost switch− nonswitch = 118 ms
L1 RT advantage: 63 ms

to German.

The design of the computational model is based on Green’s IC hypothesis

for regulatory processing in a lexical decision task as shown in Figure 7.2. An

interactive activation and competition (IAC) connectionist model was built using a

neural network simulation tool, NNSIM. One unit per processing pool was allocated

since the likely distributed representations in the brain of the regulatory processes

were not specified by the IC model and were not the focus of this study. The

architecture of the model is shown in Figure 7.4. The model has three layers of

units: an input layer of word representations that are connected to a hidden layer of

lemma representations which are in turn connected to an output layer representing

the lexical decision task schema. In addition, there are two input units representing

the target language response cues used in the experiment (i.e., the background color

on which the word is presented) each connected to its respective LDT schema. One

instance of this three-tiered structure is provided for L1 and another for L2; the two

are connected by inhibitory connections between the L1/L2 schemas, L1/L2 words,

and L1 lemmas/L2 schemas, as supposed by the IC hypothesis. In Figure 7.2, a

single cue is seen as connecting to both the LDT L1 Schema and LDT L2 schema,

but it has been implemented as two separate color units to more accurately reflect

the experimental procedure.

The entirety of the L1/L2 in the bilingual lexico-semantic system is not

modeled here. Since the experimental stimuli presented across the trials were an

average of high and low frequency English and German words, each L1 or L2 word
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Figure 7.4: Model design. Stimuli are presented at the word level and activation
in bottom up with language “tag” associated with words at the lemma level. The
cue activates a task schema indicating whether an LD response should be in L1 or
L2 The key IC feature are the inhibitory links between the L1/L2 LD schemas and
between the L1(or L2) schemas and L2(or L1) lemmas.

represents a sample word of average frequency from the trials. The lemma units are

the morpho-syntactic representation of the word where Green [Green, 1998] posits

the language tag is located. As with the word units, only the L1 and L2 lemmas

connected to their corresponding L1 and L2 words are modeled. The L1 LDT schema

and L2 LDT schema exist outside the bilingual lexico-semantic system and are the

units that are monitored for their activation level.

The experiment measured a participant’s reaction time, i.e., from when a

word was presented on the computer screen to when the participants press the “+”

or “-“ key. It is apparent that the reaction time (RT) consists of two components:

the time it takes to activate the schema plus the time it takes for the participant

to move his or her arm and press the key. For the purpose of the output data
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mapping, only the schema activation time is of interest and the remainder of the

reaction time is treated as a constant. Thus in the model only the number of cycles

from the resting level of the schema until it settles at its activation level is measured.

Only the L1 structure was modeled to start. All the weights of the top-down

connections were set identically. Three weight groups for the bottom-up excitatory

connections were identified: (1) cue unit to LDT Schema, (2) word to lemma, and

(3) lemma to LDT Schema. An input was applied to the L1 word unit and to

the L1 cue unit and the bottom-up connection weights were adjusted until the L1

LDT schema was strongly activated, i.e., 0.800. This took place at 30 cycles.

An identical L2 model was then constructed and the two structures were connected

using the inhibitory connections hypothesized by Green. All inhibitory connection

weights were set to -0.1. Even without further adjustment of the weights, we noticed

a switching cost during a switch trial, but the cost was somewhat greater than what

the empirical data suggested. However, by adjusting only the top-down connection

weights uniformly, we were able to get a good fit with the empirical results for the

language switch cost. In this iteration of the model, the network settles with the L1

schema activation at 0.793.

The symmetrical L1/L2 model however does not account for the L1 advan-

tage observed in the experiment: participants in the study were 63 ms faster in

responding to German (L1) words than to English (L2) words. Reasoning that the

language effect was located in the lexico-semantic system rather than in the task

schema, the weight of the connection between the L2 word and the L2 lemma was

adjusted, producing the desired language effect and a good fit to the experimental

data. With this change, the network settles with the L2 schema activation at 0.779.

We iterated through process of adjusting the top-down connection weights

uniformly as a group and the connection from the L2 word to the L2 lemma until

the summed square errors for the switching cost and L1 advantage of the model and

experiment were minimized. This resulted in weights of 0.02 and 0.08 respectively;

all the connection weights are given in Figure 7.5.
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Figure 7.5: The connection weights depict the values found during model fitting.

7.2.3 Model Results

Table 7.2: Computational model results

Switch Non-switch
Word Type Mean RT Mean RT Cost

L1 German 830 ms 710 ms 120 ms
L2 English 910 ms 770 ms 140 ms
Mean 870 ms 740 ms 130 ms

Avg. cost switch− nonswitch = 130
L1 RT advantage: 70 ms

The experiment’s reaction times (RT) needed to be mapped onto network

update cycles in order to be able to simulate the temporal sequence of reading

words and the sequence of internal cognitive processes during the activation of the

task schema. This mapping was achieved by dividing the response times by 10 and

rounding to the nearest whole number, thus one cycle = 10 ms. Using the mappings
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from the experiment’s reaction times onto update cycles, a sequence of 10 trials was

run as shown in Table 7.3 corresponding to the experimental procedure as shown in

Figure 7.3. There are four types of trials: L1:initialize, L1:non-switch, L1/L2:switch,

L2:non-switch, L2/L1:switch. L1:initialize represents a practice trial and it allows

the network to settle at its L1 Task schema activation level. Although it is numbered

as a trial in Table 7.3, “blank” is the inter-trial pause. We alternately apply input

to the L1 word and Blue cue or to the L2 word and Yellow cue according to whether

we want a switch or non-switch trial and then cycle through the network until the

corresponding L1 or L2 schema is activated, recording the results.

In Table 7.3, the number of cycles (i.e., no. cycles) given for the non-switch

and switch trials for both L1 and L2 corresponds approximately to the time it takes

for the participant to ready a schema for making a lexical decision in the target

language indicated by the cue, i.e., LDTscht = RTavg − k, where k (i.e., Physical

RT) is the time it takes for the response system to initiate the action to press the

“+” key, and RTavg is the average response time as measured in the experiment.

Removing the inputs to both the lexical node and the cue for a period of 100 network

cycles is the functional equivalent of the experiment’s 1 second pause between trials.

During this pause, we want the activated schema, lemma, and word to decay to

represent the lower activation of the mental lexical, syntactic, and executive task

control processes likely once the stimulus is removed. The resting activation levels

of the word, lemma, and schema units represent either the base level from which we

wish to return to activation if the next stimulus presented is from the same language

as the previous, or the level which will be inhibitory to the rising activation of word,

lemma, and schema from the new target language for a language switch trial.

Comparing the results of the von Studnitz and Green [1997, Experiment 1]

study, Table 7.1, with the results of the computational model, Table 7.2, shows a

good fit with the significant effect of cost switching as predicted by the IC hypothesis

and suggested by the results from the empirical study (i.e., 130 ms for the model,

118 ms for the experiment). The model also exhibits the experiment’s asymmetrical

language RTs where participants responded faster to German words compared to
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Table 7.3: Computational Model Trial Runs. Ten trials were conducted, the first
being practice. The number of cycles is cumulative and the RT is computed from:
RT = (EventDuration(TrialN,a) + EventDuration(TrialN,b))

Event RT
Trial Type No. Cycles Duration (ms)

1 L1 initialize 32 32
2 blank 132 100
3a L1 non switch 160 28
3b Physical RT 203 43 710
4 blank 303 100
5a L1/L2 switch 351 48
5b Physical RT 394 43 910
6 blank 494 100
7a L2 non-switch 528 34
7b Physical RT 571 43 770
8 blank 671 100
9a L2/L1 switch 711 40
9b Physical RT 754 43
10 blank 854 100 830

Trial 1 is a “practice trial”
One cycle = 10 ms

English words (i.e., 70 ms for the model, 63 ms for the experiment).

This suggests that we were able to fit the model to the empirical data the

best we could to achieve a “proof-of-concept” validating the IC hypothesis. Our

results suggest that the inhibitory control mechanism is a possible explanation for

the switch costs and asymmetric language RTs seen in the experiment, but the

model does not yet provide strong evidence that it is likely the case.

7.2.3.1 Discussion

The inhibitory control model is important because it provides a theory for how bilin-

guals can perform different tasks given different language inputs. In addition, IC

explains various effects observed in empirical studies such as, switch costs and un-

wanted language interference. IC has been an influence on other theories of bilingual

word recognition and Dijkstra and Van Heuven [2002] incorporate aspects of Green’s

theory in their BIA+ model. However, IC has only been specified descriptively at
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a functional level, thus lacking the advantages of a computational model. Their

disadvantage is that, unlike computational models, functional models rely purely

on behavioral experiments which can only superficially explore cognitive processes,

and are not easily generalized, thus limiting their predictive ability.

Our computational model provides a framework for validating the inhibitory

control model, and at least captures an important aspect of bilingual word recog-

nition: the regulatory processing mechanism. After additional exploration of the

model parameters it can be further developed and generalized to test what IC pre-

dicts in other tasks such as language switching in production. One weakness in

many computer assisted language learning tools is their ability to train language

learners to actually speak a new language. A computational model of regulatory

processing in language production would add to our understanding of what inhibits

a language learner from producing utterances in the new language.

Although the model provides a proof-of-concept that the IC regulatory mech-

anism described by Green [1998] is a possible explanation for the switching cost seen

empirically, more evidence could be provided if the model incorporated recognition

of non-words which were utilized in the empirical study [von Studnitz and Green,

1997, Experiment 1]. The inclusion of non-words makes a lexical decision task

more meaningful and also provides a means for testing whether or not the nature

of the non-word affected reaction time (e.g., English non-words possible in English

only or in both German and English). Showing that participants are affected by

the status of a non-word would provide further evidence against the input-switch

hypothesis as non-words provide no route to the lexicon and therefore cannot use

it to decode a response. Further, von Studnitz and Green [1997, Experiment 2]

conducted an additional experiment using a generalized lexical decision task. In

this experiment, participants needed to decide whether or not a letter string was a

word in either language; the empirical study found a small but significant switch-

ing cost. Green underspecifies the inhibitory mechanism for a generalized LD task

[Green, 1998, 74] and this would be an extension to the IC and the computational

model. Neither the IC nor the computational model account for frequency effects or
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cross-language effects demonstrated in other studies of bilingualism and cognition,

e.g.,, [Van Heuven et al., 1998]. Subsequent models of bilingual word recognition

such as BIA+ [Dijkstra and Van Heuven, 2002] incorporate features of Green’s IC

hypothesis and include a model of the lexico-semantic system, which is not spec-

ified by Green. BIA+ also accounts for more of the empirical results observed in

studies of bilingualism (e.g. orthographic neighborhood effects, cross-linguistic ef-

fects, non-linguistic context effects, stimulus-response binding). Further research in

computation modelling of bilingual cognitive processes may well be better served

investigating a more general architecture such as BIA+.

The IC hypothesis also predicts a cost in switching between languages in

certain word production tasks such as numeral naming [Green, 1998]. Such tasks

involve different language schemas and in order to produce speech, the activation

of a new language schema would need to exceed the activation of the current lan-

guage schema. However, this mechanism for doing so is not fully specified. Models

accounting for speech production have been based on models by Levelt and Meyer

[1999] and Dijkstra and Van Heuven [2002] discuss generalizing BIA+ to bilingual

word production.

Beyond BIA+ there are novel approaches that provide a more dynamic view

of the lexicon than the traditional connectionist network and combine localist and

distributed properties of processing. One such model is the self-organizing model

of bilingual processing, SOMBIP, [Li and Farkas, 2002]. It consists of two inter-

connected self-organizing neural networks, along with a recurrent neural network

that computes lexical co-occurrence constraints. SOMBIP captures both bilingual

production and comprehension and can account for patterns in the bilingual lexicon

without the use of language nodes or language tags. It attempts to answer the ques-

tion of where the information comes from that allows the bilingual to separate their

two languages. A potentially interesting research direction is to examine Grosjean

[1997] account of code switching, Levelt’s speech production architecture, Dijkstra

and van Heuven’s BIA+, and Li and Farkas’ SOMBIP create a computational model

that can account the inhibitory control mechanism involved in code switching.
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Figure 7.6: Bilingual Memory Theory. Baseline activations of lemmas is based on
lexical frequency. Word co-activations are determined based on distance in semantic
space. The activation strength of the translation equivalents is determined by the
speaker’s proficiency level.

7.3 Bilingual Memory

The inhibitory model of bilingual control uses task context to switch between the

language lexicons (see Figure 7.4). In the investigation discussed, the context was

a lexical decision task. More generally, the context can provide cues as to which

language is to be used. In this section, we discuss our hypothesis of bilingual memory

and show how access is controlled based on the conversational context and speaker

proficiency levels. There are three parts to this hypothesis which we desire to test

empirically by building a computational model: (i) bilingual conceptual memory,

(ii) word selection, and (iii) language control. Respectively, these mean: (i) how

the model represents a word other words that are conceptually related to it, in both

the primary and secondary language, (ii) how a word is “chosen” from memory

according to the language task, e.g., during speech production or reading, and (iii)

how the word in the intended language is chosen to be spoken or recognized rather

than its equivalent in the unintended language.

Our ultimate goal is to create a computational model of bilingual memory

in which the language control processes adapt to the conversational context and
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change as the second language is acquired. We recognize this to be an ambitious,

long-term project and decided that a good approach would be to break down the

implementation into two or more sub-projects, each with its own set of goals. Since

many issues which emerge in the study of bilingual processing involve the lexicon,

we decided to begin our investigation here. We designed a simple computational

model of the bilingual lexicon as a semantic memory network [Collins and Loftus,

1975] in which we can demonstrate how activation spreads from a concept to its

lexical representations in a bilingual’s first language (L1) and their second language

(L2) and then to semantically related words in both languages. Furthermore, we

restricted the semantic network to reflect those relationships that would likely be

learned by a balanced English/Spanish bilingual.

In this section, we discuss the work we performed to build the model, review

the research that led to the design, explain how the input data was mapped from the

human experimental domain to the model, and discuss how we chose to represent

the bilingual lexicon. Finally, we will explore how we parameterized the semantic

relationships among the words in the lexicon using a large database of English and

Spanish word embeddings, along with other information, e.g., word frequencies.

7.3.1 Bilingual Memory Hypothesis

Despite numerous, sometimes contradictory research studies, we remain far from a

single psycholinguistic theory explaining how languages influence each other. For

example, the empirical data these models draw on for testing are usually gathered

in an artificial (i.e., laboratory), rather than naturalistic setting and this can lead to

apparently contradicting results. It is has been recently shown, for example, that the

cost of switching languages observed in the laboratory vanishes when repeated in a

naturalistic setting [Blanco-Elorrieta and Pylkkänen, 2017]. Given that a bilingual

robot would be interacting with humans, the design of its bilingual language compo-

nent would benefit from a psycholinguistic theory of bilingualism that incorporates

language behavior observed “in the wild”. This lead us to investigate approaches

that draw upon naturally-occurring behavior, specifically how language proficiency
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Figure 7.7: Bilingual Memory Development. Plan/Plan English and German. How
do we explain that balanced bilinguals do not end up calling a map a “plan” in
English but unbalanced bilinguals cannot discriminate between the two word senses?
Unbalanced bilinguals, get to “Map” (in English) through the German word “Plan”.
Balanced bilinguals have a direct link between the concept of a map and both “Plan”
(in German) and “Map” (in English), so they avoid this problem.

affects selection of the desired word and how co-activations of semantically-related

words occurs in both the L1 and L2.

Figure 7.6 illustrates how the concept of a “dog” would activate its related

English lexical representation which would then spread its activation to the three se-

mantically related representations along with their Spanish translation equivalents.

The figure shows this for three conditions: (i) balanced bilingual, (ii) Unbalanced

bilingual, who is English-dominant, and (iii) unbalanced bilingual, who is English-

dominant and engaging in a Spanish conversation. In Figure 7.7, we illustrate a

developmental condition for German-English bilinguals. As bilinguals become more

proficient and move towards becoming balanced, connections are formed directly

from the concept to the related lexical form of the second language, a route which
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bypasses the related word form of the first language.

Figure 7.7 provides an explanation for why balanced bilinguals do not end

up calling a map a “plan” in English, but unbalanced bilinguals do. Plan is a

homograph in English and German. Homographs are words that share a similar

word form but have different meanings in L1 and L2; they are often referred to as

“false friends”. Unbalanced bilinguals, get to the English word ”map” through the

German word “plan”. Consider that the German word plan has an activation level

of 5. “Plan” in English has an activation level of 2 and “map” in English, which

is the target word, has an activation of 3. The word “plan” received an unwanted

boost in activation, influenced by the activation for the German “plan”, making it

the most available candidate for selection, even though it is not the target. On the

other hand, balanced bilinguals have developed a direct link between the concept

of a map and both “plan” (in German) and “map” (in English), so this problem is

avoided. The theory also assumes that top-down control process provides inhibition

to the German lexicon, based on the task context of answering in English.

Our hypothesis is also informed by the experiment conducted by Blanco-

Elorrieta and Pylkkänen [2017] which found no language switching cost when bilin-

gual speech production occurs outside the laboratory in a “naturalistic” setting,

using facial rather than artificial cues to signal the desired target language in a

picture-naming experimental paradigm. A similar experiment was conducted for

comprehension and no switching cost was found as well. Thus the language switch-

ing cost debate remains to be settled and a computational model that attempts to

explain these somewhat contradictory accounts is one of our goals. In the following

sections, we review the primary issues we had to tackle for the model design.

7.3.2 The Modified Hierarchical Model

Understanding how cross-linguistic differences operate at the conceptual representa-

tion level has been the focus of bilingual research over the past decade. In [Pavlenko,

2009], Pavelenko provides a comprehensive review of the models of the bilingual lex-

icon and proposes a new approach, the Modified Hierarchical Model (“MHM”). It
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Figure 7.8: The Modified Hierarchical Model

differs from the major models Pavelnko reviews in three ways (see Figure 7.8). First,

in the MHM, conceptual representations may be fully shared, partially overlapping,

or full L1/L2 language specific. One implication is that only one language may have

the necessary word forms and thus activating links to the other language may fail,

producing disfluencies. In this case bilinguals may resort to code switching or lexical

borrowing to continue the conversation.

The second characteristic of the MHM model is that of distinguishing be-

tween semantic transfer and conceptual transfer. Pavlenko gives the example of a

Finnish speaker of English who mistakenly uses the word language for tounge as in
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“He bit himself in the language”. Both Finnish and English differentiate the two

concepts that tounge can be used for so the speaker has made a semantic transfer

error, by linking to the higher-frequency English word language; it occurred at the

level of mapping words to concepts, not involving the structure of conceptual cat-

egories. Figure 7.7 gives another example of a semantic transfer error, where the

L1 German word plan is linked to the high-frequency L2 English word plan rather

than map. On the other hand, when an English speaker of Russian uses the word

chashka for a paper drinking cup, they have made a conceptual error as chashka,

while similar to a cup, does not include the category of paper or plastic containers.

The third characteristic is that L2 learning is embedded in the model. It

is seen as a gradual process, taking place in implicit memory (i.e., individuals may

not be aware that they are acquiring language knowledge “in the wild” rather than

by learning language rules as in explicit memory). MHM views L2 learning to

be a gradual conceptual restructuring with the goal being to acquire target-like

linguistic categories. This distinction differs from Kroll and Stewart’s Revised Hier-

archical Model (“RHM”) [Kroll and Stewart, 1994] in that RHM assumes the goal

of L2 vocabulary learning is to develop direct links between L2 words and concepts.

Pavlenko’s main argument for differentiating between implicit and explicit learning

is to provide a model of second language vocabulary learning that emphasizes the

structure of the conceptual representations rather than the interlingual connections

as in other models like RMH. Pavlenko does not imply that other models of bilin-

gual processing should include an account of cross-linguistic differences in linguistic

categories. Rather, she argues that models of L2 vocabulary learning and bilingual

lexicon models would benefit the most and that by focusing on these representations,

a better understanding of vocabulary learning will emerge.

We can see the benefit of considering aspects of the MHM model in our

computational model of bilingualism. It appears to be a more ecological sound

model, accounting for speaker vocabulary errors not in explained by other models.

As Pavlenko points out, it is a starting point for further empirical studies including

a long-term longitudinal study. At this point, MHM is psycholinguistic model and
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operationalizing its distinct characteristics, e.g., organizing the conceptual store

into three parts rather than having a single unified store, differentiating conceptural

and semantic transfer, and gradual conceptual restructuring is a challenge. In the

next section, we describe our preliminary attempt to build a computational model

inspired by RHM and MHM.

Figure 7.9: Spreading-activation theory applied to bilingual semantic memory pro-
cessing.

7.3.3 Representing the Bilingual Lexicon

The first task was to select the computational modeling paradigm used to implement

our theory. A computational model differs from a psycholinguistic model in that

it is specified using a computer programming language and hence is able to “run”

on a computer, simulating the cognitive processes as specified by the theory. We

decided to use connectionist modeling, and in particular a class of designs known

as Parallel Distributed Processing (PDP) as defined by McClelland and Rumelhart

[1989]. The PDP design has historically been used to gain insight into the cognitive

153



processes of the bilingual mind, and the BIA [Dijkstra and Van Heuven, 2002] is one

such model. We used this paradigm to design the implementation of our hypothesis.

The challenge in building a computational model of bilingual lexicon theo-

ries such as RHM and MHM is how to learn the strengths of the links shown in

Figure 7.8. The RHM theory has been implemented as a PDP model in which the

weights were adjusted until the desired network dynamics were observed [Sadeghi

et al., 2013, Laszlo and Plaut, 2012b]. Dijkstra et al. implemented a computa-

tional model for bilingual word recognition and word translation, Multilink, whose

connection weights are also set by observing the model behavior and manually ad-

justing the weights until the desired performance is achieved [Dijkstra et al., 2019].

Rabovsky and McRae [2014b] trained the weights in their monolingual PDP model

of word meaning using backpropagation. Their model extends the attactor model of

conceptual processing desribed by Cree et al. [1999] which was trained to map word

forms to human-generated features. Here, semantic memory is represented by 190

semantic feature production norms that were determined by human participants

in a norming experiment. While this is a more ecologically valid approach than

having the researchers set the representations, it is limited by the size of semantic

feature production norms. Adding new concepts means adding new feature produc-

tion norms and conducting new experiments. We will now describe our approach to

representing the bilingual lexicon as embedded word vectors, which is not limited

to an arbitrary feature set size and does not need to be normed.

The semantic memory model described in [Cree et al., 1999] is an associa-

tionist network. In this type of network, word meaning is represented by how often

it occurs with another word; this relationship is captured using high-dimensional

“semantic vectors”. In such a representation, a single concept might have 200 to

300 dimensions (i.e., distinct values) each representing a numerical measure of a

semantic feature of the word; note that it is not obvious what specific semantic

properties these dimensions represent. The closeness of two words can be deter-

mined by measuring the geometric distance two such vectors are from each other

in semantic space; computations such as cosine similarity or Euclidean distance are
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common measures. In our model, word vectors are drawn are from an associationist

database such as the Hyperspace Analog to Language (HAL) [Burgess and Lund,

1997]. A major advantage of these lexical databases is that they are available for

many languages other than English and that they are trained on naturalistic cor-

pora such as Wikipedia or movie subtitles. There are deep learning computational

methods, such as Word2Vec [Mikolov et al., 2013], that allow the researcher to build

their own corpus of word vectors on, for example, a conversational bilingual corpus

such as the Bangor Miami corpus [Deuchar et al., 2014].

Collins and Loftus [1975] theorize that semantic processing occurs in an asso-

ciationist network through spreading-activation. According to this theory, a concept

can be represented as a node in a network. The search in memory between concepts

involves following a path in parallel along the connections from the node of each

concept specified by the input words. The spread of activation constantly expands,

first to all the nodes connected to the first node, then to all the nodes connected to

each of these nodes, and so forth until some unspecified depth. Furthermore, the

semantic network is organized along the lines of semantic similarity; concepts that

are similar are linked together. Activation levels are affected by the strength of the

connections. Collins suggests that spreading activation has a neurological basis and

McClelland and Rumelhart’s PDP models incorporate this concept.

Figure 7.9 shows a portion of a spreading-activation model of bilingual mem-

ory. Here, the L1 English word “rage” evokes three related words, “anger”, “attack”,

and “emotion”. In addition, “rage” evokes the L2 Spanish translation equivalent,

“ira” which in turn evokes the related words “enfado”, “ataque”, and “emocion”.

Note that the L2 evoked words may be different than their L1 translation equiva-

lents, although they are the same here. We made a simplifying assumption that the

Spanish evocations are identical to their English translations; this likely not to be

accurate.
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Figure 7.10: Bilingual lexicon generated for the L1 English word rage. Parameters
to the model b = 3, d = 1 generate three evocations at the first level and only their
translation equivalents. As can be seen, the L2 Spanish evocations are different than
their L1 English counterparts.

7.3.4 Bilingual Memory Model Design

The computational model consists of a bilingual lexicon and a bilingual memory

component. We represent the bilingual lexicon as a bidirectional graph whose edges

connect related words; the degree of relatedness between two words is captured by

the edge’s connection strength (see Figure 7.10). A computer program generates

the graph when given a list of English words and parameters b (breadth) and d

(depth), the model will recursively generate a co-activation graph of the b words

immediately evoked, and the b words each of those words invoke, to a depth d. At

every depth it will find the Spanish translation equivalent for each English word and
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similarly recursively generate the b words they invoke to a depth of d. The strength

of the connections between the evoked words is proportional to their distance in

semantic space i.e., words that are more distantly evoked will have a lower connection

strength. The computer program used the Microsoft Translator text API [Mic,

2018] to automatically translate between English and Spanish words. For the L1

English words, semantic distance is obtained from a database of learned vector

space word representations trained using GloVe on 2014 Wikipedia [Pennington

et al., 2014]. L2 Spanish words were selected from a database of learned vector

space word representations trained using GloVe on Spanish Wikipedia [Etcheverry

and Wonsever, 2016]. The computer program generated the bilingual lexicon as a

graph adjacency list which the bilingual memory component uses to construct the

processing component.

Figure 7.11: Computational model of bilingual memory processing.

The bilingual memory component implemented the bilingual lexicon process-

ing (i.e., word selection). In its initial implementation, it is similar to the Revised
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Hierarchical Model and the shared, distributed, asymmetrical models described in

[Kroll and Stewart, 1994, Dong et al., 2005], although we would like to include

the semantic feature categories of the Modified Hierarchical Model in future devel-

opment. In these models, as a language is acquired, connections to the primary

language representations are formed and strengthened through repeated association

of the concept with its word form. Similarly, word forms in the second language be-

come first associated with primary language word forms and over time, connections

develop directly between the second language form and the concept. At present,

our model implementation does not simulate this effect of language acquisition It is

responsible for correctly selecting the L1 or L2 word from the bilingual lexicon.

The model implementation uses the Parallel Distributed Processing (PDP)

framework McClelland and Rummelhart described in [McClelland and Rumelhart,

1989]. In the PDP framework, words are activated through spreading activation as

in Collins’ model of semantic memory networks. As shown in Figure 7.11, concepts

are connected to their lexical representations in both the Spanish and English lex-

icons and these are in turn connected to their evoked words and their translation

equivalents. Information flows unidirectionally from concepts to their lexical repre-

sentations which then become “excited” or activated. These excitatory connections

are bi-directional and are mathematically represented as floating point numbers.

Activation next spreads to the evoked words and to all the translation equivalents,

all of which in turn spread their activation back in the reverse direction through

the connections. This provides supporting “evidence” to the original word and its

evocations (but not to the concept). Note that evoked words do not excite other

words in the same set.

Alternatively, connections in the lexicon can be inhibitory and these are

represented as negative floating point numbers; we have set such unidirectional con-

nections to be -1.0. In the example using the concept “rage”, once all its evocations

and translation equivalents receive activation and start spreading it back through

the connections, the evoked words in the ovals start inhibiting others in the set (e.g.,

“anger” inhibits “attack” and “emotion”). The purpose of these connections is to
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suppress activation of a word by other, competing sources of information. Examples

might be the need to produce another word in the flow of conversation; or it could

be the need for an unbalanced bilingual to suppress the stronger language when

speaking in the weaker language.

The component’s connections are initialized from the adjacency list generated

by the bilingual lexicon component. This list contains the information about how

the nodes are to be connected, the strength of the connections, and the starting,

“resting” activation of the the nodes. As described by McClelland and Rumelhart

[1981a], word frequencies are used to set the resting activation values. English word

frequencies were obtained from The English Lexicon Project [Balota et al., 2007]

and Spanish word frequencies from Mark Davies, Brigham Young University [Davies,

2018].

7.3.5 Model Processing

The processing dynamics in our implementation are based on a class of models

known as interactive activation and competition (IAC) models which also belong to

the PDP design class mentioned previously. The theory of these models suggests

information flowing “top-down” from higher cognitive processing levels combines

with information flowing “bottom-up” from lower processing levels to provide a set

of constraints out of which aspects of language processing, such as lexical selection,

arise [McClelland and Rumelhart, 1981a]. Information flows through a spreading

activation process so that information at one level spreads to neighboring levels

above and below. The notion of higher and lower cognitive processing levels is

common in the literature; at the very highest level might be contextual influences

such as pragmatics, interlocutor language, or the register. At the lowest level might

be visual or phonetic features produced by the sensory input process.

Our model consists of sets of units, roughly corresponding to neurons, divided

into three pools: (1) concepts, (2) English lexicon, and (3) Spanish lexicon; as the

model develops there will be additional pools. The units are connected as described

in the previous section.The activations of the units evolve gradually over time in
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a continuous fashion. However, when simulating this model computationally this

mathematical ideal is approximated by breaking time into a sequence of discrete

steps called cycles. At the start of every cycle, the activation value of every unit

is the value that was computed at the end of the preceding cycle. Here is how the

network computes the values:

1. Compute the input values to each unit

2. Compute the activation of the units

This two-step procedure ensures that nothing is done with the new activation of any

of the units until all have been updated (i.e., the update is synchronous).

7.3.6 Model Input and Output

The model has a simple character-based menu that allows the user to enter data,

control processing, and analyze results. Prior to running the model, the word fre-

quencies need to be loaded via a menu command. In the future, this functionality

will be expanded to allow an entirely new lexicon, and their frequencies, to be loaded

rather than using the default set of 28 words. Concepts are entered into the model

by typing the name of one of seven concepts. Model processing is controlled by

repeatedly pressing the cycle key; we envision presenting a new concept and cycling

as driven programmatically by a script.

The user can view the model state through one of several display commands

which show the how the activation values of a word or a set of words evolve over

the time period represented by the number of cycles processed thus far. In this way,

the gradually spreading activation from concept through the words in the lexicon

can be visualized. In addition, the model attempts to be as informative as possible,

communicating its progress as well as informing the user of any errors it encounters.

The goal is for the program to always handle error conditions gracefully and without

terminating unexpectedly.
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7.3.7 Discussion

As a first step toward a naturalistic computational model of the bilingual lexicon,

we constructed a preliminary computational model to show how access in controlled

based on conversational context and proficiency levels. The model demonstrates

how a concept activates a word and, through spreading activation, activates evoked

words. Words and their evocations are modeled as a semantic network of words

and their evocations. Similarly, the representation of a concept completely shared

between the languages is overly simplified, and likely captures the lack of differ-

entiation that one might observe in early stages of language acquisition. Concepts

shared between languages could be captured if the semantic networks was built from

highly proficient bilinguals in which the L1 and L2 semantic categories are already

differentiated. At this point, it is not a model of second language acquisition and

cannot be trained to become more proficient. There would be separate models for

unbalanced and balanced bilinguals with different parameters. The model has not

yet been connected to the top-down inhibition IC mechanism described earlier. This

mechanism would be recruited in a situation where an unbalanced bilingual would

be speaking in their L2, for example. While not fully functional, the bilingual mem-

ory computational model provides the scaffolding needed for further research. For

example, we implemented a way for the researcher to interact with the model, en-

tering input, controlling its operation, and viewing the processing results; there are

also a few basic analytic tools to help interpret the model’s processing.

The initial model implementation is a way to build scaffolding upon which

more aspects of the theory can be implemented. It provides an architecture for

interacting with the model which can expand and be modified as needed. The im-

plementation gave us an opportunity to test some aspects of the spreading activation

theory and identify areas that need further investigation. Among the improvements

that could make the model more viable in a bilingual robot include modifying the

model to be more sensitive to the interactional context; one such a theory is de-

scribed in [Green and Abutalebi, 2013]. Creating a bilingual language model which
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attempts to predict the next word and the language which it may be produced in,

given the context of prior words in the conversation and any top-down cues would

be necessary if the model is to emulate code switching. Code switching between

languages is a common occurrence between two balanced bilinguals which may give

the bilingual robot a more natural conversational partner. As noted, at present,

the model does not incorporate language acquisition. The model’s connections are

initialized by the bilingual lexicon component which at present uses English and

Spanish word vectors trained on Wikipedia corpora. Using actual conversations

from bilingual speakers at different stages of second language acquisition to train

the word vectors could provide a way to bootstrap the lexicon with node links and

connection strength that correlate with the different developmental stages. The

would allow the bilingual robot to emulate a speaker at different proficiency levels.

Incorporating these features into the model would require further investigation and

validation.

Figure 7.12: Spoken Dialog Framework: The SDS consists of the Large Vocabulary
Automatic Speech Recognizer (LVASR) which uses Topic Detection to automati-
cally select from among the Multi-domain Language Models. Transcribed speech is
passed to the Emotion Detection component which forwards its prediction to the
components as shown. Bilingual processing is implemented in the indicated green
components. Models of language performance can be implemented using a Neural
Field Model, which receives input from the LVASR. Dotted-line connections indicate
proposed functionality that has not yet been implemented.

162



7.4 Implementing a Bilingual Robot

Figure 7.12 shows the components of the multi-level model framework. The Emo-

tion Detection component is described in Chapters 4 and 5; the remaining compo-

nents are described in Chapter 6. In the figure, modifications to the Natural Lan-

guage Generation (NLG), Dialog Manager (DM), Natural Language Understanding

(NLU), Large Vocabulary ASR (LVASR), and Mutil-domain Language Models (MD-

LM) components to incorporate bilingualism are shown, except as noted below, in

green. the following high-level description of such modifications will demonstrate

the viability of building bilingual robot.

In order for the robot to understand the languages of the bilingual speaker,

the acoustic model ASR component will have to be modified to extract the acoustic

features of multiple languages. There a several ways of doing so. For example,

Goshal et al. describe using a deep neural network which maps the features to

tri-phones in a given language then using this to iteratively train more languages.

The DNN is initially trained on a “seed” language and then a Softmax layer is

added to a new language and DNN is fine-tuned to this language. The Softmax

layer is repeatedly replaced by one corresponding to a different language and the

fine-tuning is done for each [Ghoshal et al., 2013]. After training, the DNN outputs

are then used as the likelihood states of a Hidden Markov Model (HMM) and the

authors measure the word error rate of the multilingual system compared with a

monolingual for a given language. Depending on the language, results comparable

the monolingual are reported.

As discussed in Section 7.1, the LVASR arrives at its hypothesis by incor-

porating the probability that the predicted word appears in the language context.

This is the role of the language model and thus there needs to be a way to either

have a single LM for all the languages the multi-lingual LVASR recognizes, or there

there must be multiple LMs that can freely switch among languages, controlled by

the beliefs about the world (e.g., bilingual interlocutor), the task demand (e.g., start

language understanding in L2), or context (e.g., the topics in the utterance belong to
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a different language). Figure 7.12 shows the Topic Detector (in blue) which detects

context in an utterance and can signal the Selector component to switch to another

Language Model.

Similarly, there are multiple Natural Language Understanding components

which can signal a reinterpretation of the utterance using another LM by sending

a signal to the Detector. It is in the NLU component we propose incorporating

the model of bilingual memory discussed in Section 7.3.4. This allows the NLU

to incorporate activation of non-target words in its semantic interpretation and to

update the Knowledge Base. The parser in the NLU might use this, for example,

to prime the selection of the correct frame when code switching, or to make a fine

categorical distinction and avoid conceptual errors (see Section 7.3.2 )

In addition, there might be multiple Dialog Managers depending on whether

the dialog is to be conducted in, for example, a single language, more than one

language, or code-switching within a sentence. Finally, the agent may generate

speech in any of the languages and may code-switch. Therefore we show multiple

Natural Language Generation components for these situations, in green. For a

further discussion of how language model switching works, and for a demonstration

applied to improving semantic interpretation in a spoke dialog system, refer to

Chapter 6.

7.5 Summary

In this chapter, we have proposed that in a world where, depending on the re-

gion, one-quarter to one-half of the population speaks more than one language, it

is increasingly likely that social robots, assistive robots, and conversational agents

will be equipped with a bilingual capability. We summarized research on extending

the acoustic and language models to recognize multiple languages, mostly driven

by the need to incorporate recognition of under-resourced languages. Providing a

way to allow the agent to code-switch remains an area of active investigation. We

observe that many of the multi-language designs described in the literature are not
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rooted in the psychological models of bilingualism, e.g., language selectivity, cross-

language interference, language switching. Therefore, it is unknown whether these

phenomenon which are observed in bilingual speakers are important to bilingual un-

derstanding. For example, whether or not activating words or larger structures in

the non-target language primes code-switching is an interesting research question.

Furthermore, precisely which information cues and what they contain required to

prompt switching between languages or in code-switching, is understudied in the

context of bilingual robots.

Thus, we conducted two investigations: a computational model of language

control and, a model bilingual memory. From this, we demonstrated how to extend

a Spoken Dialog System (SDS) to incorporate bilingualism. We validated Green’s

IC in the context of VonStudnitz and Green’s LDT experiment and conclude that it

is a viable method of providing top-down control for language switching. We incor-

porated this concept in our SDS framework, where it is implemented as the Topic

Detector and Selector. While we have not yet validated our model of bilingual mem-

ory (we propose doing so though a primed lexical decision task), we demonstrated

operation of the model as described in Section 7.3.4. Finally, in 7.4 we demon-

strated the connections and functions that are necessary to implement bilingualism

in a spoken dialog system.
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Chapter 8

Modeling Human Language

Processing with Neural Fields

Human cognitive performance is very resilient in its processing of spoken language,

yet ASRs do not achieve human-level performance nor do they attempt to replicate

human spoken language processing. We investigated a biologically-plausible account

of speech perception that is based on dynamic field theory [Schöner and Kelso, 1988].

Our model is an implementation of neural fields, which are hypothesized to be the

basis of processing in the neocortex [Amari, 1977]. In our model, speech signals are

presented in real-time and cause a neural field to fall into a stable pattern. These

patterns can be associated with speech category levels at different levels of cognitive

processing. Neural fields can account for two notable characteristics of human speech

perception: robustness to noise in the environment and listener ability to reliably

identify the speech sound from different speakers.

In the first case, neural fields are robust to moderate amounts of noise, re-

maining in their settled equilibrium pattern. It takes a nontrivial input signal to

perturb the field from its equilibrium to a new state. In the second case, the neural

fields are not sensitive to the absolute acoustic input signal but to how the input

signal changes through time. Thus, it is this change over time which acts as a

normalizing function, allowing speech perception across different speakers.
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In our first investigation 8.1, our neural field model successfully replicated

the effect of immediate auditory repetition of monosyllabic words and fits it to

a component of a well-studied mechanism for analyzing language processing, the

event-related potential (ERP). This represents a new modeling approach to studying

the neuro-cognitive processes, one that is based on the bottom-up interaction of real-

time sensory information with higher-level categories of cognitive processing.

In a subsequent investigation, we described a two layer neural field model

in which category perception arises from the incremental recognition of temporal

patterns from sequences of inputs, accomplished by decoding the neural field. In an

example application, we used these patterns to identify a set of words which share the

word onset represented by the input sequence, consistent with the Marslen-Wilson

COHORT model of word recognition. Similarly, we evaluate the extent to which

information contained in the bottom-up sensory signal can be used to determine

word boundaries. We suggest it is plausible that a neural field offers a naturalistic

explanation of how perception arises in word processing.

8.1 Correlating with a Human Physiological Measure

Previous attempts at modeling the neuro-cognitive mechanisms underlying word

processing have used connectionist approaches, but none has modeled spoken word

architectures as the input is presented in real-time. Hence, such models rely on

the ingenuity of the modeler to establish a mapping of real-time stimulus to the

model’s input which may not preserve processing that happens during each time

step. We present a neural field model which successfully replicates the effect of

immediate auditory repetition of monosyllabic words and fits it to a component

of a well-studied mechanism for analyzing language processing, the event-related

potential (ERP). This represents a new modeling approach to studying the neuro-

cognitive processes, one that is based on the bottom-up interaction of real-time

sensory information with higher-level categories of cognitive processing.
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Figure 8.1: ERP repetition effects, seen in the difference between the first presen-
tation (black line) or a word and the immediate repetition (red line) of that word

8.1.1 Introduction

By spoken word perception, we mean the cognitive processes that entail the sensory

intake of an acoustic waveform until the words contained in it are identified. Some

early connectionist models of speech perception processes were driven by research in

generalized automatic speech recognition and have shown, for example, that a good

deal of phonemic information is present in the auditory signal and can be extracted

from the statistical generalization of the model. Among the best-known models

of speech perception is TRACE [McClelland and Elman, 1986] which has modeled

several lexical effects (e.g., phonemic restoration in a noisy environment) and the

time-course of word recognition. TRACE has been criticized for its biologically

unrealistic handling of time and the lack of a learning mechanism [Protopapas, 1999].

As a result, models were developed [Elman, 1990, Norris, 1995] which represent time

through cyclical, “recurring” connections from one state to an earlier state in the

network. One popular method by which learning is incorporated in these networks

is through a gradient decent regression using backpropagation.

While these models can account for many aspects of how humans comprehend

spoken and written words, none of these architectures model speech perception using
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real-time, human input. We present a neural field model with an efficient learning

mechanism which dynamically responds to the spoken word process as it unfolds

over time. A neural field sits in an equilibrium state waiting for a pattern it has

tuned itself to detect, and this detection takes the form of a perturbation. Learning

associates the equilibrium state of a field with its environment. Primary fields tune

themselves to fall into systematic equilibrium states in response to combinations of

sensory input. Deeper-processing, secondary neural fields are then enabled to tune

themselves in response to their environments once primary fields have settled into

predictable behaviors. With experience, the network forms representations as each

neural field systematically responds to its environment through time.

8.1.1.1 Word Repetition Effects and ERPs

An event-related potential (ERP) is an electrical voltage associated with an event

such as a stimulus or response. ERPs are believed to reflect the summation of post-

synaptic potentials occurring in many thousands of neurons. The time course of

ERPs in auditory processing can be traced starting from stimulus onset and con-

tinuing for approximately 800 ms. Our study focused on a particular ERP known

as the P200 (P2) which occurs in the interval from 145 ms to 225 ms after stim-

ulus onset and is classically associated with top-down attention processes on early

sensory processing [Hillyard and Anllo-Vento, 1998]. Of particular interest, the P2

has also been associated with a word repetition effect [Luck, 2014, Molfese et al.,

2005] where the P2 showed a reduced positivity (i.e., a larger negativity) to primed

versus unprimed targets. Word repetition is frequently used as an investigative tool

in psycholinguistic and memory research. It is a simple empirical procedure which

demonstrates that subjects are usually faster in their response to the second pre-

sentation of words than the first; such responses may be captured via reaction time

(RT) measures across a variety of experimental paradigms such as lexical decision

or semantic categorization.

Prior research in which participants read short texts containing repeated

words has found three distinct ERP components to be sensitive to repetition: a
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positive component peaking around 200 ms post-stimulus, a negative component

at 400 ms (N400) and a later positivity [van Petten et al., 1991]. However, van

Petten et al. [1991] note that the early P2 repetition effect has not been consistently

found in other studies, at times appearing with an opposite polarity. Due to the

paucity of research using real-time speech signals and the conflicting early results

cited, it appears that the processes which control this early component are not well-

understood. Among the research questions that remain open are to what extent does

deeper lexical processing and explicit memory influence the word repetition effect

and what particular cognitive processes elicit this effect? While this investigation

did not set out to explore these questions in depth, we address some of them in the

context of our results.

8.1.2 Human Experiments and ERP Data

8.1.2.1 Empirical ERP Data

We collected ERP data from 12 Native English speakers from Tufts University (mean

age 19.6, 7 male), of which 2 were excluded due to excessive ocular artifacts. All

participants self-reported as monolingual and right-handed [Oldfield, 1971], with

normal or corrected-to-normal vision/hearing and normal neurological profile. Par-

ticipants provided written informed consent and were monetarily compensated, as

approved by the Tufts University Institutional Review Board.

8.1.2.2 Materials and Design

During ERP recording, participants completed a dual-task paradigm with a primary

task of playing a video game (i.e., “Breakout”: breaking pre-arranged blocks by

bouncing a ball from a controllable paddle) and a secondary task of listening to words

through a set of headphones. The dual-task paradigm was important for our ERP

modeling task because we attempted to reduce any explicit episodic memory effect

so that we could focus on more implicit repetition primary effects by introducing the

primary task of playing a video game. For the primary task, we utilized a JavaScript
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variant of Breakout. Three game levels were chosen based on pilot results, indicating

them to be similar in difficulty. For the secondary task, a female experimenter

recorded 300 monosyllabic English words to be used in stimuli generation. These

300 words were split into two lists (of 150 words each) matched for psycholinguistic

properties (e.g., bigram frequency, length, phonological and orthographic frequency,

familiarity, and concreteness). An additional list was created from the two split lists

(half from each) so that a total of three lists of 150 words were created. From each

of the 3 lists, 50 of the 150 words were randomly selected to be repeated so that

each list contained a total of 200 words. None of the repeated words were redundant

across lists.

8.1.2.3 EEG Recording

Participants engaged in the dual-task paradigm in a dark, sound-attenuated room

while their EEG was recorded using a 29-channel electrode cap. Loose electrodes

recorded from 1) below the left eye (LE) to monitor for blinks and vertical eye

movements, 2) at the right temple (HE) to monitor for horizontal eye movements,

and 3) behind each mastoid (left: A1, right: A2) for referencing (A1) and monitoring

differential mastoid activity (A2). Electrode impedances were kept under 5 kW for all

scalp electrodes, 10 kW for both eye electrodes, and 2 kW for both mastoid electrodes.

We sampled the EEG at 200Hz while an SA Bioamplifier (SA Instruments, San

Diego, CA) amplified the signal with bandpass of 0.01 and 40 Hz.

8.1.2.4 Experimental Results

Averaged ERPs were formed for each spoken word (using -100 and 0 ms baseline)

after artifact rejection (15.67% of the trials were rejected due to ocular artifacts)

and collapsed into conditions (first presentation or repeated) for comparison. The

ERPs were then low-pass filtered at 15 Hz. Individual participant ERPs were then

averaged into a grandmean of 10 participants, allowing for the analysis of overall

auditory language processing effects. Of particular interest is the repetition effect

on particular ERP components such as the P2 [van Petten and Kutas, 1991, Rugg,
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1987] with an anterior scalp distribution, sensitive to lexical processing and impli-

cated in word recognition processes [Dambacher et al., 2006]. Such repetition effects

manifest in the form of attenuated amplitudes to repeated items compared to their

first presentation, reflecting the ease of processing for the former relative to the lat-

ter. Results indicate the presence of a P2 repetition effect, seen clearly in anterior

electrodes between 200 and 400 ms (Figure 8.1).

Figure 8.2: Neural field training. The training vector at the word representation
layer develops an input signal s = mi through the modulator filter to each processing
unit ui in the neural field as a random sound exemplar of the same training vector
category is played to the input nodes.

8.1.3 Neural Field Model Description

We modeled a single layer of the hierarchical process generally regarded to represent

the architecture of speech perception [Grossberg, 2005, McClelland and Elman, 1986,

Norris, 1995]. In Figure 8.2, the model architecture consists of (1) a vector of

auditory input nodes, (2) a vector of category nodes, (3) a grid of processing units
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called a neural field, and (4) three fully connected sets of weights to be trained

called adaptive filters. The field processing units are reciprocally connected to each

other through non-adjustable weighted connections using an on-center, off-surround

“Mexican hat” distance function [Brady, 2014]. The input nodes carry sensory

information which is refreshed with new data at each time step. This input is

passed through a “driver” filter to develop a bottom-up input signal to the field.

The category nodes carry persistent labeling information which is passed through

a “modulator” filter to provide a top-down input signal to the field. The labeling

information is also used as the training target for a “read-out” filter.

A neural field in our model is a “sheet” of processing units. If given no input

and random initial conditions, all units of the field are guaranteed to quickly fall into

a stable equilibrium state with respect to each other such that the entire field may

be considered to fall into an equilibrium. Different equilibrium states of the field are

associated with different input patterns. The field is updated once every 10 ms (i.e.,

a time step) using Equation 8.1 which computes the change in its activation. This

general equation and its variations are widely used in dynamical systems models,

[Amari, 1977, Beer, 2000, Brady, 2014, Grossberg, 2005, Hopfield, 1982, Schöner

and Spencer, 2015].

u̇i = −ui + si + h+ n+
∑
j

λ(i, j) · σ(uj) (8.1)

The change in activation of a unit, ui at a given time step is computed as the

sum of influence to the unit at that time step minus the activation of the unit from

the previous time step. Influence to a unit at a time step comes from an input signal,

si, the field’s slightly negative bias, h, a noise term, n, and from other units within

the field. Influence from other units within the field is computed to be the sum

of the squashed activations of neighboring units multiplied through corresponding

within-field connection weights w. A stepwise squashing function, σ, is used such

that only units with non-negative activations can influence their neighborhoods.

Within-field connection weights are specified as on-center off-surround by a Mexican
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hat weighting function, λ(D). Input to the function D is the Euclidean distance

between two units, ui and uj ; the output of the function specifies their connection

strength.

8.1.3.1 Neural Field Learning

We implemented a learning mechanism in which the driver and modulator filters are

trained together that works as follows. The filter weights are initialized with random

values which are then updated across training cycles. A training cycle consists

of iterations in which the neural field is initialized with random unit activations

simulating the passage of time between learning patterns. Then, a training vector

is used to generate an input signal si through the filters to each unit of the neural

field using Equation 8.2, and a random sound exemplar of the same category as the

training vector is played to the input nodes as time unfolds. In our experiment,

the training vector represents a monosyllabic word. Here, oy is the activation of a

category node, ox is the activation of an input node, and g1, g2, g3 are gain terms; ḋi

is the change in activation of the driver signal, ui is the running average of the unit

being updated, and mi is the running average of the modulator signal to a unit.

si = g1|ḋi| · (g2mi − g3ui) (8.2)

mi =
∑
y

wiy · oy

di =
∑
x

wix · ox

The weights of the modulator and driver filters are adjusted following Equa-

tion 8.3, a variant of the delta training rule.

∆wix = η · ōx · (ui − ḋi) · |u̇i| (8.3)

∆wiy = η · ōy · (ui −mi) · |u̇i|
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Learning proceeds as the training vector persists for the duration of the input sound

as the neural field adjusts itself in response to its input, updating the modulator and

driver filters at each time step. Subsequently, a new iteration begins by initializing

the field to a new random state and associating the transformation of that state

through time with the next input training vector (i.e., new word), and so on. A

cycle is completed when all training vectors have been exposed to the model in

random order, at which point a new training cycle begins.

In Equation 8.3, η is the learning rate, (ui − ḋi) and (ui − mi) are the

errors to be minimized; cyclic training continues until the learning error is reduced

to asymptote. The last term of the equation, |u̇i|, is an innovation which allows

learning to occur only if there is a change in the target neural field and therefore

important associations are maintained even as learning proceeds over time.

8.1.4 Experiment 1: Modeling Word Repetition

The model’s read-out filter is trained in order to evaluate how well the neural field

categorizes its input. The weights of this read-out filter are updated using the “delta

rule” as in Equation 8.4. Training vectors oy are converted to target vectors Ty by

setting the negative values of the training vectors all to zero. The generated output

is notated as ô.

∆wyi = η · ui · (Ty − σ(ôy)) (8.4)

Where:

ôy =
∑
i

wyi ·mi

We selected a subset of five monosyllabic words from the stimuli used in the

empirical experiment: “beach”, “dog”, “soup”, “bog”, and “tend”. Four exemplars

of each word were recorded separately by a male speaker as male voices span a lower

frequency range making for easier speech processing by the model. The recordings

were transformed into the 26 coefficients shown in Figure 8.2 and were provided as

input to the model in 10 ms time steps. The model was trained on three target
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words from this set, “beach”, “dog”, and “soup”. How well the model learned was

measured by computing the error as the sum of the differences between “readout”

vector generated as output by the model and the corresponding target word.

8.1.4.1 Modeling the ERP Measure

We chose to model the ERP as the difference between the modulator signal and

the field activation. This can be thought of as analogous to error values or implicit

prediction error. Implicit prediction error at multiple levels of language processing

is thought to play a critical role in language comprehension [Kuperberg and Jaeger,

2015]. Within probabilistic frameworks, implicit prediction error has been linked to

other language-related components such as the N400 ERP Kuperberg [2013], Xiang

and Kuperberg [2014], Kuperberg [2016], as well as non-linguistic ERP components

[Friston, 2005, Wagongne et al., 2005]. Moreover, the N400 ERP component has

recently been simulated as cross-entropy error at a semantic level within a connec-

tionist model [Rabovsky and McRae, 2014a].

The ERP at time t is computed as shown in Equation 8.5; mi and ui are

each unit’s modulator and field activation respectively:

ERPt =
∑
i

|mi − ui| (8.5)

8.1.4.2 Modeling Results

The words from the test input were presented in the following order: “soup”, “dog”,

“dog”, “dog”, “beach”, “dog”, “bog”, “tend”. The neural field was trained on

“soup”, “dog”, and “beach”; “bog” and “tend” were novel stimuli the field was not

trained on. Figure 8.3 shows that the model replicates the repetition effects, i.e.,

the maximum ERP values at a t after the first exposure of the word “dog” are

all smaller than the first peak, until a different word is presented. At this time,

the neural field is perturbed into a different state, releasing it from the effect. A

subsequent presentation of “dog” no longer elicits a repetition effect, producing a
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Figure 8.3: Modulator-Field difference for repetitions of the word “dog”

larger peak as the field resettles into the equilibrium state for “dog”. In Equation 8.5,

the modulator signal, mi, can be thought to “predict” the next equilibrium state

the neural field ui is likely to settle to. This suggests that a smaller amount of

perturbation is required to “nudge” the settled field into a new equilibrium state

upon presentation of a repeated word. The presentation of untrained, novel stimulus,

i.e., “bog” and “tend”, does not show the repetition effect as these words are not

predicted by the modulator signal.

Table 8.1: Model Fitting

Interval Model ERP Data
Width Proportion Proportion

100 ms 1.41 1.60
112 ms 1.53 1.53
120 ms 1.66 1.58

Best fit (112 ms) 144 ms - 256 ms
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We note that model does not aim to fit the polarity of the P2 ERP as what

gives rise to the polarity is not well-understood and as there have been inconsis-

tent reports on the word repetition effect as mentioned earlier [van Petten et al.,

1991]. Furthermore, it is the nature of ERP measurement that the interval within

which a given effect is manifested varies somewhat between experimental paradigms.

However, the model should fit the magnitude and the duration of the human ERP

data. Thus, to compute the model fit, we looked at the ERP data intervals centered

around 200 ms as this interval contains the P2 effect and computed the proportion

as follows. We took the area under the ERP curve within an interval for the first

presentation of the word “dog” and divided it by the identical interval contained un-

der the repeated presentation to calculate its proportion. Referring to Figure 8.3, we

also took the area under the ERP curve generated by the model and performed the

same calculation. As shown in Table 8.1 we found that the 112 ms interval around

200 ms (i.e., from 145 ms to 255 ms) showed both proportions to be identical i.e.,

1.53, thus demonstrating it is possible to find a good model fit to the experimental

data.

8.1.4.3 Discussion

We designed our model to be a single neural field reflecting processing in the auditory

cortex and hypothesized that this forms a “layer” of phonological processing. In

order to provide a modulator signal, we simulated the existence of a deeper word-

form layer by “clamping” the modulator signal to the three words the model was

trained on (i.e., “beach”, “dog”, “soup”) and this was fed “down” to the neural

field as its modulator signal. We did not presuppose which ERP correlates would

occur using only one neural field layer and did not set as a goal to identify all

possible auditory effects; we were not concerned with capturing non-speech auditory

processing at all.

The model succeeded in capturing the repetition effect noted in the experi-

mental results as can be seen in Figure 8.1, most notably in the central scalp ERPs

e.g., Cz. Figure 8.3 shows a diminished response to the initial presentation of the
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word “dog” at 75 ms with the repetition effect occurring at 150 ms and 225 ms.

Note that the typical convention is to plot the ERP, with the area above the x-axis

as negative and the area below as positive. Thus the model and ERP waveforms co-

vary in amplitude and polarity with the repetition (i.e., in the model the repetition

effect is “more negative” than the initial presentation).

The model demonstrated the immediate word repetition effect using a single

neural field sheet, without modulator input from deeper lexical and semantic pro-

cessing layers. This suggests that the ability of a single neural field layer to learn

sound patterns (i.e., phonemes, monosyllabic words) alone appears to be sufficient to

account for the immediate word repetition effect and the release from repetition. We

believe this to be among the first computational models to match the time course of

ERP events on real-world, real-time data, and the first model to do so using spoken

word perception i.e., we used the same data that was presented to the experiment’s

participants and validated the model fit. These results suggest that our neural field

approach can now be used to build additional layers and thus model later ERPs.

Figure 8.4: Model fitting. For the Human ERP and for the neural field model, the
difference between the first and repeated presentation of the words was computed
for each condition and the area under the curve (AUC) was calculated. The AUCs
of Human ERP and neural field model difference waves were compared to determine
how well the model fit the human data.
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8.1.5 Experiment 2: Modeling Task Difficulties

As described in Section 8.1.2.2, the human experiment was a dual task paradigm

with concurrent EEG recording. Here we focus on the primary task in which par-

ticipants played a block-breaker game with three varying difficulties (easy, medium,

hard). The model was trained as Experiment 1 (see Section 8.1.4.1), to learn the

words “beach”, “dog”, and “soup”. We ran the model under two work load condi-

tion: easy and hard, using the same sequence as in Experiment 1: “soup”, “dog”,

“dog”, “dog”, “beach”, “dog”, “bog”, “tend”.

As shown in Figure 8.4, we computed the difference between the first and

repeated presentation for each condition and used this “difference wave” to com-

pare the model and the human data. We computed the proportion of the two

AUCs separately for the neural field model and the human data. If the model

responds similarly to the human ERP, then the corresponding AUC proportions

(easyAUC/hardAUC) should be similar. We found a very good fit to the human

data, where the proportion for the neural field model = 1.63 and that of the Human

ERP = 1.65.

8.2 A Neural Field Model of Sequence Perception

We show how temporal and spatial information can be represented as stable patterns

in a dynamical system. We describe a model in which category perception arises

from the incremental recognition of temporal patterns from sequences of inputs and

this is accomplished by decoding a pool of recurrently connected artificial neurons

which is called a neural field. In an example application, we use these patterns

to identify a set of words which share the word onset represented by the input

sequence, consistent with the Marslen-Wilson COHORT model of word recognition.

Similarly, we evaluate the extent to which information contained in the bottom-up

sensory signal can be used to determine word boundaries. We suggest it is plausible

that a neural field offers a naturalistic explanation of how perception arises in word

processing.
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8.2.1 Introduction

The brain encodes and processes sensory input acquired from the environment.

Sensory input, regardless of modality, is encoded as spatiotemporal patterns, and a

superior form of pattern processing has evolved in humans coinciding with the ex-

pansion of the neocortex. In this brain structure, several essential cognitive processes

such as visual, auditory, and speech perception occur [Koch, 2004, Mattson, 2014].

These processes include not only recognizing patterns, but also classifying them

[Grossberg, 2005]. During this processing, different sensory inputs which represent

members of the same category are mapped to a singular representation for that cate-

gory. In speech processing, for example, all pronunciations of the phoneme “@”, are

mapped to the same pattern, allowing for invariance in speech perception across

multiple speakers [Kleinschmidt and Jaeger, 2015]. Consistent with these hypothe-

ses, our model uses patterns of activation to represent sequences of states in the

context of perceiving words; we modeled these states as equilibriums in a neural

field.

The human neocortex consists of six layers of tissue containing approxi-

mately 1010 neurons. Columns of tissue can be represented mathematically as neural

fields, which form patterns of activation through interaction with each other [Amari,

1977]. These interactions between fields generate patterns of activation in a fashion

that is believed to be similar to how sensory information is represented in the hu-

man neocortex [Amari, 1977, Brady, 2012]. These patterns represent an encoding

of spatial and temporal information from the brain’s sensory input stream.

Each neuron in a neural field F (Figure 8.5) is connected to each of its neigh-

bors with weights that create an on-center off-surround activation pattern, where

the closest neighbors provide a positive influence on activation, further neighbors

a negative influence, and the furthest no influence. If given no input and random

initial conditions, the units of the field are guaranteed to quickly fall into a sta-

ble equilibrium state. Different equilibrium states of a field can be associated with

different inputs, and thus the states of activation in a neural field can be used to
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store information by associating them with category labels as we demonstrated in

Section 8.1.

In this investigation, we demonstrate a model of word perception using neu-

ral fields. Our research is not focused the initial interaction between perceptual

signals and the sensory apparatus. We are instead interested in the processing of

the output of such apparatuses, and how it can be used to constrain the patterns of

activation in higher level cognitive processes, like lexical representation. Our model

uses two neural fields, each representing a level of cognitive processing. Since sen-

sory information unfolds over time as a continuous sequence, the input presented

to the first neural field is a sequence of feature vectors which represent the letters

of an artificial font. Sequences of output features from the first field representing

letters are then presented as input to the second field which identifies likely word

boundaries and classifies these letter sequences as words.

There are many theories about how patterns of activation in the lexicon are

formed once the sensory information has been received [Dahan and Magnuson, 2006].

This work focuses on the Marslen-Wilson [1987] COHORT model, which theorizes

that information contained in the bottom-up perceptual signal can be exploited

to determine which lexical items should be activated, and also used to identify

perceptual characteristics such as word boundaries. To explore the extent to which

this information is sufficient, we have developed a model where word onsets constrain

the set of activated lexical entities such that word onsets activate lexical items with

shared onsets. Our model thus makes predictions similarly to the COHORT model;

the initial information contained in the sensory signal influences the activation of

an initial word-cohort, allowing it to predict word boundaries in a higher level of

processing.

8.2.2 Representing State with a Neural Field

Our model is composed of two layers of neural fields. The structure of a single

layer is shown in Figure 8.5. An Input vector (I) is fully connected to the neural

field (F ) by input weights (Wi). F is fully connected to an output vector (O) by
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Figure 8.5: Single field design. Note: I and O are fully connected to F, but only a
few connections are depicted here, for clarity.

output weights (Wo). In our model, such a layer (input, field, and output) can be

interpreted as a cognitive processing layer, computing a specific function such as

letter or word detection. These layers can be combined to represent a hierarchy of

cognitive processes shown in Figure 8.7.

Our model is based on the following principles of dynamic field theory. Pat-

terns can be stored as stable equilibrium states. A sequence can be “remembered”

as a unique equilibrium, unrelated to any previously generated equilibrium, by cal-

culating the sum of the pattern generated by the current input and the pattern

representing the previous sequence. Fields converge to a stable equilibrium state

after applying a finite series of “settling” operations after which the field ceases to

change. Finally, fields can be forced out of a stable state into a target state by

applying a finite series of operations which includes the target as its field input.

8.2.2.1 Field Dynamics

The input to a layer is received as a vector I, whose dimensionality is the number

of discrete categories in the input domain. This input is used to first calculate the

183



n× n matrix Ft (in our evaluation n = 64), which represents field activation at the

given point in the sequence of input vectors. Ft is calculated using the following

equations which are a variation of those widely used in dynamical systems [Amari,

1977].

D = WiI (8.6)

σ(x) =


x

x+ 1
if x ≥ 0

0 if x < 0

(8.7)

S = Wmh σ(Ft−1 +D) (8.8)

Ft = σ(S + h+ n) (8.9)

As shown in Equation (8.6), the driver input, D, is generated by multiplying

the input vector I by the input weights, Wi (dimensionality n × n× ‖ I ‖). D is

then added to the current field equilibrium, Ft−1, and the result is squashed to the

range [0, 1] using Equation (8.7). This new equilibrium represents the sequence of

input seen up to time t, plus the input at t. The result is multiplied by the within

field weights, Wmh, which are defined using the Mexican hat function;1 the result

is the field influence term, S, Equation (8.8). Small bias h and noise n terms are

added to the field influence, and the result is squashed again to produce the field

activation Ft, Equation (8.9).

8.2.2.2 Settling to an Equilibrium State

Once a field has been updated from an input, a settling operation is applied resulting

in convergence to an equilibrium state. This process is expressed in Equation (8.10),

which is based on Equations (8.8) and (8.9) with the notable exception that the value

of the field at the previous time step is not added to the input. This operation is

repeated until a stable equilibrium is reached, determined by comparing the field

1A Mexican Hat function where D is the Euclidean distance between two units in the field:

Wmh = e
−D2

r2d · (cos(πD
2r

) − z) · ( 1
1−z ), r = 4.5, z = 0.15
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activation at time t with its activation at t−1, repeating until the difference is below

a small epsilon value.

S = Wmh σ(S + n) (8.10)

8.2.2.3 Layer Output

The settled equilibrium is used to calculate the layer’s output vector, O, whose

dimensionality is the number of categories in the output domain.

O = tanh(FtWo) (8.11)

The state of the field is multiplied by the output weights Wo (n×n× ‖ O ‖),

and their product is passed through the hyperbolic tangent activation function. The

result is a vector whose values are normalized to the range [−1, 1].

8.2.3 The COHORT Model Using Neural Fields

The Marslen-Wilson COHORT model of spoken word recognition suggests that the

real-time constraints of a speech signal influence how bottom-up information is used

to determine which items in the mental lexicon become activated. According to

the model, on each new input onset only the cohort of possible values remains

activated; a cohort is the set of all lexical items that share an onset. A decision is

reached only when one possible value remains in the cohort. Consistent with the

original version of COHORT (which assumed a highly categorized, abstract string

of phonemes rather than feature vectors as input), our model uses only the features

present in the bottom-up sensory input to develop the cohort.

The neural fields in our model simulate what happens when sensory infor-

mation makes contact with the mental lexicon. It is assumed that, once past the

sensory apparatus, information flow through differentiated neural architectures, e.g.,

visual or auditory, is represented in the same fashion. In our evaluation we chose

to focus on visual information, and the following sections describe how it is handled

by the model.
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8.2.3.1 Model Input

The input to our model is a sequence of feature vectors which represent the output

of the visual perceptual system. As in the Interactive Activation model of word

recognition [McClelland and Rumelhart, 1981b], visual features are extracted from

the raw input, sequences of letters, by separating each letter into a set of component

features. These features can be thought of as the pen strokes used to write the letter.

For simplicity, we have chosen the font used by Rumelhart and Siple [1974] which

is shown in Figure 8.6. Sequences of feature vectors are generated from a letter by

arbitrarily circumnavigating the font clockwise from the outermost feature, spiraling

inward. For example, the letter “R” is represented by the sequence [0, 1, 4, 5, 8, 9,

12].

In our implementation, the model receives visual features as input. As men-

tioned earlier, the input features could also represent information from other sensory

modalities. For example, the input features could also come from a speech recognizer

and instead represent sequences of phonemes. At the cognitive processing level, the

model’s basic results do not depend on what the input represents. With different

input features there are obviously low-level feature processing issues (e.g., different

types of variance in the input) which are outside the scope of this work.

(a) Labeled Segments (b) Letters

Figure 8.6: 14-segment display using the letter font.
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Figure 8.7: Neural Field based Cohort Model architecture.

8.2.3.2 Model Architecture

The architecture of our model is shown in Figure 8.7. It uses two neural fields, each

representing a stage of cognitive processing: F1 which is a letter detector, and F2

which is a word detector. F1 and F2 are connected via a Send Gate which controls

when information from F1 is sent to F2.

Before the model can be used, it must first be initialized. This initialization

generates the associations between input and neural field equilibrium states which

are used to detect sequence boundaries. During this initialization the model is

presented with sequences of input features and the boundaries between them that

represent meaningful units. Perceptrons are trained to detect these boundaries based

on the equilibrium states which represent them.

Once initialized, information flows through the model as shown in Figure 8.7.

Letter segment sequences previously generated by the visual recognizer flow as input

to F1; letters detected by F1 flow as letter sequences to the word detector F2.

Perception arises as the generated pattern predicts a set, or cohort, of letter or word

candidates. As new features are fed incrementally into the model, a new pattern is

generated and each field’s perceptron updates its prediction, removing candidates

from its cohort. Letter or word recognition occurs when there is a single candidate

left in the respective cohort. When recognition occurs, the send gate is opened

sending the output perceptron’s value to the next layer as input. In the case of
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the letter layer, the output is sent as input to the word layer; in the case of the

word layer, the output value of the perceptron is used by the decoder perceptron to

generate results interpretable by a human.

8.2.3.3 Model Initialization

The characteristic theory of the COHORT model is instantiated in the neural field

model during initialization. This initialization forms the associations between input

features and neural field equilibrium states used during perception. This initializa-

tion is composed of three steps: (1) Initial equilibrium generation (2) Wi training

(3) Wo training.

The initial values of the weight matrices used in the model (F1: Wi, Wo

and F2: Wi, Wo) are chosen randomly from a truncated normal distribution with

a standard deviation of: 2√
ninputs

Using this particular standard deviation helps the

training to converge more quickly [Géron, 2017].

Initial Equilibrium Generation: A “seed” equilibrium is generated to repre-

sent each unique input feature a field will receive. For the letter detector, F1, 15

equilibriums are generated to represent each of the 14 possible letter visual features,

plus an equilibrium to represent the beginning of a sequence when no input has

been presented yet. For the word detector, F2, 27 equilibriums are generated, for

the 26 letters in the English alphabet and one more for the initial sate. These initial

equilibriums are generated by a variation of Equation 8.6 where I is the product of

a one-hot vector whose 1-bit corresponds to the ordinal value of the letter segment

in the range [0, 15] or letter in the range [0, 27] and the randomly drawn Wi for the

given field.

Wi Training: For a feature vector (i.e., letter segments for the first field, letters for

the second), a set of weights (Wi) is trained which will reliably reproduce the initial

equilibrium associated with that feature vector. The model’s operation assumes that

a settled field generated from new input can be added to the current settled field to
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produce a new equilibrium representing the input sequence seen thus far. Without

trained driver weights, an unsettled equilibrium would be added, violating a core

model assumption. The training of Wi, uses a version of the perceptron learning

rule, Equation 8.12, to train the single layer perceptron whose activation is found

by multiplying the driver input by Wi,

∆Wi = ηI(Target− IWi) (8.12)

where Target is the seed equilibrium for the category and η is a learning rate. Train-

ing proceeds until Target− IWi < 0.0001. This approach is a variation of Hebbian

learning, a biologically plausible mechanism for learning associations between neu-

rons [Laszlo and Plaut, 2012a].

Wo Training: The output weights Wo map a field’s current equilibrium to the

output domain relevant to its cognitive layer (i.e., letters cohort or words cohort).

For a given cognitive layer the output vector O represents the members of the cohort

that are currently active. O is the size of the lexicon of known labels at the given

cognitive level, each of its elements representing a member of the lexicon. A member

of the lexicon is considered activated if the value of its corresponding element in O

is above an activation threshold. For example, the letter segment sequence [0, 1] is

the prefix of the letters {A, B, D, O, P, Q, R} (see Figure 8.6a).

The weights Wo are trained so that the same value of O can be calculated

every time a corresponding equilibrium is present in F. The weights are updated

using Equation 8.13,

∆Wo = ηF (Target− FWo) (8.13)

where Target is the vector in the output domain (e.g., letters or words) indicating

cohort membership of the lexical entries whose onset is represented by the equilib-

rium of the neural field F . Training proceeds until Target− FWo < 0.001.
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8.2.3.4 Detecting a New Sequence

An equilibrium for a sequence is generated by adding the seed equilibrium of the

new element of the sequence to the current sequence equilibrium. For the first seg-

ment in a letter, its seed equilibrium is added to a default value (i.e., the 15th seed

equilibrium). This process is repeated for each segment of the letter and after each

addition, the field is settled. A challenge in implementing the COHORT model is

detecting when a new sequence begins. In our model, an input sequence is “re-

membered” as an equilibrium whose value is the sum of the equilibriums seen as

input thus far. Thus, when the end of the sequence is detected there must be some

way of resetting the field so that the next sequence is not affected by the previous

sequence. To do this, each field has a reset gate whose purpose is to detect the

conditions under which the field should be reset to its default equilibrium.

The default equilibrium is the starting state to which subsequent equilibri-

ums are added. The model hypothesizes that a reset signal represents constraints

arriving top-down from higher cognitive processing levels (e.g., syntactic, semantic,

pragmatic) as well as bottom-up from the features contained in the input data.

8.2.3.5 The Send Gate

Each layer of the model has an associated Send Gate which controls the information

that it sends to the next highest level of cognitive processing. The first layer’s send

gate connects the letter detector field to the word detector field and the second

layer’s determines the overall output of the model. In different configuration of the

model, the second layer’s send gate could connect to a third field and so on. Send

Gate processing is the same for every layer (refer to Figure 8.8). First, the input

features A are presented, and the field is updated B. The cohort is then calculated

C and evaluated by the Reset Gate D. The field may or may not then be reset to

its default state. The cohort is calculated and if it has shrunken to one member,

the Send Gate E opens.

Notice that the Send Gate only opens when the cohort has shrunk to one
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Figure 8.8: Reset/Send Signal Processing. If the reset gate (D) is open, it will set
the field to a default equilibrium; otherwise it will update the field to the sum of
the equilibrium of the current field and the equilibrium of the new feature. Send
gate processing (E) takes place after the reset gate is processed.

member. Thus we must ensure that the state of the cohort is reset so that a new

sequence can be subsequently recognized,otherwise a feature that is repeated across

category boundaries will not be recognized. The Send Gate behavior models the

recognition point prediction of the COHORT model which states that word recogni-

tion occurs as soon as sufficient information is received such that all other candidates

are eliminated [Marslen-Wilson, 1987].

8.2.4 Model Evaluation

The primary goal of our research was to determine whether neural fields are a

plausible way to model word perception. Prior research theorizes that humans

represent word forms as categories, abstracted away from variability [Dahan and

Magnuson, 2006] and it is this view that our model seeks to explore. There are

several well-known cognitive models (e.g., COHORT, TRACE, Neighborhood Word

Activation) whose theories make different predictions once the input signal make

contact with the lexicon. We chose the COHORT model as a starting point and

explore whether two of its predictions can emerge from our neural field model: word-
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initial cohort and the identification of word boundaries. The operation of the model

is summarized as follows:

1. Each feature (i.e., letter segment) of sensory input is converted to a pattern.

2. Sequences are generated by adding the current input’s pattern to the previous

input’s pattern.

3. Perception arises as the generated pattern predicts a set, or “cohort”, of let-

ter or word candidates. A perceptron is trained to decode the pattern and

interpret the prediction.

4. As new features are fed into the model, a new pattern is generated and the

perceptron updates its prediction, removing candidates from the cohort.

5. Letter or word recognition occurs when there is one candidate left in the

cohort.

6. New categories are recognized at the point when either the cohort is empty or

when new candidates are added.

8.2.4.1 Materials

The TIMIT corpus [Garofolo et al., 1993] provides a set of 10 phonetically rich

sentences spoken by 630 speakers of eight major dialects of American English which

are annotated at the word and phoneme level. The annotations of the corpus were

used as a set of naturally occurring sequences to train the model’s letter and word

detectors. The text of the corpus was used to create feature vectors, as described

in Model Input, which was presented to the F1 as a sequence of letter segments.

8.2.4.2 Results

The entirety of the TIMIT training set was pre-processed by the visual feature

recognizer and its output, an unbroken sequence of letter segments was presented

as input to the model. In the first experiment, the model was artificially reset to a

default state at the end of every word so that errors in the perception of one word did
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not affect the perception of other words. This was done to verify correct operation of

the model. For 100% of the words in the lexicon, the activation matched the ground

truth for every letter segment in that word. Furthermore the model generated the

correct cohort (when one existed) of letters for every letter segment sequence and of

words for every letter sequence. In a separate experiment, the model was not reset

and in 82.5% of cases, the model detected the word level transition, suggesting that

bottom-up information alone is insufficient to detect word boundaries.

8.2.4.3 Discussion

The model uses the structure of the data to represent top-down cues which are

simulated through a “forced reset” when the start of a new letter or word is detected

from the structure of the input data set. This is not ideal but allows the model to

continue processing when the bottom-up cues alone are insufficient. One alternative

to the forced reset would be to train a detector to recognize likely word boundaries

in a training corpus, using it to augment the existing cohort-based reset mechanism.

Consider the following sequence of letters without any explicit separation (we could

have equally used a letter segment sequence, but that would have been harder to

visualize):

shewashedyourdarksuitingreasywashwaterallyear

Humans can usually distinguish each letter sequence of a word and consequently

recognize each word of the target sentence; however it is not as straightforward for

a computer model to do so. Without further information constraints, a näıve model

might correctly reject all sequences of letters that form non-words (e.g., shew) but

erroneously recognize legal words such as suiting, resulting in a syntactically implau-

sible reading of the sentence. Our model attempts to discern sequence boundaries

by exploiting the cohort dynamics when processing letters. As a sequence of letters

is read into the model, a cohort of possible words is initially formed which shrinks

in size until only a single word candidate is left; this is the word’s recognition point.

If a shrinking cohort begins to grow again when a new letter is added to the se-
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quence,decided this might indicate the start of a new word sequence and that the

model should reset the field (D in Figure 8.8).

Since the present design does not model higher level cognitive processes, we

abstract over all those that might be relevant to detecting a category boundary

and combine them into one signal per field called forcedReset. Specifically, the data

is preprocessed by the visual feature recognizer so that the letter segments have

been grouped into sequences by letter. This roughly corresponds to how the higher

areas of the visual cortex constrain lower area feature sequences during perception

[Friston, 2005]. The model uses this information to force the letter detector field

to reset at the start of every new sequence. Likewise, the model uses the word size

as a top-down cue to force a reset in the F2 word detector. During evaluation,

the percentage of times the model accurately detects a word boundary using only

the bottom-up signal is calculated; the forced reset ensures the model can continue

processing when there is insufficient bottom-up information.

Figure 8.9: Task Demand processing. The neural field received a correlate of human
language processing (e.g., an ERP component) and sends it to a Task Demand
component. The component analyzes the demand level and adjusts the human task
accordingly.
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8.2.5 Future Directions

The first version of COHORT assumed input to be an abstract phoneme string.

Thus, we arbitrarily chose to present visual input to the neural field as an unam-

biguous, noiseless sequence of letter segments which made it easier to visualize the

model’s operation in its graphical user interface. Real-world data is noisy yet per-

ception still arises from these cognitive “noisy channels”. Developing a design that

incorporates noisy channels is key to understanding situated cognitive processes.

Similarly, the input is invariant. In the speech perception domain, humans can

usually recognize what is being said regardless of the speaker’s accent, gender, etc.

The model design needs to incorporate the ability to map varying input to invari-

ant representations in order to simulate human performance in most perception

domains. The model uses bottom-up information contained in the input signal to

determine word boundaries, which is insufficient for 100% accuracy. Training an ad-

ditional perceptron on a large speech corpus such as TIMIT should allow the model

to statistically learn when a word boundary is likely to occur and this can be as a

top-down cue to be added to the reset signal and improve its accuracy.

Lastly, human cognitive language processing in the auditory and visual do-

mains is often studied using electro-physiological measures such as Event-related

Potentials (ERPs). As described in Section 8.1, we demonstrated a mapping of

a single neural field model’s dynamics to an ERP component. In Figure 8.9, we

demonstrate how to include a neural field to monitor levels of human cognitive per-

formance and adjust the cognitive workloads as required. To do this, the neural

field is connected to the LVASR component from which it receives acoustic features.

Assuming, the field dynamics vary proportionally to workload (as shown in Exper-

iment 2 Section 8.1.5), the field will send a differential signal to the Task Demand

component. This component will use this signal to analyze the demand level and

adjusts the human task accordingly.
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8.3 Summary

We developed a dynamic neural field model of phonological processing of monosyl-

labic spoken words and compared it with a separately designed experiment which

measured ERP responses of participants to spoken words. We believe this to be the

first model to match the time course of ERP events on real-world, real-time data.

We found a good fit between the model and the human ERP data. The model suc-

ceeded at replicating the word repetition effect showing a positive correlation with

the experiment’s P2 measurements. This suggests that a minimal neural field model

can perform some components of auditory processing (e.g., detect immediate word

repetition) and generate a correlated ERP effect. Future investigations might ex-

plore modeling deeper lexical and semantic processing and related mid-to-late ERP

effects by connecting additional neural field layers in a hierarchy which will allow

feedback from the deeper processes to affect computations at earlier layers.

We explored the cognitive process of word recognition by creating a neural

field model of the COHORT theory of Marslen-Wilson [1987]. This theory describes

how sensory input is mapped to a specific word from a person’s mental lexicon.

Whereas Marslen-Wilson predicted the identification of a word cohort from which

a unique word is selected and recognized he did not address how it might arise

functionally from the input signal nor did he specify an implementation of the

model. Moreover, we know of only one implementation of COHORT [Johnson and

Pugh, 1994]; it too conceives of encoding the input as patterns from which a cohort

emerges and resolves. However it does not discuss the underlying algorithm for this

process nor how it was trained, so it is difficult to assess its plausibility. In contrast,

the presented model provides a general way to encode sequences in patterns and

to find positions within those sequences which is applicable to any type of sensory

information unfolding over time.

We have demonstrated that neural field models can be applied to measure

at least one level of human performance and can also be connected in layers in a

computational model of one psychological theory of language processing. On the
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basis of these investigations, we have shown how it is possible to connect the neural

field to the ASR component of our companion robot framework to monitor the

human’s performance and provide feedback to other components.
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Chapter 9

Conclusion

Humans are great communicators. We use language, facial expressions, tone of

voice, and gesture to convey our intentions. From this we can infer another person’s

intentions and even feel what they are feeling. However, facial expression, vocal tone,

or speech itself may not always be a reliable or available mode of communication.

They may be true in noisy environments, during fast moving, urgent situations, or in

persons whose presentation of physiological condition, such as Parkinson’s disease,

can damage these communication modalities. If the person’s true emotional state

is misinterpreted by a caregiver, this often leads to depression. To address this,

we developed the situated emotion expression framework which a robot can use to

detect emotions in one modality, specifically in speech, and then express them in

another modality, through gestures or facial expressions. Introducing a companion

robot equipped with this framework into situation in which the person living with

PD interacts with a caregiver either at home or in a clinical setting is part of a

longer-term goal. In this dissertation, we described the investigations that lead to

the development of the emotion detection and expression components and evaluated

their performance situated in a robotic cognitive architecture. We demonstrated

improved accuracy in the semantic interpretation of user’s speech by extending the

framework to a multi-level process, in which context analysis can be requested as a

means to reinterpret the utterance. Finally we showed that it is possible to extend

the framework to a multi-lingual environment and to monitor and adapt to human
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level performance, based on the results of related investigations.

9.1 Contributions

In this dissertation we have made contributions regarding emotion detection, emo-

tion expression, and the framework as a whole. We will begin by describing the

framework contributions and then the related technical work.

9.1.1 Situated Emotion Expression Framework

The situated emotion expression framework consists of large vocabulary automated

speech recognizer, the emotion detector, and the emotion expressor. The contribu-

tion of this framework includes the following:

� We implemented a Large Vocabulary Automatic Speech Recognizer (LVASR)

so that the human can speak to the robot using natural language.

� We designed and implemented a Web-based tool (EMIT) which human evalu-

ators used to obtain the ground-truth emotion valence and arousal values for

the training corpus.

� We demonstrated that a generative topic model (Latent Dirichlet Allocation)

can be used to detect fine-grained (five classes) of emotion valence.

� We designed and validated seven different gesticulations for the robot that

express increasing levels of positivity.

� We demonstrated a dynamical system to compensate for varying utterance

frequency and prediction errors coming from the emotion recognition compo-

nent.

� We extended the framework so that utterance analysis is escalated through

multiple levels in order to improve semantic interpretation of the speaker’s

utterance across multiple domains.
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9.1.2 Bilingual Extensions

A companion robot that could understand and speak multiple languages would be

welcome in communities where the caregiver and robot guardian are bilingual. The

following investigations contributed extending the framework to add a multilingual

capability.

� We investigated and created a computational model of a top-down language

control based on the Inhibitory Control theory and validated the theory’s

predictions.

� We created a computational model for a psychological theory of bilingual

memory in which the model parameters are learned from a large multilin-

gual corpus. This forms the basis of studying whether bilingual effects such

as cross-language interference are important for the naturalistic functioning of

the companion robot, e.g., when code-switching.

� We demonstrated the extensions to the framework to incorporate bilingualism.

9.1.3 Modeling Human Language Performance

We conducted two investigations which demonstrate that it is possible to build a

biologically plausible model that can fit human performance.

� We designed a neural field model that replicated the effect of immediate au-

ditory repetition of monosyllabic words and fits it to a component of a well-

studied mechanism for analyzing language processing, the event-related po-

tential (ERP).

� We connected to neural fields and demonstrated the cognitive process of word

recognition by created a neural field model of Marslen-Wilson’s Cohort theory.

� We showed how a neural field component can be connected to the framework

in such a way that in could allow the robot to monitor and adjust task per-

formance.
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9.2 Implications of Contributions

The contributions of this dissertation are related to each component of the situated

emotion expression framework. We discuss the implications of each component as

follows.

The LVASR is the first component and processes all of the information con-

tained in the PD person’s speech signal. The LVASR component, at present, extracts

all acoustic features which it uses to predict words. However, there is much more

information that could potentially be extracted using readily available open-source

software tool-kits which can be used, for example, to detect the vocal characteris-

tics of anyone who is withing range of the agent’s microphone(s) and it might do

so for whatever is being said. Although, this raises similar privacy issues as with

conversational agents such as the Amazon Alexa or Google Home smart speakers,

embedding such a system in a companion robot raises additional issues. The human

may make assumptions about what the robot has heard and how it should react and

if it fails to meet the human’s expectations, they may become less engages or more

depressed. These concerns needs to be evaluated in a controlled HRI experiment.

Similarly, the emotion detection component uses the text of the utterances

from the LVASR to make inferences about the emotional state of anyone near the

microphones. While the LVASR is generally accurate, it nonetheless performs at

approximately a 13% WER, which is considered near state-of-the-art. This means

that one in every eight words will not be recognized properly, on average. These

errors propagate through the system and left unchecked can results in improper

emotion inference by the detector and incorrect semantic interpretation by the NLU

components. The emotion expressor and the multi-level processing of the frame-

work attempt to minimize and some cases re-interpret the utterance to minimize

such errors, but they inevitably will occur. While the HRI experiments described in

Chapter 5 does explore how well the robot responded matched with what was being

said, it was not intended to be a systematic exploration of the effect of errors on

either the observer or the PD person. However, the implication, is that more gener-
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ally a Spoken Dialog System framework, should attempt to mitigate errors arising

from the start of the pipeline at the ASR and propagating through interpretation

and the agent’s response.

Our preliminary work on bilingualism was motivated by the implication of

a relatively large community of bilinguals both within the U.S. and globally. A

social robot that does not incorporate a multilingual capability will, over time, be

limited to situations in which the person is only monolingual, or if the person is

bilingual, may perhaps not be quite as engaging. These implications are dependent

upon systematic human-robot interaction studies.

The motivation behind our investigation into neural fields was to explore

what could be learned from a biologically-inspired model of human language pro-

cessing. In our study, we found that the neural field can correlate with human phys-

iological measures of performance. The implication is that it is possible to study

intelligent agents that replicate, rather than exceed human performance. This is use-

ful in studying: the cognitive processes underlying word processing, how to optimize

language comprehension in demanding scenarios, and human error performance. In

a companion robot, for example, this implies creating an agent which understands

human performance and can adapt its behavior accordingly, perhaps anticipating

and mitigating human error. The field might also regulate how fallible behavior is

expressed in the agent’s responses to make is more human-like and engaging.

9.3 Future Work

We explained in the Introduction (Chapter 1), that this dissertation is part of a

larger project to develop a socially assistive robot for the self-management of health

of people living with PD. At a minimum, the items listed below would be necessary

before clinical trials with people with PD and their caregivers could begin.

� Detect continuous values of emotion and arousal.

� Add the capability to observe, detect, and mediate emotion among several
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persons.

� Investigate other emotion detection approaches, e.g., deep learning language

models.

� Evaluate whether the expressive companion robot changes an observer’s opin-

ion of the PD person’s emotional characteristics.

� Compare efficacy of each expressive channel, individually and together: e.g.,

facial (via virtual agent), gesticulation, vocal.

� Investigate combining prosodic features as well as language features in the

audio signal for emotion detection.

The objective of developing the framework is more than to simply design a

more engaging robot; it is to develop the underlying components that would enable

a person living with Parkinson’s disease to manage their self-care. More generally,

the framework’s capacity to detect emotion in conversational speech or text is usable

in a variety of situations in which it is important to infer another person’s mental

state. This might occur in noisy communications channels when facial expressions

or vocal tone may not be available, or in fast moving, urgent situations: e.g., in

command and control battlefield situations or for air-traffic control. This might

occur when new team members are added to a remote collaboration environment

and when it is not possible to detect social cues from video or audio channel. Finally,

extending the dynamical system component and emotion detector to monitor several

conversations could allow an mediator, for example, monitor and help regulate the

emotional content in the exchange among the parties.

9.4 A Final Word

I end this dissertation emphasizing Trust. It is an exciting time to be a researcher in

computer science, cognitive science, and human-robot interaction. Speech, vision,

and language processing have advanced over the last 10 to 15 years that have made
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possible non-situated agents such as smartphones, conversational agents, and near-

self-driving cars. Situated agents, robots, present a larger challenge that is both

technical and human. While we believe many of the technical challenges (e.g.,

human-like locomotion, one-shot learning) will eventually be overcome, the human-

robot challenge is more difficult. Humans tend to anthropomorphize many items

such as dolls, iRobot Roombas, and the degree to which they trust these agents

is an area under investigation. The consequence when the intelligent agent breaks

that trust is not fully known. Thus, as we build companion robots for a vulnerable

population, they should be designed with this bonding in mind. One consequence

is that the robot’s behavior should be predictable, as we expect of our human

companions. If the robot is to infer the human’s mental state, then it should be

resilient to prediction errors as much as possible. If the robot is the companion of a

person who speaks more than one language, then it too should have that capability.

If human performance varies, then the robot should be able to infer this variance

and adjust its behavior accordingly.

If the robot is unpredictable and its performance in not what the human

expected, it can lower trust and, consequently, engagement levels. It is my goal that

this work not only contributes to creating an emoting robot companion to help a

vulnerable population manage their self-care, but that it also sparks further research

into the inevitable bond humans are likely to form with their silicon companions

and that this is used to inform the robot’s design.
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