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ABSTRACT
Today’s users interact with an increasing amount of infor-
mation, demanding a similar increase in attention and cog-
nition. To help cope with information overload, recommen-
dation engines direct users’ attention to content that is most
relevant to them. We suggest that functional near-infrared
spectroscopy (fNIRS) brain measures can be used as an
additional channel to information filtering systems. Using
fNIRS, we acquire an implicit measure that correlates with
user preference, thus avoiding the cognitive interruption that
accompanies explicit preference ratings. We explore the use
of fNIRS in information filtering systems by building and
evaluating a brain-computer movie recommender. We find
that our system recommends movies that are rated higher
than in a control condition, improves recommendations with
increased interaction with the system, and provides recom-
mendations that are unique to each individual.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation:]: User
Interfaces

General Terms
Human Factors: Design; Measurement.

Keywords
fNIRS, information filtering, brain-computer interfaces, pas-
sive input, adaptive interfaces

1. INTRODUCTION
User attention is a scarce resource in modern computing.
Mental resources are often divided among disparate but con-
current streams of information. In the wake of such perva-
sive distractions, research has shown that focusing on the
wrong information or consuming information at the wrong
moment can not only lead to a decrease in performance dur-
ing work, but negatively impact work satisfaction, and in-
crease stress and anxiety [2, 16, 26].
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To address some of these problems, researchers have sug-
gested that physiological measures of workload or attention
should be used to deliver information at an opportune time.
For example, Bailey et al. used pupil dilation as a measure
of workload for interruption [3], and Solovey et al. built an
interactive system that adapts robot automation to a hu-
man operator’s working memory load [34]. However, while
physiological computing has been used to manipulate when
information is delivered to the user, very little work has fo-
cused on which information should be delivered.

In this paper, we explore the use of functional near-
infrared spectroscopy (fNIRS) brain sensing to clas-
sify preference judgments and drive information fil-
tering systems. fNIRS has recently gained traction in the
HCI community because it is generally resistant to move-
ment artifacts [20] and observes physiological parameters
that are inaccessible to other brain and body sensors [36,
38]. Given recent neuroscience literature, these parameters
may allow the detection of preference judgments that extend
beyond emotional response by incorporating the reasoning
processes of the brain [5, 25]. Thus, if there is any cor-
relation between fNIRS signals and preference judgments,
fNIRS could potentially augment current practices by be-
ing used as an additional source of passive information to
filtering systems.

However, there are significant challenges to the use of fNIRS
in information filtering systems. Previous fNIRS work has
analyzed preference judgments exclusively in offline environ-
ments [25]. Additionally, signals that correlate with prefer-
ence are often subtle and may not translate to real world
use cases. For these reasons, a primary goal of this paper is
to explore whether fNIRS preference measures can be used
in a real-time environment.

To investigate the use of fNIRS in information filtering sys-
tems, we present an automated recommendation sys-
tem that suggests new movies based on fNIRS mea-
sures alone. Using fNIRS to monitor the prefrontal cortex,
our system classifies brain data in real-time and iteratively
updates a model of user preference to recommend movies
that are personalized to the individual user. To evaluate
our system, we ran a user study and found that fNIRS can
contribute information to a recommendation environment
by outperforming a no-input control condition. In addi-
tion, we observed that the system’s model of user prefer-
ence improved the longer the user interacted with the de-



vice. Finally, we found that recommendations were uniquely
catered to the individual — 45% of the movies each partici-
pant viewed were not recommended to any other participant
— showing that we were responding to individual preference
and not overall popularity.

We suggest that this brain recommendation system acts as a
proof-of-concept for the use of fNIRS as input to information
filtering systems. We argue that eventually by integrating
when information should be delivered along with which in-
formation should be emphasized, brain-computer interfaces
have the potential to automatically provide users with the
right information at the right moment.

We make the following contributions: We show that fNIRS
brain sensing can be used as input to information
filtering systems. We construct and evaluate a real-time
movie recommendation system that is driven by brain sig-
nals that correlate with preference. We find that our sys-
tem recommends higher-rated movies with fNIRS input than
without it, and that the underlying model of user preference
improves over time. Second, we discuss the implications
of using fNIRS measures in information filtering sys-
tems. We suggest that brain sensing can someday augment
current recommendation systems, support the creation of
recommendation systems in new domains, and unify recom-
mendations across disparate information sources.

2. BACKGROUND AND RELATED WORK
In this work, we focus primarily on preference judgments as
a key input to information filtering. When integrated with
information filtering algorithms, preference enables users to
allocate attention through recommendations of personalized
information or products [33]. Thus, preference helps deter-
mine which information should be presented to the user. In
addition, preference has been integrated into applications
such as personal search [37], prioritizing incoming text and
voice messages [27], optimizing user interfaces [13], calculat-
ing interruption costs [21], and guiding conceptual design [4],
among others.

In current information filtering systems, eliciting preference
involves a tradeoff between accuracy and obtrusiveness. Ex-
plicit measures require users to record their own preferences
through a rating scale. While explicit ratings are generally
accurate representations of what the user prefers, they can
act as attention-sinks by disturbing normal behavior with
an interface and introducing an introspective cognitive step
[30]. Additionally, responses depend on the assumption that
users can sense and externalize their subjective emotions,
which may not be true [22].

Implicit measures predict user preference by observing the
user during natural interactions with a system, and are based
on viewing history, purchase history, view time, or other be-
havioral measures [8, 12, 29, 31]. These ratings are essen-
tially elicited for free as they require no additional effort on
the part of the user. However, implicit ratings are widely
considered to be less accurate than explicit ratings because
they are based on prediction models that might not reflect
the user’s preference and can be affected by a number of
other variables [30]. For that reason, new methods are of-
ten proposed to increase the accuracy of implicit ratings.

2.1 Physiological Measures of Preference
One approach to increase the effectiveness of implicit mea-
sures is to incorporate physiological sensors into preference
prediction models. For example, combinations of galvanic
skin response (GSR), electromyograms (EMG), blood pres-
sure, respiration pattern, and electroencephalography (EEG)
have been used to capture emotional responses to videos [6,
23]. Following this work, there have been several attempts
to use affective signals as input to recommendation engines.
For example, Healey et al. [18] constructed an“Affective DJ”
that dynamically constructed “energizing” or “relaxing” mu-
sical play lists. Similarly, Wu et al. [39] built a system that
recommends multimedia with similar emotional content. In
each of these cases, recommendations were grounded in emo-
tional responses to content, and analysis of each system was
largely preliminary.

2.2 Preference Judgments in the Brain
While preference judgments and emotional reactions are of-
ten linked, previous work indicates that there are two sepa-
rate processing chains that combine to influence preference
judgments: emotion and reason [5]. This is because prefer-
ence (and specifically, economic decisions) may be based on
various competing factors, such as price, usefulness, brand-
ing, and availability. For example, viewing a high-end sports
car may elicit positive emotions, but a small, fuel-efficient
hybrid car may elicit higher preference values.

The prefrontal cortex (PFC) - a region of the brain situated
just behind the forehead - has been identified as playing a
critical role in the integration of emotional experience with
reason in the decision-making process [10]. Thus, the PFC
offers information about preference judgments that physio-
logical sensors focusing on affective state may not detect. We
ground our measures of preference in several studies that in-
vestigate the neural correlates of preference using functional
magnetic resonance imaging (fMRI) and positron emission
tomography (PET). In a study by Deppe et al., fMRI showed
increased activation in the prefrontal cortex during economic
decisions involving a preferred brand name [10]. Paulus et
al. recorded similar results in preference judgments of drink
categories [32]. Finally, McClure et al. compared activation
in a blind Coke v. Pepsi test, finding that neural responses
in the PFC were consistent with behavior [28].

2.3 Using fNIRS to Detect Preference
fNIRS is an optical brain sensing technology that has seen
increased use in HCI research, largely because of its sim-
ple setup and resistance to movement artifacts [1, 15, 19,
34, 35]. Using near-infrared light, fNIRS measures local-
ized levels of oxygenated and deoxygenated hemoglobin in
the brain, successfully replicating results from fMRI stud-
ies [36, 38]. However, the physiological response of sending
oxygen to the brain takes 5-7 seconds after activation. This
means that fNIRS is better suited for observing long-term
user states, rather than instantaneous events. Given these
features, fNIRS is seen as a technology that offers informa-
tion that is complementary to other physiological measures.

In this paper, we apply fNIRS to the detection of preference
in the PFC, observing similar physiological parameters to
the fMRI studies noted above. Additionally, we base our re-
search on a recent study by Luu and Chau (extending Paulus
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Figure 1: From a pilot study, an example of the
fNIRS signal from the right hemisphere during peri-
ods of high preference and low preference. The plots
show the mean change in oxygenated hemoglobin
during 8 trials of high preference and 8 trials of low
preference.

et al. [32]), where fNIRS measures of the PFC were used to
classify extreme preferences for various beverage categories
(e.g. milk, soda, water) [25]. In a pilot study of our own, we
confirmed the results of Luu and Chau by observing different
activation patterns in participants as they viewed pictures of
digital music devices that they liked and disliked (Figure 1).

2.4 Physiological Input to Adaptive Systems
A key feature of our brain-recommender system is that it
monitors preference without any specific effort from the user.
The system reads passive information about users during
natural interaction, and then adapts to their current state.
While most work in BCI has focused on active brain-computer
communication, more recent research has suggested the use
of implicit neural parameters as input to adaptive systems
[9, 11, 15, 40].

George and Lecuyer survey current passive BCI literature
and categorize them into four application areas: 1) adapt-
ing the level of automation, 2) implicit multimedia content
tagging, 3) video games, and 4) error correction and detec-
tion [14]. Although our work is most closely related to im-
plicit multimedia content tagging, it extends that research
by adding an adaptive element (new recommendations).

3. THE BRAIN RECOMMENDER
In order to explore whether fNIRS can provide useful input
to information filtering systems, we constructed a movie rec-
ommender that is driven exclusively by fNIRS signals and
compared it to a system that does not include passive user
input (a no-recommendation environment). By controlling
for behavioral indicators of preference, we test the ability
of fNIRS to add information to recommendation systems
beyond traditional behavioral metrics of viewing time and
history. Thus, if a brain-driven recommender provides in-
telligent recommendations, we believe that implicit fNIRS
measurements can be used to augment current techniques.

• Hypothesis: Observing the brain with fNIRS will al-
low the brain recommender system to construct a pref-

erence model of the user, suggesting movies that cater
to each user’s interests.

In the following sections, we discuss the technical details of
our system, report our experimental methods, and analyze
the data from our experiment. Finally, we discuss the im-
plications of our results, outlining a vision for a information
filtering systems that are driven by the brain.

4. SYSTEM DETAILS
Constructing a fully-functional recommendation system based
on brain input requires the coordination of a number of tech-
nological pieces. To provide a technical overview, we refer
to Figure 3 and briefly discuss the flow of information in our
system.

First, light sensing data is sent from our fNIRS data ac-
quisition software to an analysis program built in our lab,
where the signal is filtered to remove noise and movement
artifacts. There, we partition the fNIRS data into segments
of identical length to training examples we provided dur-
ing an earlier training period. These segments are sent to
Weka, an open-source machine learning library, where we
classify the fNIRS signal based on previous examples [17].
This classification is sent to our Java application that holds
the movie and rating database and serves as the backbone
of our recommendation model. The application updates the
database and recommendation model with new user infor-
mation, and searches for the top recommended movie given
all other previous data about the user. Finally, the selected
recommendation is sent to a browser that navigates to the
movie’s corresponding IMDB page.

Figure 2: (Left) An fNIRS probe with four light
sources and one detector. (Right) A researcher se-
cures two fNIRS probes on a volunteer’s forehead.
This arrangement is used to measure the prefrontal
cortex (PFC)

4.1 Measuring and Filtering the fNIRS Signal
We used a multichannel frequency domain OxiplexTX from
ISS Inc. (Champaign, IL) for data acquisition. Two fNIRS
probes were places on the forehead in order to measure the
two hemispheres of the anterior prefrontal cortex (Figure
2). The source-detector distances were 1.5, 2, 2.5, and 3
cm. Each distance measures a difference depth in the cor-
tex. Each source emits two light wavelengths (690 nm and
830 nm) to detect and differentiate between oxygenated and
deoxygenated hemoglobin. The sampling rate was 6.25 Hz.

In order to remove noise that might be the result of user
movement, respiration, or heart beats, we apply filtering
techniques described by Solovey et al. in their adaptive sys-
tem that also used fNIRS input [34]. First, we used an



Figure 3: The basic architecture of our real-time classification system.

elliptic low pass filter with a cutoff frequency of 0.025 Hz,
stoppage frequency of 0.03 Hz, max ripple of 3 dB and a
stop band attenuation of 50 dB. Next, we used a z-score to
normalize the data in each information channel. Finally, for
each training example, we calculated the signal change of
each time point from the first time point in the example.

4.2 Building the fNIRS Classifier
Once each of the filtering steps was completed, we built
a new preference model for each participant based on the
training protocol we describe in the experiment section of
this paper. We constructed a classifier that differentiated
between low and high preference for each of the 16 informa-
tion channels on our fNIRS device (2 probes x 4 distances x
2 wavelengths), using the filtered light readings at each time
point of a trial as individual features to the classifer. Since
we sampled data at 6.25 Hz, a 25 second trial would consist
of approximately 156 features. Finally, we used a built-in
support vector machine (SVM) algorithm from Weka’s se-
quential minimal optimization (SMO) package.

While previous fNIRS work [25] suggested that we could dis-
criminate between periods of low and high preference, the
movie dataset we used to ground our recommendations was
based on a 1 to 5 star rating. This left us with a mapping
problem. Recall that we built a separate classifier for each
information channel of the fNIRS device. To map classifica-
tions of low v. high preference to a 5-point rating scale, we
took a percentage vote from the classifiers. For example, if
80-100% of our information channels classified the incoming
data as a period of high preference, we mapped this clas-
sification to a 5 star rating. If 60-80% of our information
channels classified the data as a period of high preference,
we mapped this classification to a 4 star rating.

This mapping is not ideal in a real-world scenario, as classi-
fication uncertainty is not equivalent to preference intensity.
However, we use this approach to accommodate for the nec-
essary time constraints of a normal experimental session. We
suggest a more robust approach in the discussion section.

4.3 Dataset and Recommendation Engine
To build the movie recommendation engine, we used the
HetRec 2011 MovieLens Data Set, an extension of Movie-
Lens10M dataset [7]. Our movie recommendation engine
was constructed using Apache Mahout, an open source ma-
chine learning library for Java that includes built-in col-

laborative filtering algorithms. Our user recommendation
system was based on a nearest neighbor algorithm using a
similarity metric of euclidean distance.

5. EXPERIMENT
In order to evaluate the brain-computer recommender, we
describe the experiment protocol in two sections: training
and testing. For each participant, the training section con-
sists of sending fNIRS examples to a machine learning model
on known values, or in this case, movies that we already
know the participant likes or dislikes. Instead of using pref-
erence ratings entered by people, the testing section uses ma-
chine learning classifiers to predict preference in real-time,
which is used to provide updated movie recommendations
to the user.

Figure 4: During training, participants viewed
screenshots of their most favorite and least favorite
movies for 25 seconds, followed by a 10 second rest
period.

5.1 Training
At the start of the experiment, we provided participants
with a list of movies picked from IMDB’s list of 250 best
movies and 100 worst movies and asked them to select their
top three and bottom three. Participants viewed a timed
slide show of selected movie webpages during which we recorded
their brain activity with fNIRS. We showed each movie web-
page for 25 seconds, followed by a rest period of 10 seconds
(Figure 4). Participants viewed 12 slides of their top 3 movie
titles and 12 slides of their bottom 3 movie titles. The brain
activity recorded during these slides were used as training
examples to our preference model. At the completion of
training, the model was not altered for the remainder of the
experiment.



Figure 5: (Top) For each condition, participants
viewed 20 movies. Each movie consisted of 25 sec-
onds of viewing an IMDB page, an 8 second rating
period, and an 18 second rest period. (Bottom) An
example of an IMDB webpage participants viewed

5.2 Testing
In the testing section, participants viewed two trials, each of
which consisted of a string of twenty movie websites, viewed
sequentially. For each movie, participants viewed an IMDB
page for 25 seconds, followed by an 8 second explicit rating
period, and an 18 second rest period that enabled us to
refresh the recommendation model (Figure 5).

Our motivation for exploring fNIRS is that it provides an
implicit, unique signal from the user that is not accessible by
other physiological sensors. Because of this, we believe that
the first step in assessing its value is to compare it against a
no-input environment. Thus, users interacted with two trials
— one involving the brain recommendation system and one
of a no input control condition.

In the control condition, a series of pre-defined movies
with average ratings are used for all participants. This serves
as a baseline for a no-input recommender. In the brain
recommender condition, implicit preference ratings, as
predicted by our fNIRS data classifier, are fed into a movie
recommendation engine. We show the same start movie as
the control condition, but new movies are selected based on
previous preference values. For example, the 3rd movie is
based on recorded preferences for the 1st and 2nd movies.

fNIRS sensors remained attached to the participants during
the course of the entire experiment, giving no indication of
the condition. Following each movie in both conditions, par-
ticipants were asked to provide an explicit preference rating
of the movie (1-5 stars). We used this rating to evaluate the

performance of our system. Unlike the implicit fNIRS read-
ings, the ratings did not influence future recommendations
in any way.

6. RESULTS
We ran this study with 6 male and 8 female volunteers
(N=14), aged 19-28 with a mean age of 22. The order of con-
ditions was counterbalanced across all participants. Given
our hypothesis, we identify three measures to explore the
efficacy of fNIRS in driving our recommendation system.

1. Recommendation ratings by condition: How did partic-
ipants rate movies in the brain recommender condition
in comparison to the control condition?

2. Recommendations over time: A good recommender
should improve over time as it constructs a more ac-
curate picture of the user’s likes and dislikes. Does
the brain-driven recommender give better recommen-
dations over time?

3. Classification accuracy : How well did our system guess
the user’s preference for a given movie?

6.1 Recommendation Ratings by Condition
The key finding is that the brain recommender pro-
vided higher-rated movies than the control condi-
tion as the experiment session progressed. This dif-
ference becomes statistically significant after the 13th movie
in each session. We display the distribution of all ratings in
each condition in Figure 6.

Figure 6: Histogram of ratings in the two conditions.
We see that brain recommendations tend to be rated
higher — mostly 3s, 4s, and 5s.

We would not expect a recommendation system to perform
well until it had seen enough examples to provide suitable
recommendations. In our system, we saw this switch occur
typically after the 13th movie. We therefore analyzed the
median rating in movies 14-20 for each participant across
both conditions (see Table 1 for a summary). Running
Mann-Whitney’s U test on movies 14-20 revealed a signifi-
cant effect of condition (the mean ranks of the control con-
dition and brain recommendation condition were 10.46 and
18.54, respectively; U = 41.5, Z = 2.88, p < 0.01, r = 0.54).



Condition Median Mean Std. dev.
Control 3 2.9 1.17
Brain 4 3.6 1.15

Table 1: Ratings across movies 14 to 20

We also analyzed the median rating for the entire 20 movie
session. As expected, we did not find a significant effect
in condition (the mean ranks of the control condition and
the brain condition were 11.75 and 17.25, respectively; U =
59.5, Z = 1.86, p = .07, r = 0.29).

To ensure the validity of these observations, we investigated
whether our brain-computer recommender was aligning it-
self to individual preferences or simply gravitating to a small
set of generally highly-rated movies. We found that 125 out
of 280 (45%) movie recommendations in the brain condition
were unique selections, meaning that each participant saw
an average of 9 movies no other participant viewed. These
results support our primary hypothesis that the brain-
driven recommendation system recommended movies
that catered to the participant’s individual prefer-
ences.

6.2 Recommendations Over Time
Independent of the control condition, we find that recom-
mendations from our system improved over time,
suggesting that the preference model was gradually
learning about the user. Across all participants, we an-
alyzed the median rating given to movies at each time point
(1-20) for each condition. For the brain recommender, we
ran a linear regression and found that the total number of
movies seen was a predictor of rating (b = 0.046, t(20) =
2.541, p = 0.021). This means that over the course of 20
movies, the median recommendation improved by roughly
one rating point (from 3 to 4 out of 5). The overall model fit
was R2 = 0.223. By comparison, applying a regression to the
control condition determined that the number of movies seen
did not predict movie rating (b = 0.004, t(20) = 0.154, p =
0.898).

6.3 Classification Accuracy
Recall that we used a percentage vote from our classifiers
to translate classifications of high and low preference into a
5-point rating scale. To describe the accuracy of our system,
we will use low preference to refer to ratings of 1 or 2 (out
of 5) and high preference to refer to ratings of 4 or 5.

In general, we found that our model skewed towards classi-
fying movies as low preference (141 out of 280), while users
tended to gravitate towards higher ratings. Figure 7 shows
that when our model classified a movie as low preference,
users were just as likely to have highly preferred the movie
as they were to dislike it. However, when the model classi-
fied a movie as high preference (57 out of 280), users were
five times more likely to give the movie a rating of 4 or 5
(out of 5) than 1 or 2. This result is likely what drove the
results from our system.

Taking a more fine-grained view of accuracy, the system pre-
cisely predicted the user’s explicit preference rating in 27%

Figure 7: The preference model skewed towards
classifying movies as low preference. However, when
it classified the user’s state as high preference, the
user’s explicit preference often agreed.

Figure 8: Frequency of predicted ratings for each
user rating category (1-5). Although there was a
wide variance of classifications for each rating cat-
egory, relative to each other, the distributions of
fNIRS classifications accurately mirror ratings by
participants after each movie title.

of movies shown to the participant, and predicted within a
single rating point for 72% of movies. Although the overall
classification accuracy of the system indicates that improve-
ments need to be made in signal processing or machine learn-
ing, we found that the mean prediction for each user rating
(14 participants x 20 preference predictions) was accurate
relative to each other rating category (see Figure 8).

6.4 Anecdotal Evidence
After completing the experiment, we asked participants which
of the two batches of movies they preferred. Despite there
being no detectable difference between conditions, 12 out of
14 participants immediately identified the group of movies
recommended by the brain condition. In addition, several
participants expressed regret for not recording movie titles
that were recommended to them during the brain condition.



7. FNIRS AS INPUT AND FUTURE WORK
In this paper, we presented a movie recommendation system
that was driven by fNIRS input and performed better than
a no-input recommender. We found that it provided unique
recommendations across participants and that the prefer-
ence model improved with increased interaction. These re-
sults suggest that fNIRS can be used as input to
information filtering system.

Nonetheless, as we found in our experiment, misclassifica-
tions of user state are unavoidable. This is particularly true
in early systems such as our own. Due to the necessary
constraints imposed by user studies, we updated our model
of user preference with each movie interaction, regardless
of our confidence in the input. This lead to a reliance on
classifications we knew were probably incorrect.

In a real system, we might ignore all classifications that fall
beneath some confidence threshold, ensuring that the infor-
mation we integrate into the user model is more likely to
be reliable. For example, the performance of our preference
classifier significantly increased when over 80% of our infor-
mation channels classified the user as having high preference.
If we build a system that exclusively relies on that informa-
tion as input, we would expect to see more personalized
recommendations and sharper increases in user satisfaction.

Moving forward, there are a number of active research areas
that will serve to improve these classification rates: upgrad-
ing and increasing fNIRS sensors for better coverage of the
prefrontal cortex, identifying information-rich channels on
the probe, establishing features of the signal that best rep-
resent preference values, and improving training periods to
discern optimal examples of user preference. With advances
in machine learning and brain sensing technology we expect
classifications of user state to increase in accuracy. In the
meantime, designers must minimize the impact of misclassi-
fications on the user.

8. IMPLICATIONS
Despite the current challenges of translating fNIRS input in
real-time applications, we believe that brain sensing has the
potential to positively influence the delivery of information
to the user. We examine three ways in which fNIRS input
may be employed in information filtering systems.

Because measurements of brain activity are largely an un-
tapped source of information, performing better than a no-
input control condition demonstrates that fNIRS can be
used as an augmentative input in current recommen-
dation systems. For example, one can envision Amazon or
Netflix combining brain ratings with other implicit signals,
such as purchase history and viewing history, to improve the
overall accuracy of their model. Additionally, the user may
be engaged in a high performance task where avoiding dis-
ruptions is critical. These implicit measures help preserve
user attention because they do not force an externalization
of subjective feelings onto a rating scale.

Moving away from movies and consumer products, we sug-
gest that the true potential of neural measures lies outside
current recommendation systems. In our study, participants
viewed each movie website for a preset amount of time, and

they were directed on a path of movies without an explicit
option to diverge from it. While these measures were put
in place to increase experimental control, they suggest that
brain input may improve preference measures in do-
mains where other implicit measures are difficult to
obtain. For example, we can imagine a car radio station
that naturally adapts its music to individual preferences
without any intervention from the user.

Finally, we suggest that brain sensing may improve the
comparison of information from disparate sources.
Our work generalized Luu and Chau’s measure of drink pref-
erence to movie preference. Thus, we do not expect dramatic
changes in the physiological response to preference across
disparate information sources. Using this general measure
to redirect people towards relevant information both within
and across websites could prevent disruption and save cog-
nitive resources for primary working tasks.

9. CONCLUSION
In this work, we have shown that fNIRS brain sensing can
be classified in real-time and applied to information filter-
ing systems. Although there is still significant work before
fNIRS can be translated to real-world environments, we sug-
gest that brain-computer interfaces have the potential to aid
users in everyday decisions and judgments as they continue
to wrestle with an increasing quantity of information. In the
past, researchers have identified periods of high workload in
a number of scenarios using fNIRS. While that research high-
lighted the potential of BCIs recognizing when users may
need information to be filtered, our work measuring prefer-
ence begins to offer a solution for which information should
be filtered or prioritized. Given these results, we believe that
BCIs may one day provide user performance and satisfaction
gains in an information saturated environment.
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