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Abstract 
 

Understanding interspecific interactions is central to community ecology, and 

incorporating interspecific interactions into conservation work allows scientists to improve 

management efforts. Indeed, there has been an increasing call for applied management to place 

greater focus on the effects of species interactions. There have been some efforts to pull together 

a suite of different types of population and community modeling into a concept of “community 

viability analysis” (CVA), particularly to help address the lack of community-based conservation. 

However, such efforts have been ad hoc or overly narrow.  This dissertation introduces a 

comprehensive CVA framework, enhancing our understanding of how one might investigate or 

evaluate community dynamics from a conservation perspective by addressing the intricate 

interplay of interspecific interactions and external pressures. I then implement CVAs in two 

different ways, analyzing the same study system of conservation concern, the terrestrial Mojave 

Desert community, with particular emphasis on 151 bird species. Each approach was designed to 

answer a different question. First, whether there was an unappreciated relationship between birds 

and secondary use of underground thermal refugia that might alter expected effects of climate 

change. Through a combination of thermal models, field surveys, and analysis of citizen science 

data, I found that even if underground thermal refugia use was not a historic behavior for birds, 

published and field results are consistent with birds currently adopting this behavior. As part of 

this research, I improved estimates of body density and measured feather reflectance, thus 

enhancing models of thermal vulnerability. My second CVA investigated the relative expected 

effects of ongoing bird declines in the Mojave compared mammal and reptile loss on the 

community via secondary cascading extinctions. I constructed a food web of the Mojave Desert 

terrestrial community (300 nodes, 4080 edges) to investigate this question, and found that the 
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impact of bird species loss was relatively low compared to mammal or reptile losses. Notably, I 

also found that relatively high interconnectivity among avian species formed subwebs, enhancing 

network resistance to bird losses. This thesis work bridges conservation and community ecology, 

presenting a holistic approach for addressing complex community dynamics and guiding 

effective conservation actions. 
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Chapter 1  
 

Introduction 

Understanding interspecific interactions (i.e., synecology, or community ecology) is 

crucial to conservation biology. Species do not exist in isolation; in fact, the loss of species or 

alteration of their interactions transforms ecosystems (Paine 1974, Terborgh et al. 2001, Estes et 

al. 2010), sometimes causing additional species extinctions through cascading effects (Säterberg 

et al. 2013), and can even harm human health (Markandya et al. 2008). Incorporating 

interspecific interactions into conservation work allows scientists to better predict the impacts of 

perturbations to communities (e.g., Jönsson and Thor 2012), track effects of invasive species 

(Galiana et al. 2014), bolster ecosystem services (Buechley and Şekercioğlu 2016), and 

rehabilitate degraded landscapes (Soulé et al. 2003). Without combining research on community 

interactions with targeted management on particular species, we run the risk of adopting 

management approaches that either do not work (such as with initial efforts to preserve the large 

blue butterfly (Maculinea arion) in the United Kingdom (Muggleton and Benham 1975, Johst et 

al. 2006) or result in some form of harm we did not predict (such as that exhibited in some 

predator culling programs (Letnic and Koch 2010, Bowen and Lidgard 2013). 

Fortunately, the field of community ecology has been developing for almost a century, 

providing years of research from which conservation efforts can draw. There are published works 

developing best practices for examining interspecific interactions (Paine 1974, Schmitz 2008), 

tracking flow of energy and matter (Lindeman 1942, Allesina and Bodini 2004), and 

measurements of (and arguments about) system stability (Pimm 1984, Brose et al. 2006). There 

is even a field of mathematics (network theory) useful for visualizing and quantifying various 

aspects of community dynamics (Cartozo et al. 2006, Alcantara and Rey 2012). Historically, 
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however, wildlife management, and more recently conservation, has focused primarily on single-

species research and management (Sabo 2008) – particularly in the U.S., where the Endangered 

Species Act provides a legal lever to focus on single species (Scott 2006, Eichenwald et al. 

2020). While this focus on individual species has been effective at preventing extinctions of 

some species (Walters et al. 2010, Luther et al. 2016), there are situations for which it is not 

suited. Species decline, for example, can be triggered indirectly by threats elsewhere in the 

community (Johst et al. 2006, Middleton et al. 2013). Indeed, an average of 49% of species that 

go extinct first in a real-world food web are impacted indirectly by the species forced into 

decline by a perturbation (Säterberg et al. 2013). Recent models suggest that focusing 

management funding on single species of interest can result in more community-wide extinctions 

than expected if management funding were randomly allocated among species in a trophic web 

(McDonald-Madden et al. 2016). This is because the single-species focus does not account for 

the possible impact of species loss throughout a system, which might explain the recent push to 

create species population viability models that are coupled to the dynamics of other species (e.g., 

Lacy et al. 2013, Prowse et al. 2013). 

Indeed, there has been an increasing call for applied management to shy away from a 

concentration on single species and place greater focus on the impact of interactions (Soulé et al. 

2003, Soulé et al. 2005, Memmott 2009, Säterberg et al. 2013). Soulé et al. (2003) specifically 

highlights how the decline of marine kelp forests might be mitigated through the management of 

community interactions. However, Tallis et al. (2010) asserts that the perceived complexity of 

communities has precluded most scientists from using it for conservation purposes. Therefore, 

determining how to best use the tools and conceptual framework of community ecology to 

achieve applied conservation goals is an important current obstacle for researchers and 
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environmental managers to overcome. Some community-focused conservation approaches have 

been successful, such as Middleton et al. (2013) using interaction-based viability models to 

reveal that invasive fish caused increased grizzly bear Ursos arctos horribilis predation of elk 

Cervus canadensis, resulting in elk population declines. Their approach, like an increasing 

number of other research projects, builds the traditional single-species viability modeling method 

Population Viability Analysis (PVA) out to include multispecies interactions. There have been 

some efforts to pull together a suite of different types of population and community modeling 

into a concept of “community viability analysis,” particularly to help address the lack of 

community-based conservation. However, such efforts have not been systematic or integrated 

across the possibilities of what might constitute community viability analysis (Witting et al. 

1994, Ebenman et al. 2004, Ebenman and Jonsson 2005, Prowse et al. 2013). Organizing the 

various efforts and integrating them under single framework will make the approach more 

coherent and provide an important conceptual framework and metrics for resource managers. 

Community Ecology 

 Communities have been of formal interest to ecologists for at least 100 years and have 

been treated as everything from an entity akin to a cybernetic system (whereby the community is 

more than the sum of its parts because of synergies) to being no more than an assemblage of 

species with no emergent properties (i.e., no more than a sum of its parts) (Hagen 1992). In 

theory, a community is comprised of the complete set of organisms belonging to all species 

living in a particular place and time (Vellend 2016). In practice, however, depicting and studying 

communities like this are rarely (if ever) done due to information deficiencies and impracticality. 

(Vellend 2016). Consequently, researchers create models of communities that focus on subsets of 

the real community, delineating the boundaries via taxonomic or functional groups, trophic 
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positions, or species interactions, and often focusing on keystone species (Vellend 2016). These 

simplifications allow flexibility for communities to include as many or as few species, trophic 

levels, interactions, etc. as needed (Vellend 2016), ranging from large food webs (Dunne 2006) 

to more focused predator/prey interactions (Barbosa and Castellanos 2005). 

Varied approaches to working with community models can lead to insights, or 

inadvertently to problems. For example, one long-term argument in community ecology is 

whether species diversity increases or decreases community stability. The inexact nature of what 

is meant by “community stability” has been partly responsible for decades of debate (Ives 2005). 

In the 1950s and 1960s, influence from Odum (1953) resulted in Macarthur (1955) taking the 

stance that community stability could be defined by the capacity of energy to flow through a 

community; i.e., measuring the “choices” energy has in following paths up food webs. With 

more species comes greater numbers of energy pathways; therefore, increasing species diversity 

of a community will result in greater stability by this definition (Ives 2005). This was consistent 

with some applications outside of ecology as well, such as communication and traffic networks 

(Shannon and Weaver 1949), from which ecology took many of its concepts and tools. In the 

1970s and 1980s, however, the definition of community stability shifted focus to the properties 

of species persistence within the community. Because diverse communities tend to have greater 

species turnover (species loss and gain) over time, they were thought to be less stable from that 

perspective (Ives 2005). In the 1990s, a third perspective suggested that while communities with 

more species diversity may have a larger probability of individual turnover, the persistence of the 

community web may be greater due to compensatory fluctuations in the density of other species 

(Ives 2005). That is, although diversity might increase the fluctuations of individual species, the 

aggregate density of all species in the community may fluctuate less. Consequently, resolution to 
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the question about the relationship between species diversity and community stability is that it 

depends on the definition of “stability.” 

Despite its potential for conflict, however, I think that a diversity of approaches to 

community research is a net benefit because of the greater variety of tools and research questions 

asked. On the one hand, ecologists may investigate the stability of community structure and 

energy flowing terms of resistance (the capacity of a species/community/system to remain 

unchanged despite external forces or perturbations, such as climate change or invasive species), 

and resilience (the capability of the species/community/system to return to a prior baseline 

following a perturbation). In contrast, ecologists may investigate finer scale mechanisms, 

abstracting community complexity into simpler modules (Schmitz 2010). Many approaches to 

investigating communities can focus on questions of community viability, so any community 

viability analysis framework should include a broad spectrum of community research approaches 

and goals.  

 Viability Analysis 

One of the most important tools in species conservation planning is population viability 

analysis (PVA), where estimates of vital rates, environmental stochasticity, dispersal, land use, 

and management are used to project the likelihood of population persistence (Traill et al. 2007, 

Mortensen and Reed 2016, McGowan et al. 2017). Like all models, PVAs have limitations (e.g. 

Coulson et al. 2001), but they have been a valuable tool to resource managers. PVAs are 

particularly helpful for comparing relative efficacy of management alternatives and to show the 

range of possible population size trajectories over time (Beissinger and Westphal 1998, Reed et 

al. 2002). The focus of PVA has been almost exclusively single-species assessments. However, 

increasing recognition of the importance of interspecific interactions to population dynamics and 
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conservation (e.g., Soulé et al. 2003, Estes et al. 2011, Säterberg et al. 2013) has led to growing 

numbers of joint species population projection models, where two single-species models are 

linked via the effects on one on the other (Lacy et al. 2013, Prowse et al. 2015, Lany et al. 2018). 

Logically, there might be no reason to extend this approach across a community with an 

ever-increasing suite of interacting species’ dynamics to ultimately generate a type of community 

viability analysis (CVA), so long as one is mindful of complications caused by ever-increasing 

model complexity (Ginzburg and Jensen 2004). There is already a long history of community-

based assessments related to food web structure and energy flow through ecosystems (reviewed 

by Dunne 2006) that provide perspectives and possible metrics that could contribute to 

developing a broad concept of community viability. Indeed, conservation biologists have already 

shown interest in community metrics such as the effects of keystone species (Mills et al. 1993), 

the problem of cascading (secondary) extinctions (Sahasrabudhe and Motter 2011), as well as an 

interest in interaction-based management (Slocombe 1993). However, discussion of CVAs per se 

in the literature is limited, and the term “community viability analysis” has appeared in several 

apparently unrelated forms in recent decades. 

Community ecology bridges ecosystem and population ecologies in a continuum, 

occupying the middle ground and overlapping the two extremes (Figure 1) (Berlow et al. 2004, 

Schmitz 2010). Community ecologists use different methods, metrics, and organizational 

concepts depending on where they fall on this spectrum. Some community ecologists, for 

example, examine larger system-based questions such as the existence of alternate stable states 

and hysteresis (Beisner et al. 2003, Petraitis 2013). Investigations of community stable states can 

be divided into two different approaches: community-based, where state variables such as 

species and interactions within the system are the subject of investigation, and ecosystem-based, 
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where environmental drivers that change the system itself are the subject of investigation 

(Beisner et al. 2003). There are also community ecologists that approach their work from a 

reductionist perspective, where they examine interspecific interactions at a finer scale (Sabo 

2008, Schmitz 2010). This approach can be used to examine specific interactions and dynamics 

in a community, such as herbivore resource limitation and indirect top-down control of food 

webs by carnivores (Schmitz 2010). Finally, there are community ecologists that focus on the 

dynamics of a single species. However, such researchers are particularly interested in how inter-

specific interactions influence single-species dynamics and explicitly model these effects 

(Berlow et al. 2004). Consequently, I see benefits to using CVA as an umbrella concept that 

encompasses all these possibilities, treating CVA as a suite of analytical approaches and metrics, 

each of which evaluates a potential component of community dynamics or processes. I envision 

that CVA should parallel the field of community ecology and include metrics across the spectrum 

depicted in Figure 1. 

Metrics that could be construed as types of CVA existed prior to the 21st century, such as 

Conner’s (1988) proposal to focus on ecologically functional populations and Slocombe’s (1993) 

push to adopt ecosystem-based management. The earliest published reference to the term 

‘community viability’ I have found is by Witting et al. (1994). They defined CVA as having two 

possible approaches: an examination of how a suite of species interactions impact the extinction 

risk of a single focal species, and an investigation of how the extinction of one species impacts 

the extinction probability of another. This was not, however, the focus of their paper, and they 

were not specific about how such a CVA might be produced. Their suggestions differ from the 

first formal approach to CVA, which was proposed by Ebenman and colleagues (Ebenman et al. 

2004, Ebenman and Jonsson 2005). In their vision, CVA was defined specifically as a way of 
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predicting the likelihood of secondary extinctions following a species’ loss from the community. 

They introduced a CVA metric called quasi-collapse risk, where they calculated the probability 

that the number of species in the community would fall below a particular value within a fixed 

time following loss of a given species.   

Since 2005, several other interaction-based viability-like analyses have appeared in the 

literature that do not necessarily fit in either Ebenman and Jonsson’s (2005) or Witting et al.’s 

(1994) CVA definition, although they could reasonably be considered a type of CVA (e.g., Lacy 

et al. 2013, Yun et al. 2017, Brodie et al. 2018). The time is right to draw together the 

possibilities of CVA and integrate them under a single framework. This is the central theme of 

my dissertation, creating a framework for CVA, and applying some of the concepts to a particular 

study system. 

Study System  

As this dissertation is focused on applications of community ecology to conservation, I 

needed a study system in which to operate. I examined potential ecosystems using the following 

criteria: 

1. There needed to be a history of data collection on communities in the region. Access to 

such knowledge reduces the amount of time required for my own research by allowing 

me to develop informed hypotheses and rapidly validate models. 

2. The hypotheses I generated by after examining the preexisting data needed to include an 

interaction-based component. 

Based on these criteria, I settled on the Mojave Desert in the American southwest. 

Although it was a wetter and more hospitable environment before the end of the last glacial 

maximum, approximately 20,000 years ago, it has since transitioned to the arid, desert region of 
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today (Guerrero et al. 2012). It constitutes about one-tenth of the total desert area in North 

America and is roughly equivalent in size to the state of New York (Rundel and Gibson 1996b). 

The presence of nearby mountain ranges affects the desert's climate by limiting the passage of 

moist air from the Pacific Ocean, resulting in a precipitation regime dominated by winter rainfall 

(Charlton and Rundel 2017). Total mean precipitation levels in the Mojave Desert is correlated 

with elevation, although there is high annual variability (Rundel and Gibson 1996b). 

Temperatures are generally warm, and the desert holds the record for the highest 

measured air temperature on the planet (El Fadli et al. 2013). However, the Mojave may 

experience cool Arctic air masses during the winter rainy season and hence receives some snow 

(Rundel and Gibson 1996b). The desert has experienced a rise in mean annual air temperature by 

approximately 2°C since the early 20th century (Bai et al. 2011); in fact, harsh conditions in the 

area make the desert an analogue for astrobiological research of Mars (Belov et al. 2019). 

Vegetation in the Mojave Desert is diverse and exhibits variations in response to climate 

and landform development. It is often subject to stress due to water deficits (Lane 1984), 

therefore, vegetation in the Mojave Desert is characterized by its adaptability to the harsh desert 

environment (Figure 3). Vegetation is generally dominated by creosote (Larrea spp.), which 

covers nearly two-thirds of the total desert area (Rundel and Gibson 1996b). In some cases, the 

iconic and Mojave-restricted Joshua tree (Yucca brevifolia) creates woodlands with a variety of 

codominant shrubs with increased cover (Rundel and Gibson 1996b). Pinyon pines (Pinus 

monophylla) and junipers (Juniperus spp.) replace Joshua trees as the dominant species at higher 

elevations (Johnson 1976). Mojave animal diversity is relatively low with little endemism, and 

the desert shares many of its species with the neighboring Sonoran Desert (Rundel and Gibson 

1996b) (Figure 3). 
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There is a long history of research on animal communities in the ecosystem (Rundel and 

Gibson 1996a), fulfilling requirement (1), above. Joseph Grinnell, one of the first ecologists and 

pioneer of the ecological niche concept (Grinnell 1917), spent years collecting survey data on 

Mojave mammals and birds with his students. These surveys were repeated in the 21st century by 

another lab, providing long-term information on the Mojave Desert bird and mammal 

community (Iknayan and Beissinger 2018, Riddell et al. 2019, Riddell et al. 2021). These 

surveys revealed that Mojave birds have catastrophically declined, which was primarily 

attributed to the impact of climate change (Iknayan and Beissinger 2018, Riddell et al. 2019, 

Riddell et al. 2021). In contrast, the Mojave mammal community has shown relatively stable 

population levels, which Riddell et al. (2021) suggested was likely due to their ability to dig 

underground burrows to escape from outside temperatures. As birds generally cannot burrow 

underground, it follows that they should be more exposed to climate change (Riddell et al. 2021). 

This conclusion actively provided me with a hypothesis to evaluate, fulfilling 

requirement (2). While birds lack the capacity to construct their own burrows, they have been 

observed utilizing burrows created by other animals for temporary refuge from predators and 

extreme heat (Austin and Smith 1974, Bowers and Dunning 1985, Pike and Mitchell 2013, Agha 

et al. 2017, Puffer et al. 2022). Such behaviors are inconsistent with the idea that bird declines 

occurred because they cannot use underground refugia. Community ecology literature suggests 

that interaction-based effects on population dynamics can sometimes be hidden by or supplement 

the impacts of other variables (e.g., Peckarsky et al. 2008), and I hypothesized that the predicted 

impact of climate change on bird populations was complicated by the presence of species 

interactions based on the availability of underground burrows. 
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Goals 

 The goals of this dissertation are to outline and demonstrate one potential approach on 

bridging the divide between conservation and community ecology, focusing on the idea of 

community viability. Each chapter builds upon the previous one, establishing a solid foundation 

for my proposed approach and demonstrating its practical application. In Chapter 2, I review 

previous research on the effects of interspecific interactions on species and ecosystems and 

establish a foundation for a community ecology-based approach to conservation. As stated in 

previous sections, I call this framework “community viability analysis.” In Chapter 3, I begin 

laying the groundwork for an analysis of the Mojave Desert ecosystem by turning a critical eye 

to the data needed for such an analysis. Here, I evaluate the validity of approximate estimations 

of species biophysical characteristics – specifically, estimating density from morphological 

measurements of birds. Such parameters are crucial to the accuracy of any modeling effort; 

therefore, I need to ensure that any estimation I use is valid. In Chapter 4, I collect biophysical 

parameters for a complex mechanistic thermal model of each of the birds living in the Mojave 

Desert and run a preliminary model to calculate avian relative thermal vulnerabilities to 

approximate a likely “order of extinction” from the effects of climate change. This allows us to 

estimate which bird species are at greater risk in the desert and finishes the groundwork for the 

CVA itself. 

In Chapter 5, I generate hypotheses for potential drivers of population collapse in a 

specific area of conservation concern by reviewing the ecological context surrounding the 

declines. In this case, I perform what I term a “persistence-based CVA” to determine whether a 

proposed behavioral adaptation – that birds in the Mojave Desert may attempt to take refuge in 

pre-dug burrows to prevent death from heat exposure – provide more accurate estimates of pre-
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measured boundaries of species richness over the course of the 20th and early 21st centuries. I use 

the mechanistic thermal models tested from Chapters 3 and 4 to see whether burrow use or non-

burrow use is a more likely mechanism of avian survival. However, prevailing wisdom suggests 

that birds do not typically utilize underground burrows as thermal refugia (Austin and Smith 

1974), although this may be because it is difficult to document avian burrow use (Dean and 

Vickery 2003) as there is anecdotal evidence of them doing so (Pittman Jr. 1960, Austin and 

Smith 1974, Bowers and Dunning 1985, Coate 1994, Dean and Vickery 2003, Pike and Mitchell 

2013, Puffer et al. 2022). I therefore also combine my own field surveys with citizen science data 

to test whether burrow-use is in fact a possible mechanism, establishing a set of correlation-

based evidence that can support the creation of manipulative experiments (according to the 

principles of adaptive management, which we incorporate into our CVA from Chapter 1). 

Finally, in Chapter 6 I perform one additional CVA, which is resistance-based (see 

Chapter 1). This is a different method than in Chapter 5, as here I test the overall Mojave Desert 

animal community’s capacity to remain largely constant in the face of animal extinctions. I 

assess whether the collapse of birds is relatively more important to the structure of the overall 

community than if other vertebrates went extinct instead. While in Chapter 5 I focus on CVAs 

using a combination of mechanistic models and field surveys, in Chapter 6 I rely on network 

analysis to test for cascading secondary extinctions after losses of birds, reptiles, or mammals. 
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Figure 1-1 A visual representation of our interpretation of an ecology gradient, where 

community ecology is in the continuum between ecosystem and population ecology (between 

dashed lines). Like community ecology, we see community viability analysis as having some 

overlap with population viability analysis (species-focused CVA) at one end of the spectrum 

and ecosystem viability analysis (system-focused CVA) at the other. Our CVA framework 

does not include single-species viability analysis without explicit species effects (traditional 

PVA), nor does it include ecosystem analyses that discount species interactions. 
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Figure 1-2 Approximate area of the Mojave Desert ecoregion. Image by Simon Pierre Barrette, 

distributed under a CC BY-SA 3.0 license. 
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Figure 1-3 Photos from fieldwork in the Mojave Desert, taken from camera traps and one of my 

field assistants (Arianna Efstatos). 
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Chapter 2  
 

An expanded framework for community viability analysis (Adam J. Eichenwald, J. 
Michael Reed). Published in BioScience (2021) 71:626-636. 

 

Abstract 

 Community viability analysis (CVA) has been put forth as an analogue for population 

viability analysis (PVA), an accepted conservation tool for evaluating species-specific threat and 

management scenarios. The original proposal recommended that CVAs examine resistance-based 

questions. PVAs, however, are broadly applicable to multiple types of viability questions, 

suggesting that the original CVA definition may be too narrow. In the present article, we advance 

an expanded framework in which CVA includes any analysis assessing the status, threats, or 

management options of an ecological community. We discuss viability questions that can be 

investigated with CVA. We group those inquiries into categories of resistance, resilience, and 

persistence, and provide case studies for each. Finally, we broadly present the steps in a CVA. 

 Introduction 

One of the most important tools in species conservation planning is population viability 

analysis (PVA), in which estimates of population size, vital rates, environmental stochasticity, 

dispersal, land use, and management can be used to project the likelihood of population 

persistence (e.g., Mortensen and Reed 2016). PVAs are particularly useful for comparing relative 

efficacy of management alternatives and for showing the range of possible population 

trajectories (Reed et al. 2002). Until recently, the focus of PVA has been almost exclusively 

single-species analyses. However, increasing recognition of the importance of interspecific 

interactions to population dynamics and conservation (e.g., Soulé et al. 2003, Estes et al. 2011, 

Säterberg et al. 2013) has led to growing numbers of linked species population projection models 

(Lacy et al. 2013, Prowse et al. 2015). 
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One could imagine extending this PVA approach across a community of species to 

ultimately generate a type of community viability analysis (CVA), ignoring complications caused 

by ever-increasing model complexity (Ginzburg and Jensen 2004). However, this may not be the 

most practical tactic, and other approaches have already been taken to create community-based 

assessments of performance. These can relate to food web structure and energy flow through 

ecosystems (Dunne 2006), community states (Dethlefsen and Relman 2011), or other forms of 

complex analyses (Geary et al. 2020) that contribute to developing a broad concept of 

community viability. Indeed, conservation biologists have already demonstrated interest in 

community metrics such as the effects of keystone species (Mills et al. 1993) and cascading 

(secondary) extinctions (Sahasrabudhe and Motter 2011), as well as in interaction-based 

management (Slocombe 1993).  

Discussions of CVA per se in the literature, however, are limited, and the phrase 

community viability analysis has appeared in several different, apparently unrelated, forms in 

recent decades. Witting and colleagues (1994) speculated that a CVA could investigate how the 

loss of one species impacts the extinction probability of a different, target species. This was not 

the focus of their paper, and they were not specific about how such a CVA might be done. The 

first formal definition of a CVA that we know of provided just such an approach: Ebenman and 

colleagues (Ebenman et al. 2004, Ebenman and Jonsson 2005) introduced a CVA metric called 

quasi collapse risk, in which they calculated the probability that certain numbers of species 

would remain in the community following the loss of another focal species. Although we agree 

that Ebenman and Jonsson’s (2005) suggested approach is a CVA, we propose expanding their 

interpretation to achieve their stated goal: to create a community analogue to PVA. This concept 

expansion is important, because PVAs and CVAs have been suggested as possible steps to a new 
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active management approach encouraging more focus on conservation of ecosystems rather than 

just populations (Tallis et al. 2010). Ecosystem-based management has been recommended by 

the United Nations Environment Programme and the US National Oceanic and Atmospheric 

Administration (NOAA), further supporting the need to broaden the CVA framework.  

In the present article, we expand the original definition of CVA to develop a framework 

defining its potential role as a community analogue to PVA. We specifically define a CVA, in 

parallel to a PVA (Lacy 2019), as any analysis assessing the status, threats, and management 

options of an ecological community. We then examine how to conduct a CVA and provide 

examples of the types of questions one might ask. Our goals are to create a framework that 

encompasses the breadth of potential CVAs, to reduce confusion over what might be meant by 

the concept, and to increase its utility for species, community, and ecosystem conservation. 

Advantages to expansion 

There are multiple advantages to researchers and resource managers in expanding and 

formalizing the concept of CVA. To make our argument, first consider the PVA label. The initial 

models to assess population viability were produced in the late 1970s (Shaffer 1979). However, 

there were many other models published earlier that projected population trajectories and 

responses to management. Introducing the PVA concept provided a focus to the emerging field of 

conservation biology and the development and refinement of analytical methods, allowing PVA 

to become a standard tool in conservation (Beissinger 2002). Similar advantages exist in 

developing a framework for CVA. We are currently in a comparable situation with communities 

as we were with populations in the 1980s, in that environmental managers are increasingly 

relying on multispecies models to predict effects of management actions on communities. 

Fisheries scientists in particular have been focused on accounting for ecosystem considerations 
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(Plagányi et al. 2014), likely because of the proven economic benefits of such an approach (Yun 

et al. 2017). As with the introduction of the PVA, CVA can benefit these managers by 

encouraging analytical approaches and tool development for conservation values, as well as 

acting as a reference point for deciding which community dynamics are most important for 

management goals. However, CVA is currently too narrow to be a true analogue to PVA, which 

reduces its utility for conservation and management. 

What is a CVA?  

CVA currently examines the risk and extent of secondary extinctions in a community 

following species loss (Ebenman and Jonsson 2005), which is one measure of resistance (or 

robustness in network analysis; Kitano 2004). Resistance in this context is the capacity of a 

community to remain unchanged despite external perturbations (Grimm and Wissel 1997). PVAs, 

in contrast, encompass a greater array of potential questions and describe the process of 

modeling rather than a specific product (Gilpin and Soulé 1986). PVA metrics include, but are 

not limited to, the minimum population size needed for an x% probability of persisting y years 

(Shaffer 1981), whether or not a significant population decline will occur (Reed and Murphy 

1998), and resilience of a population to perturbations (Field et al. 2019). We propose that CVA be 

expanded to encompass the same variety of questions as PVAs (as was described in our 

introduction) and to have the same capacity for flexibility with new approaches and target goals. 

What is Viability? 

The result of a PVA is not a conclusion relying on a single metric to dictate whether a 

population is viable. Such a treatment might be incomplete, because the assessment of viability is 

a question of what is acceptable by society for our goals and is not a biological truth (Lacy 

2019). Rather, the outcome of a PVA is a suite of informa- tion that can include the probability 
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that a population will persist to a target time, how changing that target time alters the results, the 

median and distribution of projected population size at that time, population trajectories at the 

target time, the sensitivity of the results to alterations of model parameter values and their 

distributions, singly and in combination, and an evaluation of how much vital rate values have to 

change to qualitatively alter the outcome of the model. Current interpretations of the term 

viability adopted by the US Fish and Wildlife Service for assessments of endangered species 

includes evaluations of resiliency, representation, and redundancy (Shaffer and Stein 2000). 

However, because viability is derived from human social values, one assessment could diverge 

with another even if both examined the same output. For a CVA, this might mean that a suite of 

analyses would provide a fuller picture of the viability of a community than would any single 

metric.  

The meaning of viability in a CVA can be informed by historical debates about the term 

community stability. Such arguments were driven largely by differences in definitions (Ives 

2005). Grimm and Wissel (1997) concluded that most interpretations of the term stability could 

be distilled into three categories: constancy, or the capacity of a system to stay unchanged; 

resilience, or the capacity of a system to return to a prior state following a perturbation; and 

persistence, or the capacity of a system to continue existing over ecological time. They further 

clarify that resistance is a more time-focused form of constancy, defined as the capacity of a 

system to stay unchanged despite the presence of a disturbance. Grimm and Wissel (1997) also 

noted that although persistence and resistance appear similar, they refer to different aspects of 

stability: staying essentially unchanged refers to a certain reference state or dynamics, including 

equilibrium, oscillations, or irregular but limited fluctuations. This means resistance examines 

the capacity of a focal system to maintain itself in the face of disturbances. Persistence through 
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time, on the other hand, does not refer to any particular dynamic but only to the question whether 

a system persists as an identifiable entity in the absence of disturbances.  

We suggest that the concept of community stability is a core aspect of viability, because 

viability analyses are generally concerned with evaluating resistance, resilience, and persistence 

(Lacy 2019). Therefore, we propose to follow Grimm and Wissel’s (1997) observations and 

classify three general categories of viability for CVA: resistance analysis, which quantifies the 

ability of a community to not change significantly from the typical range of its reference state 

when faced with external pressure or disturbance; resilience analysis, which evaluates the 

capacity of a community to return to a prior reference state following perturbation; and 

persistence analysis, which assesses the capacity of a community to continue existing within 

prespecified conditions that demarcate it as a given entity (e.g., a kelp forest, specific food chain, 

alpine tundra, cloud forest). Analyses conducted within any of these categories must include 

specific reference to species composition, relationships among species, or ecological processes in 

their calculations. Furthermore, the assessment of whether a change is significant needs to be 

flexible to the question at hand and the knowledge of the evaluator or stakeholders. 

Resistance-based Viability 

Resistance is the ability of a community to remain largely constant (baseline 

composition, structure, processes) in the face of external forces. By modeling the effects of 

perturbations (such as species loss or habitat destruction) on the rest of the community, 

conservation biologists and resource managers might quantify the extent of an expected impact, 

identify unanticipated consequences, or evaluate alternative intervention strategies. Management 

intervention might include removing or suppressing other species in the community so that the 

loss of their interactions limits an extinction cascade (Sahasrabudhe and Motter 2011). One 
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possible example of a resistance-based approach is to predict the effect of an introduced species 

on a given ecosystem, as was done by Jönsson and Thor (2012). They used quasi collapse risk 

assessment to predict the impact of the fungal pathogen Hymenoscyphus pseudoalbidus on the 

European lichen community via the fungus’s negative effect on common ash (Fraxinus excelsior; 

figure 1). They estimated that on average a 12% proportion of lichen species were expected to go 

extinct under optimistic infection scenarios, but this proportion increased to 34% under the most 

likely infection scenario. Furthermore, the probability that there would be no secondary lichen 

extinctions following infection and die-off was virtually zero. As might be predicted, lichen 

species with low tree-host specificity had lower average coextinction probabilities and were 

more resistant to die-offs. Doizy and colleagues (2018) addressed a similar resistance-based 

question in which they simulated the introduction of an invasive insectivore, herbivore, 

carnivore, and omnivore to a community on a small island ecosystem off of the coast of Britain. 

They predicted that introduced generalist species, particularly omnivores, threatened native 

birds, which would then result in an indirect negative impact on the island’s plant community. 

Resistance analyses can be particularly useful in examining the comparative risks of 

various disturbances on a focal community. For example, Greenville and colleagues (2017) 

tested whether the impact of climate change on vegetation or the introduction of novel predators 

would be the greater threat to desert mammals in Australia. They found that although climate 

change is likely to negatively impact desert mammals via its effect on vegetation, top-down 

suppression of the community through the introduction of new predators would be the larger 

threat. 

Resilience-based Viability 
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Resilience metrics are used to evaluate the capacity of a community to recover to its 

baseline state following alteration, such as how the Gulf of Mexico community might recover 

following the Deepwater Horizon oil spill (Morzaria-Luna et al. 2018). Resilience might by 

estimated by how many interactions in a system recover following an extirpated species’ 

reintroduction (referred to as the credit of ecological interactions; Genes et al. 2017), or the 

expected length of time following species reintroductions until all the links between species are 

functional (referred to as rewiring time; Genes et al. 2017). This type of analysis can also be used 

to identify focal points for management actions, facilitating community resilience; this view of 

resilience measures the amount of external input required for community recovery. Marjakangas 

and colleagues (2018) demonstrated the utility of the credit of ecological interactions by 

calculating where in the Atlantic Forest frugivore reintroductions would reestablish the greatest 

number of species interactions over the largest area; this information could contribute to 

decisions about management resource allocation (figure 1).  

Resilience metrics are particularly applicable to viability questions involving alternate 

stable states (i.e., equilibria under multiple sets of unique biotic and abiotic conditions; Beisner 

et al. 2003, Petraitis 2013). For communities that can exist in alternate states, we presume that 

the viable state is the desired one. European settlers, for example, transformed southern 

Australian forests into pasture, and the persistence of the resulting state makes it difficult to 

reverse the region to its more biodiverse forest ecosystem (Petraitis 2013). Note that in this 

example the reference state is the grassland, whereas the desired state is the forest. Consequently, 

resilience metrics could indicate the degree of change required to return a system to a desired 

state (i.e., to make the jump between states that exhibit hysteresis), or to indicate how much 

pressure can be exerted on a community before it shifts into an undesirable state. Dethlefsen and 
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Relman (2011) examined this question in a healthy human gut microbiome. Although antibiotic 

treatment is crucial to recovery from bacterial infections, it can also perturb the native 

microflora. Dethlefsen and Relman (2011) tested whether the human gut bacterial community 

returned to its normal state following the disturbance caused by antibiotic treatment and found 

that although the community exhibited some resilience it did not return to its original state.  

Persistence-based Viability 

The concept of persistence was the original impetus behind the first PVAs (Beissinger 

2002). In the context of a CVA, persistence would focus on the likelihood that a community will 

stay within predetermined boundaries (species composition, links, processes) for a given period 

of time. Unlike examinations of resistance and resilience, tests of persistence occur in the 

absence of specific disturbances, although it can still allow for stochasticity. This means we test 

to see whether a given community is sustained at a reference level over time under anticipated 

conditions, but we may include in our analysis for the possibility of unforeseen random 

perturbations. This might be as simple as taking a known PVA metric and scaling it for 

communities, such as how the minimum viable population size concept has been modified into 

ecologically effective population size (EEPS; Ebenman et al. 2017). EEPS refers to the 

population size of a species below which one or more other species in the community becomes 

extinct. Estes and colleagues (2010) applied this concept in their reexamination of the classic 

Aleutian Island sea otter–urchin–kelp (Enhydra lutris–Echinoidea–Laminariales) trophic 

cascade (figure 1). Kelp forests thrive when otters are prevalent and consume sea urchins, which 

are voracious herbivores. In areas in which otters have been extirpated, urchins devour kelp and 

the community collapses. Estes and colleagues (2010) estimated a threshold for sea otter density 

of 6.3 otters per kilometer of coastline that marked the transition between a kelp-dominated 
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ecosystem and an urchin-dominated one. On the basis of the strong relationship between sea 

otter density and kelp forest cover, Estes and colleagues (2010) suggested that tracking the extent 

of kelp forest would be a more cost-effective method for measuring sea otter recovery than is 

monitoring the otters. 

Calculating community persistence likelihood over time can also help determine how to 

most effectively allocate funding and conservation efforts by comparing the impact of various 

management strategies. For example, McDonald-Madden and colleagues (2016) estimated the 

persistence of species within a suite of real and artificial communities in which persistence was 

calculated as the total number of species surviving 20 years where conservation funding is 

allocated according to different management scenarios. They found that allocating funds on the 

basis of return on investment (ROI), where the benefit of managing a species is the change in 

initial probability of persistence relative to the cost of managing that species, could result in 61% 

fewer species persisting over time compared with a control scenario that maximized species 

survival. The significant losses from ROI management were likely because the approach focused 

on saving individual species regardless of the impact on the broader community. Therefore, a 

species that costs more to rescue (therefore lowering its importance in ROI management) could 

have a net positive impact on the community. However, the ROI approach did not consider this 

possibility, potentially favoring a species with a lower cost of investment even if it provided 

limited functional benefits (Säterberg et al. 2013, McDonald-Madden et al. 2016). McDonald-

Madden and colleagues (2016) identified multiple strategies for allocating conservation funding 

that minimized the number of species lost, such as the Google PageRank algorithm or the 

Keystone Index (which is used to assess the importance of trophic interactions between species 

in a food web). 
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Blurred Distinctions 

Although each community viability question can be separated into one of the three 

aforementioned categories, the ecological processes that drive a community’s resistance, 

resilience, or persistence are intertwined. For example, the processes that lead a community to be 

persistent may also contribute to its resilience. This means that our viability categories can 

overlap depending on how we phrase our questions, even if we are examining the same 

community with similar methods. For example, we classify Estes and colleagues’ (2010) EEPS 

of otters in kelp forests as a persistence metric, because Estes and colleagues (2010) intended to 

determine the minimum population of otters that allows for the persistence of the kelp forest. 

However, if we were instead to ask how many otters can be harvested before the kelp forest 

shifts into an urchin barren, we would consider this to be a resilience-based question even though 

we could still use a version of EEPS to answer it. This may seem overly semantic. However, in 

their examination of stability Grimm and Wissel (1997) highlight that the validity of a prediction 

is delimited by the ecological situation under observation. A given prediction can only relate to a 

particular ecological situation, and the analysis changes when the situation changes. This means 

that if we were to use EEPS to uncover the resilience of the kelp forest community to a given 

disturbance impacting sea otters (e.g., harvesting), we could not then use our results to draw 

conclusions about the persistence over time of the community because of the otters’ presence. 

Boundaries of CVA 

Community ecology bridges ecosystem and population ecologies in a continuum, 

occupying the middle ground and overlapping the two extremes (Berlow et al. 2004, Schmitz 

2010). Ecologists use different methods and organizational concepts depending on where they 

fall on this spectrum. Some, for example, examine questions of alternate stable states and 
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hysteresis of a community (Beisner et al. 2003, Petraitis 2013), whereas others approach their 

work from a reductionist perspective, where interactions and mechanisms are examined at finer 

scales (Sabo 2008, Schmitz 2010). This second approach can be used to examine specific 

mechanisms and dynamics of a community, such as herbivore resource limitation and indirect 

top-down control by carnivores (Schmitz 2010). At the finest scale, community ecologists can 

focus on a single interspecific interaction, such as predator– prey dynamics (Sabo 2008). Each of 

these scales lends itself to CVA. 

By having an expanded definition of CVA, we can apply viability analyses to this broad 

variety of questions (table 1 and supplemental table S1). However, the diversity of approaches to 

community ecology research might make it difficult to draw a definitive distinction between 

populationand community-level assessments, creating a fuzzy transition between PVA and CVA 

(figure 2). Essentially, at what point does a PVA transition to being a CVA as we increase the 

number of interacting species (e.g., Prowse et al. 2015)? Such vagueness has already been 

problematic within the context of CVA. Witting and colleagues (1994) called a CVA what is now 

referred to as a PVA metamodel (Lacy et al. 2013), whereas Tallis and colleagues (2010) cited 

the Ebenman and Jonsson (2005) CVA as an example of an ecosystem viability analysis. Our 

solution to the vagueness problem is to employ the approach used in fuzzy logic (figure 2). 

Where traditional logic employs distinct, nonoverlapping categorization (i.e., analysis can be 

either a CVA or a PVA but not both), fuzzy logic allows for a gradient of possibilities (Fisher 

2000). Therefore, a viability analysis involving a predator–prey dynamic has been called a PVA 

(e.g., Sabo and Gerber 2007), but we recognize that it at least conceptually contains aspects of a 

CVA. As modeled systems become more complicated, such as with tritrophic cascades or 

apparent competition, they become more akin to CVAs (figure 2).  
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Conducting a CVA 

The basic steps for conducting a CVA are to delineate the focal community, to determine 

the viability questions and what methods and metrics address the questions, to perform the 

calculations required for the chosen metrics, to address uncertainty, and to validate the model. 

We briefly describe each.  

Step 1: Delineate the focal community.  

The first step to a CVA is to clearly identify, delineate, and justify the community that is 

the focus of the work. Grimm and Wissel (1997) provided a checklist that assists in this matter, 

which we adapt for a CVA: First, identify the level of description (i.e., what is the community?), 

then identify the variables of interest, determine the reference state or dynamic, establish what 

constitutes a disturbance, and decide on the spatial and temporal scale of the study.  

Setting the boundary to a community is situation specific, and can include as many or few 

species, trophic levels, interactions, and so on as needed (Vellend 2016). This can be anything 

from small groups of strongly interacting species (also called modules, generally consisting of 2–

4 species) to large food webs or even community phase states (where the community can be 

characterized by a set of dynamic state variables with their relations to each other defined by a 

set of parameters, and the selected set of variables will persist over time in a specific one out of a 

number of different possible configurations; Beisner et al. 2003). Included in this step is the 

delineation of species or functional groups and their direct interactions. Anything not included 

within the operative community is externalized, either as outside variables that may influence the 

community of study or as effects inherent to the system’s dynamics (Vellend 2016). Unlike with 

species, however, the interactions within the community can be hypothetical, meaning a CVA can 

be conducted using interactions that may not yet be fully supported with field data. Such a choice 
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is useful in cases in which researchers attempt to replicate real-world community demographic 

patterns with hypothesized interactions, which, if it is successful, would imply that these 

hypothesized interactions are present (e.g., Middleton et al. 2013, Prowse et al. 2013). Even if a 

given interaction is hypothetical, however, we cannot perform CVAs without data. Indeed, 

viability analyses are famously data hungry (Lacy 2019). Therefore, determination of the focal 

community also requires a researcher to identify available and required data. 

Determination of the variable of interest (step 2) requires us to select which species and 

interactions within our chosen community are the focus of our analysis of viability. This step can 

help inform how to narrow the level of description to only what is necessary in step 1. If our 

variables of interest are two or three direct interactions or species, for example, then we would 

externalize everything not included in the module surrounding the variables. Once they are 

finalized, we can then identify the reference state of the community (step 3). This step 

specifically addresses the question of what we want the community to look like, which we use as 

our reference (i.e., normal) state. McDonald-Madden and colleagues (2016), for example, 

evaluated how multiple algorithms can inform the allocation of conservation funds for 

prolonging community persistence of multiple real-world and generated webs compared with a 

control management strategy. Yun and colleagues (2017) also established a baseline of their 

Baltic Sea fisheries community with a mathematical model projecting the consequences of 

single-species management over time, allowing for a comparison with projections from their 

advocated multispecies management model (figure 1). A given reference state can still include 

dynamics; for example, the classic population cycles of snowshoe hares (Lepus americanus) and 

lynx (Lynx canadensis; Peckarsky et al. 2008) are part of the normal reference state of the 

northern boreal forest. With a reference state in hand, we can then list which disturbances or 
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drivers we believe keep or will keep us from reaching the target state (step 4). Finally, we decide 

the time and spatial scales over which we aim to make predictions (step 5). 

In their original CVA paper, Ebenman and Jonsson (2005) focused primarily on the use of 

networks to describe and evaluate a community. Although researchers do not need to create an 

ecological network to perform a CVA, doing so involves the same steps as outlined above with 

the added step of generating a list of species or functional groups of interest (the nodes) and their 

interactions (their links; see Ulanowicz 2004). Interaction links can be directional, weighted, or 

neither, and represent interactions such as consumption, competition, symbioses, predation, and 

so on (Dormann and Blüthgen 2017). These networks can be static (i.e., they do not portray 

changes over time; e.g., de Visser et al. 2011), or they can be dynamic, incorporating anticipated 

changes over time in nodes and links (Ebenman and Jonsson 2005). Researchers tend to create 

networks focused on single functions rather than mixing, for example, pollinator links with 

predation links, although there have been recent explorations combining links of different 

functions into a single network (Dormann and Blüthgen 2017). Creating such combined 

networks is currently exceedingly difficult. 

Step 2: Decide on viability questions, metrics, and models 

Presumably if one is doing a CVA, it is to predict the future state of a community under 

current, anticipated, or proposed alternate conditions, or to compare multiple extant 

communities. The key is to find models and metrics relevant to the specific question (table 1 and 

supplemental table S1). There are multitudes of modeling methods, each of which requires 

different levels of data (see figure 1 in Geary et al. 2020) for an extensive list of modeling 

approaches and their use). Models are generally categorized as ecosystem based, and they are 

used to incorporate broad system components (e.g., populations, species, functional groups) and 
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processes (e.g., predator–prey interactions, perturbations, dispersal) into one modeling 

framework (Geary et al. 2020). Each model has different associated metrics, which must be 

chosen to ensure that a focal research question is addressed. For example, we might care about 

maintaining food web topology, which could be calculated by some form of network model 

measuring betweenness centrality or link density (e.g., González et al. 2010, Morris et al. 2014). 

Alternatively, our focus may be on calculating the conditions required for the persistence of a 

given community phase state, which could be calculated with a state and transition model in the 

face of a triggering event (pulse perturbation) or a driver (press perturbation; Bestelmeyer et al. 

2017).  

One approach that has been suggested for evaluating community-related objectives has 

been taken from economics, which involves defining a suite of desirable states on the basis of 

constraints defined by management goals and precautionary principles (Cury and colleagues 

(2005) referred to these as viable states, which might be confusing in our situation). Rather than 

optimizing, it identifies acceptable solutions (referred to as viable evolutions; Cury et al. 2005). 

This approach can deal with one type of uncertainty (setting goals and boundaries) by setting 

constraints through the definition of what is undesirable, particularly when there are many 

stakeholders defining potentially conflictive values. One can then decide among a suite of 

acceptable outcomes from which to select a management plan (Cury et al. 2005).  

Step 3: Enact Calculations 

CVAs can be run once we have a delineated community and selected viability metrics. 

One of the most used analyses for complex communitybased calculations is individual- or agent-

based models (IBMs), which are applicable across multiple types of community approaches 

(Schmitz 2000, Ebenman et al. 2004, Scotti and Jordán 2017, Lacy 2019). In an IBM, there is a 
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suite of rules applied to each entity (individuals in a population, species, or functional group) that 

dictate interactions at each time step (Scotti and Jordán 2017). An alternative approach was used 

by Doizy and colleagues (2018) to depict the community as a matrix and use generalized models 

based on balance equations to investigate the consequences of invasive species on native 

extinctions. Such models describe the structure of a system in terms of gains and losses of 

variables such as biomass but do not restrict these processes to specific functional forms (Gross 

and Feudel 2006). These are only a few possible options, as was noted in step 2 (Geary et al. 

2020). 

The wide use of PVA for conservation purposes has been facilitated by the availability of 

software (such as Vortex and RAMAS), with manuals, online chat boards, and help desks that 

create a user-accessible approach to viability modeling. As with the early years of PVA, the few 

papers published on CVAs so far have generally presented models that are developed from the 

ground up, as do most papers that investigate communities in general. However, some software 

packages or programs that can be used for CVA exist, such as packages in R and Python (table 

2). There is also other more specialized software that has potential for CVA. For example, 

because of the economic importance of multispecies management for fisheries, researchers at 

NOAA and the University of British Columbia have developed user-friendly software called 

Ecopath with Ecosim (EwE). EwE is the most applied tool for modeling marine ecosystems 

worldwide (Heymans et al. 2016). Through dynamic mass-balance modeling of food webs, EwE 

can be used to identify and quantify major energy flows in a community, describe interactions 

among species, and evaluate the effects of environmental changes on the community (Heymans 

et al. 2016). The software has been used to show that pressure from resident bald eagles 

(Haliaeetus leucocephalus) increases fish, crab, and mussel biomass in the Puget Sound via 
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trophic cascades (Harvey et al. 2012) and that complex predation and competition interactions 

may counteract the putatively positive effect of climate change on primary productivity in 

Australian waters (Brown et al. 2010).  

Another program available for CVA models is MetaModelManager, a multispecies 

population dynamics package that connects to the widely used PVA software package Vortex 

(designed by Lacy et al. 2013). Although these were initially designed for PVAs and likely fall 

into the gradient between CVA and PVA, they may provide an alternative for certain questions to 

building models from scratch—particularly because many conservation biologists and managers 

are already well versed in Vortex’s use.  

Step 4: Address Uncertainty 

Uncertainty in model construction is the degree to which we know a parameter value or 

distribution, or model structure (e.g., what species or inter- actions to include). Uncertainty in 

predictions can increase as models become more complex, whereas uncertainty in parameters 

and potential omission of key interactions increase when models are too simplified (Geary et al. 

2020). As is true with all models, there will be a degree of compromise in model structure in 

CVAs, as well as with parameter estimates, because of limited data, observer error, bias, and 

sampling variance (McGowan et al. 2011). Analyses that lack an assessment of uncertainty in 

structure and in predictions can provide a false sense of accuracy in results (Geary et al. 2020). 

Therefore, CVAs should always have some method of quantifying or addressing uncertainty (see 

table 1 in Geary et al. 2020 for a list of ways to address uncertainty in complex models). 

Step 5: Model Validation 

A central demand for models is their validation. As with all models, PVAs and CVAs are 

simplifications of the real world, which is another reason it is suggested that results from 
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PVAs—and, by extension, CVAs—should be used comparatively (Beissinger and Westphal 1998, 

Reed et al. 2002). Consequently, predictive reliability should not be held up as a standard for 

validation; unlikely outcomes happen in the real world. One level of validation is to determine 

the degree to which a model structure reflects the real world and the accuracy and precision of its 

parameters. Another type of validation can be to determine whether the modeled system behaves 

in a biologically reasonable manner when manipulated. In some cases, such as with communities 

with fewer or smaller species (including bacterial communities), it might be possible to replicate 

microcosm experiments and compare the distribution of outcomes with that predicted by the 

model (e.g., Jonsson et al. 2018, Schmitz 2000). We note, however, that such experiments are 

also models with similar benefits and limitations to computational models. Consequently, what 

we recommend is derived from the concept of adaptive management (Lacy 2019): Create a 

biologically reasonable model, use it to make predictions about the general behavior of a system 

(rather than a specific quantitative result), and then refine the model on the basis of observed 

results. 

Conclusions 

Incorporating community dynamics into management expands the realm of conservation 

questions that can be asked and increases the types of tools available for evaluating species and 

ecosystem conservation. CVA was proposed to assist in this process (e.g., Ebenman et al. 2004, 

Ebenman and Jonsson 2005), but so far it is a concept that has been used sporadically and 

narrowly in the literature. In the present article, we introduce a framework for CVA that expands 

on its original definition to resemble more closely that of a PVA. We postulate that a CVA, in 

parallel to PVA, should include any synthesis of knowledge assessing the status, threats and 

management options of an ecological community. Such assessments can be used to calculate 
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resistance, resilience, or persistence as viability measures of a focal community. This expanded 

framework allows us to include multiple types of analyses across the breadth of community 

ecology—each of which can be tailored to answer specific viability questions—helping to draw 

together a range of ideas that can be focused on conservation assessment.  

Fisheries science, which is currently at one forefront of community or ecosystem-based 

management, categorizes these types of multispecies models as conceptual, strategic, or tactical. 

Conceptual models develop an understanding of ecosystem processes, strategic models focus on 

broad scale assessments of patterns of change (such as system-wide maintenance of 

biodiversity), and tactical models are used to investigate management alternatives that often 

change on an annual basis (Plagányi et al. 2014). We envision CVAs as strategic models that can 

evolve into tactical models, similar to the way some multispecies fisheries models that started as 

conceptual or strategic are now used for day-to-day tactical decisions (Plagányi et al. 2014).  

Approaching species and ecosystem conservation using CVAs allows resource managers 

to evaluate alternative conservation regimes that include quantitative examinations of species 

interactions or ecological and ecosystem services, something highlighted in the literature as 

urgently needed (Soulé et al. 2003, Säterberg et al. 2013). The introduction of metamodels 

designed to include species interactions (Lacy et al. 2013) is facilitating adoption of more 

community- based ideas in conservation (e.g., Prowse et al. 2015), as are the advances in 

ecosystem-based models in marine systems (Geary et al. 2020). However, having a formal 

framework for CVA can help focus management and research questions. It also allows for the 

possibility that a community might be viable under some criteria but not others. Furthermore, it 

provides an improved understanding of the questions we ask when discussing whether a 

community is viable, suggesting a more nuanced approach. Indeed, the same is true for PVA; 
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simply stating that a PVA was performed does not inform one of a study’s specific goals, metrics, 

or methods. Ultimately, the specificity of the questions being asked should lead to a better 

comprehension of a community’s vulnerability to various perturbations and responses to 

management alternatives. Also, as with PVA, we believe that calculations of CVA metrics should 

be treated comparatively rather than as quantitatively accurate, which will be useful for 

comparing the relative efficacy of potential management actions on communities and for asking 

what-if questions (cf. Coulson et al. 2001, Reed et al. 2002, Lacy 2019). 

CVAs and their applications will have the same limitations that community ecologists 

have identified within the field in general—primarily, that community dynamics can be 

complicated and community boundaries difficult or arbitrary to define. Furthermore, a scarcity of 

data can present challenges for resource managers in assessing interaction- based methods of 

management (Tallis et al. 2010). We implemented flexibility into our CVA framework in part to 

provide a solution to this problem. We believe that our expanded framework will allow resource 

managers to use CVAs as a tool to better incorporate community ecology into ongoing 

conservation projects and plans, particularly when conducting ecosystem-based management. 
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Figure 2-1 Visual representations of four communities examined through various community-

based viability methods. Direct interactions are represented with solid arrows, whereas indirect 

interactions are represented with dashed arrows. The plus and minus represent whether the 

interaction has a positive or negative effect, respectively, in the direction of the arrow. 
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Figure 2-2 A visual representation of our interpretation of a gradient of viability assessment 

types, where community viability analysis (CVA) is on a continuum to the right of population 

viability analysis. CVA is split into three possible groups: resistance, resilience, and persistence. 

Certain approaches to viability, such as investigations of predator–prey and competition 

interactions, exist in a gradient that mixes components of two viability analyses.  
 

 

 

Table 2-1 Types of community viability analysis (groups) with examples of metrics, including 

example research or management question from published case studies. 

Viability 

type 

Example metric Example research or management question 

Resistance Probability species 

richness falls below 

some value within a 

fixed period, 

following loss of a 

target species 

What is the probability that numbers of lichen species 

fall below a certain threshold following ash dieback in 

Europe? (Ebenman et al. 2004, Jönsson and Thor 2012) 

 
Comparative 

likelihood of two or 

more disturbances 

resulting in observed 

community dynamics 

Is community change due to the invasion of European 

settlers more likely than was disease to have resulted in 

the extinction of the thylacine (Thylacinus 

cynocephalus)? (Prowse et al. 2013) 

 
Probability that a 

compensatory 

perturbation will 

increase the resistance 

of a community to a 

given disturbance 

Can we minimize the number of secondary extinctions 

in the Coachella Valley food web after the loss of 

certain species by removing or suppressing other 

interacting species? (Sahasrabudhe et al. 2011) 

Resilience The number of 

interactions expected 

How many interactions from the original Brazilian 

forest system will be reestablished with the 
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to be rewired 

(reconfigured) in a 

focal area following 

species reintroduction 

reintroduction of agoutis (Dasyprocta leporina)? (Genes 

et al. 2017) 

 
Recovery time from a 

perturbation in a 

system with a tipping 

point between stable 

states 

How long does it take a forest to recover after harvest 

or burning in a tropical peat community in which there 

is a tipping point? (Dieleman et al. 2015) 

 
Probability that a 

community will 

recover to a reference 

state after a 

perturbation 

Is the state of a human gut microbiome maintained in 

the face of treatment with antibiotics? (Dethlefsen and 

Relman 2011) 

Persistence Predicted success of 

alternative 

conservation 

strategies 

What is the best method of allocating money for 

conservation to ensure the fewest possible extinctions 

in a managed food web? (McDonald-Madden et al. 

2015)  
Population size below 

which one or more 

other species in the 

network become 

extinct 

What is the population size of sea otters required to 

sustain the kelp forest community phase state due to a 

trophic cascade? (Estes et al. 2010) 

 
Neutral or increasing 

population trends of 

multiple interacting 

species 

Can we cull increasing deer (Odocoileus spp.) 

populations in Alberta to stabilize or reverse population 

decline of caribou (Rangifer tarandus caribou) due to 

apparent competition via wolves (Canis lupus), but 

without extirpating wolves? (Serrouya et al. 2015) 
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Table 2-2. Example R and Python packages capable of performing analyses that might be used 

to assess community viability. 

Code package Capabilities 

Cheddar (R) Provides a representation of an ecological community and a range of 

functions for analysis and visualization. Allows interweb comparisons 

such as examining changes in community structure over environmental, 

temporal or spatial gradients (Hudson et al. 2013) 

The Community 

Simulator 

(Python) 

Simulates microbial population dynamics (Marsland et al. 2020) 

NetworkExtinction 

(R) 

Simulates the extinction of species in a food web and analyzes the 

resulting cascading effects (Corcoran et al. 2019) 

foodweb (R) Calculates twelve basic measures of food web network structure from 

binary, predator-prey matrices (Perdomo et al. 2012) 

fluxweb (R) Compute energy fluxes in trophic networks from resources to their 

consumers and can be applied to systems ranging from simple two-

species interactions to highly complex food webs (Gauzens et al. 2019) 

HMSC (R) Model-based approach for analyzing community ecological data via Joint 

Species Distribution Modeling. This package uses a Bayesian framework 

with Gibbs Markov chain Monte Carlo (MCMC) sampling (Tikhonov et 

al. 2020) 

statnet (R) Collection of packages for statistical network analysis. Provides an 

integrated set of tools for the representation, visualization, analysis, and 

simulation of network data (Hunter et al. 2008) 

timeordered (R) Approaches for incorporating time into network analysis (Blonder 2018) 

rmangal (R) Archives published ecological networks and provides a mechanism for 

their retrieval (Poisot et al. 2016) 

EcoTroph (R) Software for modeling marine and freshwater ecosystems using trophic 

levels. Aggregates species into trophic levels to track biomass flows at 

larger scales. Links Ecopath with Ecosim to R (Colléter et al. 2013) 

iGraph (Python 

and R) 

Routines for simple graphs and network analysis (Csardi and Nepusz 

2005) 

Bipartite (R) Focuses on webs consisting of only two levels (bipartite), e.g., 

pollination webs or predator-prey webs (Dormann et al. 2008) 

NetworkX 

(Python) 

Allows for the creation, manipulation, and study of the structure, 

dynamics, and functions of complex networks (Hagberg et al. 2008). 
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Chapter 3  
 

Biased assessment of thermal properties of birds from estimated body density (Adam J. 
Eichenwald, J. Michael Reed). Published in Journal of Thermal Biology (2023) 

112:103472. 
 

 Abstract 

 Parameter approximation is often necessary when calculating species thermal properties, 

and researchers historically have assumed animals are spherical when estimating volume and 

density. We hypothesized that a spherical model would result in significantly biased measures of 

density for birds, which are generally longer than they are tall or wide, and that these 

inaccuracies would significantly alter the outputs of thermal models. We calculated the densities 

of 154 bird species using sphere and ellipsoid volume equations and compared these estimates to 

one another and to published bird densities measured using more exact volume displacement 

methods. We also calculated evaporative water loss as a percentage of body mass per hour, a 

variable known to be critical for bird survival, twice for each species, once with the sphere-based 

density and once with the ellipsoid-based density. We found that volume and density estimates 

were statistically similar between published densities and those estimated using the ellipsoid 

volume equation, suggesting that this method is suitable for approximating bird volume and 

calculating density. In contrast, the spherical model overestimated body volume and therefore 

underestimated body densities. This resulted in the spherical approach consistently 

overestimating evaporative water loss as a percent of mass lost per hour than the ellipsoid 

approach. This outcome would result in mischaracterizing thermal conditions as lethal for a 

given species, including overestimating vulnerability to increased temperatures due to climate 

change. 

 Introduction 
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 Body density (mass per unit volume) is a critical parameter for calculating the 

fundamental thermal constraints on an animal (Kearney et al., 2021). This parameter, however, is 

not often available for a given species. Both mass and volume are needed to calculate density, 

and although mass is relatively easy to measure and is available for many species (e.g., 

Chamberlain, 2021; Dunning, 2008; Silva and Downing, 1995), finding the volume of an animal 

is more difficult. Exact volumes of birds, for example, have sometimes been calculated using 

water displacement (Hazlehurst and Rayner, 1992) or by making casts (Dubach, 1981), but this 

can be tricky (or not allowed) if working with museum specimens that may not be damaged. 

There are published equations for estimating volume from body length for frogs (Tracy, 1972) 

and lizards (Norris, 1967). Generally, however, when we calculate a bird’s volume we assume 

that the creature is a sphere (Buckley et al., 2021; Mitchell, 1976); this is likely a historical 

artifact because the equation for a sphere is relatively simple (𝑉 =
4

3
𝜋𝑟3) and museums often 

record a specimen’s body length (2r) before archiving it in a collection, or the length can be 

acquired readily. Every point on the outside of a sphere is at the same distance r from the center 

of the sphere; birds, however, are distinctly non-spherical, typically being significantly longer 

than they are tall or wide. These are characteristics of an ellipsoid rather than a sphere and is 

likely why well-used thermal programs such as NicheMapR assume an endotherm is represented 

by an ellipsoid by default (Kearney et al., 2021). Although the distinction may seem pedantic, the 

greater the difference between length and radius of a bird’s body, the more volume will be 

overestimated by use the sphere equation. This would result in significantly smaller estimations 

of density and inaccurate conclusions regarding thermal constraints. Here we estimate the degree 

to which sphere-based volume calculations of birds underestimate body density, and whether 
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ellipsoid measurements of volume result in sufficient approximations of body density for 

quantifying thermal properties of birds in a mechanistic model. 

 Methods 

 We obtained 5 specimens each (3 males and 2 females) for 154 species of birds at the 

Harvard Museum of Comparative Zoology (MCZ). Specimens were selected as part of a separate 

project on birds in the Mojave Desert. Species were included in the study if they appeared in the 

Mojave Desert surveys conducted by Iknayan and Beissinger (2018), or if their ranges as 

calculated by Fink et al. (2020) cross into the Mojave Desert. Waterbirds were excluded from 

these measurements unless the species was specifically surveyed for by Iknayan and Beissinger 

(2018). 

For each specimen, we measured the length, width, and height to 0.1 mm using digital 

calipers. If the bird was too large for the calipers, as with some of the bigger raptors, we used a 

steel ruler to measure to the nearest millimeter. Length was measured from the base of the 

mandible to the base of the cloaca; as bird feathers are not part of the metabolic process, we did 

not include measurements of tail feathers as part of the body length. Width was measured at the 

widest part of the bird near the midpoint of the breast, not including the wings. Height was 

measured from back to the greatest distance of the breast. 

These specimens usually did not have their masses recorded at the time of collection. We 

obtained mass data for each species from VertNet, a database that contains data for specimens 

from hundreds of museum collections around the world. For each species, we used the rvertnet 

package (Chamberlain, 2021) to search for specimens that had their masses and sexes recorded 

prior to their preparation for a museum collection, and we downloaded all data associated with 

these specimens. Through proofing, we discovered that apparent typographical errors existed in 
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this dataset, usually in instances where the original data transcriber forgot to place a decimal 

point and inflated a single data value by a factor of 10 or 100. We removed outliers from each 

species using the outlier R package (Komsta, 2022) to ensure that mean mass was not influenced 

by what were likely typographical errors. 

Sexual dimorphism in body size is common in birds (Owens and Hartley, 1998), which 

would result in different volumes and masses depending on sex, though there is no reason it 

should affect density. To ensure we were calculating density as accurately as possible, we 

assumed intraspecific males and females had different average masses. We calculated the volume 

for each specimen individually using the equations for both an ellipsoid and a sphere, assumed 

males of the same species had the same mass as the average of all the males of that species from 

VertNet, and assumed females of the same species had the same mass as the average of all the 

females of that species from VertNet. We then calculated the density of each specimen twice, 

once by dividing the mass by the ellipsoid-estimated volume and once by dividing the mass by 

the spherical-estimated volume. We then averaged these values to calculate a single average 

ellipsoid-based density and a single average sphere-based density per species. 

After comparing volume and density estimates from ellipsoid and spherical estimates, we 

compared their densities estimates to known values from 15 of the species published by Seamans 

et al. (1995) and Dubach (1981). Due to unbalanced sample size and unequal variance (as 

revealed by a Levene’s Test), we used a one-way ANOVA with a Welch’s correction and a post 

hoc Bonferroni test to determine whether there is a significant difference between the pre-

measured densities and the densities calculated using the sphere or ellipsoid volume equations. 

Our next step was to see whether differences in densities as calculated by the ellipse and 

sphere equations resulted in significant differences in estimates of the birds’ thermoregulatory 
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processes and constraints. We used the endotherm function mechanistic thermal modeling R 

program NicheMapR (Kearney et al., 2021; Kearney and Porter, 2017) to generate thermal 

properties to test these predictions. For each species, we left all parameters in the function at 

their default settings except for mass and density, and we ran the mechanistic models twice for 

each species: once with the density calculated from the sphere equation, and once with the 

density calculated from the ellipse equation. The average species’ mass was kept the same for 

each run so that density was the only variable to change. NicheMapR calculates many output 

variables, but we selected evaporative water loss as a percentage of body mass per hour as a 

characteristic variable. This variable is known to be critical for bird survival, particularly those 

living in desert regions (Albright et al., 2017). We used a paired t-test to compare estimated 

evaporative water loss as a percentage of body mass per hour as calculated with the ellipsoid and 

spherical methods to determine whether the two approaches for estimating bird densities result in 

consistent differences in thermal properties. 

Results 

 Body volume estimated from spherical estimates of birds (770 specimens of 154 species) 

was consistently higher than when using the ellipsoid method, resulting in an average difference 

of 663.6 ± 173.2 kg/m3 in densities between the two methods (Fig. 1). This apparent bias 

increased with birds that were of higher body densities (Fig. 1). There were statistically 

significant differences found in the categories of known densities, ellipsoid-based estimates, and 

sphere-based estimates (ANOVA, F = 1219.4, corrected df = 34.1, p < 0.001), A post-hoc 

Bonferroni test revealed that there was no statistically significant difference between published 

empirical densities and those calculated using the ellipsoid volume equation (Bonferroni test, 

corrected df = 26.6, mean = 769.1, sd = 190.4, p = 0.82) (Fig. 2); densities calculated using the 
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sphere volume equation were significantly lower (Bonferroni test, corrected df = 13.9, mean = 

104.2, sd = 55.2, p < 0.001) (Fig. 2). Furthermore, the spherical approach gave consistently 

lower estimates of estimated evaporative water loss as a percent of mass lost per hour than the 

ellipsoid approach (paired t-test, t = − 22.5, df = 153, p-value <0.001) (Fig. 3). 

 Discussion 

 We predicted that volume, and therefore density, of birds would be statistically 

systematically different based on whether we used the sphere or ellipsoid equation. We also 

expected that these differences would cause densities as predicted by the sphere equation to be 

less accurate, and that these differences would also influence conclusions about a species’ 

thermal constraints. Indeed, we found that body volume from spherical estimates of birds was 

consistently higher than when using the ellipsoid method. This, in turn, resulted in a consistent 

bias in predicted body densities, with the spherical method underestimating densities compared 

to the ellipsoid method. When compared to empirical measures of body densities (Dubach, 1981; 

Seamans et al., 1995), the estimates based on the ellipsoid equation was not significantly 

different. Average body densities estimated by calculating volume with the sphere equation were 

on average 150.6% lower than those reported from empirical studies. Furthermore, we found that 

if data from the spherical equations were used to calculate thermal models, they would result in 

significantly higher estimations of evaporative water loss as a percentage of body mass per hour 

than from the ellipsoid equation. 

This overestimation would lead to inaccurate depictions of an animal’s response to its 

environment at current and predicted increases in temperature due to climate change (see Arnell 

et al., 2019). Desert birds, such as those measured in this study, are known to live at the edge of 

their thermal tolerance (Smith et al., 2015, 2017; Talbot et al., 2017), routinely withstanding 
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evaporative water loss of at least 5% of body mass per hour despite a lethal level of 15% per 

hour (Albright et al., 2017). Overestimations of this variable would inevitably result in mis- 

characterizing certain thermal conditions as lethal for a given species when in fact the species is 

still able to survive. Accurate estimations of a bird’s response to its thermal environment is 

critical for researchers aiming to predict how these species will fare under climate change 

conditions (e.g., Albright et al., 2017; Riddell et al., 2021; Riddell et al., 2019); therefore, 

scientists should avoid approximating an animal as a sphere when calculating volume or density 

for thermal equations. 

We note that although our ellipsoid estimates of density were not different from empirical 

measures, some error in our approach could occur because of variation in the degree to which a 

bird is stuffed compared to its living volume. We anticipate, however, that this would have little 

effect on our conclusion about ellipsoid vs. spherical assessments. We also found that for some 

species, we estimated densities over 1000 kg/m3. We find this unlikely, as water itself has a 

density of approximately 1000 kg/m3. At face value, our calculations would suggest that those 

few species are denser than water. Instead, it is probable that these species do have higher 

densities than do others in the real world, but the specimens we measured in the MCZ had 

different masses when they were alive than the average calculated from VertNet. This could 

result in inflated body densities.  

Conclusions 

These results demonstrate that scientists aiming to create mechanistic thermal models of 

birds – and likely other endotherms – should not rely on sphere-based equations for calculating 

volume to estimate density. Instead, it is better to calculate density using volume obtained from 
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the ellipsoid equation, which will require more data but will significantly improve accuracy of 

results and predictive capacity.  
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Figure 3-1 Densities of each measured species using the ellipsoid volume equation (x axis) and 

the sphere volume equation (y axis). The solid black line represents a hypothetical 1:1 

relationship between the two variables.  

 

 

 
Figure 3-2 Body densities calculated for each species measured in this study using the ellipsoid 

equation (middle) and the sphere equation (right) (n = 154 species). Densities calculated from 

direct measurement (left) were gathered from published studies (n = 15 species; a subset of the 

species we assessed). There was no significant difference between the pre-measured densities 
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and the densities calculated using the ellipsoid volume equation (Welch Two Sample t-test, t = − 

1.37, df = 25.95, Bonferroni- corrected p = 0.35). Densities calculated using the sphere volume 

equation were significantly smaller than the pre-measured densities (Welch Two Sample t-test, t 

= 27.58, df = 13.88, Bonferroni-corrected p < 0.001).  

 

 

 
Figure 3-3 Estimated evaporative water loss for 154 bird species where body densities were 

calculated using two different models for estimating body volume (paired t- test, t = − 22.5, p < 

0.001).  
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Chapter 4  

 

Using a mechanistic model to assess thermal vulnerabilities of Mojave Desert birds 

(Adam J. Eichenwald, J. Michael Reed). In Review at Journal of Thermal Biology 
 

Abstract 

Desert bird populations are increasingly vulnerable to rising temperatures driven by 

climate change, with implications for their survival, behavior, and distributions. We used a 

mechanistic model to estimate thermal vulnerability, defined as the minimum percent shade a 

species requires to survive given a specific combination of solar radiation and air temperature, 

for 151 bird species in the Mojave Desert. This model was parameterized with data collected 

from museum specimens and the primary literature. We found that bird species differed 

significantly in their relative susceptibilities to temperature, with an almost 30% spread between 

the lowest and highest amount of shade required to survive desert thermal conditions. Species 

sorted optimally by thermal risk into 18 clusters. The marginal effect of thermal vulnerability 

revealed that species require an average of 79.7 ± 5.3% shade to survive (holding temperature 

and solar radiation at 50°C and 1400 watts/m2, or full sun). The least thermally vulnerable 

species were approximately 16% different than the average of all species, and 35.7% different 

than the most vulnerable species. Reflectance from body feathers explained 21% of the variation 

in thermal vulnerability; dorsal reflectance was significantly negatively associated with thermal 

vulnerability, as was body mass. The estimated amount of shade required to survive, according to 

the mechanistic model, will change given different combinations of temperature and solar 

radiation, but the relative vulnerabilities between species would not change. Our findings expand 

understanding of avian thermal properties and can contribute efforts aimed at predicting and 

mitigating the adverse effects of climate warming on desert bird communities.  
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Introduction 

Desert birds are facing increasing risks from rising temperatures due to climate change 

(McKechnie et al., 2012; Murali et al., 2023). For example, heat waves are becoming more 

frequent and intense, posing a significant threat by increasing evaporative water loss and the 

possibility of lethal dehydration (Albright et al., 2017; Cabello-Vergel et al., 2022). In addition, 

rising cooling costs and water requirements driven by climate change can further threaten desert 

bird populations (Riddell et al., 2019), and have already been linked to population declines and 

mass die-off events in arid regions (McKechnie et al., 2012; McKechnie et al., 2021b; Pattinson 

et al., 2022). As a further concern, only a fraction (20%) of desert areas with high diversities of 

birds and low predicted impact of climate change are in protected areas (Ma et al., 2023). While 

desert birds have evolved various heat dissipation mechanisms and behaviors to regulate their 

body and brain temperatures, there are physical limits to the effectiveness of these adaptations 

(Albright et al., 2017; Baker, 1982; Pessato et al., 2020). It remains uncertain whether these 

strategies can sufficiently mitigate the risks of surpassing avian physiological limits under 

unprecedented climate conditions (Pessato et al., 2020). Therefore, identifying species most 

vulnerable to rising temperatures can improve predictions of the ecological impact of climate 

warming (Seebacher et al., 2023). 

Mechanistic thermal models have proven valuable in understanding avian vulnerabilities 

to increasing heat (Albright et al., 2017; Ma et al., 2023), as they allow researchers to simulate 

the physiological responses of organisms to changing thermal conditions and predict how these 

responses may impact their survival, behavior, and distribution (Gates, 1980; Kearney et al., 

2010). For instance, these types of models were used to uncover an energetic bottleneck as a 

potential cause for recurring winter mass-mortality events among North Atlantic seabirds (Fort et 
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al., 2009), and pinpointed sites where Chihuahuan Desert lizards are projected to become 

extirpated under climate change (Lara-Reséndiz et al., 2015). These models can also be adjusted 

to incorporate behavioral mechanisms that allow for species to overcome physiological thermal 

limits, such as shade seeking, posture adjustments, climbing, or retreating underground (Kearney 

and Porter, 2020). A great deal of information is required for mechanistic thermal models, such 

as pelage/plumage reflectance, evaporative water loss, and critical thermal limits, which can be 

difficult to measure (e.g., McKechnie et al., 2021a; Smith et al., 2017; Talbot et al., 2017), 

especially for species that are not easily kept in captivity (Dudley et al., 2016). Efforts to 

accurately measure and derive these physiological parameters, particularly for species that are 

challenging to study in controlled environments, can provide important information for 

improving the predictive power of mechanistic thermal models, improving assessments of 

species' susceptibilities to rising temperatures (e.g., Riddell et al., 2019). 

Here we measure and derive physiological parameters for 151 species of birds from the 

Mojave Desert that we use to estimate their physiological limits to temperature. We selected 

Mojave Desert birds because their historical distributions are well-researched, and observed 

declines are proposed to be caused by increased cooling requirements from climate change 

(Iknayan and Beissinger, 2018; Riddell et al., 2021; Riddell et al., 2019). To obtain the 

parameters required to estimate physiological limits to thermal vulnerability, we employed a 

combination of methods including derivation from equations based on species body mass, 

measurements from museum specimens, and interpolated from published data on taxonomically 

related species. Using this information, we estimated the thermal vulnerabilities of bird species 

that breed in the Mojave Desert. 
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Methods 

 Selection of Species 

 Species were included in the study if they appeared in the Mojave Desert surveys 

conducted by Iknayan and Beissinger (2018), or if their distributions as calculated by Fink et al. 

(2020) cross into the Mojave Desert. The Mojave Desert spans broad latitudinal (34.8 to 36.2), 

longitudinal (-117.2 to -115.8), and elevational ranges (-82m to 3367m). Waterbirds were 

excluded from these assessments unless the species was specifically surveyed for by Iknayan and 

Beissinger (2018). As in Eichenwald and Reed (2023), we obtained 5 specimens each (3 males 

and 2 females) for 151 species of birds at the Harvard Museum of Comparative Zoology (MCZ).  

Deriving, calculating, and measuring parameters for NicheMapR 

 There are several different types of mechanistic models that have been developed (e.g., 

Kearney and Porter, 2020; Stevenson and Kearney, 2020), each of which requires a related but 

different subset of parameters depending on the model’s purpose. Here we used NicheMapR, a 

suite of programs in R that calculates heat and water exchange of an organism and the 

microclimates to which said organism is exposed (Kearney et al., 2021; Kearney and Porter, 

2017, 2020). We use NicheMapR because the program is readily available (Taylor et al., 2021) 

and has explicit instructions for its application (Kearney et al., 2021; Kearney and Porter, 2017, 

2020). Calculations for NicheMapR’s endotherm function (without incorporating Dynamic 

Energy Budgets) require data for many (41) input parameters, which are described in Table 1. 

We followed Riddell et al. (2019) by setting emissivity (the relative power of a surface to 

emit heat by radiation) equal to 0.96; animal emissivity is generally assumed to be between 0.95-

1.0 (Hammel, 1956). Bird masses were averaged by species from values in VertNet 

(Chamberlain, 2021), and bird volumes and densities were calculated from our own 
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measurements of museum specimens (Eichenwald and Reed 2023). Some parameters required 

for the thermal models are derivable from body mass (grams). We used the equation from 

Riddell et al. (2019) to calculate feather density, with a density cap of 11600, as they suggest. We 

also fit two linear models with log(body mass) to Riddell et al.’s (2019) measured values for 

ventral (R2 = 0.51, F(1, 48) = 50.84, p<0.001) and dorsal feather length (R2 = 0.51, F(1, 48) = 

49.59, p<0.001), and used the fitted regression equations to extrapolate dorsal and ventral feather 

lengths for all of our species. We used the same approach, using Riddell et al.’s (2019) data, to 

determine ventral (R2 = 0.13, F(1, 48) = 7.41, p = 0.009) and dorsal depth of the insulative layer 

(R2 = 0.34, F(1, 48) = 24.19, p < 0.001). We calculated metabolic rates and multipliers for 

evaporative water loss for all species using equations from McKechnie et al. (2021a). Q10 

(temperature coefficient) was set as 1 for all species with mass less than 100 grams (Weathers, 

1981) but set at the default of 2 for larger species. Bird resting body temperatures and maximum 

possible body temperatures were taken from McKechnie et al. (2021a). 

 Not all thermal-based parameters can be derived from body mass, such as feather 

reflectance. Birds with black feathers will have low reflectance and white feathers will have high 

reflectance, regardless of body mass. We measured feather reflectance of birds from specimens at 

the Harvard Museum of Comparative Zoology (Cambridge, Massachusetts, USA), following the 

methods of Riddell et al. (2019). We used an ASD FieldSpec 4 Max spectrometer over the 

wavelength range from 350 to 2500 nm using a contact probe for illumination and Spectralon 

disk for reference. We measured reflectance from five locations on each of the dorsal and ventral 

surfaces of each body for 2 female and 3 males per species: the crown, throat, and four 

measurements each spread across the breast and the mantle. Ultimately, each bird species had 

two reflectance measures included in the model, one dorsal one ventral, where each was the 
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average of 25 measurements. These measurements were made with pure white light and 

therefore are different than what we would expect under sunlight. Therefore, as with Riddell et 

al. (2019), we corrected the reflectance curves for solar radiation using the ASTM G-172 

standard irradiance spectrum for dry air provided by SMARTs v. 2.9.2 (Gueymard, 2001). The 

corrected value was calculated by multiplying the intensity of solar radiation by the empirical 

reflectance, integrating across all wavelengths, and dividing by the total intensity of solar 

radiation. 

Assessment of species thermal vulnerability 

NicheMapR allows users to calculate thermal constraints of environmental conditions on 

most animals (Kearney et al., 2021; Kearney and Porter, 2020); however, ectotherms and 

endotherms have different biophysical reactions. We used NicheMapR’s endoR function, as it is 

specifically designed to model thermal responses of endotherms (Kearney et al., 2021). We first 

determined the relative thermal vulnerability of each species under the combinations of air 

temperature (30 to 45 C in increments of 1), solar radiation (0 to 1400 W/m2 in increments of 

10), and shade (0 to 100% shade in increments of 5, where 0% is full sun exposure and 100% is 

perfect shade from direct sun) that are most likely found in the Mojave Desert during the 

summer. We assumed that a species “dies” if NicheMapR is unable to calculate a solution for 

species survival for the given environmental conditions, or if predicted water loss is greater than 

15% of total body mass per day (Albright et al., 2017). The minimum percent shade a species 

requires to survive given a specific combination of solar radiation and air temperature was used 

as a proxy for thermal vulnerability. All other environment-based parameters in the endoR 

function were left at their default values. 
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To infer the vulnerability of each species to solar radiation and air temperature, we fit a 

generalized additive model predicting minimum required shade with solar radiation and air 

temperature as smooth terms and species as a fixed term. We then used the ggeffects R package 

to find the marginal effect of species on minimum required shade (i.e., thermal vulnerability), 

enabling us to create a ranked list of birds based on their thermal vulnerability. 

To further explore the relationship between species and thermal vulnerability, we 

employed silhouette analysis with the cluster package in R (Rousseeuw, 1987). Silhouette 

analysis is a method used in machine learning to assess the grouping quality of data points. It 

measures the similarity of a data point to its own cluster compared to other clusters, providing 

insights into the distinctiveness and separation of clusters. By conducting silhouette analysis, we 

determined the optimal number of clusters needed for performing K-means clustering, a 

technique for grouping similar data points together. This analysis allowed us to define species 

groupings based on their thermal vulnerability, ensuring that species with similar values were 

grouped. Subsequently, we performed optimal univariate K-means clustering (MacQueen, 1967) 

using the Ckmeans.1d.dp R package (Wang and Song, 2011) with the identified number of 

clusters.  

Finally, we constructed a linear regression model to actively investigate the influence of 

reflectance variation or body mass on the thermal vulnerability cluster of birds. The prediction of 

the thermal vulnerability cluster was based in part on the dorsal and ventral reflectance 

measurements of the birds. While our mechanistic model for determining thermal vulnerability 

considered a range of variables, these specific linear models targeted the extent to which 

reflectance variation or variation in body mass contributed to the classification of birds into their 

respective thermal vulnerability clusters. Body mass was placed on a log scale. 
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 Results 

We present all the parameters gathered for generating mechanistic thermal models of 

each Mojave bird species in Table 2. The 151 bird species differed in their relative 

susceptibilities to heat, with a spread of 29.5% between the lowest and highest amount of shade 

required to survive desert thermal conditions. All species thermal vulnerabilities were 

significantly predicted by the GAM, which was expected (since thermal vulnerabilities were 

derived from the species parameters). When examining the marginal effect of thermal 

vulnerability (the minimum percent shade a species requires to survive given a specific 

combination of solar radiation and air temperature) by holding temperature and solar radiation at 

fixed, extreme values (50C and 1400 watts/m2, or full sun), species required an average of 79.7 

± 5.3% shade to survive (Fig. 1, Suppl. Material Table S1). The least thermally vulnerable 

species were LeConte’s thrasher (Toxostoma lecontei) and Abert’s towhee (Melozone aberti), 

which were approximately 16% less vulnerable than the average of all species, and 35.7% less 

than the most vulnerable species (Fig. 1). The most vulnerable species was the golden-crowned 

kinglet (Regulus satrapa), which was approximately 20% more vulnerable than the average. The 

estimated amount of shade required to survive, according to the mechanistic model, will change 

given different combinations of temperature and solar radiation, but the relative vulnerabilities 

between species would not change (all other things being equal). Species sorted optimally by 

thermal risk into 18 clusters (Fig. 1), with on average 8.4 ± 4.2 species per cluster. Clusters were 

separated from one another by on average 1.7 ± 1.0 percent shade required for species survival 

given equivalent thermal conditions (Fig. 1, Supplementary Table S1).  

Dorsal reflectance was generally lower and had less variation across species (0.24  0.05 

on average for all specimens) compared to ventral reflectance (0.39  0.10 on average) (Figure 2, 
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Table 1). This pattern of variation in ventral reflectance compared to dorsal reflectance was 

consistent even when we grouped the reflectance data by family (Figure 2a). Cluster number was 

statistically significantly predicted by reflectance (F = 20.46, df = 148, R2 = 0.21, p < 0.001). 

Dorsal reflectance was found to be significantly negatively associated with the thermal 

vulnerability cluster; note in Fig 2b that as cluster number increases, thermal vulnerability 

decreases (β = 42.51, standard error = 7.61, t-value = 5.59, p < 0.001). On the other hand, ventral 

reflectance was not statistically significantly associated with thermal vulnerability cluster (β = -

2.34, standard error = 3.68, t-value = -0.64, p = 0.53) (Figure 2b). Thermal vulnerability was 

statistically significantly predicted by reflectance (F= 18.57, df = 148, R2 = 0.19, p < 0.001). 

Increasing dorsal reflectance was statistically significantly predictive of vulnerability (β = -

53.00, standard error = 10.31, t-value = -5.14, p < 0.001), but ventral reflectance was not (β = 

1.22, standard error = 4.99, t-value = 0.25, p = 0.81) (Figure 3). Log-scaled body mass was 

found to be significantly positively associated with thermal vulnerability cluster (i.e., negatively 

associated with vulnerability), although with low fit (F = 8.4, df = 300, R2 = 0.03, β = 0.46, 

standard error = 0.16, t-value = 2.90, p = 0.004). Increasing log-scaled body mass also was 

significantly predictive of decreasing thermal vulnerability at the same low level of fit (F = 

10.77, df = 300, R2 = 0.03, β = -0.70, standard error = 0.21, t-value = -3.28, p = 0.001). 

 

Discussion 

Mechanistic models play important roles in scientific research. While correlative models 

describe patterns without necessarily explicitly considering underlying processes, mechanistic 

models are derived from theoretical assumptions and incorporate the fundamental principles 

governing the phenomenon (Buckley et al., 2010; Kearney, 2021). By directly linking the 
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parameter values for the variables to these theoretical constructs, mechanistic models offer 

physically interpretable parameters with meaningful dimensions (Kearney, 2021). Such 

knowledge provides the basis for predicting wildlife sensitivity to climate change across their 

distributions, a requirement for informed adaptive conservation of species (Johnston and 

Schmitz, 1997; Kearney et al., 2010). We collected data to populate mechanistic thermal model 

parameters for 151 birds in the Mojave Desert, allowing us to identify the species potentially 

most at risk to increased temperatures associated with climate change. We use the term 

“potentially at risk” to indicate that species-specific behaviors that can mitigate heat load (e.g., 

shade-seeking, climbing, burrowing (Kearney and Porter, 2020)) are not included in our model. 

However, these behaviors could be incorporated if the behaviors and their thermoregulatory 

effects are known or hypothesized, such as Kearney et al. (2018) including fossorial behavior in 

models of the fundamental niche of the sleepy lizard Tiliqua rugosa. 

It is well known that bird species differ in their capacity to tolerate high temperatures 

(McKechnie et al., 2017). The wide range of bird responses to external temperature exposure 

from our analysis aligns with findings from the application of other mechanistic models of desert 

avifauna. For instance, Albright et al. (2017) calculated that climate change negatively impacted 

the survival of five bird species to different degrees across the entire American southwest, while 

Ma et al. (2023) reported that the global effects of increased heat on desert birds is heterogeneous 

even within the same desert system. In these papers, we note that body mass appears often as a 

key variable influencing survival; indeed, McKechnie et al. (2012) suggest that birds with larger 

masses may face higher direct risk of hyperthermia due to their relatively smaller surface area. 

Riddell et al. (2019) calculated with mechanistic models that cooling costs were likely 

responsible for changes in bird size, an assertion that is supported by a systematic analysis 



 87 

showing that warming temperatures are driving reductions in avian mass (Weeks et al., 2022). In 

our study, body mass was significantly associated with vulnerability, although at a low degree of 

fit (although this may be because many of our other parameters were derived from body mass). 

In addition to size, results of our analyses showed a strong relationship between dorsal 

feather reflectance and thermal vulnerability. Countershading (Thayer’s law) is typical of birds, 

though its function and effectiveness is debated (Ruxton et al., 2004).In our study, dorsal 

reflectance of birds explained approximately 21% of the variation in thermal vulnerability, and as 

might be expected, the association was negative – birds with lower reflectance had higher 

thermal vulnerability. Ventral reflectance, in contrast, had no significant influence, demonstrating 

the importance of collecting accurate reflectance data to parameterize the models. The 

importance of dorsal reflectance data to calculate thermal vulnerability is supported by empirical 

evidence, as arid birds tend to reflect higher amounts of near-infrared light from the dorsal area 

than tropical birds as a biophysical adaptation to heat and direct sunlight (Medina et al., 2018) 

and avian dorsal reflectance decreases over time when their environment changes from desert to 

agricultural fields (Mason and Unitt, 2018). Furthermore, the color of feathers influences birds’ 

energy budgets, with darker colors increasing heat absorption in relation to lighter colors, thereby 

impacting the spatial distribution of species in extreme ecosystems (Rogalla et al., 2022).  

For some species, we were not able to measure certain input parameters directly or 

estimate them allometrically. One such example is the critical thermal maximum (the thermal 

point at which an animal’s motor functions break down, eventually leading to death), which is an 

important parameter in thermal models (Kearney et al., 2021). Although there have been studies 

that directly measured such parameters with no long-term damage to a live specimen (e.g., Smith 

et al., 2017; Talbot et al., 2018), it can present challenges in practice. Obtaining accurate 
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measurements of the critical thermal maximum can sometimes led to lethal outcomes, which 

may not be feasible or ethically desirable (Lutterschmidt and Hutchison, 1997). Therefore, we 

relied instead on more approximate parameters based on known measurements from 

taxonomically related species, which can introduce uncertainties and potential inaccuracies in 

model predictions. Consequently, models using our parameter values for some of the species 

should exercise caution when making predictions about desert bird spatial distributions.  

As we stated earlier, it is possible for animals to thrive in otherwise unsurvivable 

environments via behavioral adaptations despite physical limits to surviving high temperatures 

(Kearney et al., 2018). The population stability of small mammals in the Mojave Desert, for 

example, has been attributed to their fossorial behaviors (Riddell et al., 2021). Furthermore, 

some species of Mojave Desert birds are reported to wedge themselves into microsites such as 

knotholes and crevices in trees and rocks to escape from extreme temperatures (Wolf et al., 

1996), and there is anecdotal evidence of them utilizing underground burrows, possibly as a 

thermal refuge (Puffer et al., 2022). Burrows are also known to be used as thermal refugia by 

birds in other deserts (Dawson et al., 2019; Williams et al., 1999). Although these behaviors can 

allow animals to extend their distributions into otherwise lethal environments, they also may 

result in negative trade-offs that impact survival in other ways (Guo et al., 2020). For example, 

behaviors that limit heat exposure such as increasing time spent in cooler, shaded microclimates 

reduces avian foraging efficiency, negatively impacting energy intake and possible even breeding 

success (van de Ven et al., 2019). Therefore, projections of the potential impacts of climate 

change on birds using our parameters that do not take these behaviors and trade-offs into account 

will likely underestimate persistence likelihood. 
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Table 4-1 The parameters used in our NicheMapR analysis, including the parameter name as 

found in NicheMapR, its description, and the units that NicheMapR requires (a dash indicates a 

unitless metric). Parameter values are given in Table 2, except for those that are not species-

specific, such as the animal’s current orientation in reference to the sun. 

Parameter  Description Units 

ANDENS Body density kg/m3 

AMASS Body mass kg 

REFLD Dorsal feather reflectivity fractional, 0-1 

REFLV Ventral feather reflectivity fractional, 0-1 

LHAIRV Ventral feather length m 

LHAIRD Dorsal feather length m 

ZFURD Dorsal feather depth m 

ZFURV Ventral feather depth m 

PANT_MAX Maximum breathing rate multiplier (panting) - 

RHOD Dorsal feather density 1/m2 

RHOV ventral feather density 1/m2 

TC_MAX Maximum core temperature °C 

TC Core temperature °C 

PANT_MULT multiplier on basal metabolic rate at maximum 

panting level 

- 

QBASAL Basal heat generation W 

Q10 Factor for adjusting BMR for TC - 

SHAPE_B Ratio between long and short axis - 

SHAPE_B_MAX Maximum ratio between long and short axis 

(curling/uncurling) 

- 

EMISAN Emissivity - 

TA Air temperature °C 

TGRD Ground temperature °C 

TSKY Sky temperature °C 

VEL Wind speed m/s 

RH Relative humidity % 

QSOLR Solar radiation Watts/m2 

Z Zenith angle of sun ° from overhead 

SHAPE Animal shape Cylinder, sphere, plate, or 

ellipsoid 

ORIENT Orientation in reference to sun 

(Perpendicular, parallel, vertical, or average of 

parallel/perpendicular) 

-- 

PCTEYES Surface area made up by eyes % 

KHAIR Feather thermal conductivity Watts/m°C 

ELEV Elevation m 

PCTWET Percent of skin surface that is wet (sweating) % 

PCTWETMAX Maximum percent surface area that can be wet 

(sweating) 

% 

SUBQFAT Is subcutaneous fat present? (Yes/No) -- 

FLYHR Is flight occurring this hour? (Yes/No) -- 
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PCOND Fraction of surface area that is touching the substrate -- 

FATPCT Percent body fat % 

EXTREF Oxygen extraction efficiency % 

ABSSB Solar absorptivity of the substrate fractional, 0-1 

THERMOREG Should the animal thermoregulate Yes/no 

RESPIRE Should the animal respire Yes/no 

 



 
 

Table 4-2 Parameter values for each species’ input into NicheMapR mechanistic thermal model; parameters that are not species-specific are excluded. 

Variables in the column names match those in Table 1, where units also can be found. 

Scientific Name 
Common 

Name 
ANDENS AMASS REFLD REFLV FV FD I.D I.V PANT_MAX RHOD RHOV TC_MAX TC PANT_MULT QBASAL Q10 Shape.B 

Accipiter cooperii 
Cooper's 

Hawk 
429.589 338.427 0.216 0.527 0.031 0.034 0.008 0.006 8.209 11600.000 11600.000 43.800 39.900 1.891 1.642 2.000 2.835 

Accipiter gentilis 
Northern 

Goshawk 
576.210 867.981 0.226 0.387 0.036 0.039 0.009 0.006 8.026 11600.000 11600.000 43.800 39.900 2.001 3.138 2.000 3.128 

Accipiter striatus 
Sharp-shinned 

Hawk 
527.458 128.074 0.210 0.393 0.026 0.029 0.008 0.006 8.403 10427.349 10427.349 43.800 39.900 1.784 0.841 2.000 2.526 

Aeronautes saxatalis 
White-

throated Swift 
1000.000 32.855 0.157 0.342 0.019 0.021 0.006 0.005 8.682 5117.083 5117.083 43.800 39.900 1.644 0.330 1.000 2.489 

Agelaius phoeniceus 
Red-winged 

Blackbird 
1000.000 61.408 0.173 0.214 0.023 0.025 0.007 0.005 8.552 6709.439 6709.439 44.500 40.700 1.591 0.732 1.000 2.620 

Aimophila ruficeps 

Rufous-

crowned 

Sparrow 

1000.000 18.914 0.230 0.372 0.017 0.018 0.006 0.005 8.797 4339.612 4339.612 44.500 40.700 1.529 0.315 1.000 2.887 

Alectoris chukar Chukar 1000.000 475.673 0.253 0.352 0.033 0.036 0.009 0.006 8.142 11600.000 11600.000 43.800 39.900 1.930 2.075 2.000 3.074 

Amphispiza bilineata 
Black-throated 

Sparrow 
782.332 13.169 0.296 0.400 0.015 0.016 0.006 0.005 8.874 4019.232 4019.232 44.500 40.700 1.510 0.243 1.000 2.387 

Aphelocoma woodhouseii 
Woodhouse's 

Scrub-Jay 
718.405 78.803 0.241 0.304 0.024 0.026 0.007 0.005 8.501 7679.566 7679.566 44.500 40.700 1.605 0.875 1.000 2.654 

Aquila chrysaetos Golden Eagle 502.801 3727.768 0.178 0.197 0.044 0.047 0.011 0.007 7.750 11600.000 11600.000 43.800 39.900 2.184 8.554 2.000 2.383 

Archilochus alexandri 
Black-chinned 

Hummingbird 
1000.000 3.039 0.226 0.354 0.007 0.008 0.004 0.004 9.192 3454.260 3454.260 43.800 39.900 1.425 0.064 1.000 3.148 

Artemisiospiza nevadensis 
Sagebrush 

Sparrow 
777.017 18.179 0.272 0.386 0.016 0.018 0.006 0.005 8.806 4298.640 4298.640 44.500 40.700 1.527 0.307 1.000 2.380 

Athene cunicularia 
Burrowing 

Owl 
594.673 138.347 0.331 0.421 0.027 0.029 0.008 0.006 8.387 11000.271 11000.271 43.800 39.900 1.792 0.887 2.000 2.406 

Auriparus flaviceps Verdin 1000.000 6.798 0.267 0.412 0.011 0.013 0.005 0.004 9.016 3663.940 3663.940 44.500 40.700 1.477 0.152 1.000 2.768 

Baeolophus inornatus Oak Titmouse 1000.000 15.993 0.254 0.424 0.016 0.017 0.006 0.005 8.833 4176.695 4176.695 44.500 40.700 1.520 0.280 1.000 2.448 

Baeolophus ridgwayi 
Juniper 

Titmouse 
970.059 16.149 0.240 0.331 0.016 0.017 0.006 0.005 8.831 4185.409 4185.409 44.500 40.700 1.521 0.282 1.000 2.942 

Bubo virginianus 
Great Horned 

Owl 
426.216 1246.541 0.282 0.410 0.038 0.041 0.010 0.007 7.956 11600.000 11600.000 43.800 39.900 2.045 4.026 2.000 2.720 

Buteo jamaicensis 
Red-tailed 

Hawk 
427.872 911.708 0.251 0.524 0.037 0.039 0.009 0.006 8.016 11600.000 11600.000 43.800 39.900 2.007 3.246 2.000 2.805 

Buteo swainsoni 
Swainson's 

Hawk 
535.704 738.183 0.225 0.469 0.035 0.038 0.009 0.006 8.057 11600.000 11600.000 43.800 39.900 1.982 2.807 2.000 3.012 
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Callipepla californica 
California 

Quail 
965.000 162.729 0.219 0.305 0.028 0.030 0.008 0.006 8.355 11600.000 11600.000 43.800 39.900 1.810 0.992 2.000 3.040 

Callipepla gambelii 
Gambel's 

Quail 
880.858 158.257 0.291 0.446 0.028 0.030 0.008 0.006 8.360 11600.000 11600.000 43.800 39.900 1.807 0.973 2.000 3.174 

Calypte anna 
Anna's 

Hummingbird 
965.873 3.970 0.203 0.262 0.009 0.010 0.005 0.004 9.133 3506.218 3506.218 43.800 39.900 1.449 0.077 1.000 2.965 

Calypte costae 
Costa's 

Hummingbird 
1000.000 2.912 0.232 0.290 0.007 0.008 0.004 0.004 9.201 3447.220 3447.220 43.800 39.900 1.422 0.062 1.000 3.298 

Campylorhynchus brunneicapillus Cactus Wren 993.817 38.684 0.281 0.435 0.020 0.022 0.007 0.005 8.648 5442.150 5442.150 44.500 40.700 1.567 0.526 1.000 2.739 

Cathartes aura 
Turkey 

Vulture 
801.109 1597.071 0.115 0.150 0.039 0.042 0.010 0.007 7.909 11600.000 11600.000 43.800 39.900 2.076 4.774 2.000 3.697 

Catharus guttatus Hermit Thrush 558.836 26.685 0.233 0.405 0.018 0.020 0.006 0.005 8.725 4773.010 4773.010 44.500 40.700 1.547 0.403 1.000 2.516 

Catharus ustulatus 
Swainson's 

Thrush 
554.342 30.129 0.232 0.461 0.019 0.021 0.006 0.005 8.700 4965.070 4965.070 44.500 40.700 1.553 0.440 1.000 2.471 

Catherpes mexicanus Canyon Wren 871.783 11.592 0.248 0.329 0.014 0.016 0.005 0.005 8.901 3931.287 3931.287 44.500 40.700 1.504 0.222 1.000 2.610 

Certhia americana 
Brown 

Creeper 
853.123 7.846 0.236 0.474 0.012 0.014 0.005 0.004 8.985 3722.383 3722.383 44.500 40.700 1.484 0.168 1.000 2.629 

Chamaea fasciata Wrentit 573.993 14.532 0.210 0.305 0.015 0.017 0.006 0.005 8.853 4095.217 4095.217 44.500 40.700 1.515 0.261 1.000 2.250 

Charadrius vociferus Killdeer 634.928 79.850 0.247 0.604 0.024 0.026 0.007 0.005 8.499 7737.941 7737.941 43.800 39.900 1.734 0.608 1.000 2.420 

Chondestes grammacus Lark Sparrow 784.106 28.003 0.282 0.487 0.019 0.020 0.006 0.005 8.715 4846.522 4846.522 44.500 40.700 1.550 0.418 1.000 2.489 

Chordeiles acutipennis 
Lesser 

Nighthawk 
566.112 46.690 0.270 0.318 0.021 0.023 0.007 0.005 8.609 5888.653 5888.653 42.500 42.500 1.679 0.420 1.000 2.299 

Chordeiles minor 
Common 

Nighthawk 
653.933 68.732 0.216 0.296 0.023 0.025 0.007 0.005 8.529 7117.924 7117.924 42.500 42.500 1.719 0.548 1.000 2.610 

Cistothorus palustris Marsh Wren 830.935 11.042 0.242 0.432 0.014 0.015 0.005 0.005 8.912 3900.580 3900.580 44.500 40.700 1.501 0.215 1.000 2.691 

Colaptes auratus 
Northern 

Flicker 
659.535 140.452 0.258 0.358 0.027 0.029 0.008 0.006 8.384 11117.684 11117.684 43.800 39.900 1.794 0.896 2.000 2.387 

Colaptes chrysoides Gilded Flicker 858.854 102.642 0.322 0.401 0.025 0.027 0.007 0.005 8.447 9009.063 9009.063 43.800 39.900 1.761 0.722 2.000 2.828 

Columba livia Rock Pigeon 1000.000 296.875 0.341 0.255 0.031 0.033 0.008 0.006 8.235 11600.000 11600.000 43.400 38.500 1.877 1.523 2.000 2.672 

Columbina inca Inca Dove 736.992 46.217 0.280 0.534 0.021 0.023 0.007 0.005 8.611 5862.288 5862.288 43.400 38.500 1.678 0.327 1.000 1.822 

Contopus cooperi 
Olive-sided 

Flycatcher 
650.078 32.700 0.211 0.350 0.019 0.021 0.006 0.005 8.683 5108.435 5108.435 44.500 40.700 1.558 0.467 1.000 2.598 

Contopus sordidulus 
Western 

Wood-Pewee 
675.715 13.557 0.247 0.401 0.015 0.016 0.006 0.005 8.868 4040.883 4040.883 44.500 40.700 1.512 0.249 1.000 2.919 

Corvus brachyrhynchos 
American 

Crow 
413.998 393.927 0.125 0.144 0.032 0.035 0.009 0.006 8.179 11600.000 11600.000 44.500 40.700 1.695 2.765 2.000 2.820 

Corvus corax 
Common 

Raven 
742.339 1151.909 0.140 0.146 0.038 0.040 0.009 0.006 7.971 11600.000 11600.000 44.500 40.700 1.758 5.955 2.000 2.575 
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Cyanocitta stelleri Steller's Jay 784.222 113.632 0.211 0.219 0.026 0.028 0.007 0.006 8.427 9621.929 9621.929 44.500 40.700 1.625 1.137 2.000 2.767 

Dryobates pubescens 
Downy 

Woodpecker 
736.884 46.190 0.239 0.459 0.021 0.023 0.007 0.005 8.611 5860.771 5860.771 43.800 39.900 1.678 0.417 1.000 2.526 

Dryobates scalaris 
Ladder-backed 

Woodpecker 
725.457 34.884 0.246 0.429 0.020 0.022 0.006 0.005 8.669 5230.226 5230.226 43.800 39.900 1.650 0.344 1.000 2.488 

Dryobates villosus 
Hairy 

Woodpecker 
856.527 77.715 0.214 0.464 0.024 0.026 0.007 0.005 8.504 7618.861 7618.861 43.800 39.900 1.732 0.597 1.000 2.436 

Empidonax difficilis 
Pacific-slope 

Flycatcher 
1000.000 10.602 0.268 0.412 0.014 0.015 0.005 0.005 8.921 3876.038 3876.038 44.500 40.700 1.499 0.209 1.000 2.480 

Empidonax oberholseri 
Dusky 

Flycatcher 
664.830 11.513 0.266 0.442 0.014 0.016 0.005 0.005 8.903 3926.867 3926.867 44.500 40.700 1.503 0.221 1.000 2.592 

Empidonax occidentalis 
Cordilleran 

Flycatcher 
734.682 11.615 0.242 0.341 0.014 0.016 0.005 0.005 8.901 3932.575 3932.575 44.500 40.700 1.504 0.223 1.000 2.714 

Empidonax traillii 
Willow 

Flycatcher 
784.119 12.510 0.237 0.480 0.015 0.016 0.006 0.005 8.885 3982.497 3982.497 44.500 40.700 1.508 0.235 1.000 2.824 

Empidonax wrightii 
Gray 

Flycatcher 
917.607 12.181 0.264 0.448 0.014 0.016 0.006 0.005 8.891 3964.115 3964.115 44.500 40.700 1.506 0.230 1.000 2.373 

Eremophila alpestris Horned Lark 840.145 31.633 0.304 0.461 0.019 0.021 0.006 0.005 8.690 5048.958 5048.958 44.500 40.700 1.556 0.456 1.000 2.850 

Euphagus cyanocephalus 
Brewer's 

Blackbird 
798.055 64.200 0.200 0.231 0.023 0.025 0.007 0.005 8.543 6865.173 6865.173 44.500 40.700 1.594 0.756 1.000 2.711 

Falco mexicanus Prairie Falcon 560.031 548.934 0.326 0.623 0.034 0.036 0.009 0.006 8.114 11600.000 11600.000 43.800 39.900 1.947 2.290 2.000 2.659 

Falco peregrinus 
Peregrine 

Falcon 
638.477 696.142 0.254 0.473 0.035 0.038 0.009 0.006 8.068 11600.000 11600.000 43.800 39.900 1.975 2.696 2.000 2.703 

Falco sparverius 
American 

Kestrel 
567.851 97.876 0.313 0.464 0.025 0.027 0.007 0.005 8.457 8743.253 8743.253 43.800 39.900 1.756 0.699 1.000 2.302 

Geococcyx californianus 
Greater 

Roadrunner 
614.860 271.747 0.252 0.412 0.030 0.033 0.008 0.006 8.252 11600.000 11600.000 43.800 39.900 1.867 1.412 2.000 3.360 

Geothlypis tolmiei 
MacGillivray's 

Warbler 
790.447 10.800 0.191 0.384 0.014 0.015 0.005 0.005 8.917 3887.096 3887.096 44.500 40.700 1.500 0.211 1.000 3.582 

Geothlypis trichas 
Common 

Yellowthroat 
788.170 10.011 0.226 0.435 0.013 0.015 0.005 0.005 8.933 3843.106 3843.106 44.500 40.700 1.496 0.200 1.000 3.122 

Gymnorhinus cyanocephalus Pinyon Jay 481.777 102.143 0.196 0.229 0.025 0.027 0.007 0.005 8.448 8981.195 8981.195 44.500 40.700 1.619 1.053 2.000 2.051 

Haemorhous cassinii Cassin's Finch 711.977 26.129 0.236 0.361 0.018 0.020 0.006 0.005 8.729 4741.980 4741.980 44.500 40.700 1.546 0.397 1.000 2.469 

Haemorhous mexicanus House Finch 831.347 23.798 0.265 0.374 0.018 0.020 0.006 0.005 8.749 4611.976 4611.976 44.500 40.700 1.541 0.372 1.000 2.386 

Hirundo rustica Barn Swallow 779.441 17.322 0.159 0.378 0.016 0.018 0.006 0.005 8.816 4250.827 4250.827 44.500 40.700 1.524 0.296 1.000 2.953 

Icteria virens 
Yellow-

breasted Chat 
758.977 25.945 0.215 0.529 0.018 0.020 0.006 0.005 8.731 4731.751 4731.751 44.500 40.700 1.546 0.395 1.000 2.719 

Icterus bullockii 
Bullock's 

Oriole 
849.507 35.079 0.226 0.463 0.020 0.022 0.006 0.005 8.668 5241.139 5241.139 44.500 40.700 1.561 0.491 1.000 3.295 
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Icterus cucullatus Hooded Oriole 807.293 25.493 0.315 0.436 0.018 0.020 0.006 0.005 8.735 4706.539 4706.539 44.500 40.700 1.545 0.390 1.000 2.728 

Icterus parisorum Scott's Oriole 896.817 37.010 0.239 0.346 0.020 0.022 0.006 0.005 8.657 5348.811 5348.811 44.500 40.700 1.564 0.510 1.000 2.578 

Junco hyemalis 
Dark-eyed 

Junco 
689.802 18.375 0.209 0.342 0.016 0.018 0.006 0.005 8.804 4309.566 4309.566 44.500 40.700 1.528 0.309 1.000 2.552 

Lanius ludovicianus 
Loggerhead 

Shrike 
669.989 46.627 0.269 0.473 0.021 0.023 0.007 0.005 8.609 5885.139 5885.139 44.500 40.700 1.577 0.601 1.000 2.130 

Leiothlypis celata 

Orange-

crowned 

Warbler 

728.230 8.760 0.238 0.412 0.013 0.014 0.005 0.005 8.961 3773.360 3773.360 44.500 40.700 1.490 0.182 1.000 2.481 

Leiothlypis luciae 
Lucy's 

Warbler 
1000.000 6.539 0.254 0.532 0.011 0.013 0.005 0.004 9.025 3649.493 3649.493 44.500 40.700 1.475 0.148 1.000 2.853 

Leiothlypis virginiae 
Virginia's 

Warbler 
755.896 7.392 0.249 0.411 0.012 0.013 0.005 0.004 8.998 3697.044 3697.044 44.500 40.700 1.481 0.161 1.000 2.726 

Loxia curvirostra Red Crossbill 954.602 31.974 0.201 0.235 0.019 0.021 0.006 0.005 8.687 5067.953 5067.953 44.500 40.700 1.557 0.459 1.000 2.933 

Megascops kennicottii 
Western 

Screech-Owl 
742.784 141.548 0.276 0.325 0.027 0.029 0.008 0.006 8.383 11178.817 11178.817 43.800 39.900 1.795 0.901 2.000 2.331 

Melanerpes uropygialis 
Gila 

Woodpecker 
479.256 50.110 0.280 0.393 0.022 0.023 0.007 0.005 8.594 6079.357 6079.357 43.800 39.900 1.687 0.441 1.000 2.160 

Meleagris gallopavo Wild Turkey 621.431 4674.828 0.183 0.228 0.045 0.048 0.011 0.007 7.708 11600.000 11600.000 43.800 39.900 2.214 9.995 2.000 2.889 

Melospiza melodia Song Sparrow 851.782 23.660 0.248 0.461 0.018 0.019 0.006 0.005 8.750 4604.309 4604.309 44.500 40.700 1.541 0.370 1.000 2.863 

Melozone aberti 
Abert's 

Towhee 
934.355 46.630 0.327 0.481 0.021 0.023 0.007 0.005 8.609 5885.323 5885.323 44.500 40.700 1.577 0.601 1.000 2.361 

Melozone crissalis 
California 

Towhee 
997.042 50.089 0.248 0.384 0.022 0.023 0.007 0.005 8.594 6078.213 6078.213 44.500 40.700 1.580 0.633 1.000 2.402 

Mimus polyglottos 
Northern 

Mockingbird 
794.517 49.815 0.269 0.505 0.022 0.023 0.007 0.005 8.595 6062.953 6062.953 44.500 40.700 1.580 0.630 1.000 2.479 

Molothrus ater 
Brown-headed 

Cowbird 
895.304 42.074 0.233 0.271 0.021 0.023 0.007 0.005 8.630 5631.236 5631.236 44.500 40.700 1.571 0.559 1.000 2.934 

Myadestes townsendi 
Townsend's 

Solitaire 
500.247 33.861 0.262 0.325 0.020 0.021 0.006 0.005 8.675 5173.205 5173.205 44.500 40.700 1.560 0.478 1.000 2.791 

Myiarchus cinerascens 
Ash-throated 

Flycatcher 
684.611 27.613 0.274 0.473 0.019 0.020 0.006 0.005 8.718 4824.733 4824.733 44.500 40.700 1.549 0.413 1.000 2.584 

Nucifraga columbiana 
Clark's 

Nutcracker 
614.785 131.308 0.276 0.313 0.027 0.029 0.008 0.006 8.398 10607.716 10607.716 44.500 40.700 1.633 1.261 2.000 2.373 

Oreortyx pictus 
Mountain 

Quail 
794.688 216.652 0.258 0.283 0.029 0.031 0.008 0.006 8.297 11600.000 11600.000 43.800 39.900 1.841 1.208 2.000 3.631 

Oreoscoptes montanus Sage Thrasher 910.942 42.597 0.315 0.462 0.021 0.023 0.007 0.005 8.628 5660.413 5660.413 44.500 40.700 1.572 0.564 1.000 2.542 

Passer domesticus 
House 

Sparrow 
917.994 29.363 0.207 0.334 0.019 0.021 0.006 0.005 8.705 4922.318 4922.318 44.500 40.700 1.552 0.432 1.000 2.696 
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Passerella iliaca Fox Sparrow 880.987 32.903 0.224 0.391 0.019 0.021 0.006 0.005 8.681 5119.765 5119.765 44.500 40.700 1.558 0.469 1.000 2.615 

Passerina amoena 
Lazuli 

Bunting 
720.970 14.472 0.222 0.390 0.015 0.017 0.006 0.005 8.854 4091.890 4091.890 44.500 40.700 1.515 0.260 1.000 2.976 

Passerina caerulea Blue Grosbeak 755.871 27.682 0.239 0.302 0.019 0.020 0.006 0.005 8.717 4828.588 4828.588 44.500 40.700 1.549 0.414 1.000 2.952 

Passerina cyanea 
Indigo 

Bunting 
833.733 14.138 0.207 0.269 0.015 0.017 0.006 0.005 8.859 4073.269 4073.269 44.500 40.700 1.514 0.256 1.000 2.714 

Patagioenas fasciata 
Band-tailed 

Pigeon 
804.928 310.935 0.210 0.446 0.031 0.033 0.008 0.006 8.226 11600.000 11600.000 43.400 38.500 1.882 1.583 2.000 2.510 

Petrochelidon pyrrhonota Cliff Swallow 786.400 20.786 0.195 0.403 0.017 0.019 0.006 0.005 8.778 4444.038 4444.038 44.500 40.700 1.534 0.337 1.000 2.508 

Phainopepla nitens Phainopepla 717.384 25.340 0.165 0.153 0.018 0.020 0.006 0.005 8.736 4698.012 4698.012 44.500 40.700 1.544 0.389 1.000 2.636 

Phalaenoptilus nuttallii 
Common 

Poorwill 
597.288 43.449 0.285 0.279 0.021 0.023 0.007 0.005 8.624 5707.903 5707.903 42.500 42.500 1.672 0.400 1.000 2.557 

Pheucticus melanocephalus 
Black-headed 

Grosbeak 
687.620 42.952 0.285 0.497 0.021 0.023 0.007 0.005 8.626 5680.179 5680.179 44.500 40.700 1.572 0.567 1.000 2.488 

Pipilo chlorurus 
Green-tailed 

Towhee 
938.904 28.427 0.271 0.395 0.019 0.020 0.006 0.005 8.712 4870.158 4870.158 44.500 40.700 1.550 0.422 1.000 2.947 

Pipilo maculatus 
Spotted 

Towhee 
1000.000 40.472 0.175 0.359 0.021 0.022 0.007 0.005 8.638 5541.896 5541.896 44.500 40.700 1.569 0.543 1.000 2.689 

Piranga ludoviciana 
Western 

Tanager 
638.021 29.926 0.255 0.426 0.019 0.021 0.006 0.005 8.701 4953.726 4953.726 44.500 40.700 1.553 0.438 1.000 2.647 

Piranga rubra 
Summer 

Tanager 
767.879 30.765 0.314 0.455 0.019 0.021 0.006 0.005 8.695 5000.546 5000.546 44.500 40.700 1.555 0.447 1.000 2.809 

Poecile gambeli 
Mountain 

Chickadee 
902.382 11.329 0.178 0.251 0.014 0.016 0.005 0.005 8.906 3916.597 3916.597 44.500 40.700 1.503 0.219 1.000 2.663 

Polioptila caerulea 
Blue-gray 

Gnatcatcher 
751.699 5.640 0.233 0.445 0.010 0.012 0.005 0.004 9.057 3599.334 3599.334 44.500 40.700 1.467 0.133 1.000 2.591 

Polioptila melanura 
Black-tailed 

Gnatcatcher 
485.385 5.272 0.183 0.339 0.010 0.011 0.005 0.004 9.071 3578.834 3578.834 44.500 40.700 1.464 0.127 1.000 1.882 

Pooecetes gramineus 
Vesper 

Sparrow 
817.409 24.433 0.278 0.402 0.018 0.020 0.006 0.005 8.744 4647.422 4647.422 44.500 40.700 1.542 0.379 1.000 2.700 

Psaltriparus minimus Bushtit 670.167 5.717 0.186 0.309 0.010 0.012 0.005 0.004 9.054 3603.620 3603.620 44.500 40.700 1.468 0.134 1.000 2.090 

Pyrocephalus rubinus 
Vermilion 

Flycatcher 
990.639 24.334 0.336 0.471 0.018 0.020 0.006 0.005 8.744 4641.877 4641.877 44.500 40.700 1.542 0.378 1.000 2.747 

Quiscalus mexicanus 
Great-tailed 

Grackle 
1000.000 146.397 0.158 0.242 0.027 0.029 0.008 0.006 8.376 11449.241 11449.241 44.500 40.700 1.639 1.363 2.000 2.736 

Regulus calendula 
Ruby-crowned 

Kinglet 
558.713 7.608 0.223 0.399 0.012 0.013 0.005 0.004 8.992 3709.074 3709.074 44.500 40.700 1.482 0.164 1.000 2.039 

Regulus satrapa 

Golden-

crowned 

Kinglet 

347.613 5.876 0.176 0.303 0.011 0.012 0.005 0.004 9.048 3612.519 3612.519 44.500 40.700 1.469 0.137 1.000 2.129 
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Salpinctes obsoletus Rock Wren 844.399 16.371 0.290 0.516 0.016 0.018 0.006 0.005 8.828 4197.779 4197.779 44.500 40.700 1.522 0.284 1.000 2.246 

Sayornis nigricans Black Phoebe 743.487 17.840 0.218 0.345 0.016 0.018 0.006 0.005 8.810 4279.700 4279.700 44.500 40.700 1.526 0.303 1.000 2.611 

Sayornis saya Say's Phoebe 538.462 21.589 0.295 0.362 0.017 0.019 0.006 0.005 8.770 4488.779 4488.779 44.500 40.700 1.536 0.347 1.000 2.651 

Selasphorus platycercus 
Broad-tailed 

Hummingbird 
1000.000 3.103 0.213 0.301 0.007 0.009 0.004 0.004 9.187 3457.850 3457.850 43.800 39.900 1.427 0.065 1.000 3.093 

Setophaga graciae 
Grace's 

Warbler 
741.424 8.065 0.192 0.376 0.012 0.014 0.005 0.004 8.979 3734.580 3734.580 44.500 40.700 1.485 0.171 1.000 2.907 

Setophaga nigrescens 
Black-throated 

Gray Warbler 
743.574 9.142 0.192 0.352 0.013 0.014 0.005 0.005 8.952 3794.665 3794.665 44.500 40.700 1.492 0.188 1.000 2.885 

Setophaga occidentalis 
Hermit 

Warbler 
836.334 9.174 0.192 0.400 0.013 0.014 0.005 0.005 8.952 3796.441 3796.441 44.500 40.700 1.492 0.188 1.000 2.729 

Setophaga petechia 
Yellow 

Warbler 
864.870 9.806 0.286 0.489 0.013 0.015 0.005 0.005 8.937 3831.678 3831.678 44.500 40.700 1.495 0.197 1.000 3.224 

Sialia currucoides 
Mountain 

Bluebird 
521.647 28.168 0.222 0.318 0.019 0.020 0.006 0.005 8.714 4855.719 4855.719 44.500 40.700 1.550 0.419 1.000 2.501 

Sialia mexicana 
Western 

Bluebird 
526.989 25.876 0.224 0.314 0.018 0.020 0.006 0.005 8.732 4727.894 4727.894 44.500 40.700 1.545 0.395 1.000 2.643 

Sitta carolinensis 

White-

breasted 

Nuthatch 

1000.000 18.197 0.205 0.398 0.016 0.018 0.006 0.005 8.806 4299.630 4299.630 44.500 40.700 1.527 0.307 1.000 2.909 

Sitta pygmaea 
Pygmy 

Nuthatch 
1000.000 10.441 0.159 0.320 0.014 0.015 0.005 0.005 8.924 3867.105 3867.105 44.500 40.700 1.498 0.206 1.000 2.438 

Sphyrapicus nuchalis 
Red-naped 

Sapsucker 
667.356 48.487 0.209 0.338 0.021 0.023 0.007 0.005 8.601 5988.847 5988.847 43.800 39.900 1.683 0.431 1.000 2.065 

Spinus lawrencei 
Lawrence's 

Goldfinch 
660.476 10.164 0.259 0.384 0.013 0.015 0.005 0.005 8.930 3851.631 3851.631 44.500 40.700 1.497 0.202 1.000 2.635 

Spinus pinus Pine Siskin 849.647 12.822 0.273 0.399 0.015 0.016 0.006 0.005 8.880 3999.865 3999.865 44.500 40.700 1.509 0.239 1.000 2.317 

Spinus psaltria 
Lesser 

Goldfinch 
672.635 9.103 0.202 0.495 0.013 0.014 0.005 0.005 8.953 3792.461 3792.461 44.500 40.700 1.491 0.187 1.000 2.444 

Spizella atrogularis 
Black-chinned 

Sparrow 
614.799 11.448 0.235 0.327 0.014 0.016 0.005 0.005 8.904 3923.247 3923.247 44.500 40.700 1.503 0.220 1.000 2.503 

Spizella breweri 
Brewer's 

Sparrow 
850.250 10.784 0.284 0.481 0.014 0.015 0.005 0.005 8.917 3886.217 3886.217 44.500 40.700 1.500 0.211 1.000 2.381 

Spizella passerina 
Chipping 

Sparrow 
898.769 15.966 0.246 0.369 0.016 0.017 0.006 0.005 8.833 4175.210 4175.210 44.500 40.700 1.520 0.279 1.000 2.436 

Stelgidopteryx serripennis 

Northern 

Rough-winged 

Swallow 

823.572 15.257 0.211 0.449 0.016 0.017 0.006 0.005 8.843 4135.662 4135.662 44.500 40.700 1.518 0.271 1.000 2.630 

Streptopelia decaocto 
Eurasian 

Collared-Dove 
627.323 156.180 0.321 0.527 0.027 0.030 0.008 0.006 8.363 11600.000 11600.000 43.400 38.500 1.806 0.896 2.000 2.365 
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Sturnella neglecta 
Western 

Meadowlark 
853.015 94.269 0.287 0.574 0.025 0.027 0.007 0.005 8.465 8542.109 8542.109 44.500 40.700 1.615 0.995 1.000 2.437 

Sturnus vulgaris 
European 

Starling 
918.280 82.733 0.137 0.142 0.024 0.026 0.007 0.005 8.491 7898.714 7898.714 44.500 40.700 1.608 0.906 1.000 3.078 

Tachycineta thalassina 
Violet-green 

Swallow 
714.162 14.603 0.147 0.460 0.015 0.017 0.006 0.005 8.852 4099.189 4099.189 44.500 40.700 1.516 0.262 1.000 2.295 

Thryomanes bewickii 
Bewick's 

Wren 
1000.000 10.042 0.182 0.304 0.013 0.015 0.005 0.005 8.932 3844.852 3844.852 44.500 40.700 1.496 0.201 1.000 3.024 

Toxostoma bendirei 
Bendire's 

Thrasher 
566.152 57.344 0.273 0.443 0.022 0.024 0.007 0.005 8.566 6482.818 6482.818 44.500 40.700 1.588 0.697 1.000 2.487 

Toxostoma crissale 
Crissal 

Thrasher 
628.455 62.321 0.276 0.385 0.023 0.025 0.007 0.005 8.549 6760.360 6760.360 44.500 40.700 1.592 0.740 1.000 2.594 

Toxostoma curvirostre 
Curve-billed 

Thrasher 
656.667 79.343 0.285 0.399 0.024 0.026 0.007 0.005 8.500 7709.659 7709.659 44.500 40.700 1.605 0.879 1.000 2.429 

Toxostoma lecontei 
Le Conte's 

Thrasher 
847.531 61.008 0.366 0.483 0.023 0.025 0.007 0.005 8.554 6687.161 6687.161 44.500 40.700 1.591 0.729 1.000 2.397 

Toxostoma redivivum 
California 

Thrasher 
907.785 90.108 0.249 0.439 0.025 0.027 0.007 0.005 8.474 8310.060 8310.060 44.500 40.700 1.612 0.963 1.000 2.766 

Troglodytes aedon House Wren 930.824 10.822 0.211 0.387 0.014 0.015 0.005 0.005 8.916 3888.343 3888.343 44.500 40.700 1.500 0.212 1.000 2.847 

Turdus migratorius 
American 

Robin 
586.298 77.281 0.238 0.373 0.024 0.026 0.007 0.005 8.505 7594.699 7594.699 44.500 40.700 1.604 0.863 1.000 2.428 

Tyrannus verticalis 
Western 

Kingbird 
908.158 40.445 0.280 0.525 0.021 0.022 0.007 0.005 8.638 5540.393 5540.393 44.500 40.700 1.569 0.543 1.000 3.316 

Vireo bellii Bell's Vireo 738.531 9.283 0.219 0.489 0.013 0.014 0.005 0.005 8.949 3802.477 3802.477 44.500 40.700 1.492 0.190 1.000 2.886 

Vireo gilvus 
Warbling 

Vireo 
672.628 11.980 0.230 0.493 0.014 0.016 0.005 0.005 8.894 3952.936 3952.936 44.500 40.700 1.505 0.228 1.000 2.214 

Vireo plumbeus 
Plumbeous 

Vireo 
572.645 16.708 0.230 0.462 0.016 0.018 0.006 0.005 8.824 4216.604 4216.604 44.500 40.700 1.523 0.289 1.000 2.356 

Vireo vicinior Gray Vireo 830.111 12.368 0.244 0.486 0.014 0.016 0.006 0.005 8.888 3974.575 3974.575 44.500 40.700 1.507 0.233 1.000 2.716 

Xanthocephalus xanthocephalus 
Yellow-headed 

Blackbird 
735.174 70.412 0.199 0.283 0.023 0.025 0.007 0.005 8.524 7211.619 7211.619 44.500 40.700 1.599 0.807 1.000 2.771 

Zenaida asiatica 
White-winged 

Dove 
785.383 147.918 0.263 0.490 0.027 0.029 0.008 0.006 8.374 11534.014 11534.014 43.400 38.500 1.800 0.856 2.000 2.585 

Zenaida macroura 
Mourning 

Dove 
656.821 106.418 0.291 0.536 0.026 0.028 0.007 0.006 8.440 9219.604 9219.604 43.400 38.500 1.764 0.652 2.000 1.886 

Zonotrichia leucophrys 

White-

crowned 

Sparrow 

705.660 26.622 0.243 0.361 0.018 0.020 0.006 0.005 8.726 4769.466 4769.466 44.500 40.700 1.547 0.403 1.000 2.455 
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Figure 4-1 Thermal vulnerabiity (y-axis), defined as the minimum percent shade a species 

requires to survive (avoid lethal exposure) given a specific combination of solar radiation and air 

temperature. Species are ranked in order of highest (left) to lowest (right) thermal vulnerability. 

Values and species names are found in Supplemental Table S1.  Representation of the K-means 

clusters, with each column representing a bird species, and colors representing each of the 18 

resulting clusters. Absolute thermal vulnerabilities will change based on differences in solar 

radation and temperature, but the relative vulnerability of one species to another will remain the 

same. Values above are from a model of possible combinations of solar radiation and 

temperature, but are presented as the marginal (or partial) effect, where temperature and solar 

radiation are held constant. Species numbers correspond to species numbers in Supplemental 

Table S1. 
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Figure 4-2 Measured dorsal and ventral reflectances, grouped by bird taxonomic family (a) and 

by our calculated thermal vulnerability clusters (b). Cluster numbers on the x-axis match cluster 
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colors in Figure 1 (1 is most vulnerable species cluster and 18 is least vulnerable). Reflectance at 

0 is total absorptance (black), while reflectance at 1 is total reflectance (white). 

 

Figure 4-3 Linear regression between thermal vulnerability from dorsal (top) and ventral 

(bottom) reflectance. Dorsal reflectance is statistically significantly associated with thermal 

vulnerability, while ventral reflectance is not. 
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Chapter 5  
 

Indirect evidence of underground thermal refugia modifying desert bird communities in 
the face of climate change (Adam J. Eichenwald, J. Michael Reed). 
 

 

Abstract 

Models projecting the impacts of climate change on animal distributions have been criticized for 

assumptions that limit their predictive capabilities. Such forecasting, however, is useful when 

examining plausible alternative scenarios for species responses to such external pressures. We 

apply a community viability analysis (CVA) in the form of a series of projections that considered 

the effect of multispecies interactions on a declining Mojave Desert bird community. Our 

alternative models include various types of access to above- and below-ground thermal refugia. 

Conventional wisdom suggests that birds do not utilize underground burrows dug by other 

animals as thermal refugia, which has led to their decline with increased temperatures. We used a 

thermal model to assess multiple site-specific scenarios of avian burrow use under various 

microclimate conditions for 151 bird species. To avoid a "just-so story" narrative, we compared 

model outcomes with published data, our own field surveys, and data from a citizen science 

project (eBird). Our field surveys offered precise pattern detection but limited spatial coverage, 

while citizen science data provided broader geographical and temporal context. We calculated 

that birds having no access to underground refugia should have resulted in instability in bird 

community composition over the course of the 20th and 21st centuries in the face of climate 

change, with a greater loss of species than has been observed. However, thermal model output 

for scenarios in which burrow use is an existing but uncommon behavior are more consistent 

with real world observations. Furthermore, field surveys consistently indicate a positive link 

between bird richness and abundance and the use of underground burrows. Our analysis of eBird 
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data showed that this relationship was strongest in areas with lowest amounts of aboveground 

vegetative shade – consistent with a scenario where birds fall back on burrows as thermal refugia 

due to a lack of protection aboveground. Therefore, even if underground thermal refugia use was 

not a historic behavior for birds, published and field results are consistent either with birds 

currently adopting this behavior or, alternatively, birds using as-yet-unidentified thermal refugia 

with similar properties. Such scenarios must be regarded as speculative based only on existing 

anecdotal evidence, but it suggests further field experiments that can inform ecosystem 

management and policies. 

 

Introduction 

Climate change effects on animal distributions have been projected for many species 

(e.g., Pearson and Dawson 2003, Pecchi et al. 2019). Many of these projections are derived from 

co-associations between current distributions and climate variables, and they often incorporate 

physical landscape features and habitat. This type of forecasting has been criticized for its 

restrictive assumptions, such as assuming that current distributions are limited by the factors 

being investigated, that these factors will continue to limit the species’ distribution under future 

conditions, not incorporating adaptations (Dormann 2007, Austin and Van Niel 2011), not 

allowing for behavioral plasticity and acclimatization (Willis and Bhagwat 2009, Austin and Van 

Niel 2011), and assuming biotic interactions will remain constant despite changing conditions 

(Austin and Van Niel 2011, Trainor and Schmitz 2014). Indeed, forecasting distributions is 

notoriously difficult due to the rise of climatic conditions with no modern analog (Fitzpatrick and 

Hargrove 2009) and limited experimental confirmation of models (Dormann 2007, Austin and 
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Van Niel 2011, Boettiger 2022). Therefore, results from these and similar models should be 

treated as hypotheses to be tested. 

Even within these limitations, forecasting is an important tool for addressing conservation 

questions. One of the most common forecasting tools in species conservation is stochastic 

demographic population projections, referred to as population viability analyses. These are used 

to estimate relative extinction risks under alternative future environmental conditions or 

management scenarios, i.e., to compare alternative hypotheses using a model  (Beissinger and 

Westphal 1998, Reed et al. 2002, Lacy 2019). Such analyses have been used to predict how 

predator reintroduction might be economically beneficial to local cattle farmers (Prowse et al. 

2015), whether increases in grizzly bear predation following shifts in prey availability are 

sufficient to account for elk population declines (Middleton et al. 2013), or which age class of 

loggerhead sea turtles are predicted to have the greatest population impact in response to 

protective management (Crouse et al. 1987). In some cases, they can even provide information 

on systems where testable data is difficult or even impossible to collect (e.g., Prowse et al. 2013), 

making viability analyses important tools for developing ecological hypotheses under climate 

change (Selwood et al. 2015). 

Historically, population viability analyses (PVA) have predominantly centered on single 

species (Beissinger 2002). However, a growing awareness of the need for a multi-species, 

ecosystem-focused perspective (Sabo 2008) has led to the emergence of community viability 

analysis (CVA), an group of approaches to modeling the persistence and dynamics of 

communities under various conditions of disturbance or management that accounts for 

interactions between species (Ebenman and Jonsson 2005, Lacy et al. 2013, Eichenwald and 

Reed 2021). We can generate evidence-based hypotheses for how climate change may be 
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impacting the survival and distribution of entire communities of species which we can evaluate 

with CVA, setting a foundation for the subsequent, more systematic experimentation required for 

confirming the presence and influence of certain interspecific interactions. 

Here we conduct a persistence-based CVA of a well-researched bird community in the 

Mojave Desert, assessing the possibilities that the loss of bird species is driven by thermal 

vulnerability and that thermal refugia, such as surface shade and burrows, might have influenced 

or currently influences patterns of avian population persistence. Specifically, we generate 

hypotheses of different scenarios of bird species persistence over time and species loss related to 

thermal vulnerability and refuge from the threat of heat. Over the last century, Mojave Desert 

birds have suffered notable declines that are hypothesized to be caused by climate change 

(Iknayan and Beissinger 2018, Riddell et al. 2019, Riddell et al. 2021), while the mammal 

community has remained relatively stable (Riddell et al. 2021). Although birds in desert 

environments utilize microclimates such as vegetative shade or crevices in trees and rock as 

thermal refugia (Rundel and Gibson 1996a, Wolf et al. 1996), it has been proposed that birds 

may be particularly vulnerable to increasing temperatures because they, unlike mammals, are 

unable to construct their own microclimates in the form of underground burrows (Riddell et al. 

2021), which provide thermal refugia for wildlife because of their relatively cooler and more 

stable temperature compare to the surface (Rundel and Gibson 1996a). In the Mojave Desert, 

shallow burrows are created by small mammals and lizards (Laundré and Reynolds 1993, Van 

Vuren and Ordeñana 2012), and the Mojave Desert tortoise (Gopherus agassizii) digs deep 

burrow systems (Hansen 1963, Rundel and Gibson 1996a). The Mojave Desert tortoise, along 

with its relatives in other arid habitats, are thought of as ecosystem engineers because of these 
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burrows and their potential benefits to the biotic community (Walde et al. 2009, Pike and 

Mitchell 2013). 

Prevailing wisdom is that birds generally do not utilize underground burrows as thermal 

refugia in desert environments (Austin and Smith 1974, Dean and Vickery 2003), although this 

may be because it can be time consuming and costly to document avian burrow use (Dean and 

Vickery 2003). However, birds are well-known as secondary cavity users (e.g., Brush 1983), and 

there are some that do nest underground, taking advantage of existing burrows and crevices 

(Crowe and Longshore 2013). Use of burrows by local wildlife has not been studied 

systematically, but there is anecdotal evidence of some bird species utilizing burrows in the 

Mojave and elsewhere (Pittman Jr. 1960, Austin and Smith 1974, Bowers and Dunning 1985, 

Coate 1994, Dean and Vickery 2003, Pike and Mitchell 2013, Puffer et al. 2022). Considering 

the strong selective pressure of high temperatures exacerbated by climate change, we suggest 

that the use of burrows as thermal refugia would likely be favored for enhancing bird survival.  

In the absence of systematic study of burrow use by birds, we generated a suite of 

hypotheses (models) to predict current and past bird species richness in the Mojave Desert, based 

on species-specific vulnerability to temperature and predilection for utilizing underground 

thermal refugia. Biophysical models differed in the degree to which species have access to refuge 

from the heat, ranging from the equivalent protection provided by above-ground vegetation, and 

burrows of different depths and availability. We modeled hourly microclimate data at each of 

1494 sites, and its thermal suitability for each of 151 species, daily for 5 summer months, for 20 

years from 1959 and 2019. Projections of species richness from these biophysical models were 

compared to published data on historic bird richness. Data on species-specific thermal 

vulnerabilities for the 151 bird species we evaluated came from mechanistic physiological 
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models of avian thermal properties (Eichenwald and Reed In review). Finally, we tested whether 

observable patterns in avian species distributions (as seen in citizen science bird sighting data 

(eBird) and to our own field survey data of birds and burrows) were consistent with model 

outcomes, even after we controlled for the potential confounding effect of habitat. Evidence 

consistent with the premise that underground burrows (or their thermal equivalents) influence 

bird richness and abundance would lay a foundation for future targeted, manipulative 

experiments, while contrary results would negate the need to implement such a time-consuming 

assessment.  

 

Methods 

Study System 

The Mojave Desert covers one-tenth of the desert area in the contiguous United States 

and Mexico, spanning broad latitudinal (34.8 to 36.2 N), longitudinal (117.2 to 115.8W) and 

elevational ranges (-82m to 3367m) (Rundel and Gibson 1996c). Temperatures are generally 

warm, and the desert holds the record for the highest measured air temperature on the planet (El 

Fadli et al. 2013). The desert has experienced a rise in mean annual air temperature by 

approximately 2°C since the early 20th century (Bai et al. 2011). Vegetation is dominated by 

creosote (Larrea spp.), which covers nearly two-thirds of the total desert area (Rundel and 

Gibson 1996c). In some cases, the iconic and Mojave-restricted Joshua tree (Yucca brevifolia) 
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creates woodlands with a variety of codominant shrubs with increased cover (Rundel and Gibson 

1996c). 

Overview 

 We adopted a multifaceted approach to thoroughly investigate our alternative hypotheses. 

Initially, we utilized a pre-published mechanistic thermal model to assess the consistency of 

avian burrow use (Eichenwald and Reed In review). These models were applied to spatial and 

time specific data under a variety of microclimate conditions to evaluate the plausibility of avian 

burrow use (see next section, Figure 1). We were cautious of the potential pitfall of constructing 

a narrative to fit the results (a "just-so story"), which can occur if one relies only on 

computational models to examine questions of community ecology (Hubálek 2021). To counter 

this limitation, we compared the modeling outcomes with empirical data published by Iknayan 

and Beissinger (2018) as well as data derived from our own field surveys conducted during our 

research and data contributed by citizen scientists (eBird, Sullivan et al. 2014). Our field surveys 

offered higher precision in pattern detection, although they were limited in spatial coverage. 

Conversely, the citizen science data sacrificed some pattern precision but contributed information 

from a broader geographical area and over a more extended period.  

Mechanistic Model  

We divided the Mojave Desert into a grid of 1494 square cells ("sites") measuring 8890m 

on each side. We then modeled the responses of 151 bird species to the microclimate estimates at 

each site using the R package NicheMapR (Kearney and Porter 2017, Kearney et al. 2021), 

which calculates an organism's heat and water exchange based on the corresponding 

microclimates and a suite of biophysical characteristics of the species (Kearney and Porter 2017, 

Kearney et al. 2021). The biophysical parameters for each bird were taken from Eichenwald and 
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Reed (In review). To obtain hourly microclimate data at each site, we utilized the ERA5 hourly 

climate reanalysis for 20 years in four time blocks that spanned 60 years: 1959-1962, 1980-1983, 

1990-1993, 2001-2004, and 2016-2019. We employed the mcera5 R package (Klinges 2022) to 

acquire these data. Although other climate models are availabe for a section of the desert during 

this period, we used ERA5 because it is compatible with NicheMapR. Due to limitations of 

computer memory and computation time on the Tufts high-performance computing cluster, we 

did not download and analyze all available months and years. Instead, we focused on data from 

April 1 to September 1, which encompasses the critical months for bird survival during spring 

and summer. We selected four consecutive years for each time block and introduced a gap of 10-

20 years before proceeding to the next block, which allowed us to mitigate any influence of 

single-year anomalous weather phenomena on our values. Among the available options, we 

chose 1959 as our baseline year as it was the earliest year of accessible ERA5 data and aligned 

with the period when the Grinnell bird surveys ended (1908-1968). To ensure consistency in date 

tracking, NicheMapR employs the day of the year; we addressed leap years by excluding the leap 

day. For instance, day 100 of the year was consistently represented as April 10. 

 Hourly microclimate data for each year were calculated using NicheMapR's micro_era5 

function, which employs methods described in Kearney et al. (2020) to estimate microclimate at 

fine time scales. We assumed birds were positioned 1.5 meters above the ground (per Riddell et 

al. 2019) and incorporated the effect of surrounding topology at each site; this means direct 

sunlight could be blocked if the angle was occluded by higher ground. Additionally, the 

NicheMapR microclimate functions include a "warm" parameter that adjusts calculations based 

on a shifted temperature. For our analyses, we computed the median temperature increase (x°C) 

from 2016 to 2090 at specific locations in Google Earth Engine and used x as our warming 
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parameter when accessing ERA5 data from 2016. To account for abnormal weather phenomena, 

we repeated this process with 2017, 2018, and 2019 baselines, resulting in four estimates for the 

year 2090. We utilized the CNRM-CM5 climate change model, known for its applicability over 

land(Kamworapan and Surussavadee 2019), considering the rcp45 (probable baseline) and rcp85 

(worst-case) climate scenarios (van Vuuren et al. 2011). 

We used a proxy measurement (plant cover) to determine shade availability in the Mojave 

Desert. At bird survey sites, we measured sunlight intensity under the most prevalent plant 

species using a LX1330B Digital Illuminance Light Meter. Lux measurements were taken in 10 

spots per plant: 5 under the canopy and 5 in adjacent sunny areas. We calculated percent shade 

by comparing average lux values in shade and full sunlight. Creosote and white bursage 

(Ambrosia dumosa) were common but provided minimal shade (around 50% shade), while 

Joshua trees and Mojave yucca (Yucca schidigera) offered substantial shade but were patchily 

distributed (around 90% shade). Therefore, we predicted that low-shade areas were those with 

low percentages of plant cover dominated by creosote and white bursage, while high shade areas 

would be dominated by Joshua trees and higher densities of plant cover. If true, we could use 

measures of NDVI to determine percent plant cover and use it as a proxy variable for shade. 

To assess cover distribution, we employed high-resolution satellite imagery from the 

National Agriculture Imagery Program (NAIP). Analyzing data acquired between Jan 2019 and 

Dec 2021, we used Google Earth Engine to access red, green, blue, and near-infrared band 

information with a one-meter ground sample distance. Developed impervious surfaces were 

removed by creating a masking layer based on the National Land Cover Database (NLCD). The 

NDVI was calculated from the NAIP raster layer, and cells with NDVI values less than or equal 

to 0 were excluded. This resulted in a raster layer classifying plants at the one-square-meter 
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level. The percent plant cover per site was determined by dividing the number of plant-

representing raster cells by the total number of cells in that site. 

We classified areas as low or high shade using maximum likelihood classification in 

ESRI ArcMap. Groundtruthed locations, which we visited across the Mojave Desert, were 

independently classified as low or high shade. We then buffered each location 1km and 

calculated the percent plant cover in each zone. A one-tailed Welch’s two-sample t-test with 

heterogeneous variances supported our prediction that low-shade areas have lower plant cover 

compared to high-shade areas (t = 2.08, df = 14.51, p-value = 0.03). This validation allows us to 

use the percent plant cover raster as a proxy for shade types across the Mojave Desert. For our 

analyses, we assumed high-shade, yucca-dominated areas provided approximately 90% 

protection from sunlight, while low-shade creosote-dominated areas provided approximately 

60% protection from sunlight.  

 Birds' migratory and breeding patterns result in partial summer (April through August) 

presence in the Mojave Desert, providing some relief from extreme heat. Therefore, we analyzed 

bird presence data using the ebirdst R package (Fink et al. 2020) to categorize temporal use into 

pre-breeding migration, breeding, and year-round presence. Prefabricated distribution models 

from the Cornell Lab of Ornithology (Fink et al. 2020) were downloaded for each species, 

representing weekly ranges. Shapefiles representing species' ranges in each season were created 

using R code (Strimas-Mackey et al. 2021), including estimated end dates for associated seasons. 

The temporal and spatial distributions obtained were applied to our mechanistic models 

of species-specific thermal vulnerability by excluding days when bird species were not present. 

For instance, if a species was found only at a specific location in the Mojave Desert during the 

pre-breeding migration season, we removed all subsequent days from the model after confirming 
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the final date of that season. Conversely, if a species was present year-round at a location, we ran 

the model for all hours/days for the target time frame. Species present year-round were evaluated 

during breeding and pre-breeding seasons; species present during the breeding season were also 

regarded as present during the pre-breeding season. It is important to note that this analysis 

assumes stability in species presence/absence distributions and season end dates based on eBird 

surveys from 1959 to 2090, although actual changes over a century are difficult to precisely map 

due to data limitations. 

Using the temporal distributions described above, we ran endoR for each of our sites, 

years, and species, for a total of 18 modeled scenarios (Figure 2). Furthermore, we calculated 

how increasing shade from 0-100% (increments of 5) affected bird thermal responses using the 

shade parameter in the endoR function. Degree of thermal vulnerability of each species, per site, 

per year was defined by the minimum required shade in which there are no hours where the 

model was unable to calculate a solution (i.e., how much shade was required for a bird to survive 

all hours in a day) or to prevent the species from losing 15% or more of its body mass in water 

(Albright et al. 2017, Eichenwald and Reed In review). Finally, we calculated median thermal 

vulnerabilities of birds within each 4-year block. We used the Tufts University High Performance 

Compute Cluster to run our models to shorten the substantial computation times. 

We also examined bird thermal responses in underground burrows at depths of 200 

(tortoise burrow, Hansen 1963), 50, 20, and 5 cm (mammal burrows, Laundré and Reynolds 

1993, Van Vuren and Ordeñana 2012), representing the available microhabitat. Burrows were 

assumed to have no direct exposure to solar radiation or wind. Median thermal vulnerabilities 

were calculated as previously described. Note that these refugia were evaluated in addition to 

available shade from vegetation. 
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It is important to note that not all bird species can fit inside mammal burrows, although 

tortoise burrow entrances are much larger. To determine species capable of fitting through both 

types of burrow entrances, we measured the vertical and cross-sectional lengths of 10 mammal 

burrow entrances at each of the 42 sites we used for our field surveys (see below). The cross-

sectional area of the openings was calculated using the ellipse area formula. One-sample t-tests 

with Bonferroni corrections compared the distribution of burrow entrance areas with the average 

cross-sectional area of each bird species, obtained from measurements of bird width and height 

from Eichenwald and Reed (2023). Species with significantly smaller cross-sectional areas than 

the burrow openings were considered capable of entering. Only species meeting this criterion 

were included in subsequent analyses of burrows and their associated underground 

microclimates. 

To determine how thermal vulnerability of bird species in the Mojave Desert has changed 

over time, we fit two linear mixed models to our data using REML and the nloptwrap optimizer 

(Makowski et al. 2020) with year as a predictor, species and location as random variables, and 

thermal vulnerability as a dependent variable. The first model used only aboveground thermal 

vulnerability data in response to Mojave Desert climate conditions and included results from all 

species, while the second modeled only belowground thermal vulnerability data at all depths and 

included results only from species capable of fitting in both mammal and tortoise burrows.  We 

then plotted the marginal effect of year on thermal vulnerability in both models. 

We analyzed predicted bird community diversity over time using principal coordinates 

analysis (Gower 1966) and the Jaccard index of dissimilarity in the Vegan R package (Dixon 

2003). Each site/year combination was considered separately, considering species 

presence/absence and their minimum shade requirements for survival. For low-shade sites, 
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species were considered present if their minimum shade requirement was ≤60%, while for high 

shade sites, it was ≤90%. To handle observations with zero species, we included a dummy 

species present at all sites. Although excluding locations with zero observed species is common 

due to undefined calculations with the Jaccard index, we included absence-only observations in 

our study as they indicate mechanistically calculated lethal environmental conditions. 

Confidence intervals for PCoA were calculated to assess differences in predicted community 

types across years. 

 We also used a negative-binomial mixed model, employing ML and the Nelder-Mead 

optimizer (Makowski et al. 2020), to analyze species richness (excluding the dummy species), 

with year and burrow depth (including aboveground data) as predictors. Site (raster cell) was 

treated as a random variable. In addition, we considered different success rates for birds in 

securing burrows when needed (75%, 50%, and 25% chance). For each species, we generated 

uniform-random numbers between 1-100 to determine success or failure. If successful, the bird 

was classified as "always successful" and its contribution to richness was calculated based on 

burrow depth. If unsuccessful, the bird was classified as having failed to find burrows when 

needed, and its contribution to richness was calculated based on aboveground conditions. This 

process was repeated 50 times per year in a Monte Carlo simulation. We fitted a negative-

binomial mixed model, using ML and Nelder-Mead optimizer (Makowski et al. 2020), predicting 

species richness with year, burrow depth (including aboveground data), and success rate. Site 

(raster cell) was included as a random variable. 

We simulated bird underground refugia use over time using microclimate and shade data 

solely from survey areas used by Iknayan and Beissinger (2018). Their bird richness survey data 

at the beginning and end of our prediction timeline were compared to our predicted scenario 
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outcome, excluding climate change scenarios. Birds were assumed to use desert tortoise burrows 

initially and imperfectly for thermal protection but were forced to switch to imperfect mammal 

burrows as desert tortoise populations declined over time. Hourly bird behavior calculations 

determined whether birds sought underground refugia when environmental conditions were 

lethal despite available shade. Our scenarios considered different probabilities of successfully 

taking refuge in burrows based on depth and year. A Monte Carlo simulation was performed 100 

times per year to gain an understanding of the variation in response. Due to time and computer 

memory limitations, we were constrained in the number of scenarios we could run. We used a 

negative-binomial mixed model with ML and Nelder-Mead optimizer (Makowski et al. 2020) to 

predict species richness with year, including the site as a random variable. 

Citizen science data and field surveys  

Our field surveys were conducted with a standardized sampling effort (described below) 

over a relatively limited spatial extent, but they allowed for simultaneous measurements of 

microhabitat features. In contrast, eBird contains over a decade of survey data from across the 

entire Mojave Desert, but each survey has different sampling effort and observers report no data 

on microhabitat features. Therefore, we had to infer features of interest using remote sensing data 

(see below). Each approach compensates for the weaknesses of the other.  

 We conducted our surveys in the eastern Mojave Desert in April and May 2023 in the 

areas surrounding Las Vegas, Nevada. Field surveys were conducted as far north as Coyote 

Springs, Nevada (36.81° N, 114.94° W), and as far south as the Mojave National Preserve in 

California (35.06° N, 115.55° W). We performed 129 point-count surveys for birds across 43 

sites in the eastern Mojave Desert. Sites were selected to be at least 0.5 km from one another and 

were usually over 3-5 km from each other. Consecutive points on a transect were 500 m apart, 
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with 3 survey points per transect. Surveys were done between sunrise and 4 hours after sunrise. 

We conducted bird counts for 10 min at each point, including all species observed or heard 

within 100 meters of the survey point. Viewshed in the Mojave Desert is vast, even in the most 

vegetated areas, and we sometimes observed birds outside our survey radius; they were noted, 

but we did not include these in our counts unless they flew overhead. Birds observed or heard 

during walks between survey points along a transect were also recorded separately. We also 

noted birds observed on our return from the farthest survey point along the transect, but only if 

the species had not yet been recorded in the survey. To be included, these birds also had to be 

within the 100m of the transect. 

 When returning from the last point along a transect, we used a tally counter to record the 

number of burrows within 5 meters on both sides of the transect. Burrows were separated into 

two categories: 1) tortoise-made burrows, and 2) burrows made by other vertebrates. Burrows 

made by tortoises are easily recognizable due to their large size and half-dome shape (Rundel 

and Gibson 1996a). Smaller, circular burrows are made by other reptiles and by rodents but 

could not be attributed to taxon. There were also shallow excavations made by species such as 

kit fox (Vulpes macrotis) and black-tailed jackrabbit (Lepus californicus), but they were 

excluded from our surveys because they were too shallow to provide refuge from the sun for 

resident birds.  

 We downloaded eBird data from the Cornell Lab of Ornithology 

(https://science.ebird.org/, September 2021) for the years 2009-2021 (2009 is the earliest 

available year) for April 1 – August 31 (the spring-summer months). We limited this list to the 

bird species that are resident in, or migrants through, the Mojave Desert during the spring and 

summer months, limited to the 151 species used in our biophysical model. We followed the 
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protocol of Strimas-Mackey et al. (2020) on how best to prep the data for analysis using the auk 

package in R (Strimas-Mackey et al. 2018). We limited data to surveys where observers created 

a “complete checklist” (i.e., where the participant reported all birds that they detected and 

identified, allowing inference of counts of zero individuals for the species that were not 

reported). We also removed duplicate lists, where two observers in the same group recorded 

separate lists. Checklists are generally autocorrelated in space and time; we corrected for 

autocorrelation by defining an equal-area hexagonal grid across the study region with 5 km 

between hexagon centers, and then randomly sampling one checklist per hexagon per week 

(Strimas-Mackey et al. 2020). We used hexagons because they suffer from relatively smaller 

amounts of spatial distortion than do other common shapes (Sahr 2011).  

We developed a raster map of expected counts of tortoises across the Mojave Desert 

using data on tortoise observations and transect locations collected by the US Fish and Wildlife 

Service from 2001-2019 (Allison and McLuckie 2018; data provided by Linda Allison, USFWS, 

pers comm). We used these observations as a proxy for the relative abundance of tortoise-built 

microclimates (burrows), assuming higher numbers of tortoise observations are indicative of 

higher numbers of burrows. Under some circumstances, a basic kernel density analysis can be 

sufficient to calculate the density of features in a neighborhood and provide the necessary raster 

map. However, USFWS surveys were not spatially unbiased; some areas were more heavily 

sampled than others. Therefore, an area with a greater number of tortoise observations could be 

due to higher sampling effort at that site or to a genuine higher abundance of tortoises. 

Consequently, we adopted the fisheries biology solution of calculating catch per unit effort – or 

in our case sightings per unit effort – rather than using raw observations (Maunder and Punt 
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2004). This standardizes the estimates across all surveys and provides a measure of relative 

abundance for tortoises, and by proxy tortoise-built microclimates, across the Mojave Desert. 

We used the Kernel Density tool in ArcMap to calculate the distribution of densities for 

both tortoise observations and surveys. Kernel density bandwidth was estimated using ArcGIS’s 

default method, which adapts Silverman’s Rule-of-thumb bandwidth estimation formula for two-

dimensional space. We calculated the expected count of tortoises per raster cell using ArcGIS’s 

kernel density “expected count” setting, and then used the raster calculator to determine expected 

sightings per unit effort with the following equation (Breen et al. 2014): 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑒𝑓𝑓𝑜𝑟𝑡 =  
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑠

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑒𝑓𝑓𝑜𝑟𝑡
 

Tortoises tend to remain within the same home ranges over the course of their lives (Berry 

1986); therefore, we created a single tortoise sightings per unit effort raster that compiled all data 

from the USFWS over the course of their study period. This was by necessity, as the USFWS 

focused on surveying for tortoises in different areas of the Mojave in different years.  

Any analysis regarding the importance of microhabitat to bird presence must include in 

the analysis a way of controlling for habitat. Objectively “good” habitat should attract all animal 

species in the desert, including the mammals and reptiles that construct burrows for themselves. 

Therefore, it is plausible for birds to be associated only with better habitat, and that a correlation 

between bird presence and burrow density is only a demonstration that all desert animals are 

converging on the same high-quality areas. To account for this possibility, we developed two 

habitat quality rasters: a plant cover raster (i.e., vegetative shade) and an NDVI raster. We used 

NDVI because it is associated with higher quality animal habitat in deserts (Creech et al. 2016). 

Both rasters were developed with high resolution satellite imagery (Recio et al. 2013) to classify 

plants at 1m2 resolution. We used Google Earth Engine to access and analyze data gathered 
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between 01/01/2019 and 12/31/2021 from the National Agriculture Imagery Program (NAIP), 

which acquires red, green, blue, and near-infrared band data at a one-meter ground sample 

distance (GSD). We removed developed impervious surfaces such as roads, cities, and solar 

panels from the dataset by creating a masking layer from the National Land Cover Database 

(NLCD). Any NLCD raster cell classified as having above 0% coverage by a developed 

impervious surface was masked out of the NAIP raster. We then calculated the NDVI of the 

NAIP raster layer and removed all raster cells with NDVI values less than or equal to 0, creating 

a raster layer classifying plants at the 1m2 level.  

 To analyze the association of non-tortoise burrows with eBird observations, we required 

a proxy variable that could be developed with satellite imagery. Our field data revealed that the 

number of burrows along a given transect were highly predicted by the ground type at said site, 

where ground type was split into 4 qualitative categories based on its firmness and soil type 

(soft/clay, soft/sandy gravel, hard/clay, hard/sandy gravel). We were unaware at the time that the 

terms “clay” and “sandy” have their own separate definitions in the field of soil science; for our 

purposes, we defined “clay” as ground that holds its shape when dug into and has a similar 

consistency to wet sand, while “sandy” is ground that is drier and loose (akin to that found at a 

beach). Burrows as predicted by these categories were overdispersed, requiring a quasi-Poisson 

GLM to model how burrow numbers decline as the ground becomes more difficult to dig into 

(linear effect of ground type, beta = -0.61, 95% CI [-0.82, -0.41], t(39) = -5.87, p < .001, 

McFadden’s pseudo-R2 = 0.60). Therefore, “digging difficulty” of the ground is a viable proxy 

variable for the number of burrows. The best “digability” variable we found is the presence or 

absence of desert pavements, which are surfaces covered by closely packed, interlocking rock 

fragments (Dickerson 2012). Desert pavements are classifiable via remote sensing (Beratan and 
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Anderson 1998), and although desert tortoises can dig through the hard layer, smaller reptiles 

and mammals are not (Karl 1980, Dickerson 2012). We confirmed that the presence or absence 

of desert pavements (described below) were indeed predictive of the number of non-tortoise 

burrows at our field sites (one-tailed t-test, difference = 21.88, t(34.26) = 3.17, p = 0.002). 

Therefore, we used a classified desert pavement layer as a proxy variable for the number of non-

tortoise burrows near eBird surveys.  

We generated this pavement layer with a method created by Beratan and Anderson 

(1998) for the Landsat 4-5 Thematic Mapper. The Landsat TM was decommissioned in 2011, 

which is the closest time from which we could determine an image. However, desert pavements 

develop and change over thousands of years (Dickerson 2012), so their locations in space are 

likely to have remained static during the time between layer creation and our surveys. We 

created a composite RGB image in Google Earth Engine (Gorelick et al. 2017) from the 2011 

Landsat TM, and then drew training polygons that classified the image into binary categories: 

“hard pavement” or “softer ground.” Polygons were groundtruthed using data collected on soil 

types during our field research, and we used a random forest classifier with 10 trees (sensu 

Breiman 2001) to classify our final raster. 

 We assessed the representation of each environmental variable by calculating its value at 

each survey site, both ours and those from eBird. We created a buffer around all our field-survey 

and eBird sites in a circle of 1km radius and calculated the average NDVI within the buffer and 

the most frequent desert pavement classification value. Finally, to calculate the percent plant 

cover, we divided the number of 1m2 raster cells representing plants in a buffer by the total 

number of all 1m2 raster cells in said area. 
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To test whether bird abundances and richness from our field surveys are associated with 

estimated burrow abundance, we fitted multiple Poisson linear models (estimated using ML) 

predicting bird counts with varying combinations of NDVI, number of burrows, number of 

tortoise burrows, and percent shrub cover. As we only had 43 survey points of our own, we could 

not confidently use more than 4 predictors in a model. If the resulting model was overdispersed 

(violating Poisson assumptions) we re-ran the model using a negative binomial distribution. We 

then followed guidelines from Arnold (2010) to select the best model. Models with the lowest 

AICc are generally considered top-ranking  . However, it has been the case where multiple 

models are within 2 AICc from one another and, therefore, are both considered “empirically 

supported” – even if one model has an uninformative parameter with model deviance that does 

not overcome the +2 AICc penalty for additional parameters. Therefore, we discarded models 

with uninformative parameters (with slopes close to 0), even if they had lower AICc values 

(Arnold 2010). 

We repeated this modeling procedure with eBird data. We used a mixed model to account 

for surveys that were performed in the same location in space at different times; these are 

autocorrelated, which must be accounted for to not violate modeling assumptions. The Cornell 

Lab of Ornithology classifies all surveys by their location in space, grouping those that were 

performed in approximately the same place. We used this grouping as a random effect. 

In the suite of tested models with eBird data, we included one that used only variables of 

survey effort (i.e., number of surveyors, amount of time a survey was conducted, distance 

traveled in a survey) as a null model. If this null model were the best fit model, it would show 

that the best predictors of bird presence in eBird surveys is merely how much effort went into the 

survey. However, all models included all effort variables, allowing us to control for effort as a 
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potential covariate. Model selection with AICc was the same as with models from our field data. 

95% Confidence Intervals (CIs) and p-values were computed using a Wald z-distribution 

approximation. 

 

Results 

Mechanistic Model 

We predicted, and found, a quadratic relationship between bird shade requirements for 

survival above ground (i.e., without access to underground refuge from the heat) and time (across 

decades), with shade requirements for birds to survive increasing over time (conditional R2 = 

0.76). Within this model, the effect of year as a quadratic ordinal predictor is statistically 

significant and positive (beta = 4.12, 95% CI [4.06, 4.18], t(517299) = 131.04, p < .001) 

(Figure3a). That is, years (year groups) differed significantly from each other, with the earliest 

years (1959-1962) requiring the least amount of shade for bird survival, and subsequent years 

exhibiting steadily increasing shade required, as expected under climate change. 

The generalized linear mixed model predicting the total number of hours a species would 

be exposed to lethal temperatures over time when they had access to below-ground refugia 

showed strong effects of both year and burrow depth (conditional R2 = 0.71) (Figure 3b). 

Burrows at depths of 5 cm and 20 cm significantly and quadratically increased in number of 

hours exposure to lethal temperatures over time (decades) (5 cm beta = 7.44, 95% CI [6.49, 

8.38], p < 0.001, 20 cm beta = 7.44, 95% CI [6.49, 8.38], p < 0.001). However, the model’s 

intercept, to which all other burrow predictors are compared statistically, corresponding to 

burrow depths of 200cm, is at 0.01 (95% CI [-0.02, 0.05], p = 0.49), showing that birds are 

unlikely to be at risk of exposure to lethal temperatures at such depths. Furthermore, there is no 
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significant difference at depths of 50 cm over time (beta = 0.23, 95% CI [-0.71, 1.18], p = 0.63) 

Indeed, the effect of rising temperatures on bird thermal vulnerability decreased as burrow depth 

increased. These differences demonstrate the increasing thermal risk to birds as they take refuge 

closer to the surface, although the difference in effect size is much larger at a depth of 5 cm. In 

fact, our models predict that birds at 5cm depths will generally be exposed to over 150 total 

hours of lethal temperatures in a summer, which is significantly worse than burrows at any other 

depth (Figure 3b). Standardized parameters were obtained by fitting the model on a standardized 

version of the dataset; 95% Confidence Intervals (CIs) and p-values were computed using a Wald 

t-distribution approximation (Figure 3b). 

 Aboveground shade-driven bird community composition as calculated with principal 

coordinates analysis is increasingly dissimilar over time from the original composition in 1959-

1962 over time (i.e., associated with increasing temperatures) (Figure 4). Community 

compositions in 2001-2004 and 2016-2019 are similar, but composition is predicted to shift even 

further from the mid-20th century baseline under both the rcp45 and rcp85 climate change 

scenarios. Community composition when birds are allowed access to underground refugia at 

depths of 5cm is like that aboveground, but differences are increasingly less pronounced with 

access to increasingly deeper burrows. At depths of 20cm, community composition is similar 

between most years prior to 2016-2019. Finally, composition shifts under both climate scenarios, 

with a pronounced difference under the rcp85 projection. If birds are allowed access to burrow 

depths of 50cm and 200cm, we no longer see any discernible differences in community 

composition regardless of year (Figure 4). 

Predicted species richness differed significantly over both time and available burrow 

depths, and there was an interaction (Figure 5). Species richness was by far the highest in 
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scenarios with access to desert tortoise burrows (200cm depth), and lowest for the scenario with 

no access to burrows. In contrast, there was virtually no difference in predicted species richness 

for communities with access to burrows of 50cm and 20 cm depth except under future scenarios 

of climate change (beta = -0.01, 95% CI [-0.06, 0.04], p = 0.69). There was little to no difference 

in predicted species richness between communities with no access to burrows, and access to only 

5cm-deep burrows in all years and climate change scenarios (Figure 5a).  The model's total 

explanatory power was substantial (conditional R2 = 0.70). Aboveground, 5 cm, and 20 cm 

depths follow significantly negative, quadratic patterns (aboveground beta = -0.76, 95% CI [-

0.80, -0.71], p < 0.001, 5 cm beta = -0.82, 95% CI [-0.87, -0.78], p < 0.001, 20 cm beta = -0.22, 

95% CI [-0.27, -0.16], p < 0.001). This means that species richness declines over time regardless 

of burrow access at these three depths; however, richness at the beginning of the study is higher 

when there is access to greater depths, while refugia closer to the surface result in greater 

declines to richness with increased temperatures.  

Furthermore, restricting access to burrows (i.e., situations where burrow use is not 

common or bird access to burrows is imperfect) leads to a systematic decrease in predicted 

species richness as access decreases (Figure 5b). Although access to deep (200cm) burrows 

consistently results in significantly greater species richness, the richness expected for the other 

burrow depths becomes progressively lower and more similar because only the most thermally 

resistant species persist. The linear effect of success rate is statistically significant and negative 

(beta = -1.03, 95% CI [-1.03, -1.03], p < 0.001, conditional R2 = 0.49). All depths follow 

significantly negative and quadratic patterns over time (5 cm beta = -0.67, 95% CI [-0.68, -0.67], 

p < 0.001, 20 cm beta = -0.21, 95% CI [-0.22, -0.21], p < 0.001, 50 cm beta = -0.02, 95% CI [-
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0.03, -0.02], p < 0.001), showing how the combined effect of increasing temperatures and 

imperfect refugia access results in declines to species richness.  

Finally, our simulated burrow availability scenario (where there was declining tortoise 

burrow availability over time, with increased dependence on mammal burrows) replicated 

species richness observations from Iknayan and Beissinger (2018) in 1959-1962 and 2016-2019. 

Our confidence intervals of species richness for the year 1959-1962 overlap with confidence 

intervals of richness measured by Iknayan and Beissinger (2018) at that time, as do confidence 

intervals of species richness in 2016-2019. The total explanatory power of the model itself is 

substantial (conditional R2 = 0.90), and the year 2016-2019 is significantly different from 1959-

1962 (beta = -0.57, 95% CI [-0.57, -0.56], p < 0.001, intercept = 3.85 (95% CI [3.62, 4.08], p < 

0.001) (Figure 6).  

 Citizen Science Lists and Field Surveys  

Both species richness and bird abundance were consistently low during our field surveys. 

We recorded an average of 5.1  0.9 species and 8.6  1.7 individual birds within the formal 

survey period. Notably, we also observed a relatively higher occurrence of small burrows dug by 

mammals and reptiles (60.4  8.3 burrows per transect) compared to the relatively rare 

occurrence of burrows dug by desert tortoises (2.2  0.6 burrows per transect). Citizen scientists' 

eBird surveys showed a similar number of species (8.3  0.3 species) but recorded significantly 

higher bird abundances (27.0  1.4 individuals), likely due to the longer survey durations 

permitted in eBird (recommended 5 km of survey length for modeling (Strimas-Mackey et al. 

2020)). 

Our analyses utilizing Poisson models revealed valuable insights into the factors 

associated with bird abundance in our field surveys. The best-fit model included the number of 
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non-tortoise burrows, NDVI, and percent shrub cover as predictors (Figure 7a). This model 

demonstrated high explanatory power (Nagelkerke's R2 = 0.93) and indicated a significant 

positive relationship between non-tortoise burrows and bird abundance (beta = 0.02, 95% CI 

[0.01, 0.02], p < .001). Additionally, percent shrub cover showed a significantly positive 

association with bird abundance (beta = 0.82, 95% CI [0.18, 1.42], p = 0.009). However, mean 

NDVI had no statistically significant explanatory power (beta = 4.50, 95% CI [-4.98, 14.20], p = 

0.36). The model predicting bird richness with the lowest AICc was within 0.39 of the next 

closest model and was a nested version of the higher AIC model. We therefore selected the 

model with the second-lowest AIC as our best model; this model included the number of non-

tortoise burrows as the sole predictor (Figure 7b). This model demonstrated a statistically 

significant positive relationship between non-tortoise burrows on bird richness (beta = 0.01, 95% 

CI [0.01, 0.02], p < .001, Nagelkerke's R2 = 0.70). 

When analyzing the eBird data, negative binomial mixed models were employed due to 

overdispersion in the Poisson models. The two best-fit models included distance traveled, 

number of observers, survey start time, survey duration, percent shrub cover, NDVI, and ground 

hardness (negatively indicative of mammal burrows). The best-fit model additionally 

incorporated the estimated number of tortoises per unit area and the moderating effect (or 

interaction) of percent shrub cover (Figure 8a, conditional R2 = 0.69). The second-best model 

according to AICc did not include the tortoise effect but incorporated the moderating effect of 

percent shrub cover on desert pavement (Figure 8b, conditional R2 = 0.70). In the best-fit model, 

percent shrub cover (beta = 0.34, 95% CI [0.30, 0.39], p < .001), NDVI (beta = 1.15, 95% CI 

[0.53, 1.76], p < .001), desert pavement (beta = 4.98, 95% CI [3.75, 6.21], p < .001), and 

tortoises per unit area (beta = 0.22, 95% CI [0.06, 0.38], p = 0.008) all had significant positive 
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associations. The moderating effect of percent shrub cover on tortoises per unit area was 

significantly negative (beta = 2.00, 95% CI [0.95, 3.06], p < .001). 

In the second model, desert pavement had a significant positive association (beta = 0.34, 

95% CI [0.30, 0.39], p < .001), as did percent shrub cover (beta = 0.63, 95% CI [0.36, 0.90], p < 

.001) and NDVI (beta = 1.30, 95% CI [0.63, 1.96], p < .001). The moderating effect of percent 

shrub cover on desert pavement was also significant (beta = 4.65, 95% CI [3.43, 5.88], p < .001). 

These findings indicate that the influence of shrub cover on bird abundance is negligible in areas 

with softer ground, which generally exhibit high abundances of birds. However, shrub cover 

becomes increasingly important in areas with hard desert pavement, with low abundances in 

areas of low cover and higher abundances in areas of higher cover. The effect of NDVI in this 

model was not significant, as in the first model. 

Multiple models were assessed for predicting species richness from eBird data, with 

some models showing minimal differences in AIC scores. The selected model, with the lowest 

AIC and the least-nested structure (conditional R2 = 0.62), incorporated percent shrub cover, 

NDVI, tortoises per unit area, and the moderating effect of percent shrub cover on tortoises per 

unit area (Figure 8c). In this model, percent shrub cover (beta = 0.25, 95% CI [0.22, 0.28], p < 

0.001; Std. beta = 0.10, 95% CI [0.06, 0.14]), NDVI (beta = 1.05, 95% CI [0.65, 1.45], p < .001), 

and tortoises per unit area (beta = 3.59, 95% CI [2.81, 4.37], p < .001) all had significant positive 

effects. The moderating effect of percent shrub cover on tortoises per unit area was significantly 

negative (beta = 1.21, 95% CI [0.52, 1.89], p < .001). 
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Discussion 

Results from our mechanistic model, published data, our field research, and eBird data 

consistently indicated a positive relationship between bird populations and thermal refugia 

consistent with use of underground burrows. Taken together, our results are consistent with three 

plausible scenarios: 1) increased pressures of climate change on bird populations have selected 

for individuals that utilize burrows as thermal refugia; 2) bird use of burrows as thermal refugia 

has been a present behavior but is not necessarily common, resulting in larger levels of heat 

exposure; or 3) that there are currently unidentified, or unappreciated above-ground thermal 

refugia or thermoregulatory behavior with similar properties to those found in burrows. Such 

scenarios must be regarded as speculative in the absence of empirical evidence from predictive 

studies (Gould 1978). However, these scenarios can serve as valuable foundations for conducting 

testable and systematic studies, offering insights for future research programs that will inform 

ecosystem management and policies (Currie 2023). 

  It is true that results from our model are inconsistent with the supposition that birds can 

always rely on underground burrows for thermal regulation. Indeed, we calculated that perfect 

access to deeper underground refugia would have resulted in stability in bird community 

composition from the 20th to the end of the 21st century, even in the face of climate change. Of 

course, Mojave birds are declining, which falsifies this scenario. However, scenarios in which 

birds need to search for underground refugia and often fail to locate them, or where avian burrow 

use is an existing but relatively uncommon behavior, are consistent with our model output. 

Results from our model also imply that the decline of Mojave Desert tortoise may have had a 

negative impact on birds by limiting the best-available thermal refugia. Tortoises once existed in 

densities ranging from 40 and 150 individuals per square kilometer (Averill-Murray et al. 2012), 
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but currently densities seldom rise above 10 individuals per square kilometer (Allison and 

McLuckie 2018) (Allison and McLuckie 2018). Therefore, the most likely scenario is one in 

which burrow use by birds is not a common behavior, along with a concurrent decrease in the 

availability of tortoise burrows over time. This, however, should be considered a new hypothesis 

that requires further testing. 

Interestingly, analyses of data gathered from both eBird and our own field surveys 

independently highlight the presence of underground refugia on the landscape as the most 

important predictor of both bird richness and abundance. Even after controlling for the effect of 

habitat, the association of underground refugia on bird richness and abundance remains evident, 

particularly in areas with low percent shrub cover. Our field surveys further indicate that birds 

exhibit a stronger response to the shallower burrows constructed by small mammals and reptiles 

compared to tortoise burrows, although the presence of tortoise burrows still has a discernible 

effect on bird populations. The relative importance of tortoise in comparison to small mammal 

burrows is less clear in the analysis of eBird data, possibly due to our use of a coarse 

environmental proxy variable. 

Our best-fit models of species richness and abundance from eBird data further suggest 

that the effect of vegetation cover is mitigated by the presence of either tortoise or small 

mammal/reptile burrows. We predicted that percent vegetation cover is critically important for 

birds in areas where the presence of burrows is low; however, in areas with burrows, the effect of 

cover is statistically negligible. Such a pattern is illustrative of an environment where the 

increased presence of burrows as thermal refugia on the landscape removes vegetative shade 

from acting as a limiting variable for bird richness and abundance. Even if the results from our 

model are incorrect and underground thermal refugia use was not a historic behavior, results 
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from our field survey are consistent with the scenario that birds are currently adopting this 

behavior. Environmental pressures such as climate change are known to result in dramatic 

alterations to animal behavior as they search for ways to reduce negative impacts (Beever et al. 

2017, Gunn et al. 2022). Therefore, it is plausible that birds in the Mojave Desert have recently 

adopted a new response to rising heat by relying on secondary use of underground thermal 

refugia. 

Although we accounted for NDVI and vegetative shade, it is important to acknowledge 

that the observed patterns in our data may be influenced by unknown behaviors and mechanisms 

other than secondary utilization of burrows. Water, for example, is fundamental for the survival 

of desert animals (Gurera and Bhushan 2020), Rundel and Gibson 1996a). Therefore, we would 

expect areas where birds have greater access to water to have higher concentrations of all 

animals, which could result in a correlation between burrows and bird populations that we did 

not account for. Such a variable would likely not be in the form of groundwater or precipitation, 

as both variables positively impact desert vegetation “greenness” (Rundel and Gibson 1996b) 

and would be controlled for by our high-resolution NDVI coefficient. The manipulative 

experiments we recommend as next steps are designed to address such uncertainties: if an 

experiment disproves the notion that birds use burrows as thermal refugia, it will indicate the 

presence of another confounding variable associated with both Mojave Desert bird distributions 

and burrows, or that there are fundamental problems with the physiological models of 

NicheMapR (Kearney and Porter 2017, Kearney et al. 2021), or the parameter values we used in 

our models (Eichenwald and Reed in review). 

If Mojave Desert birds have indeed started relying on burrows as thermal refugia, it may 

not reverse their observed population declines. There is a cost to behavioral thermoregulation, as 
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behaviors critical for survival, growth, and reproduction can be either partially or completely 

incompatible with the need to avoid or dissipate heat (Cunningham et al. 2021). For example, a 

bird forced underground will have reduced foraging time and potentially limited energy intake 

(Cunningham et al. 2015, Pattinson and Smit 2017), which can have a negative effect on 

offspring production (Cunningham et al. 2021). Retreating into thermal refugia also could reduce 

the opportunity for birds for territorial displays (Santee and Bakken 1987). Each of these costs 

could have a continuing negative effect on bird populations, which will likely intensify as heat 

exposure from climate change increases the period of forced microclimate use. Without 

additional field data, it is not possible to predict accurately the difference in expected population 

declines between the two scenarios: 1) where there is no underground burrow use, and 2) where 

underground thermal refugia use occurs with associated behavioral costs. However, it is plausible 

that the effects of avian declines will have a limited impact on the rest of the ecosystem in the 

form of extinction cascades compared to the loss of other vertebrate taxa from the Mojave Desert 

food web (Eichenwald et al. In Review). 

 Systematic experiments to test between these two scenarios will be crucial in shaping 

appropriate and tailored conservation strategies for the birds in the Mojave Desert. If heat 

exposure is the primary concern, conservation efforts should focus on mitigating the impacts of 

climate change, such as by implementing habitat restoration measures that provide shade and 

cooling spaces (Mawdsley et al. 2009). However, if our results are indeed representative of 

increased avian reliance on underground refugia, we may instead see reduced foraging time as a 

key challenge. In that case, conservation strategies that focus on long-term bird conservation 

should prioritize measures to enhance food availability and accessibility for birds within their 
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restricted habitats, such as by implementing targeted strategies like supplementary feeding 

programs or managing species that compete for food resources (Mawdsley et al. 2009).  
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Figure 5-1 Flowchart of the order of steps used in my methods. The workflow can be broadly divided into 4 categories: estimation of 

real-world shade levels, collection of avian body parameters, implementation of multiple mechanistic thermal models, and validation 

of mode output. Generally, data collected in categories at the top of the flow chart (e.g., estimating shade levels, avian body 

parameters) feed into steps in the categories at the bottom. 
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Figure 5-2 Visual representation of the four scenarios and 18 sub-scenarios used in the 

mechanistic thermal model. The four rectangles at the top are the four main scenarios. From left 

to right, scenarios were only shade aboveground, birds have perfect access to burrows as thermal 

refugia, birds use belowground thermal refugia more rarely, and rarer belowground refugia use 

coupled with a decline in tortoise burrows. Sub-scenarios are listed beneath each scenario. Only 

one version of the aboveground shade scenario was calculated. However, all belowground 

scenarios were calculated at four different burrow depths. Furthermore, imperfect burrow access 

was also calculated for three different levels of “success” at utilizing burrows, for each of the 

four different burrow depths (total of 12 models). Finally, only one sub-scenario was calculated 

for the tortoise decline and imperfect use scenario
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surrounding 

elevation, etc.
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Figure 5-3 Graphs of the thermal vulnerability of aboveground bird species (a) and the total hours a bird is exposed to lethal 

temperatures even if underground refugia are available (b), where all other variables are controlled (i.e., marginal effects). Confidence 

intervals in (a) are 83.4%, which provides an approximate =0.05 test (Payton et al. 2003).
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Figure 5-4 Principal coordinates analysis of the differences in bird community composition (i.e., 

species richness, using the Jaccard Similarity Index) assuming that birds are only found only 

aboveground or at the varying burrow depths. Years closer together are more similar in 

composition, while years farther apart are less alike in composition. Bars represent 95% 

confidence intervals.
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Figure 5-5 Predictions of species richness over time based on available burrow depth, where species have a 100% success rate of 

finding and using burrows of various depths (a) or where species have a given success rate (b). Species capable of fitting into mammal 

burrows were assumed to have perfect access to each depth when needed for survival, while species incapable of fitting into mammal 

burrows were assumed to only have access to shade. Aboveground predictions assume that no species was able to find shelter in a 

burrow.  
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Figure 5-6 Predictions of species richness over time in a hypothetical scenario where desert 

tortoise burrows decline in availability and birds are instead forced into mammal burrows of 

varied depths. Black points and line (95% confidence interval) represent output from our model. 

Red error bars represent the confidence intervals of observed species richness reported by 

Iknayan and Beissinger (2018); estimated from their Figure 1B.  
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Figure 5-7 Marginal effect plots representing bird abundance (a) and richness (b) to predictor 

variables in the best selected models of our own field surveys. Bird abundance was highly 

dependent on the number of non-tortoise burrows, with comparatively minor effects of NDVI 

and percent shrub cover (a). Models with interacting effects of NDVI or shrub cover on burrows 

were less fit. The best fit model for bird richness had number of non-tortoise burrows as the only 

predictor (b), and burrow numbers had a strong positive effect on richness. 
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Figure 5-8 Marginal effect plots representing bird abundance to predictor variables in the two best fitting models (a,b) and 

representing bird richness to predictor variables in the best fitting model (c) from eBird surveys. In the best fitting model (a), 

abundance was predicted by an interaction between tortoises per unit effort and percent shrub cover, in addition to desert pavement 

presence (harder vs softer ground) and NDVI. Softer ground and higher NDVI resulted in increases to bird abundance. In addition, 

percent shrub cover was only important for bird abundance when tortoises per unit effort was low. In the second-best fitting model (b) 
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abundance was predicted by an interaction between desert pavement presence and percent shrub cover in addition to NDVI. Percent 

shrub cover was only important for abundance in areas where the ground was too hard for small mammals and reptiles to dig burrows. 

Richness (c)was predicted by an interaction between tortoises per unit effort and percent shrub cover in addition to NDVI. Higher 

NDVI resulted in increases to bird abundance. In addition, percent shrub cover was only important for bird abundance when tortoises 

per unit effort was low. 
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Chapter 6  
 

Potential extinction cascades in a desert ecosystem: linking food web interactions to 
community viability (Adam J. Eichenwald, Nina H. Fefferman, J. Michael Reed). In 

Review at Ecology and Evolution 
 

Abstract 

Desert communities are threatened with species loss due to climate change, and their 

resistance to such losses is unknown. We constructed a food web of the Mojave Desert terrestrial 

community (300 nodes, 4080 edges) to examine the potential cascading effects of bird 

extinctions on the network, compared to losses of mammals and lizards. We focused on birds 

because they are already disappearing from the Mojave, and their relative thermal vulnerabilities 

are known. We quantified bottom-up secondary extinctions and evaluated the relative resistance 

of the community to losses of each vertebrate group. The impact of both random and 

vulnerability-based bird species loss was relatively low compared to the consequences of 

mammal (causing the greatest number of cascading losses) or reptile loss, and birds were 

relatively less likely to be in trophic positions that could drive top-down effects in apparent 

competition and tri-tropic cascade motifs. An avian extinction cascade with year-long resident 

birds caused more secondary extinctions than the cascade involving all bird species, for both 

randomized and thermal vulnerability-based ordered extinctions. Notably, we also found that 

relatively high interconnectivity among avian species has formed a subweb, enhancing network 

resistance to bird losses.  

Introduction 

Investigating the interactions between species can be a key aspect of safeguarding 

biodiversity and promoting effective conservation efforts (Eichenwald and Reed 2021, Sabo 

2008, Soulé, Estes, Miller and Honnold 2005). The functional loss of even a single species can 
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have far-reaching and sometimes unforeseen consequences for entire ecosystems (Paine 1974, 

Terborgh, Lopez, Nunez, Rao, Shahabuddin, Orihuela, Riveros, Ascanio, Adler, Lambert and 

Balbas 2001), in some cases resulting in extinction cascades via secondary extinctions (Brodie, 

Aslan, Rogers, Redford, Maron, Bronsteire and Groves 2014, Säterberg, Sellman and Ebenman 

2013). For example, the loss of sea otters (Enhydra lutris) famously resulted in the catastrophic 

collapse of biodiverse kelp forests into urchin barrens (Estes and Palmisano 1974). The effects of 

species loss may pose threats to human health (Markandya, Taylor, Longo, Murty, Murty and 

Dhavala 2008), or to ecosystem services (Pike and Mitchell 2013). As such, conservation efforts 

often must go beyond focusing on individual species and instead incorporate an understanding of 

their interactions within a community (Soulé, Estes, Miller and Honnold 2005, White, Zipkin, 

Manley and Schlesinger 2013, Zipkin, Andrew Royle, Dawson and Bates 2010). Doing so can 

enable us to better predict the effects of environmental perturbations (e.g., Jönsson and Thor 

2012), mitigate the spread of introduced, invasive species (Galiana, Lurgi, Montoya and López 

2014), promote ecosystem services (Buechley and Şekercioğlu 2016), and rehabilitate degraded 

landscapes (Soulé, Estes, Berger and Del Rio 2003). Neglecting to consider the sometimes 

intricate and indirect relationships between species can lead to management approaches that are 

ineffective or even detrimental to an ecosystem (Bowen and Lidgard 2013, Johst, Drechsler, 

Thomas and Settele 2006, Letnic and Koch 2010, McDonald-Madden, Sabbadin, Game, Baxter, 

Chades and Possingham 2016, Muggleton and Benham 1975). 

One promising approach to addressing these challenges is through community viability 

analysis (CVA) (Ebenman and Jonsson 2005, Ebenman, Law and Borrvall 2004, Eichenwald and 

Reed 2021). CVA encompasses a variety of approaches to quantifying community structure, 

composition, and function in response to perturbations or management actions. For instance, by 
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representing a community as a network of species interactions, researchers can identify species 

that play a significant role in community stability or resilience (Eichenwald and Reed 2021, 

Jönsson and Thor 2012), or identify effective management interventions (McDonald-Madden, 

Sabbadin, Game, Baxter, Chades and Possingham 2016).  

Here we conduct a resistance-based community viability analysis (Eichenwald and Reed 

2021) of the terrestrial community of the Mojave Desert, a well-studied ecosystem in the 

southwest United States (e.g., Iknayan and Beissinger 2018, Kissel, Wallace, Anderson, Dickson, 

Van Neste, Landau, Averill‐Murray, Allison and Fesnock 2023, Rundel and Gibson 1996). We 

did this by first constructing a food web and then examining the potential cascading loss of 

species following initial species losses. Specifically, we assess the impact of bird loss compared 

to losses of mammals and lizards, which have been found to be more resistant to the effects of 

climate change (Riddell, Iknayan, Hargrove, Tremor, Patton, Ramirez, Wolf and Beissinger 

2021). The Mojave Desert bird community has suffered notable declines over the last century 

that have been attributed to climate change (Iknayan and Beissinger 2018, Riddell et al. 2019, 

Riddell et al. 2021). In contrast, mammal species in the Mojave have remained relatively stable 

despite increasing heat, presumably because they dig burrows, which function as thermal refugia 

(Riddell et al. 2021). Despite a century of research in this ecosystem, there has been limited 

investigation into the extent to which the loss of different species may affect the persistence of 

others.  

To investigate the vulnerability of the Mojave Desert community to bird loss compared to 

losses of other vertebrates, we constructed a food web for the terrestrial community and 

conducted network analyses. Network analyses can be used to map and model interspecific 

relationships (Borrett, Moody and Edelmann 2014) such as food webs, where links between 
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species indicate one consuming the other (de Visser, Freymann and Olff 2011, McDonald-

Madden, Sabbadin, Game, Baxter, Chades and Possingham 2016). We quantified bottom-up 

secondary extinctions to capture potential cascading effects of the increasing frequency of 

primary extinctions of birds, mammals, and reptiles on other species in the food web (Dunne and 

Williams 2009). Because birds are declining in the Mojave, and an analysis of relative 

vulnerability of birds in that region to increased temperatures is available (Eichenwald and Reed 

In review), we analyzed the effects of bird loss in order of thermal vulnerability compared to 

random loss of species. These analyses provided insights into the relative importance of each 

vertebrate group in maintaining community structure and stability in the face of species loss. 

Additionally, we tested for the prevalence of each vertebrate group within patterns in the food 

web that are known for causing top-down secondary extinctions (Baiser, Elhesha and Kahveci 

2016). Through these analyses, we assessed one aspect of the relative importance of each 

vertebrate group within specific subgraphs, as well as changes in connectivity patterns, providing 

further understanding of their potential impacts on the community. 

 

Methods 

The Mojave Desert spans broad latitudinal (34.8 to 36.2), longitudinal (-117.2 to -

115.8), and elevational ranges (-82m to 3367m), and tends to share much of its biota with the 

neighboring Sonoran Desert to the south and the Great Basin to the north (Rundel and Gibson 

1996). Daytime temperatures are generally warm, and the desert holds the record for the highest 

measured air temperature on the planet (El Fadli, Cerveny, Burt, Eden, Parker, Brunet, Peterson, 

Mordacchini, Pelino and Bessemoulin 2013). However, the Mojave may experience cool Arctic 

air masses during the winter rainy season and hence receives some snow (Rundel and Gibson 
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1996). The desert has experienced a rise in mean annual air temperature by approximately 2°C 

since the early 20th century (Bai, Scott, Chen, Minnich and Chang 2011). We developed our 

particular CVA of the Mojave Desert biotic community following the overarching guidelines 

proposed by Eichenwald and Reed (2021): 1) delineate the focal community, 2) decide on 

viability measures and questions, 3) enact calculations, and 4) address uncertainty. 

 Delineating the Focal Community  

 Food webs have been generated for some communities in the Mojave Desert, such as soil 

nematodes (Ferris 2010) and aquatic systems (Wilson and Blinn 2007). However, we needed to 

create a food web containing the terrestrial vertebrate community of the Mojave Desert for our 

analyses. The first step was to assemble the most complete list of taxa available for the study 

region. Historically, such a task was performed by consulting with local experts (Martinez 1991), 

an approach that could result in incomplete webs with missing species (Polis 1991). More 

recently, online databases collated from large-scale citizen science observations can allow 

construction of more thorough taxa lists, although such catalogs still tend to be deficient when it 

comes to insect and plant species. We constructed our taxa list by downloading observation data 

from the Global Biodiversity Information Facility (GBIF, gbif.org, April 2023) within the 

geographical limits of the Mojave Desert. We limited data to observations only; although GBIF 

includes museum specimens in its database, the latitude and longitude associated with these 

records sometimes are of the museum that currently holds the specimen instead of where the 

specimen was collected. We then culled the taxa list further by examining the resulting species 

list one at a time and removing species if they did not actually appear in the Mojave Desert, 

based on species-specific distributional accounts. There is a variety of reasons for these species 

being incorrectly included in the Mojave Desert in the GBIF database, such as mapping or 
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identification errors (Roberts, Elphick and Reed 2010, Zizka, Carvalho, Calvente, Baez-

Lizarazo, Cabral, Coelho, Colli-Silva, Fantinati, Fernandes and Ferreira-Araújo 2020). For 

example, the white-tailed antelope ground squirrel (Ammospermophilus leucurus) looks very 

similar to the San Joaquin antelope squirrel (A. nelsoni); however, the latter has a restricted range 

that does not include the Mojave Desert, while the former is ubiquitous in the Mojave. 

Consequently, when the San Joaquin antelope squirrel appeared in our first-pass taxa list, we 

culled it on the assumption that it was a misidentification or misapplied location. We did not 

have to rely on this method to obtain a list of bird species, as we had already created this list in 

previous papers (Eichenwald and Reed 2023, Eichenwald and Reed In review) (although we did 

remove the hairy woodpecker Leuconotopicus villosus, although its range covers some of the 

Mojave, it is so scarce within that range that we could not justify including it in the web). We 

classified birds into two categories for the extinction cascade (see below): non-residents and 

residents. We classify resident birds are present year-round in the Mojave Desert, while we 

classify non-resident birds are present only during the pre-breeding (migration) or breeding 

season, as classified by the Cornell Lab of Ornithology’s ebirdst models (Strimas-Mackey, 

Ligocki, Auer and Fink 2021). We focused on birds that are present during the summer, as heat 

exposure from climate change is thought to be the major driver of Mojave avian species loss 

(Riddell, Iknayan, Hargrove, Tremor, Patton, Ramirez, Wolf and Beissinger 2021). Therefore, 

birds that are present only during the winter or in the post-breeding season are not included in 

our web. 

 Assigning predation links between species is more time-consuming. In recent years, some 

researchers have attempted to derive feeding links from patterns of co-occurrence and trophic 

levels; however, co-occurring species do not necessarily interact with one another in expected 
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ways (Blanchet, Cazelles and Gravel 2020). Alternative methods of inferring feeding links based 

on predator and prey body mass and trophic level have varying degrees of success but can still 

result in inaccuracies (Rohr, Naisbit, Mazza and Bersier 2017). To minimize errors of inclusion 

in food-web links, we chose to include only feeding links that have been confirmed (Martinez 

1991) instead of inferring feeding links. For each vertebrate species, we searched the literature, 

including compendium volumes such as Birds of the World (Billerman, Keeney, Rodewald, 

Schulenberg and (Editors) 2022) for evidence (e.g., observations of feeding, investigation of 

stomach contents, eDNA) of its predators and prey. Each species’ common and scientific names 

were used as keywords in Google Scholar, along with the keywords “stomach contents,” “food,” 

diet,” “predation,” “consumption,” or “prey.” If a species’ scientific name was changed in the last 

few decades, we performed separate searches with older names as keywords as well. We also 

searched for science-based encyclopedias or compendia on specific taxa (e.g., “reptiles”) in the 

Americas. Finally, we consulted the Global Biotic Interactions database (Poelen, Simons and 

Mungall 2014) and the Avian Diet Database (Hurlbert, Olsen, Sawyer and Winner 2021), which 

are archives of consumption links. Observations from these interaction-specific data sources 

were supplemental; we did not assume that all feeding interactions present in the Mojave Desert 

were available in such sources. 

We did not include generic links, such as if a species is said to consume “mammals,” we 

did not include all mammals in that species’ diet. However, if a predator is confirmed to eat 

animals from a particular genus, we did include links to all species within that genus. Some 

feeding links were observed but not included in the final network because they were likely 

atypical events. For instance, a black-chinned hummingbird (Archilochus alexandri) was once 

observed hovering in front of the nose of a captive mountain lion (Puma concolor) and the cat 



158 
 

consumed the bird (Baltosser and Russell 2020). We considered this unlikely to be relevant in a 

natural food web. We also scrutinized links attributed via DNA analyses of gut contents or feces. 

When a predator eats another animal, it is possible for the DNA of anything the prey consumed 

to also appear in the predator’s stomach (Sheppard, Bell, Sunderland, Fenlon, Skervin and 

Symondson 2005). Alternatively, some herbivores scavenge meat from carcasses or engage in 

occasional predation (Pietz and Granfors 2000), which can result in particularly strange DNA-

verified feeding links. Therefore, if a feeding link appeared unlikely and was verified by DNA, 

we did not include it in the final web. For example, a known omnivore such as the coyote (Canis 

latrans) consuming plant matter is strange but not unheard of, and so such links were included in 

the web. Chukar (Alectoris chukar), on the other hand, subsist on leaves and seeds and feed their 

young insects; therefore, predation links suggesting chukar hunt rodents (e.g., Hurlbert, Olsen, 

Sawyer and Winner 2021) were not included. Although we were able to find data on predators 

and prey for each vertebrate species, similarly detailed information for insects and plants was 

less available. We found that data on feeding interactions involving these groups was generally 

provided at higher taxonomic levels (e.g., order, class), making it impossible to include them in a 

food web at the species level. Insects and arachnids, therefore, were aggregated at taxonomic 

orders; this type of aggregation is common in published food webs (Martinez 1991). Plants were 

aggregated at taxonomic orders for all calculations that did not require interaction strength (see 

below for explanation on interaction strength) but were aggregated at the taxonomic kingdom 

level for calculations involving biomass (see below). 

Thus, we generated a food web where directed links represent a known consumptive 

interaction between predator and prey. However, not all interaction links are equivalent; in 

fact, differences in interaction strength across a web are common based on the percent of a 
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species’ diet coming from each prey type (Berlow, Neutel, Cohen, de Ruiter, Ebenman, 

Emmerson, Fox, Jansen, Jones, Kokkoris, Logofet, McKane, Montoya and Petchey 2004). Even 

poorly estimated interaction strengths provide greater average certainty in modeled predictions 

based on the web than does an approach that uses only the presence or absence of each 

interaction (Novak, Wootton, Doak, Emmerson, Estes and Tinker 2011). Therefore, we estimated 

interaction strength for all links using the fluxweb package in R, which allows for the calculation 

of energy fluxes in food webs based on the conceptual framework of the “food web energetics” 

approach (Gauzens, Barnes, Giling, Hines, Jochum, Lefcheck, Rosenbaum, Wang and Brose 

2019). To calculate energy fluxes between predator and prey, the package’s functions require 

three variables: 1) species biomasses in mass per unit area, 2) metabolic rates, and 3) feeding 

efficiencies. Metabolic rates and feeding efficiencies are calculatable from body mass and 

species type (vertebrate endotherm, vertebrate ectotherm, invertebrate, plant) of the species in 

question (plant metabolic rates are considered non-existent) using equations in the fluxweb 

package (Gauzens, Barnes, Giling, Hines, Jochum, Lefcheck, Rosenbaum, Wang and Brose 

2019). Estimations of species biomass (g/km2) are more difficult, requiring estimations of both 

individual body mass and number per unit area. Calculating the average mass of each species is 

straightforward, as the masses of museum specimens are often measured before they are 

taxidermied. We obtained average vertebrate masses from rvertnet (Chamberlain 2021). It is also 

possible to obtain an estimation of species densities (number of individuals per km2 ) 

allometrically, as Damuth (1981) reported a size-density relationship (SDR) following a power 

law with a scaling exponent close to −0.75 (Isaac, Storch and Carbone 2013). This relationship is 

less accurate at the local scale (White, Ernest, Kerkhoff and Enquist 2007), but is still a suitable 

way of approximating species density other than the time-consuming method of surveying the 
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abundance of each species individually. We allometrically calculated the densities of all 

vertebrates and multiplied by their masses to obtain species-by-species biomass. 

 Calculating insect and plant biomasses are more difficult due to the aggregation of their 

nodes, wide variation in masses (for invertebrates), lack of research on allometric relationships, 

and unclear total numbers of species. Fortunately, there has been a prior survey of arthropod 

biomasses in some parts of the Mojave Desert, where the results were aggregated by taxonomic 

order (Rundel and Gibson 1996). We collected biomass information from this source; however, 

not all arthropod taxa in our food web had corresponding biomasses in the surveys. Therefore, 

we used the Rphylopars package in R (Goolsby, Bruggeman and Ané 2017) to infer missing 

biomass data. Rphylopars uses statistical models to predict what a missing trait of a species 

might be based on information about related species, analyzing the evolutionary relationships 

between species and the traits they possess. The package considers the phylogenetic relationships 

between species, which helps to account for the fact that closely related species are likely to have 

relatively similar traits. We constructed a phylogenetic tree using taxize (Chamberlain and Szöcs 

2013) to represent the evolutionary relationships among species of interest, then used this tree as 

input data for the Rphylopars package. We employed a Brownian motion evolutionary model to 

estimate missing trait values for species lacking data, which is the default and most-used method 

(Goolsby, Bruggeman and Ané 2017). Our method of calculating network extinctions (next 

section) was insensitive to differences in insect biomass within their confidence intervals (see 

next section). Therefore, we assumed that each arthropod node had the median biomasses 

calculated by Rphylopars. 

 We were unable to find reports that provided above-ground plant biomass in the Mojave 

Desert, even at a high taxonomic level. However, Rundel and Gibson (1996) provided an 
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equation relating average total aboveground biomass in g/m2 to the amount of precipitation from 

September through March in the Mojave Desert:  

𝑙𝑜𝑔(𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑁𝑒𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) = 1.976 𝑙𝑜𝑔(𝑆𝑒𝑝𝑡𝑡𝑜𝑀𝑎𝑟𝑐ℎ𝑃𝑟𝑒𝑐𝑖𝑝 − 26.2) − 2.746 

We used this equation, including total September-March precipitation across the years of their 

study (1964-1968, 1971-1976), to estimate above-ground plant biomass. 

 Viability Measures, Calculations 

 To investigate the potential for secondary extinctions of vertebrates (where the loss of 

one species leads to the losses of others), we utilized the NetworkExtinctions package in R 

(Ávila-Thieme, Kusch, Corcoran, Castillo, Valdovinos, Navarrete and Marquet), which is based 

on methods originally proposed by Dunne and Williams (2009). The method involves removal of 

a primary species from the network, followed by a review of the resources remaining for the 

remaining species. If any of the remaining species lose all their resource species, they are 

removed from the web, resulting in a secondary extinction. However, species can be forced into 

extinction after losing even a few of their resources, depending on how reliant the consumer was 

on said resource (Berg, Pimenov, Palmer, Emmerson and Jonsson 2015). To incorporate the 

effect of interaction strength in the extinction cascade, we ran the simulation four times for each 

removal scenario, each with a different threshold value of 0.6, 0.7, 0.8, and 0.9, respectively. 

This means that a species needed to have a remaining interaction strength between it and all its 

prey greater than or equal to the threshold value to avoid secondary extinction. For example, a 

threshold value of 1.0 would cause a predator to go extinct if it lost a single prey species (plants 
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are included as prey), while a threshold of 0.0 would result in a predator never going extinct even 

after losing all its prey.  

To assess the relative importance of birds to the Mojave Desert food web in comparison 

to other vertebrates, we first conducted three removal experiments based on the predicted order 

in which Mojave avian species should go extinct due to climate change-induced heat exposure, 

derived from a mechanistic model (Eichenwald and Reed In review). The first removal 

experiment included all bird species. In addition, because we suspected that losing year-round 

resident bird species would have a different effect on the system than would losing birds that 

lived in the Mojave only part of the year, we conducted two additional removal experiments: 

removing only non-resident bird species and removing only resident bird species, both done in 

the order of estimated thermal vulnerability.  

In contrast, the predicted extinction orders for Mojave mammals and lizards based on 

increasing temperatures have not been evaluated. Thus, we randomly sorted the order of mammal 

removal from the food web, computed the resulting secondary extinctions, and repeated this 

process 100 times to account for variation in the order of removal. We tested the effect of reptile 

removal from the community using the same randomization procedure. As the bird extinction 

order listed above is not validated with field data, we also repeated the randomization procedure 

for the three bird cascade scenarios (all birds, resident birds removed, non-resident birds 

removed). We did not include plants and invertebrates in a primary removal cascade due to their 

aggregation, which would lead to an artificially high change in the number of links and render 

any comparison incomplete or invalid. We also evaluated the degree to which predicted 

extinction cascades were sensitive to inferred arthropod biomasses from Rphylopars. For each 

arthropod with inferred biomasses, we randomly selected biomasses from within the 95% 
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confidence interval calculated by Rphylopars to parameterize the interaction strengths for the 

food web and then ran the predetermined climate change-induced primary extinction cascade 

with all birds. We ran this simulation 100 times with the same bird extinction order, but different 

arthropod biomass values drawn randomly from their distribution. The resulting secondary 

extinction cascade for each run was always the same. This was unsurprising, as the extinction 

cascade method is based on bottom-up effects, and arthropods are on the lower end of the food 

chain and were not included in primary removal cascades. As randomly choosing biomasses 

from within the confidence interval did not influence our cascades of interest, we used the 

median inferred biomass for arthropods as listed above. 

To gain a deeper understanding of potential bottom-up secondary extinction cascades 

within our food web, we examined homophily between nodes within and between different 

ecological groups (mammals, plants, insects, birds, and reptiles). Homophily helps us see 

whether species with similar characteristics tend to connect and interact more often than those 

that are different (e.g., are mammals more likely to interact just with other mammals, or do they 

link to other animal types as well?). We employed Coleman's Homophily Index (Coleman 1958), 

which calculates homophily scores within each defined group.  The index gives us a number 

between -1 and 1: a score of 0 means there are equal connections between different groups, 1 

means all connections are within the same group, and -1 means all connections are between 

different groups. As a reminder, our secondary extinction cascades operated from prey to 

predator, whereas the homophily index traditionally measures connections from predator to prey. 

Therefore, a homophily index would provide information on a top-down cascade. To obtain 

information on bottom-up effects, we inverted the links in the graph before calculating the 

homophily index. 
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While the NetworkExtinctions approach is valuable for analyzing food webs, it has 

limitations in accurately predicting the impact of consumer loss on the resources that these 

consumers utilized. This is because it can capture only extinctions caused by bottom-up effects, 

such as the primary loss of all or a fraction of a consumer's resources. It does not consider the 

potential for top-down effects, such as the impact of predators (Berg, Pimenov, Palmer, 

Emmerson and Jonsson 2015, Terborgh, Lopez, Nunez, Rao, Shahabuddin, Orihuela, Riveros, 

Ascanio, Adler, Lambert and Balbas 2001). Consequently, methods investigating secondary 

extinctions in topological food webs may overestimate the network's robustness by overlooking 

the influence of predators (Curtsdotter, Binzer, Brose, de Castro, Ebenman, Eklof, Riede, Thierry 

and Rall 2011). However, within food webs, patterns of interactions referred to as motifs or 

subgraphs (used synonymously here) are observed (McLeod and Leroux 2021). These motifs 

vary in their characteristics, and some specific subgraphs are facilitative of top-down effects. For 

instance, apparent competition occurs when two species that do not directly compete for 

resources affect each other indirectly by acting as prey for the same predator. This interaction 

forms a triangular motif (Holt and Bonsall 2017) (Figure 1). In the event of the extinction of one 

prey species, the predator may compensate by increasing its consumption of an alternative prey, 

potentially leading to a secondary extinction. It is worth noting that in some cases, apparent 

competition might not be strong enough to result in a secondary extinction, particularly if the 

extinct prey species is a minor or relatively opportunistic component of the predator's diet or if 

there are many species in the predator’s diet. Nevertheless, within our food web (assuming 

completeness), the set of all apparent competition-shaped subgraphs A encompasses the number 

of apparent competition motifs that may lead to secondary extinctions B (B is a proper subset of 

A, or B⊊A). By assuming a proportional relationship between A and B, we can assess the relative 
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importance of a taxon based on the frequency of its species appearing in trophically key 

positions within subgraphs (McLeod and Leroux 2021). The same logic applies to trophic 

cascades, where predators can exert indirect effects on species through the control of 

intermediate consumers (Ripple, Estes, Schmitz, Constant, Kaylor, Lenz, Motley, Self, Taylor 

and Wolf 2016). Trophic cascades are also characterized in their shape by easily recognizable 

subgraphs (Ebenman and Jonsson 2005) (Figure 1). If an apex predator is removed from the 

web, the intermediate consumer that it used to control may experience population growth and 

cause severe depletion of its own prey species. 

We identified all apparent competition and trophic cascade subgraphs in our food web 

using the VF2 algorithm (Cordella, Foggia, Sansone and Vento 2004) in the R iGraph package 

(Csardi and Nepusz 2006) (this method is also known as subgraph enumeration). We limited 

trophic cascade subgraphs to tri-trophic food chains, excluding chains where the apex consumer 

depredated both the intermediate consumer and the prey of the intermediate consumer. We tallied 

the frequency of subgraphs where birds, mammals, and reptiles were identified as either the apex 

predator (for trophic cascade motifs) or the prey (for apparent competition motifs). This allowed 

us to quantify the occurrences of these motifs specifically associated with each taxonomic class. 

We then compared the occurrences of these motifs per class to Erdős–Rényi algorithm-generated 

networks, which we used as a null model (sensu Baiser, Elhesha and Kahveci 2016). This 

algorithm generates random networks where the only constraint is that the randomized network 

must have the same number of nodes and expected links as the observed network (Erdös and 

Rényi 1959). We ran the null model 100 times, counting and splitting subgraphs in the same way 

as with the empirical data. We then compared empirical motif counts to those of the null models 

using z-scores and p-values (Baiser, Elhesha and Kahveci 2016). We focused on motifs where an 
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animal’s removal from the web could result in a top-down secondary extinction. For apparent 

competition-based subgraphs, for example, the prey positions should be the cause of top-down 

forced secondary extinctions, due to compensatory predation following the loss of one of the 

species. For tri-trophic cascade-based subgraphs, the apex predator position should be the cause 

of top-down forced secondary extinctions from the release of the second-tier consumer from 

predatory control. We refer to these positions in the motifs as driving positions (or drivers). 

 

Results 

 Our Mojave Desert food web was comprised of 150 bird species, 43 mammals, 42 

reptiles, 26 orders of insects, and 39 orders of plants. There were 4,080 edges in the web (Figure 

2; the adjacency matrix and list of predation links are found in Supplemental Tables S1 and S2). 

The mean number of links a node had for birds was 20.7  17.4 (median 16.0), for mammals it 

was 23.5  13.3 (median 18.0), 23.0  14.3 (median 18.5) for reptiles, 72.4  69.6 (median 42.5) 

for invertebrates, and 30.6  24.4 (median 26.0) for plants. For trophic levels of 1 to 4, where 1 

is plants and 4 is apex predators, birds had an average trophic level of 3.24  0.10, mammals had 

an average trophic level of 2.85  0.23, reptiles had an average trophic level of 3.75  0.17, and 

invertebrates had an average trophic level of 2.96  0.32. 

Most consumptive interactions with birds involved other birds, invertebrates, and plants 

(including interactions where birds were either predator or prey). In contrast, mammals and 

reptiles exhibited more balanced interactions with other animals in the web. Birds demonstrated 

a relatively high homophily score of 0.66, indicating a strong inclination for birds to form 

connections with other birds within the food web. In contrast, the invertebrate and mammal 

groups exhibited lower homophily scores of 0.02 and 0.07, respectively – values indicative of an 
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even mix of links within and without their groups. The reptile group displayed a homophily score 

of 0.36, indicating a moderate tendency relative to the other groups for reptiles to be connected 

to other reptiles within the food web. Plants, as primary producers, did not act as predators or 

prey for other plants in the food web, resulting in a homophily score of -1.00. 

 All instances of bird primary extinction cascades resulted in fewer accumulated 

secondary extinctions than observed from the extinctions of either reptiles or mammals under all 

threshold (remaining interaction strength) scenarios (Figure 3 and 4). In fact, under the 60% and 

70% threshold conditions, random loss of bird species did not cause any secondary extinctions 

until over 50 species were lost from the food web. Mammal extinctions resulted in the most 

rapidly accumulating number of secondary extinctions, as well as the greatest number of 

accumulated secondary extinctions in the food web. Extinction of reptiles from the food web 

resulted in a rate and accumulated number of secondary extinctions that was intermediate 

between birds and mammals. An avian extinction cascade where only birds that were year-long 

residents were removed also resulted in greater numbers of accumulated secondary extinctions 

than did than the cascade from extinctions that included all bird species, both under randomized 

extinctions (Figure 3) and ordered extinctions according to thermal vulnerability (Figure 4). 

However, cascades including only birds that were in the Mojave for part of the year (non-

residents) resulted in similar levels of secondary extinctions to the cascade that included all birds 

except under higher thresholds. At thresholds of 80-90%, randomized order of extinction of bird 

species resulted in higher numbers of secondary extinctions when all bird species were included 

compared to the effects of randomized extinctions from only non-residents (Figure 3). On the 

other hand, preset extinctions based on thermal vulnerability resulted in higher numbers of 
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secondary extinctions from non-residents in comparison to thermal vulnerability extinctions from 

all birds (Figure 4). 

 There were significantly fewer birds than expected in driving positions (i.e., positions 

that can be the cause of top-down forced secondary extinctions) in apparent competition-based 

subgraphs when compared to null models, including motifs where only one of the prey species 

was a bird (z = -32.1, p < 0.001) and those where both prey species were birds (z = -15.1, p 

<0.001). However, comparing z-scores reveal that mammals and reptiles were approximately 

equally likely to appear as only one of the prey species, and were much more likely to do so than 

birds (Figure 5). In fact, in motifs where reptiles were both prey species there was no significant 

difference between real-world data and the null models (z = -0.7, p = -0.23), while mammals had 

significantly greater representation than we would expect from null models (z = 4.74, p = 0.001, 

Figure 6). Motifs where reptiles were only one of the prey species were also found less 

frequently than in null models (z = -17.3, p < 0.001), as were mammals (z = -18.2, p < 0.001, 

Figure 5).  

 There were also significantly fewer birds than expected in driving positions (i.e., the apex 

predator) in tri-trophic-based subgraphs when compared to null models (z = -9.1, p > 0.001, 

Figure 5). There were also significantly fewer mammals than we would expect in the apex 

position (z = -13.5, p<0.001), but there was no difference between null model expectations and 

the number of reptiles in the apex position (z = -0.73, p = 0.23, Figure 5). Birds were more likely 

to be found in the apex position than were mammals, but they were comparatively less likely to 

be in the apex position than were reptiles (Figure 5).  
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Discussion 

Ecosystems are intricate networks of interactions in which the presence or absence of 

species has the potential to trigger a chain reaction of cascading secondary extinctions 

throughout the community (Ebenman, Law and Borrvall 2004). Modeling these cascades in real-

world food webs can provide valuable insights for adjusting species management or harvesting 

strategies (Ávila-Thieme, Corcoran, Pérez-Matus, Wieters, Navarrete, Marquet and Valdovinos 

2021, de Visser, Freymann and Olff 2011). Indeed, the economic advantages of the ecological 

network-based predictive approach has led to its adoption by fisheries scientists (Yun, Hutniczak, 

Abbott and Fenichel 2017), who not only have developed complex, dynamic representations of 

marine ecosystems (Fulton, Link, Kaplan, Savina-Rolland, Johnson, Ainsworth, Horne, Gorton, 

Gamble, Smith and Smith 2011) but have also created bespoke software to analyze such models 

(Heymans, Coll, Link, Mackinson, Steenbeek, Walters and Christensen 2016). However, studies 

of this nature in natural terrestrial systems, particularly those that investigate secondary 

extinction cascades, are rarer despite their potential to predict ecosystem robustness to species 

loss (Ebenman 2011). Here we constructed the most comprehensive food web available for 

terrestrial species in the Mojave Desert as of this publication and used it to test scenarios of 

vertebrate extinction. We found that the impact of bird species loss on the subsequent structure 

and richness of the food web via secondary extinction cascades was relatively low compared to 

the potential consequences of removing mammals or lizards. 

The homophily indices we calculated offer valuable clues to the underlying reasons 

behind these findings. A high proportion of bird links in our network are to other birds, while 

reptiles moderately connected to other reptiles and mammal connections were proportionally 

equal. The high interconnectivity among avian species has resulted in the formation of a 
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"subweb," a subset of species that are highly connected to prey and/or predators within the same 

subset (Melián and Bascompte 2004). Such groupings can enhance the network's resilience and 

protect it from the impacts of losing highly connected species from within the subweb (Melián 

and Bascompte 2002, Melián and Bascompte 2004), insulating the food web from bird 

extinctions and demonstrating why other vertebrates have greater import to network persistence 

in the Mojave Desert. 

Evidence from published research corroborates our conclusion. Riddell, Iknayan, 

Hargrove, Tremor, Patton, Ramirez, Wolf and Beissinger (2021) found that Mojave mammal 

populations have remained stable despite crashing bird populations, which is suggestive of 

limited secondary extinctions in this system following avian declines. Furthermore, although 

there are many examples of cascading effects stemming from apex avian predators around the 

world (Terraube and Bretagnolle 2018), Estrada and Rodriguez-Estrella (2016) explain that in the 

Baja California Peninsula desert (neighboring the Mojave) such birds are poor surrogates for 

other species in the area. In fact, they suggest that there is reduced interaction strength between 

apex birds and their prey, in this system, which we note would also reduce the probability of 

secondary extinctions following species loss. 

We add to their supposition on interaction strengths with data from our motif analysis: in 

this system, there may be less of an opportunity for birds to influence the food web from the top. 

Birds occupied driving positions within apparent competition-based motifs less frequently than 

mammals or reptiles, suggesting they are less likely to cause secondary extinctions through top-

down apparent competition-based effects. On the other hand, birds occupied the apex predator 

position in a tri-trophic motif more frequently than mammals (but less often than reptiles). 

Therefore, we assume the extinction of a bird species to have a higher likelihood of causing 
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secondary extinctions through top-down trophic cascade-based effects compared to mammals, 

but lower than if a reptile were to go extinct. This result is because mammals in the web are less 

likely to appear at the top of the food chain and initiate top-down control of tri-trophic motifs. 

Indeed, mammals in our food web are on average 0.5-1.0 trophic levels lower than the other 

vertebrates. 

Despite the concordance between the predictions from our food web and field data, the 

relative resilience of our network to bird extinctions does not appear to be replicated in other 

studies. For example, although Brazilian forest webs are robust to random bird extinctions, the 

avian species at higher extinction risk are critical in maintaining community structure (Vidal, 

Hasui, Pizo, Tamashiro, Silva and Guimarães Jr. 2014). Indeed, the vulnerability of certain 

species is often linked to their functional roles and interactions within the network, and random 

extinctions are less likely to disrupt critical links than when a vulnerable species is lost (Berg, 

Pimenov, Palmer, Emmerson and Jonsson 2015). This differs from our findings, where losses of 

birds at high risk of extinction from climate change had limited to no subsequent effects on 

network composition or structure. The difference in systems may play a role, as deserts were one 

of the few biomes where a meta-analysis did not find evidence of cascading effects from birds in 

tri-trophic food chains (Mäntylä, Klemola and Laaksonen 2011). Alternatively, this difference 

may be attributable to birds having a greater effect on plants and insects through top-down 

predation (Mäntylä, Klemola and Laaksonen 2011, Vidal, Hasui, Pizo, Tamashiro, Silva and 

Guimarães Jr. 2014). Since we had to aggregate plants and insects due to limited data availability 

and were restricted in our capacity to analyze top-down effects, it is possible that we 

underestimated the capacity of birds to influence this food web. Furthermore, although we focus 

on predation, there are other interaction types present in the Mojave that could influence 
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secondary extinction cascades. Gopher tortoises (Gopherus spp.), for example, are considered as 

keystone species due to their propensity to dig burrows that other animals could then use as 

refugia (Catano and Stout 2015), and populations of the Mojave Desert tortoise (G. agassizii) 

have declined dramatically over the course of the late 20th and 21st centuries (Kissel, Wallace, 

Anderson, Dickson, Van Neste, Landau, Averill‐Murray, Allison and Fesnock 2023).  

We caution that a community viability analysis based on food webs without dynamics can 

underestimate the risk and number of secondary extinctions (Ebenman and Jonsson 2005). 

Indeed, topological analysis always predicts a lower number of secondary extinctions than 

dynamic analysis, especially for food webs with high connectance (Eklof and Ebenman 2006), 

while non-standard food sources may be more common during circumstances that would 

otherwise result in cascading community failure. Our web lacks the parameters and equations 

required to incorporate population dynamics and is not capable of tracking cascading losses in 

arthropods except at the level of taxonomic order. Therefore, it is possible that we are 

underestimating the risk and number of secondary extinctions, particularly since cascading 

effects from birds often influence arthropods (Murakami and Nakano 2000). Natural and 

manipulative experiments that examine specific coextinctions from species loss would overcome 

these limitations, such as how Jönsson and Thor (2012) conducted a CVA predicting the effect of 

common ash Fraxinus excelsior diebacks from disease on affiliated lichen communities. 

However, obtaining such data is generally difficult and time-consuming. 

Finally, our web does not account for birds’ abilities to fly large distances, which allows 

them to be part of multiple food webs in disparate locations in the same period (which is referred 

to as a metacommunity) (Leibold, Holyoak, Mouquet, Amarasekare, Chase, Hoopes, Holt, 

Shurin, Law, Tilman, Loreau and Gonzalez 2004). Such behavior, as observed in previous studies 
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(Maron, Estes, Croll, Danner, Elmendorf and Buckelew 2006), can result in significant fluxes of 

nutrients that have the potential to alter ecosystems. Consequently, the loss of birds from our 

food web may induce secondary extinction cascades within the desert community via non-

consumptive effects (defined as the impact of animals on the growth, behavior, or development 

of other species, e.g., Peckarsky, Abrams, Bolnick, Dill, Grabowski, Luttbeg, Orrock, Peacor, 

Preisser, Schmitz and Trussell (2008)). These effects cannot be accounted for in a network based 

solely on predator-prey interactions (Wooten 2020). Indeed, although researchers have known for 

years that non-consumptive effects impact population dynamics in food webs (Lima and Dill 

1990, Peckarsky, Abrams, Bolnick, Dill, Grabowski, Luttbeg, Orrock, Peacor, Preisser, Schmitz 

and Trussell 2008) and have conducted manipulative experiments on how they impact smaller 

webs (Schmitz 2008), such research has only recently been introduced into analyses of full 

ecological networks (e.g., Ho, Tylianakis, Zheng and Pawar 2019). 
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Figure 6-1 Example networks demonstrating the shape of apparent competition and tri-trophic 

cascade subgraphs. Predator/prey (consumptive) interactions are represented by solid lines, while 

indirect effects are represented by dashed lines. 
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Figure 6-2 The full food web of the Mojave Desert terrestrial community created and used in 

this study. Plants are shown in green, mammals in red, insects in orange, birds in blue, and 

reptiles in purple. The color of the line matches that of what is being consumed, (e.g., a bird 

eating a plant will be joined by a green line). This web has 150 birds, 43 mammals, 42 reptiles, 

26 insects (aggregated to order), and 39 plants (aggregated to order). There are 4080 feeding 

links. 
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Figure 6-3 Secondary extinction cascades caused by primary extinctions from birds (all species, 

resident-removals only, and non-resident-removals only (where non-residents are birds that 

either breed or migrate through the Mojave but are not present year-round)), mammals, and 

reptiles. All cascade lines represent 95% confidence intervals based on randomized order of 

species removal from 100 replicates. Threshold percentages means that a species needed to have 

a remaining interaction strength greater than or equal to the threshold following a primary 

extinction to avoid secondary extinction (a threshold of 100% would always result in secondary 

extinctions, while a threshold of 0% never would). Lines for mammals and reptiles are the same 

as in Figure 4. 
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Figure 6-4 Secondary extinction cascades caused by primary extinctions from birds (all species, 

residents only, and non-residents only), mammals, and reptiles. Bird lines represent a single 

removal order from most to least vulnerable to temperature increases (from Eichenwald and 

Reed (In review). Threshold percentages means that a species needed to have a remaining 

interaction strength greater than or equal to the threshold following a primary extinction to avoid 

secondary extinction (a threshold of 100% would always result in secondary extinctions, while a 

threshold of 0% never would).  Mammal and reptile cascade lines represent 95% confidence 

intervals based on randomized order of species removal from 100 replicates and are the same as 

in Figure 3.  
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Figure 6-5 Z scores of the number of apparent competition (top) and tri-trophic (bottom) motifs 

in comparison to null graphs. X-axis labels refer to the driving position (positions that can be the 

cause of top-down forced secondary extinctions) within the motif (for example, the Aves point 

over prey (both) in the top graph refers to the z-score where both prey in the apparent 

competition motif were birds). We only count motifs where the taxon in question is in driving 

position, where losing that species could result in top-down driven secondary extinctions. Points 

between the dashed lines are not significantly different from the null model; points outside the 

dashed lines are significantly different from the null.   
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Chapter 7  
 

Conclusions 
 

This Thesis in Context 

Incorporating a community perspective into understanding the dynamics and ecology of a 

suite of species not only allows us to better understand and safeguard species and ecosystems but 

also provides a broader framework for addressing critical questions, such as predicting the 

effects of climate change (Soulé et al. 2003, Soulé et al. 2005, Sabo 2008). By recognizing the 

interconnectedness of species on a landscape and considering the potential cascading effects and 

feedback loops within ecological networks, we gain insight into the broader implications of 

threats and proposed management actions (Wittmer et al. 2013, McDonald-Madden et al. 2016). 

This perspective enables us to identify crucial relationships, vulnerabilities, and key drivers of 

change, providing a more comprehensive understanding of community dynamics (Säterberg et al. 

2013). Additionally, viewing species through a community lens offers valuable insights into 

alternative conservation regimes, empowering resource managers to evaluate strategies that 

encompass species interactions, ecological functions, and ecosystem services (e.g., Middleton et 

al. 2013, Serrouya et al. 2015, Serrouya et al. 2019). By integrating these assessments into 

decision-making processes, we can more effectively address urgent conservation needs and 

enhance the resilience of ecosystems in the face of environmental challenges (Heleno et al. 

2020). In this thesis I explored community ecology-based responses to climate change. It 

provides one perspective of how we might approach conservation from this perspective. 
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Summary of Findings 

 The most important highlights from my thesis were the creation of a framework for 

community viability analysis and its implementations. Each approach was designed to answer a 

different question of import: 1) to identify a potentially important relationship between the 

observed and expected effects of climate change and secondary use of underground thermal 

refugia on birds, and 2) to clarify the relative importance of birds in comparison with other 

vertebrates to ecosystem resistance. 

In chapter 2, I introduced an approach to assess the long-term survival (persistence via 

resistance and resilience to perturbations) of ecological communities. The proposed framework 

builds upon existing single-species viability analysis methods, incorporating a broader range of 

factors such as species interactions, food web dynamics, habitat connectivity, and environmental 

changes. By considering these complex interactions, I aimed to provide a more comprehensive 

understanding of community viability. The expanded framework enhances the accuracy and 

relevance of ecological assessments, guiding more effective conservation and management 

strategies to safeguard biodiversity and ecosystem health in the face of environmental 

challenges. 

In chapter 3, I began preliminary work on the viability analysis of my target ecosystem, 

the Mojave Desert, by determining how to accurately obtain the necessary parameters for 

thermal models. Specifically, I first needed to determine relative thermal vulnerabilities of birds 

using a physical (mechanistic) model. One component of this assessment required input on the 

density of each bird species because it affects heat loss. The traditional approach to estimating 

body density in birds was to pull data on mass and length from readily available databases, then 

to assume the bird was a sphere, and determine density as mass/volume. I found this method to 
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be biased, underestimating density, thereby overestimating thermal vulnerability. I showed that 

using measurements of the long and short axis and assuming an animal is an ellipsoid provided 

better density estimations. This required gathering my own data from museum specimens, 

because the short axis of birds is never reported, but it made a meaningful difference in assessing 

avian thermal properties of birds, and therefore their vulnerability to climate change impacts. 

In chapter 4, I continued collecting biophysical parameters for Mojave Desert birds to 

further parameterize the thermal vulnerability model (NicheMapR) in preparation for a 

community viability analysis. I allometrically derived some attributes and directly measured 

others. Data on feather reflectance was the most difficult (tedious) to obtain, due to the expensive 

equipment required and the need to take 10 measurements per bird specimen and have 5 

replicates for each of 151 species. I also estimated relative thermal vulnerabilities to heat 

exposure from these data, pinpointing which species were more at risk than others due to climate 

change in the desert, all other things being equal. The identification of thermal vulnerabilities 

and the significance of dorsal feather reflectance as a predictor of vulnerability helps to prioritize 

protection measures for the most at-risk bird populations in desert ecosystems. This also provides 

a significant dataset that others can use for further investigation of climate change and desert 

birds. 

In chapter 5, I applied the parameters and model from chapters 3 and 4 to conduct a 

persistence-based CVA across the Mojave Desert ecosystem both spatially and temporally. This 

CVA is comprised of a mechanistic thermal model, analysis of my own field data, and evaluation 

of surveys from citizen scientists. I test for the existence of an unconfirmed interaction between 

birds and underground thermal refugia dug by mammals and reptiles, as such a mechanism 

should impact the persistence of Mojave Birds under climate change. The scenario with greatest 
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support from our data is that birds do utilize underground thermal refugia, although it is 

impossible to determine whether this is a historical behavior or a new adaptation. The hypothesis 

that our model and field data point to as most likely is one where birds incidentally used burrows 

in the past but may be increasing this behavior in the modern era. Indeed, in all best fit models 

for our field data, burrow presence was highly predictive of bird richness and abundance, and – 

most interestingly – our eBird results suggest reduced impact of aboveground shade when 

burrows are present, with an increasing positive impact of burrows on richness and abundance as 

shade levels decrease. This chapter does not confirm the existence of this interaction, it only 

provides evidence that such a mechanism is consistent with collected data. Above all, this 

chapter illustrates the benefits of conducting predictive studies based on plausible scenarios – 

particularly using a CVA – as they serve as steps in the scientific method, feeding back and forth 

between models and predictions, and here it generated what I think are valuable insights to bird 

vulnerability and potential management actions. 

In chapter 6, I conducted a resistance-based CVA of the Mojave Desert ecosystem using a 

network analysis of cascading extinction risk. I build a food web of the desert based on predator 

and prey interactions obtained from the primary literature, and I calculated interaction strengths 

based on theoretical fluxes of energy through the system. I then estimated the relative community 

resistance to species loss by analyzing the potential cascading impacts on the ecosystem when 

removing specific groups, such as birds, mammals, and reptiles, from the web. My biggest 

surprise was the relative lack impact of bird loss relative to other vertebrate taxa on cascading 

extinctions. Analyses from the chapter shed light on the factors that drive secondary extinction 

patterns and the relative importance of different vertebrate groups in maintaining the structure 

and resistance of the animal community. Conservation efforts often prioritize endangered or 
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vulnerable species, and understanding their roles within the food web can be useful for effective 

management. My findings that the loss of bird species has relatively low impacts on the overall 

food web compared to mammals or lizards highlights the importance of considering the 

functional roles of different vertebrate groups in ecosystem dynamics. This information can help 

prioritize conservation efforts and allocate resources more effectively to safeguard critical 

components of the ecosystem. 

 

Trial and Error 

 As well as my research ultimately integrated, I ran into several dead ends. Applying 

community ecology to conservation problems was a learning experience. In this vein, I describe 

here several aspects of my research that either resulted in dead ends or were superseded by better 

methods. 

 Climate Space Diagrams 

 I initially envisioned using ‘climate space diagrams’ in my research. Measuring species 

capacity to survive various environmental conditions has been an objective of research for 

decades. Porter and Gates (1969) invented the “climate space diagram” as a method of visually 

depicting this relationship, which was refined in subsequent decades (Gates 1980). These 

diagrams map a parallelogram in an x-y coordinate system, where the x axis is absorbed 

radiation in Watts/m2 and the y axis is air temperature in degrees Celsius. The lines of the 

parallelogram outline the thermal environment and the physiological limits of a given species. 

With the parallelogram in place, we could then plot specific environmental conditions as points; 

if those points fall outside the parallelogram for a given species, we know that those specific 

conditions are lethal. Since their creation, climate space diagrams have been used successfully to 
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show how animals might respond to climate change over their spatial distributions (e.g., 

Johnston and Schmitz 1997). 

 I planned to use climate space diagrams at the beginning of my mechanistic modeling 

project. Through readings of the primary literature, however, I learned that climate space 

diagrams had become outdated. While climate space diagrams were in use in the 1980s and 

1990s, biophysical scientists were simultaneously developing more complex heat budget 

calculations for endotherms using metabolic and water loss rates (Porter et al. 1994, Porter et al. 

2000). Where climate space diagrams estimated potential boundaries for species from a limited 

set of parameters, heat budgets calculated how a given species would actively respond 

metabolically given certain environmental conditions. Advancements in this field continued 

through the 21st century, including developments in using explicit spatial components in 

biophysical models (Kearney and Porter 2009). The culmination of this progress so far is the 

NicheMapR package, a suite of programs for the R environment that compute fundamental 

physical and chemical constraints on living things (Kearney and Porter 2017, Kearney et al. 

2020, Kearney and Porter 2020). NicheMapR allowed me to calculate a much broader 

assortment of variables at a high resolution of environmental data, and its endotherm modeling 

function was released right as I was deciding on whether to shift away from climate space 

diagrams (Kearney et al. 2021). I held onto climate space diagrams as a backup method as I 

worked through the process of obtaining all the necessary parameters for NicheMapR in case I 

was not able to obtain the results that I needed. Once I knew NicheMapR would work, I decided 

not to continue using climate space diagrams.  
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 Photogrammetry 

 Originally, my chapter on calculating bird density focused on the use of photogrammetry. 

Photogrammetry refers to a collection of different techniques intended to obtain real-world 

measurements of objects in 3D space from 2D images (Linder 2009). Techniques used in 

photogrammetry include creating 3D topographic maps, reconstructing objects from 3D point 

clouds, and measuring coordinates, quantification of distances, heights, areas, and volumes (Aber 

et al. 2019). It has been used in topographic mapping, architecture, archaeology, engineering, and 

even entertainment, and its widespread usefulness has resulted in many open-source programs 

that facilitate photogrammetric analysis and computation. Although high-cost equipment can be 

and is used, all that is truly required for basic photogrammetry is a digital camera (Medina et al. 

2020). 

 At first, I tested using photogrammetry to calculate the density of each of the bird species 

found in the Mojave Desert. This was during the Covid 19 pandemic, and so the Harvard 

Museum of Comparative Zoology was unavailable. The closest museum was at the University of 

Connecticut, which did not have specimens of all the birds I needed to measure. Instead, I tested 

the method itself along with a group of assisting masters students. I found that this method was 

overly time-consuming: collecting data required almost 15 minutes per specimen, while 

combining the photos into a photogrammetry model required between 1-6 hours per specimen. 

Furthermore, the final photogrammetry models were not “watertight,” meaning there were small, 

imperceptible gaps that made it impossible to calculate the volume of a specimens. Although it is 

possible to repair the “watertight” issue, doing so would have required a further unknown 

quantity of time. This was a large amount of effort for only a single parameter in the mechanistic 
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model; therefore, after examining my options, I decided to instead focus on estimations of body 

density that were less time consuming. 

Camera and Acoustic Traps 

My field surveys initially were to incorporate both camera traps and acoustic recorders. I 

thought that I would be able to obtain a more comprehensive assessment of the avian community 

with motion and noise-triggered recording devices that were operating 24/7, as a complement to 

the 10 minute transect surveys I did. The low population density of vertebrates in the desert, 

however, resulted almost exclusively in days of acoustic recordings of wind and images of 

moving bushes. I attempted to improve my sighting rate by baiting these traps as well, testing 

various mixes of seed, grass, dried insects, and even a water dispenser. Although baiting the traps 

lured many mammals, birds rarely appeared regardless of the bait used. I knew that this result 

was not because there were no birds at these sites, as I had conducted transects that revealed 

birds were indeed present. I determined that the traps were not going to provide me with 

actionable data and relied on my own surveys instead. 

Drone Flights and LiDAR 

I was originally unaware of the availability of high-resolution satellite imagery for my 

study region. The most-used remote sensing data has a maximum resolution of 30 meters, which 

is incapable of tracking small-scale variables such as shrub density or percent plant cover. I knew 

that I needed to obtain high-resolution data on vegetation for at least my field survey sites to 

account for the effect of habitat. Therefore, to obtain remote sensing data at a high resolution I 

obtained a drone pilot’s license from the FAA and flew a Phantom 4 Pro v 2.0 drone over all my 

sites and used associated software to construct a 3-D image of the flown areas. Using data from 

the drone was problematic for several reasons: 



192 
 

1. The drone’s camera did not have access to the infrared spectrum, instead relying only on 

red, green, and blue. Cameras that can utilize infrared are much more expensive and were 

therefore unaffordable. Unfortunately, vegetation-based remote sensing metrics such as 

EVI and NDVI rely on infrared bands (CITATIONS). This removed the possibility of 

using vegetation metrics with drone imagery. 

2. Flying drones and processing the images took time, reducing the number of total sites 

from which I could collect data. Flights for high resolution imagery took at least 15-30 

minutes per site and had to be performed after a transect was completed to avoid capturing 

a researcher in the data. This added an extra half an hour to a site visit. As I was following 

methods from Iknayan and Beissinger (2018) so I could compare our results with them if 

needed, I could only collect data in the 4 hours post-dawn. Drone flights also had to be 

done during this time; after this 4-hour period, temperatures were so high that the drone 

and its controls would overheat. Therefore, I had a choice between drone flights or greater 

amounts of data from more field surveys. 

3. On some days, weather conditions (high wind) made it unsafe to fly. Therefore, days 

where it was safe to fly were often spent returning to old sites to remotely sense them 

rather than collecting data from new sites.  

4. Large areas of the desert were governed by the National Park Service, and flying drones 

above Park land is illegal. 

5. Data collected from drone flights could only be used in analysis of field survey data and 

could not be extrapolated to eBird data covering a greater land area. Furthermore, it was 

impossible for me to travel to all sites where eBird users collected data to remotely sense 
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the ground with a drone – partly due to the large number of sites and partly due to the 

illegality of flying over some sites.  

I investigated the possibility of using LiDAR instead, which is a remote sensing method 

that uses light in the form of a pulsed laser to measure distances to the Earth. LiDAR is high 

resolution data, sufficient to allow researchers to outline the shape of buildings and the structure 

of vegetation on the ground. However, collection of LiDAR by professionals can be between 

$2500-$30,000 per day, which meant I had to rely on pre-collected data. The USGS had 

collected LiDAR data of a large portion of my study area, but not all of it. Furthermore, this 

dataset did not include coverage for large portions of the available eBird dataset, reducing its 

suitability for my purposes. As I searched for other options, I planned to reduce the scale of 

eBird data to only the area covered by LiDAR data (in the event I failed). I downloaded these 

data from the USGS and began analyzing them with LiDAR vegetation tools developed for 

ENVI (L3Harris Geospatial) by the Boise Center Aerospace Laboratory. These tools allowed for 

calculation of variables such as percent vegetation cover and height. However, they were 

developed for more structurally developed ecosystems such as shrublands and forests, and they 

struggled with creating accurate rasters of desert regions. Both LiDAR and drone flights were 

rendered unnecessary by my discovery of freely available recent high-resolution satellite 

imagery for the entire Mojave Desert. 

Bayesian Hierarchical Species Distribution Models 

I investigated the possibility of using joint species distribution models in my field 

research chapter. These methods model variation in the number, abundance, identities, and traits 

of species over space and time by assuming that the species respond jointly to the environment 

and to each other (Tikhonov et al. 2020). A new joint species distribution modeling R package 
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called HMSC, which uses multivariate hierarchical generalized linear mixed models fitted with 

Bayesian inference, was released in 2020 (Ovaskainen and Abrego 2020, Tikhonov et al. 2020). I 

considered using this package to model the effect of environmental variables on the bird 

community. 

HMSC, however, is a complicated program, to the point where the developers published 

an entire book detailing its use (Ovaskainen and Abrego 2020). It took me several months of 

working through the chapters before I felt comfortable using the package. However, when I tried 

using the method with eBird survey results, there was so much data that even a model 

parallelized to run across multiple computer cores on Tufts’ supercomputing cluster could take 

up to a month to finish. At this point, I asked myself whether using the program was necessary to 

accomplish the analyses needed for my project or whether I could achieve the same objective 

with classical GLMs. I realized I was interested in avian richness and abundance and not 

necessarily individual species responses, which is what I would gain from using HMSC. In 

contrast, by using classical GLMs I would be able to run multiple models in a relatively shorter 

time frame and perform model selection. I decided to replace HMSC analyses with classical 

GLMs in my chapter. 

Alternate Research System, with Co-Occurrence Modeling 

Although my thesis focuses on the Mojave Desert as a study system, this was not the first 

system I considered. I originally planned on investigating the potential drivers behind the decline 

of the American kestrel (Falco sparverius), which some ornithologists have suggested is due to 

increasing predation from Cooper’s hawks (Accipiter cooperii) or increased competition with 

European starlings (Sturnus vulgaris) (Smallwood et al. 2009). My idea was to use a 

combination of eBird and BBS data in co-occurrence models to uncover spatial interactions 
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between kestrels, starlings, and hawks. This project would include other, peripherally related 

species (kestrel predators and potential competitors) in the event a different, unknown 

relationship acted as a driver. Co-occurrence data is often used to infer strengths of interactions 

between species (e.g. Harris 2016, Tikhonov et al. 2017, Delalandre and Montesinos-Navarro 

2018). Co-occurrence falls into three categories: positive, where species are found together in 

space; negative, where species are separated in space; and random, or independent, where there 

is no spatial relationship between species (Popovic et al. 2019). It is generally assumed that 

positive species interactions such as mutualism or commensalism will result in positive co-

occurrence, while negative species interactions such as predation or competition will result in 

negative co-occurrence (Cazelles et al. 2016).  

As I worked on this idea, I realized something important that had been either overlooked 

or rarely mentioned in the literature: spatial co-occurrence is not a reliable indicator of species 

interactions, even though researchers had used it as such. A single negative interaction could 

result in positive, negative, or random co-occurrence depending on the ecological context 

(Figures 2 and 3). This meant that my idea of using co-occurrence to investigate drivers of 

kestrel decline was not valid. 

So, I shifted my focus to the Mojave Desert, but also began work on a short review paper 

documenting the flaws in co-occurrence analysis. In fact, I wrote a complete draft of a paper 

titled “Negative species interactions can result in either negative or positive co-occurrence in 

survey data” and proposed it to Oikos, who declined to consider it. Unfortunately, as I was 

editing my draft a paper was published in Ecology Letters titled “Co-occurrence is not evidence 

of ecological interactions” (Blanchet et al. 2020), making the same point with added arguments 
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on conditional probability. I decided that my co-occurrence paper would not make any further 

contributions to the scientific record and abandoned it. 

Future Directions 

 There is never enough time or funding to successfully complete, or even start, all projects 

or potential projects over the course of a single PhD thesis. Here I list a few possible future 

directions that could follow from my research.  

 Translocation study 

 The research I conducted focuses on modeling and correlations with survey data. 

However, I do not do any experimental manipulations (deliberate alteration or modification of 

one or more factors within a natural environment to observe the resulting effects on ecological 

processes or organisms), which are the gold standard for testing for the presence and drivers of 

interactions in community ecology (Brown et al. 2001). The lack of a traditional experiment is 

the weakest area of my research. Therefore, if this project were to continue, the next step I might 

consider would be a long-term experimental manipulation that tests my conclusion that birds rely 

on underground burrows in the Mojave Desert as thermal refugia. 

The primary manipulation of this future experiment would revolve around translocation 

of desert tortoises to set up the following treatments: 1) high numbers of mammal burrows, high 

number of desert tortoises, 2) low numbers of mammal burrows, high numbers of desert 

tortoises, 3) high numbers of mammal burrows, low numbers of desert tortoises. Information 

about vegetation at each plot should be measured as well to incorporate in a final hierarchical 

model that will be used for the analysis of the data (we know that vegetation should be 

incorporated as a random variable, since it influences bird distributions in the Mojave Desert). In 

areas where tortoises were removed, their burrows could be filled or blocked as part of the 
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treatment. The bird field transects that I performed in my research should be done at each of 

these sites, followed by translocations of desert tortoises. These translocations would then allow 

one to create the following survey plots: 1) high numbers of mammal burrows, high number of 

desert tortoises, no translocation, 2) low numbers of mammal burrows, high number of desert 

tortoises, no translocation, 4) high numbers of mammal burrows, low number of desert tortoises 

due to a translocation, 5) low numbers of mammal burrows, low number of desert tortoises due 

to translocation, 6) high numbers of mammal burrows, high number of desert tortoises due to a 

translocation, and 7) low numbers of mammal burrows, high number of desert tortoises due to 

translocation. At this point, bird field surveys should be repeated. 

 There are several reasons why I did not incorporate this proposed project as a part of my 

thesis: 

1. Desert tortoises are categorized as threatened under the Endangered Species Act. The 

permitting process for translocating these species would go through the USFWS 

Ecological Services Program, and there are three potential categories for permits. My 

proposal does not fall under the enhancement of survival nor the recovery permit 

categories, as translocation of tortoises is an experimental manipulation for birds and is 

not intended to assist tortoise survival. Instead, the category that best fits the proposal is 

“incidental take”, which covers activities that may result in the loss of a protected species. 

Under the law, I would be required to submit and execute a habitat conservation plan in 

addition to the permit, which is beyond my capabilities as a PhD student [I do note, 

however, that opportunities can arise that might be taken advantage of, such as the forced 

relocation of many Desert Tortoises when the military expanded its training area in Ft. 

Irwin National Training Center, California (Esque et al. 2010).] 
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2. Translocated tortoises may not survive in the new environment. From a purely research-

focused approach, a collapse of the translocated population would mean that the 

manipulation did not work, either prolonging the length of the experiment or undermining 

it entirely. Ethically, I also preferred to avoid developing a project that might cause the 

deaths of threatened species as a byproduct. 

3. This project would take at least 5 years. It would require at least 2 years of bird survey 

data prior to a translocation, followed by a year for the translocations themselves (along 

with a simultaneous study tracking tortoise survival), followed by 2-3 years for post-

translocation bird surveys. Research from Puffer et al. (2022) shows that birds do not find 

tortoise burrows until at least a year after their creation, and it would take a few years for 

burrows made in areas formerly occupied by tortoises to collapse. I would have needed to 

begin this experiment at the very moment I began my PhD at Tufts to obtain satisfactory 

data.  

Creating artificial burrows rather than performing translocations could solve problems 1 

and 2. However, it would not decrease the amount of time required to perform this experiment 

enough to be feasible for me. Again, we know that birds need at least one year to find new 

burrows before they begin using them (Puffer et al. 2022). Therefore, we would need at 

minimum 4 years, where the first year is without burrows with an installation of artificial ones at 

the end of the year, followed by 3 years of surveys to allow birds time to locate and use the new 

refugia. 

There was one alternative way of performing this experiment: prior translocations of 

desert tortoises have been performed to help conserve the species (Field et al. 2007, Nussear et 

al. 2012, Hinderle et al. 2015). I considered using eBird survey data in these areas before and 
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after translocations occurred, which would allow me to take advantage of this prior manipulation 

for my own work. However, numbers of eBird surveys in the Mojave Desert are already 

relatively lower in comparison to more trafficked parts of the country, and there were not enough 

surveys in translocation areas to obtain data for this project (particularly since most 

translocations I discovered appeared to have been performed either before or around the time 

eBird was established).   

Evaluating the Efficacy of Artificial Burrows 

If underground thermal refugia do in fact support the persistence of Mojave birds, and if 

desert tortoise loss is a key factor in avian declines, one potential conservation suggestion would 

be to install artificial burrows across the desert. Logically, this would supplement the burrows 

lost during the decline of desert tortoises, minimizing the impact of climate change and 

providing collapsing avian populations a chance to recover. However, some types of artificial 

refugia can be hotter than those that are naturally occurring (Rowland et al. 2017);  there is a 

recorded instance of hotter temperatures turning a bat box into an oven and cooking the resident 

bats to death (Flaquer et al. 2014). Therefore, stringent evaluation must be done before any large-

scale management using artificial burrows could be implemented – which is another potential 

future project. 

I would set up an experiment where we compare the efficacy of multiple types of 

artificial burrow. I would set up plots in multiple types of soil and vegetative conditions across 

the desert so we can get a representative sample of environmental conditions. In each plot, I 

would install all burrow types we are testing (such as those used for burrowing owls (e.g., 

Nadeau et al. 2015)). I would block these refugia with mesh so they could not be used by 

vertebrates (to avoid creating an ecological trap), and I would measure the internal and external 
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conditions at each artificial burrow using devices such as iButtons or Hobos. I would also 

conduct these same experiments with naturally occurring burrows (without mesh covers), so I 

could compare to see which artificial refugia most closely replicates burrows dug by vertebrates. 

This project should be feasible to conduct in a single summer season. I did not include it in my 

thesis because this is a purely conservation-based question (essentially, which management 

method is the most likely to work?) and I wanted my thesis to instead focus on combining 

community and conservation ecology. Although I do have a chapter that is focused on 

biophysical ecology, that work was a prerequisite to my data chapters. 

Creating a Dynamic Food Web 

 The food web I created of the Mojave Desert is a topological (or static) network, where 

each link represents the presence of a feeding interaction between predators and prey. However, 

using a dynamic network in my analysis would provide a greater ability to accurately predict 

how the food web would respond to realistic extinction cascades. Dynamic networks include 

models of population dynamics in their links, such as with Lotka-Volterra equations (Ebenman et 

al. 2004). This is a task possible to achieve in a reasonable time frame for researchers working 

with microbial communities, as they can control and directly measure the responses of the entire 

community to population perturbations (Xiao et al. 2017). However, creating a dynamic network 

that includes larger animals is difficult due to the large amount of data required, and would likely 

require many years of work. For example, each predator-prey interaction would require data on 

the amount of biomass or individuals that specific predator removes from the prey population, in 

addition to the total populations of both species (such as what is used in Lotka-Volterra 

equations).,Such a massive undertaking would likely be the result of a full research program, or 
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at the least an entire PhD thesis (if the student incorporated methods of allometrically estimating 

dynamics) (Berlow et al. 2004, Ebenman et al. 2004, Ebenman and Jonsson 2005).  

 

Final Thoughts 

I developed community viability analysis to help advance the study of species 

interactions in conservation ecology. Although there is a myriad of factors that go into 

investigations of this nature, I feel there is one lesson to take away from this thesis that can 

provide guidance to conservationists attempting to utilize community ecology. We must have an 

idea of what we are looking for if we are to unravel the mechanisms that drive communities. My 

initial method of approaching community-related problems was to choose a system and look for 

important interactions to study. This was a poor approach due to the overwhelming complexity of 

ecosystems. Although I was familiar with the ecological theory behind interactive effects, such as 

apparent competition and trophic cascades, the likelihood of identifying conservation-influencing 

relationships between species is low when essentially conducting random interaction selection. 

This lesson should hold significance for environmental managers responsible for preserving 

specific ecosystems: adopting a focal point within the community, be it a species or a group of 

species, and then examining the interactions that influence that point, may be a more effective 

approach than attempting to look for keystone interactions that impact the entire system. 
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Figure 7-1 An example of a climate space diagram. The northwest (E1) hatched region and 

southeast (E2) boundaries are due to the physical environment. The southwest (P1) and northeast 

(P2) boundaries are due to the physiology of the organism. Figure from Stevenson and Kearney 

(2020). 
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Figure 7-2 Four possible examples of co-occurrence in interspecific competition. No species can 

be a superior competitor all the time in areas where the environment fluctuates dramatically, 

“storing” their gains in good years to buffer against bad years and resulting in positive co-

occurrence (top left). Dominant competitors can also exclude their competition from foraging 

habitats, resulting in negative co-occurrence (top right). A resource may also be tied to the 

presence of one of the competitors – such as how nest cavities are created by woodpeckers – 

resulting in positive co-occurrence (bottom left). Finally, the effect of a competitively dominant 

species can be negated by the presence of a predator, resulting in positive co-occurrence (bottom 

right). I created this figure for my review paper on co-occurrence. 
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Figure 7-3 Four possible examples of co-occurrence in predator/prey interactions. Predator 

hunting can deplete prey numbers in the area, resulting in negative co-occurrence (top left). 

However, predators can then shift their foraging to areas with more prey, resulting in positive co-

occurrence (top right). Prey are also capable of avoiding areas where their predators hunt, 

creating a landscape of fear that results in negative co-occurrence (bottom left). Finally, prey that 

are hunted opportunistically can randomly co-occur with their predator, so long as the predator 

hunts equally across all habitats where said prey are found (bottom right). I created this figure for 

my review paper on co-occurrence. 
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