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Abstract 

The engineering of living cells promises to advance many applications 

including synthetic biology and personalized medicine. Experimental efforts, 

however, can be costly and time-consuming, requiring large efforts to interpret 

collected data and many iterative design-and-test cycles to achieve desired results. 

Computational efforts that harness the continuing growth of computing power and 

catalogued biological data can advance biological system design by interpreting 

measurements, efficiently exploring the design space and expediting biological 

discoveries. 

This thesis advances state-of-the-art in the engineering and analysis of cellular 

metabolism by computationally addressing two challenges. The first challenge 

concerns the lack of systematic ways to design selection pathways in directed 

evolution of enzymes, an iterative process of creating mutant libraries and 

choosing desired phenotypes through screening or selection until the enzymatic 

activity reaches a desired goal. Identifying high-throughput screens or selections 

to isolate the variant(s) with the desired property is the biggest challenge in 
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directed enzyme evolution, as there are currently no known generalized strategies 

or computational techniques to do so. This thesis presents a computational 

metabolic engineering framework, termed Selection Finder (SelFi), to construct a 

selection pathway from a desired enzymatic product to a cellular host and to 

couple the pathway with cell survival. When applied to construct selection 

pathways for several target enzymes and their desired enzymatic products, SelFi 

identifies selection pathways that were previously manually designed and 

experimentally validated.  

The second challenge concerns the interpretation of data measured through 

untargeted metabolomics, where molecular masses of thousands of small 

molecules are measured simultaneously via mass spectrometry. Annotating the 

masses by assigning them a chemical identity and interpreting their biological 

relevance is challenging, as a particular mass may be associated with multiple 

chemical compounds.  

This thesis contributes to solving the metabolite interpretation challenge in two 

ways. This thesis presents a novel computational workflow, termed Expanded 

Metabolic Model based Annotation (EMMA). EMMA constructs a biological 

filter consisting of an Expanded Metabolic Model (EMM) that includes not only 

the canonical substrates and products of enzymes, but also metabolites that can 

form due to substrate promiscuity, where an enzyme transforms other substrates 

in addition to its natural substrate.  This expanded model is used to reduce the 

number of candidate chemical identities from large chemical databases that can be 

assigned to the measurements. EMMA is applied to two untargeted metabolomics 



 

vi 

data sets. Compared to a basic annotation workflow that analyzes every candidate 

compound in large chemical databases, EMMA reduces the number of 

calculations by 4 orders of magnitude. Additionally, EMMA increases the number 

of annotated masses by average of 1.71 and 2.39-fold, respectively, when 

compared to using the sample’s metabolic model. Further, the results show that 

EMMA increases the number of annotated masses and biologically relevant 

candidate molecules by the average of 2.65 and 2.80-fold, respectively, when 

compared to using candidate sets from a biological database. The EMMA 

workflow was experimentally validated by confirming the presence of 4-

hydroxyphenyllactate, a Chinese Hamster Ovary (CHO) cell metabolite in the 

EMM that has not been previously identified as part of CHO cell metabolism.  

Further contributing to metabolite interpretation, this thesis presents a novel 

probabilistic approach, termed Probabilistic modeling for Untargeted 

Metabolomics Analysis (PUMA), for predicting the likelihood of activity of 

metabolic pathways by assigning measurements directly to metabolic pathways 

and then deriving probabilistic assignment of measurements to candidate 

chemical identities. This approach captures measurements and metabolic models 

within a probabilistic model, and uses stochastic sampling to compute posterior 

probability distributions. When applied to a test case, pathway activity results are 

biologically meaningful and distinctly different from those obtained using 

statistical pathway enrichment techniques. Further, annotation results are in 

agreement with those obtained using other tools that utilize additional information 

in the form of spectral signatures. 
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Chapter 1 

Introduction 

The analysis and engineering of living cells have become central in many 

applications ranging from synthetic biology to personalized medicine. 

Experimental efforts to advance these applications however are expensive and 

time-consuming and can benefit significantly when coupled with computational 

efforts. Computational approaches can expedite biological discoveries and 

engineering efforts by interpreting measurements, guiding experiments, 

efficiently exploring design spaces, and identifying design alternatives.  

This thesis addresses challenges related to the analysis and engineering of 

living cells.  To expedite experimental efforts for improving enzymatic function, 

the thesis develops a computational method to engineer a cellular host to select 

for altered enzymatic function. To interpret measurements collected through 

untargeted metabolomics, the thesis develops computational methods to associate 

measurements with chemical identities and to interpret measurements in a 

biological context. 
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1.1 Directed Evolution of Enzymes  

Directed evolution has emerged as a key technology to generate mutants of 

enzymes with new or improved properties, such as altered substrate specificity 

and enantioselectivity [1], thermal stability [2] [3] [4], and organic solvent 

resistance [5] [6]. A prominent example is commercially viable subtilisin, whose 

stability in detergent solutions was enhanced using directed evolution [7]. Several 

other such successful products include potent therapeutic agents [8] [9] [10], 

novel vaccines [11] [12], and potent antibodies [11]. 

The goal of directed evolution is to enhance the enzymatic activity of a target 

enzyme towards a desired functional goal. Once a target enzyme with engineering 

potential is identified, an iterative process of creating mutant libraries and 

choosing desired phenotypes over a synthetic fitness landscape is then initiated 

until the goal is achieved or the desired property cannot be further improved. 

Significant research efforts focused on developing methodologies to create larger 

mutant libraries with greater functional diversity [13] (e.g., tunable error-prone 

PCRs, saturation mutagenesis, indel mutagenesis, gene shuffling and homology-

independent recombination). 

There are two techniques to identify desirable variants in mutant libraries [14] 

[15]. With screening, the desirable property is linked to a visual output signal 

such as color to identify functional mutants. Every mutant of the enzyme is 

evaluated for the desired property. With selection, the desired property is linked to 
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an essential metabolic function such as cell survival. Selection therefore 

automatically eliminates nonfunctional variants of enzymes and only positive 

variants are used for the next iteration of directed evolution. Selection allows for 

the assessment of large mutant libraries. Given its high throughput, selection is 

preferable to screen.  

Currently, the biggest bottleneck in directed enzyme evolution is identifying 

high-throughput screens or selections to isolate the variant(s) with the desired 

property. Novel platforms to screen larger libraries have been aided by 

technologies like Fluorescence-Activated Cell Sorting (FACS) and microfluidic 

devices. However, these ultrahigh-throughput screening methodologies have 

primarily enabled engineering of non-catalytic function such as protein stability or 

binding affinity. Adaptation of these methods to catalytic functions has lagged far 

behind due to the inability to generically link any biochemical transformation to 

readouts like cell density or fluorescence. Hence, most directed evolution of 

enzymes are still largely limited by the inability to identify and implement 

selections or screens. This bottleneck is widely recognized in the field [16] [17], 

yet little has been done to address this concern as a whole.  

1.2 Data Analysis for Untargeted Metabolomics 

Metabolomics is an expanding field of research that involves the 

characterization of small molecules in cells, tissues and other biological systems. 

As metabolites within the cell are the results of both genetic and environmental 

factors, metabolomics offers great advantages over other omics in characterizing 
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the phenotype [18]. Metabolomics now plays a significant role in many diverse 

scientific applications. It has been broadly adopted in the discovery of biomarkers 

for diseases such as pre-diabetes [19], diabetes [20], cancer [21], Parkinson's 

disease [22], Crohn's disease [23], and many others. In pharmacometabolomic 

studies, biochemical changes and pathway engagement can be associated with 

drug responses, paving the way to more individualized treatments (e.g., [24] [25]). 

In environmental metabolomics, metabolic responses of both plants and animals 

to temperature, water, food, and other aspects of the environment across 

individuals and populations can shed light on various aspects of ecophysiology, 

ecology, and genetic adaptation [26].  

Several factors have spurred the increased use of metabolomics-based studies 

over the past decade. New generations of mass spectrometers that offer improved 

robustness, high resolution, and greater mass accuracy are now available. 

Importantly, the ability to measure the molecular masses of thousands of small 

molecule metabolites simultaneously, a technique known as untargeted 

metabolomics, allows unprecedented opportunities to characterize the phenotype 

of the particular biological sample under study. Coupling of mass spectrometry 

with gas and liquid chromatographic separation systems provide valuable 

additional information for elucidating the chemical identities of the 

measurements. Using a mass spectrometer, molecules within a biological 

sample are ionized and sorted based on their mass-to-charge ratio (m/z). In 

hyphenated mass spectrometry, where gas or liquid chromatography or MS is 

followed by an additional MS step, ionized molecules are fragmented by a 
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number of disassociation techniques (e.g., collision-induced disassociation), 

and additional measurements are collected in the form of a spectral signature. 

Each spectral signature comprises a chromatographic retention time (RT) 

paired with mass measurements (m/z) for a particular metabolite and of its 

fragments. 

Realizing the full potential of untargeted metabolomics hinges on solving two 

problems. The problem of metabolite annotation concerns associating measured 

masses with their chemical identities. This problem is challenging, as a particular 

mass may be associated with multiple chemical formulas (e.g., there are 10,132 

known structural formulae for molecules with the same mass as C20H22N2O4). 

Fragmentation information in spectral signatures plays a critical role in 

distinguishing molecules with the same mass. Spectral signatures can be looked 

up in spectral databases that catalogue experimentally generated fragmentation 

patterns (e.g., METLIN [27], HMDB [28], MassBank [29], or NIST [30]). The 

coverage of spectral libraries, however, is limited due to the burden of 

experimentally generating spectral signatures. Alternatively, computational 

methods that either mimic the ionization and fragmentation process or utilize 

machine learning techniques (e.g. MetFrag [31], Fragment Identificator (FiD) 

[32], CFM-ID [33] and CSI:FingerID [34]) score the measured spectra against 

those in a candidate set. The user specifies this set, as either molecules within a 

particular database (e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG) 

[35]), or molecules within a metabolic model that corresponds to the biological 

sample. The quality of the results depends on the candidate set. If the compound 
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that corresponds to the measured spectral signature is not in the candidate set, 

then the spectral signature cannot be annotated. Setting the candidate set to 

molecules from a large database such as PubChem [36] increases the chance of 

discovery. However, not all molecules in large databases are biologically relevant. 

Further, the computational cost can be prohibitive as the runtime of annotation 

tools is a function of the number of molecules in the candidate set. Selecting 

metabolites within a metabolic model as the candidate set is also problematic. 

Metabolic models assembled through genome reconstruction are incomplete. 

Further, enzymes are generally promiscuous, where an enzyme transforms other 

substrates in addition to its natural substrate. This form of enzyme promiscuity is 

referred to as substrate promiscuity [37]. Recently developed databases (e.g., 

MINEs database [38], MyCompoundID [39]) aim to catalogue novel chemical 

structures due to promiscuous enzymatic activities. These databases however are 

large and not specific to the biological sample under study. This thesis 

investigates a systemic method to create an Extended Metabolic Model (EMM) 

that includes putative metabolites due to substrate promiscuity. Further, this thesis 

explores the use of metabolites within this extended model as the candidate set to 

increase annotation beyond what is possible with a metabolic model without 

incurring large computational costs associated with exploring large databases.   

The second problem concerns interpreting data collected through untargeted 

metabolomics to determine their biological role. Interpreting measurements in the 

context of metabolic pathways, a problem referred to as pathway enrichment 

analysis, provides a framework to study coordinated changes arising in response 
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to cellular responses to genetic and environmental perturbations. Statistical tests, 

such as Fisher’s exact test, determine pathways that are statistically enriched with 

measured metabolites compared to other pathways in the sample. Current 

enrichment methods for metabolomics, however, do not account for uncertainty in 

metabolite annotation as it is assumed that measurements are properly annotated 

with the correct chemical identities. This thesis explores the use of hierarchical 

graphical modeling and Bayesian inference to determine the likelihood of 

pathway activities. Instead of using the annotated measurements to determine 

metabolite annotations, the measurements are directly used to interpret pathway 

activities. Further, the pathway activities are used to determine likely metabolite 

annotations.  

1.3 Thesis Contributions 

This thesis presents three computational methods. Selection Finder (SelFi) 

is the first computational method that synthesizes and integrates a selection 

pathway within a cellular host to advance the directed evolution of enzymes. 

Expanded Metabolic Model Annotation (EMMA) is a novel computational 

workflow to enhance metabolite annotation. Probabilistic Modeling for untargeted 

Metabolomics Analysis (PUMA) predicts the likelihood of activity of metabolic 

pathways and derives probabilistic assignment of measurements to candidate 

metabolites. Collectively, these methods advance the engineering and analysis of 

biological systems. The key contributions of the thesis are as follows: 
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• Designing SelFi to combine synthesis pathway construction with 

metabolic engineering knockout strategies to ensure coupling of 

selection pathways with cell survival. 

• Demonstrating that SelFi identifies high-quality selection pathways for 

several enzymes with desired reaction products, where some identified 

pathways are confirmed as valid selection schemes based on published 

literature, while others present potential valuable alternate strategies to 

demonstrated selection schemes. 

• Developing the concept of an Expanded Metabolic Model (EMM), a 

metabolic model that includes metabolites that can form due to 

substrate promiscuity. 

• Using EMMs within the EMMA framework to identify biologically 

relevant candidate metabolites for annotation and to allow metabolite 

annotation of novel molecules associated with the biological sample. 

• Showing that EMMA increases annotation beyond what is possible 

with a metabolic model without incurring large computational costs 

associated with exploring large databases.   

• Using EMMA to guide the experimental verification of 4-

hydroxyphenyllactate, a Chinese Hamster Ovary (CHO) cell metabolite 

that has not been previously identified as part of CHO cell metabolism. 

• Developing PUMA to utilize hierarchical graphical modeling and 

inference to approximate posterior probabilities of pathway activities 

and metabolite annotations.  
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• Demonstrating through PUMA the capabilities of Bayesian reasoning 

in evaluating pathway activities and contrasting them with those 

obtained using more traditional statistical pathway enrichment 

methods. 

• Applying PUMA to metabolomics datasets and showing: (a) high level 

of agreement in annotation between PUMA and other annotation 

approaches that utilize additional information in the form of spectral 

signatures, and (b) an increase in the number of measurements that can 

be annotated over those obtained using other tools. 

1.4 Thesis Organization  

This thesis consists of 6 chapters. Chapter 2 provides background for synthesis 

pathway construction and gene modification techniques as they relate to creating 

selections to isolate desired enzymatic mutants. Chapter 2 also provides 

background on metabolomics analysis including metabolite annotation and 

pathway enrichment techniques.  

Chapter 3 describes how SelFi constructs selection pathways and identifies 

knockout targets required to link cell survival with the selection pathway. SelFi is 

evaluated by applying it to engineer selections for four enzymatic reactions. 

 Chapter 4 presents a computational workflow, EMMA, to enhance the chance 

of biological discovery while speeding metabolite annotation. Using data 

collected through untargeted metabolomics, the results of EMMA are compared 

to those obtained using alternate annotation workflows in terms of computational 
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cost and size of the candidate sets. Some of the computational results are 

experimentally evaluated.  

Chapter 5 presents PUMA to explore the use of graphical hierarchical 

modeling and inference to predict the likelihood of pathway activities and 

metabolite annotation. Applied to untargeted metabolomics datasets, PUMA is 

evaluated and compared to other pathway enrichment and metabolite annotation 

techniques. 

 Chapter 6 summarizes the thesis and outlines directions for future research.  
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Chapter 2 

Background 

The contributions of this thesis are in two areas. One contribution, in the area of 

directed evolution of enzymes, involves the construction of a selection pathway 

from a desired enzymatic product to a cellular host then engineering the cellular 

host to couple the pathway with cell survival. The second contribution advances 

the annotation and interpretation of measurements collected through untargeted 

metabolomics.  

2.1 Metabolic Engineering for Directed Evolution of 

Enzymes 

Despite the adoption of computational tools such as synthesis pathway 

construction and gene modifications in synthetic biology and metabolic 

engineering, there are no computational tools that automatically design and 

integrate selection pathways for the directed evolution of enzymes. This thesis 

adapts and integrates synthesis pathway construction and genetic modification 
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tools to engineer selection pathways that isolate mutants of an enzyme with a 

desired functionality. 

2.1.1 Synthesis Pathway Construction 

Designing novel synthesis pathways to generate desirable compounds that are 

not naturally produced by a cellular organism allows the production of useful 

compounds such as high-valued industrial chemicals. A synthesis pathway 

includes a sequence of reactions steps that convert a source compound within the 

cellular host to a target compound. Computational tools for the construction of 

synthesis pathways can be classified as either graph-based or rule-based [40]. 

Graph-based approaches exploit compound and reaction data in databases such as 

KEGG [35] for synthesis pathway construction. By analyzing the database as a 

graph, with compounds as nodes and reactions as edges, graph-based approaches 

seek to find a path in the graph from a starting compound to a desired target 

product. For example, PathMiner [41] [42] seeks to build pathways that minimize 

the biochemical transformation cost. This approach favors reactions involving the 

addition of smaller functional groups, which can select against canonical 

modifications such as phosphorylation. OptStrain [43] is a pathway synthesis 

approach where a mixed integer linear programming framework is utilized to 

identify high-yielding stoichiometrically balanced synthesis pathways by adding 

or deleting reactions from a curated database to the host metabolic network. 

ProPath [44] identifies non-naive synthesis pathways between two compounds by 

probabilistically sampling available reactions within a database as the search 
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space and employment of a backtracking algorithm to explore the search space 

recursively to find a solution. 

Rule-based approaches have the advantage of constructing synthesis pathways 

for metabolites with no known reactions catalogued in databases. Using either 

known transformations or compound-reaction data stored in a database, rule-

based approaches generalize an existing reaction into a transformation rule 

between compounds. One approach, integrated Computational Explorer (BNICE) 

[45] [46] utilizes the EC classification number of enzymes to generate the 

transformation rules.  Another approach, PathPred [47], utilizes transformational 

patterns derived from KEGG RDM patterns [48] to generate general 

transformation rules between each reactant and product pair. University of 

Minnesota Pathway Prediction System (UM-PPS) [49] is another rule-based 

approach that was developed to identify novel biodegradation pathways. 

Metabolic rules based on organic functional groups are derived from The 

University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD).   

2.1.2 Gene Modifications 

Increasing the rate of producing a target molecule within a cellular host 

requires modifying the host through either deletions or up/down regulation of a 

selected set of genes. Computational tools can be used for the identification of 

gene modifications. For example, OptKnock [50] uses bi-level programming to 

identify gene deletions that satisfy the coupled objectives of target overproduction 

and biomass formation. There are several improvements to OptKnock (e.g., 
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OptReg [51], OptORF [52], MOMAKnock [53], and RobustKnock [54]). In 

addition to bi-level optimization based techniques, OptGene [55] employs the 

principle of evolution to identify gene knockout targets. CCOpt formulation [56] 

is the first work to incorporate uncertainties when computing gene modifications, 

where constraints in CCOpt are probabilistically met at a user-specified 

confidence level. OptForce [57] and CosMos [58] mathematically identify 

required coordinated changes among reactions. 

2.2 Interpreting Measurements Collected through 

Untargeted Metabolomics  

The current gold standard for assigning a chemical identity to a measurement 

collected through untargeted metabolomics is to verify the measured spectral 

signature against that of an authentic standard using the same equipment and 

settings. This method is impractical, as it requires costly and enormous 

experimental efforts. Importantly, candidate matches for testing must be identified 

before any experimental authentication. There are now spectral databases that 

catalogue chemical structures and their spectral signatures and there are in silico 

annotation tools to computationally determine the likelihood of matching the 

query spectra to a specified set of candidate metabolites. Further interpretation of 

metabolomics data, mostly in the form of computing pathway activities, is 

enabled by statistical and topological pathway enrichment techniques. 
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2.2.1 Spectral Databases for Annotation 

Due to the impracticality of establishing in-house libraries, analysis of MS/MS 

data often relies on reference databases such as METLIN [27], HMDB [28], 

MassBank [59], and NIST [30]. However, the coverage of compounds in these 

databases remains limited. For example, NIST contains ~652,000 spectra for 

15,243 unique compounds [60], roughly 0.025% of the more than 60,000,000 

catalogued compounds in PubChem [36]. Other spectral databases contain fewer 

spectra, with METLIN currently cataloging ~16,000 spectra [61] and MassBank 

cataloguing 74,447 unique compounds across 211,545 spectra [62]. The number 

of covered unique compounds is just over to 2,256 for HMDB [63]. These spectra 

sometimes correspond to both peptides and small molecules (e.g., as in NIST and 

METLIN), and across multiple platforms (e.g., LC-MS, GC-MS, etc.). As a result, 

only a small percentage of total number of measurements detected in a sample can 

be annotated using spectral libraries.  

2.2.2 In silico Metabolite Annotation 

Earlier software packages for annotation such as Mass Frontier [64], ACD/MS 

Fragmenter [65], and Hammer [66] are tools that have been developed to predict 

fragmentation patterns for an input chemical structure. MetFrag [67], Fragment 

Identificator (FiD) [68], Fragment Formula Calculator [69], and Mass Spectrum 

Interpreter [60] are other approaches that have been introduced for in silico 

fragmentation pattern prediction. More recently introduced in silico annotation 

tools, such as CFM-ID [70], and CSI:FingerID [71] employ machine learning 
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algorithms. CFM-ID provides estimated fragmentation based upon a probabilistic, 

generative model. The algorithm of CFM-ID enumerates the possibilities of bond 

breaking in a molecule structure in a breadth-first manner, computing the 

probability that each bond breaks. The algorithm is then applied recursively on 

fragments of the original molecule structure that can be generated due to high 

probability bond breakings. Once the probabilities are generated, the algorithm 

predicts a spectral signature for the input molecule structure. Having spectral 

signatures predicted for a list of known metabolites, CFM-ID uses them to 

compare against an unknown spectral signature for annotation. The algorithm in 

CSI:FingerID consists of two phases, learning and prediction. In the learning 

phase, the algorithm uses a database of reference compounds with known 

molecular structure, computing a molecular fingerprint for each compound. The 

algorithm then trains a Support Vector Machine (SVM) on each molecular 

property in the fingerprint. In the prediction phase, the algorithm predicts a 

fingerprint for an unknown compound by using the trained SVMs to predict the 

probability of absence or presence of each molecular property in the unknown 

compound. The runtime of in silico metabolite annotation techniques can be 

computationally prohibitive as the computational cost is a function of the number 

candidate metabolites under consideration.   

Exploiting biological context can enhance metabolite annotation by focusing 

on biologically relevant candidate metabolites. A method is described for 

identifying potential substrate-product pairs based on the mass change in 

manually curated well-known metabolic conversions and the mass differences 
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between pairs of detected mass spectrometry features [72]. Another method, iMet 

[73], exploits the fact that neighboring metabolites within a metabolic network 

have similar MS/MS spectra and trains a classifier to predict the closest neighbor 

in databases for an unknown query spectra. BioCAN utilizes annotation evidence 

that is collected through spectral databases and in silico annotation tools in the 

neighborhood of a measured mass to determine the most likely annotation [74].    

2.2.3 Pathway Enrichment Analysis 

Pathways represent a connected set of reactions and metabolites that are 

involved in performing a particular function such as glycolysis or the 

tricarboxylic acid (TCA) cycle. Pathways are curated based on the literature and 

domain knowledge and catalogued in databases. For example, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) manually curated metabolic 

pathways for thousands of organisms [75]. MetaCyc contains 2,609 pathways 

from 2,914 different organisms [76]. The Small Molecular Pathway Database 

(SMPDB) catalogues 30,000 small molecule pathways found in humans [77]. 

There are now several computational techniques to perform pathway enrichment 

analysis based on metabolomics data. These techniques can be broadly classified 

in two categories: Overrepresentation Analysis (ORA) and Topological Analysis 

(TA). ORA employs statistical testing (e.g., Fisher’s exact test) to determine if a 

dataset is enriched in a particular set of metabolites to a degree greater than 

expected by chance, given a set of pathways assumed to be expressed in the 

biological system of interest. Pathway Enrichment Analysis (PEA) performs a 

similar test based on the measured concentrations of metabolites. Metabolomics 
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data have been also analyzed using tools originally developed for gene expression 

analysis (e.g., globaltest [78]). For example, MSEA, a web-based pathway 

analysis tool, employs gobaltest to implement ORA [79]. TA estimates the 

observed metabolites’ centrality and connectivity, which measure the importance 

of a metabolite in the flow of material through a pathway or network. 

MetaboAnalyst [80] is a web-based platform featuring a number of pathway 

analysis tools, which afford integration of metabolite and gene expression data to 

explore enriched pathways based on the joint evidence from these two types of 

data. A similar capability is available through Integrated Molecular Pathway-

Level Analysis (IMPaLA) [81], which performs overrepresentation and 

enrichment analysis with user-specified lists of metabolites and genes by 

referencing a large number of pathways cataloged in multiple databases. A recent 

comparison has shown that current ORA techniques provide consistent results 

regardless of their approach [82]. ORA and TA techniques, however, do not 

address issues related to uncertainty in metabolite annotation.  

The two problems, metabolite annotation and pathway enrichment analysis, 

have traditionally been solved as two independent problems, where path 

enrichment assumes that the chemical identity of each measured mass is known a 

priori. One exception is Mummichog, a set of robust statistical algorithms that 

predicts functional activity directly from measurements, circumventing annotation 

[83]. The biological context encoded in pathways/modules aids in reducing and in 

some cases eliminating ambiguity in metabolite annotation. Mummichog 
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produces quality results in agreement with validated annotation in experimental 

studies. 
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Chapter 3 

Selection Finder (SelFi): A 

Computational Selection Finder for 

Directed Evolution of Enzymes 

We present in this chapter a computational metabolic engineering framework, 

SelFi, to identify high-throughput selections to isolate active mutant enzyme with 

a desired catalytic function. Such an enzyme catalyzes a reaction that transforms 

the enzyme’s precursor to an enzymatic product desired for its beneficial 

industrial use [84]. Selection is a technique that automatically identifies functional 

mutants by linking the desired catalytic functionality to cell survival. In this work, 

the link is established by first constructing a pathway from the desired enzymatic 

product to a molecule within the host, which is then engineered to make 

consumption of the desired product essential for cellular growth. The pathway 

includes a series of reactions from the desired enzymatic product to a molecule 

within the cellular host. The pathway is referred to as a consumption pathway, as 

it provides a mechanism for the cellular host to consume the desired enzymatic 
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product. The pathway is constructed using an adaptation of ProPath [44], an 

algorithm for constructing synthesis pathways that transform a molecule in the 

host to a desirable target molecule typically not produced by the host. Given a 

desired enzymatic product, our framework identifies several candidate selection 

pathways and corresponding genetic engineering strategies for the host. The 

candidate pathways are then ranked based on predicted consumption flux and 

required cellular engineering efforts. An ideal selection provides maximum 

dynamic range with minimal cellular engineering effort.  

SelFi identifies a selection pathway in four steps. In the first step, SelFi 

constructs traversal pathways to consume the desired enzymatic reaction product 

and convert it to a native metabolite within the cellular host. Utilizing ProPath 

[44], reactions from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database [35] are used to construct candidate consumption pathways. In the 

second and third steps, SelFi identifies the minimal set of carbon sources and 

knockout targets required to link cell survival with the consumption pathway and 

to guarantee a minimum flux. In the last step, SelFi ranks the resulting pathways 

based on flux, pathway length, and number of required knockouts.  

Modifications identified by SelFi can be experimentally utilized as follows. 

The mutagenized library of the enzyme to be engineered and the identified 

consumption pathway along with supporting pathways are co-expressed (using, 

for example, plasmids) in the selection strain with the identified knockouts. This 

will create a high-throughput pooled library system from which the desired 

enzymatic reaction will be selected. 
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3.1 Methods 

3.1.1 Construction of Consumption Pathways 

To identify selection pathways, we utilize a modified version of ProPath [44], 

a probabilistic algorithm for constructing synthesis pathways that start from a 

metabolite within the host and end with a desirable target. Using reactions in the 

KEGG database, ProPath recursively explores a tree representing all possible 

synthesis pathways that start from the target metabolite (Figure 1).  

 

 

ProPath selects a single reaction from a list of candidate reactions in the 

KEGG database that involve the target metabolite as a product. Reaction selection 

occurs with equal likelihood of selecting a candidate reaction. The selected 

reaction, represented by an edge, is added to the tree. This edge expands the tree 

 

Figure 1. Probabilistic pathway construction using the ProPath algorithm. 

The dashed and solid lines show the possible routes and selected reactions, 

respectively. (a) Tree representing all possible synthesis pathways for a target 

metabolite. The root of the tree is the target metabolite. (b) and (c) only one 

reaction is selected at a time, in a depth-first fashion and (d) recursive 

exploration terminates at a metabolite within the host network. 
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by attaching new nodes representing the product metabolites and cofactors of the 

selected reaction. Further pathway construction proceeds in a depth-first fashion. 

Each added node becomes a new root for the construction, unless the 

corresponding metabolite is already present in the host organism or previously 

added to the tree. A limit is set on the number of reactions that can be used to 

construct a pathway. When the addition of a reaction to the tree violates this limit, 

the search algorithm backtracks. The algorithm then proceeds by adding to the 

tree another reaction that has not been previously explored, effectively exploring 

an alternative pathway. If none of these alternative routes satisfy the pathway 

length limit, the algorithm further backtracks and continues from there. The 

algorithm finishes when all permitted-length branches of the tree terminate in a 

metabolite that is native to the host organism. Due to the probabilistic nature of 

selecting the reactions, the completed tree does not exhaustively enumerate all 

possible pathways. Rather, each tree represents a single pathway from the target 

metabolite to one or more metabolites that are native to the host. The search is 

iterated many times to explore a diverse number of possible pathways. Our route 

construction is based on ProPath, as it was shown effective in generating 

synthesis pathways with fluxes comparable with those reported for limited-in-

depth exhaustive search methods. Additionally, ProPath was able to reproduce 

experimentally obtained pathways published in the literature. We reverse 

ProPath’s search direction to identify a pathway starting from a compound of 

interest to an endogenous metabolite within the host. We refer to the use of the 

algorithm in this reversed manner as retroProPath. In retroProPath, the root of 
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the tree is also the desired product of an engineered enzymatic reaction. The first 

set of edges added to the tree represents KEGG reactions that consume the desired 

enzymatic product. A single reaction among them is selected with equal 

likelihood to expand the tree. retroProPath continues the probabilistic search 

using product-side non-cofactor metabolites of the selected reaction. The in-depth 

path construction terminates when a metabolite within the host is reached or the 

path length limit is reached. The algorithm backtracks to explore a different 

pathway, as needed. To ensure that reactant-side cofactors associated with the 

identified pathway are available to the cell, SelFi utilizes ProPath to construct 

supporting synthesis pathways that start from a metabolite within the host and 

terminate at each such cofactor. The pathway from the enzymatic product to a 

metabolite within the host along with these supporting synthesis pathways are 

referred to as a consumption pathway. Other pathway synthesis methods (e.g., 

PathPred [47], PathMiner [42]) can be utilized in place of ProPath.   

3.1.2 Evaluating Consumption Pathway Flux and Consumption Demand 

Flux Balance Analysis (FBA) [85] is a constraint-based approach for 

calculating the flow (flux) in a metabolic network under steady-state conditions. 

A metabolic network consists of m metabolites and n reactions. An m × n matrix, 

S, represents the network where each row corresponds a metabolite and each 

column corresponds to a stoichiometrically balanced reaction. Matrix entry si,j 

represents the stoichiometric coefficient of metabolite i in reaction j. A vector, v, 

of length n, represents the flux in all network reactions. FBA uses linear 

programming to solve a particular cellular objective such as maximizing biomass 
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production, or minimizing or maximizing the flux for a particular reaction. A set 

of equations, S · v = 0, constrain the system to operate in steady state. Additional 

constraints imposed by physiological conditions and metabolite exchange fluxes 

are represented as upper and lower bounds on each reaction flux.  

In this work, FBA is utilized to evaluate the maximum and minimum 

consumption flux through the engineered enzyme, and hence through the 

consumption pathway. In addition, FBA is utilized to assess the consumption 

demand for metabolites within the host. A consumption pathway terminating at a 

high-demand metabolite within the host suggests the possibility of constructing a 

high-flux consumption pathway. A consumption pathway terminating at a low-

demand metabolite explains the low yield associated with such a consumption 

flux. 

We define the consumption demand of a metabolite as the maximum sum of all 

outgoing fluxes consuming the metabolite. The consumption flux of metabolite i 

with k consuming reactions connected to the metabolite can be calculated using 

FBA by solving the following optimization problem: 
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Where  represents the consumption flux of metabolite i through its jth 

consuming reaction,  and are respectively the associated lower and upper 

bounds for .  represents the rate of biomass production, and   

represents the minimum desired biomass production rate. To identify the 

maximum demand while allowing for reaction reversibility, several instance 

problems are considered. With m reversible reactions connected to metabolite i, 

we consider that each reversible reaction can operate in forward and reverse 

directions. We then generate 2m possible objective functions for the optimization 

problem, representing all possible reaction directionalities associated with the 

consumption flux. Using FBA, we assess consumption flux of metabolite i based 

on each of the objective functions for a desired biomass production rate. Among 

all feasible solutions obtained by FBA, we select the maximum as the 

consumption demand associated with metabolite i. In this work, we evaluate the 

consumption demand for metabolites within the cellular host. Consumption 

pathways that terminate on host metabolites with low consumption demand may 

not be suited for high-throughput selection. 

3.1.3 SelFi Framework 

Given an engineered enzymatic reaction and its reactant and product, SelFi 

constructs pathways that consume the enzymatic product, and then engineers the 

cell to couple the consumption pathway with cell survival. SelFi has four steps - 

the outcomes of which are illustrated in Figure 2.  
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Step 1. Constructing consumption pathways 

Using retroProPath, SelFi constructs a set of possible consumption pathways 

from the desired product to a metabolite within the cellular host. Based on the 

practicality of simultaneous gene insertions, the pathway length limit is set to 20 

[86]. While most cofactors required by the consumption pathways (e.g. H+, O2, 

CO2, NAD(P)+, NAD(P)H) are likely native to the host, SelFi constructs synthesis 

pathways from the host to the cofactors if needed. To do so, SelFi first determines 

if all reactant-side cofactors are native to the host. If a cofactor is not native, SelFi 

uses ProPath to construct synthesis pathways starting with a host metabolite to 

the cofactor. Figure 2 shows an example pathway construction. The blue pathway 

is constructed using retroProPath, and provides a consumption pathway from the 

desired enzymatic product (green number 2) to a metabolite within the host 

(yellow number 1). A supporting pathway (orange) from a metabolite native to 

the host (yellow number 2), to a non-native cofactor on the reactant side of the 

reaction along the selection pathway is constructed using ProPath. While this step 

identifies consumption pathways, these are not yet high flux selection pathways 

since a link to cellular viability is not yet established. The following steps address 

these requirements. 

Step 2. Eliminating alternate carbon sources  

Selection requires linking the enzymatic product to a metabolic function 

essential for cell viability. This can be accomplished by forcing the consumption 

pathway to be the only cellular carbon source. SelFi therefore eliminates all 

organic carbon uptakes except for the uptake provided through the consumption 
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pathway, and inorganic CO2, an essential waste product. As a cellular host, E. coli 

has many carbon uptakes including D-glucose, D-fructose, D-galactose, D-

mannose, D-xylose, L-arabinose, D-ribose, D-glyceraldehyde, and glycerol. 

Typically, the cell utilizes only one such carbon source at a time for growth. 

Mathematically, the elimination of carbon uptake by a specific reaction can be 

modeled by setting its minimum and maximum operating flux to zero. In the 

example provided in Figure 2, the precursor of the desired enzymatic product 

(green number 1) is not native to the host. Eliminating external carbon sources, 

marked by red “×”, couples the consumption pathway (blue) with cell survival.  

In some cases, the reactant of the specified enzymatic reaction is native to 

the host, and limiting carbon uptake to be only through the consumption pathway 

is not possible. Here, an external carbon source must be provided to keep the cell 

alive. FBA is used to determine the external source that maximizes flux through 

the consumption pathway. For each carbon source, the consumption pathway flux 

is maximized while constraining the biomass production rate to be at least 10% 

production of the wild-type maximum biomass rate. Selecting a carbon source 

that maximizes the consumption flux does not result in coupling a consumption 

pathway with cell survival as the cell is not reliant on the consumption pathway. 

This issue is addressed in Step 3. 

Step 3. Identifying knockout targets  

SelFi seeks one of two goals in this step: coupling the consumption flux with 

cell survival, if that is not accomplished in Step 2, and improving guaranteed non-

zero minimum consumption flux. SelFi can successfully couple the consumption 
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pathway to the host survival in Step 2 except when the reactant of the given 

enzymatic reaction is native to the host. If the reactant is not native, survival and 

consumption are automatically coupled in the absence of alternate carbon sources 

and a minimum non-zero consumption flux is guaranteed in Step 2. Knockouts 

can improve this guaranteed minimum consumption flux. In presence of native 

reactant for the enzymatic reaction, survival-consumption coupling is not 

guaranteed in Step 2. In this case, SelFi searches for knockout targets in the host 

to guarantee non-zero minimum consumption flux to ensure the consumption 

pathway is linked to cell survival.  

To identify possible knockout targets, SelFi utilizes a sequential greedy 

strategy. SelFi explores knocking out one reaction at a time using FBA to 

calculate the minimum flux through the consumption pathway. Among knockout 

targets that improve the minimum consumption flux, SelFi selects the one that 

improve the minimum flux the most. SelFi continues to find an additional 

knockout target that improves the flux, repeating this process until the maximum 

allowed number of knockouts, as specified by the user, is reached. In this work, 

we set the number of knockouts to three to limit the computational cost associated 

with evaluating each consumption pathway. Alper and et al. used a similar greedy 

knockout strategy to maximize the production of lycopene in E. coli [87].   

Step 4. Ranking selection pathways 

For each pathway identified by Steps 1-3, SelFi generates a listing of reactions 

in the selection pathway and their corresponding supporting pathways needed to 

generate co-factors. SelFi reports the total number of steps in both the selection 
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and support pathways, and the computed guaranteed minimum and maximum 

consumption fluxes before and after knockouts. SelFi provides all information 

such that the end user can explore various options. Ideally, candidate pathways 

are chosen based on the guaranteed minimum consumption flux, pathway length, 

and number of required knockouts. Shorter, higher-consumption flux pathways 

with the smallest number of knockouts are preferable over others. 

 

 

Figure 2. Illustration of SelFi implementation. The large round circle 

indicates boundaries of the wild-type E. coli, and the dotted box indicates 

boundaries of the cell after co-expression of the selection system. The desired 

enzyme catalyzes a reactant (green number 1) to a desired product (green 

number 2). A consumption pathway (blue) from the desired product to a 

metabolite (yellow number 1) within the wild-type E. coli is constructed 

using retroProPath to consume the desired product. A supporting pathway 

(orange) from a native metabolite (yellow number 2) in the wild type to a 

cofactor on the reactant side of a consumption pathway is constructed using 

ProPath, if needed. An “x” within the cell indicates a knockout, and an “x” 

outside the cell indicates eliminating carbon sources. 
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3.2 Results 

To analyze the effectiveness of our algorithm, we applied SelFi to several test 

cases including desired products xylitol, D-ribulose-1,5-bisphosphate, methanol, 

and aniline that can be potentially synthesized through the action of engineered 

enzymes Xylose Reductase (XR), Phosphoribulokinase (PRK), Methane 

Monooxygenase (MMO), and Aromatic Amino acid Decarboxylase (AAD), 

respectively. We utilized the genome-scale model of E. coli metabolism 

(iAF1260) [88] as the host organism. The iAF1260 model constraints were 

modified as follows. A constraint is added to ensure that the biomass flux is equal 

to or greater than 10% of the maximum biomass flux rate of the wild type. The 

lower and upper bounds on oxygen uptake were set to −1000 and 1000 

(mmol/gDCW/hr) respectively to allow for aerobic growth conditions. The lower 

and upper flux bounds for the engineered enzymatic reaction were set to 0 and 

1000 (mmol/gDCW/hr) respectively. Lower and upper flux bounds of reactions 

along the added selection pathways were set to −1000 and 1000 

(mmol/gDCW/hr), respectively.   

3.2.1  Summary of Results 

We executed retroProPath for 1000 iterations. Selection pathways identified 

by SelFi (after Step 1) are summarized in Table 1. The first column lists the 

product of the enzymatic reaction. The second column lists a label we assigned to 

each selection pathway. The first letter of the subscript indicates the product (X 

for xylitol, D for D-ribulose-1,5-bisphosphate, M for methanol, and A for 
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aniline), while the second letter indicates the selection pathway number. The third 

column lists the reactions along identified selection pathways. All cofactors along 

the pathways are native to the host, thus eliminating the need for adding synthesis 

pathways for reactant-side cofactors.  

Table 2 summarizes flux characterization results after restricting carbon 

uptakes (after Step 2), and after knockouts (after Step 3). The first column lists the 

selection pathways by their labels as designated in Table 1. The second column 

lists the length of the pathways. The third and fourth columns list minimum and 

maximum consumption fluxes before applying any knockouts. In many cases, the 

minimum consumption flux is zero, indicating that the added consumption 

pathway is not essential for growth, and that the host must be engineered through 

knockouts to couple the consumption pathway with cell survival. The fifth 

column lists the number of knockouts identified to improve minimum 

consumption fluxes. The two last columns show minimum and maximum 

consumption fluxes after applying knockouts. In this work, the knockouts were 

selected to provide a minimal guaranteed flux. In each case, after knockouts, the 

minimum consumption flux increases whereas the maximum consumption flux 

decreases. A higher minimum uptake rate will enable selection for mutants with 

higher activity. Conversely, a lower minimum guaranteed uptake rate will provide 

a less stringent selection, and for identification of mutants with lower activity. 

Thus, the knockout process provides a mechanism to place a threshold on 

minimum desired enzymatic activity. Table 3 summarizes the consumption 

demand for metabolites terminating the selection pathways identified by SelFi. 
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The first column lists the pathway label, while the second column lists the 

terminating metabolite. The following columns report the consumption fluxes 

calculated using FBA assuming various desired lower bounds on biomass 

production, expressed as a percentage of the maximum biomass production in the 

wild type. For each end metabolite except for L-arabinose, the consumption 

demand remains constant assuming 10%−70% minimal biomass production. L-

arabinose drops to 1750 mmol/gDCW/hr when assuming 70% or higher minimal 

biomass production, while 3-dehydro-L-gulonate, D-ribose 1,5-bisphosphate, 

formaldehyde and 4-aminobenzoate show no change across the 10%-90% 

minimal biomass production range. All consumption demands are relatively high 

except for two end metabolites. 3-dehydro-L-gulonate is produced from 2-3-

dioxo-L-gulonate, a metabolite that is not produced by any other reaction in the 

model. The consumption demand for 3-dehydro-L-gulonate is thus zero. If 2-3-

dioxo-L-gulonate is supplied to the cell with an uptake rate of 1000 

mmol/gDCW/hr, the consumption demand for 3-dehydro-L-gulonate becomes 

1000 mmol/gDCW/hr assuming 10%−70% minimal biomass production, and 333 

mmol/gDCW/hr assuming 90% minimal biomass production. In contrast, 

metabolite 4-aminobenzoate has low demand and can only be utilized in relatively 

small quantities for biomass production.  
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Table 1. Description of identified selection pathways for enzymatic products 

xylitol, D-ribulose-1,5-bisphosphate, methanol, and aniline. 

Desired 

product 

Selection 

pathway label 

Consumption pathway 

For engineering Xylose Reductase 

xylitol 

 

SPX1 

 

xylitol + NAD+ ↔ D-xylulose + NADH + H+ 

 

xylitol 

 

SPX2 

xylitol + NAD(P)+ ↔ L-xylulose + NAD(P)H + H+ 

L-xylulose + NADH + H+ ↔ L-arabitol + NAD+  

L-arabitol + NAD(P)+ ↔ L-arabinose + NAD(P)H + H+ 

xylitol SPX3 xylitol + NAD(P)+ ↔ L-xylulose + NAD(P)H + H+ 

ATP + L-xylulose ↔ ADP + L-xylulose 5-phosphate    

 

xylitol 

 

SPX4 

xylitol + NAD(P)+ ↔ L-xylulose + NAD(P)H + H+ 

L-xylulose + NADH + H+ ↔ L-arabitol + NAD+  

L-arabitol + NAD+ ↔ L-ribulose + NADH + H+ 

xylitol SPX5 xylitol + NAD(P)+ ↔ L-xylulose + NAD(P)H + H+ 

L-xylulose ↔ L-lyxose 

xylitol SPX6 xylitol + NAD(P)+ ↔ L-xylulose + NAD(P)H + H+ 

L-xylulose + CO2 ↔ 3-dehydro-L-gulonate  

 

xylitol 

 

SPX7 

xylitol + NAD(P)+ ↔ L-xylulose + NAD(P)H + H+ 

ATP + L-xylulose ↔ ADP + L-xylulose 1-phosphate 

L-xylulose 1-phosphate ↔ glycerone phosphate + glycolaldehyde 

For engineering Phosphoribulokinase  

D-ribulose-

1,5-

bisphosphate 

SPD1 D-ribulose-1,5-bisphosphate ↔ D-ribose 1,5-bisphosphate  

D-ribulose-

1,5-

bisphosphate 

SPD2 D-ribulose-1,5-bisphosphate + CO2 + H2O ↔ 2 3-phospho-D-glycerate 
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D-ribulose-

1,5-

bisphosphate 

SPD3 D-ribulose-1,5-bisphosphate + O2 ↔ 3-phospho-D-glycerate + 2-phosphoglycolate 

For engineering Methane Monooxygenase 

methanol SPM1 methanol + NAD+ ↔ formaldehyde + NADH + H+ 

methanol SPM2 methanol + formate ↔ 2 formaldehyde + H2O 

methanol SPM3 methanol + O2
 ↔ formaldehyde + H2O2 

methanol SPM4 methanol + H2O2 ↔ formaldehyde + 2 H2O 

For engineering Aromatic Amino Acid Decarboxylase 

aniline SPA aniline + CO2  ↔ 4-aminobenzoate 

 

 

Table 2. Characterizing consumption pathways, showing length of the pathways, 

minimum and maximum consumption fluxes before applying knockouts, number 

of identified knockouts and minimum and maximum consumption fluxes after 

knockouts, for each selection pathway 

Selection 

pathway 

label 

Pathway 

length 

Minimum 

consumption flux 

before knockouts 

(mmol/gDCW/hr) 

Maximum 

consumption flux 

before knockouts 

(mmol/gDCW/hr) 

Number 

of 

identified  

knockouts 

Minimum 

consumption flux 

after knockouts 

(mmol/gDCW/hr) 

Maximum 

consumption flux 

after knockouts 

(mmol/gDCW/hr) 

SPX1 1 0 1000 3 111.66 184.09 

SPX2 3 0 325 3 111.66 184.09 

SPX3 2 0 325 3 111.66 184.09 

SPX4 3 0 325 3 111.66 184.09 

SPX5 2 0 325 3 111.66 184.09 

SPX6 2 0 325 3 111.66 184.09 

SPX7 3 0 325 3 110.27 184.46 

SPD1 1 0 1000 2 4.23 623.34 

SPD2 1 0 847.04 1 3.78 689.08 
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SPD3 1 0 615.66 1 3.55 500.58 

SPM1 1 44.53 726.79 3 117.50 673.76 

SPM2 1 47.01 500 3 127.29 500 

SPM3 1 60.28 510.44 1 196.18 502.40 

SPM4 1 60.38 515.84 2 278.59 502.70 

SPA 1 0 0.01 1 0.001 0.01 

 

 

Table 3. Consumption demand flux of end metabolites in mmol/gDCW/hr for 

each selection pathway, assuming a minimum of 10%, 30%, 50%, 70%, and 90% 

biomass production compared to the maximum biomass production of the wild 

type. 

Pathway End metabolite in host 

Minimum biomass production rate 

10% 30% 50% 70% 90% 

SPX1 D-xylulose 1000.00 1000.00 1000.00 1000.00 500.00 

SPX2 L-arabinose 2000.00 2000.00 2000.00 1750.00 1250.00 

SPX3 L-xylulose 5-phosphate 1000.00 1000.00 1000.00 1000.00 500.00 

SPX4 L-ribulose 1000.00 1000.00 1000.00 1000.00 500.00 

SPX5 L-lyxose 1000.00 1000.00 1000.00 1000.00 500.00 

SPX6 3-dehydro-L-gulonate 0.00 0.00 0.00 0.00 0.00 

SPX7 glycolaldehyde 1000.00 1000.00 1000.00 1000.00 500.33 

SPD1 D-ribose1,5 bisphosphate 1000.00 1000.00 1000.00 1000.00 1000.00 

SPD2-3 3-phospho-D-glycerate 2000.00 2000.00 2000.00 2000.00 1500.00 

SPM1-4 formaldehyde 1000.00 1000.00 1000.00 1000.00 1000.00 

SPA 4-aminobenzoate 0.05 0.05 0.05 0.05 0.05 
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3.2.2 Xylose Reductase (XR) and Xylitol 

Xylitol is used as a low-calorie sweetener or platform chemical for the 

production of industrially important chemicals such as glycols [84]. Xylitol can be 

overproduced through an engineered XR enzyme (Figure 3) with D-xylose as a 

reactant and desired enzymatic product xylitol [89]. The purpose of engineered 

XR, as described by Nair and Zhao [89], is to engineer substrate specificity of XR 

while maintaining its activity toward the natural substrate, D-xylose.  

 

 

SelFi identified seven consumption pathways for xylitol as specified in Tables 

1 and 2. The pathways end with D-xylulose, L-arabitol, L-xylulose 5-phosphate, 

L-ribulose, L-lyxose, 3-dehydro-L-gulonate, and glycolaldehyde. D-xylose, the 

reactant of the enzymatic reaction, is native to E. coli. SelFi limited all external 

carbon sources except for D-xylose. All terminating metabolites have relatively 

high demand, as per Table 3, except for 3-dehydro-L-gulonate. However, with D-

xylose uptake, xylitol is converted to L-xylulose, which in turn is converted to 3-

dehydro-L-gulonate, and a maximum consumption flux of 325 mmol/gDCW/hr 

can be achieved prior to knockouts.   

 

Figure 3. Reduction of D-xylose to xylitol by Xylose Reductase (XR) 

 

 

 



 

38 

 Table 4. Knockout targets for xylitol test case 

Knockout target reaction KEGG ID 

D-xylose[c]* ↔ D-xylulose[c] R01432 

ADP[c] + 4.0 H+[p]** + Pi[c] ↔ ATP[c] + H2O[c] + 3.0 H+[c] R00086 

D-glycerate-2-phosphate[c] ↔ 3-phospho-D-glycerate[c] R01518 

* cytoplasmic localization 
** periplasmic localization 

 

 

 

Table 5. Effect of knockouts to improve guaranteed minimum consumption 

fluxes. For each pathway listed in column 1, we identify knockout targets, and the 

corresponding minimum guaranteed flux in parenthesis. 

Selection 

pathway label 

1st Round 2nd Round 3rd Round 

SPX1 - X6 Δ R01432 (21.80) Δ R01432, Δ R00086 (57.66) Δ R01432, Δ R00086, Δ R01518 (111.66) 

SPX7 Δ R01432 (21.80) Δ R01432, Δ R00086 (57.66) Δ R01432, Δ R00086, Δ R01518 (110.27) 

 

SelFi identified the same set of three knockout targets for selection pathways 

SPX1 - SPX7. As shown in Table 2, the minimum flux through the consumption 

pathways, which is zero mmol/gDCW/hr prior to applying any knockouts, is 

110.27 mmol/gDCW/hr or higher after knockouts. The knockouts thus result in 

coupling the consumption pathway with cellular growth. Table 4 summarizes 

reactions identified by SelFi as knockout targets and their corresponding KEGG 

identification numbers (KEGG IDs). Table 5 presents the order of reactions to be 

knocked out and shows the extent to which each knockout improves the 

guaranteed minimum consumption flux. The knockout targets identified by SelFi 

are shown in Figure 4, where a solid arrow illustrates a single reaction, while a 
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dashed line represents multiple reaction steps. Metabolites and reactions native to 

the host are enclosed in a box, while non-native ones are placed outside the box. 

The remaining figures utilize the same drawing convention. The complete names 

of abbreviations used in Figure 4 (and Figures 6−7) are listed in the Abbreviations 

Table in Appendix A. The first knockout target R01432 is a reaction that 

consumes D-xylose (xyl-D) as its reactant. Knocking out this reaction provides 

larger amount of D-xylose to be catalyzed by the engineered enzyme, XR, 

providing more xylitol to the host. The second identified knockout target, 

R00086, is adenosine triphosphate (ATP) synthesis reaction. With this knockout, 

the host is unable to efficiently synthesize ATP via oxidative phosphorylation and 

is consequently forced to use more substrate xylitol for generating ATP via the 

less-efficient substrate-level phosphorylation, increasing total xylitol demand for 

equivalent biomass production. The third identified knockout target, R01518, is a 

reaction with reactant 3-phospho-D-glycerate (3pg) and product D-glycerate-2-

phosphate (2pg). As shown in Figure 4, knocking out this reaction diverts flux 

towards D-ribulose-5-phosphate (ru5p-D), which is involved in the production of 

biomass precursors. Higher production rates of ru5p-D places demand for more 

substrate D-xylulose-5-phosphate (xu5p-D), which results in higher demand for 

xylitol, and thus a higher consumption flux.   

Among the identified selection pathways, SPX1 is the shortest pathway with 

length one. This pathway provides a guaranteed minimum consumption flux equal 

to 111.66 mmol/gDCW/hr after applying the identified knockouts. Nair and Zhao 

[89] used the same selection pathway to engineer XR but only applied the first 
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identified knockout target, R01432, to guarantee a minimum consumption flux. 

SelFi identified two additional knockout targets to improve the selection and more 

strongly link growth rate to engineered XR activity. 

 

 

Figure 4.  R01432, R00086 and R01518 are knockout targets (shown in red). 

The engineered enzymatic reaction is colored in green. Knockouts improve the 

production of xylitol from xyl-D through the engineered enzymatic reaction. 
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3.2.3  Phosphoribulokinase (PRK) and D-Ribulose-1,5-bisphosphate 

Photosynthetic CO2 fixation is a source of organic carbon and necessary for 

carbon sequestration. PRK catalyzes a reaction to establish the photosynthetic 

CO2 fixation with D-ribulose-5-phosphate as a reactant and D-ribulose-1,5-

bisphosphate as a product [90]. The reactant of this enzymatic reaction, D-

ribulose-5-phosphate, is native to the host. 

SelFi identified three consumption pathways as shown in Tables 1 and 2 for D-

ribulose-1,5-bisphosphate. The consumption pathways end at D-ribose 1,5-

bisphosphate, 3-phospho-D-glycerate, or 2-phosphoglycolate. SelFi restricts all 

external carbon sources except glycerol. Knockout targets that improve the 

minimum flux through the consumption pathways are summarized in Table 6. 

Table 7 presents the order of reactions to knock out and shows the extent to which 

each knockout improves the guaranteed minimum consumption flux of D-

ribulose-1,5-bisphosphate. For selection pathway SPD1, SelFi identified two 

knockout targets, while only one knockout target was identified for pathways 

SPD2 and SPD3. Additional knockouts did not further improve the flux through the 

consumption pathways.  

Table 6. Knockout targets for D-ribulose-1,5-bisphosphate test case 

  Knockout target reaction KEGG ID 

D-ribulose-5-phosphate[c] ↔ D-ribose-5-phosphate[c] R01056 

D-erythrose-4-phosphate[c] + D-xylulose-5-phosphate[c] ↔ 

D-fructose-6-phosphate[c] + glyceraldehyde-3-phosphate[c] 

R01067 
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Table 7. Effect of knockouts to improve guaranteed minimum consumption 

fluxes. For each pathway listed in column 1, we identify knockout targets, and the 

corresponding minimum guaranteed flux in parenthesis. 

Selection pathway label 1st Round 2nd Round 3rd Round 

SPD1 Δ R01056(2.37) ΔR01056, Δ 

R01067(4.23) 

---* 

SPD2 Δ R01056(3.78) ---* ---* 

SPD3 Δ R01056(3.55) ---* ---* 

* No further flux-improving knockouts are identified 

 

Red-labeled reactions in Figure 5 indicate knockout targets for the production 

of D-ribulose-1,5-bisphosphate through the engineered enzymatic reaction, which 

is colored in green. The first knockout target, R01056, is a reaction that consumes 

D-ribulose-5-phosphate (ru5p-D), the reactant of the enzymatic reaction. 

Knocking out this reaction provides larger amounts of ru5p-D for the engineered 

PRK leading to higher production of D-ribulose-1,5-bisphosphate. The second 

knockout target, R01067, similarly affects the host as R01067 is part of a pathway 

consuming ru5p-D.   
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The selection pathway SPD1 provides the highest guaranteed minimum flux, 

4.23 mmol/gDCW/hr, after applying two knockouts. Among the identified 

pathways, the pathway from D-ribulose-1,5-bisphosphate to 3-phospho-D-

glycerate was previously experimentally validated and confirmed in literature by 

Cai et al. [90], but used for selection of a different enzyme − RuBisCO. Since 

PRK and RuBisCO catalyze sequential reactions in CO2 fixation, Cai et al. 

coupled both reactions to implement their selection. 

 

3.2.4  Methane Monooxygenase (MMO) and Methanol 

Conversion of methane to a liquid fuel such as methanol is highly desirable. 

While this conversion can be catalyzed by the enzyme MMO [91], Chen et al. 

 

Figure 5. Knockout targets R01056 and R01067 are shown in red. 

Identified knockout targets are connected to D-ribulose-1,5-bisphosphate 

production. The engineered enzymatic reaction is colored in green. 

Knockouts improve the production of D-ribulose1,5-biphosphate from 

ru5p-D through the engineered enzymatic reaction. 
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have shown that a cytochrome P450 oxidase can also be engineered to catalyze 

this reaction [92].  

SelFi identified four consumption pathways for the methanol test case as 

shown in Tables 1 and 2. All identified pathways terminate at formaldehyde, but 

utilize different co-substrates and cofactors. Selection pathways SPM1 and SPM2 

use NAD+/NADH cofactors, while selection pathways SPM3 and SPM4 utilize H2O2 

and O2, respectively. The reactant of the enzymatic reaction, methane, is not native 

to the host. Upon restricting all external carbon sources except for methane, the 

identified consumption pathways became coupled with host survival enabling 

non-zero minimum consumption fluxes shown in Table 2. In this case, knockouts 

function solely to improve the non-zero minimum consumption fluxes. Table 8 

shows reactions and their corresponding KEGG IDs as knockout targets. Table 9 

shows the order of reactions to knock out as determined by SelFi, and the effect of 

each knockout has in improving the guaranteed minimum consumption fluxes. 

Table 8. Knockout targets for methanol test case 

Knockout Target Reaction KEGG ID 

CO2[c] + H2O[c] + phosphoenolpyruvate[c] → H+[c] + oxaloacetate[c] + Pi[c] R00345 

4.0 H+[c] + 0.5 O2[c] + ubiquinol-8[c] → H2O[c] + 4.0 H+[p] + ubiquinone-8[c] R09504 

2.0 H+[p] + NADH[c] + NADP+[c] → 2.0 H+[c] + NAD+[c] + NADPH[c] R00112 
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Table 9. Effect of knockouts to improve guaranteed minimum consumption 

fluxes. For each pathway listed in column 1, we identify knockout targets, and the 

corresponding minimum guaranteed flux in parenthesis. 

Selection 

pathway label 

1st Round 2nd Round 3rd Round 

SPM1 Δ R00345 (72.16) Δ R00345, Δ R09504 (98.79) Δ R00345, Δ R09504, Δ R00112 (117.50) 

SPM2 Δ R00345 (76.17) Δ R00345, Δ R09504 (107.03) Δ R00345, Δ R09504, Δ R00112 (127.29) 

SPM3 Δ R00112(196.18) ---* ---* 

SPM4 Δ R00112 (200.52) Δ R00112, Δ R00345 (278.59) ---* 

* No further flux-improving knockouts are identified 

 

Figure 6 illustrates the knockout targets in red. The first knockout target, 

R00345, produces oxaloacetate, a metabolite involved in TCA cycle. The next 

identified knockout, R09504, is the cytochrome oxidase reaction, which is 

coupled with ATP synthesis. Knocking out cytochrome oxidase affects the 

functionality of ATP synthesis in the cell. The third identified knockout target, 

R00112, is NAD(P)+ transhydrogenase reaction, recycling NAD+, one of the 

cofactors involved in TCA cycle. These knockout targets increase the inefficiency 

in the TCA cycle and cause decreased ATP generation. Consequently, the host 

uses more substrate (methanol) through substrate-level phosphorylation to 

compensate for degraded ATP generation and meeting the minimal biomass 

production constraint. Among the selection pathways, SPM4 has the highest 

guaranteed minimum consumption flux, 278.59 mmol/gDCW/hr, after applying 

two knockouts.  
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3.2.5  Aromatic Amino Acid Decarboxyloase (AADC) and Aniline 

Aniline is an important precursor for the production of industrial chemicals 

such as urethane polymers [93], for which there is currently no renewable source. 

We hypothesize that aniline can potentially be derived via a biosynthetic route 

from anthranilate, a native metabolite, using an engineered AADC. 

 

Figure 6. Knockout targets R00345, R09504, R00112 are shown in red. The 

engineered enzymatic reaction is colored in green. Identified knockouts 

improve the minimum production and consequently consumption of 

methanol through the engineered enzymatic reaction with methane as a 

precursor. Methane is not native to the host. All knockout targets affect the 

efficiency of the host in ATP generation.  
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For this test case, SelFi identified one consumption pathway ending at 4-

aminobenzoate, as shown in Tables 1 and 2. SelFi restricted external carbon 

sources, leaving D-glucose as the only carbon source for the host. Before 

knockouts and as shown in Table 2, the maximum consumption flux through the 

identified pathway was low (0.01 mmol/gDCW/hr), while the minimum 

consumption flux is zero. For this selection pathway, SelFi identified one 

knockout target reaction, which is shown in Table 10 along with the 

corresponding KEGG ID. The effect of the identified knockout on improving 

minimum consumption flux through SPA is shown in Table 11. The amount of 

guaranteed minimum consumption flux after applying the knockout is slightly 

improved (0.001 mmol/gDCW/hr), while the maximum consumption remains the 

same (0.01 mmol/gDCW/hr). 

The results in Table 3 show the maximum demand of 4-aminobenzoate to 

produce biomass is equal to 0.05 mmol/gDCW/hr under all conditions. The low 

maximum demand for 4-aminobenzoate illustrates the minimal need for this 

compound for growth.  

In Figure 7, the knockout target, R05553, is shown in red. R05553 is a reaction 

for the synthesis of 4-aminobenzoate (4abz), the end metabolite of the 

consumption pathway. Knocking out this reaction eliminates the only alternative 

pathway to produce 4-aminobenzoate, forcing the host to rely on the consumption 

pathway to produce aniline from anthranilate (anth). 
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Table 10. Knockout target for aniline test case 

Knockout target reaction KEGG ID 

4-amino-4-deoxychorismate[c] → 4-aminobenzoate[c] + H+[c] + pyruvate[c] R05553 

 

 

Table 11. Effect of knockout to improve guaranteed minimum consumption flux. 

For the pathway listed in column 1, we identify knockout targets, and the 

corresponding minimum guaranteed flux in parenthesis. 

Selection pathway 

label 

1st Round 2nd Round 3rd Round 

SPA Δ R05553(0.001) ---* ---* 

* No further flux-improving knockouts are identified 

 

 

Figure 7. Knockout target R05553 is shown in red. The engineered 

enzymatic reaction is colored in green. The knockout target guarantees 

production of aniline from anth through the engineered enzymatic reaction. 
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3.3 Discussion and Conclusion 

The framework presented in this chapter streamlines the process of identifying 

a cell-based high-throughput selection strategy for a desirable enzymatic reaction 

product. SelFi first identifies biochemical consumption pathways from the desired 

product towards the host. Next, SelFi links the consumption pathway with the cell 

growth and enhances the consumption flux by restricting carbon sources as well 

as identifying knockout targets in the host. In this work, SelFi identified up to 

three knockout targets using a greedy strategy to increase minimum selection flux.  

We used SelFi to construct selection pathways for four enzymatic products.  In 

the case of XR and xylitol, SelFi identified seven selection pathways, each with 

length ranging from one to three steps.  The knockout targets were similar in each 

case, and all seven pathways attain comparable minimal yield after knockouts 

(110.27 mmol/gDCW/hr to 111.66 mmol/gDCW/hr). The single-step selection 

pathway and one of the identified knockouts were previously validated in the 

literature [89]. In the case of PRK and D-ribulose-1,5-bisphosphate, SelFi 

identified three single-step selection pathways. SelFi identified a common first 

knockout target amongst the three pathways, and one additional knockout target 

for one of the pathways. The pathway with two knockouts provided the highest 

guaranteed minimum flux (4.23 mmol/gDCW/hr compared to 3.78 

mmol/gDCW/hr and 3.55 mmol/gDCW/hr), and was previously experimentally 

verified in the literature as a selection pathway for engineering RuBisCO, the 

enzyme catalyzing the rate-limiting step in CO2 fixation, immediately downstream 
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of PRK [90]. In the case of MMO and methanol, SelFi identified four single-step 

selection pathways with one to three knockout targets. The pathway with two 

knockouts provided over twofold higher minimum selection flux (278.59 

mmol/gDCW/hr) compared to the selection pathways with three knockouts 

(117.50 mmol/gDCW/hr and 127.50 mmol/gDCW/hr), and higher minimum 

selection flux compared to the selection pathway with a single knockout (196.18 

mmol/gDCW/hr). In the case of aniline, SelFi identified one single-step selection 

pathway ending in 4-aminobenzoate, with one knockout target. The knockout 

coupled the selection pathway with cell survival, but the resulting minimum 

selection flux (0.001 mmol/gDCW/hr) was low. This result is explained by the 

low maximum demand for 4-aminobenzoate in producing biomass under all 

conditions. Currently, there are no KEGG reactions that allow for creating a more 

effective selection pathway for aniline. 

SelFi utilizes ProPath, a probabilistic traversal algorithm that was designed to 

find synthesis pathways from the host to a desired useful compound. SelFi uses a 

derivative algorithm, retroProPath, to find pathways initiating from the desired 

product and terminating in the host. Like ProPath, SelFi utilizes reactions only in 

the KEGG database to construct pathways, limiting the search space to 

metabolites and reactions present in KEGG. Using multiple databases would 

expand SelFi, making it applicable to a broader range of metabolites and 

enzymatic products. This in turn would concurrently increase the repertoire and 

diversity of identifiable consumption pathways. Other search algorithms for 

synthesis or degradation pathways such as PathPred [47] can be integrated with 
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SelFi to create selection pathways for molecules not present in databases such as 

KEGG. 

SelFi aims to improve the guaranteed minimum selection flux while meeting a 

lower bound constraint on cell growth. A non-zero minimum consumption flux 

guarantees that the cell will utilize this pathway - a goal that cannot necessarily be 

met by maximizing the selection flux. This focus on minimum flux optimization 

differentiates SelFi from prior knockout identification works that aim to maximize 

target production rates. For example, techniques such Optknock [50], 

MOMAKnock [53], OptGene [55] and OptORF [52], OptReg [51], OptForce 

[57], CosMos [58], CCOpt [56], and RobustKnock [54] aim to increase target 

production via gene up/down over expression or knockout. Many approaches are 

mathematically elegant utilizing bi-level programing (e.g., Optknock, 

MOMAKnock) or identifying required coordinated changes among reactions 

(e.g., OptForce, CosMos), we selected a simple greedy knockout heuristic to 

guarantee minimum yield. This strategy is optimal in selecting each successive 

knockout, and is shown effective in identifying effective knockout strategies.  

 To couple a consumption pathway to host survival, SelFi restricts alternate 

carbon sources and identifies possible knockout targets. While this coupling 

method guarantees a minimum non-zero flux through the consumption pathway, 

the maximum flux through the identified pathway is dependent on the demand of 

the terminal host metabolite for cell growth. A viable consumption pathway must 

end at a metabolite with high-demand for biomass production. Alternatively, the 

cell must be engineered to change such demand. We developed in this thesis a 
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new methodology to evaluate such demand. We showed that the maximum flux 

potential of selection pathways correlates with cellular demand of the metabolites 

at which the pathways terminate. In particular, the limited demand of end 

metabolite 4-aminobenzoate for biomass production (0.05 mmol/gDCW/hr, Table 

2) explains the low flux rate for the aniline consumption pathway. Cellular 

engineering utilizing knockouts did not result in increased consumption flux as 

the knockouts aimed to increase the guaranteed minimum flux. Using screens may 

be more desirable in such cases.  

The host model utilized by SelFi impacts the quantity and quality of the 

identified selection pathways. Anecdotes within the community show that models 

released in the public domain often have undocumented inconsistencies, such as 

dead-end metabolites or reactions incapable of carrying fluxes. Model and 

constraint consistency checkers such as MC3 [94] can detect some issues such as 

singly connected metabolites, as was the case for 2-3-dioxo-L-gulonate where 

zero consumption demand was reported. There are other issues, however, that 

cannot be detected automatically. In the iAF1260 model, L-xylulose is listed as a 

native metabolite in E. coli. Although this metabolite was present in the iAF1260 

model, L-xylulose cannot metabolize in E. coli [95]. To take this issue into 

account, we excluded L-xylulose as a native metabolite, thus preventing the 

generation of selection pathways that end at this metabolite for the xylitol test 

case, and allowing for pathways SPX1 - SPX7 that utilize L-xylulose as an 

intermediate (Table 2).  
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In summary, SelFi addresses a major bottleneck in directed evolution of 

enzymes. SelFi is the first automated methodology that detects the formation of a 

desired enzymatic product. The results of applying SelFi for engineering Xylose 

Reductase and RuBisCO showed agreement with previously experimentally 

validated selections. SelFi promises to expedite the design of high-throughput 

selections in directed evolution of enzymes.  

 

 

 

 



 

54 

Chapter 4 

Using Biological Filtering and Substrate 

Promiscuity to Advance Annotation in 

Untargeted Metabolomics 

We present in this chapter a novel annotation workflow for untargeted 

metabolomics. Measured masses from the sample are filtered through a relevant 

biological context to identify a biologically relevant set of candidate compounds. 

The central premise is that identifying a biologically relevant set of candidate 

metabolites that correspond to the features detected in an untargeted experiment 

leads to savings in annotation runtime without comprising the quality of results. 

This set is based on the enzymatic reactions expected to occur in the system of 

interest, and can be identified using an Expanded Metabolic Model (EMM) that 

includes metabolites resulting from promiscuous action of the enzymes, in 

addition to those associated with the biological sample through catalogued 

canonical substrates and products of enzymes. An EMM-based candidate set not 

only guarantees the biological relevance of the search space, but also takes the 
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search space for metabolite annotation beyond the metabolites already cataloged 

as part of the sample. This expanded biological search space enhances the chance 

of identifying new metabolites during annotation. 

4.1 Methods 

4.1.1 EMM-based Annotation (EMMA) 

Model-based filtering annotation workflow (Figure 8A) consists of filtering the 

masses of the measured metabolites against those expected in the sample based on 

its metabolic model. Metabolites from the model with masses that match, within a 

small error, those in the measured data are considered the candidate set. The 

candidate set is then processed using annotation tools and ranked against observed 

spectra. While there is now a growing collection of annotated genome sequences 

and tools for the reconstruction of metabolic models [96, 97], identifying 

candidate metabolites using only the sample’s metabolic model as a reference set 

can be limiting. Current genome-scale models largely represent well-conserved 

metabolic pathways [98]. Further, although traditionally assumed to be specific, 

many enzymes, if not all, have promiscuous activities by acting on substrates 

other than those for which they were evolved to transform [37, 99, 100]. 

Additionally, some enzymes exhibit catalytic promiscuity at different active sites 

[101]. As a result, a given enzyme could catalyze the formation of more than one 

metabolic product. For example, a recent study found that about one-third of 

enzymes in a genome-scale model of Escherichia coli metabolism are responsible 

for two-thirds of the known nonspontaneous metabolic reactions [101]. Even 
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when using genome-scale models, there is often only a small set of measured 

metabolites that match to the masses in the model, and the size of the candidate 

set is relatively small. Measured masses that have no correspondence in the model 

cannot be annotated using this workflow. 

In contrast to using the metabolic model as a filter, selecting the candidate set 

based on a large database of compounds (e.g., ChemSpider [102], PubChem [36]) 

can potentially enhance annotation (Figure 8B). Such an annotation workflow 

first identifies potential candidate metabolites by querying one or more specified 

compound databases for all molecules whose exact masses match experimentally 

observed masses of the sample. These mass-matched metabolites form the 

candidate set, and are then ranked based on how well the predicted fragments 

match the observed MS/MS spectra. As annotation is fraught with uncertainty, in 

this workflow some measurements are annotated with biologically irrelevant 

identities when using large databases that include biological and non-biological 

data. We define a biological relevant candidate as a metabolite that can be a 

potential product of an enzymatic reaction in the metabolic model. The end user 

sifts through ranked candidate metabolites to select biologically relevant 

candidates. The manual examination of these metabolites is time-consuming and 

relies on explicit domain knowledge. The selection can be aided by including only 

those metabolites that are expected to be present in the sample using the 

metabolic model. However, re-applying the model-based filtering here results in 

annotation outcomes similar to those in the model-based filtering annotation 

workflow (Figure 8A). Importantly, applying this workflow to large chemical 
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structure databases is unfortunately computationally prohibitive as processing 

time in current annotation tools is a function of the number of candidate 

metabolites. For example, MetFrag combinatorially enumerates possible 

fragments for each candidate metabolite [67]. CFM-ID creates a trained 

probabilistic generative model of the fragmentation process for the input list of 

candidate metabolites [70]. CSI-FingerID computes fingerprints for each 

candidate molecule and compares each to a derived fingerprint associated with the 

query spectra [71]. Not all the computational cost however is necessary. It is 

highly unlikely that every compound in candidate sets derived from large 

databases is biologically relevant. Using biologically relevant databases (e.g. 

KEGG) to derive the candidate set is attractive as the size of candidate sets is 

reduced when compared to those derived from larger databases. However, as 

there is no database that includes all biologically relevant compounds, there are 

many biologically relevant compounds that are not catalogued in specialized 

databases.  

Our novel annotation workflow (Figure 8C), EMMA (EMM-based 

Annotation), improves on these two annotation workflows by applying an EMM-

based filter to identify the candidate set. To create this model, we adopt a 

previously described method, PROXIMAL [103], which utilizes lookup tables of 

enzyme-catalyzed chemical transformation patterns to generate plausible reaction 

products for substrates of interest. From the reactant-product pair(s) (RPAIR) of 

an enzymatic reaction, PROXIMAL identifies a molecular pattern that transforms 

the reactant into product. Each pattern is associated with a reaction center [104] 



 

58 

and its second-level neighboring atoms. If a substrate of interest matches a 

pattern, then the corresponding operator is applied to generate a product, which 

we call a “derivative” metabolite. The main advantage of using PROXIMAL is its 

ability to generate a set of operators that reflect the chemical transformation 

capabilities of the enzymes specific to a biological system of interest as defined 

by the system’s genome (or genomes). The EMM is generated using PROXIMAL 

by applying the operators generated from the enzymatic reactions encoded in a 

biological system to the metabolites cataloged for the system. This generates a set 

of “derivative” metabolites. The calculated exact masses of derivative metabolites 

are used to filter the measured accurate masses. If a derivative has a mass that 

matches a measured mass, then the KCF or SMILES string of this derivative is 

searched against a chemical structure database to determine if it has been 

cataloged with a chemical name and identifier. The calculated masses of 

metabolites in the base model are also matched against the measured masses (as 

in Figure 8A). The union of matched derivatives and model metabolites constitute 

a set of compounds that could be present in the sample due to enzymatic activity, 

and are deemed biologically relevant candidate identities for the detected MS 

features. These candidate metabolites are then evaluated using in silico 

fragmentation analysis, where the measured MS/MS spectra of the mass-matched 

features are compared against the predicted spectra of the candidate compounds.  
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4.1.2 Identifying biologically relevant molecules beyond those in the 

metabolic model 

The sample’s metabolic model can be augmented into an expanded metabolic 

model based on enzyme promiscuity. To this end, we generalized the pattern 

matching method described in our earlier work, PROXIMAL, which was 

 

 

Figure 8. Comparison between annotation workflows. The candidate set for 

annotation is derived by filtering the measured masses based on: (A) the metabolic 

model, (B) databases, and (C) extended metabolic model (EMM). The candidate sets 

in (A) and (C) are biologically relevant, while the ones in (B) may not all be 

biologically relevant. 
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originally developed for identifying possible bio-transformation products of 

xenobiotic chemicals in the liver due to Cytochrome P450 (CYP) enzymes. The 

key idea in PROXIMAL [103] is to approximate enzyme activities through bio-

transformation operators that act on molecular fragments. To expand the 

metabolic model, each bio-transformation operator is applied to each metabolite 

within the model.  

The bio-transformation operators are constructed as follows. The 

transformation of each fragment is be specified using Reaction Center, Difference 

Region, and Matched Region (RDM) patterns [104]. The RDM patterns of 

metabolic enzymes are available from the KEGG reaction pair (RPAIR) database 

[104], and specify local regions of similarities/differences for reactant-product 

pairs based on chemical structure [48]. An RDM pattern consists of three parts: a 

Reaction Center (R) atom that exists in both the substrate and reactant molecule 

on the boundary between Matched and Non-Matched Regions, Difference Region 

(D) atoms that are adjacent to the R atom but also part of the Non-Matched 

Region, and Matched Region (M) atoms adjacent to the R atom in the Matched 

Region. A lookup table is constructed based on the RDM patterns of enzymes 

associated with reactions in the model. The “key” in the lookup table consists of 

the atom types of the R and M and adjacent neighbors in the reactant, while the 

“value” represents the atom types of the R and D in the product. For each 

potential R pattern matched in the query molecule, a set of transformations are 

looked up in the table and applied to the query molecule.  
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To illustrate how PROXIMAL functions, an example is shown in Figure 9. In 

Figure 9A, a specific reversible reaction (KEGG reaction ID: R03534) transforms 

2-oxoglutarate (KEGG compound ID: C00026) to 2-hydroxyglutarate (KEGG 

compound ID: C02630). The reactant and product molecules are encoded using 

KEGG atom types [48], while the atom numbers, extracted from KEGG KCF 

files, are specified in parenthesis following the type of atoms in the structure of 

each compound. Each reactant-product atom pair is then entered into a 

transformation table (Figure 9B). The transformation table identifies patterns of 

change in atom types along with a local context through the transformation of 

reactant to product. To identify transformation patterns, PROXIMAL aligns the 

atoms in reactant-product structures, and adds each atom in the reactant and its 

corresponding atom in the product as a new row to the transformation table. The 

ordering of the rows in the table is determined by the ordering of atoms in the 

reactant molecule structure (Figure 9B). Having the transformation table, any 

reactant atom, which is aligned to a product atom with a different type will be 

considered as a potential reaction center. In this example, rows 1 and 4 

demonstrate two potential reaction centers in reactant compound: C5a and O5a. 

To add specificity to these transformations, the lookup table keys are augmented 

to include two-level nearest neighbors including the reaction center (Figure 9C). 

To visualize the concept of two-level nearest neighbors, we used a color code in 

Figure 9A illustrating this concept for one of the potential reaction centers, O5a. 

The potential reaction center O5a is shown in red. The first-level neighbor 

(adjacent neighbor) C5a is shown in blue, and the second-level neighbors (distant 
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neighbors) C1b and C6a are shown in green. The same biotransformation can be 

derived by multiple reactions cataloged in KEGG. For this specific example, 

reactions with KEGG IDs R00267, R00342, R00709, R01000, R01388, R01392, 

R01394, R01513, R03104, R03688, and R07136 can lead to the same bio-

transformation pattern. Similarly, the set of adjacent and distant neighbor atoms 

for the potential reaction center C5a can be extracted (Figure 9C). The set of 

distant neighbors always include the reaction center. 

Given a query compound, PROXIMAL applies a select set of transformations from 

the lookup tables at one or more matching sites, or reaction centers, of the query 

compound, where several derivatives are possible (Figure 10). Considering each 

atom in the query molecule as a potential reaction center, PROXIMAL creates a 

neighbors table containing a list of adjacent and distant neighbors for each of the 

potential reaction centers. PROXIMAL then looks for matches between the 

generated list and keys in the lookup table. In case of a match, PROXIMAL 

applies the matched key’s value to the reaction center and its neighbors to 

generate a product. Query compound 4-hydroxyphenylpyruvate (KEGG 

compound ID: C01179) is demonstrated with atom types in Figure 10A. For each 

atom in the structure of the query compound, a list of adjacent and distant 

neighbors is generated and added to neighbors table (Figure 10B). Comparing the 

neighbors table against the keys in the lookup table (Figure 9C) shows row 4 of 

the neighbor table, with potential reaction center O5a, as a match. Application of 

the value found corresponding to the matched key to the reaction center and its 
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neighbors leads to a biotransformation product 4-hydroxyphenyllactate with 

KEGG compound ID: C03672 (Figure 10C). 

 

Figure 9. Illustration of generating lookup tables by PROXIMAL. (A) Reactant and 

product of an enzymatic reaction R03534, for which PROXIMAL aims to derive 

possible corresponding bio-transformations (operators). (B) Transformation table 

containing matching atom pairs in reactant and product compounds. (C) Potential 

operators: key table specifies the transformed substructure in reactant. Value table 

specifies the modification in product corresponding to the content of key table. 
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Figure 10. Illustration of application of lookup table to a query molecule by 

PROXIMAL to generate the potential bio-transformation products. (A) A query 

compound represented by KEGG atom types. (B) Table of neighbors generated 

considering each atom in the query compound as a potential reaction center. Row 4 

in the generated table matches to one of the keys in the lookup table shown in 

Figure 9C. (C) The product 4-hydroxyphenyllactate is the result product of applying 

the matched key’s value to the query compound. 
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To create an EMM given a reference catalogued metabolic model, one or more 

operators are derived from substrate-product pairs associated with each reaction. 

Operators are then applied to all metabolites within the model. The expanded 

model size depends on the number of operators and metabolites of the reference 

model.  

4.1.3 Details of the EMMA Annotation workflow  

Given a model (list of metabolites and reactions) as well as tandem MS data 

(mass measurements of parent molecules and associated spectral signatures) for a 

biological sample, the goal is to associate each mass measurement with a 

compound ID. The workflow of EMMA, Figure 8C, is outlined in Figure 11.  

In step 1, PROXIMAL is used to create transformation lookup tables based on 

enzymatic reactions in the input model. In step 2a, the biotransformation 

information stored in the created lookup tables is applied to model metabolites to 

generate a set of potential derivatives in EMM. In step 2b, the monoisotopic 

masses of atoms are used to calculate the mass of each potential derivative. In 

step 2c, the calculated masses are compared within the specified error margin 

against measured masses to generate a list of mass-matched derivatives in EMM. 

In step 3, the mass-matched derivatives in EMM are structurally compared against 

compound databases to add structurally-matched metabolites to the list of 

biologically relevant candidate set. In step 4, biologically relevant candidate set 

metabolites are scored and ranked against the observed spectral signatures using 

in silico fragmentation leading to generate biologically relevant ranked candidate 
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metabolites. We chose to use 10 PPM mass error margin in the implementation of 

the EMMA workflow. We used CFM-ID [70] as the fragmentation prediction tool 

for scoring the candidate metabolites.  

  

 

 

 

 

 
EMMA workflow 

 

Procedure EMMA (in metabolic model, in measured masses of molecules, in observed Spectral 

signatures, in database(s), out biologically relevant ranked candidate metabolites) 
 

Begin 

 1. use model reactions in metabolic model to generate biotransformation lookup tables 
 2. identify mass-matched derivatives in extended metabolic model (EMM) 

 for each metabolite in metabolic model 

2a. apply biotransformation lookup tables on metabolite to generate potential 
derivatives  

  for each derivative in potential derivatives 

   2b. calculate, M, the mass of derivative  
   for each mass measurement m in measured masses of molecules 

    2c. use an error margin to generate a mass interval 

     if M falls into mass interval 
      add derivative to mass-matched derivatives in EMM 

     end if 
   end for 

  end for 

 end for 
 

3. compare mass-matched derivatives in EMM to database(s), add the ones that match 

structurally to a metabolite in a database into biologically relevant candidate set 
 

4. use an in silico fragmentation tool to score biologically relevant candidate set against 

observed spectral signatures and output biologically relevant ranked candidate metabolites 

end 

   

Figure 11. Pseudo code of the EMMA workflow 
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4.2 Results  

4.2.1 Datasets and models 

We compared the EMMA workflow with the other workflows shown in Figure 

8 by analyzing untargeted LC-MS data collected on samples from two different 

biological systems (Table 12, column group A). One set of LC-MS experiments 

were performed on samples from Chinese hamster ovary (CHO) cell cultures 

grown in chemically defined media. The second set of experiments was 

performed on samples from anaerobic cultures of murine cecal isolates. To gain a 

better coverage in measured metabolites by MS, each set of LC-MS experiments 

comprised two or more MS methods, and the resulting datasets are treated 

independently. The cell culture and LC-MS experiments are described in [105]. 

The processed data were arranged into feature tables, where each feature was 

specified by a chromatographic retention time (RT), measured mass (m/z), and a 

set of associated product ion (fragment) masses and their relative intensities, i.e., 

MS/MS spectrum. The metabolic models for CHO cells and murine cecum 

microbiota were derived from genomes in the KEGG database. For the CHO cell, 

we obtained a listing of metabolites and reactions associated with the organism 

code cge in KEGG. The cecal culture is a consortium of many species. We used a 

community-level model that is assembled based on the taxonomic groups detected 

in the culture using a previously described procedure [106]. The numbers of 

reactions, metabolites and unique masses included in the two models and their 

corresponding EMMs are listed in Table 12 (column groups B and C). The EMM 

for a model includes additional metabolites that are not part of the reaction 
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definitions for the cataloged enzymes in the model, but could result from a 

chemical transformation catalyzed by one or more enzymes in the system. This 

substantially increases the number of candidate metabolites by 57- and 72-fold for 

the CHO cell and microbiota models, respectively. Consequently, the number of 

unique masses also increase by 23- and 30-fold for the CHO cell and microbiota 

models, respectively (Table 12, column group D). 

 

4.2.2 EMMA increased annotation opportunities when compared to 

metabolic model-based workflows 

Compared to a metabolic model for a biological sample, using EMM as the 

search space for metabolite annotation increases the size of the candidate set in 

Table 12. Size of experimental data sets and models. (A) Three experimental 

datasets under different conditions were collected for the CHO cell, and two for 

the gut microbiota sample. (B) The size of the metabolic model in terms of 

number of, reactions, metabolites, and unique masses. (C) The size of the 

expanded metabolic model in terms of number of operators derived from 

PROXIMAL, unique derivatives generated by PROXIMAL, unique derivative 

masses due to PROXIMAL. For comparison purposes, the numbers of derivatives 

and derivative masses exclude those in the metabolic model. (D) Fold increase in 

number of metabolites and masses when comparing the size of these sets for 

EMM against the metabolic model. 
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terms of: (a) matching to a larger number of masses among the measured masses, 

and (b) suggesting a wider range of chemical identities. We therefore compare the 

size of the “biologically relevant candidate sets” in the model-based workflow 

and the EMMA workflow in Figure 8 using the increase in number of masses and 

in chemical identifies as metrics.  

Using EMMs increases the size of the candidate set when compared to using 

the metabolic model. When using the metabolic model, a very small percentage of 

the measured metabolites are matched to the metabolic model. On average, 3.31% 

of measured masses can be annotated using the metabolic model only. This 

number increases for EMMA. On average, 5.12% of all measured masses can be 

annotated using the EMM, offering a 1.71-fold increase in the number of masses 

that can be annotated (Table 13, column group A). Unique masses in the 

candidate set when using the metabolic model correspond to compounds in the 

metabolic model. The number of such compounds varied from 43 to 229 across 

the data sets. When using the EMM, the number of chemical identities available 

for annotation ranged from 149 to 527 identities. There is therefore an average 

fold increase of 2.39 across all dataset in number of chemical identities that can 

be used for annotation when using EMMs (Table 13, column group B).  
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4.2.3 EMMA workflow reduces the annotation search space compared to 

large databases  

Current annotation methods using in silico fragmentation analysis require users 

to select a chemical database that can be searched for candidate compounds. 

Selecting a biological database such as KEGG database increases the likelihood 

that the candidate compounds are metabolites having an enzymatic origin. 

Further, selecting a smaller database also reduces computation time. For example, 

the number of compounds in PubChem, which includes both biological and non-

biological compounds, is approximately 18 times larger than KEGG, and hence 

would require an 18-fold increase in computation time to analyze. The KEGG 

Table 13. Improvement due to EMMA workflow over using the metabolic model in 

terms of number of masses that match against the measured masses, and number of 

chemical identities in the candidate sets. (A) Number of masses in the candidate set 

for the metabolic model, the equivalent percentage in reference to the number of 

measured masses, number of masses in the candidate set for EMMA, and the 

equivalent percentage in reference to the number of measured masses, and the fold 

increase in number of masses. (B) Number of metabolites identified as the candidate 

set for metabolic model, number of metabolites identified as candidate set by 

EMMA, and the fold increase in number of metabolites in candidate sets. 
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database, which includes metabolites from different kingdoms of life, is 

approximately 14 times larger than the number of compounds in the base models 

for the CHO cell and microbiota cultures (Figure 12). 

The tradeoff for analyzing a smaller set of candidate compounds is that this can 

limit the potential for discovery. EMMA addresses this limitation by using 

chemical transformation operators derived from patterns identified for the 

enzymes specific to the system of interest. Applying PROXIMAL to the base 

models generates EMMs that are approximately 16 times larger in terms of 

number of compounds, but significantly smaller than databases KEGG and 

PubChem or their EMMs in which not all the compounds are biologically relevant 

(Figure 12). Expanding KEGG using PROXIMAL operators (11,091 operators 

derived from all reactions in KEGG applied to 21,270 compounds) expands the 

search space by at most 1.71 orders of magnitude compared to EMM (Figure 12). 

This expansion is akin to using a large derivative database such as MINEs [38] or 

MyCompoundID [39], which list 571,000 and 375,809 derivatives, respectively. 

 

 

 

 

 

 



 

72 

By reducing the number of the candidate compounds, EMMA also reduces the 

number of candidate compounds with calculated exact masses that match the 

measured accurate masses of detected compounds. The distribution of exact 

masses when using KEGG and PubChem databases as the search space (Figure 

13, histograms in red) resembles a long right-tailed distribution, a distribution that 

is in line with that for masses in these databases [107]. The masses from KEGG 

and PubChem filtered using EMMA (Figure 13, histograms in blue) shows a trend 

where there is a higher number of candidates for lighter masses. Overall, Figure 

13 demonstrates the ability of EMMA to significantly reduce the number of 

candidate metabolites per measured mass to a biologically relevant set. 

 

 

Figure 12. Comparison of the number of compounds in a large database 

(PubChem), a biologically relevant database (KEGG), metabolic model, 

expanded metabolic models, and expanded biological database. 
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To assess the computational savings of the EMMA workflow, we compared 

the time to perform an in silico annotation analysis in database-based workflow 

(Figure 8B) and EMMA (Figure 8C), for the LC-MS datasets. Using CFM-ID for 

in silico fragmentation and annotation of candidate sets identified using EMMA, 

we timed CFM-ID when scoring the candidates. For each dataset, the average 

runtime per match was recorded, and ranged from 0.1080 to 0.0075 hours (Table 

14). For all the runs, we used the same Windows machine with an Intel(R) 

Xeon(R) CPU E5-1620v2 processor, running at 3.70 GHZ, with 8 GIG RAM and 

1 TB total memory. 

To generate the candidate set as the input to in silico annotation analysis in 

database-based workflow (Figure 8B), we identified metabolites in the KEGG and 

PubChem databases that mass-matched to the masses in our experimental data for 

each dataset, within a 10 ppm error margin. It was computationally prohibitive to 

fragment all mass-matched metabolites from PubChem and KEGG (Table 14). 

Instead, we estimated the runtime required by CFM-ID to in silico fragment each 

 

Figure 13. Distribution of masses in the candidate sets obtained through the 

database filtering workflow (red) and the EMMA workflow (blue) when 

searching KEGG and PubChem for the (A) CHO cell and (B) the gut 

microbiota. 
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match by averaging the runtime of CFM-ID for EMMA through all datasets. 

Dividing the runtime by number of metabolites in the candidate set, on average, in 

silico fragmentation requires 0.0085 hours per match. Using this average, the 

estimated runtime for in silico fragmentation of database-based workflow is 

computed for each dataset. The average reduction in fragmentation time was 

27,096x (Table 14).  

 

While the speed up was assessed for CFM-ID, similar speedups are expected 

for spectral database lookups and other in silico fragmentation tools as the speed 

up directly correlates with the reduction in candidate metabolites.   

 

 

Table 14. Computational speed up of EMMA workflow over database-based 

workflow for our datasets. For the EMMA workflow, the following data is 

provided: candidate set size generated by EMMA, relevant CFM-ID runtime for 

EMMA to perform annotation on the candidate set, and average runtime per 

match. For the database-based workflow, the size of the candidate and the 

estimated run time of CFM-ID is provided. The final column records the fold 

reduction in annotation runtime when comparing the database-based and EMMA 

workflows. 

 

 

 



 

75 

Using a biological database such as KEGG for annotation guarantees 

biological relevance of candidate metabolites, and it may not be as 

computationally prohibitive (as was just shown) as it is to search a larger, general 

database that include non-biological compounds. A question that often arises is 

regarding the benefits of utilizing non-biological databases for annotation 

compared to when employing a biologically relevant database. Using EMMA, we 

are able to explore and quantify the benefits. Specifically, we utilized the EMMA 

workflow for our datasets once with the KEGG database, and once again with 

PubChem (Table 15). Using KEGG, we report the number of masses and 

metabolites in the candidate set. We report the numbers using PubChem 

excluding masses and metabolites already placed in the candidate set when using 

KEGG. For CHO cell and gut microbiota datasets, EMMA increases the number 

of annotated masses and biologically relevant candidate molecules by 

approximately 2.65- and 2.8-fold, respectively, when employing PubChem as the 

Table 15. Capability of EMMA in expanding the search space for annotation. For each 

experimental dataset, the following is calculated. Number of metabolites in the candidate 

set identified by EMMA in KEGG, number of metabolites in the candidate set identified 

by EMMA in PubChem but not in KEGG, and fold change increase of number of 

metabolites in the candidate set resulted by employing PubChem as the search space vs. 

KEGG. 
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search space beyond KEGG (Table 15).   

4.2.4 Experimental validation of EMMA 

We next investigated whether any of the derivatives predicted by EMM and 

matched to a detected MS feature based on mass and MS/MS spectrum could be 

experimentally confirmed with a chemical standard. To this end, we selected eight 

predicted derivatives that had a match in the LC-MS feature tables for CHO cell 

samples (Table 16). The selection was based on two factors: the rank assigned by 

the in silico fragmentation tool and availability from a vendor. The selected 

derivatives are: Salicylaldehyde, one of the three isomers of 

hydroxybenzaldehyde; 4-Hydroxyphenyllactate, a tyrosine metabolite; 

Acetoacetamide, a monocarboxylic acid amide of acetoacetic acid; 5-

Aminopentanoate, a lysine degradation product; Glutarate, produced in lysine and 

tryptophan metabolism; 3-Methoxyanthranilate, an ester of anthranilic acid; 2-

Hydroxyphenylacetic acid, associated with styrene degradation pathway; and 4-

Pyridoxate, a product of vitamin B6. Almost all derivatives were identified as one 

of the top three candidates across two databases searches (KEGG and PubChem). 

In some cases, the derivative was the only match in a particular database (e.g, 

Salicylaldehyde in KEGG). In other cases, the derivative was one of several 

possible matches (e.g., 4-Hydroxyphenyllactate was one of 4 matches in 

PubChem). For the PROXIMAL operators, the number of their relevant reactions 

and enzymes varied. With compound 4-Hydroxyphenyllactate, the associated 

operator is derived from 12 enzymatic reactions, which are catalyzed by 15 

enzymes in CHO cell. Comparing the RTs and MS/MS spectra of standards for 
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these chemicals against the corresponding CHO cell culture sample features 

[105], we were able to confirm correct annotation of 4-Hydroxyphenyllactate 

(Figure 14), demonstrating that the EMM for the CHO cell can indeed predict the 

Table 16. Experimental validation of EMMA. Eight metabolites identified by 

EMMA and highly ranked using annotation are selected for experimental 

validation. The ranking of each metabolite and the number of candidates that 

matched this metabolite when using KEGG and PubChem is reported.  

 

 

Figure 14. Mirror plot for 4-hydroxyphenyllactate. (A) experimental data. (B) 

data from high-purity chemical standard. This is considered a match by retention 

time (RT difference < 3 minutes) and by MS/MS (spearman rank correlation p-

value < 0.05 and r-value > 0. 
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presence of a metabolite that is absent in KEGG’s catalog. 

4.3 Discussion and Conclusions 

Utilizing EMMA on metabolomics data from CHO cells, our results indicate 

that the use of biological context filtering during annotation can be powerful, 

yielding superior speedups and enhances annotation results. A handful of other 

studies have also suggested that biological knowledge could be exploited to 

enhance metabolite annotation. For example, a method is described for identifying 

substrate-product pairs based on the mass differences between pairs of detected 

MS features [72]. In this method, the mass difference between a pair of features is 

matched against mass differences between substrate-product pairs of common 

metabolic conversions (e.g., oxygenation, acetylation, etc.), with a match 

indicating a potential relationship between the pair of detected feature masses. 

These relationships can be explored to propagate metabolite annotation from an 

identified metabolite to its potential reactants and products. In contrast to this 

method, which limits discoveries to those possible using manually curated 

metabolic conversions, EMMs provide systematic discovery of derivative 

metabolites in a manner that is specific to the biological sample. Another method, 

iMet, suggests that neighboring metabolites within a metabolic network have 

similar MS/MS spectra and trains a classifier to predict if two metabolites are 

neighbors [73]. The classifier is trained using MS/MS spectra from spectral 

databases and mass differences between reactant pairs from KEGG that are not 



 

79 

specific to the biological sample. In contrast, EMMA does not require any 

MS/MS training data and utilizes biological context that is specific to the sample.  

 

From a workflow perspective, EMMA offers the advantage of separating the 

identification of the biological context from the annotation process, thus allowing 

for diverse and flexible annotation workflows that can easily incorporate multiple 

annotation tools and databases. For example, the EMMA workflow was used to 

assess how a large database such as PubChem can enhance annotation beyond 

what is possible using a smaller biological database such as KEGG. For our 

datasets, there was an average increase of 2.65 and 2.80x in the number of 

annotated masses and number of biologically relevant candidate molecules. This 

result provides the first evaluation of the benefit of using a non-biological 

database over a biological database for annotation, and emphasizes the need for 

biological filtering to make larger databases accessible for annotation. 

 

EMMs are constructed using a previously developed pattern-matching method 

(PROXIMAL), which was developed to identify metabolic derivatives of ingested 

foreign chemicals due to Cytochrome P450 (CYP) enzymes, highly promiscuous 

enzymes utilized for detoxification. PROXIMAL derives operators from a 

specified set of KEGG reactions by analyzing transformations between substrate 

and product while focusing on a local molecular neighborhood centered on the 

reaction center [104]. It is beneficial to utilize PROXIMAL operators to create 

EMMs as PROXIMAL mimics actions expected through substrate promiscuity, 

where an enzyme recognizes multiple substrates and exhibits broad specificity 
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[108]. Prior approaches to computing substrate promiscuity relied on using a set 

of hand-curated rules. A list of 50 reaction rules, each associated with one or more 

reactions, was defined to explore novel synthesis pathways [109, 110]. The 

BNICE (Biochemical Network Integrated Computational Explorer) framework 

derives a set of hand-curated rules based on examining reactions at their third 

level of E.C. (Enzyme Commission) specificity [111]. The rules are applied 

repetitively to generate novel synthesis [111] or degradation pathways [112], but 

are not publically available. A list of biochemical conversions expected to occur 

frequently in metabolism was used to identify novel metabolic products not 

previously described in plants [72]. Further use of these types of rules allowed the 

compilation of predicted metabolic products into databases such as MINEs [38], 

using BNICE operators, or MyCompoundID [83], by the repeated (up to two 

times) application of addition or subtraction of expected functional groups. In 

contrast, using operators derived through PROXIMAL allows creation of an EMM 

specific to the biological sample under investigation. 

To the best of our knowledge, we present the first experimental evidence for a 

computationally predicted metabolite derived through promiscuous action of an 

enzyme. Using a chemical standard, we confirm the presence of 4-

hydroxyphenyllactate in a CHO cell culture, even though this metabolite is 

currently not listed as a CHO cell metabolite in KEGG CHO model. It is unlikely 

that the source of 4-hydroxyphenyllactate lies outside of CHO cell metabolism, as 

the cell culture medium was chemically defined and did not include this 

metabolite. This is a proof to the ability of EMM to expand the metabolic search 
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space for annotation. 

An EMMA limitation relates to the metabolic model used to generate the 

corresponding EMM. Genome-scale metabolic reconstructions can be inaccurate 

or incomplete, especially for non-model organisms. This problem is highlighted 

by the case study on the cecal culture, which comprises a complex microbial 

community of more than one hundred species. In contrast to the CHO cell, there is 

no well-curated reference genome annotation for this complex community.  

The problem of incomplete models becomes more significant when it comes to 

the validation of promiscuous activity of an enzyme. Our biotransformation 

prediction by PROXIMAL suggests that the metabolite 4-Hydroxyphenyllactate 

may result from the promiscuous activity of one or more carboxylic acid 

dehydrogenases expressed in the CHO cell on the substrate molecule 4-

Hydroxyphenylpyruvat. Although this can be a validation of the promiscuous 

activity of enzymes, it can also be due to the CHO model not being complete and 

missing the corresponding biotransformation. 

Despite the limitations, EMMA demonstrates great utility in creating an 

expanded, biologically relevant annotation context and in utilizing this context to 

enhance annotation. EMMs provide annotation opportunities beyond those 

possible with metabolic models without the high cost of searching large structural 

databases that contain many non-biological compounds. Exploring a large 

database such as PubChem without the proposed filtering is simply prohibitive as 

it would require up to 27,097x machines in parallel must be deployed to achieve 
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the same runtime obtained with the EMMA workflow. The reduced number of 

candidate metabolites followed by decreased runtime of in silico annotation of 

candidates make it practical to use large general databases, e.g. PubChem, as the 

search space for annotation. While we demonstrated EMMA workflow using 

specific tools and databases (e.g., CFM-ID for annotation; PubChem and KEGG 

databases) the overall workflow is generic and can be readily modified to use 

other in silico annotation tools and other databases. 

In summary, applying EMMA to untargeted LC-MS data collected from 

cultures of Chinese hamster ovary (CHO) cells and murine cecal microbiota 

shows how EMMA enhances the chance of discovering previously 

uncharacterized metabolites, while reducing the computational burden associated 

with annotation. Compared to an in silico annotation workflow that analyzes 

every candidate compound in large chemical databases, EMMA reduces the 

number of calculations by 4 orders of magnitude. Further, EMMA increases the 

number of annotated masses and number of chemical identities by an average of 

1.71 and 2.39-fold, respectively, when compared to using the sample’s metabolic 

model. Further, the results show that EMMA increases the number of annotated 

masses and biologically relevant candidate molecules by the average of 2.65 and 

2.80-fold, respectively, when compared to using candidate sets from KEGG. The 

experimental confirmation of the presence of 4-hydroxyphenyllactate, a CHO cell 

metabolite in the EMM that has not been previously identified as part of CHO cell 

metabolism, further demonstrates the effectiveness of EMMA. Collectively, our 
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results show that it is necessary and practical to adapt innovative workflows as 

presented here to overcome annotation hurdles.  
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Chapter 5 

Bayesian Probabilistic Modeling for 

Pathway Activity Analysis using 

Untargeted Metabolomics  

We present in this paper a novel inference-based probabilistic approach, 

termed Probabilistic modeling for Untargeted Metabolomics Analysis (PUMA), 

for predicting the likelihood of activity of metabolic pathways and then deriving 

probabilistic assignment of measurements to candidate chemical identities. 

PUMA first constructs a graphical model [113] that captures the uncertainty of 

assigning observed measurements to pathways. PUMA then utilizes Gibbs 

sampling [114] to perform Bayesian inference [115] to approximate the posterior 

probabilities of pathway activities and metabolite annotations conditioned on the 

measurements.  
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5.1 Methods 

To determine pathway activities, an untargeted metabolomics workflow 

(Figure 15A) begins with collecting measurements, followed by metabolite 

annotation using annotation tools (e.g. database look ups or annotation tools) and 

then applying pathway analysis tools (e.g. ORA or TA) to determine pathway 

activities. A pathway is assumed active when biological and environmental 

factors lead to the production of some or all of its metabolic products. In some 

cases, metabolite annotation is skipped and statistical pathway activity is 

computed directly from measurements [83]. In contrast, our inference-based 

approach utilizes a generative model (Figure 15B) that mimics biological 

processes inherent to the sample under study. In this work, the generative model 

assumes the following biological process. Within the sample, one or more 

pathways are active. An active pathway causes the presence of some its 

metabolites, which in turn results in observations of masses through untargeted 

metabolomics data collection.  

A generative model is powerful because it captures complex relations among 

pathway activities, metabolites, and measurements in a single integrated model. 

Importantly, the generative model produces values that are observed (measured), 

as well as hidden variables of interest, which cannot be directly observed but 

rather inferred from those values that can be observed. In our case, the 

observations correspond to mass measurements collected through untargeted 

metabolomics. The hidden variables are pathway activities and the presence of a 

metabolite in a biological sample. The generative model is constructed using 
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biological knowledge in the form of known relationships between pathways and 

metabolites, and metabolites and their masses. The generative model is 

parameterized with knowledge about the behavior of the biological process. Priors 

are provided for pathway activities.  

Once the generative model is constructed, the next step in our approach is to 

perform inference on the model to compute posterior probabilities for variables of 

interest. As computing such probabilities is typically intractable, they are 

estimated using Gibbs sampling, a Monte Carlo Markov Chain (MCMC) 

sampling technique [115] Specifically, inference allows computing two types of 

probability distributions that are of interest: the probability of pathways being 

active and the probability of a metabolite being present in the sample, where both 

probabilities are conditioned on the observations. 
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5.1.1 Illustrative Example 

A small example is provided to illustrate some of the challenges in mapping 

measurements to metabolites and pathways, and to show inference’s ability to 

address these issues. Figure 16 presents a snippet of a network that shows two 

pathways (ovals), Pathway 1 and Pathway 2. Metabolites with known chemical 

identities associated (circles) are either associated with one pathway (red circle) 

or more than one pathway (blue circles). Measurements (squares) correspond to 

masses that can be associated with one particular metabolite (red square) or 

multiple metabolites (blue squares). Not all metabolites within a sample are 

measured due to either instrument limitations or because they are simply not 

 

Figure 15. Comparison of a workflow to collect and interpret observations (A), 

and a generative model that captures a biological process (B). 
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present in the sample due to biological or environmental factors. Some 

metabolites are thus not associated with any measurements (white circles), and 

some may be associated with one or more pathways.  

There are two types of uncertainties in interpreting measurements from 

untargeted metabolomics. One type of uncertainty relates to assignment of 

metabolites to pathways (circles to ovals, Figure 16). For example, measurement 

w3 is assigned to metabolite f5. Because f5 is a metabolite common to both 

Pathways 1 and 2, there is an uncertainty in assignment of the metabolite to the 

pathways: f5 can be the product of activity in either Pathway 1 or Pathway 2. The 

other uncertainty relates to assignment of measurements to metabolites, when a 

measurement can map to multiple metabolites (squares to circles, Figure 16). 

Measurement w4 can be attributed to one or two metabolites, f6 and f7, both 

sharing the same mass. The uncertainty in assigning w4 to metabolites f6  and f7  

manifests in further uncertainty. If w4 is associated with f6, then it contributes to 

the activity of Pathway 1 (and/or other pathways with which f6 is associated), 

while, if w4 is associated with f7, then it contributes to the activity of Pathways 2 

(and/or other pathways with which f7 is associated). Not all measurements 

contribute to these uncertainties. For example, measurement w5 is unique to 

metabolite f13. In turn, f13  is unique to Pathway 2. Some measurements (such as 

w5) clearly contribute more significantly than others (such as w3 and w4) in 

determining pathway activities.  

Computing pathway activities using an enrichment ratio can be misleading, 

because it does not take into account the uncertainty in attributing measurements 
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to metabolites and pathways. The enrichment ratio for Pathway 1 can be 

computed as the ratio of 4 putatively measured metabolites divided by 6 total 

metabolites in the pathway. While this enrichment ratio seems high, there is little 

confidence that Pathway 1 is active since all measured metabolites form this 

pathway could be due to active pathways other than Pathway 1. Pathway 2 has an 

enrichment ratio equal to 3 divided by 8. The significance or importance of this 

ratio is unclear. Inference will conclude that Pathway 2 is active with high 

probability, as it includes a measured metabolite that cannot be attributed to the 

activity of any other pathway. In contrast to enrichment methods, our inference-

 

 

 

Figure 16. Illustrative example of uncertainty when mapping measurements to 

metabolites and pathways. Pathways (ovals) are associated with metabolites 

(circles), which in turn are associated with measurements (squares). White 

circles represent non-measured metabolites with membership in one or more 

pathways. Blue circles represent measured metabolites that have multiple-

pathway memberships. The red circle represents a metabolite that has 

membership in only one pathway. Measurement w5 uniquely maps to f13, which 

uniquely maps to Pathway 1, while all other measurements map to multiple 

metabolites, as shown by solid or dotted lines. 
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based technique considers uncertainties in measurement-metabolite and 

metabolite-pathway relationships when computing the likelihood of pathway 

activities. 

5.1.2 Constructing Generative Models 

To create a generative model, we assume that a biological sample has a 

metabolic model with  pathways,  metabolites and  unique metabolite 

masses. A metabolite may have membership in one or more pathways. To map 

measurements to metabolites, masses of the model metabolites are compared to 

measurements with a predefined error margin (15ppm). A measured mass may be 

associated with one or more metabolites.  

Let  denote the status of pathways in the biological 

sample, so  is a vector of binary random variables, where a value of 1 indicates 

that the corresponding pathway is active and 0 indicates inactivity. As a prior 

probability distribution on , we assume that the  are 

distributed i.i.d. (independent identically distributed) Bernoulli( ) with  = 0.5. 

Pathway activity is a function of genetic and environmental factors specific to the 

biological sample under study. We assume a pathway is active with a Bernoulli 

probability. 

In our generative model, a metabolite within a pathway can be generated due 

to pathway activity with some probability. Matrix is defined with  rows and  

columns as a mapping of metabolites in the biological sample to the pathways, 

where  is equal to the probability of generation of metabolite  due to 

pathway . Let  be a binary random variable indicating whether pathway  

generates metabolite  in the sample. Each element in matrix  is defined as a 

Bernoulli random variable with a probability dependent on the corresponding 
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elements in  and . In other words, we define the distribution of elements in as 

 ~ Bernoulli(    ). 

A metabolite can be generated due to activity of one or more pathways in 

which the metabolite participates. Vector  is defined with  elements, where  

represents the presence of metabolite  in the biological sample. The matrix  

dictates the presence of metabolite  in the sample, where = 1 - 

. 

Metabolites that are present in the biological sample determine mass 

measurements that can be observed through untargeted metabolomics. We define 

 to define the relationship between metabolites and mass measurements. is a 

matrix with  rows and  columns. Each element of matrix  is a value between 

zero to one, representing the probability of mass of a metabolite to be measured. 

As some metabolites share the same chemical formula and the same mass, a mass 

can be observed if at least one of the metabolites with the same mass is present in 

the biological sample. Vector  with  elements is defined to represent observed 

masses, where  shows if mass  has been successfully measured. Each element 

of  is defined as a Bernoulli random variable. The probability of an observed 

mass is dependent on it being associated with one or more metabolites with that 

mass and the probability of generating any of these metabolites.  is equal to 

one if mass  is observed due to presence of at least one metabolite  with mass  

in the biological sample. Thus, the distribution of elements in  is defined as, 

Bernoulli (1 - . 

A plate representation [116] of the model shows a list of dependencies in a 

graphical form as a directed acyclic network (Figure 17). The directed graph 

represents the joint probability distribution over random variables in the model. 
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The conditional probability of each random variable depends only on its parents 

in the graph. Each box shows the graphical representation of a conditional 

probability to calculate a specific variable based on the involved dependencies. To 

avoid representing all  metabolites,  pathways and  masses in the graph, we 

used the ‘plate’ notation by drawing one representative node per variable, and 

enclosing these variables in a plate (rectangular box). The number of instances of 

each enclosed variable is indicated by the fixed constant in the lower right corner 

of the box. The described model presents the joint probability distribution of 

random variables , ,  and defined as: 

 .  

 

 

Figure 17. Graphical representation of the generative model illustrates dependencies 

among random variables. Random variables of the model (a, o, m, w) are shown in white 

or shaded circles. The variable m represents a deterministic random variable. A shaded 

circle (w) represents an observed random variable. are parameters to the model. 
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5.1.3 Inference 

Using the probabilistic model, we infer pathway activities and metabolite 

presence from mass measurements. Specifically, we calculate the following 

probabilities. For each pathway  in the biological sample we calculate , 

the posterior probability of pathway  being active. For each metabolite , we 

then calculate , the posterior probability of  being present in the 

biological sample. We use the latter probabilities to rank a candidate set for each 

mass measurement, where a candidate set includes a list of metabolites with 

known chemical identities with the same mass (+/- error margin) as the observed 

one.  

5.1.3.1. Inferring pathway activities 

Gibbs sampling is employed to approximate the posterior probability ( | ). 

To avoid sampling all hidden variables, we marginalize out matrix  and vector  

from the model. We first marginalize out  from the partial model  and 

divide by , giving , the probability of metabolites presence given the 

activity state of all the pathways. , the probability that at least one 

pathway in the biological sample generates metabolite is denoted as , 

which is calculated as 1 - . We now complete the model by 

multiplying by  and marginalize out , giving .  is a vector 

with  elements, where each element is associated with the probability of mass 

 being observed given . This probability is calculated as  = 1 – 

, denoting that weight  can be observed if at least one of the 

metabolites with this weight is present in the biological sample. With probabilities 

 and , we can draw samples from the posterior  through Gibbs 

sampling. After collecting Gibbs samples, we are able to estimate  for 

each pathway . 
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5.1.3.2. Inferring metabolite annotations 

With samples drawn from ( | ), we approximate , which is the 

posterior probability of metabolite  being present in the biological sample. The 

probability  ( | ) can be approximated by calculating  ( | , ) 

as follows: 

 ( | )  

The probability  can be calculated by conditioning  

on  as ( | ). Let  be the mass of . 

Observation of any mass  such that  is independent of  given the 

pathway activities summarized in . We conclude  can be calculated 

from which results in  . 

The calculation of probability is now manageable. Let 

, then is 

calculated as follows:  

 =                 

 =  

The expression  represents the probability of observing 

mass  due to two cases. In the first case, the observation of mass  is due to 

presence of  in the biological system. In the second case, the observation of 

mass  is due to presence of any metabolite other than  but with the same 

mass. Normalization of two probabilities resulting from these two cases generates 
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the desired probability . The probability  

indicates the absence of observation of mass . As explained earlier, 

. This results in 

. 

By marginalization of pathway activities ( ) from posterior samples, we 

approximate the posterior probability  for each metabolite . The 

derived probabilities are used as a scoring metric to rank a candidate set for each 

mass measurement. 

 

5.2 Results 

We apply PUMA to untargeted data collected from cultures of Chinese 

Hamster Ovary (CHO) cells belonging to a low growth cell line [74]. The case 

study was selected based on the availability of untargeted metabolomics datasets 

and access to the relevant metabolic models. 

Data was collected using liquid chromatography-mass spectrometry (LC-MS) 

based metabolomics (Table 17, column group A). To increase coverage, data is 

collected separately under three different combinations of liquid chromatography 

methods and ionization modes (positive or negative). When combined, the data 

provides a more comprehensive characterization of the sample in the form of 

8,711 measurements. The metabolic model for the CHO cell was derived from 

KEGG [35], based on unique metabolites and pathways for the cricetulus griseus 

(Chinese hamster) under organism code cge. The number of pathways, 

metabolites and unique masses are listed in Table 17B.  
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Due to incompleteness of metabolic models and noisy data, only a small 

fraction of mass measurements, 397 masses, correspond to masses in the 

metabolic model (Table 17C). The number of observed masses in the model is 

used to initialize the observation vector  for each dataset. 

 

5.2.1 PUMA implementation and parameter initialization 

We implemented PUMA using PyMC3 [117], a probabilistic programming 

framework that allows for automatic Bayesian inference on user-defined models. 

To draw samples from a posterior distribution, PyMC3 utilizes Gibbs sampling, a 

Markov Chain Monte Carlo (MCMC) sampling technique [118] [119]. The 

generative model for each case was derived from the metabolic model for the 

sample under study. Each such metabolic model specifies pathways, metabolites, 

and membership of metabolites in pathways. The mass of each metabolite is 

available through KEGG or other databases. The model parameters were 

initialized as follows. Each of the  elements in the vector  are set to 0.5, 

implying that all pathways have the same prior of being active. Matrix  is 

Table 17. CHO cell case-study data: (A) untargeted metabolomics datasets, (B) 

metabolic model, (C) number of observations that match to metabolites in CHO 

cell model. 
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initialized based on the mapping of metabolites to pathways in the metabolic 

model of the sample under study. Each entry in  is assumed to be 0.9 or 0 

according to whether a metabolite is associated with a pathway. To generate a 

vector of observations , we compare the unique masses of metabolites in the 

metabolic model to mass measurements collected through untargeted 

metabolomics with 15ppm margin of error. The default setting for 𝑤k is 1 if the 

mass of metabolite k falls within 15ppm from any of the measurements. Each 

entry in  is set to zero or one according to whether a metabolite is associated 

with a mass. T, the number of samples to draw from the model, is a variable that 

can be set in PyMC3 with default value equal to 500. The sampler was run 

multiple times with values of T equal to 500, 1000 and 1500. For all the reported 

runs, increasing number of drawn samples did not affect the computed 

probabilities for pathways activities. 

 

5.2.2 Pathway activity probabilities are inferred from the probabilistic 

model 

We applied inference on the generative model for the CHO cell. A list of 

pathways in CHO cell that are identified as active, with  equal to or 

greater than 0.5, in at least one of the datasets is provided (Table 18). The KEGG 

IDs and names are listed. The number of metabolites within a pathway is 

designated as the pathway size. The number of mass measurements that could be 
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mapped to each pathway is reported, columns 4-7, for the various datasets. The 

last four columns indicate predicted pathway in datasets HilNeg, HilPos, SynNeg 

and combined.  

As mass observations differ from one set of measurements to another, the 

predicted activity differs among the datasets. We expect that the combined 

dataset, with the highest number of mass measurements, is the most reliable 

predictor of pathway activity. To investigate, we analyze the reported activity 

levels in Table 18. There are several cases to consider. In some cases, e.g. 

cge00785 and cge00970, pathways that are predicted active by each individual 

dataset and the combined dataset. In other cases, e.g. cge00072, and cge00053, 

pathways are predicted active in the combined dataset, but not predicted active for 

all other individual datasets. In such cases, individual dataset measurements when 

considered independently of others did not provide inference sufficient evidence 

to conclude that the pathway is active. As an example, for pathway cge00053, 

with size nine, the number of mass measurements in SynNeg and combined 

datasets that can be mapped to the pathway is seven. PUMA predicts this pathway 

active in both datasets. However, the same pathway is not predicted active in 

HilNeg and HilPos, where the number of mass measurements that can be mapped 

to the pathway is reduced to four and zero, respectively. 

In other cases, some pathways (e.g. cge00730, cge00040) are predicted active 

by at least one of the individual datasets while predicted not active by the 

combined dataset. Additional evidence in the form of a larger number of mass 

measurements in the combined dataset affects the predicted activity for pathways 
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with common metabolites. For example, pathway cge00730, with size seven, is 

predicted active by HilNeg (probability of activity is 0.72) but not predicted 

active by the combined dataset (probability of activity is 0.43). In both datasets, 

three mass measurements can be mapped to the pathway, while two of these mass 

measurements can also be mapped to cge00970. With an increase in the number 

of mass measurements that can be mapped to cge00970 from 12 in HilNeg to 19 

using the combined dataset, cge00970 has a higher probability of being active 

(probability of activity is 1.0) compared to cge00730 (probability of activity is 

0.43). For the rest of the CHO cell analysis, we utilize the combined dataset, as it 

is the most predictive dataset with highest number of measurements.  

We investigated the biological relevance of some of the pathways predicted 

active by the combined dataset. Cge00780 (Biotin metabolism) is a pathway 

involved with synthesis of Biotin (vitamin B7) supports adrenal function and aids 

in maintaining the nervous system. Cge00785 (lipoic acid metabolism) is 

involved with synthesis of lipoic acid, an essential cofactor for the activity of 

dehydrogenase enzymes that assist in energy production. Cge00020 (TCA cycle) 

is essential for cellular metabolism, playing an important role in the energy 

production. Cge00970 (Aminoacyl-tRNA biosynthesis) is involved in protein 

synthesis and the translation from genes to proteins, which is a crucial process for 

a cell. Cge00053 (Ascorbate and aldarate) is involved with synthesis of Ascorbate 

(vitamin C), which is essential for health. It is expected that such pathways are 

active in the sample. 
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Pathway ID 

 

Pathway 

name 

 

pathway 

size 

#masses 

mapped to 

the pathway 

(HilNeg) 

#masses 

mapped to 

the pathway 

(HilPos) 

#masses 

mapped to 

the pathway 

(SynNeg) 

#masses 

mapped to 

the 

pathway 

(combined) 

Identified 

active 

Due to 

HilNeg 

dataset? 

Identified 

active 

due to 

HilPos 

dataset? 

Identified 

active 

due to 

SynNeg 

dataset? 

Identified 

active due 

to the 

combined 

dataset? 

 

cge00780 

Biotin 

metabolism 

 

12 

 

1 

 

1 

 

3 

 

3 

 

N 

 

N 

 

Y 

 

Y 

 

cge00785 

lipoic acid 

metabolism 

 

11 

 

2 

 

3 

 

2 

 

4 

 

Y 

 

Y 

 

Y 

 

Y 

 

cge00020 

Citrate cycle 

(TCA cycle) 

 

19 

 

5 

 

2 

 

9 

 

10 

 

N 

 

N 

 

Y 

 

Y 

 

cge00970 

Aminoacyl-

tRNA 

biosynthesis 

 

69 

 

12 

 

13 

 

18 

 

19 

 

Y 

 

Y 

 

Y 

 

Y 

 

cge00561* 

Glycerolipid 

metabolism 

 

18 

 

6 

 

0 

 

3 

 

7 

 

Y 

 

N 

 

N 

 

Y 

 

cge00565 

Ether lipid 

metabolism 

 

31 

 

3 

 

2 

 

1 

 

5 

 

N 

 

N 

 

N 

 

Y 

 

cge00072* 

Synthesis and 

degradation of 

ketone bodies 

 

6 

 

1 

 

2 

 

3 

 

5 

 

N 

 

N 

 

N 

 

Y 

Table 18. List of CHO cell pathways predicted active by PUMA in at least one dataset. For each 

pathway, the table lists the pathway ID in KEGG, pathway name, pathway size given in number of 

metabolites per pathway, number of mass measurements that can be mapped to metabolites in the 

pathway, and the prediction of being active (Y, if active; N, otherwise) for each individual dataset 

and the combined dataset. Pathway IDs with an * are identified as not statistically enriched by 

Fisher’s Exact test. 
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cge00591 

Linoleic acid 

metabolism 

 

5 

 

0 

 

2 

 

0 

 

2 

 

N 

 

Y 

 

N 

 

Y 

cge00053 Ascorbate and 

aldarate 

metabolism 

 

9 

 

4 

 

0 

 

7 

 

7 

 

N 

 

N 

 

Y 

 

Y 

 

cge00290 

Valine, leucine 

and isoleucine 

biosynthesis 

 

8 

 

2 

 

3 

 

7 

 

8 

 

N 

 

N 

 

Y 

 

Y 

 

cge00524 

Neomycin, 

kanamycin and 

gentamicin 

biosynthesis 

 

2 

 

1 

 

0 

 

1 

 

1 

 

Y 

 

N 

 

Y 

 

Y 

 

cge00730 

 

Thiamine 

metabolism 

 

7 

 

3 

 

2 

 

2 

 

3 

 

Y 

 

N 

 

N 

 

N 

 

cge00040 

Pentose and 

glucuronate 

interconversio

ns 

 

18 

 

10 

 

0 

 

6 

 

10 

 

Y 

 

N 

 

N 

 

N 

 

cge00472* 

D-Arginine 

and D-

ornithine 

metabolism 

 

4 

 

2 

 

1 

 

2 

 

2 

 

Y 

 

N 

 

Y 

 

N 

5.2.3 Comparison of predicted pathway activities to enrichment ratios  

We investigate how inference compares with pathway enrichment ratios [79]. 

We define the enrichment ratio for a particular pathway as the ratio of measured 

masses that map to metabolites within the pathway to its size. Pathways that are 

labeled as statistically enriched based on statistical significance of the ratios using 

Fisher’s Exact Test (FET). The null hypothesis is that there is no difference 
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between the enrichment ratio of pathway p and ratios of other pathways in the 

sample. A p-value equal to or less than 0.05 is considered significant. Of the 14 

pathways designated as active using PUMA, all but three pathways (cge00561, 

cge00472, and cge00072) are statistically enriched. 
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Enrichment ratios of CHO cell pathways are contrasted against pathway 

activities that are predicted by PUMA (Figure 18). While there is some consensus 

between the two techniques (upper right and lower left parts of Figure 18, there 

are important differences. In some cases, PUMA designates pathways as active 

despite low enrichment ratios. For example, pathways cge00780 and cge00970, 

with pathway sizes 12 and 69, respectively, have a predicted activity of 0.99 and 

1.0, respectively, when using the combined dataset. The enrichment ratios for 

these two pathways are 0.25 and 0.27, respectively. The low enrichment ratio may 

indicate inactivity, and enrichment ratios for both pathways are statistically 

enriched. Inference however predicts them both as active. In another set of cases, 

PUMA predicts low pathway activity, while enrichment assumes a high 
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enrichment ratio. For example, statistically enriched pathway cge00400 has an 

enrichment ratio of 0.66, but assigned active by PUMA with probability 0.11. 

cge00400 includes six metabolites, of which four were observed using 

measurements. Two of the four observed mass measurements from cge00400 can 

also be mapped to cge00970. Cge00970 is unique in generating a unique 

measurement that cannot be generated by any other pathway in model (similar to 

the case of w5 in our illustrative example). As the result, cge00970 is predicted 

active with high probability, which in turn reduces the probability of cge00400 

being active. The remaining two observed mass measurements in cge00400 are 

not unique to this pathway as they can be generated by at least one other pathway 

 

 
Figure 18. Contrasting probabilities of pathway activities as computed by PUMA vs. 

enrichment ratios in CHO cell. Each data point is marked as either statistically 

enriched (red) or non-statistically enriched (blue) based on Fisher’s Exact Test with a 

significance level of 0.05 for the p-values. 
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in the biological sample. Despite its high enrichment ratio, PUMA does not assign 

a high probability of activity of cge00400.  

5.2.4 PUMA annotations show agreements with other tools and annotate 

new metabolites 

Among the 1,534 model metabolites (Table 17), there were 352 metabolites 

that map to 397 mass measurements in the combined data set. A particular mass 

measurement was associated with a model metabolite if its mass matched the 

measured mass within 15ppm error margin. Therefore, each measurement may 

have zero, one or more putative annotations. The probabilities of each metabolite 

being present in the sample as inferred by PUMA are used to score and rank 

metabolites. Here, only the top ranked metabolite(s) for each mass is considered 

as the PUMA candidate set. The lowest probability of assignment was 0.17, 

which occurs in 3 annotation cases. All other probabilities were equal to or greater 

than 0.29. All but 22 of the 397 annotations had a likelihood of greater than 0.5. 

We assess the accuracy of PUMA annotations by comparing the level of 

agreement of PUMA annotations with annotations using two other techniques, 

spectral database searches and BioCAN (Figure 19). Spectral signatures collected 

through untargeted metabolomics were looked up in s METLIN and HMDB, and 

were previously reported [74]. The highest scoring metabolites for each 

measurement in METLIN and in HMDB formed the spectral database candidate 

set. Out of 397 mass measurements, 85 were identified as either in HMDB or 

METLIN. For each measurement, the PUMA candidate set was compared against 

the candidate set identified by HMDB and METLIN. The comparison leads to 
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four different scenarios. One scenario is “agreement”, where the highest-ranked 

candidate metabolite identified by PUMA exactly matches the candidate set from 

HMDB and METLIN. Such agreement occurs in 64 cases. Another scenario is 

“semi-agreement”, in which the candidate set from HMDB and METLIN is a 

subset of the top candidate set obtained from PUMA annotation. There are 15 

cases of semi-agreement. Another scenario is “disagreement”, where the 

candidate set from METLIN and HMDB does not overlap with the PUMA 

candidate set. We investigate the six disagreements. In three cases, the candidate 

metabolite from METLIN and HMDB is the second likely putative annotation 

identified by PUMA. These putative annotations, which were not included in the 

PUMA candidate set, had a high activity score and close to that of the 

metabolite(s) in the candidate set. In the remaining three cases, however, the 

candidate metabolite from METLIN and HMDB is assigned a low score by 

inference-based annotation workflow, a score far from the one assigned to the 

metabolite in the PUMA candidate set. These three cases are considered as 

genuine disagreement in annotation. Importantly, in the final scenario with 312 

cases, there were not matching annotations in METLIN and HMDB. These cases 

are new annotations provided by PUMA and labeled as “Only PUMA”. 

We compare PUMA annotations to annotation results by BioCAN [74]. 

BioCAN aggregates the results from spectral database searches and in silico 

fragmentation tools, and estimates the confidence in an annotation for a mass 

measurement not only based on a consensus but also by the confidence of 

presence of metabolites that are connected to the mass measurement through the 
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substrate-product relationships. BioCAN annotates 346 out of 397 mass 

measurements that are annotated by PUMA. We analyze the various scenarios as 

we did when comparing with annotations using METLIN and HMDB. There are 

273 cases of agreement, 54 cases of semi-agreement, 19 cases of disagreement, 

and 51 new annotations by PUMA. The disagreements fell into two categories. In 

11 out of 19 cases, there was disagreement on the top candidate, where PUMA 

ranked BioCAN’s candidate as second best. There were genuine disagreements in 

8 cases were the annotation by BioCAN was assigned a low score by PUMA.  

In summary, comparing PUMA annotations against those obtained through 

spectral database and BioCAN shows significant levels of agreement. METLIN, 

HMDB and BioCAN incorporate spectra signatures during annotation while 

PUMA relies solely on pathway organization and mass measurements. 

Importantly, PUMA increased annotation by 367% over spectral databases and by 

 

 

Figure 19. Comparison of the number of metabolite annotations attained with 

PUMA against those identified by: (A) searching spectral databases, HMDB and 

METLIN, and (B) BioCAN. The blue slice in each pie represents the number of 

mass measurements that could only be annotated by PUMA. Other slices indicate 

agreement (orange), semi-agreement (yellow), and disagreement (gray) between 

the annotations found by PUMA and the other tools. 
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14% over BioCAN. PUMA identifies candidate metabolites that are not identified 

by other annotation tools. The quality of these annotations can be further assessed 

by employing an in silico fragmentation tool (e.g. CFM-ID [33]) to compare and 

score computationally generated spectral signatures against experimentally 

collected spectral signatures.  

5.2.5 Evaluation of PUMA in overcoming uncertainty in annotation 

To reduce the uncertainty inherent in mapping measurements to metabolites 

with a same mass, we incorporated annotation data obtained through spectral 

database search based on spectral signatures in METLIN and HMDB into the 

generative model. Specifically, for each mass k annotated using METLIN or 

HMDB as metabolite f, matrix  is modified. All column entries other than  

are set to zero, indicating that mass k uniquely maps to metabolite  Using the 

updated  for the probabilistic model, PUMA calculated posteriors for pathway 

activities. There is a slight change in predicted posteriors (an average of 0.002) 

compared to those obtained using the original  matrix. The change however does 

not alter the posterior probabilities sufficiently to modify the list of active 

pathways (Table 18).  

This finding is significant as it shows that inference accounts for uncertainty in 

mapping masses to multiple metabolites without employing additional annotation 

information from spectral databases. PUMA can be used to accelerate the process 

of pathway activity analysis by direct use of mass measurements and bypassing 

metabolite annotation using spectral databases.  

We repeated the analysis, but incorporated the annotation data available from 

BioCAN instead of that obtained through spectral lookups. The change in  

caused a slight change in predicted posteriors (an average of 0. 006 per pathway) 
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compared to those obtained using the original  matrix. The one significant 

change was for pathway cge00360, where pathway activity changed from 0.102 to 

0.508. The cge00360 pathway, the phenylalanine pathway, is responsible for 

producing Tyrosine. This finding is also significant as it shows that substantial 

additional annotations, as provided in the form of added annotations by BioCAN 

over using spectral databases, are required to further inform inference in regards 

to pathway activities.  

5.2.6 Runtime and complexity of the probabilistic model 

We estimated the time and space complexity of the proposed model in terms 

number of pathways ( , number of metabolites ( , number of unique masses of 

metabolites ( , number of drawn samples ( . The time and space complexity in 

sampling the model is O(  x ). We timed the runtime of PUMA for 

constructing the model and performing the sampling. The runtime for the 

combined CHO cell dataset was 795 seconds. The time and space complexity in 

annotation is O(  x ). The runtime for the combined CHO cell dataset was 

17,253 seconds. The runs were performed on a Dell PowerEdge R815 server with 

four AMD Opteron 6380 processors running at 2.5GHz. 

 

5.3 Discussion and Conclusions 

We presented in this chapter PUMA, a probabilistic approach to interpret mass 

measurements collected through untargeted metabolomics. Because it is based on 

inference, PUMA allows drawing stronger conclusions about activities of the 

biological sample under study by folding in what is already known about the 

sample. In doing so, levels of uncertainty in mapping measurements to 
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metabolites and pathways are significantly reduced, and a clearer view of the 

likelihood of pathway activity levels and metabolite annotation emerges. PUMA 

consists of the two steps. Using the metabolic model for a biological sample under 

study and measured masses, a generative model is constructed to capture known 

complex relations among pathway activities, metabolites, and measurements. 

Next, Gibbs sampling is applied to approximate posteriors for pathway activities 

and metabolites being present in the sample. PUMA was used to analyze 

untargeted metabolomics data collected from two biological samples.  

PUMA provides significant contributions in advancing both pathway analysis 

and metabolite annotation. Pathways identified by PUMA as highly active are 

ones with essential biological roles in the samples under study. Further, PUMA 

offers a perspective on pathway activity that is distinctly different from that 

offered by statistical enrichment approaches. PUMA identifies pathways that have 

a high likelihood of being active but have statistically low enrichment ratios, and 

pathways with low activity probabilities yet with statistically high enrichment 

ratios. Because inference reduces the uncertainty in mapping measurements to 

chemical identities, PUMA was able to infer pathway activities without the 

additional burden of metabolite annotation. For the CHO cell tests case, PUMA 

was able to infer pathway activity levels similar to those identified with additional 

annotation information from other tools. In terms of advancing annotation, PUMA 

results had high agreement to annotations using spectral database lookups and 

BioCAN. This high level of agreement occurs despite the fact that PUMA does 

not utilize additional information in form of spectra signatures, as employed by 
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other techniques. Importantly, PUMA suggested annotations for measurements 

that were not previously annotated by other techniques. In the case of the CHO 

cell test case, PUMA increased the percentage of mass annotation by 367% over 

spectral lookups and by 14% over BioCAN.  

The performance of the Gibbs sampler is a function of the number of random 

variables that are sampled. Several optimizations were necessary to reduce the 

runtime. We selected to predict the likelihood of pathway activities first, as 

opposed to directly predicting the likelihood of assigning weights to masses, as 

proposed in ProbMetab [120]. This sped up sampling, as the number of 

metabolites in a metabolic model is significantly higher than the number of 

metabolic pathways. For example, in the CHO cell, there are 1535 model 

metabolites but only 86 pathways. Further, we marginalized out random variables 

when appropriate. In addition, it was necessary to vectorize computations instead 

of using for loops to speed up sampling.  

A range of studies has employed probabilistic modeling in the field of 

metabolomics. ProbMetab [121] is a Bayesian annotation tool that uses a 

probabilistic method [120] to assign empirical formulas to a list of measured mass 

spectrometric peaks, given a list of potential formulas and possible biochemical 

transformations. ProbMetab assigns higher probability to formulas that could be 

created from metabolites in the sample based on the input set of chemical 

transformations. In another annotation tool, a Bayesian model is proposed to 

improve metabolite annotation by ranking candidate metabolites matched to a 

spectral signature using a competing score in addition to a similarity score [122]. 
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The competing score accounts for the likelihood of a candidate metabolite to be 

matched to other compounds in the spectral database based on its spectral 

signature similarity to others in the database. The competing spectra however are 

from a larger spectral database that may not be relevant to the sample. This 

approach has similarity to PUMA when considering annotations from METLIN 

and HMDB. Bayesian modeling can be used for purposes other than metabolite 

annotation in the field of metabolomics. Cancer biomarker discovery studies that 

use mass spectrometric analysis of human biospecimens can greatly benefit from 

purification of the data prior to statistical and pathway analyses. To this end, a 

Bayesian model is proposed, to computationally analyze metabolomics data to 

identify cancer cells in a biological sample [123]. The proposed approach models 

the metabolomics data from a heterogeneous biological sample as a weighted 

mixture of cancerous and non-cancerous features coming from various 

biomolecule origins and assigns each feature a probability of being cancerous. To 

the best of our knowledge, PUMA is the first use of Bayesian modeling for the 

purpose of pathway activity analysis by utilizing metabolomics data. 

PUMA may be improved by augmenting the generative model with additional 

information describing the biological process. One possibility is to modify the 

value for , the probability of generation of metabolite 𝑓 due to pathway 𝑝, to 

reflect either the centrality of the metabolite within the pathway or to account for 

the number of ways reactions within the pathway can act on a metabolite. It is 

also possible to augment the metabolic products within pathways using the 

concept of enzyme promiscuity, where an enzyme acts on substrates in addition to 
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its natural substrate [101], thus increasing the number of measurements that can 

be annotated [105]. Hierarchical pathway organization or modularity can also be 

incorporated into the model. For example, in the metabolic model curated for 

CHO, some pathways are subsets of others. PUMA predicted pathways cge00072 

(Synthesis and degradation of ketone bodies) and cge00290 (Valine, leucine and 

isoleucine biosynthesis) as active. Both pathways are part of parent pathways 

cge00650 (Butanoate metabolism) and cge01230 (Biosynthesis of amino acids), 

respectively. However, PUMA predicted neither parent pathways as active. In 

addition, instead of using a fixed noise model, a probabilistic noise model, as 

proposed in ProbMetab [120], can be adapted to reflect uncertainties in 

measurements. Further, mass differences between measurements as evidence of 

biochemical transformations [124] can be incorporated in the model as evidence 

of enzymatic reactions taking place within pathways. Using mass differences 

between measurements has proven effective when using inference to assign 

higher probability to metabolites that can be created from others in the sample 

[120], in constructing networks of putative transformation routes [72], and in 

identifying related pairs of compounds that have similar spectral signatures [73]. 

We expect these improvements to further enhance PUMA’s ability in interpreting 

metabolomics data. 

In summary, PUMA was shown effective in interpreting data collected through 

untargeted metabolomics. Using untargeted metabolomics datasets for CHO cells, 

PUMA identified with high probability a list of pathways considered essential in 

cellular metabolism. PUMA overcame the uncertainty caused by possibility of 
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matching a mass measurement to multiple candidate metabolites, as incorporating 

the annotation knowledge from BioCAN and spectral search databases METLIN 

and HMDB to the model did not significantly change the predicted list of active 

pathways. Thus, PUMA accelerates pathway activity analysis by bypassing 

metabolite annotation as a prior step without compromising the quality of results. 

Comparing the top metabolite candidate sets generated by PUMA annotation per 

mass measurement to the candidate metabolites identified by BioCAN and 

spectral database search in HMDB and METLIN shows a high level of agreement 

between the annotations. The high level of agreement occurs despite the fact that 

PUMA does not utilize additional information in form of spectral signatures, as in 

BioCAN, HMDB and METLIN. Importantly, PUMA improved the annotation 

results from BioCAN, HMDB and METLIN by identifying candidate sets for 

measurements that were not previously annotated by other annotation techniques. 
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Chapter 6 

Conclusions and Future Directions 

The computational methods presented in this thesis include SelFi, a selection 

finder for directed evolution of enzymes; EMMA, a metabolite annotation 

workflow in untargeted metabolomics; and PUMA, a probabilistic predictor of 

pathway activities and metabolite annotation using metabolomics data. These 

methods advance the state-of-the-art in computational techniques targeting 

synthetic biology and metabolic engineering as well as metabolomics data 

analysis. 

6.1 Research Summary 

This thesis presented several innovative contributions. SelFi is the first tool to 

provide an automated way of designing a selection mechanism that isolates a 

desired enzymatic phenotype. SelFi’s contribution is in integrating the synthesis 

of the selection pathway with knockout identification to couple the selection 

pathway with cell survival. The results of applying SelFi to identify selection 
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pathways for several target enzymatic products demonstrate that it is possible to 

synthesize high-quality selection pathways that match in quality to those already 

confirmed experimentally in the literature. The results also present additional 

selection strategies that can expand current experimental practices. 

The EMMA workflow contributes two key advances. First, filtering the list of 

possible candidate chemicals through an Expanded Metabolic Model (EMM) 

specific for the system of interest can eliminate unnecessary and time consuming 

computations on chemicals that are likely irrelevant to the measured data.  When 

compared to utilizing an in silico annotation workflow that utilizes a large 

database, the results on our datasets demonstrated a reduction in the number of 

calculations by 4 orders of magnitude. Second, filtering candidate chemicals using 

an EMM allows for the identification of novel metabolites that are missing from a 

genome-scale model reconstruction.  When compared to using the biological 

sample’s metabolic model, the results on our datasets show that EMMA expands 

the search space during metabolite annotation. For our datasets, there was a 2.39-

fold increase in the number of chemical identities that can be used for annotation, 

and a 1.71-fold increase in the number of masses than can be annotated. This 

second advance addresses the need to enable discovery, which is inherently 

limited in the simpler approach of using a model comprising only metabolites 

associated with the sample to filter the candidate chemicals, or when using a small 

biological database. The experimental verification of the presence in the EMM of 

a CHO cell metabolite (4-hydroxyphenyllactate) that was not previously 
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identified as part of CHO cell metabolism confirmed the utility of the EMMs, and 

the need to enable discovery beyond a simple metabolic model.  

PUMA is the first tool to demonstrate the utility of using probabilistic 

inference to estimate the likelihood of metabolic pathway activities and 

metabolite annotation. Our results show the capabilities of PUMA in evaluating 

pathway activities despite uncertainties in metabolite annotation, and how 

predictions regarding pathway activities can be utilized to reduce the uncertainties 

in assigning chemical identities to measurements. The results are substantial as 

they show a significant increase in the number of annotated mass measurements 

compared to the number of annotations possible by other state-of-the-art tools. 

For annotations made by PUMA and other tools that utilize additional information 

in the form of spectral signatures, there was a high level of agreement in ranking 

the candidate chemical identities. 

6.2 Future Research Directions 

SelFi utilized ProPath to construct selection pathways using existing reactions 

within the KEGG database. The target enzymatic molecule is assumed to be 

available in KEGG. The construction of selection pathways can be extended to 

engineer pathways that consume product molecules that are not associated with 

known reactions. Potential transformations of the product molecule can be 

explored using a tool that predicts outcomes of substrate promiscuity such as 

PROXIMAL. The consecutive application of such a tool can generate novel 

selection pathways.   



 

118 

The discovery of a novel metabolite in the CHO samples that is not cataloged 

as part of the CHO metabolic model in the KEGG database shows the utility of 

constructing EMMs for metabolite annotations. Integrating available metabolite 

concentration and gene expression data can refine EMM models. For example, 

low gene expression indicates that the corresponding enzyme is unlikely to act 

promiscuously and if it did, the metabolite concentration of the resulting product 

is likely small in comparison of metabolite concentrations of other molecules in 

the cell. Further, providing a tool that allows the user to automatically create 

EMM models can streamline the automated construction of EMMs for annotation 

and other applications.  

The experimental validation of EMMA resulted in confirming the identity of 

only one out of eight predicted metabolites. This could be due to inaccuracies in 

the rankings by the fragmentation tool. For example, CSI:FingerID reports an 

accuracy of only 39.5% when annotating a data set from MassBank by searching 

PubChem. The low confirmation rate can also be due to the assumption that all 

enzymes are promiscuous. As an enhancement, it is possible to improve 

PROXIMAL to rank the predicted derivatives based on enzyme designations as 

generalists or specialists [123], on participation in primary or secondary 

metabolism [125], and other kinetic data available through the BRENDA database 

[126].  
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Appendix A 

Supplementary Material for Chapter 3 

Table 19. Full names of chemical abbreviations in Chapter 3 

Chapter 3 abbreviations Full names of chapter 3 abbreviations 

2pg D-Glycerate-2-phosphate 

3pg 3-Phospho-D-glycerate 

3php 3-Phosphohydroxypyruvate 

AcCoA Acetyl-CoA 

ADP Adenosine Diphosphate 

AKG 2-Oxoglutarate 

ara5p D-Arabinose-5-phosphate 

ATP Adenosine Triphosphate 

Co2 Carbon Dioxide 

CoA Coenzyme-A 

db4p 3-4-dihydroxy-2-butanone-4-phosphate 

dmlz 6-7-Dimethyl-8--1-D-ribityl-lumazine 
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FUM Fumarate 

g3p Glyceraldehyde-3-phosphate 

H Hydrogen 

ICT Citrate 

kdo2lipid4 KDO-2--lipid-IV-A--with-laurate 

kdo8p 3-Deoxy-D-manno-octulosonate-8-phosphate 

MAL Malate 

NAD Nicotinamide-adenine-dinucleotide 

NADH Nicotinamide-adenine-dinucleotide---reduced 

OAA Oxaloacetate 

Pi Phosphate 

ribflv Riboflavin 

ru5p-D D-Ribulose-5-phosphate 

SUCC Succinate 

xu5p-D D-Xylulose-5-phosphate 

xyl-D D-Xylose 

xylu-D D-Xylulose 
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