

Altitude and Child Linear Growth in Nepal

Jerry Shively¹, Tim Smith¹, and Megan Paskey²
August 3, 2019

- ¹ Purdue University, Department of Agricultural Economics
- ² Friedman School of Nutrition Science and Policy, Tufts University

MOTIVATION

- In Nepal, children at high altitudes exhibit restricted linear growth compared with children at lower altitudes. Why?
- Easy to imagine how this relationship may be confounded; substantive relationship would matter, though.
- We examine the role of potential confounders (wealth, maternal health, remoteness) in this relationship

HAZ by Altitude

DATA

- Data come from 2006, 2010, 2016 Demographic and Health Surveys (DHS); analysis done at child level (n=8,824)
- Includes HAZ, altitude averaged by survey cluster, and household characteristics.
- Both HAZ and altitude highly variable; means both out of region of serious concern; large SD's indicate many children at low HAZ or high altitude, however.

Table 1: Descriptive statistics

Variable	Min.	Mean	Max.	SD
HAZ	-5.96	-1.79	4.99	1.35
Altitude (km· above sea level)	0.05	0.79	3.19	0.73
Female indicator	0	0.49	1	0.5
Age (months)	0	29.78	59	17·1
Hill zone indicator	0	0.31	1	0.46
Mountain zone indicator	0	0.08	1	0.27
Mother highest ed: primary	0	0.18	1	0.39
Mother highest ed: secondary	0	0.25	1	0.43
Mother highest ed: higher	0	0.07	1	0.25
Wealth index value	-162·36	-17·61	393-19	88·24
Access to safe water	0	0.74	1	0.44
Smoke fuel used in house	0	0.84	1	0.37
Urban indicator	0	0.3	1	0.46
Mother's BMI	14.02	20.81	43.29	2.98
Quality-weighted road density	0	340.59	4408-57	439-61
District distance to Kathmandu (km)	0	351.06	775-71	203-26

BASELINE RESULTS

Table 2: Baseline Results (SE's in parentheses)

Table 2: Baseline Results (SE's in parentneses)					
	Dependent variable:				
-	HAZ (1)	HAZ (2)	HAZ (3)		
Altitude	-0·277*** (0·020)	-0·214*** (0·027)	-0·219*** (0·028)		
Household Controls	NO	YES	YES		
Remoteness Controls	NO	NO	YES		
Constant	-1·569*** (0·021)	4·143*** (1·560)	4·111** (1·600)		
Observations R ²	8,824 0·022	8,824 0·245	8,824 0·246		
Adjusted R ²	0.022	0.241	0.241		

- Proceed in three stages: additive models, polynomial models, interaction models.
- In baseline additive models, altitude coefficient is consistently large and significant.
- Coefficient changes by a limited amount as household, and then remoteness, controls are added.

NONLINEAR RESULTS

- Expect larger marginal effects at high altitudes, so we fit nonlinear specifications (polynomial and discrete kasl. bin interactions).
- Marginal effects larger at high altitudes in both, but based on Ftest, no different from baseline specification.
- No strong evidence of need for nonlinear specification

Table 3: Nonlinear Altitude Specifications

Dependent Variable: HA7

Dependent Variable: I	-0·502***	-0.309***
, iiii.uu	(0·161)	(0.080)
Altitude^2	0.295**	(====)
	(0.138)	
Altitude^3	-0·077 ^{**}	
	(0.033)	
1-2 Kasl.		-0.176
		(0.137)
2-3 Kasl.		1.176**
		(0.490)
3+ Kasl.		10.803
		(8.043)
AltitudeX1-2 Kasl.		0.205*
		(0.118)
AltitudeX2-3 Kasl.		-0.444*
		(0.228)
AltitudeX3+ Kasl.		-3.485
		(2.627)
Controls	ALL	ALL
Constant	4.001**	3.888**
	(1.611)	(1.617)
Observations	8,824	8,824
R^2	0.246	0.247
Adjusted R ²	0.242	0.242

INTERACTION RESULTS

- Finally, interact altitude with several plausible mediators.
 - Household wealth index value
 - Mother's BMI proxy for health/food environment
 - Quality-weighted road density measure of infrastructure.
- Including these variables additively does not explain away altitude coef., but perhaps they weaken HAZ-altitude relationship.

Predicted marginal effect of altitude on HAZ by mother's BMI

INTERACTION RESULTS II

Marginal effect of altitude on HAZ by quality-weighted road density

Predicted marginal effect of altitude on HAZ by household wealth index value

DISCUSSION

- At high levels of mediators, altitude effect substantially reduced; in the case of infrastructure, it goes away entirely.
- Altitude maintains large negative marginal effect even under these specifications, so it is not explained away.
- Not obvious that moving these variables to high values is feasible solution, especially in the case of infrastructure.
- Overall takeaway: even accounting for mediation, children at high altitude are at particular risk for malnutrition, but this is at least partially due to a lack of resources and infrastructure.

ADDITIONAL TOPICS

Several issues that may matter, but we cannot analyze:

- Household food access/dietary diversity: we lack data on these important topics, and on the agricultural environment more broadly; maternal BMI is a partial proxy, but is very noisy.
- Micronutrient deficiencies: zinc and iron deficiencies can reduce linear growth, and zinc deficiency in soil can cause it in food. Evidence that this is particularly relevant in the Terai; see Bevis et al. (2019).
- Unobserved boron toxicity could also contribute; reduces growth and is possible in these areas, but difficult to get data.

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

