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Introduction

lce nucleation

The crystallization of ice from liquid water occurs both homogeneously and heterogeneously.
Most atmospheric ice nucleation occurs heterogeneously, at the surface of atmospheric
aerosols. These atmospheric aerosols can include organic compounds, some bacteria,
mineral dusts, pollens, and soot particles. While homogeneous ice nucleation requires
temperatures as low as -37 "C, heterogeneous ice nucleation can occur at much higher
temperatures.

layer consisting of repeating alumina tetrahedra stacked atop repeating silica tetrahedra. bisector, w, and a reference unit vector, k. a, is defined -k
Each layer is neutrally charged. The aluminum surface of the kaolinite layer is hydroxylated as the angle between the plane of the water molecule
and has the ability to act as both a hydrogen bond donor and acceptor. The silicon surface with unit normal vector h x w and the reference unit
only acts as a hydrogen bond acceptor. vector. |
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Kaolinite Basal face Secondary prism

The first layer of ice grown on kaolinite is orientationally
intermediate between the basal face and secondary prism
face.

Characterization of ice nucleation at mineral surfaces

Zachary A. Graziano, Diana P. Slough, and Yu-Shan Lin
Department of Chemistry, Tufts University, Medford, MA 02155

Faces of ice |,

We consider three commonly growing faces of the ice |, crystal: primary prism, secondary
prism (fastest growing), and basal (slowest growing).
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Silver iodide (Agl) is known to be an excellent promoter of ice nucleation. Its ability to cause
freezing at temperatures as high as -4 "C and relative safety have made its industrial use
important as a cloud seed. Kaolinite is commonly found in atmospheric mineral dusts and is
known to nucleate ice at temperatures as warm as —10 "C. It is a layered mineral, with each
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Molecular dynamics simulations

Molecular dynamics (MD) simulations allow us to study the motions of molecules in atomistic detail. We use MD to
simulate the behavior of water molecules at surfaces. In these simulations, Agl is modeled using a potential

developed by Hale and Kiefer, kaolinite is modeled using the CLAYFF force field, and water is represented using the
TIP4P/Ice water model. All surface atoms are kept fixed, except for interfacial hydrogen atoms of the kaolinite
surface which are allowed to move.

lce orientation map

To identify the predominant orientations of water
molecules in ice with respect to specific axes, we define
two angles, a, and a,. a, is defined as the angle between
the unit vector in the direction of the water molecule
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