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Abstract

Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American
shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively
secure species might become at–risk species. Virtually all of the shorebird species breeding in the USA and Canada are
migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or
migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects
of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by
Partners–in–Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding,
migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of
specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2
distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No
species was reclassified into a lower–risk category, although 6 species had at least one risk factor decrease in association
with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an
effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk
category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change.
Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions
for predicting change in extinction risk due to climate change.
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Introduction

Shorebirds are important components of the ecosystems in

which they live, they are valued by the general public, can exhibit

extremely large and impressive aggregations during migration,

and they can act as sentinels of global environmental change [1–

3]. There also is a growing demand to move beyond evaluating

climate change impacts on single species or habitats and to

evaluate expected broad scale ecological impacts on communities

and ecosystems [4]. Consequently, we are concerned about the

current documented widespread declines of many species of North

American shorebirds [1,5–8], particularly the recent steep declines

in Atlantic populations of Red Knots (scientific names of North

American shorebirds are given below) [9–10] and Semipalmated

Sandpipers [11–12].

The U.S. Fish and Wildlife Service currently lists three North

American shorebirds as Threatened or Endangered [13]. IUCN

lists five shorebird species in North America as Near Threatened

or at higher risk, and four additional species in these categories for

the Western Hemisphere [14]. The causes of these declines are not

well understood but most likely include loss of breeding, migration,

and wintering habitats, and disturbance and exploitation [1,15–

17]. It should be recognized, however, that the factors causing

such changes could be global, since population reductions have

been seen in virtually all shorebird flyways from North and South

America, to East Africa, to Asia and Australia, e.g., [18–19].

Global climate change is an anthropogenic stressor that could

adversely affect shorebird populations across species’ ranges.

Shorebirds that breed and/or winter at high latitudes may be

among the most sensitive of bird species to this stressor because

this is where climate change is expected to be most severe [20].

They also have several additional risk factors, including lengthy,

energetically expensive migrations where they may be vulnerable

to changes in wind patterns, dependence upon coastal migration

stopover sites that are vulnerable to sea level rise, and dependence

upon ecological synchronicities that may be disrupted by a

changing climate [16,21–23]. Small–Lorenz et al. [24] point out

that assessments of vulnerability to climate change often ignore
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problems associated with a migratory life–history, causing them to

underestimate vulnerabilities. Shorebirds are already in a vulner-

able condition and climate change may exacerbate this.

If we are to understand what may happen to shorebirds in the

near future and initiate appropriate conservation measures it is

essential that we be able to predict the likely vulnerabilities of

shorebird species to various aspects of the changing climate, cf.

[25]. To be useful for conservation, predictive frameworks should

be based on the ecologies and life histories of the species, should

incorporate what we know about how the planet’s climate will

alter, and should generate at least qualitative estimates of species

vulnerabilities, e.g. [26–27].

Categorizing vulnerability to extinction based on a suite of

characteristics, such as population size and rate of decline, is used

widely e.g. [28–31]. The best known models are those of Partners

in Flight and IUCN (also used by BirdLife International) [32].

Their categorization approach to vulnerability also can be used to

evaluate species’ changes in vulnerability as ecosystems change

over time, e.g. [33]. Partners in Flight (PIF) uses a model to assess

vulnerability based on population trend, relative abundance,

threats during the breeding and non–breeding seasons, and

breeding and non–breeding range sizes. For each category, each

species receives a score of 1 to 5, with 5 associated with greatest

risk. These scores are summed using several different formulas,

each of which is used to determine species of conservation concern

for particular reasons. A similar system was developed based on

the same set of basic variables for the U.S. Shorebird Conservation

Plan [1], although the resulting risk categories are defined

somewhat differently. None of these systems includes risk due to

climate change. In this paper, it was our overarching goal to

determine the degree to which climate change will alter the

extinction risk level assigned to shorebird species in the U.S.

Shorebird Conservation Plan, and for this method to be

compatible with the PIF ranking system.

We approached our reconsideration of risks under climate

change by developing an assessment framework, and then used it

to evaluate the vulnerabilities to climate change of North

American (north of Mexico) shorebird species, whose life histories

extend across wide ecological and behavioral spectra. Specifically,

we (1) identified risk factors, (2) created a framework for

quantifying the change in risk due to climate change for each of

the factors, including the possibility of decreased extinction risk

due to climate change, (3) identified the effects climate change

would have on the risk factors, (4) reviewed the literature on each

shorebird species we assessed to determine species–specific risk for

each factor, and (5) assigned species to their new extinction–risk

categories. We also (6) did a sensitivity analysis to determine how

the results were affected by different decision rules for changing

PIF risk categories.

Methods

We included 49 species in our assessment. For three species

(Willet, Piping and Snowy Plover) we evaluated two distinct

populations each, so in all 52 taxa were evaluated. We excluded

Eskimo Curlew (Numenius borealis) from our analysis because it is

likely extinct [34]. Our assessments are compatible with both the

U.S. Shorebird Conservation Plan and PIF frameworks, although

because of the increased risk to some species already at the highest

risk categories, we needed to add a new risk category – critical – to

distinguish species at greatly increased risk.

To achieve the goal of creating a framework that could be

integrated with both PIF and the U.S. Shorebird Conservation

Plan, we first evaluated other existing approaches. The State of the

Birds [35] developed a framework to assess changes in risk due to

climate change, with the goal of applying it to all bird species.

They included migration distance and timing as bivariate factors

(birds that migrate long distances and use daylight cues = 1; else 0);

degree of breeding habitat obligation (high = 1 vs. not = 0);

dispersal ability (1 vs. 0); niche specificity (1, 0); reproductive

potential (lays one egg per year = 1, else 0); and habitat

susceptibility (divided into 3 levels, 2, 1, 0, from highest to lowest

susceptibility). Scores were summed to assess overall risk. This

approach apparently ignores risks associated with migration and

wintering habitat obligation, does not allow for extinction risk to

decrease due to climate change, and there is heavy weighting of

reproductive potential, which is evaluated on a narrow scale that

distinguishes only between one–egg clutches and all other clutch

sizes. Also, while reproductive potential may be important for

population size recovery following sudden decline, it may be less

important with respect to gradual climate change. This approach

is applicable to other species included in the PIF prioritization

system.

We included six factors in our risk framework, each of which

had 3–5 risk levels. Factors included: expected losses or gains in (1)

breeding, (2) migration, and (3) non–breeding habitat (4) degree of

dependence on ecological synchronicities; (5) migration distance;

and (6) degree of habitat specialization (on breeding, migration,

and non–breeding grounds). All risk factors were given equal

weight in the assessment, and each factor is described in detail

below.

Expected Losses or Gains in Breeding, Migration, and
Non–breeding Habitat (1–3)

We accepted that the atmospheric concentrations of greenhouse

gases will approximately double (over pre–industrial levels) by the

middle to the end of the century [36–37]. We then summarized,

based on current understanding reported in the literature, the

effects climatic change should have on habitats used by our focal

shorebirds in the western hemisphere. What follows is our

assessment of these changes (designated B1–B5), and brief

statements about our confidence in these changes. These

approximate confidence levels of .70%, 30–70%, and ,30%

are modified from the 5–category scale developed by [38] for the

Intergovernmental Panel on Climate Change Third Assessment

Report. We reduced the number of categories because we did not

think the implied precision of 5 levels of confidence was defensible.

(B1) Northern hemispheric boreal and arctic

areas. Tundra habitat will be reduced in extent as the tree line

moves poleward; areas that persist as tundra will become less

dominated by graminoids and other low–growth species and will

become increasingly dominated by more shrubby species, reduc-

ing the habitat value for breeding shorebirds [39–47]. Also, the

boreal forest will extend its range northward as it replaces tundra,

but its southern distribution will contract northwards [37–44].

Although it is true that new areas of bare ground are likely to be

created by ice cap and glacial recession in high tundra areas, we

do not believe that this will result in more habitat for most

breeding shorebirds since it will persist as gravel or bouldery

moraine for a long period until vegetated and soil–forming

processes can occur. Confidence = medium.

Changes in precipitation and evapotranspiration are also likely,

but the aggregate effects on tundra hydrology are difficult to

predict [48]. Drier overall conditions may be likely, and may

reduce food availability during the breeding season [48]. It is

unclear how climate change will affect the water balance on

tundra breeding habitats due to the complex interaction of several

factors, including amounts and timing of precipitation events,
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timing and extent of spring thaw, depth of the active layer, and

erosion events [48–53]. While annual rainfall is predicted to

increase throughout the breeding range, evapotranspiration is also

expected to increase enough to more than offset the effect of

increased precipitation [36]. The result may be a loss of some

wetland breeding habitat to dryer conditions, but this is unclear.

Confidence = medium.

(B2) North American Great Plains. Much of the climate

modeling that has been performed indicates that these interior

grassland regions will become hotter and drier [44,54–57]. This is

likely to result in adverse impacts to shorebird species that depend

on seasonally or permanently flooded wetlands for their migration

stopovers. Confidence = medium

(B3) Coastal habitats. Based on IPCC [36] and more recent

modeling [58–60] we assume that sea levels will rise globally by

between 1 and 2 meters, resulting in the loss of coastal shorebird

habitats. This applies to North, Central and South America [61],

and will be worst in areas with, for example, high tidal amplitudes

in shallow lagoons and broad estuaries [62–65]. Consequently, we

anticipate major loss of coastal wintering habitat for shorebirds,

particularly in areas where the land surface is subsiding or

accretion rates of intertidal habitats are low (e.g., most Gulf Coast

sites) [66–67]. If coastal habitats are able to move inland in

response to sea level rise, it could offset losses, but at many sites this

will be precluded by human infrastructure and interventions

[21,65,68–69]. Confidence = high

(B4) Interior South America. Ecological modeling based on

climate change models indicates that increased aridification in

South America will have the following effects: first it is likely to

result in the replacement of currently forested areas in the Amazon

by savanna habitat and seasonal forests [70–71]. Experimental

droughts in the eastern Brazilian Amazon resulted in increased

tree mortality, which also supports the expectation of declining

rainforest habitat [72]. This is unlikely to benefit shorebirds as few

use the existing savanna habitats in central South America.

Second, the existing grassland areas in central and southern South

America will become drier [36,73], but the effect on the grassland

habitats on which North American shorebirds currently winter is

uncertain. Confidence = low.

(B5) Eastern North American forests. The only North

American shorebird species that primarily uses temperate forest

habitat for breeding is the American Woodcock. The species

prefers young forest with openings, and the species tolerates a wide

a range of tree species [74]. In much of the woodcock’s range

afforestation is occurring due to ecological succession resulting

from abandonment of historical agricultural areas [75]. As a result,

young forests adjacent to fields or containing areas of open habitat

are declining, resulting in loss of required breeding habitat.

Additionally, climate change likely will result in increased

vegetation growth at higher latitudes in North America [38–41].

This will result in the establishment of more woody vegetation and

a subsequent increase in young forest habitat in the north. It is

unclear if northward expansion of the woodcock’s range is

occurring, so changes in forest landscape may outpace range

expansion. Another potential concern for forest breeding habitat is

climate change’s impact on tree mortality. There is growing

evidence that drought resulting from climate change leads to

increased tree mortality [76–78]. This may open breeding areas

for American Woodcock locally, but widespread forest loss could

result in loss of breeding habitat. Confidence = Medium.

(B6) Ocean. One of the primary mechanisms through which

climate change could impact oceanic habitats is through

acidification [79–80]. This likely will reduce the quality of marine

habitats, but the extent to which this might affect pelagic non–

breeding shorebirds is uncertain [36,81–82]. One hypothesis is

that ocean acidification could reduce the fitness of many plankton

species by reducing calcification and other physiological processes

[83–84]. If ocean acidification does negatively impact marine

plankton food resources, the decrease could be offset, however, by

increased ocean upwelling which could function to increase food

resources [85]. Confidence = low.

Ecological Synchronicities (4)
We recognize two types of ecological synchronicities important

to shorebirds that we think could be affected by climate change.

(ES1) Breeding season food resources. Arctic tempera-

tures are rising and are projected to further increase in the future,

resulting in earlier spring thaws and ice melts [36]. This likely will

result in earlier invertebrate hatches because arctic invertebrate

emergence is temperature dependent [86]. Long–term field

observations and recent experimental warming studies of arctic

plots support this hypothesis [87–88]. If birds are unable to alter

migration timing, then arctic nesting shorebirds may have

insufficient food resources for young.

(ES2) Migration food resources. Some migrants depend on

highly seasonal food sources during migration [89]. For example,

shorebirds such as Ruddy Turnstones, Red Knots, Sanderlings,

and Semipalmated Sandpipers are highly reliant on American

Horseshoe Crab (Limulus polyphemus) eggs for refueling during

northward migration stopovers [90–91]. If climate change affects

timing of horseshoe crab breeding, this would disrupt synchronic-

ity between horseshoe crab egg laying and spring migration.

Migration Distance (5)
We treat migration distance as others have, as a surrogate for

things that can go wrong that have not been captured by other

factors [31,35,92]. The assumption is that the farther a species has

to migrate, the more ecological disruption can occur [92–94]. In

the context of climate change, for example, migratory connectivity

interacts with habitat loss from sea level rise [95–96] and species

may encounter more severe weather during migration [97–98].

Our separation of species into distance categories was done by

looking for natural breaks in the migration distance data, resulting

in distances being divided into 5 categories (Fig. 1). Migration

distances were calculated from the approximate center of each

species’ breeding range to the approximate center of each species’

wintering range using data from NatureServe [99]. The two

exceptions were Bristle–thighed Curlew and Bar–tailed Godwit,

which are not covered by this database. Known migration

distances placed these species in the greatest–distance category.

Degree of Habitat Specialization (6)
This variable refers to degree of specialization to a certain

habitat type, rather than the vulnerability of the habitat type. We

assert that being specialized increases your extinction risk to

climate change because of reduced response capability. If a species

specializes on a habitat type at any time in its life cycle (breeding,

migration, non–breeding), it was considered to be specialized. We

divided this risk factor into three categories (Table 1).

Assessment Framework Development
Each risk factor was assessed for each species using information

from the literature regarding the natural history of the species and

anticipated changes due to climate change. A summary of each

species’ risk level associated with climate change for each risk

factor narrative, as well as confidence scores can be found in

Appendices S1 and S2. For each risk factor, for each species, we
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also included a subjective confidence score (1 = low to 5 = high

confidence). We recognize that a species might have increased

extinction risk due to climate change, but it might not increase

enough to change risk categories.

We described changes in risk using two systems: a numeric

scoring system that had maximum values for each factor of 5, and

a graphical depiction of the change in risk using arrows because we

thought they were more intuitive for rapid visual assessment of

changes and patterns. Risk factors were scaled from 0 to 5 to

match PIF scaling. For the three habitat factors (1–3), we allowed

for the possibility of improved conditions due to climate change.

Improvement resulted in negative scores (or down–arrows) to show

reduced risk. The factors, and their subdivision and scoring, are

shown in Table 1.

For our purposes, we decided that an increase in risk score of 10

(equivalent to 4 qs; the arrows indicate the direction and degree

of effect) was sufficient to increase by a single risk category because

a score of 10 would mean that a species is at extreme risk in two of

the six categories. This assignment is a first approximation based

on best professional judgment cf. [32], but should be revisited as

more information about shorebird ecology and vulnerability to

habitat changes becomes available.

To investigate the importance of our decision for how much

change in risk is sufficient to cause a change in risk category, we

did a sensitivity analysis. Specifically, we assessed the sensitivity of

our results – which species were placed into which risk category –

to the amount of change in extinction risk that was required for a

species to change risk categories. We did this by making the

criterion for changing categories more sensitive, requiring the

accumulation of only 3 arrows to make the transition between risk

categories. We also evaluated the effect of making the criterion less

sensitive, evaluating the effects of requiring 5, 6 and 7 arrows to

allow a species to change risk categories. If our method is

insensitive to this criterion, we would expect little change in

categorization with changing criteria.

Results

Each species’ account and changes in risk level are found in

Appendices S1 and S2, but we briefly go through the account for

the Semipalmated Sandpiper to demonstrate the procedure. (1)

We anticipate moderate loss of breeding habitat (score 3; 1 q).

Our reasoning is based largely on the expectation that tundra

breeding habitat will be reduced over the longer term by the

increase of woody vegetation, which will invade current areas of

tundra [43]. Additional impacts may also occur from changes in

precipitation, but it is unclear how climate change will affect the

water balance on tundra breeding habitats due to the complex

interaction of several factors, including amounts and timing of

precipitation, timing of spring thaw, and depth of the active layer

[48]. While annual rainfall is predicted to increase throughout the

breeding range, evapotranspiration is also expected to increase

enough to more than offset the effect of increased precipitation.

The result may be a loss of some wetland breeding habitat to dryer

conditions, but this is unclear. Our confidence in the assessment of

the overall score for moderate loss of breeding habitat is low. (2)

We anticipate major loss of wintering habitat (score 5; 2 qs)

because winter range includes almost exclusively coastal shoreline

habitat, so sea level rise (SLR), storm surges, and changing fresh–

salt water mixes pose a large threat. Since the species uses estuaries

with large tidal amplitudes in Brazil, this may buffer against the

SLR impacts, at least locally. Our confidence in this estimate is

high. (3) We anticipate moderate loss of migration habitat (score 3;

1 q) because SLR likely will cause the loss of some coastal

migratory areas. Expected decrease in rainfall in southern areas of

North America will cause a decrease in spring migration habitat.

In contrast, rainfall is expected to increase in northern portions of

North America during spring migration, likely resulting in

increased habitat in the interior. Our confidence in this estimate

is high. (4) This species has a high degree of dependence on

ecological synchronicities (score 5; 2 qs). Arctic temperatures are

expected to increase, resulting in earlier spring thaws and ice

melts. This, in turn, will likely result in earlier invertebrate

emergence. If birds are unable to alter migration timing, then

arctic nesting shorebirds may have insufficient food resources to

support reproduction. Our confidence in this estimate is high. (5)

Migration distance is 7886 km (score 4; 2 qs). (6) We categorize

this species as being moderately specialized in its habitat use (score

4; 2 qs). It has fairly specific wintering habitat requirements,

including shorelines with wide intertidal mudflats, near shallow

lagoons, and wide estuaries with large tidal amplitudes. Our

confidence in this estimate is high. This assessment generates a

total score of 24 (9 qs), which is enough in our protocol to push

the species up two risk categories from its place in the current U.S.

Shorebird Conservation Plan, from a species of Moderate

Concern to Highly Imperiled.

Of the 52 taxa we evaluated, 45 (87%) are predicted to

qualitatively increase their risks of extinction as a result of climate

change; 33 by one level in the U.S. Shorebird Conservation Plan,

and 12 by 2 levels (Table 2, Fig. 2). Only three species had risk

factors that we predict will lower a species’ extinction risk due to

climate change: Solitary Sandpiper, due to the creation of more

breeding habitat; Bristle–thighed Curlew, due to the expansion of

breeding and wintering habitat; and White–rumped Sandpiper,

due to more wintering habitat. The U.S. Shorebird Conservation

Plan currently lists 29 species at risk levels of High Concern or

Figure 1. One-way migration distances calculated as mid–point
to mid–point of their summer and winter geographic ranges.
Ranges were downloaded from the NatureServe database. Horizontal
lines separate dispersal distances as ranked in Table 1, with the shortest
distances associated with rank 1 and the greatest distances with rank 5.
The exceptions are the Bristle–thighed Curlew and Bar–tailed Godwit,
which do not overwinter in the New World so they are not covered by
the database. They fall into the greatest migration distance category,
and are represented arbitrarily in the figure by the 2 points showing the
greatest migration distances.
doi:10.1371/journal.pone.0108899.g001
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higher, and no species are considered Not at Risk. Based on our

assessments, we categorize 43 taxa (species+races, hereafter

‘species’ or ‘taxa’) as High Concern or higher due to increased

risks resulting from climate change, with 15 of these being in the

newly created Critical category (Table 2).

Of the 52 taxa assessed, 38 (73%) showed increased vulnera-

bilities due to effects of climate change on breeding habitat, 36

(69%) due to effects on wintering habitat, and 34 (65%) due to

migration habitat (Table 2). More taxa also exhibited maximal

negative responses (criteria in Table 1) to climate change on the

breeding grounds than to winter or migration habitat (24 taxa vs.

19 and 16, respectively). That is, more taxa exhibited increased

risk due to climate change on the breeding grounds than for the

wintering and migration grounds, and the risks were higher. The

number of taxa predicted to have no response or a positive

response to climate change was similar across breeding, winter,

and migration habitat (13, 15, and 18 taxa respectively). Ecological

synchronicity and migration distance, by comparison, had less of

an effect on extinction risk due to climate change, with 17 (33%)

and 14 (27%) species, respectively, showing no negative effect due

to climate change. The greatest risk factor of those assessed,

however, was degree of habitat specialization, with 47 (90%) of the

taxa showing a negative response to climate change (Table 2).

A natural potential comparison of our results is with those of the

State of the Birds [35]. This is a somewhat difficult comparison to

make, however, because we used different scales for our risk

categories. However, there appears to be general, qualitative

concordance for many species. For example, of the 12 species

where they predict no (0 score out of 5) or a low (1 score) increase

of extinction risk due to climate change, we predict no or low

effects on all of them; i.e., our results leave the species in the same

risk category or increase by one category (Table 2). However, we

predict an increase of only a single risk category on an additional

19 species where State of the Birds predicts greater impacts of

Table 1. List of risk factors evaluated for species sensitivity to climate change.

1) Loss/gain in breeding habitat under climate change: Score Arrow

Major losses (.50%) 5 qq

Moderate losses (10–50%) 3 q

Limited or no losses (210–10%) 0 0

Moderate increase (10–50%) 23 Q

Major increase (.50%) 25 QQ

2) Loss/gain in wintering habitat under climate change:

Major losses (.50%) 5 qq

Moderate losses (10–50%) 3 q

Limited or no losses (210–10%) 0 0

Moderate increase (10–50%) 23 Q

Major increase (.50%) 25 QQ

3) Loss/gain in migration habitat under climate change:

Major losses (.50%) 5 qq

Moderate losses (10–50%) 3 q

Limited or no losses (210–10%) 0 0

Moderate increas (10–50%) 23 Q

Major increase (.50%) 25 QQ

4) Degree of dependence on ecological synchronicities:

High 5 qq

Moderate 3 q

Low 0 0

5) Migration distance ( = surrogate for a suite of issues):

see figure 1 for distance categories 5 qq

4 q

3 q

2 0

1 0

6) Degree breeding, wintering or migration habitat specialization

Highly specialized 5 qq

Specialized 4 qq

Somewhat specialized 3 q

Not specialized 0 0

Values are given by scores (similar to the PIF approach) and by arrows. Note that negative scores/down arrows indicate a decreased extinction risk due to climate
change. Our current assessment is based on 4 arrows in the same direction (up or down) being sufficient to shift a species to the next risk category.
doi:10.1371/journal.pone.0108899.t001
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climate change (scores of $2). Although there is a lot of variability,

our results are generally, but not closely, consistent with those of

the State of the Birds (r2 = 0.27). Our biggest difference occurs for

the Purple Sandpiper, where we predict no change in risk category

due to climate change, while State of the Birds predicts a strong

response (score = 4). Although not to the same degree, we also

predict substantially lower increases in extinction risk due to

climate change for Black Oystercatcher, Wandering Tattler,

Bristle–thighed Curlew, Hudsonian Godwit, Surfbird, Western

Sandpiper, and Rock Sandpiper (Table 2).

The number of species that change risk categories in our

assessment was sensitive to how much of an effect of climate

change is required to cause the shift (Table 3; Appendices S3 and

S4). When we make it easier to shift categories (3 arrows to

change), we are left with only five species in the moderate or lower

concern categories and 22 species in the highest (newly created

‘critical’) risk category, compared to 9 and 15, respectively, when 4

arrows are required to change categories. There is less sensitivity

in the other direction. Even when we require 7 arrows to change

risk category, we still have 20 species in the highly imperiled or

critical risk categories, compared to only 6 when climate change is

not considered (Table 3; Appendices S3 and S4). Consequently,

one might argue about the most appropriate degree of increased

risk required to change risk categories; however, regardless of the

threshold used, we conclude that there is an important shift in the

numbers of North American shorebirds species at risk of extinction

due to climate change.

Discussion

Many species of shorebirds are the focus of conservation efforts

aimed at reversing population declines e.g. [9,100], so there is a

need to prioritize conservation actions that can have the largest

impact on the species most in need. The system currently in use for

prioritizing shorebird conservation efforts in the United States was

developed in 1999–2001 [1], and did not explicitly include

vulnerability to the impacts of a changing climate, e.g. [101].

Many studies have shown that climate change poses risks to

populations of plants and animals and that impacts to vulnerable

species are already occurring, e.g. [102–104]. It is expected that

such adverse impacts will become more severe and widespread in

the future as the climate continues to change. One major

application of the system developed in the present study would

be to revise the priority scores given to shorebird species by

updating the threat scores with the information presented here

regarding vulnerability to climate change. We recommend that the

U.S. Fish and Wildlife Service revise shorebird priority scores as

suggested here, so that the impacts of a changing climate can be

more fully integrated into efforts to conserve shorebirds. In

addition to applying this information to shorebird species, the

same approach could also be applied to other birds. The Partners–

in–Flight prioritization system also could be updated to include the

approach presented here, if the information on relative risks were

collected for other species. This would allow a similar update to

reflect vulnerability to climate change across a wide range of bird

taxa. We do note that the species assessments and criteria assigned

in this manuscript should be considered as first approximations,

and will undoubtedly be revised with further discussion by a wider

audience. Our primary goal was to establish a system for

evaluating the increased risk to species from climate change with

respect to existing threat assessments, and to start a discussion

about the appropriate values for various species.

Shorebird populations and flyways across the planet are

currently being affected by other stressors, many of them

unknown, in addition to climate change, e.g., [5]. These impacts

are resulting in severe population reductions [1,6–8]. Based on our

analyses, adding the stresses and risks imposed by a changing

climate to this already threatened baseline renders shorebirds even

more vulnerable to extinction. If we are correctly to understand

the risks to which shorebirds are exposed, and to identify and

implement effective conservation strategies and actions, it is

important that we understand these vulnerabilities, particularly

those that will occur due to climate change. The purpose of this

study was to assess the climate change risks to shorebirds and

incorporate these into existing vulnerability evaluations so that we

gain a better understanding of the entire panoply of risk factors to

which these species are exposed, and their resulting overall

vulnerabilities.

Based on our results it appears that shorebirds, as a group, are

likely to be highly vulnerable to the changing climate. These

vulnerabilities are due to a number of factors. First, many species

breed, migrate through, or winter in areas that are likely to be

severely impacted by climate change (particularly arctic tundra,

coastal breeding, and wintering, and migration stopover sites).

Second, the extensive migrations that many of them undertake

expose them to risks of changing weather patterns (increased

frequencies and intensities of hurricanes, for example) [98].

Shorebirds that require particular staging areas might be more

vulnerable to climate change than are those species using stopover

sites [95,105]. Lastly, the ecological synchronicities that many

shorebirds depend on (e.g., the complementary timing of the arctic

snowmelt and invertebrate prey availability) might suffer disrup-

tions [16,21–24]. Our results reflect these vulnerabilities.

Of the 52 shorebird taxa (49 species, 3 split into 2 populations)

that breed in North America and that we evaluated, 45 (87%) were

predicted to exhibit an increased extinction risk when the risks

posed by climate change were added to their current vulnerabil-

ities as estimated in the U.S. Shorebird Conservation Plan [1]. No

species was reclassified into a lower–risk category, although prior

to the analysis it had been a possibility. The factors responsible for

these increased vulnerabilities were risks of: loss of breeding

habitat (particularly for arctic– and coastal–breeders); loss of

coastal and inland migration stopover habitats due to sea level rise

and drought; and loss of coastal wintering habitat due to sea level

Figure 2. Number of species that we predict will not change
U.S. Shorebird Conservation Plan Risk Categories due to
climate change (0), and the number that will have increased
risk of extinction (positive values); we predicted no species to
have reduced risk (negative values). Data are summarized from
Table 2 (differences between last two columns).
doi:10.1371/journal.pone.0108899.g002
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rise. Of particular note, for high-Arctic breeders, there is minimal

latitude and land for northward range expansion. Extreme

weather events were also projected to increase vulnerabilities

due to negative effects on habitat, migration mortality, and

disruption of ecological synchronicities, e.g. [94].

The increased vulnerabilities of 10 species could not be

accommodated using the existing PIF scoring system and we

had to create an even higher level of risk than is currently

available. These Critical species (including coastal Snowy, Piping,

and Wilson’s plovers, and inland species such as Mountain Plover

and Long–billed Curlew) are already at a high risk level due to

other stressors (particularly anthropogenic habitat destruction) and

their populations are already declining and jeopardized [32]. The

addition of climate change to their risk factors raises them to an

even higher level of vulnerability, which may pose even higher

threats to their continued existence.

Also of concern is that the addition of climate change to the

vulnerability calculations elevates another 18 species to the highest

U.S. Shorebird Conservation Plan risk category. Thus, a total of 28

of 49 species are now at the highest risk category under the U.S.

Shorebird Conservation Plan, or they exceeded this risk level and

had to have an additional category created. The degree to which

species changed risk categories was sensitive to our rules of category

change. To some degree, as with population viability analyses using

stochastic simulation models, which rule we use for category change

is a value judgment [106]. Regardless of what rules are used,

however, our analysis suggests that shorebirds will have increased

vulnerability under climate change, perhaps to a large extent.

Our assessment of extinction risk might be criticized because it

does not allow for adaptive capacity in shorebird populations.

That is, shorebirds might modify their breeding, migratory, and/

or wintering habitat use, foraging, and/or timing to accommodate

the changing climate. We already know that some shorebirds in

Western Europe have apparently truncated their fall migrations to

winter in the Baltic, rather than in oceanic Atlantic countries, such

as the UK [104]. Previously, the winter conditions in the Baltic

were so harsh that birds had to move farther to exploit the milder

conditions of the UK, Holland, etc. Thus, the ameliorating winter

conditions in the Baltic have encouraged changes in migration

distance [104]. Similarly, In North America, some migratory

populations of Hudsonian Godwits have advanced their timing of

migration during warm periods, which allows their breeding to

synchronize with peak food abundance, while other populations

have not [107]. There also is some evidence that Semipalmated

and Pectoral sandpipers and Red–necked and Red phalaropes

have been observed breeding earlier during warm years [108]. As

another example of adapting to changing conditions, Dunlin

nestlings can exhibit accelerated growth during periods of low food

availability during warm conditions [109]. However, it would be

unwise of us to assume that such adaptive capacities were likely to

apply across all shorebird species because there is evidence that

high Arctic shorebird species may have little capacity for

adaptation due to low genetic variability resulting from bottleneck

events from previous climate shifts [110]. Time constraints can

also cause conflicts among competing life–history requirements, as

has been reported in Pied Flycatchers Ficedula hypoleuca [111].

Clearly more research needs to be done to determine the degree to

which climate adaptation might occur in shorebirds.

What would it take to accurately and precisely predict change in

extinction risk due to climate change for migratory shorebirds, or

for any species, rather than taking the relatively coarse approach

we did in this paper? Certainly there have been detailed

assessments of expected regional changes in shorebird populations

in response to climate change [112–113], and one could create

models to link species to landscapes via simulation. But what

would be required for accurate, reliable predictions? Strictly

speaking, to build a convincing case for an accurate prediction, the

first thing we would need is accurate models of climate change.

Although there are many models of climate change, and they

agree in general with climate trends, there is still a great deal of

uncertainty in the exact amount of changes in expected

temperature and precipitation, e.g. [114–115], particularly at the

fine geographic scale that would be needed to understand biotic

responses, including the effects of changes in wind patterns [116].

Because hydrological models are complex (i.e., non–linear, with

feedback and chaotic dynamics), more accurate data are unlikely

to improve model predictions [117]. In addition, accurate regional

and local downscaling of global climate models might not be

possible [118–120].

The next requirement is accurate models linking climate change

to hydrologic responses, so we could accurately determine changes

in hydrology, amount of sea level rise, the degree to which plant

communities will change in response to climate change, in both

inland and coastal regions,. Accurate models that allow these

Table 3. Results of sensitivity analysis of risk categorization for shorebird species.

Projected under with climate change, from most (7) to least (3) conservative transition
criterion

Risk Category Current 7q 6q 5q 4q 3q

Not at risk 0 0 0 0 0 0

Low concern 7 6 3 2 2 1

Moderate concern 16 12 12 11 7 4

High concern 23 14 13 13 13 11

Highly imperiled 6 17 18 17 15 14

Critical –1 3 6 9 15 22

What is shown in the first column of results is the current distribution of taxa across risk categories by the U.S. Shorebird Conservation Plan (USSCP). The columns that
follow are the predicted distributions under different criteria for changing risk category. In Table 2 we assume that the accumulation of 4 arrows across risk factors is
sufficient for a species to change risk category; this table shows the sensitivity of this result using more liberal (3 arrows) and more conservative (5, 6, and 7 arrows)
criteria for changing risk category. We added a new risk category to those used by Partners–in–Flight (PIF) and the USSCP, Critical, to account for species being at
categorically greater risk than previously considered. (See Table 2 and Appendices S3 and S4 for species–specific assessments and summaries.)
1Category does not exist in current PIF framework.
doi:10.1371/journal.pone.0108899.t003
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predictions do not exist [117,121–123]. Even if we had accurately

developed models, we also would need accurate assessments of

species’ ranges as well as niche–based models for each species we

want to evaluate that accurately predicts, with a very high level of

variability in distribution explained, the distribution of species, cf.

[106]. We do not yet have these, e.g. [124–127], and it is not clear

to what extent or rate different bird might respond behaviorally to

climate change [128]. Finally, we need models that accurately

depict community–wide biotic responses to climate change,

including accurate anticipation of inter–specific interactions, how

local species invasions and extinctions will affect resource

availability, how they might change as niches shift [129–133].

We do not have these either, and we might be unlikely to

accurately anticipate shifting realized niches for a variety of

practical reasons [134–136]. These challenges are exacerbated by

migration because the relationships must be known in breeding,

non–breeding, and migration habitats [137]. These relationships

we just described are depicted in Fig. 3. Even the highly restrictive

requirements we just presented might ultimately be insufficient,

because they do not take into account human responses to climate

change. For example, what will be the human responses in

changes to agricultural practices, relocation away from coastal

areas, and so–called adaptive response measures, e.g. [138–140],

and how will they affect the capacity for ecosystems and shorebirds

to respond?

Consequently, we suspect that detailed regional and local

biological forecasting of the effects of climate change, even if the

correct (but currently unknown) IPCC scenario is selected, is likely

to be only generally accurate. Therefore, we think that the

relatively coarse assessment of changes in extinction risk that we

present here is a useful level of assessment for species at a

continental scale; see [31] for another example of a categorical risk

Figure 3. Digraph showing relationships (arrows) for which we need accurate information in order to accurately predict species–
specific shorebird responses to climate change. By accurate, we mean variation explained between nodes is .90% or near that, not merely
determining statistically significant relationships. Subheadings specify the relationships, and ‘species response’ includes adaptive responses as well as
non–adaptive responses. ‘Fine spatial extent’ refers to downscaling climate change estimates to the spatial scale at which species respond; factors at
this scale affect species’ responses directly and indirectly. The digraph is nested within the contexts of future introductions of exotic, invasive species,
and human responses to climate change to indicate that all of the relationships from the digraph can be affected by these particular occurrences or
responses.
doi:10.1371/journal.pone.0108899.g003
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assessment at a smaller geographic scale. We stress that the

somewhat bleak picture we paint regarding prediction accuracy at

small spatial scales should not be used as an excuse to not make

models or predictions, or to avoid planning for climate change.

Rather, we encourage model development and testing, followed by

model revision as more data become available. As with all models,

we suggest treating the structure, parameter values, and predic-

tions as hypotheses to test. We also support alternative modeling

approaches that might be effective at accommodating model

uncertainty, such as robust decision-making [141].
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