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Abstract:  

 Tuberculosis is among the most widespread infectious diseases in the 

modern world. The disease is characterized by the lesions, or granulomata, which 

its infection form in the lungs, which are resilient to antibiotic penetration and can 

cause latent, chronic infections. Current research aims to improve predictions of 

tuberculosis disease outcomes and improve therapy by studying tuberculosis 

through animal models, in humans, and in computational simulations of 

mathematical models. The abundance of drug distribution image data available 

from animal and human sources is a target for machine learning techniques, 

which could assist in predicting the outcomes of disease treatments on specific 

lesions, and prior models may inform the design of new mathematical models 

which incorporate spatially-relevant information, a necessity for predictions 

involving infected granulomata. The prospects of convolutional neural networks, 

a k-nearest neighbor algorithm, and a mathematical model in COMSOL 

Multiphysics for generating predictions relevant to clinical outcomes are 

examined, and these examined methods show promise to be developed further in 

the future. 

 

 

 

Introduction  

 Tuberculosis (TB) has remained one of the most widespread and deadly 

infectious diseases throughout human history and into the modern day, where 
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roughly one-fourth of the worldôs population is estimated to be infected with 

latent TB (WHO 2018). The success of Mycobacterium tuberculosis as a 

pathogen owes much to the diversity of biological outcomes which can result 

from an infection, which display heterogeneity both between hosts and between 

specific colony forming units within an individualôs body (Cadena et al. 2017). A 

developing colony of M. tuberculosis in the lungs gives rise to an immune 

response, which produces a structured granuloma around the infection. These 

lesions consist of ordered, interacting populations of immune cells surrounding a 

necrotic core, in which the M. tuberculosis may multiply, both extracellularly and 

inside of the nearby immune cells. The core is composed of the remains of 

overrun and apoptized immune cells, which become a cholesterol-rich mixture 

called caseum. Caseous necrosis is characteristic of the damage caused by 

tuberculosis and complicates treatment; pharmaceutical diffusion to infected sites 

can be inhibited by the composition of caseum and the precise manner in which 

the granuloma develops (Prideaux et al. 2015b). More effective methods of drug 

delivery and treatment of TB are necessary and under development, as the generic 

multi-antibiotic therapy established over twenty years ago remains the clinical 

standard of care and is not guaranteed to cure all patients or sterilize all infected 

granulomata (Bass et al. 1994, Dartois 2014). 

 Owing to this clinical relevance, research for over a decade has aimed to 

model the immune systemôs response to TB and granuloma formation to inform 

new treatments and regimens. Varied animal models of TB infection have been 

applied; some of these infection models such as BALB/c mice result in simplistic 
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infections which do not closely resemble human TB infections, while other 

animals such as C3HeB/FeJ mice produce more similar lesions (Irwin et al. 2016). 

Non-human primates, such as macaques, are also well-characterized as animal 

models of human TB infection and exhibit immune responses and outcomes seen 

in human TB, allowing insight into TB research beyond purely clinical data 

(Flynn et al. 2015). Mathematical models developed from experimental and 

clinical data aim to make useful predictions of the disease outcome. Early models 

included compartment models of the immune response to tuberculosis, and 

describe the numerous interactions between immune cell populations, cell 

signaling, and M. tuberculosis through a complex system of differential equations 

(Marino and Kirschner 2004). Such models assist with the development of 

pharmacokinetic/pharmacodynamic (PK/PD) models of tuberculosis therapy 

(Goutelle et al. 2011). However, these equations lack information relevant to 

granuloma structure and precise drug distribution by disregarding spatial 

information and heterogeneity, as granuloma composition and structure are 

predictors of the difference between active and latent tuberculosis infection and 

drug diffusion. Structures may be sterilized or viable M. tuberculosis and physical 

properties such as fibrosis, necrosis, and cavitation, which can develop to become 

an unsuccessfully checked and active infection (Flynn et al 2011, Cadena et al. 

2017). Due to the relevance of these structures and non-vascularized caseum 

content to drug diffusion, the nature of these developed structures also affects the 

potential for various drugs to successfully permeate and treat infection (Prideaux 

et al. 2015b, Cadena et al. 2017). 



4 
 

 Data describing multiple drug penetration into a variety of excised 

tuberculosis lesions exists and may be used to inform either spatially-descriptive 

models of drug distribution in heterogeneous granulomata or machine-learning 

based approaches to predicting drug penetration (Prideaux et al. 2015b). While 

predicative models of drug binding fractions to caseum have been developed, 

mathematical modeling of the spatial drug penetration in the TB lesion 

environment is only recently under development (Sarathy et al. 2016, Pienaar et 

al. 2017). Recent mathematical models of spatiotemporal granuloma development 

have focused on simulating discrete quantities of cells, an attractive approach 

because of the diversity of cell behavior and interaction within, but applicable and 

quantitative results are not obtainable in discrete models without a realistic 

number cells, rendering the models inefficient for replicating exact cell behaviors 

(Cilfone et al. 2014, Armstrong et al. 2006). 

 Thus, while compartmental models and discrete cell simulations can study 

some behaviors of TB infection, these methods are deficient for direct application 

in medicine because they cannot predict outcomes while considering patientsô 

specific lesions. Models without spatial information disregard the importance of 

granuloma structure to drug penetration, while simulations of discrete cells are not 

meant to replicate specific granuloma structures. To personalize the prediction of 

therapeutic outcomes to patients in the future, it will be important to use 

mathematical methods which use spatial information from patientsô lesions, 

captured by recent advances in medical imaging. Machine learning methods 

which can incorporate spatial information from real lesion images, and 
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mathematical models of drug diffusion in a structure which can simulate a lesion 

structure from an actual patient, are examined as means to fill this medical need. 

 

Biology of the TB Disease Environment 

 TB infection begins with the infiltration of M. tuberculosis bacteria into 

the airways of the lung, typically originating from aerosolized sputum of a 

previously infected subject. However, exposure to these bacteria only results in 

active TB infection symptoms in 5-10% of patients within the first 2 years 

following exposure (Lin and Flynn 2010). Most cases result in a more innocuous 

initial state, commonly described as a latent TB infection, which is estimated to 

affect roughly 2 billion people, or close to one quarter of the global population 

(Lin and Flynn 2010, WHO 2018). This latent infection is characterized by an 

equilibrium between the hostôs immune response and the bacterial infection, as 

the bacteria are spatially contained to the site of infection but are not eliminated. 

However, latent TB can ñreactivateò following disruption of the equilibrium 

between the infection and immune response, typically due to immunosuppression 

or an additional disease causing increased burden to the immune system. HIV 

infection has become the most common risk factor for TB reactivation in the 

modern era, owing to its direct infection of the immune system and global 

epidemic; 40% of patients dead due to HIV-related factors in 2016 were killed by 

TB infection (Lin and Flynn 2010, WHO 2018). Further risk factors include 

diabetes, smoking, alcoholism, air pollution, and overcrowded living conditions. 

The existence of these factors can be owed to social or economic causes, which 
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present a further obstacle to managing the TB epidemic (Lönnroth and Raviglione 

2008). 

 Once present in the lung, M. tuberculosis bacilli interact with alveolar 

macrophages and dendritic cells, the first stage of the immune response, which 

recognize markers of the pathogens through the toll-like receptor protein class and 

engulf them (Lin and Flynn 2010, Cadena et al. 2017). Certain factors, such as 

natural antimicrobial peptides and the presence of lung surfactant, are probably 

relevant at this time, where an infecting bacillus may or may not survive to form a 

colony, though the impact of these is not well understood at present (Flynn et al. 

2015). The formation of tuberculosis granulomata begins with the infection of 

macrophages which have engulfed the pathogen. The bacteria begin replication 

within the macrophages, which may migrate to different regions of the lungs, and 

eventually lyse the immune cells, leading to the emergence of additional 

extracellular bacteria, the arrival of additional macrophages, and the initiation of 

an inflammatory immune response. While infected macrophages are capable of 

killing intracellular M. tuberculosis, they are less capable than activated 

macrophages; the TB pathogen has effectively evolved to resist and take 

advantage of the initial immune response for its own reproduction (Gammack et 

al. 2004). The inflammation and presence of these macrophages, dead or infected 

or uninfected, become the center of an eventual infected granuloma (Flynn et al. 

2011). 

 While the infection progresses, dendritic cells travel to the thoracic lymph 

nodes, where they present the M. tuberculosis pathogen in order to prime T cells 



7 
 

for the adaptive immune response. The adaptive immune response begins 

relatively slowly, and studies have reported 4-6 weeks being necessary before the 

human immune response to tuberculosis infection is visible through the standard 

tuberculin skin test, in spite of only an estimated 5-8 days being necessary for the 

priming process (Flynn et al. 2011, Flynn et al. 2015). Various factors for this 

time frame have been suggested, including the size of the infecting dosage and 

relatively slow replication rate of M. tuberculosiş but this overall behavior is 

primarily believed to be relevant to the transport of sufficient M. tuberculosis 

antigen to the lymph node. Observations in mice and humans indicate a time of 5-

8 days in humans and mice for a response to be initiated once the infection is 

present in lung-draining lymph nodes (Flynn et al. 2015). T cells which respond 

to the infection include CD4+ helper T cells, CD8+ cytotoxic T cells, and 

regulatory T cells, and contribute differently to the immune response. Cytotoxic T 

cells are capable of killing bacteria and infected cells, while helper T cells and 

regulatory T cells produce cytokines and signals which modulate the strength of 

the inflammatory immune response (Flynn et al. 2011). 

 Granulomata are formed by the immune system as a means to contain the 

infected region with active immune cells. Though the formation of a granuloma 

does indicate attempted containment, granulomata can be individually 

characterized as active or latent, due to being potentially more or less capable of 

spreading infection relative to other granulomata. Infected structures contain of an 

interior core of caseum from cellular necrosis, in which M. tuberculosis may 

continue to survive under hypoxic conditions, and a cellular layer, commonly 



8 
 

organized as a group of infected and uninfected macrophages around the necrotic 

core, surrounded by neutrophils and dendritic cells, and containing B cells and T 

cells in the outer layer (Figure 1) (Flynn et al. 2011, Dartois 2014). Fibrosis may 

occur throughout certain granulomata after sterilization and may be present at the 

outer edge of the cellular layer of caseous granuloma (Flynn et al. 2011). 

 

Figure 1: Image from Dartois 2014. Granulomata are more cellular as they 

initially develop, before the lysing of infected macrophages in the center and 

resultant buildup of the necrotic, hypoxic caseum at the core. Granulomata with 

cavitation, a connection to the lungôs airways, are dangerous and more capable of 

dispersing bacilli throughout the airways and sputum of the infected patient than 

other granulomata (Dartois 2014). 

 

 The persistence and intensity of different factors in each granuloma leads 

to varied long-term outcomes. Characteristics which promote stronger immune 

response and sterilization of the infection are hindered by any resultant tissue 

damage and potential exacerbation, but a sustained inflammatory response is 

necessary to successfully prevent the spread of extracellular bacilli. For example, 

classically-activated macrophages (CAMs) differentiated near the core promote 
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inflammation and kill cells, while alternatively-activated macrophages (AAMs) 

produce anti-inflammatory factors which reduce tissue death (Flynn et al. 2011). 

The interaction of the M. tuberculosis bacteria with dendritic cells is important to 

the generation of different types of immune responses. Immature dendritic cells 

(IDCs) present in the lung take in antigens from the infection, triggering internal 

processes which cause them to migrate to lymphatic tissues as mature dendritic 

cells (MDCs). This activity increases during TB infection, contrary to the activity 

of infected macrophages, and leads to the production of inflammatory cytokines 

and a T cell immune response (Marino and Kirschner 2004). Other immune cells, 

such as monocytes and neutrophils, are recruited to the lungs as well, and form 

the granuloma alongside macrophages, T cells, and antibody-producing B cells 

(Flynn et al. 2011). The developing structure of granulomata and other elements 

of their structure directly relate to the immune systemôs success against the local 

TB infection. Calcification beginning in the caseum is typically a sign of 

successful sterilization and a resultant decrease in inflammatory response; 

infected granulomata may also exhibit no necrosis or become extensively fibrotic 

throughout their structure, as opposed to the outer fibrosis frequent in necrotic 

lesions (Flynn et al. 2011). Granulomata without necrosis are generally smaller 

than necrotic granulomata and more likely to exist where the infection is 

successfully contained, while caseous lesions are generally larger, at least 5mm in 

diameter, and present a greater danger of spreading the infection as M. 

tuberculosis continue to replicate in the caseum (Gammack et al. 2004). 

 The role of anti-inflammatory effects in TB infection has been elucidated 
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with the assistance of computational modeling of cell signaling and granuloma 

development and relates mainly to the prevention of damage to healthy tissue 

caused by inflammation. A greater anti-inflammatory signal response limits levels 

of necrotic caseation, at the cost of limiting activation of the immune system by 

inflammatory cytokine signaling and decreasing the number of successfully 

sterilized granulomata (Cilfone et al. 2013, Cilfone et al. 2015). Cytokines 

relevant to the TB disease environment include tumor necrosis factor-Ŭ (TNF), 

interferon ɔ (IFN-ɔ), and various interleukin (IL) proteins (Cilfone et al. 2015, 

Cadena et al. 2017). TNF is a prominent pro-inflammatory cytokine, known to 

have a role in the symptoms of physical deterioration during TB infection, and 

induces macrophages to produce pro-inflammatory factors such as IL-12, which is 

a factor during the initiation of helper T cell responses, along with IL-1ɓ and 

additional TNF (Flynn et al. 2011). TNF signaling also classically activates 

macrophages to promote phagocytosis of pathogens and is a factor in apoptotic 

signaling (Flynn et al. 2011). IFN-ɔ is pro-inflammatory as well and produced by 

T cells, which have been observed to produce it while in the lymph nodes after 

priming for response to M. tuberculosis, and in other tissues as well, particularly 

during the active form of the disease (Flynn et al. 2015). Anti-inflammatory 

cytokines include TGF-ɓ and IL-10 and can be produced by macrophages during 

the initial TB infection, mainly AAMs, and by regulatory T cells in lesser 

quantities (Flynn et al. 2011, Cilfone et al. 2013). The relationships between the 

sources and effects of different cytokines have been included in recent multi-scale 

models of TB granuloma formation and play an important role in the fate of a 
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granuloma with regard to structure and bacterial content (Cilfone et al. 2013, 

Pienaar et al. 2017) (Figure 2). 

 

Figure 2: Image from 

Cilfone et al. 2013. A 

chart displaying the 

effects of and 

relationship between 

the pro-inflammatory 

TNF and anti-

inflammatory IL-10 

cytokines, as included 

in GranSim modeling 

software. 

Macrophages and inflammatory or cytotoxic T-cell varieties produce TNF and 

induce apoptosis, immune cell recruitment and macrophage activation. IL-10 is 

produced by active macrophages, including infected cells, and tends to inhibit 

pathways which would increase the existing immune response (Cilfone et al. 

2013). 

 

 Recent research of TB pathology has disputed the classic divide of TB 

infection into latent and active forms in favor of a spectrum of activity. 

Biologically, this concept of a spectrum is intended to more closely reflect the 
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nature of individual granulomata and the variety of pathological outcomes these 

infected lesions produce, such as successful sterilization, equilibria with a 

contained M. tuberculosis infection, and unbalanced containment resulting in 

emission of M. tuberculosis bacilli and a more active infection (Figure 3) (Cadena 

et al. 2017). The different disease outcomes are dependent on the efficacy of the 

immune response and activity of different factors, including the balance of 

inflammatory and anti-inflammatory molecules and distribution of types of active 

immune cells at the granuloma. The size and structure of granulomata moreover 

affects the ability of molecules, especially pharmaceuticals, to diffuse and act 

against the disease pathogen. A clear understanding of the development of 

granuloma structure and its effects is thus becoming more relevant to the research 

and development of practical and efficient therapies for TB. 

 

Figure 3: Image 

from Cadena et al. 

2017. Granuloma 

outcomes may be 

represented as the 

results of combinations of immune factor inputs. Sterile granulomata are 

successfully cleared of bacilli, while stable granulomata exist in an equilibrium 

which contains the infection and could become unbalanced. Disseminating 

granulomata are host to actively replicating bacilli which are unsuccessfully 

contained, permitting distribution to the rest of the lung (Cadena et al. 2017). 
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Current TB Therapy and Future Needs: 

 In clinical practice, treatment of TB infection has changed little since the 

1990s, using a combination of antibiotics taken regularly by the patient over 

months of treatment in an effort to eradicate the M. tuberculosis pathogen (Bass et 

al. 1994, Dartois 2014). The primary four drugs used in TB therapy are 

ethambutol, isoniazid, pyrazinamide, and rifampicin (Dartois 2014). Ever since 

the establishment of these medications, the course of treatment for TB is to 

administer all four drugs for the first 2 months of treatment, then continue using 

only isoniazid and rifampicin for the latter 4 months of the treatment cycle (Bass 

et al. 1994, Dartois 2014). In typical doses, ethambutol achieves peak plasma 

concentrations 2-4 hours after administration and is primarily believed to provide 

benefits through preventing M. tuberculosis from dividing (Bass et al. 1994). 

Isoniazid and rifampicin are bactericidal and penetrate well into other bodily 

fluids or tissues respectively, reaching peak concentrations in plasma and other 

regions after 1-2 hours (Bass et al. 1994). However, isoniazid is a prodrug rather 

than being bactericidal itself, activated by the catalase present in M. tuberculosis, 

and exhibits stronger short-term sterilizing effects in a patientôs sputum than long-

term sterilization effects in granulomata (Manier et al. 2011, Prideaux et al. 

2015b). Rifampicinôs pharmacokinetic characteristics are notable as it does not 

readily diffuse into caseum following a single dose, but it accumulates in caseum 

over the course of days of regular treatment and is effective against the bacteria 

residing there (Prideaux et al. 2015b). Pyrazinamide reaches peak plasma 
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concentrations roughly 2 hours after ingestion and effectively penetrates into 

tissues, caseum, and even infected macrophages, killing their intracellular M. 

tuberculosis due to its increased activity in an acid environment (Bass et al. 1994, 

Prideaux et al. 2015b). 

 While most of these standard drugs cause toxic effects relatively 

infrequently, some of these effects can lead to dangerous complications. 

Ethambutol is capable of causing retrobulbar neuritis, inflammation in the optic 

nerve, in fewer than 1% of patients who receive a low dosage and potentially 

leading to long-term vision damage; isoniazid treatment can uncommonly lead to 

neuropathy and can cause hepatitis with an increased risk in older patients (Bass 

et al. 1994). Rifampicin and pyrazinamide are also capable of causing liver 

damage, the latter drug also more frequently causing increased uric acid 

concentration in the blood and joint pain, and both drugs may be associated with 

skin rashes and gastrointestinal distress (Bass et al. 1994). While not overtly 

harmful, rifampicin is also notable for discoloring excretory fluids such as urine, 

tears, and sweat to orange when it is present within them (Bass et al. 1994). The 

administration of multiple drugs over an extended time course also has the 

potential to cause adverse interactions. For example, rifampicin increases the 

liverôs effectiveness at metabolizing drugs in general and may decrease the long-

term effectiveness of contraceptive medication (Bass et al. 1994). 

 Additional drugs are the subject of research and are also applied in cases 

where treatment is complicated by drug resistance, as in multidrug-resistant TB 

(MDR-TB) or extensively-drug resistant TB (XDR-TB). Fluoroquinolones and 
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aminoglycosides are example categories of drugs used in MDR-TB therapy. An 

example of a fluoroquinolone sometimes used for this purpose is moxifloxacin, 

which accumulates in cellular granulomata and is generally not harmful to the 

patient, though some gastrointestinal symptoms and hypersensitivity reactions are 

possible (Bass et al. 1994, Dartois et al. 2014). Moxifloxacin is known to be 

effective against persister populations of M. tuberculosis, which resist antibiotics 

and can reside in granulomata, though it has been demonstrated that moxifloxacin 

does not effectively diffuse throughout the caseum core of necrotic granulomata, 

which can harbor these persister bacteria as well (Prideaux et al. 2015b). 

Clofazimine, an anti-leprosy drug, is another which has been the subject of 

research for TB treatment (Bass et al. 1994). Unfortunately, data collected from 

clinical trials demonstrates poor penetration of clofazimine into caseous regions 

of granulomata, despite its promising effectiveness in cellular mouse granulomata 

(Prideaux et al. 2015b). The time necessary to treat MDR-TB is significantly 

longer than non-resistant TB and may necessitate 18-24 months of therapy with 

the four main TB drugs, a fluoroquinolone, and potentially an additional antibiotic 

such as capreomycin or an aminoglycoside; XDR-TB may require a similar time 

of treatment and use antibiotics that are both less effective and more toxic to the 

patient to circumvent bacterial resistance (Dartois 2014). 

 Identification and treatment of drug-resistant forms of TB for treatment 

can be resource-intensive, due to the molecular diagnostics and facilities which 

are the standard for definitively identifying the resistance of TB. Successful 

treatment of drug-resistant TB strains is thus severely hampered wherever such 
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costly resources may be unavailable. A study at the Federal University of Rio de 

Janeiro has aimed to find a method to bridge this gap using an artificial neural 

network, a category of computational structure capable of learning abstract 

information from large datasets, to support TB diagnoses as drug-resistant or not 

drug-resistant (Évora et al. 2017). While no distinction between MDR-TB and 

XDR-TB was made, an artificial neural network trained with large datasets 

incorporating patient symptoms and history was able to achieve sensitivities 

greater than 90% and specificities greater than 80% for the identification of drug-

resistant TB when provided with further symptoms and history for a patient 

(Évora et al. 2017). While a wide range of variables, even including marital 

status, were used, examples of the most relevant variables to the neural networkôs 

diagnosis included factors such as loss of appetite, cavitation, and prior treatment 

for TB. A potential limitation was noted by the author, in that data from relatively 

few patients coinfected with HIV and TB were used to generate data in the study 

due to their availability (Évora et al. 2017). This could decrease the potential 

relevance of HIV in the neural networkôs diagnostic decision for HIV-positive 

patients. Skin color also became classified as a relevant variable to the diagnostic 

decision, which the authors believe to be likely representative of a demographic 

trend in their population and support future studies which would use data from 

different populations (Évora et al., 2017). However, parameters and demographic 

trends such as this may indicate an underlying difficulty when attempting to 

generalize this approach to an unbiased diagnosis in populations where less 

consistent trends in demographics may be observed.  
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 Treating forms of drug-resistant TB and customizing approaches to TB 

therapy for different individuals is a topic of recent research, and one that mirrors 

the rising attitude of personalized medicine as the ideal future of medical 

technological development. The benefits of a more personalized procedure for a 

given patientôs case of TB are increasingly apparent due to the evolving attitude 

towards TB infections away from simple cases of latent and active, and towards 

the idea that differences exist both between the diseaseôs interactions with 

different patients and between individual granulomata, which affect the 

penetration of drugs based on their structure and may contain significantly 

different bacterial populations (Cadena et al. 2017). 

 Customizing therapy to the properties of a patientôs collection of 

granulomata is complicated by the lack of access to human granulomata while 

they remain inside of a patient. Medical imaging technology is leading towards 

improvements in this area, as recent studies have begun accurately assessing the 

properties of diseased lesions using noninvasive imaging. A combination of 

positron emission tomography (PET) using radiolabeled 2-fluoro-deoxy-glucose 

(FDG) and combined with computed tomography (CT) X-ray scans has 

demonstrated the ability to observe granulomata and predict disease outcomes 

from the imaging datasets gathered (Chen et al. 2014). Typical standard-of-care 

for determining the effectiveness of disease treatment and severity of a patientôs 

TB involves culturing a patientôs sputum and examining the presence of M. 

tuberculosis. By default, this is a method which neglects to more closely examine 

the physiology of the TB-infected lung and spatial variation between 
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granulomata, and medical imaging biomarkers detectable through PET/CT 

scanning are equipped to inspect the disease environment for such information. 

These imaging techniques were used to predict patients who would respond to 

therapy with a sensitivity of 0.96, 23 out of 24 responsive patients, and a 

specificity of 0.75, 3 out of 4 non-responsive patients, in clinical trials for a PET 

scan after two months and CT scan after 6 months of treatment (Chen et al. 2014). 

The same study found the predicative value of sputum culture techniques after 

two months to have a specificity of 0.5, 2 out of 4 non-responsive patients being 

detected, and sensitivities varying between 0.58 and 0.79, with 14 to 19 out of 24 

responsive patients successfully identified (Chen et al. 2014). Changes over time 

from the initial baseline were analyzed to make evaluations using these diagnostic 

tools, as the initial severity of the TB infection was not associated with 

determining therapeutic effectiveness. Using the CT images interpreted by trained 

readers, changes in features such as pulmonary cavities, bronchial thickening, 

fluid buildup, and fibrosis were associated with a patientôs response to treatment 

(Chen et al. 2014). PET data was analyzed as well, and significant decreases in 

glycolytic activity were detectable in patients responsive to therapy, compared to 

either increased activity or a non-significant change in unresponsive patients 

(Figure 4) (Chen et al. 2014). 
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Figure 4: Image from 

Chen et al. 2014. 

Comparison between 

PET/CT images of a 

patientôs lungs at the 

time of entering a study 

and after roughly 2 

months (56 days) or 

treatment. Grayscale 

bar (Hounsfield Units) represents CT scan radiodensity while the SUV scale bar is 

representative of radiolabeled 2-fluoro-deoxy-glucose uptake. Glycolytic activity 

and structural abnormalities decrease following treatment (Chen et al. 2014). 

 This imaging-based approach to examining and supervising a patientôs 

tuberculosis treatment is capable of capturing data from individual granulomata 

and preserving the heterogeneity inherent to TB infection. Future potential for 

these PET/CT methods relates to the increased personalization of medicine, as 

decisions in therapy using these data, machine learning, and modeling could be 

tailored more carefully to the responsiveness and severity of a specific infection. 

To further study the utility of medical imaging for TB therapy, animal studies 

have been conducted as well to measure similar markers of TB pathology (Flynn 

et al. 2015). Research with both animal and computational models continues to be 

important to understanding the disease at multiple levels of structure. 
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In vivo: Animal Model Research and Human Patients 

 Animal models are commonly used in studies which must examine the TB 

disease environment inside of organisms. Animals which have been studied 

include mice, guinea pigs, rabbits, zebrafish, cattle, and macaques (Flynn et al. 

2015). The use of an animal model is subject to limitations, as different animals 

may need to be infected with species-relevant analogues to M. tuberculosis, and 

any infection may not display symptoms relevant to humans in infection. For 

example, small rodent and zebrafish models are well-characterized by existing 

research and studies of their genetics but have not successfully created latent 

infection symptoms; the granulomata produced in certain mice models can also 

fail to display the caseous necrosis characteristic to the human disease (Flynn et 

al. 2015, Irwin et al. 2015). Notably, despite difficulty in replicating caseous 

necrosis in certain strains of mice such as BALB/c and C57BL/6, a range of 

possible lesions have been demonstrated in the C3HeB/FeJ mouse model, and 

necrotic lesions are generated in rabbit infection models, leading to both animals 

being used in recent studies of drug activity and penetration in TB lesions 

(DeMarco et al. 2015, Irwin et al. 2015, Prideaux et al. 2015b). Furthermore, 

systemic caseous granulomata have been produced in the zebrafish model, which 

uses the genetically-similar M. marinum infection (Swaim et al. 2006). However, 

differences between humans and zebrafish in basic physiology and immune cell 

behavior are a disadvantage to this model. A zebrafish granuloma contains 

significantly fewer lymphocytes than the equivalent infection in a human lung 

(Swaim et al. 2006). Non-human primates (NHP) such as macaques are 
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particularly advantageous for medical studies because of their high similarity to 

humans in terms of both genetics and immune system response, which notably 

allows for these animals to be co-infected with an HIV analogue as a more 

specific and human-relevant disease model (Flynn et al. 2015). The cow TB 

model, which employs the genetically similar M. bovis infection, has also been 

used to model human TB infection (Waters et al. 2011). Cattle display similar 

adaptive immune system behavior to humans, and the M. bovis bacterium is more 

than 99% genetically similar to M. tuberculosis, but cattle are sufficiently large 

and resource-intensive animals that conducting BSL3 studies involving them is 

not a widespread practice (Waters et al. 2011, Flynn et al. 2015). 

 While these animals are all potential models for TB infection, small rodent 

and NHP models have most recently been relevant to the collection of quantitative 

drug distribution data and human-relevant therapeutic aids. The drug distribution 

in animal models, and even in human patients, has been spatially quantified using 

a combination of Matrix-Assisted Laser Desorption/Ionization and mass 

spectrometry (MALDI-MS) beginning with a 2011 study in the Rutgers New 

Jersey Medical School which assessed isoniazid distribution in rabbit lung tissue 

(Manier et al. 2011). This technique operates by scanning a thinly-cut 

(approximately 10ɛm) tissue sample with a laser and capturing both the identity 

and spatial location of released ions (Figure 5) (Manier et al. 2011, DeMarco et al. 

2015). In some cases, an analyte may need additional treatment to become visible; 

isoniazid returns a stronger signal when the sample is first treated with trans-

cinnamaldehyde (Manier et al. 2011). This technique has proven useful to the 
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study of TB drug efficacy from the perspective of heterogeneity and granuloma 

structure as important; more recently it has been applied to studies with human 

patients (Prideaux et al. 2015). Drug distribution in C3HeB/FeJ mice has also 

been measured while the animals remain alive, through supplying 11C-labeled 

rifampicin to TB-infected animals and conducting PET/CT imaging (DeMarco et 

al. 2015). Such live-imaging techniques and postmortem imaging of drugs 

through MALDI will have more opportunities to be used practically with the 

increase in modeling approaches to biology and TB infection, as a source of data 

for the construction and validation of models for the efficacy of TB therapy. The 

imaging technology has been applied to drug distribution for other diseases as 

well, such as breast cancer tumors (Bartelink et al. 2017). Models that are 

informed by such data thus have the potential to be applied towards multiple areas 

in human health. 

 

 

Figure 5: Images from DeMarco et al. 2015. Images are of lung tissue from a 

C3HeB/FeJ mouse 1 hour after administering rifampicin. A ï Hematoxylin & 

eosin histological stain of the tissue; caseous regions are outlined in black, while a 

non-caseous infected region is marked with a dotted line. B ï Two-dimensional 
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MALDI -MS heatmap of relative rifampicin distribution in the tissue, scaled as 

blue (low) to red (high) through the visible spectrum. Drug diffusion following 

the dose is noticeably restricted in the caseum (DeMarco et al. 2015). 

 

 NHP models are used in recent TB research conducted at the University of 

Pittsburgh (Flynn et al., 2015). The main animal species used in such models are 

species of macaque, namely the rhesus macaque Macaca mulatta and the 

cynomolgus macaque Macaca fascicularis. These species, unlike many animal 

models, can be used to exhibit active and latent TB responses, as characterized by 

the time of disease symptom development, when infected with relatively low 

doses of pathogen via aerosol. Rhesus macaques tend to demonstrate active TB 

unless low-virulence strains are used for infection, while cynomolgus macaques 

demonstrate a more even distribution of the two disease categories (Flynn et al. 

2015). Both species are also used to study the timelines of early disease 

progression, as the immune system processes during the establishment of TB 

infection are less known than later processes in humans, and the immune systems 

of NHP model animals are structured and act more similarly to human systems 

than those of small rodents (Flynn et al. 2015). Furthermore, closer examination 

of these NHP models demonstrates a highly similar spectrum of pathology to 

human disease, particularly regarding granuloma structural variety, which is more 

applicable than the variety observed in mouse models to the study of the 

relevance of granuloma types to human disease progression (Cadena et al. 2017). 

The progression of these lesions during disease, similarly to other animals, has 
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been studied using the PET/CT imaging with radiolabeled FDG technique 

described in human studies, which is capable of discerning the independence of 

activity between granulomata and characteristic differences in size, inflammatory 

activity, and distribution between animals with latent or active infection (Flynn et 

al. 2015). 

 Specific elements of the immune system, such as the role of TNF cytokine 

or specific cells during TB infection, have been studied in these animals as well. 

Introduction of an anti-TNF antibody to cynomolgus macaques caused increased 

granulomata size during early infection and the potential for reactivation during a 

latent infection without disrupting the overall structure of granulomata during 

disease, while the organized immune response experienced greater distribution 

during earlier mouse studies (Flynn et al. 2015). Immune cells with unclear roles 

and efficacy during the TB immune response, such as B cells and neutrophils, 

have been observed in NHP model granulomata as well as those in humans (Flynn 

et al. 2015). 

 Recently, human patients have also contributed to the availability and use 

of image data. A medical study published in 2015, authored by the New Jersey 

Medical School and collaborating researchers, examined the diffusion of multiple 

antibiotics into human TB lesions, and is among those studies which have applied 

MALDI mass spectroscopy to examine regions of lung tissue and granulomata in 

which the drugs diffuse quantitatively (Prideaux et al. 2015b). The authorsô 

results spanned image data collected from the diffusion of many antibiotics 

support rifampicin and pyrazinamide as drugs that are capable of penetrating 
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throughout the necrotic caseum and remaining at sufficient concentration for 

activity. Pyrazinamide in particular was distributed in cellular granulomata 

components equally with caseum, while rifampicin appeared to increase to 

sufficient concentrations after achieving steady-state concentrations following 

daily treatment; this behavior was replicated in the rabbit model of TB infection 

and therapy following 7 daily doses of rifampicin (Figure 6) (Prideaux et al. 

2015b). However, this study determined that moxifloxacin and clofazimine could 

not effectively penetrate necrotic lesions, and that an inactive form of isoniazid, 

acetyl-isoniazid, was ineffective despite its penetration. For moxifloxacin and 

clofazimine, this finding casts doubt on their utility in practice, as both drugs had 

been expected to perform well before clinical trials; their inability to diffuse 

significantly into necrotic caseum is potentially the reason that these in vitro 

results showed more effectiveness than they have found in late-stage clinical trials 

(Prideaux et al., 2015b). The authors suggest that being aware of the 

spatiotemporal diffusion of different drugs will make for more effective TB 

therapy; the results of this study led to a follow-up paper regarding the use of 

these data to predict the penetration of drugs into caseum through computational, 

statistical analysis (Sarathy et al., 2016). 
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Figure 6: Images from supplementary information to Prideaux et al. 2015b. Top 

row: hematoxylin and eosin stain images for TB-infected lesions collected from 

different human subjects; scale bars represent 5mm and black contour lines 

outline necrotic regions of interest. Second, third, fourth rows: representative two-

dimensional ion maps collected through MALDI-MS imaging for pyrazinamide, 

moxifloxacin, and rifampicin for these lesions. The first three lesions/columns 

were collected within 24 hours following a single drug dose, while the single 

rifampicin example in the fourth column was collected at steady-state conditions 

following 7 daily rifampicin doses. All images display relative percent signal as 

shown in the rainbow scale bar. Moxifloxacin and rifampicin do not easily 

penetrate caseum after one dose, though rifampicin accumulates sufficiently in the 

necrotic regions during consistent therapy. 
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 The aim of the follow-up paper was to identify key chemical factors which 

determine the extent of drug penetration into the caseum. The authors combined 

rapid equilibrium dialysis and liquid chromatography with mass spectroscopy to 

produce drug-binding data, using a ñcaseum surrogateò formed by exposing THP-

1 monocytes to 400ɛM oleic acid in vitro for 24 hours to induce lipid uptake, then 

lysing the cells into a lipid-rich mixture (Sarathy et al. 2016). Then, they 

conducted principle component analysis (PCA) of 279 identified chemical 

compounds in the caseum surrogate, which correlated with reasonable molecular 

descriptors. For example, characteristics common to the best-correlated principal 

components included high lipophilicity, high numbers of aromatic rings, and low 

solubility as strong predictors of caseum binding (Sarathy et al. 2016). This 

information was to develop a computational predicative model for the unbound 

fraction of a given drug when mixed with the caseum surrogate, which correlated 

well with experimental data. The model used a consensus combination of partial 

least-squares regression and supervised machine learning, including an artificial 

neural network (Sarathy et al. 2016). Similar to compartmental models, this 

technique does not make use of spatial and structural information. However, the 

authors demonstrate an interesting plan for computational models in practical use, 

as candidate drug molecules may be filtered before clinical use based on their 

expected tendency towards binding to molecules in the caseum (Sarathy et al. 

2016). 

 In vivo studies are a fundamental means of studying pathology in living 

tissues, where all potentially relevant aspects of the immune systemôs response 
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and biology are present. Computational simulations are different, as all necessary 

parameters are pre-defined by the researchers, but when appropriately set up with 

useful mathematical models, and potentially even with realistic data derived from 

in vivo research, they too can explore difficult and theoretical questions about the 

effects of disease. 

 

In silico Modeling Review: 

 Theoretical approaches to TB research use mathematical modeling and 

information obtained from studies of the disease to examine possible outcomes 

from established initial conditions. These models are simulated computationally, 

and have been created to describe granuloma growth and development, and for 

the PK/PD interactions of M. tuberculosis and immune cells to therapy. Over 

time, such models have progressed due to advances in computing and the amount 

of known data; earlier models used relatively small numbers of compartments for 

cells to exist and be transported between, while more recent models use larger sets 

of compartments or new methods, such as numerical simulations of a number of 

discrete cells. 

 One older mathematical model, developed in 2004 by researchers at the 

University of Michigan, aimed to model the progression of M. tuberculosis 

infection and the immune response using 17 differential equations in two 

compartments, representative of the lung and the lymph node. While the 

importance of granuloma formation and spatial heterogeneity was beginning to be 

understood at this time, not enough information was believed to be known to 
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model these structures, so the temporal compartment model was chosen for the 

simplicity of understanding human infections, and to build on a single-

compartment lung model of the infection produced by the research group before 

(Marino and Kirschner 2004, Wigginton and Kirscher 2001). The lung 

compartment of the model described cell populations using differential equations, 

such as macrophages, which were divided into resting, activated, or infected cells. 

For example, the equation the researchers used to describe the quantity of resting 

macrophages (MR) in the lung compartment was formulated as 
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where each term represents a different biological means of changing the cell 

population (Marino and Kirschner 2004). The first two terms represent 

recruitment of macrophages to the TB infection site, which has a baseline rate of 

sM and an increase in rate dependent on the quantities of activated macrophages 

and infected macrophages (MA and MI), while the final term represents the 

baseline specific cell death rate, ɛR (Marino and Kirschner 2004). The third, 

fourth, and fifth terms of the sum represent the rates of macrophage infection, 

macrophage de-activation, and macrophage activation, respectively; these are in 

turn dependent on the quantities of extracellular bacteria (BE) and resting 

macrophages, activated macrophages and IL-10 concentration (I10), and the total 

concentration of bacteria (BT), IFN-ɔ and IL-4 (Iɔ and I4), and resting 

macrophages (Marino and Kirschner 2004). Bacterial concentration parameters 
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similar to Michaelis-Menten terms are shown as well (c8 and c9 in the above 

example) to change the rates from their maxima at low concentrations of bacteria 

(Marino and Kirschner 2004). Simulations with different ranges of parameters 

were conducted to determine the sensitivity of related variables. The change in 

populations of other macrophages are described by linear combinations of similar 

terms, though infected macrophages also die through incorporated rates of cell 

lysing and M1 immune response killing (Marino and Kirschner 2004). Other 

equations described phenomena such as cytokine production (for IFN-ɔ, IL-12, 

IL-10, and IL-4), THP lymphocytes, which migrate from the blood and 

differentiate into Th1 or Th2 cells, and a bacterial population divided into 

extracellular and intracellular bacteria (Marino and Kirschner, 2004). Dendritic 

cell populations were also added to the model to interact with the lymph node 

compartment, represented as an IDC population in the lung, the cells of which 

mature into MDCs and migrate to the lymph node. The presence of MDCs 

induced recruitment of immature Th0 cells at the lymph node into the THP 

lymphocytes, which migrate to the lung compartment (Marino and Kirschner 

2004). 

 Initial estimates of the modelôs parameters were derived from 

experimental data using humans and non-human primates where possible, though 

mouse and rabbit data were also used for certain guesses (Marino and Kirschner 

2004). After analyzing the sensitivity of these variables, estimates of the model 

were solved using MATLAB to produce a variety of graphs representing possible 

infection outcomes, dependent on the values of the modelôs various rate 
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parameters for infectivity, migration, cell killing, and other phenomena. Varying 

these was further used to generate simulated responses to conditions representing 

an initial active or latent TB infection (Marino and Kirschner 2004). Ultimately, 

variables related to bacterial growth and infection rates and immune cell-

controlled killing rates were deemed most significant to determining successful 

clearance of the infection. The authors note that such key processes are potential 

targets for therapeutics (Marino and Kirschner 2004). Furthermore, analysis of the 

modelôs dynamic behavior was used to find possible re-activation mechanisms, 

such as a short-term return caused by excessive immune cell turnover, or a longer-

term scenario (stated to be up to 30 years) if TB is not cleared and continues to 

slowly infect macrophages while the immune systemôs efficacy decreases 

(Marino and Kirschner 2004). Some limitations to the model were observed; both 

latent and active TB exhibited similar early behavior, which the authors consider 

to be potentially an effect of the lack of accounting for granulomata and spatial 

effects (Marino and Kirschner 2004). The model also predicts a predominance of 

Th0 cells, compared to low populations of Th1 and Th2, during long-term latent 

infection, and the authors believe that this may resolve some controversy 

regarding the population dynamics of these cells during latency. This explanation 

may have further credence if additional limitations of the modelôs description of 

cells were addressed; while a source of inflammatory cytokines representing NK 

and CD8+ T cells is factored into the model, adding these groups as variable 

populations may also affect the simulated population dynamics. 

 Researchers from the same lab at the University of Michigan published 
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another model of macrophage behavior during infection during the same year; 

rather than examining the dynamics of macrophage response using compartments 

alone, they aimed to capture spatially-relevant predictions using additions to the 

model to describe macrophage motions as a continuum in one-dimensional space 

(Gammack et al. 2004). Equations from earlier work were used as inspiration, and 

the change in macrophage quantities in space and time were described as a linear 

combination of factors related to phagocytosis of bacteria, macrophage death, the 

killing of intracellular bacteria, and macrophage motion by diffusion and 

chemotaxis, where the chemoattractant is assumed to be generated by 

extracellular bacteria, diffuse in space, and decrease from both natural decay and 

uptake by macrophages (Gammack et al. 2004). The researcherôs incorporated a 

model for phagocytosis which necessitated modeling macrophages which 

contained different numbers of bacteria as separate variables; for example, 

uninfected macrophage populations decrease at a rate dependent on their 

phagocytosis, while the population of macrophages containing one bacterium 

increase at the same rate (Gammack et al. 2004) The radius of the granuloma was 

simply described as having a rate of change equal to the velocity of macrophages 

at the current boundary. Simulations of the model were conducted for 

homogeneous and variable initial conditions and demonstrated general 

conclusions such as that granuloma growth would decrease with increased rates of 

phagocytosis and bacterial killing. However, the authorsô approach was limited by 

the number of variables and equations required for the phagocytosis model, to the 

point where they assumed that a load of 2 bacteria would prevent intracellular 
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killing, 3 bacteria would prevent phagocytosis, and 4 bacteria would lyse the 

macrophages (Gammack et al. 2004). Expanding such a model to include 

macrophages which incorporate significantly larger populations of bacteria may 

be necessary to improve the applicability of such conclusions, such a number of 

differential equations was deemed impractical at the time (Gammack et al. 2004). 

The authors admitted as well that the model did not demonstrate the ability to 

portray steady-state granulomata (i.e. radius rate of change equal to 0), likely 

because the incorporated behaviors did not currently account for immune cell 

activity beyond the innate immune response (Gammack et al. 2004). 

 Compartment models of TB infection lacking spatial information have 

been further modified to model therapeutic interventions. For example, the model 

developed at the University of Michigan was modified in 2011 by researchers 

involved with the Université Claude Bernard Lyon 1 to simulate TB therapy using 

rifampicin (Goutelle et al. 2011). Pharmacokinetic (PK) and pharmacodynamic 

(PD) models were added to the list of differential equations. The PK model used 

compartments for oral depot, plasma concentration, pulmonary epithelial lining 

fluid concentration, and pulmonary alveolar cell concentration. The oral 

compartment only incorporated an absorption rate to the plasma, while the other 

compartments included compartmental interchange behavior, and the plasma and 

extracellular fluid were modeled with elimination rates for rifampicin. The 

original cell population modelôs equations were mostly unchanged, though 

bacterial growth mechanics both intracellular and extracellular were modified by 

inclusion of the PD model to account for bacterial killing via rifampicin, 
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introduced to the pulmonary region via the PK model (Goutelle et al., 2011). 

Notably, this model assumes that modeled M. tuberculosis cells are uniformly 

sensitive to rifampicin treatment. Different simulations were conducted using the 

model to simulate either latent or active infection, and simulations including 

therapy introduced rifampicin to the model after 180 days, treated as a 600mg 

dose to the oral compartment every 24 hours outside of variably-dosed 

experiments (Goutelle et al. 2011). Different sets of PK parameters were also used 

to investigate the modelôs sensitivity to PK variation between subjects, and results 

demonstrated considerable variability in the killing of both extracellular and 

intracellular bacteria between these different simulations (Figure 7) (Goutelle et 

al., 2011). Therapy was observed to have a biphasic effect, rapidly killing bacteria 

for approximately 2 days before decreasing in rate, which previous experimental 

studies had observed and suggested that the behavior a cause linked to the 

formation of resistant bacterial populations. As this study did not model 

resistance, the authors suggested that the modeled intracellular M. tuberculosis 

served as a ñreservoirò in a possible explanation, supported by similar behavior in 

viral intracellular pathogens (Goutelle et al., 2011). 

 

Figure 7: From Goutelle et al. 2011. 

Results of the authorsô tuberculosis 

infection and PK/PD model applied to 

active tuberculosis. Red lines represent 

extracellular bacteria concentrations, 
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while blue lines represent intracellular bacteria concentrations, both in the 

modelôs lung compartment. Simulated rifampicin therapy began on day 180, and 

multiple lines were plotted for 34 ñsubjectsò with varied profiles for PK/PD 

parameters. Biphasic response to therapy is apparent in subjects where the 

bacterial concentrations appear to stabilize after an initial rapid decrease (Goutelle 

et al. 2011) 

  

 Notably, the authorsô model here predicts that an increased rifampicin 

dose could significantly increase efficacy of treatment by killing M. tuberculosis 

faster, which agrees with other groupsô predictions (Goutelle et al. 2011). 

However, they admit possible limits to this prediction; the other drugs typically 

mixed with rifampicin (particularly isoniazid, pyrazinamide, and ethambutol) are 

not modeled, and all bacteria are assumed to be susceptible (Bass et al., 1994, 

Goutelle et al. 2011). The last point in particular is relevant, even outside of 

MDR-TB or XDR-TB, because prior studies have examined the formation of 

drug-resistant bacterial populations during treatment. In the case of isoniazid 

resistance, one study assessing the effects of isoniazid on M. tuberculosis, 

specifically when delivered in vitro through a hollow-fiber system, determined 

that 73% of resistant bacterial isolates resulted from point mutations to the 

catalase-peroxidase gene and mathematically modeled the bacterial population 

changes (Gumbo et al. 2004, Gumbo et al. 2007). Other limitations included that 

the model accounted for no effects of rifampicin on the immune system and was 

developed from heterogeneous data and previously-conceived models, including 
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PK parameters from healthy human subjects, while in reality the diffusion of anti-

TB drugs is now well-known to be hindered by the substances present in necrotic 

granulomata, though for daily rifampicin treatment this may matter less (Goutelle 

et al. 2011, Prideaux et al. 2015b, Sarathy et al. 2016). Nonetheless, development 

of this model was an important towards more advanced models of the interaction 

between pharmaceutical treatment and advanced TB infection. 

 A recent study involving compartmental models, primarily authored by 

researchers at Colorado State University, examined the use of singular and 

combination bedaquiline, another quinolone, in TB therapy using both BALB/c 

mice and C3HeB/FeJ mice (Irwin et al. 2016). The researchers used MALDI-MS 

to examine drug distribution in infected lung tissue and found that the 

heterogeneous pathology observed in C3HeB/FeJ mice had a significant effect on 

treatment; bedaquiline accumulated strongly in monocytes and cellular lesions in 

both species but failed to penetrate the C3HeB/FeJ caseous granulomata (Irwin et 

al. 2016). After analyzing the animal data, the researchers designed and studied an 

11-compartment PK model using 10,000 Monte Carlo simulations, to estimate the 

modelôs parameters (Figure 8) (Irwin et al. 2016).  
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Figure 8: Image from supplementary 

information to Irwin et al. 2016. 

Compartments used in the model 

included a ñcentralò compartment 

(V), which could transition between 

two peripheral compartments, and 

where bedaquiline could be converted 

into its metabolite, M2. In its central 

compartment (VM), M2 could transition into one peripheral compartment or be 

eliminated, and both bedaquiline and M2 could transition to compartments 

associated with lung tissue, uninvolved lung tissue, or the lesion and be 

eliminated at those compartments (Irwin et al. 2016) 

 

 So far in TB research, more spatially-relevant models of granuloma 

development have been developed which model the development of a finite 

quantity of pixels which represent different aspects of the disease environment, 

such as immune cells, bacteria, or caseation. A recent multiscale model used in 

research by groups including the University of Michigan Departments of 

Chemical Engineering and Microbiology/Immunology, and the University of 

Pittsburgh is called GranSim (Cilfone et al. 2015). The in silico model of 

GranSim permitted numerical simulation of a large, but finite, number of 

discretized human cells divided into various types on a 100 x 100 ñmicro-
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compartmentò lattice (Cilfone et al. 2013). These include T cells, treated as 

regulatory, cytotoxic, or pro-inflammatory, and macrophages, which may be 

resting, infected (with M. tuberculosis), chronically infected, or activated (Cilfone 

et al., 2013). Modeled cell behaviors included recruitment, movement, apoptosis 

with a release of extracellular bacteria, and changes of state between different 

types of active cells, or infected cells following uptake of extracellular bacilli 

(Figure 9) (Cilfone et al. 2013, Cilfone et al. 2015). Continuous variables were 

used to quantify variables outside of human cell numbers, such as quantities of 

bacteria in intracellular, extracellular, and intra-caseum compartments, though the 

spatial locations of these compartments are also reduced to discrete pixels of the 

model, the same size as a human-cell component. The software implemented a 

molecular-level model of rate equations from experimental data describing the 

interaction of TNF and IL-10, as continuous variables, with receptors and cell 

components; their quantities influence the transition of immune cells between 

active states (Cilfone et al. 2013, Cilfone et al. 2015). 
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Figure 9: From Cilfone et al. 2013. Output of GranSim for various granulomata 

simulated for 200 days; ñM◖ò indicates macrophage in the legend, which displays 

the color of pixels/micro-compartments which contain different material A ï 

Initial set of parameters, estimated from prior experiments and modeling research. 

B ï Parameters are adjusted to imitate a knockout of TNF in the infected subject. 

C ï Parameters are adjusted to imitate a knockout of IFN-ɔ in the infected subject. 

Removing either inflammatory cytokine noticeably reduces macrophage 

activation and increases the number of compartments representing extracellular 

bacteria (Cilfone et al. 2013). 
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 GranSim has been used in a study aiming to determine the role of IL-10 as 

an anti-inflammatory cytokine, in TB granulomata development (Cilfone et al. 

2015). From the data obtained with this multiscale model, IL-10 was determined 

to limit necrosis and cytokine production, thereby decreasing early caseation at 

the cost of decreasing the chance that a lesion will be sterilized by the immune 

system (Cilfone et al. 2015). Accordingly, the authors suggest that IL-10 receptor 

antibodies may have therapeutic benefits while the adaptive immune response is 

active during TB infection (Cilfone et al. 2015). The GranSim model is notable 

for its applicability to questions about the TB disease process but may suffer due 

to the limitations of using discrete micro-compartments at each pixel; results such 

as those shown in Figure 7 tend to contain large regions of extracellular bacteria, 

which could realistically exist in caseum or among cellular surroundings, but the 

regions marked as caseum do not appear as large and connected as regions 

observed in medical images (see Figure 5, Figure 6) (Cilfone et al. 2013, 

DeMarco et al. 2015, Prideaux et al. 2015b). On the other hand, GranSim was 

combined with a PK/PD model of fluoroquinolone drugs in plasma and lesions in 

2017. This study was able to simulate spatially-relevant aspects of antibiotic 

diffusion for 3 fluoroquinolones: moxifloxacin, levofloxacin, and gatifloxacin 

(Pienaar et al. 2017). The modeled pharmacokinetics included caseum and tissue 

binding rates, rates of uptake by immune cells, and drug elimination rates (Pienaar 

et al. 2017).  The concentrations and distributions observed during simulation 

exhibited trends comparable to data gathered from rabbit granulomata using the 

same drugs, demonstrating the potential for spatially-relevant drug distribution 
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models of granulomata (Figure 10) (Pienaar et al. 2017). 

 

Figure 10: Image from Pienaar et al. 2017. A - distributions of gatifloxacin, 

moxifloxacin, and levofloxacin in rabbit granulomata and discretely-simulated 

granulomata, mapped as relative concentrations with MALDI-MS in the rabbit 

lesions and as predicted concentrations during simulation. B ï means (solid line) 

and standard error (dashed lines) of the three drug relative 

abundances/concentrations vs. the distance from the edge of the granuloma in 

rabbits and in simulation. Similar trends are observed in the simulated data when 

compared to the rabbit data (Pienaar et al. 2017). 

  

 Through the use of relevant data, such as the MALDI-MS data which has 

accumulated in research papers and parameters used in modeling research, it may 

be possible to develop means of predicting drug penetration from the 

characteristics of specific granulomata. Methods for doing so may include 
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techniques in machine learning and the development of spatially-relevant 

continuum models of TB lesions exhibiting different pharmacokinetic properties. 

The latter in particular could predict drug concentration profiles in granulomata, 

ideally with increased accuracy relative to multiscale models. Future methods 

using machine learning from sets of prior data and comparing these to a patientôs 

lesions, or using personalized continuum models of a patientôs lesions, may more 

effectively inform drug treatment regimens that are more personalized to the 

heterogeneous granulomata exhibited by a specific patient. This is of particular 

interest due to the advances in PET/CT analysis of TB lesions, which could allow 

for sufficient data to be collected of granuloma structure for machine learning 

approaches or continuum modeling (Chen et al. 2014). 

 

Deep Learning: Relevance to Biology 

 The use of artificial neural networks for complex and automated pattern 

recognition tasks, such as problems presented by speech-recognition and 

computer vision, has seen a resurgence of interest since research in 2006 (LeCun 

et al. 2015). In particular, the machine-learning practice of ñdeep learningò with 

many-layered neural networks allows the networks to learn and identify 

meaningful structures from large datasets. For example, in computer vision and 

image processing applications, a neural network may be used to identify specific 

patterns such as those presented by groups of edges from the raw data and use the 

positions of such patterns to identify a more complex idea, such as a specific 

object (LeCun et al. 2015). 



43 
 

 To computational biology and the world of growing, insufficiently-

analyzed datasets, this technology leads to attractive methods of analysis. As 

research generates publicly-available sets of genomics, metabolomics, and 

proteomics data, machine learning has found a use for identifying relationships 

between expression of variable genes and predicting the effects of a perturbation 

(Angermueller et al. 2016, Xing and Gardner 2006). Furthermore, biological 

image analysis has found a use for deep learning with convolutional neural 

networks (CNNs), which are capable of identifying and characterizing 

components of an image such as cells, membranes, and relative morphological 

development (Angermueller et al. 2016). Neural networks are so-named because 

of the inspiration their design takes from neuroscience, and this idea is 

particularly strong for CNNs, which use methods that account for simple features 

and high-level combinations of image features directly inspired by research of the 

visual cortex (Angermueller et al. 2016). 

 Through research and clinical studies, there exists applicable image data 

for multiple-drug penetration into TB lesions (Irwin et al. 2015, Prideaux et al. 

2015). It may be possible to prepare data analysis programs such as deep 

convolutional neural networks that are capable of answering questions relevant to 

this problem, such as the locations and cellularity of TB lesions, and combining 

this analysis with relative drug penetration data to predict the transport of specific 

drugs into different lesions. Relatedly, the follow-up paper to the New Jersey 

Medical Schoolôs large-scale analysis of drug penetration in human lesions used 

machine learning to predict the binding affinity of various drugs to chemical 
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markers in the caseum, though this approach did not precisely use the spatial 

heterogeneity of lesions (Sarathy et al., 2016). A neural network or other 

computational structure intended to learn similarities between lesion images, or 

more specific parameters from example lesion images, will need to be trained 

appropriately for the task, and possess a clearly defined means of predicting 

penetration in these images. 

 

Basics of Machine Learning and CNNs 

 Machine learning can be applied to numerous tasks which involve 

interpreting data; for image data, common tasks may include classification, where 

a neural network learns to categorize test images into set categories, or 

segmentation, where the algorithm attempts to categorize specific regions of 

pixels in a test image into different objects. Most commonly, the learning process 

is supervised. For example, when learning a classification task, the neural network 

will be supplied with a large input set of images corresponding to all categories 

that are labeled with their categories; for an image-recognition network, the 

images may contain different types of animals or objects which are the categories 

(LeCun et al. 2015). 

 Neural networks in general require a task and an ability to measure their 

own performance, or error, to learn from a specific example. The neural network 

typically represents the difference from optimal performance as a mathematical 

ñloss function,ò related to some measure of distance from the optimal answer 

(Goodfellow et al. 2016). As the neural network is supplied with the initial list of 
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examples, it modifies numerous internal parameters, or weights, with the goal of 

producing a function which completes the task with minimal loss. Outside of the 

learning process, there exist user-defined ñhyperparameters,ò which remain 

constant throughout the learning process and define the architecture of the neural 

network or influence the rate at which it may change its adjustable weights 

(Goodfellow et al. 2016). The optimization algorithm for achieving a useful 

function is commonly stochastic gradient descent, as it relies on computing an 

initially random output from a small set of examples before changing the weights 

towards a goal of minimizing the loss function, then gathering data from further 

examples to continue the process (LeCun et al. 2015, Goodfellow et al. 2016). 

 Following the learning process, the neural network must be tested on new 

examples to confirm that it is capable of generalizing to examples not previously 

seen as part of the ñtraining setò data. Here, certain pitfalls of the learning process 

may be observed if the learned function is ñoverfittingò or ñunderfittingò to the 

training data (Figure 11) (Goodfellow et al. 2016). A finite number of parameters 

is assumed for the parametric machine learning process described here, but 

nonparametric models which make no assumptions about the functions relating 

datasets are also possible. Nearest neighbor regression is an example of such an 

algorithm (Goodfellow et al. 2016). 



46 
 

 

Figure 11: Figure from Goodfellow et al. 2016. A simple example of how a 

learning algorithm may learn, and either underfit or overfit after the training 

process, is a regression task. The mean square error or similar calculation is the 

loss function, while the weights which the algorithm can adjust are polynomial 

coefficients, which increase in number for higher-degree regression models. The 

underfitting model (Left) is an apparent linear regression which does not 

correspond as readily to the data as an apparent quadratic regression (Middle). 

However, while a polynomial regression with more adjustable parameters can still 

fit the supplied data, a neural network architecture with too many possible 

parameters to adjust can overfit (Right) and produce results which do not 

realistically generalize outside of the exact data points supplied to the regression 

calculator (Goodfellow et al. 2016). 

 

 In an artificial neural network, the weights which transform the input data 

into an output are arranged in structural ñlayers,ò each consisting of elements 

called ñneuronsò which apply an associated weight to any data they receive and 

output the result to one or more neurons in the next layer (LeCun et al. 2015). 

Layers which are not the initial ñinput layerò or the final output are referred to as 
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ñhidden layers.ò Conceptually, each layer of the neural network can be conceived 

as a function which performs a transformation on the preceding layerôs output; if 

a neural network performs the function y = f(X) for some input data X and output 

y, then if the neural network has n layers, a task performed by the neural network 

is equivalent to a series of nested functions 

Ὢὢ Ὢ Ὢ Ὢ ȣὪ ὢȣ  

where f(n)(x) is the transformation performed by the nth layer of the neural network 

(Goodfellow et al. 2016). When training, the output of a neural network from an 

initial input is compared to the known output in the training data, then the 

deviation from the expected result, derivative of each weight, and a 

hyperparameter for the learning process called the ñlearning rateò govern the 

application of stochastic gradient descent to change weights at the level of each 

neuron before receiving more input (Figure 12) (LeCun et al. 2015). Each interval 

of time which begins with the neural network updating its parameters is called an 

ñepoch.ò Conceptually, neural networks apply statistics with the same sentiment 

as a linear regression; even for a task with numerous inputs, described by a 

network architecture containing hidden layers with enormous numbers of weights 

and neurons associated with each, the aim of the training process is to produce a 

function y = f(X) which minimizes the error when compared to previously 

supplied data. 
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Figure 12: Figure from LeCun et al. 2015. Simplified diagrams which are 

commonly used to represent the conceptual architecture of a neural network; 

neurons are circles while the connections between them are arrows. Left: sets of 

data in a layer of neurons are used as inputs for the next layer of a neural network, 

which essentially executes a function using the weights associated with all 

incoming connections (wij  for a weight from neuron ñiò to neuron ñjò) to produce 

its output data. Right: after producing several outputs from example data while 

training a neural network, the process of ñbackpropagationò in stochastic gradient 

descent involves computing the derivative of the error (i.e. loss function) with 

respect to each variable associated with a neuron so that the weights can be 

adjusted accordingly (LeCun et al. 2015). 

 

 To perform tasks using machine learning with image datasets, 

convolutional neural networks (CNNs) are used. The most important, namesake 

layers of a CNN are ñconvolutional layers,ò which perform a series of discrete 

convolution functions on the image data and output the convolved data as an input 

for the next layer of the neural network (LeCun et al. 2015). For two continuous 

functions x(t) and w(t), considered the ñoutput functionò and ñweighting 

function,ò the convolution function is formally defined as an integral, 
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ὼz ύ ὼὥύὸ ὥὨὥ  ὼὥύὸ ὥ

 

 

while for a discretized data, such as the color values of pixels in an image, the 

operation needs to be reimagined as a finite sum of a discrete number of points 

(Goodfellow et al. 2016). For a grayscale, two-dimensional, m x n pixel image 

with pixel values x as the output function, and a two-dimensional weighting 

function commonly referred to as the ñkernelò or ñfilterò defined as K, this 

discrete operation becomes, for each pixel located at (i, j), 

ὼz ὑ ὭȟὮ  ὼάȟὲὑὭ άȟὮ ὲ 

where the value at each convolved pixel is a weighted sum of the values of all 

surrounding pixels in the m x n region, and the output is commonly called a 

ñfeature mapò of the original image (Goodfellow et al. 2016, Zeiler and Fergus 

2014). 

 Practically, a filter function used in a convolutional layer of a CNN will be 

an m x n matrix of weights, for an image with dimensions significantly larger than 

m x n, and the layer will define the ñstrideò of the filter function, or the number of 

pixels it moves between convolutions, which are computed in m x n regions of the 

image until the entire image has been used to produce feature maps (LeCun et al. 

2015, Zeiler and Fergus 2014). A convolutional layer will typically be associated 

with multiple filters, each of which are used to compute convolutions, so the 

output is a three-dimensional stack of the feature maps computed by each filter; 

convolutional layers acting on this form of convolved output, or even on RGB 

images, actually perform discrete convolutions in 3 dimensions by also adding 
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data from each color channel or feature map to the sum, though the filters are still 

two-dimensional matrices of weights (Zeiler and Fergus 2014, Angermueller et al. 

2016) (Figure 13). The weights of each filter function are learned parameters 

which the neural network is capable of training during the learning process; each 

convolution provides a quantitative measure of overlap between the filterôs 

weights and the imageôs pixels, as the greatest convolved values is produced 

where higher pixel values and filter weights are spatially closer together. In an 

abstract sense, each of these convolution operations can be thought of as 

determining the degree to which a feature that the network has learned or is in the 

process of training appears in different locations of the image, with convolutional 

layers that are earlier in the network detecting simpler features. A convolutional 

layer acting on the original image may output a feature map for the locations of 

lines or edges, while filters in deeper layers learn and calculate the occurrence of 

combinations of features from the earlier layers of the network (LeCun et al. 

2015). The final layer of a CNN will depend on the task; a ñfully connected layerò 

which receives weighted input from the final feature maps may be used in a 

categorization task to determine the most probable category of the image, while a 

segmentation task needs to determine the probability of every pixel in the original 

image belonging to a particular category (LeCun et al. 2015). 
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Figure 13: Figure from Angermueller et al. 2016. A ï a simplified visualization of 

typical operations in a convolutional neural network (CNN) applied to cell 

imaging. A discrete convolution using a learned filter returns higher values for the 

fluorescent edges of the cell; other feature maps exist but are not shown. Max 

pooling (see paragraph below) simplifies these feature maps, and a fully 

connected layer determines the likely identity of the fluorescently-labeled feature. 

B ï a visualization of a discrete convolution performed on a 4 x 4 ñimageò by a 2 

x 2 filter moving by one pixel between operations (a stride of 1); the output is a 3 

x 3 image. C ï a representation of max pooling conducted for 2 x 2 sections of a 4 

x 4 ñimageò (Angermueller et al. 2016). 

 

 Beyond convolutional layers, additional operations are necessary to ensure 

that a CNN is efficient and capable of processing complex feature maps. In 

particular, until a combination of computing advances, rectified linear units 

(ReLU), and means of reducing the number of calculations in deep layers through 
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pooling showed high performance in 2012, the CNN approach to computer vision 

had been inefficient and unpopular for computer vision (LeCun et al. 2015). A 

ReLU layer contains a neuron for each point in the feature map inputs, which will 

return the maximum value out of either 0 or a linear function containing the 

pixelôs value; typically, this output is simply max(0, x) for an input value x, 

replacing any negative convolved values with 0 (Nielsen 2015). A ReLU layer or 

similar layer with another nonlinear function, such as a smoothed step function or 

hyperbolic tangent function, typically follows every convolutional layer because 

the convolutions used in are only linear transformations, which cannot be used 

alone to theoretically compute any function (Nielsen 2015). The popularity of 

ReLU layers followed results which demonstrated that the simplicity of the 

function permitted faster supervised learning if ReLU were the nonlinear layers of 

choice (LeCun et al. 2015, Nielsen 2015). Following each nonlinear layer, CNNs 

typically implement a pooling layer, which receives modified feature maps as 

input and produces a smaller, output feature map where the value at each pixel is 

a summary statistic of the input pixels within a certain radius (see Figure 13) 

(Angermueller et al. 2016, Goodfellow et al. 2016). Various statistics may be used 

for these nearby pixels, such as a simple average of their values, a weighted 

average related to their distance, or the maximum value among these pixels 

(called max pooling); the inclusion of pooling layers decreases the number of 

calculations which the CNN must perform and simplifies the relative locations of 

detected features, decreasing the programôs computational intensity and rendering 

both the learning process and task performance of a CNN more robust to small 
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changes in feature separation and orientation (Goodfellow et al. 2016). A layer 

following a pooling layer may be used to conduct ñunpooling,ò which restores the 

dimensions of the image before the pooling process but sets each pooling region 

equal to the pooled value (Zeiler and Fergus 2014). Additional processing is often 

used for convenience, such as normalization of all image data values prior to 

training. To avoid sharp increases in the magnitude of convolved values following 

repeated convolution operations, normalization may also be applied after each 

convolutional layer and before the nonlinear operation (Zeiler and Fergus 2014). 

This is a default feature in MATLABôs segmentation CNN architecture. 

 More advanced techniques may be applied to CNNs to either improve the 

learning process or prevent issues with overfitting. The process of ñtransfer 

learningò involves using parameters learned in the relatively early convolutional 

layers of a previously-trained neural network to initialize the shallow 

convolutional layers of a new neural network (Yosinski et al. 2014). While this 

process may not be generally effective for higher-order features analyzed by 

deeper layers, early filters are known to generally present as simple shapes and 

colors, so this process can assist with the setup of a deeper neural network which 

may overfit less than otherwise (Yosinski et al. 2014). Another potentially useful 

technique to prevent overfitting in deeper networks is dropout, which involves 

randomly selecting various neurons in the network at each iteration of the learning 

process, including neurons from the input layer and hidden layers, and excluding 

the selected neurons from the learning process (Srivasta et al. 2014).  
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Smaller Sample Sizes: k-Nearest Neighbors (k-NN) Algorithm  

 A k-Nearest Neighbors (k-NN) algorithm is designed to be capable of 

fitting a dataset or classifying new samples with little prior information about the 

dataôs pattern. For a classification task, a dataset is used to ñtrainò the k-NN 

model with structured information regarding the data. Unlike a neural network, a 

nearest neighbor model does not attempt to approximate a function relating a 

dataset with potential outputs, so the training process consists only of storing the 

inputs and outputs of the assumed function (Goodfellow et al. 2016). For an 

algorithm which considers a single nearest neighbor, a classification task is 

conducted by determining the learned example which has the smallest error from 

the sampleôs input values and characterizing the sampleôs output as equal to that 

of the nearest neighbor (Altman et al. 1992, Goodfellow et al. 2016). This error is 

computed as Euclidean distance between the input data, X, corresponding to an 

output class, y, to satisfy the following equation (Goodfellow et al. 2016): 

ώ ώ ȟ   ύὬὩὶὩ   Ὥ ὥὶὫάὭὲὢ ȟ ὢ  

 For the k-NN algorithm, k is the integer number of nearest neighbor 

learned data points which are considered when determining the output class for a 

given sample. For a numerical output value, the assigned output may be the 

average of the outputs for the k nearest neighbors. However, this is not 

necessarily a characteristic of numeric nearest-neighbor algorithms; MATLAB 

only uses a classifier by default, so computing the average for the k nearest 

neighbors by as the dot product of an obtainable probability ñscoreò vector with 

the vector of possible values in the training set is necessary. This algorithm can 



55 
 

also be implemented for a classification task where the output is a non-numerical 

category. In such a case, the most common category between the k nearest 

neighbors of the training dataset is considered the most probable and will be 

selected for the sample output class. 

 

Machine Learning Methods 

 To prepare to conduct machine learning methods on image datasets, a 

literature search on Web of Science was conducted to search for papers which 

contained MALDI-MS drug diffusion images relevant to TB. After curating the 

initial search results, five papers with sets of relatively high-resolution images 

were chosen, and 92 MALDI-MS images with corresponding hematoxylin and 

eosin (H&E) histological stain images were chosen for analysis (Prideaux et al. 

2011, DeMarco et al. 2015, Prideaux et al. 2015a, Prideaux et al. 2015b, Irwin et 

al. 2016). The images were obtained through screenshots of the papers, which 

were cropped for each image. A total of 92 MALDI-MS images were collected, 

with an associated 79 H&E images, as a paper which contained results from 

human clinical trials sometimes evaluated the drug distribution of multiple drugs 

in separate MALDI-MS images corresponding to a single granuloma sample 

(Prideaux et al. 2015b). The images were resized to be 224 x 224 pixels to 

standardize them during processing and allow a neural network with a single input 

size for 224 x 224 x 3 RGB images to function. Antibiotics used in the image set 

included rifampicin, moxifloxacin, pyrazinamide, bedaquiline, levofloxacin, 
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isoniazid, and clofazimine; the dataset combined images from C3HeB/FeJ mouse 

lungs, BALB/c mouse lungs, rabbit lungs, and extracted human granulomata. 

 A semantic segmentation CNN was used to attempt segmentation of the 

collected H&E images. Pixels were categorized as either caseum/necrotic, 

tissue/cellular, or neither. The neural network was initialized from an untrained 

SegNet structure generated in MATLAB; the layers were initialized for a 224 x 

224 x 3 input layer, 3 possible output classes with which to label pixels (caseous, 

cellular, and neither), and an ñencoder depthò parameter of 1, which produces a 

17-layer CNN structure (Table 1). From the 79 available H&E images, 60 images 

were chosen at random to be the training set. Several initial attempts to train the 

neural network were made while considering ñcellular lesionò and ñlung tissueò 

labels separate and failing to properly account for the ability to label non-

biological pixels as such. When the labeling scheme was simplified to only 

distinguish caseum from cellular tissue, and the possibility of labeling background 

pixels was accounted for, the neural networkôs training accuracy increased 

significantly (See ñMachine Learning Resultsò). Some experiments were 

conducted with the neural networkôs hyperparameters between the initial training 

attempts; the final neural network was trained for 150 epochs in which the 

training set is completely analyzed, each divided into 6 batches of 10 images, 

after each of which the parameters are updated. The networkôs learning rate was 

set to be 0.01, multiplied by 0.1 every 30 epochs. 
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Layer Comments 

Input image 224 x 224 x 3 input, intended for RGB 

H&E images. 

Convolutional (1) Convolutions using 64 3 x 3 filters 

operating in all 3 color channels, with a 

stride of 1 and the image ñpaddedò by 

an extra pixel on every side in 3 

dimensions. This produces a 224 x 224 

x 64 output of feature maps. 

Batch normalization (1) Normalizes convolved data 

ReLU (1) ReLU of convolved/normalized data 

Convolutional (2) Convolutions using 64 3 x 3 filters 

operating in all 64 feature map 

channels, same stride and padding 

settings as before. Produces a 224 x 

224 x 64 feature map output. 

Batch normalization (2) Normalizes convolved data. 

ReLU (2) ReLU of convolved/normalized data. 

Max pooling Max pooling within a 2 x 2 region with 

a stride of 2. Output is 112 x 112 x 64. 

Max unpooling Unpooling, 224 x 224 x 64 output. 

Convolutional (3) Convolutions using 64 3 x 3 filters 

operating in all 64 feature map 



58 
 

channels, same stride and padding 

settings as before. Produces a 224 x 

224 x 64 feature map output. 

Batch normalization (3) Normalizes convolved data. 

ReLU (3) ReLU of convolved/normalized data. 

Convolutional (4) Convolutions using 64 3 x 3 filters 

operating in all 64 feature map 

channels, same stride and padding 

settings as before. Produces a 224 x 

224 x 64 feature map output. 

Batch normalization (4) Normalizes convolved data. 

ReLU (4) ReLU of convolved/normalized data. 

ñSoftMaxò classifier Computes probabilities of 

categorization for each pixel of the 224 

x 224 spatial image using processed 

data 

Pixel classification Classifies each pixel of the 224 x 224 

spatial image as its most probable 

category 

Table 1: Layers of the convolutional neural network (CNN) produced and applied 

in MATLAB, and basic explanations of the operations performed by the layers. 
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 For experiments using the k-NN algorithm, MATLAB was used to 

produce k-nearest neighbor classification objects; these may receive a table of 

numerical parameters as training data, though a non-numerical output category 

may be included. The predictor data in all experiments was set to be standardized 

by mean and standard deviation before being used in the model. Initially, the 

latter option was considered, with cases from MALDI-MS data being assigned 

categories from a set of possible outcomes depending on whether diffusion into 

caseum appeared consistent with the rest of the lesion, limited, or negligible. 

However, this was quickly deemed too subjective and arbitrary to provide useful 

output, as the categories are user-determined and may vary even within different 

sections of caseum in the same lesion. A means of quantifying the difference in 

diffusion between caseum and cellular tissue from MALDI-MS images was 

needed. 

 In all MALDI -MS images obtained for machine learning experiments, the 

signal was represented by a RGB scale from 0-100% relative signal to the 

maximum, which begins at blue and increases up to red. This scale may be 

adjusted for the maximum signal in a specific image or in a series of images, and 

significant variation would exist between separate studies, so the ideal 

quantifiable metric decided upon was the ratio of signal present in the caseum to 

signal in the cellular regions. 

 The Image Labeler application in MATLAB was used again, now with the 

MALDI -MS maps while referring to the H&E stained images for reference, to 

manually label particular pixels of the images as ñcaseumò or ñtissue.ò Copies of 
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the MALDI-MS images were converted from RGB to HSV, hue-saturation-value, 

where hue in MATLAB is scaled from 0 to 1 and in the direction of red to 

magenta, crossing the visible spectrum on the way. The average hue for ñcaseumò 

and ñtissueò sections was computed for each image. To render this result more 

similar to the common scale bar, the average hues were all subtracted from 1 to 

reverse the direction of increase (i.e. red becomes higher than blue), then 

normalized between 0 and 1 by first subtracting the minimum observed value for 

average hue, then dividing by the new maximum observed value for average hue. 

Notably, these operations produced NaN (not a number) results for the caseum 

ratio in images which contained no caseum. Accordingly, these were ultimately 

excluded from any experiments with the k-NN algorithm. One pyrazinamide 

sample produced a signal of 0 in the tissue region as a result of the normalization 

and was similarly excluded from training or testing data. The adjusted average 

hues of the ñcaseumò pixels for usable images were divided by their 

corresponding average hues of the ñtissueò pixels to produce caseum-to-tissue 

signal ratios. 

 The k-NN algorithm has the potential to use a variety of predictor data 

when computing the nearest neighbor data points; predictors including the ratio of 

caseum area to total sample area, ratio of cellular lesion area to total sample area, 

the time after drug administration when the lesions were extracted, the number of 

distinct caseous regions, and the number of distinct cellular lesion regions, all 

calculated from the previously-labeled H&E images, were considered for use as 

predictors. 
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 Rifampicin, pyrazinamide, and moxifloxacin were all tested with the k-

NN algorithm for different, randomized training sets, groups of predictors, and 

numbers of nearest neighbors. After initially gathering rifampicin data manually, 

a Monte Carlo method with 200 iterations per tested method was conducted to test 

the average effects of changes to the k-NN algorithm on testing datasets for 

rifampicin, pyrazinamide, and moxifloxacin. This method has the advantage of 

rapidly examining many possible training and testing sets in succession to 

determine the average difference between the predictions of a particular method 

of k-NN and the computed values from the images, allowing the suitability of k-

NN to be examined on a broader scale than with manual data collection. The 

decision was made to set the training set sizes for rifampicin, pyrazinamide, and 

moxifloxacin to be 14, 12, and 13 respectively, to standardize the number of 

tested samples per iteration at 4 and use 75-80% of applicable data for training 

each set. 

 

Machine Learning Results 

 The CNN was trained as described in the methods until terminating with 

80-90% accuracy on the training data (Figure 14). The trained neural network was 

tested with images that were excluded from the training set and displayed mixed 

success at the task of identifying caseous regions of the image; another mistake 

observed when testing samples was the identification of lines such as scale bars as 

tissue or caseum (Figure 15, Figure 16). However, the CNN had learned to 
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separate the majority of background pixels from the more meaningful data in the 

image.  

 

 

Figure 14: Raw output from MATLAB for the most successful trained neural 

network, following 150 epochs of training on 60 H&E images labeled for tissue 

and caseum. 
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Figure 15: Performance of the trained semantic segmentation CNN on two 

different test images. Above, Clockwise from Top Left ï H&E image 15b_56 

with caseation outlined by the authors (Prideaux et al. 2015b), the neural 

networkôs segmentation of the image (light blue = background, dark blue = 

cellular or tissue, yellow = necrotic), and the labeled H&E image not present in 

the training set. The majority of identified caseum pixels are in the large caseous 

regions, but much of the area is unlabeled. Below, Clockwise from Top Left ï 

H&E image 15b_57 with caseation outlined by the authors (Prideaux et al. 

2015b), the neural networkôs segmentation of the image, and the labeled H&E 

image not present in the training set. A notable region outside of the contours is 

identified as caseous by the CNN and was marked as such in a different image 

which was also not used in the training set (see Figure 25). 

 


