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Abstract:

Tuberculosis is among the most widespread infectious diseases in the
modern world The diseasis characterized by the lesions, or granulomata, which
its infectian form in the lungswhich are resilient to antibiotic penetration and can
cause latent, chronic infections. Current research aims to improve predictions of
tuberculosis disease outcomes and improve therapy by studying tuberculosis
through animal modelspihumans, and in computational simulations of
mathematical models. The abundance of drug distribution image data available
from animal and human sources is a target for machine learning techniques,
which could assist in predicting the outcomes of disgas¢nents on specific
lesions, and prior models may inform the design of new mathematical models
which incorporate spatialyelevant information, a necessity for predictions
involving infected granulomata. The prospects of convolutional neural networks,
ak-nearest neighbor algorithm, and a mathematical model in COMSOL
Multiphysics for generating predictions relevantliaical outcomes are
examined, and these examined methods show promise to be developed further in

the future.

Introduction
Tuberculoss (TB) has remained one of the most widespread and deadly

infectious diseases throughout human history and into the modern day, where



roughly onefourthof t he wor |l dés popul ation i s esti m;
latent TB (WHO 2018). The successMycobaterium tuberculosias a
pathogen owes much to the diversity of biological outcomes which can result
from an infection, which display heterogeneity both between hosts and between
specific colony forming units WwWi).Ahin an in
developing colony oM. tuberculosisn the lungs gives rise to an immune
response, which produces a structured granuloma around the infection. These
lesions consist of ordered, interacting populations of immune cells surrounding a
necrotic core, iwhich theM. tuberculosignay multiply, both extracellularly and
inside of the nearby immune cells. The core is composed of the remains of
overrun and apoptized immune cells, which become a cholestdraohixture
called caseum. Caseous necrosis is cheaniatic of the damage caused by
tuberculosis and complicates treatment; pharmaceutical diffusion to infected sites
can be inhibited by the composition of caseum and the precise manner in which
the granuloma develops (Prideaux et al. 2015b). More effentdtkods of drug
delivery and treatment of TB are necessary and under development, as the generic
multi-antibiotic therapy established over twenty years ago remains the clinical
standard of care and is not guaranteed to cure all patients or sterilifecttd
granulomata (Bass et al. 1994, Dartois 2014).
Owing to this clinical relevance, research for over a decade has aimed to
mo d e | the i mmune systemdéds response to TB a
new treatments and regimens. Varied animal model8ahfection have been

applied; some of these infection models such as BALB/c mice result in simplistic



infections which do not closely resemble human TB infections, while other
animals such as C3HeB/FeJ mice produce more similar lesions (Irwin et@). 201
Non-human primates, such as macaques, are alsechasiacterized as animal
models of human TB infection and exhibit immune responses and outcomes seen
in human TB, allowing insight into TB research beyond purely clinical data

(Flynn et al. 2015). Ma#matical models developed from experimental and

clinical data aim to make useful predictions of the disease outcome. Early models
included compartment models of the immune response to tuberculosis, and
describe the numerous interactions between immuneaglilations, cell

signaling, andM. tuberculosighrough a complex system of differential equations
(Marino and Kirschner 2004). Such models assist with the development of
pharmacokinetic/pharmacodynamic (PK/PD) models of tuberculosis therapy
(Goutelle etal. 2011). However, these equations lack information relevant to
granuloma structure and precise drug distribution by disregarding spatial
information and heterogeneity, gseanuloma composition and structure are
predictors of the difference between aetand latent tuberculosis infection and

drug diffusion. Structures mdge sterilized owiable M. tuberculosisand physical
properties such dgrosis, necrosisandcavitation,which can develop to become
anunsuccessfully checked and active infectiolyr{k et al 2011Cadena et al.

2017). Due to the relevance of thesteucturesand nonvascularized caseum

content to drug diffusion, the nature of these developed structures also affects the
potential for various drugs to successfully permeate and trfeation (Prideaux

et al. 20156, Cadena et ak017).



Data describing multiple drug penetration into a variety of excised
tuberculosis lesions exists and may be used to inéatmerspatiallydescriptive
models of drug distribution in heterogeneous glamataor machineearning
based approaches to predicting drug penetr@adeaux et al. 2015. While
predicative models of drug binding fractions to caseum have been developed,
mathematical modeling of the spatial drug penetration in the TB lesion
environmentis only recently under developmg®arathy et al. 2016ienaar et
al. 2017. Recent mathematical models of spatiotemporal granuloma development
have focused on simulating discrete quantities of cells, an attractive approach
because of the divatg of cell behavior and interaction within, but applicable and
guantitative results are not obtainable in discrete models without a realistic
number cells, rendering the models inefficient for replicating exact cell behaviors
(Cilfone et al. 2014, Armstra et al. 2006).

Thus, while compartmental models and discrete cell simulations can study
some behaviors of TB infectipthese methodsredeficient for direct application
in medicine because thegnnotpredict outcomewhile consideringp at i ent s o
specfic lesions Models without spatial information disregard the importance of
granuloma structure to drug penetration, while simulations of discreteacetist
meant tareplicatespecificgranuloma structus2 To personalize the prediction of
therapeutioutcomes to patients in the future, it will be important to use
mat hemati cal met hods which use spati al i nf
captured by recent advances in medical imaging. Machine learning methods

which canincorporatespatialinformation fliom real lesion images, and



mathematical models of drug diffusiona structurevhich cansimulae a lesion

structure from an actual patieate examined as meandfitbthis medical need.

Biology of the TB Disease Environment
TB infection begins withihe infiltration ofM. tuberculosidacteria into
the airways of the lung, typically originating from aerosolized sputum of a
previously infected subject. However, exposure to these bacteria only results in
active TB infection symptoms in80% of patientsvithin the first 2 years
following exposure (Lin and Flynn 2010). Most cases result in a more innocuous
initial state, commonly described as a latent TB infection, which is estimated to
affect roughly 2 billion people, or close to one quarter of the §jmiqaulation
(Lin and Flynn 2010, WHO 2018). This latent infection is characterized by an
equilibrium between the hostés i mmune resp
the bacteria are spatially contained to the site of infection but are not eliminated.
However, | atent TB can fAreactivateo foll owi
between the infection and immune response, typically due to immunosuppression
or an additional disease causing increased burden to the immune system. HIV
infection has become the stacommon risk factor for TB reactivation in the
modern era, owing to its direct infection of the immune system and global
epidemic; 40% of patients dead due to HBlated factors in 2016 were killed by
TB infection (Lin and Flynn 2010, WHO 2018). Furthisk factors include
diabetes, smoking, alcoholism, air pollution, and overcrowded living conditions.

The existence of these factors can be owed to social or economic causes, which



present a further obstacle to managing the TB epiddmimnfothand Ravi¢jone
2008).

Once present in the lunlyl. tuberculosidacilli interact with alveolar
macrophages and dendritic cells, the first stage of the immune response, which
recognize markers of the pathogens through thdikellreceptor protein class and
engulfthem (Lin and Flynn 2010, Cadena et al. 2017). Certain factors, such as
natural antimicrobial peptides and the presence of lung surfactant, are probably
relevant at this time, where an infecting bacillus may or may not survive to form a
colony, though thémpact of these is not well understood at present (Flynn et al.
2015). The formation of tuberculosis granulomata begins with the infection of
macrophages which have engulfed the pathogen. The bacteria begin replication
within the macrophages, which maygrate to different regions of the lungs, and
eventually lyse the immune cells, leading to the emergence of additional
extracellular bacteria, the arrival of additional macrophages, and the initiation of
an inflammatory immune response. While infected nmaltages are capable of
killing intracellularM. tuberculosisthey are less capable than activated
macrophages; the TB pathogen has effectively evolved to resist and take
advantage of the initial immune response for its own reproduction (Gammack et
al. 2004. The inflammation and presence of these macrophages, dead or infected
or uninfected, become the center of an eventual infected granuloma (Flynn et al.
2011).

While the infection progresses, dendritic cells travel to the thoracic lymph

nodes, where thgyresent thé/. tuberculosigathogen in order to prime T cells



for the adaptive immune response. The adaptive immune response begins
relatively slowly, and studies have reportel weeks being necessary before the
human immune response to tuberculosisdtibn is visible through the standard
tuberculin skin test, in spite of only an estimate® &ays being necessary for the
priming process (Flynn et al. 2011, Flynn et al. 2015). Various factors for this
time frame have been suggested, including theditee infecting dosage and
relatively slow replication rate &fl. tuberculosis but this overall behavior is
primarily believed to be relevant to the transport of sufficMntuberculosis

antigen to the lymph node. Observations in mice and humanstmditiane of 5

8 days in humans and mice for a response to be initiated once the infection is
present in lunglraining lymph nodes (Flynn et al. 2015). T cells which respond
to the infection include CD4+ helper T cells, CD8+ cytotoxic T cells, and
regulatay T cells, and contribute differently to the immune response. Cytotoxic T
cells are capable of killing bacteria and infected cells, while helper T cells and
regulatory T cells produce cytokines and signals which modulate the strength of
the inflammatorymmune response (Flynn et al. 2011).

Granulomata are formed by the immune system as a means to contain the
infected region with active immune cells. Though the formation of a granuloma
does indicate attempted containment, granulomata can be individually
characterized as active or latent, due to being potentially more or less capable of
spreading infection relative to other granulomata. Infected structures contain of an
interior core of caseum from cellular necrosis, in wiNthtuberculosisnay

continue tosurvive under hypoxic conditions, and a cellular layer, commonly



organized as a group of infected and uninfected macrophages around the necrotic
core, surrounded by neutrophils and dendritic cells, and containing B cells and T
cells in the outer layer (Fige 1) (Flynn et al. 2011, Dartois 2014). Fibrosis may
occur throughout certain granulomata after sterilization and may be present at the

outer edge of the cellular layer of caseous granuloma (Flynn et al. 2011).
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Figure 1:Image fromDartois 2014Granubmata are more cellular as they

initially develop, before the lysing of infected macrophages in the center and

resultant buildup of the necrotic, hypoxic caseum at the core. Granulomata with
cavitation, a c¢onnec dangerustarmhoré daabldoi ngdés ai r
dispersing bacilli throughout the airways and sputum of the infected ptikdent

other granulomata (Dartois 2014).

The persistence and intensity of different factors in each granuloma leads
to varied longterm outcomes. Characteristiehich promote stronger immune
response and sterilization of the infection are hindered by any resultant tissue
damage and potential exacerbation, but a sustained inflammatory response is
necessary to successfully prevent the spread of extracellular.damilexample,

classicallyactivated macrophages (CAMs) differentiated near the core promote



inflammation and kill cells, while alternativebctivated macrophages (AAMs)
produce antinflammatory factors which reduce tissue death (Flynn et al. 2011).
Theinteraction of theM. tuberculosidacteria with dendritic cells is important to

the generation of different types of immune responses. Immature dendritic cells
(IDCs) present in the lung take in antigens from the infection, triggering internal
processes hich cause them to migrate to lymphatic tissues as mature dendritic
cells (MDCs). This activity increases during TB infection, contrary to the activity
of infected macrophages, and leads to the production of inflammatory cytokines
and a T cell immune respse (Marino and Kirschner 2004). Other immune cells,
such as monocytes and neutrophils, are recruited to the lungs as well, and form
the granuloma alongside macrophages, T cells, and antfirodycing B cells

(Flynn et al. 2011). The developing structafegranulomata and other elements

of their structure directly relate to
TB infection. Calcification beginning in the caseum is typically a sign of
successful sterilization and a resultant decrease in inflamynatgponse;

infected granulomata may also exhibit no necrosis or become extensively fibrotic
throughout their structure, as opposed to the outer fibrosis frequent in necrotic
lesions (Flynn et al. 2011). Granulomata without necrosis are generally smaller
than necrotic granulomata and more likely to exist where the infection is
successfully contained, while caseous lesions are generally larger, at least 5mm in
diameter, and present a greater danger of spreading the infeclibn as
tuberculosiscontinue to eplicate in the caseum (Gammack et al. 2004).

The role of antinflammatory effects in TB infection has been elucidated

t

he



with the assistance of computational modeling of cell signaling and granuloma
development and relates mainly to the prevention of dartmbealthy tissue
caused by inflammation. A greater amilammatory signal response limits levels
of necrotic caseation, at the cost of limiting activation of the immune system by
inflammatory cytokine signaling and decreasing the number of succgssfull
sterilized granulomata (Cilfone et al. 2013, Cilfone et al. 2015). Cytokines
relevant to the TB disease environment include tumor necrosis-factof T NF ) ,
interfewon @an@dl WEHrious interleukin (IL)
Cadena et al. 200). TNF is a prominent primflammatory cytokine, known to

have a role in the symptoms of physical deterioration during TB infection, and
induces macrophages to produce-pritammatory factors such as-il2, which is

a factor during the initiation of hedp T cell responses, along with-ILb a n d
additional TNF (Flynn et al. 2011). TNF signaling also classically activates
macrophages to promote phagocytosis of pathogens and is a factor in apoptotic
signaling (Flynn et al. 2011). IFRN i snflapnmatory asvell and produced by

T cells, which have been observed to produce it while in the lymph nodes after
priming for response thl. tuberculosisand in other tissues as well, particularly
during the active form of the disease (Flynn et al. 2015) -idfiimmatory

cytokines include TG a nID and tan be produced by macrophages during
the initial TB infection, mainly AAMs, and by regulatory T cells in lesser
guantities (Flynn et al. 2011, Cilfone et al. 2013). The relationships between the
sources and eftes of different cytokines have been included in recent raadtie

models of TB granuloma formation and play an important role in the fate of a
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granuloma with regard to structure and bacterial content (Cilfone et al. 2013,

Pienaar et al. 2017) (Figure 2).
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Macrophages and inflammatory or cytotoxicdl varieties produce TNF and
induce apoptosis, immune cell recruitment and macrophage activatiaf.if_
produced by active macrophages, including infected cells, and tends to inhibit
pathways which would increase the existing immune response (Cilfahe et

2013).

Recent research of TB pathology has disputed the classic divide of TB
infection into latent and active forms in favor of a spectrum of activity.

Biologically, this concept of a spectrum is intended to more closely reflect the

11



nature of indivilual granulomata and the variety of pathological outcomes these
infected lesions produce, such as successful sterilization, equilibria with a
containedM. tuberculosisnfection, and unbalanced containment resulting in
emission oM. tuberculosidacilli and a more active infection (Figure 3) (Cadena
et al. 2017). The different disease outcomes are dependent on the efficacy of the
immune response and activity of different factors, including the balance of
inflammatory and antinflammatory molecules and dibution of types of active
immune cells at the granuloma. The size and structure of granulomata moreover
affects the ability of molecules, especially pharmaceuticals, to diffuse and act
against the disease pathogen. A clear understanding of the develaime
granuloma structure and its effects is thus becoming more relevant to the research
and development of practical and efficient therapies for TB.

Thearetical granuloma equations

' ! Figure 3: Image

at+b+c=x Sterile granulomas @ = pro-inflammatory cytokines
a+c-e=Xx B = anti-inflammatory cytokines
. ' from Cadena et al.
a+bh+e= ¥ ¢ = activated host cells
a+2b+c=y Stable granulomas d = dyzregulated host cells
a+bt+c+d= Y € = excessive immunopathology 2017 GranU|oma
a+b+c+d+e=z _f-bactarialvirulenca or
i dulati

a+b+e=z Dizseminating [mmeRemeTTEen outcomes may be
a+b+d+f=z granulomas
2a+b+2c=z

= represented as the

results of combintgons of immune factor inputs. Sterile granulomata are
successfully cleared of bacilli, while stable granulomata exist in an equilibrium
which contains the infection and could become unbalanced. Disseminating
granulomata are host to actively replicatingithawhich are unsuccessfully

contained, permitting distribution to the rest of the I(@gdena et al. 2017).
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Current TB Therapy and Future Needs:

In clinical practice, treatment of TB infection has changed little since the
1990s, using a combinatior antibiotics taken regularly by the patient over
months of treatment in an effort to eradicateNha@uberculosigpathogen (Bass et
al. 1994, Dartois 2014). The primary four drugs used in TB therapy are
ethambutol, isoniazid, pyrazinamide, and rifamp{&artois 2014). Ever since
the establishment of these medications, the course of treatment for TB is to
administer all four drugs for the first 2 months of treatment, then continue using
only isoniazid and rifampicin for the latter 4 months of the treatrogcle (Bass
et al. 1994, Dartois 2014). In typical doses, ethambutol achieves peak plasma
concentrations-2 hours after administration and is primarily believed to provide
benefits through preventing. tuberculosidrom dividing (Bass et al. 1994).
Isoniazid and rifampicin are bactericidal and penetrate well into other bodily
fluids or tissues respectively, reaching peak concentrations in plasma and other
regions after 2 hours (Bass et al. 1994). However, isoniazid is a prodrug rather
than being baeticidal itself, activated by the catalase preseM.ituberculosis
and exhibits strongersheite r m st er i |l i zing effects in a
term sterilization effects in granulomata (Manier et al. 2011, Prideaux et al.
2015b).Ri f a mpphacmacokiretic characteristics are notable as it does not
readily diffuse into caseum following a single dose, but it accumulates in caseum
over the course of days of regular treatment and is effective against the bacteria

residing there (Prideaux et 2015b). Pyrazinamide reaches peak plasma
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concentrations roughly 2 hours after ingestion and effectively penetrates into
tissues, caseum, and even infected macrophages, killing their intradellular
tuberculosigdue to its increased activity in an acid eamment (Bass et al. 1994,
Prideaux et al. 2015b).

While most of these standard drugs cause toxic effects relatively
infrequently, some of these effects can lead to dangerous complications.
Ethambutol is capable of causing retrobulbar neuritis, inflanoméat the optic
nerve, in fewer than 1% of patients who receive a low dosage and potentially
leading to longterm vision damage; isoniazid treatment can uncommonly lead to
neuropathy and can cause hepatitis with an increased risk in older patients (Bass
et al. 1994). Rifampicin and pyrazinamide are also capable of causing liver
damage, the latter drug also more frequently causing increased uric acid
concentration in the blood and joint pain, and both drugs may be associated with
skin rashes and gastrointiesl distress (Bass et al. 1994). While not overtly
harmful, rifampicin is also notable for discoloring excretory fluids such as urine,
tears, and sweat to orange when it is present within them (Bass et al. 1994). The
administration of multiple drugs ovan extended time course also has the
potential to cause adverse interactions. For example, rifampicin increases the
|l iverbés effectiveness at metaboltzing drug
term effectiveness of contraceptive medication (Bass ¢08#4).

Additional drugs are the subject of research and are also applied in cases
where treatment is complicated by drug resistance, as in muHidsigjant TB

(MDR-TB) or extensiveldrug resistant TB (XDR'B). Fluoroquinolones and

14



aminoglycosides arexample categories of drugs used in MDBRtherapy. An
example of a fluoroquinolone sometimes used for this purpose is moxifloxacin,
which accumulates in cellular granulomata and is generally not harmful to the
patient, though some gastrointestinal syonmg and hypersensitivity reactions are
possible (Bass et al. 1994, Dartois et al. 2014). Moxifloxacin is known to be
effective against persister populationgvbftuberculosiswhich resist antibiotics
and can reside in granulomata, though it has beenmsgrated that moxifloxacin
does not effectively diffuse throughout the caseum core of necrotic granulomata,
which can harbor these persister bacteria as well (Prideaux et al. 2015b).
Clofazimine, an ardieprosy drug, is another which has been the subfect
research for TB treatment (Bass et al. 1994). Unfortunately, data collected from
clinical trials demonstrates poor penetration of clofazimine into caseous regions
of granulomata, despite its promising effectiveness in cellular mouse granulomata
(Prideax et al. 2015b). The time necessary to treat MIBRis significantly
longer than nomesistant TB and may necessitateZB8months of therapy with
the four main TB drugs, a fluoroquinolone, and potentially an additional antibiotic
such as capreomycin or aminoglycoside; XDRTB may require a similar time
of treatment and use antibiotics that are both less effective and more toxic to the
patient to circumvent bacterial resistance (Dartois 2014).

Identification and treatment of drugsistant forms of TB fotreatment
can be resouremtensive, due to the molecular diagnostics and facilities which
are the standard for definitively identifying the resistance of TB. Successful

treatment of drugesistant TB strains is thus severely hampered wherever such
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costly resources may be unavailable. A study at the Federal University of Rio de
Janeiro has aimed to find a method to bridge this gap using an artificial neural
network, a category of computational structure capable of learning abstract
information from largedatasets, to support TB diagnoses as-desgstant or not
drugresistant (Evora et al. 2017). While no distinction between MBRand

XDR-TB was made, an artificial neural network trained with large datasets
incorporating patient symptoms and history \abke to achieve sensitivities

greater than 90% and specificities greater than 80% for the identification ef drug
resistant TB when provided with further symptoms and history for a patient
(Evora et al. 2017). While a wide range of variables, even includargal
status, were used, examples of the most re
diagnosis included factors such as loss of appetite, cavitation, and prior treatment
for TB. A potential limitation was noted by the author, in that data fromivelat

few patients coinfected with HIV and TB were used to generate data in the study
due to their availability (Evora et al. 2017). This could decrease the potential
relevance of HIV in the neurpdsitveet wor kés d
patients. &in color also became classified as a relevant variable to the diagnostic
decision, which the authors believe to be likely representative of a demographic
trend in their population and support future studies which would use data from
different populationg§Evora et al., 2017). However, parameters and demographic
trends such as this may indicate an underlying difficulty when attempting to
generalize this approach to an unbiased diagnosis in populations where less

consistent trends in demographics may be veske
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Treating forms of drugesistant TB and customizing approaches to TB
therapy for different individuals is a topic of recent research, and one that mirrors
the rising attitude of personalized medicine as the ideal future of medical

technological delopment. The benefits of a more personalized procedure for a

given patientds case of TB are increasingl

towards TB infections away from simple cases of latent and active, and towards
the idea that differences exisih h b et ween the di seaseds
different patients and between individual granulomata, which affect the
penetration of drugs based on their structure and may contain significantly
different bacterial populations (Cadena et al. 2017).

Customizhg t herapy to the properties of
granulomata is complicated by the lack of access to human granulomata while
they remain inside of a patient. Medical imaging technology is leading towards
improvements in this area, as recent stutli@ve begun accurately assessing the
properties of diseased lesions using noninvasive imaging. A combination of
positron emission tomography (PET) using radiolabetéddo-deoxyglucose
(FDG) and combined with computed tomography (CTjaX scans has
demonstrated the ability to observe granulomata and predict disease outcomes

from the imaging datasets gathered (Chen et al. 2014). Typical stafezace

for determining the effectiveness of di

nt e

S éea

TBinvolvescultu i ng a patientds sputul and examini

tuberculosis By default, this is a method which neglects to more closely examine

the physiology of the TBnfected lung and spatial variation between

17



granulomata, and medical imaging biomarkersatatde through PET/CT

scanning are equipped to inspect the disease environment for such information.
These imaging techniques were used to predict patients who would respond to
therapy with a sensitivity of 0.96, 23 out of 24 responsive patients, and a

speificity of 0.75, 3 out of 4 nomesponsive patients, in clinical trials for a PET

scan after two months and CT scan after 6 months of treatment (Chen et al. 2014).
The same study found the predicative value of sputum culture techniques after
two months tdhave a specificity of 0.5, 2 out of 4 noesponsive patients being
detected, and sensitivities varying between 0.58 and 0.79, with 14 to 19 out of 24
responsive patients successfully identified (Chen et al. 2014). Changes over time
from the initial bas@he were analyzed to make evaluations using these diagnostic
tools, as the initial severity of the TB infection was not associated with

determining therapeutic effectiveness. Using the CT images interpreted by trained
readers, changes in features suchuhspnary cavities, bronchial thickening,
fluid buildup, and fibrosis were associate
(Chen et al. 2014). PET data was analyzed as well, and significant decreases in
glycolytic activity were detectable in patients resgive to therapy, compared to
either increased activity or a naignificant change in unresponsive patients

(Figure 4) (Chen et al. 2014).
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representative of radiolabeleeflBoro-deoxyglucose uptake. Glycolytic activity

and structural abmmalities decrease following treatment (Chen et al. 2014).
Thisimagingb ased approach to examining

tuberculosis treatment is capable of capturing data from individual granulomata

and preserving the heterogeneity inherent tanf&ction. Future potential for

these PET/CT methods relates to the increased personalization of medicine, as

decisions in therapy using these data, machine learning, and modeling could be

tailored more carefully to the responsiveness and severity @c#ispnfection.

To further study the utility of medical imaging for TB therapy, animal studies

have been conducted as well to measure similar markers of TB pathology (Flynn

et al. 2015). Research with both animal and computational models continues to be

important to understanding the disease at multiple levels of structure.

19

patientds | ungs

and

at

S



In vivo: Animal Model Research and Human Patients

Animal models are commonly used in studies which must examine the TB
disease environment inside of organisms. Animals which havedbedied
include mice, guinea pigs, rabbits, zebrafish, cattle, and macaques (Flynn et al.
2015). The use of an animal model is subject to limitations, as different animals
may need to be infected with speerefevant analogues td. tuberculosisand
ary infection may not display symptoms relevant to humans in infection. For
example, small rodent and zebrafish models are-ehgtacterized by existing
research and studies of their genetics but have not successfully created latent
infection symptoms; thgranulomata produced in certain mice models can also
fail to display the caseous necrosis characteristic to the human disease (Flynn et
al. 2015, Irwin et al. 2015). Notably, despite difficulty in replicating caseous
necrosis in certain strains of mice s BALB/c and C57BL/6, a range of
possible lesions have been demonstrated in the C3HeB/FeJ mouse model, and
necrotic lesions are generated in rabbit infection models, leading to both animals
being used in recent studies of drug activity and penetratidB ilesions
(DeMarco et al. 2015, Irwin et al. 2015, Prideaux et al. 2015b). Furthermore,
systemic caseous granulomata have been produced in the zebrafish model, which
uses the geneticallsimilar M. marinuminfection (Swaim et al. 2006). However,
differences between humans and zebrafish in basic physiology and immune cell
behavior are a disadvantage to this model. A zebrafish granuloma contains
significantly fewer lymphocytes than the equivalent infection in a human lung

(Swaim et al. 2006). Nehuman pnmnates (NHP) such as macaques are
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particularly advantageous for medical studies because of their high similarity to
humans in terms of both genetics and immune system response, which notably
allows for these animals to be-odected with an HIV analogue asmore

specific and humarelevant disease model (Flynn et al. 2015). The cow TB
model, which employs the genetically simiMr bovisinfection, has also been
used to model human TB infection (Waters et al. 2011). Cattle display similar
adaptive immuneystem behavior to humans, and Mebovisbacterium is more
than 99% genetically similar td. tuberculosisbutcattleare sufficiently large

and resourcéntensive animals that conducting BSL3 studies involving them is
not a widespread practice (Watetsal. 2011, Flynn et al. 2015).

While these animals are all potential models for TB infection, small rodent
and NHP models have most recently been relevant to the collection of quantitative
drug distribution data and humaglevant therapeutic aids. THeug distribution
in animal models, and even in human patients, has been spatially quantified using
a combination of MatrixAssisted Laser Desorption/lonization and mass
spectrometry (MALDIMS) beginning with a 2011 study in the Rutgers New
Jersey Medicabchool which assessed isoniazid distribution in rabbit lung tissue
(Manier et al. 2011). This technique operates by scanning a-thihly
(approximately 10em) tissue sample with a
and spatial location of released idiggure 5) (Manier et al. 2011, DeMarco et al.
2015). In some cases, an analyte may need additional treatment to become visible;
isoniazid returns a stronger signal when the sample is first treatettamsh

cinnamaldehyde (Manier et al. 2011). This tegbha has proven useful to the
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study of TB drug efficacy from the perspective of heterogeneity and granuloma
structure as important; more recently it has been applied to studies with human
patients (Prideaux et al. 2015). Drug distribution in C3HeB/FeJ Inasisalso

been measured while the animals remain alive, through suppigrgbeled
rifampicin to TBinfected animals and conducting PET/CT imaging (DeMarco et
al. 2015). Such livémaging techniques and postmortem imaging of drugs

through MALDI will have more opportunities to be used practically with the
increase in modeling approaches to biology and TB infection, as a source of data
for the construction and validation of models for the efficacy of TB therapy. The
imaging technology has been applied togddistribution for other diseases as

well, such as breast cancer tumors (Bartelink et al. 2017). Models that are
informed by such data thus have the potential to be applied towards multiple areas

in human health.

Figure 5:lmages from DeMarco et al025. Images are of lung tissue from a
C3HeB/FeJ mouse 1 hour after administering rifampicin.Hematoxylin &
eosin histological stain of the tissue; caseous regions are outlined in black, while a

noncaseous infected region is marked with a dotted BrieTwo-dimensional
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MALDI -MS heatmap of relative rifampicin distribution in the tissue, scaled as
blue (low) to red (high) through the visible spectrum. Drug diffusion following

the dose is noticeably restricted in the caseum (DeMarco et al. 2015).

NHP nodels are used in recent TB research conducted at the University of
Pittsburgh (Flynn et al., 2015). The main animal species used in such models are
species of macaque, namely the rhesus maddgquaca mulattaand the
cynomolgus macaqudacaca fascicularisThese species, unlike many animal
models, can be used to exhibit active and latent TB responses, as characterized by
the time of disease symptom development, when infected with relatively low
doses of pathogen via aerosol. Rhesus macaques tend to dateaxtive TB
unless lowvirulence strains are used for infection, while cynomolgus macaques
demonstrate a more even distribution of the two disease categories (Flynn et al.
2015). Both species are also used to study the timelines of early disease
progresion, as the immune system processes during the establishment of TB
infection are less known than later processes in humans, and the immune systems
of NHP model animals are structured and act more similarly to human systems
than those of small rodents (Rly et al. 2015). Furthermore, closer examination
of these NHP models demonstrates a highly similar spectrum of pathology to
human disease, particularly regarding granuloma structural variety, which is more
applicable than the variety observed in mouse risadethe study of the
relevance of granuloma types to human disease progression (Cadena et al. 2017).

The progression of these lesions during disease, similarly to other animals, has
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been studied using the PET/CT imaging with radiolabeled FDG technique
described in human studies, which is capable of discerning the independence of
activity between granulomata and characteristic differences in size, inflammatory
activity, and distribution between animals with latent or active infection (Flynn et
al. 2015).

Specific elements of the immune system, such as the role of TNF cytokine
or specific cells during TB infection, have been studied in these animals as well.
Introduction of an a{NF antibody to cynomolgus macaques caused increased
granulomata size duringarly infection and the potential for reactivation during a
latent infection without disrupting the overall structure of granulomata during
disease, while the organized immune response experienced greater distribution
during earlier mouse studies (Flynnag 2015). Immune cells with unclear roles
and efficacy during the TB immune response, such as B cells and neutrophils,
have been observed in NHP model granulomata as well as those in humans (Flynn
et al. 2015).

Recently, human patients have also couiied to the availability and use
of image data. A medical study published in 2015, authored by the New Jersey
Medical School and collaborating researchers, examined the diffusion of multiple
antibiotics into human TB lesions, and is among those studies Wwave applied
MALDI mass spectroscopy to examine regions of lung tissue and granulomata in
which the drugs diffuse quantitatively (Pr
results spanned image data collected from the diffusion of many antibiotics

support ifampicin and pyrazinamide as drugs that are capable of penetrating
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throughout the necrotic caseum and remaining at sufficient concentration for
activity. Pyrazinamide in particular was distributed in cellular granulomata
components equally with caseum,ilghrifampicin appeared to increase to
sufficient concentrations after achieving steathte concentrations following

daily treatment; this behavior was replicated in the rabbit model of TB infection
and therapy following 7 daily doses of rifampi¢kigure 6) (Prideaux et al.

2015b). However, this study determined that moxifloxacin and clofazimine could
not effectively penetrate necrotic lesions, and that an inactive form of isoniazid,
acetytisoniazid, was ineffective despite its penetration. For moafton and
clofazimine, this finding casts doubt on their utility in practice, as both drugs had
been expected to perform well before clinical trials; their inability to diffuse
significantly into necrotic caseum is potentially the reason that thesteo

results showed more effectiveness than they have found istéage clinical trials
(Prideaux et al., 2015b)yhe authors suggest that being aware of the
spatiotemporal diffusion of different drugs will make for more effective TB
therapy; the results dlis study led to a follovup paper regarding the use of

these data to predict the penetration of drugs into caseum through computational,

statistical analysis (Sarathy et al., 2016).
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Moxifloxacin
[M+H]* m/z 402

Rifampicin
[M-H] m/z 821

Figure 6:Images fom supplementary information to Prideaux et alL5) Top
row: hematoxylin and eosin stain images for-ifBcted lesions collected from
different human subjects; scale bars represent 5mm and black contour lines
outline necrotic regions of interest. Second, third, fourth rows: representative two
dimensiamal ion maps collected through MALIMIS imaging for pyrazinamide,
moxifloxacin, and rifampicin for these lesions. The first three lesions/columns
were collected within 24 hours following a single drug dose, while the single
rifampicin example in the fourtbolumn was collected at steadtate conditions
following 7 daily rifampicin doses. All images display relative percent signal as
shown in the rainbow scale bar. Moxifloxacin and rifampicin do not easily
penetrate caseum after one dose, though rifamaa@omulates sufficiently in the

necrotic regions during consistent therapy.

26



The aim of the followup paper was to identify key chemical factors which
determine the extent of drug penetration into the caseum. The authors combined
rapid equilibrium dialys and liquid chromatography with mass spectroscopy to
producedrugpi ndi ng data, using a ficaseum suUrrogeé
1 monocyt es t oinwvtrdforeahowd teindece lgpid uptake, then
lysing the cells into a lipigich mixture(Sarathy et al. 2016). Then, they
conducted principle component analysis (PCA) of 279 identified chemical
compounds in the caseum surrogate, which correlated with reasonable molecular
descriptors. For example, characteristics common to thecbastiatedorincipal
components included high lipophilicity, high numbers of aromatic rings, and low
solubility as strong predictors of caseum binding (Sarathy et al. 2016). This
information was to develop a computational predicative model for the unbound
fraction d a given drug when mixed with the caseum surrogate, which correlated
well with experimental data. The model used a consensus combination of partial
leastsquares regression and supervised machine learning, including an artificial
neural network (Sarathyt al. 2016). Similar to compartmental models, this
technique does not make use of spatial and structural information. However, the
authors demonstrate an interesting plan for computational models in practical use,
as candidate drug molecules may be filidoefore clinical use based on their
expected tendency towards binding to molecules in the caseum (Sarathy et al.
2016).

In vivostudies are a fundamental means of studying pathology in living

tissues, where all potentially relevant aspects of the immuwes t e mds response
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and biology are present. Computational simulations are different, as all necessary
parameters are piaefined by the researchers, but when appropriately set up with
useful mathematical models, and potentially even with realistic dateeddrom

in vivoresearch, they too can explore difficult and theoretical questions about the

effects of disease.

In silico Modeling Review:

Theoretical approaches to TB research use mathematical modeling and
information obtained from studies of the dise to examine possible outcomes
from established initial conditions. These models are simulated computationally,
and have been created to describe granuloma growth and development, and for
the PK/PD interactions dfl. tuberculosisand immune cells to thapy. Over
time, such models have progressed due to advances in computing and the amount
of known data; earlier models used relatively small numbers of compartments for
cells to exist and be transported between, while more recent models use larger sets
of compartments or new methods, such as numerical simulations of a number of
discrete cells.

One older mathematical model, developed in 2004 by researchers at the
University of Michigan, aimed to model the progressioMotuberculosis
infection and the immue response using 17 differential equations in two
compartments, representative of the lung and the lymph node. While the
importance of granuloma formation and spatial heterogeneity was beginning to be

understood at this time, not enough information wadigewed to be known to
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model these structures, so the temporal compartment model was chosen for the
simplicity of understanding human infections, and to build on a single
compartment lung model of the infection produced by the research group before
(Marino and Kirschner 2004)igginton and Kirscher 20Q01The lung

compartment of the model described cell populations using differential equations,
such as macrophages, which were divided into resting, activated, or infected cells.
For example, the equation thesearchers used to describe the quantity of resting
macrophages (N in the lung compartment was formulated as
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where each term regsents a different biological means of changing the cell
population (Marino and Kirschner 2004). The first two terms represent
recruitment of macrophages to the TB infection site, which has a baseline rate of
sv and an increase in rate dependent on tlaatifies of activated macrophages

and infected macrophages AMnd M), while the final term represents the
basel i ne s pecigf(Magno and Kirkschrere2@0d)hThetrard, e , ¢
fourth, and fifth terms of the sum represent the rates of macrophage infection,
macrophage dactivation, and macrophage activation, respebfivthese are in

turn dependent on the quantities of extracellular bactegpai®l resting
macrophages, activated macrophages antbdlconcentration {b), and the total
concentration of bacteria {B IFN-0  a n4d(l, dnd_k), and resting

macrophage (Marino and Kirschner 2004). Bacterial concentration parameters
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similar to MichaelisMenten terms are shown as wel énd @ in the above

example) to change the rates from their maxima at low concentrations of bacteria
(Marino and Kirschner 2004). Sidations with different ranges of parameters

were conducted to determine the sensitivity of related variables. The change in
populations of other macrophages are described by linear combinations of similar
terms, though infected macrophages also die throwaggtporated rates of cell

lysing and M1 immune response killing (Marino and Kirschner 2004). Other
eqguations described phenomena such as cytokine production (far |FNL2, L

IL-10, and Il:4), THP lymphocytes, which migrate from the blood and

differentiate into Th1 or Th2 cells, and a bacterial population divided into
extracellular and intracellular bacteria (Marino and Kirschner, 2004). Dendritic
cell populations were also added to the model to interact with the lymph node
compartment, represented asli2@ population in the lung, the cells of which
mature into MDCs and migrate to the lymph node. The presence of MDCs
induced recruitment of immature ThO cells at the lymph node into the THP
lymphocytes, which migrate to the lung compartment (Marino anstKirer

2004).

I niti al estimates of the model 6s par ame
experimental data using humans and-haman primates where possible, though
mouse and rabbit data were also used for certain guesses (Marino and Kirschner
2004). After analyzinghe sensitivity of these variables, estimates of the model
were solved using MATLAB to produce a variety of graphs representing possible

infection outcomes, dependent on the value
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parameters for infectivity, migration, cell kilg, and other phenomena. Varying

these was further used to generate simulated responses to conditions representing

an initial active or latent TB infection (Marino and Kirschner 2004). Ultimately,

variables related to bacterial growth and infection ratesimmune cell

controlled killing rates were deemed most significant to determining successful

clearance of the infection. The authors note that such key processes are potential

targets for therapeutics (Marino and Kirschner 2004). Furthermore, ar@lyises

model 6s dynami c behavi eactivatioa mechasisend, t o f i nd
such as a sheterm return caused by excessive immune cell turnover, or a tonger

term scenario (stated to be up to 30 years) if TB is not cleared and continues to

slowlyinf ect macrophages while the i mmune syst
(Marino and Kirschner 2004). Some limitations to the model were observed; both

latent and active TB exhibited similar early behavior, which the authors consider

to be potentially an effect ofi¢ lack of accounting for granulomata and spatial

effects (Marino and Kirschner 2004). The model also predicts a predominance of

ThO cells, compared to low populations of Thl and Th2, duringteng latent

infection, and the authors believe that this mesplve some controversy

regarding the population dynamics of these cells during latency. This explanation

may have further credence i f additional [
cells were addressed; while a source of inflammatory cytokinessequting NK

and CD8+ T cells is factored into the model, adding these groups as variable

populations may also affect the simulated population dynamics.

Researchers from the same lab at the University of Michigan published
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another model of macrophage beioa during infection during the same year;

rather than examining the dynamics of macrophage response using compartments
alone, they aimed to capture spatia®yevant predictions using additions to the

model to describe macrophage motions as a continoiwmedimensional space
(Gammack et al. 2004). Equations from earlier work were used as inspiration, and
the change in macrophage quantities in space and time were described as a linear
combination of factors related to phagocytosis of bacteria, macremleagh, the

killing of intracellular bacteria, and macrophage motion by diffusion and
chemotaxis, where the chemoattractant is assumed to be generated by
extracellular bacteria, diffuse in space, and decrease from both natural decay and
uptake by macroplgpe s ( Gammack et al . 2004). The res
model for phagocytosis which necessitated modeling macrophages which
contained different numbers of bacteria as separate variables; for example,
uninfected macrophage populations decrease at depéndent on their

phagocytosis, while the population of macrophages containing one bacterium
increase at the same rate (Gammack et al. 2004) The radius of the granuloma was
simply described as having a rate of change equal to the velocity of macrophages
at the current boundary. Simulations of the model were conducted for
homogeneous and variable initial conditions and demonstrated general
conclusions such as that granuloma growth would decrease with increased rates of
phagocytosis and bacterial killingopHve ver , t he aut horsé appr oac
the number of variables and equations required for the phagocytosis model, to the

point where they assumed that a load of 2 bacteria would prevent intracellular

32



killing, 3 bacteria would prevent phagocytosisg @bacteria would lyse the
macrophages (Gammack et al. 2004). Expanding such a model to include
macrophages which incorporate significantly larger populations of bacteria may
be necessary to improve the applicability of such conclusions, such a number of
differential equations was deemed impractical at the time (Gammack et al. 2004).
The authors admitted as well that the model did not demonstrate the ability to
portray steadhgtate granulomata (i.e. radius rate of change equal to 0), likely
because the icporated behaviors did not currently account for immune cell
activity beyond the innate immune response (Gammack et al. 2004).
Compartment models of TB infection lacking spatial information have
been further modified to model therapeutic interventions.ekample, the model
developed at the University of Michigan was modified in 2011 by researchers
involved with the Université Claude Bernard Lyon 1 to simulate TB therapy using
rifampicin (Goutelle et al. 2011). Pharmacokinetic (PK) and pharmacodynamic
(PD) models were added to the list of differential equations. The PK model used
compartments for oral depot, plasma concentration, pulmonary epithelial lining
fluid concentration, and pulmonary alveolar cell concentration. The oral
compartment only incorpot@d an absorption rate to the plasma, while the other
compartments included compartmental interchange behavior, and the plasma and
extracellular fluid were modeled with elimination rates for rifampicin. The
original cel |l p opul abpstiyunchamged thdughs equati ons
bacterial growth mechanics both intracellular and extracellular were modified by

inclusion of the PD model to account for bacterial killing via rifampicin,
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introduced to the pulmonary region via the PK model (Goutelle et al., 2011).

Notably, this model assumes that modaéeduberculosisells are uniformly

sensitive to rifampicin treatment. Different simulations were conducted using the

model to simulate either latent or active infection, and simulations including

therapy introduce rifampicin to the model after 180 days, treated as a 600mg

dose to the oral compartment every 24 hours outside of vadalsisd

experiments (Goutelle et al. 2011). Different sets of PK parameters were also used

to investigat e t Rkvariatomdbetiveers suljeetsy and itesultsi t y t o
demonstrated considerable variability in the killing of both extracellular and

intracellular bacteria between these different simulations (Figure 7) (Goutelle et

al., 2011). Therapy was observed to have a bipledgct, rapidly killing bacteria

for approximately 2 days before decreasing in rate, which previous experimental

studies had observed and suggested that the behavior a cause linked to the

formation of resistant bacterial populations. As this study disnuoatel

resistance, the authors suggested that the modeled intradelluldrerculosis

served as a Areservoiro in a possible expl

viral intracellular pathogens (Goutelle et al., 2011).

'“}N

Figure 7: From Goutelle eal. 2011.
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while blue lines represent intracellular bacteria concentrations, both in the

mo d e | 6 esmpartmeng Siraulated rifampicin therapy began on day 180, and

mul tiple Ilines were plotted for 34
parameters. Biphasic response to therapy is apparent in subjects where the
bacterial concentrations appear to staeihfter an initial rapid decrea@@outelle

et al. 2011)

Notably, the authorsd model her e

dose could significantly increase efficacy of treatment by kilWhduberculosis

Asubj ec

predic

faster, which agpredietions (Goutehe etoal. 20E1). gr oup s 6

However, they admit possible limits to this prediction; the other drugs typically

mixed with rifampicin (particularly isoniazid, pyrazinamide, and ethambutol) are

not modeled, and all bacteria are assumed to be sudedp@ss et al., 1994,
Goutelle et al. 2011). The last point in particular is relevant, even outside of
MDR-TB or XDR-TB, because prior studies have examined the formation of
drugresistant bacterial populations during treatment. In the case of isoniazid
resistance, one study assessing the effects of isoniakid ttverculosis
specificallywhen deliveredn vitro through a hollowfiber system, determined
that 73% of resistant bacterial isolates resulted from point mutations to the
catalaseperoxidase gemand mathematically modeled the bacterial population

changes (Gumbo et al. 2004, Gumbo et al. 200erlimitations included that

the model accounted for no effects of rifampicin on the immune system and was

developed from heterogeneous data and pusigeconceived models, including
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PK parameters from healthy human subjects, while in reality the diffusion of anti
TB drugs is now welknown to be hindered by the substances present in necrotic
granulomata, though for daily rifampicin treatment this magten less (Goutelle

et al. 2011, Prideaux et al. 2015b, Sarathy et al. 2016). Nonetheless, development
of this model was an important towards more advanced models of the interaction
between pharmaceutical treatment and advanced TB infection.

A recent stdy involving compartmental models, primarily authored by
researchers at Colorado State University, examined the use of singular and
combination bedaquiline, another quinolone, in TB therapy using both BALB/c
mice and C3HeB/FeJ mice (Irwin et al. 2016). Tésearchers used MALEMS
to examine drug distribution in infected lung tissue and found that the
heterogeneous pathology observed in C3HeB/FeJ mice had a significant effect on
treatment; bedaquiline accumulated strongly in monocytes and cellular lesions
both species but failed to penetrate the C3HeB/FeJ caseous granulomata (Irwin et
al. 2016). After analyzing the animal data, the researchers designed and studied an
11-compartment PK model using 10,000 Monte Carlo simulations, to estimate the

mo d e |rameterp (Rigure 8) (Irwin et al. 2016).
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Figure 8:Image from supplementary
\\ K,
NP0

information to Irwin et al. 2016.
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compartment (M), M2 could transition into one peripheral compartment or be
eliminated, and both bedaquiline and M2 could transition to compartments
associated with lung tissue, uninvolMedg tissue, or the lesion and be

eliminated at those compartments (Irwin et al. 2016)

So far in TB research, more spatiatBlevant models of granuloma
development have been developed which model the development of a finite
guantity of pixels which reesent different aspects of the disease environment,
such as immune cells, bacteria, or caseation. A recent multiscale model used in
research by groups including the University of Michigan Departments of
Chemical Engineering and Microbiology/Immunologydadhe University of
Pittsburgh is calle@ranSim(Cilfone et al. 2015). Thim silico model of
GranSim permitted numerical simulation of a large, but finite, number of

di scretized human cells divided into vario
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c omp ar ttuee (Citfome et ah 2013). These include T cells, treated as
regulatory, cytotoxic, or pranflammatory, and macrophages, which may be
resting, infected (witM. tuberculosi} chronically infected, or activated (Cilfone
et al., 2013). Modeled cell behaxs included recruitment, movement, apoptosis
with a release of extracellular bacteria, and changes of state between different
types of active cells, or infected cells following uptake of extracellular bacilli
(Figure 9) (Cilfone et al. 2013, Cilfone dt 2015). Continuous variables were
used to quantify variables outside of human cell numbers, such as quantities of
bacteria in intracellular, extracellular, and irt@seum compartments, though the
spatial locations of these compartments are also redoakscrete pixels of the
model, the same size as a hurtati component. The software implemented a
molecularlevel model of rate equations from experimental data describing the
interaction of TNF and K10, as continuous variables, with receptors atid ce
components; their quantities influence the transition of immune cells between

active states (Cilfone et al. 2013, Cilfone et al. 2015).
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Cell Types

= Resting M¢

s Infected M¢

m Activated M¢

= Chronic M¢

m Cytotoxic T Cell (T.)
» Regulatory T Cell (T.)
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m Extracellular Bacteria
= Pro-Inflammatory T Cell (T,)

Vascular source

Figure 9:From Cilfone et al. 2013. Output of GranSim for various granulomata

simul at ed f edr i2nGsidhacdaphger in thé I&end, which displays

the color of pixels/micrwompartments which contain different material A

Initial set of parameters, estimated from prior experiments and modeling research.

B 1 Parameters are adjusted to imitate a knockoutN#t ih the infected subject.

C1 Parameters are adjusted to imitate a knockoutofdFNi n t he i nf ected s
Removing either inflammatory cytokine noticeably reduces macrophage

activation and increases the number of compartments representing exaacellul

bacteria (Cilfone et al. 2013).
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GranSim has been used in a study aiming to determine the rolel6fdk
an antiinflammatory cytokine, in TB granulomata development (Cilfone et al.
2015). From the data obtained with this multiscale model,0lwasdetermined
to limit necrosis and cytokine production, thereby decreasing early caseation at
the cost of decreasing the chance that a lesion will be sterilized by the immune
system (Cilfone et al. 2015). Accordingly, the authors suggest tHeQ Heceptor
antibodies may have therapeutic benefits while the adaptive immune response is
active during TB infection (Cilfone et al. 2015). The GranSim model is notable
for its applicability to questions about the TB disease process but may suffer due
to the limitatons of using discrete micimompartments at each pixel; results such
as those shown in Figure 7 tend to contain large regions of extracellular bacteria,
which could realistically exist in caseum or among cellular surroundings, but the
regions marked as aasm do not appear as large and connected as regions
observed in medical images (see Figure 5, Figure 6) (Cilfone et al. 2013,
DeMarco et al. 2015, Prideaux et al. 2015b). On the other hand, GranSim was
combined with a PK/PD model of fluoroquinolone drugglasma and lesions in
2017. This study was able to simulate spatiedhgvant aspects of antibiotic
diffusion for 3 fluoroquinolones: moxifloxacin, levofloxacin, and gatifloxacin
(Pienaar et al. 2017). The modeled pharmacokinetics included caseurssaed ti
binding rates, rates of uptake by immune cells, and drug elimination rates (Pienaar
et al. 2017). The concentrations and distributions observed during simulation
exhibited trends comparable to data gathered from rabbit granulomata using the

same drug, demonstrating the potential for spatia®yevant drug distribution
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models of granulomata (Figure 10) (Pienaar et al. 2017).
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Figure 10:Image from Pienaar et al. 2017 - Alistributions of gatifloxacin,

moxifloxacin, and levofloxacin in rabbit gramumhata and discretelsimulated

granulomata, mapped as relative concentrations with MAUBIin the rabbit

lesions and as predicted concentrations during simulatiormBans (solid line)

and standard error (dashed lines) of the three drug relative

abundanes/concentrations vs. the distance from the edge of the granuloma in

rabbits and in simulation. Similar trends are observed in the simulated data when

compared to the rabbit data (Pienaar et al. 2017).

Through the use of relevant data, such as the MAUB data which has

accumulated in research papers and parameters used in modeling research, it may

be possible to develop means of predicting drug penetration from the

characteristics of specific granulomata. Methods for doing so may include
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techniques imachine learning and the development of spatialgvant

continuum models of TB lesions exhibiting different pharmacokinetic properties.

The latter in particular could predict drug concentration profiles in granulomata,

ideally with increased accuracglative to multiscale models. Future methods

using machine |l earning from sets of prior

|l esions, or using personalized continuum m
effectively inform drug treatment regimens tha¢ more personalized to the

heterogeneous granulomata exhibited by a specific patient. This is of particular

interest due to the advances in PET/CT analysis of TB lesions, which could allow

for sufficient data to be collected of granuloma structure farhina learning

approaches or continuum modeling (Chen et al. 2014).

Deep Learning: Relevance to Biology
The use of artificial neural networks for complex and automated pattern
recognition tasks, such as problems presented by speeatnition and
compuer vision, has seen a resurgence of interest since research in 2006 (LeCun
et al. 2015). In particular, the machihee ar ni ng practi ce of HAdeep
manylayered neural networks allows the networks to learn and identify
meaningful structures frotarge datasets. For example, in computer vision and
image processing applications, a neural network may be used to identify specific
patterns such as those presented by groups of edges from the raw data and use the
positions of such patterns to identifyrre complex idea, such as a specific

object (LeCun et al. 2015).
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To computational biology and the world of growing, insufficiently
analyzed datasets, this technology leads to attractive methods of analysis. As
research generates publigyailable setsfagenomics, metabolomics, and
proteomics data, machine learning has found a use for identifying relationships
between expression of variable genes and predicting the effects of a perturbation
(Angermueller et al. 2016, Xing and Gardner 2006). Furtherrbaragical
image analysis has found a use for deep learning with convolutional neural
networks (CNNs), which are capable of identifying and characterizing
components of an image such as cells, membranes, and relative morphological
development (Angermuellet al. 2016). Neural networks aresamed because
of the inspiration their design takes from neuroscience, and this idea is
particularly strong for CNNs, which use methods that account for simple features
and highlevel combinations of image featuresaditly inspired by research of the
visual cortex (Angermueller et al. 2016).

Through research and clinical studies, there exists applicable image data
for multiple-drug penetration into TB lesions (Irwin et al. 2015, Prideaux et al.
2015). It may be posdibto prepare data analysis programs such as deep
convolutional neural networks that are capable of answering questions relevant to
this problem, such as the locations and cellularity of TB lesions, and combining
this analysis with relative drug penetratidata to predict the transport of specific
drugs into different lesions. Relatedly, the folloyy paper to the New Jersey
Medi cal S cskate @alysss ofldraig pgnetration in human lesions used

machine learning to predict the binding affinity @frdus drugs to chemical
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markers in the caseum, though this approach did not precisely use the spatial
heterogeneity of lesions (Sarathy et al., 2016). A neural network or other
computational structure intended to learn similarities between lesion intaiges,
more specific parameters from example lesion images, will need to be trained
appropriately for the task, and possess a clearly defined means of predicting

penetration in these images.

Basics of Machine Learning and CNNs

Machine learning can be applisminumerous tasks which involve
interpreting data; for image data, common tasks may include classification, where
a neural network learns to categorize test images into set categories, or
segmentation, where the algorithm attempts to categorize spegiins of
pixels in a test image into different objects. Most commonly, the learning process
is supervised. For example, when learning a classification task, the neural network
will be supplied with a large input set of images corresponding to all cagegori
that are labeled with their categories; for an imegmgnition network, the
images may contain different types of animals or objects which are the categories
(LeCun et al. 2015).

Neural networks in general require a task and an ability to measure the
own performance, or error, to learn from a specific example. The neural network
typically represents the difference from optimal performance as a mathematical
Al oss function, 0 related to some measure o0

(Goodfellow et al2016). As the neural network is supplied with the initial list of
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examples, it modifies numerous internal parameters, or weights, with the goal of
producing a function which completes the task with minimal loss. Outside of the
learning process, thereekuserd e f i ned Ahyperparameters, 0 wh
constant throughout the learning process and define the architecture of the neural
network or influence the rate at which it may change its adjustable weights
(Goodfellow et al. 2016). The optimization algbm for achieving a useful
function is commonly stochastic gradient descent, as it relies on computing an
initially random output from a small set of examples before changing the weights
towards a goal of minimizing the loss function, then gathering data further
examples to continue the process (LeCun et al. 2015, Goodfellow et al. 2016).
Following the learning process, the neural network must be tested on new
examples to confirm that it is capable of generalizing to examples not previously
seenaspat of the Atraining seto dat a. Here, ¢
may be observed if the | earned function is
training data (Figure 11) (Goodfellow et al. 2016). A finite number of parameters
is assumed fathe parametric machine learning process described here, but
nonparametric models which make no assumptions about the functions relating
datasets are also possible. Nearest neighbor regression is an example of such an

algorithm (Goodfellow et al. 2016).
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Figure 11:Figure from Goodfellow et al. 2016. A simple example of how a
learning algorithm may learn, and either underfit or overfit after the training
process, is a regression task. The mean square error or similar calculation is the
loss function, whilehe weights which the algorithm can adjust are polynomial
coefficients, which increase in number for higldegree regression models. The
underfitting model (Left) is an apparent linear regression which does not
correspond as readily to the data as amepy quadratic regression (Middle).
However, while a polynomial regression with more adjustable parameters can still
fit the supplied data, a neural network architecture with too many possible
parameters to adjust can overfit (Right) and produce reshithwo not

realistically generalize outside of the exact data points supplied to the regression

calculator (Goodfellow et al. 2016).

In an artificial neural network, the weights which transform the input data
into an output arayamrsadbgeachncoensiusctiumal of
called Aneuronsod which apply an associated
output the result to one or more neurons in the next layer (LeCun et al. 2015).
Layers which are not t heatputarereferreditoadi nput | a
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Ahi dden | ayers. o0 Conceptually, each | ayer
as a function which performs a transfor mat
a neural network performs the function y = f(X) for some input dadad output

y, then if the neural network has n layers, a task performed by the neural network

is equivalent to a series of nested functions
MO Q Q Q 8Q ®8

where f(x) is the transformation performed by tHelayer of the neural network

(Goodfellow et al. 2016). When training, the output of a neural network from an

initial input is compared to thienown output in the training data, then the

deviation from the expected result, derivative of each weight, and a
hyperparameter for the | earning process ca
application of stochastic gradient descent to change weigthts Evel of each

neuron before receiving more input (Figure 12) (LeCun et al. 2015). Each interval

of time which begins with the neural network updating its parameters is called an
Aepoch. 6 Conceptually, neural iment works app
as a linear regression; even for a task with numerous inputs, described by a

network architecture containing hidden layers with enormous numbers of weights

and neurons associated with each, the aim of the training process is to produce a

function y =f(X) which minimizes the error when compared to previously

supplied data.
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Figure 12:Figure from LeCun et al. 2015. Simplified diagrams which are

commonly used to represent the conceptual architecture of a neural network;

neurons are circles whiledtconnections between them are arrows. Left: sets of

data in a layer of neurons are used as inputs for the next layer of a neural network,

which essentially executes a function using the weights associated with all

incoming connections (yfor aweightfom neur on Ai 0 to neuron Aj
its output data. Right: after producing several outputs from example data while
training a neural network, the process of
descent involves computing the derivative of thergjire. loss function) with

respect to each variable associated with a neuron so that the weights can be

adjusted accordingly (LeCun et al. 2015).

To perform tasks using machine learning with image datasets,
convolutional neural networks (CNNs) are usBige most important, namesake
| ayers of a CNN are fAconvolutional | ayers,
convolution functions on the image data and output the convolved data as an input

for the next layer of the neural network (LeCun et al. 2015)tWwoicontinuous

3t
o

functions x(t) and w(t), considered the

function, ©0 the convolution function is for
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while for a discretized data, duas the color values of pixels in an image, the

operation needs to be reimagined as a finite sum of a discrete number of points

(Goodfellow et al. 2016). For a grayscale, #thimensional, m x n pixel image

with pixel values x as the output function, antlivo-dimensional weighting

function commonly referred to as the fikern

discrete operation becomes, for each pixel located at (i, j),
VN7 [0) wah 0 Q ahQ ¢

where the value at each convolved pixel is a weighted sum of the values of all
surrounding pixels in the m x n region, and the output is commonly called a
Af eature mapo of t heetalr2016, Zala andFergasge ( Good f
2014).
Practically, a filter function used in a convolutional layer of a CNN will be
an m x n matrix of weights, for an image with dimensions significantly larger than
m X n, and the | ayer teifunttiondoetheinanberbfhe Ast r i
pixels it moves between convolutions, which are computed in m x n regions of the
image until the entire image has been used to produce feature maps (LeCun et al.
2015, Zeiler and Fergus 2014). A convolutional layer will tgpycbe associated
with multiple filters, each of which are used to compute convolutions, so the
output is a threelimensional stack of the feature maps computed by each filter;
convolutional layers acting on this form of convolved output, or even on RGB

images, actually perform discrete convolutions in 3 dimensions by also adding
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data from each color channel or feature map to the sum, though the filters are still
two-dimensional matrices of weights (Zeiler and Fergus 2014, Angermueller et al.

2016) (Figurel3). The weights of each filter function are learned parameters

which the neural network is capable of training during the learning process; each
convolution provides a quantitative measur
wei ght s and t Is¢he greatasycerivavedovaluesid psoduceal

where higher pixel values and filter weights are spatially closer together. In an

abstract sense, each of these convolution operations can be thought of as

determining the degree to which a feature that the nktiars learned or is in the

process of training appears in different locations of the image, with convolutional

layers that are earlier in the network detecting simpler features. A convolutional

layer acting on the original image may output a feature waihé locations of

lines or edges, while filters in deeper layers learn and calculate the occurrence of
combinations of features from the earlier layers of the network (LeCun et al.

2015). The final |l ayer of a CNNM wialylerdepen
which receives weighted input from the final feature maps may be used in a

categorization task to determine the most probable category of the image, while a
segmentation task needs to determine the probability of every pixel in the original

imagebelonging to a particular category (LeCun et al. 2015).
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Figure 13 Figure from Angermueller et al. 2016.iAa simplified visualization of

typical operations in a convolutional neural network (CNN) applied to cell

imaging. A discrete convolution usindemarned filter returns higher values for the

fluorescent edges of the cell; other feature maps exist but are not shown. Max

pooling (see paragraph below) simplifies these feature maps, and a fully

connected layer determines the likely identity of therfisoentlylabeled feature.

Bia visualization of a discrete convolutior
x 2 filter moving by one pixel between operations (a stride of 1); the output is a 3

x 3 imageC1 a representation of max pooling conducted far2sections of a 4

x 4 Aimageo (Angermuell er et al. 2016) .

Beyond convolutional layers, additional operations are necessary to ensure
that a CNN is efficient and capable of processing complex feature maps. In
particular, until a combination of compuiidvances, rectified linear units

(ReLU), and means of reducing the number of calculations in deep layers through
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pooling showed high performance in 2012, the CNN approach to computer vision
had been inefficient and unpopular for computer vision (LeCah 2015). A

ReLU layer contains a neuron for each point in the feature map inputs, which will
return the maximum value out of either O or a linear function containing the
pixel dés value; typically, this output 1is s
redacing any negative convolved values with 0 (Nielsen 2015). A ReLU layer or
similar layer with another nonlinear function, such as a smoothed step function or
hyperbolic tangent function, typically follows every convolutional layer because
the convolutionsised in are only linear transformations, which cannot be used
alone to theoretically compute any function (Nielsen 2015). The popularity of
ReLU layers followed results which demonstrated that the simplicity of the
function permitted faster supervisedrigiag if ReLU were the nonlinear layers of
choice (LeCun et al. 2015, Nielsen 2015). Following each nonlinear layer, CNNs
typically implement a pooling layer, which receives modified feature maps as
input and produces a smaller, output feature map whenrealhie at each pixel is

a summary statistic of the input pixels within a certain radius (see Figure 13)
(Angermueller et al. 2016, Goodfellow et al. 2016). Various statistics may be used
for these nearby pixels, such as a simple average of their valuegraed

average related to their distance, or the maximum value among these pixels
(called max pooling); the inclusion of pooling layers decreases the number of
calculations which the CNN must perform and simplifies the relative locations of
detectedfeaur e s , decreasing the programds comput

both the learning process and task performance of a CNN more robust to small
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changes in feature separation and orientation (Goodfellow et al. 2016). A layer

following a poolinglayermap e used to conduct Aunpooling,

dimensions of the image before the pooling process but sets each pooling region

eqgual to the pooled value (Zeiler and Fergus 2014). Additional processing is often

used for convenience, such as normalaratf all image data values prior to

training. To avoid sharp increases in the magnitude of convolved values following

repeated convolution operations, normalization may also be applied after each

convolutional layer and before the nonlinear operatioridZand Fergus 2014).

This is a default feature in MATLABOGS segm
More advanced techniques may be applied to CNNs to either improve the

|l earning process or prevent issues with ov

| ear ni neguasing paranteterg learned in the relatively early convolutional

layers of a previoushyrained neural network to initialize the shallow

convolutional layers of a new neural network (Yosinski et al. 2014). While this

process may not be generally effectioehigherorder features analyzed by

deeper layers, early filters are known to generally present as simple shapes and

colors, so this process can assist with the setup of a deeper neural network which

may overfit less than otherwise (Yosinski et al. 20BMhother potentially useful

technique to prevent overfitting in deeper networks is dropout, which involves

randomly selecting various neurons in the network at each iteration of the learning

process, including neurons from the input layer and hiddemnslagred excluding

the selected neurons from the learning process (Srivasta et al. 2014).
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Smaller Sample Sizesk-Nearest Neighbors (kNN) Algorithm
A k-Nearest Neighbors {KIN) algorithm is designed to be capable of
fitting a dataset or classifying nesamples with little prior information about the
datads pattern. For a classif-NMation task,
model with structured information regarding the data. Unlike a neural network, a
nearest neighbor model does not attempt py@pmate a function relating a
dataset with potential outputs, so the training process consists only of storing the
inputs and outputs of the assumed function (Goodfellow et al. 2016). For an
algorithm which considers a single nearest neighbor, a ctadgfi task is
conducted by determining the learned example which has the smallest error from
the samplebs input values and characteri zi
of the nearest neighbor (Altman et al. 1992, Goodfellow et al. 2016). Thigserror
computed as Euclidean distance between the input data, X, corresponding to an

output class, vy, to satisfy the following equation (Goodfellow et al. 2016):

@ W FLUM W oI Qa@E [ ©

For the kNN algorithm, k is the integer number of nearest neighbor
learned data points which are considered when determining the output ckass for
given sample. For a numerical output value, the assigned output may be the
average of the outputs for the k nearest neighbors. However, this is not
necessarily a characteristic of numeric neanegghbor algorithms; MATLAB
only uses a classifier by deflt, so computing the average for the k nearest
neighbors by as the dot product of an obta

the vector of possible values in the training set is necessary. This algorithm can
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also be implemented for a classificatioaktavhere the output is a nommerical
category. In such a case, the most common category between the k nearest
neighbors of the training dataset is considered the most probable and will be

selected for the sample output class.

Machine Learning Methods

To prepare to conduct machine learning methods on image datasets, a
literature search on Web of Science was conducted to search for papers which
contained MALDIMS drug diffusion images relevant to TB. After curating the
initial search results, five papesgth sets of relatively higiesolution images
were chosen, and 92 MALENS images with corresponding hematoxylin and
eosin (H&E) histological stain images were chosen for analysis (Prideaux et al.
2011, DeMarco et al. 2015, Prideaux et al. 2015a, Prideisaix 2015b, Irwin et
al. 2016). The images were obtained through screenshots of the papers, which
were cropped for each image. A total of 92 MALME images were collected,
with an associated 79 H&E images, as a paper which contained results from
humanclinical trials sometimes evaluated the drug distribution of multiple drugs
in separate MALDIMS images corresponding to a single granuloma sample
(Prideaux et al. 2015b). The images were resized to be 224 x 224 pixels to
standardize them during processargl allow a neural network with a single input
size for 224 x 224 x 3 RGB images to function. Antibiotics used in the image set

included rifampicin, moxifloxacin, pyrazinamide, bedaquiline, levofloxacin,
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isoniazid, and clofazimine; the dataset combineages from C3HeB/FeJ mouse
lungs, BALB/c mouse lungs, rabbit lungs, and extracted human granulomata.

A semantic segmentation CNN was used to attempt segmentation of the
collected H&E images. Pixels were categorized as either caseum/necraotic,
tissue/cellulg, or neither. The neural network was initialized from an untrained
SegNet structure generated in MATLAB; the layers were initialized for a 224 x
224 x 3 input layer, 3 possible output classes with which to label pixels (caseous,
cellular, and neither), @h an fAencoder deptho parameter of
17-layer CNN structure (Table 1). From the 79 available H&E images, 60 images
were chosen at random to be the training set. Several initial attempts to train the
neural network were made whileconsideg ficel | ul ar | esi ondo and
labels separate and failing to properly account for the ability to label non
biological pixels as such. When the labeling scheme was simplified to only
distinguish caseum from cellular tissue, and the possibilitgl#ling background
pi xels was accounted for, the neur al net wo
significantly (See fiMachine Learning Resul
conducted with the neural net workoés hyperp
attempts; he final neural network was trained for 150 epochs in which the
training set is completely analyzed, each divided into 6 batches of 10 images,
after each of which the parameters are upd

set to be 0.01, multiplied by Oeivery 30 epochs.
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Layer

Comments

Input image

224 x 224 x 3 input, intended for RGH

H&E images.

Convolutional (1)

Convolutions using 64 3 x 3 filters
operating in all 3 color channels, with
stride of 1 and t
an extra pixel on everside in 3
dimensions. This produces a 224 x 2

X 64 output of feature maps.

Batch normalization (1)

Normalizes convolved data

ReLU (1)

RelLU of convolved/normalized data

Convolutional (2)

Convolutions using 64 3 x 3 filters
operating in all 64 featun@ap
channels, same stride and padding
settings as before. Produces a 224 x

224 x 64 feature map output.

Batch normalization (2)

Normalizes convolved data.

ReLU (2)

RelLU of convolved/normalized data.

Max pooling

Max pooling within a 2 x 2 region witH

a dride of 2. Output is 112 x 112 x 64

Max unpooling

Unpooling, 224 x 224 x 64 output.

Convolutional (3)

Convolutions using 64 3 x 3 filters

operating in all 64 feature map
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channels, same stride and padding
settings as before. Produces a 224 x

224 x 64 fature map output.

Batch normalization (3) Normalizes convolved data.
ReLU (3) ReLU of convolved/normalized data.
Convolutional (4) Convolutions using 64 3 x 3 filters

operating in all 64 feature map
channels, same stride and padding
settings as befor®roduces a 224 x

224 x 64 feature map output.

Batch normalization (4) Normalizes convolved data.

ReLU (4) ReLU of convolved/normalized data.

ASoft Maxodo cl as s i|Computes probabilities of
categorization for each pixel of the 22
X 224 spatial image uggnprocessed

data

Pixel classification Classifies each pixel of the 224 x 224
spatial image as its most probable

category

Table 1:Layers of the convolutional neural network (CNN) produced and applied

in MATLAB, and basic explanations of the operationdqgened by the layers.
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For experiments using theNN algorithm, MATLAB was used to
produce knearest neighbor classification objects; these may receive a table of
numerical parameters as training data, though anmomerical output category
may be inclded. The predictor data in all experiments was set to be standardized
by mean and standard deviation before being used in the model. Initially, the
latter option was considered, with cases from MAIND® data being assigned
categories from a set of possilbletcomes depending on whether diffusion into
caseum appeared consistent with the rest of the lesion, limited, or negligible.
However, this was quickly deemed too subjective and arbitrary to provide useful
output, as the categories are udetrermined andhay vary even within different
sections of caseum in the same lesion. A means of quantifying the difference in
diffusion between caseum and cellular tissue from MAMS images was
needed.

In all MALDI -MS images obtained for machine learning experimeinés,
signal was represented by a RGB scale freh®0% relative signal to the
maximum, which begins at blue and increases up to red. This scale may be
adjusted for the maximum signal in a specific image or in a series of images, and
significant variation wald exist between separate studies, so the ideal
guantifiable metric decided upon was the ratio of signal present in the caseum to
signal in the cellular regions.

The Image Labeler application in MATLAB was used again, now with the
MALDI -MS maps while redrring to the H&E stained images for reference, to

manually | abel particul ar pixels of
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the MALDI-MS images were converted from RGB to HSV, dsaturationvalue,
where hue in MATLAB is scaled from O to 1 andle direction of red to
magenta, crossing the visible spectrum on
and Atissueo0 sections was computed for eac
similar to the common scale bar, the average hues were all subtractedttyrom
reverse the direction of increase (i.e. red becomes higher than blue), then
normalized between 0 and 1 by first subtracting the minimum observed value for
average hue, then dividing by the new maximum observed value for average hue.
Notably, these agrations produced NaN (not a number) results for the caseum
ratio in images which contained no caseum. Accordingly, these were ultimately
excluded from any experiments with thélk algorithm. One pyrazinamide
sample produced a signal of 0 in the tissggore as a result of the normalization
and was similarly excluded from training or testing data. The adjusted average
hues of the Acaseumo pixels for usabl e i ma
corresponding average hues ofotissure fAti ssueo
signal ratios.
The kNN algorithm has the potential to use a variety of predictor data
when computing the nearest neighbor data points; predictors including the ratio of
caseum area to total sample area, ratio of cellular lesion area to totat saezl
the time after drug administration when the lesions were extracted, the number of
distinct caseous regions, and the number of distinct cellular lesion regions, all
calculated from the previouslgbeled H&E images, were considered for use as

predidors.
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Rifampicin, pyrazinamide, and moxifloxacin were all tested with the k
NN algorithm for different, randomized training sets, groups of predictors, and
numbers of nearest neighbors. After initially gathering rifampicin data manually,
a Monte Carlo métod with 200 iterations per tested method was conducted to test
the average effects of changes to tiéNk algorithm on testing datasets for
rifampicin, pyrazinamide, and moxifloxacin. This method has the advantage of
rapidly examining many possible tramgi and testing sets in succession to
determine the average difference between the predictions of a particular method
of k-NN and the computed values from the images, allowing the suitability of k
NN to be examined on a broader scale than with manual dlé¢aton. The
decision was made to set the training set sizes for rifampicin, pyrazinamide, and
moxifloxacin to be 14, 12, and 13 respectively, to standardize the number of
tested samples per iteration at 4 and us80®b of applicable data for training

each set.

Machine Learning Results

The CNN was trained as described in the methods until terminating with
80-90% accuracy on the training data (Figure 14). The trained neural network was
tested with images that were excluded from the training set andydmmixed
success at the task of identifying caseous regions of the image; another mistake
observed when testing samples was the identification of lines such as scale bars as

tissue or caseum (Figure 15, Figure 16). However, the CNN had learned to
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separge the majority of background pixels from the more meaningful data in the

image.

4 Training Progress {15-Apr-2018 23:22:32)

- o x
Training Progress (15-Apr-2018 23:22:32)
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Figure 14:Raw output from MATLAB for the most successful trained neural

network, following 150 epochs of training on 60 H&E images labeled for tissue

and caseum.
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Figure 15:Performance of the trained semantic segmentation CNN on two
different test images. Above, Clockwise from Top LieH&E image 15b_56

with caseation outlined by the authors (Prideaux et al. 2015b), the neural

net wor koés s e g meer(lightlilue s ackgrdundt diark blue m a
cellular or tissue, yellow = necrotic), and the labeled H&E image not present in
the training set. The majority of identified caseum pixels are in the large caseous
regions, but much of the area is unlabeled. Bef@ckwise from Top Left

H&E image 15b_57 with caseation outlined by the authors (Prideaux et al.
2015b), the neural networko6s segmentation
image not present in the training set. A notable region outside of the castours
identified as caseous by the CNN and was marked as such in a different image

which was also not used in the training set (see Figure 25).
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