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Abstract

Distributed estimation is where a network of agents is tasked to estimate the state of

a dynamical system. Agents only communicate over a sparse communication network.

Recently, consensus-based estimation has been proposed as a distributed solution of

this problem where the agents implement a large number of information exchanges

between every two successive time-steps of the system dynamics. For optimal perfor-

mance, this consensus-based estimator requires a consensus to be reached first. When

the network is unable to implement a consensus due to, e.g., resource-constraints or

faster system dynamics, distributed solutions have been proposed with single-time in-

formation exchanges. In this scenario both system dynamics and distributed estimator

evolve at the same time-scale. This scenario requires the system to be observable at

every estimator/agent, implying the new concept of distributed observability. Given

this background, this thesis is devoted to (1) formulation of distributed observability

in single-time scale estimation, (2) partitioning the necessary set of state measure-

ments based on their role in distributed observability, and (3) characterization of

necessary and sufficient connectivity of the underlying communication network topol-

ogy among the agents. Employing structure-based generic methodology instead of

algebraic approaches motivates application in power systems and social networks.
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Chapter 1

Introduction

Estimation of linear dynamical systems is a thriving field of research, pioneered by

Kalman filtering. However, the complexity of system dynamics, high-dimensional

state-space, and the diversity of available sensing methodologies mean that extensive

computation is required to implement and analyze traditional estimation techniques.

In practice, it is desirable to implement a scalable estimator that is robust to system

perturbations and is computationally efficient. In this context, distributed (or net-

worked) estimation provides scalable, efficient, and robust solution to instrument the

sensing measurements all-together. This allows the system state to be estimated in

a collaborative way without relying on a central computation entity. In a centralized

scheme, each agent (or sensor) makes a local observation of the physical system, and

sends this measurement to a central unit where an optimal estimator may be imple-

mented. In contrast, in a distributed scenario, each agent makes a local estimate of

the system state, shares its measurement and/or estimates with nearby agents, and

combines the received information to improve its local estimate.

As an example, consider a scenario where a collection of agents (e.g. observers/sen-
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CHAPTER 1. INTRODUCTION

sors/robots) are assigned to estimate a system or a phenomenon of interest. Agents

are distributed in the sense that each agent can only measure some of the states of the

dynamical system. For example, a group of sensors spread geographically over a large

region to monitor daily temperature evolution. The measurement data and dynam-

ical models are further corrupted by noise and disturbances. Clearly, a centralized

scheme may be impractical for a large-scale system. Therefore, in distributed fashion,

the objective is to enable each agent to make decision on the global state relying only

on its own measurement and the measurements of its immediate neighbors. Such a

scheme is often referred to as networked estimation or distributed estimation where

the term network implies that the information is restricted on a sparse network.

Consensus-based distributed estimation strategies have recently gained a lot of

interest, where the main focus is to reduce the uncertainty of individual estimates

by averaging on the measurements. Consensus protocols [1–4] define interaction rules

among a network of agents to combine their information. These interactions primarily

are defined over a graph (network), where the existence of an edge (communication

link) between two nodes (agents) implies the flow of information from one agent to

the other. Early work in [5–9] considers a two time-scale method, where consensus is

implemented at a time-scale different than the system dynamics (see Fig. 1.1), where

a large number (→ ∞) of data fusion iterations are implemented between every two

successive time-steps, k and k + 1, of the system dynamics. This approach requires

communication over a much faster rate than the sampling of the dynamics, and thus,

in general, becomes practically in-feasible when the underlying system is operating

under power constraints and has restricted communication and computation budgets.

The key point is that in the two time-scale method (see Fig. 1.1–(Left)), the com-

2



CHAPTER 1. INTRODUCTION

k k+1 

Dynamics/Estimator time-scale 

Fusion time-scale (consensus) 

k k+1 

Dynamics/Estimator time-scale 

Fusion time-scale 

(a) 

(b) 

k k+1 

Dynamics/Estimator time-scale 

Fusion time-scale (consensus) 

k k+1 

Dynamics/Estimator time-scale 

Fusion time-scale 

(a) 

(b) 

Figure 1.1: (Left) The traditional two time-scale consensus-based approach; each
small dash represents one step of consensus/communication. (Right) single time-scale
approach.

munication network becomes irrelevant due to more information exchanges among the

individuals. This is because the information in a sparsely connected graph is equiva-

lent to the information in a fully connected graph when a large number of information

exchanges are carried out. For instance consider a network with diameter d, i.e. the

maximum. This implies that more than d steps of communications and exchange of

measurements between every two successive steps of system dynamics, conveys all

taken measurements to each agent. Therefore, the performance and properties of the

underlying estimator depends only on the data fusion principles among the agents.

However, in the single time-scale scenario of Fig. 1.1–(Right), the underlying agent

network remains sparse and an arbitrary communication network may not suffice to

make the distributed estimation error stable (e.g., see [10,11]). This is where the con-

cept of system observability plays the key role. Observability is a measure to quantify

inference of internal (e.g. not accessible) states of the system based on the measure-

ments of external (accessible) states. This is because states of a dynamical system are

typically dependent and under influence of their neighboring states. If system is fully

observable, it implies that a given set of measurements contain enough information

3



CHAPTER 1. INTRODUCTION

to reconstruct the global state of the system [12–14].

In centralized estimation and observability, transmitting all measurement data

makes the system globally observable to a central unit/processor assuming that the

system is observable. Similar argument holds for multi-time scale distributed estima-

tion (with number of consensus/communication step more than network diameter [9]).

However, in the single-time scale estimator, at each step only local measurements are

available to each agent. This local information may not contain necessary information

to guarantee observability. In this context, the key problem is to design the structure

of the multi-agent communication network according to the underlying fusion rules

in order to recover the distributed observability, i.e. to make each estimator locally

observable. A simple approach to solve this problem is to share all the necessary1

measurements for observability at every step of system dynamics [15, 16]. The more

challenging approach is to communicate both measurements and predictions to impose

less communication among the agents. We show that the latter approach requires less

connectivity in the agent network. A related study on this is carried out in [10], where

a particular distributed estimator are shown to have bounded MSEE if the two-norm

of system matrix is less than the Network Tracking Capacity (NTC). This quantity

is a function of the communication network and system measurement model.

The next challenge that we address in this work, and in general, in real world

systems, is the time varying nature and uncertainty of the system parameters. For

example in power systems and social networks, the structure of the system remains

time-invariant but the system parameters (values of electrical components) are subject

to perturbations. This motivates us to implement methodologies that are indepen-
1In this work, necessary, critical, and crucial are interchangeably used for measurements/agents.
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dent of exact parameter values of such systems that we refer to as Linear Structure-

Invariant (LSI) systems. Our approach only relies on the underlying system structure,

i.e., the zero and non-zero pattern of the system matrix. Such properties lead to ro-

bust observer design where the analysis is graph-theoretic rather than the traditional

algebraic approach. This is the case when some physical quantities in the system

change over time, as well as, in linearization of nonlinear models for which the param-

eters depend on the system operating point. In this sense, structured system theory

is beneficial for analysis of system properties such as controllability and observabil-

ity [15–21]. Using such graph-theoretic techniques, we tackle uncertainty issues in

our analysis. It is noteworthy that the structurally-defined results based on the lin-

earization is applicable for the structural observability of nonlinear models. Indeed, as

mentioned in [20, 22], generic analysis holds for smooth nonlinear systems with fixed

structured Jacobian representing LSI matrices . In other words, structural observabil-

ity leads to observability over a continuum of system operating points in nonlinear

cases.

1.1 Related Work

A variety of solutions exists for distributed estimation pioneered by the earlier work

[23,24], and references therein on Parallel Kalman Filtering architectures for all-to-all

connected networks, to more recent consensus-based protocols [5]. The latter was also

referred to as a two time-scale approach, Fig. 1.1–(a). In contrast to the two time-scale

distributed estimation, recently Refs. [9, 10, 25–32] study the behavior of distributed

estimators when communication and dynamics time-scale are the same, as shown in

Fig. 1.1–(b). Clearly, this method is practically feasible for real-time applications and

5



CHAPTER 1. INTRODUCTION

computationally efficient as compared to the two time-scale approach .

Observability analysis of the centralized estimation is primarily introduced in [12,

33]. Recently, the works by [17, 34] applied a structural approach for observability

analysis. Based on the same approach, [15,19,20] find the critical set of measurements

for centralized observability. The same observability analysis works for the two time-

scale estimators as all measurements are accessible between every two-steps of system

dynamics. However, the observability analysis for single time-scale estimators is more

challenging, as discussed in [27,30] for particular distributed single-time estimators.

The literature can also be classified into static and dynamic estimation. In static

estimation [25, 26, 29, 35, 36] or quasi-static estimation [32], the target state to be es-

timated does not change over time. A similar case is when system state is relatively

stationary (quasi-stationary) over a period to allow the adaptive algorithm to con-

verge [26], i.e. the evolution-rate of the target state is not too fast. On the other

hand, dynamic estimation [5–9, 23, 37–39] takes the (non-stationary) time-evolution

of the system into account. Typically, these works make a pre-assumption on the

communication network to be (strongly) connected [6,11,26,32,35,36,39] or for it to

include a cycle path connecting through all agents [25,29].

Chapter 2 of this thesis provides more review of the literature, and further, pre-

liminary concepts prerequisite for the rest of the thesis. The same chapter includes

consensus protocols and average consensus for information processing, structured sys-

tem theory and generic analysis, and specifically, generic observability, structural rank,

accessibility and matching conditions. It further reviews background on centralized

estimation problem and distributed methods.
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1.2 Problem Notation and Formulation

Consider distributed estimation of a discrete-time linear dynamics of the form:

xk+1 = Axk + vk, (1.1)

where xk ∈ Rn is the state vector2, A = {aij} ∈ Rn×n is the system matrix, and

vk ∼ N (0, V ) is the system noise.

xk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
k

⋮

xnk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, vk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1
k

⋮

vnk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.2)

For estimation, we assume N measurements of system states are taken as:

yik = Hixk + rik, (1.3)

where yik ∈ Rpi , i ∈ {1, ...,N} is the output vector3 at agent i, rik ∼ N (0,Ri) is the

output noise, and Hi is the output matrix at agent i. With this notation, we can

write the global observation model as:

yk =Hxk + rk, (1.4)
2As a general notation notice, we use boldface letters for vectors and plain italic letters for scalar

variables, and capital italic for matrices.
3In this thesis, without loss of generality, we assume pi = 1. Simply, if pi > 1 we may consider pi

observation yi ∈ R, i ∈ {1, ..., pi}

7
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where yk, H = {hij}, and rk are collections of the local variables.

yk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1
k

⋮

yNk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H1

⋮

HN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, rk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r1
k

⋮

rNk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R1 0

⋱

0 RN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.5)

Let x̂ck∣k represent the state of the Centralized Kalman Filter (CKF) estimator at time

k given all the observations, yk, up to time k. It can be shown that the estimation

error (including the transient error) is given by

êck∣k ≜ xk − x̂ck∣k, (1.6)

= (A −Kc
kHA)êck−1∣k−1 + ηk, (1.7)

where Kc
k is the appropriate centralized Kalman gain and ηk represents the noise

terms independent of êck∣k. The estimation error, ek∣k, in (1.6) is stable if and only if

the system is (A,H)-observable.

We now state in detail the problems considered in this thesis. The first problem is

to find the measurement matrix H (or the set of states to be measured denoted as Y)

such that the pair (A,H) is observable. Our contribution is to further partition these

critical measurements based on their specific role in system observability.4 An exten-

sion of this problem is to find the set of equivalent measurements for observability.

The concept of (observational) equivalency implies that two different measurements,
4In Chapter 3 we discuss these measurements in details. We classify and name these measure-

ments and their assigned observer as Type-α and Type-β.
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CHAPTER 1. INTRODUCTION

for example,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

yi =Hix + ri,

yj =Hjx + rj.
(1.8)

play the same role for observability. Mathematically, it can be formally characterized

as,

(A,Hi)-observability⇐⇒ (A,Hj)-observability⇐⇒
⎛
⎜
⎜
⎝

A,

⎛
⎜
⎜
⎝

Hi

Hj

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

-observability (1.9)

We find observational equivalence sets for different measurement types. Indeed, for

each measurement yi, we find the set of measurements equivalent to yi such that only

one measurement in this set is required to ensure observability.

Next, for distributed estimation, we assume that the agents communicate over a

communication network, Gnet = (Vnet,Enet), where Vnet includes the nodes representing

the agents and Enet includes the edges; an edge j → i represents a communication link

from agent j to agent i. The adjacency matrix of this network is defined by matrices

W = {wij} and U = {uij}. For example, for W we have,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wij ≠ 0, j → i,

0, otherwise.
(1.10)

The neighborhood at agent i is defined as

N (i) = {i} ∪ {j ∣ j → i}. (1.11)

9



CHAPTER 1. INTRODUCTION

An edge (link) from node j to node i implies that agent i transmits information to

agent j. In this sense, N (i) includes all the agents that send information to agent i.

The neighborhood is defined based on adjacency matrices W and U . We discus these

matrices in detail in Chapters 4 and 5. Clearly, due to the interaction, each agent

i now estimates the state, xk, with its own information, including yik, and with its

neighboring information, including observations yjk, j ∈ Ni. Now, let x̂i
k∣k
, be the

estimate of the state, xk, by all information available to agent i up to time k through

the interaction graph, Gnet. Define the local error at agent i as,

eik∣k = xk∣k − x̂ik∣k, (1.12)

Concatenating the estimates at all agents, the global state estimate and error in the

agent network is given by,

x̂k∣k ≜

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x̂1
k∣k

x̂2
k∣k

⋮

x̂N
k∣k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ek∣k =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ê1
k∣k

ê2
k∣k

⋮

êN
k∣k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.13)

The second problem is to mathematically formulate distributed observability from

first principles. We prove that distributed observability is characterized as observabil-

ity of the pair:

(W ⊗A,DH) (1.14)

10
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The matrix DH is a block-diagonal matrix defined as,

DH =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑j∈N (1)H
T
j Hj 0

⋱

0 ∑j∈N (N)H
T
j Hj

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.15)

where the neighborhood is defined based on based on the adjacency of U matrix.

Next, we provide a Networked Kalman-type Estimator (NKE):

x̂ik∣k−1 = ∑
j∈N (i)

wijAx̂j
k−1∣k−1, (1.16)

x̂ik∣k = x̂ik∣k−1 +K
i
k ∑
j∈N (i)

HT
j (yjk −Hjx̂ik∣k−1) , (1.17)

We show that the estimator error of the NKE estimator evolves as follows:

ek = (W ⊗A −KkDH(W ⊗A))ek−1 + qk, (1.18)

where Kk is the block diagonal gain matrix and qk contains noise terms independent

of the ek∣k. We verify that the above error evolution is steady-state stable if and only

if (W ⊗A,DH) is observable.

The third problem is to define necessary connectivity of the multi-agent network

GW to ensure (W ⊗A,DH) observability. Notice that the structure of the network is

tied with the adjacency matrix W and U . In the sufficiency case, we design Gnet, for

a given set of measurements Y satisfying (A,H)-observability. Since we aim to solve

the problem generically, the observability analysis is performed on system graph. We

provide combinatorial graphical algorithms of polynomial order to check for system

11
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Figure 1.2: (Left) Centralized estimation vs. (Right) Distributed estimation.

observability, to find the necessary set of measurements and observationally equivalent

sets. In the same way, we aim to graphically design the structure of the agent network

to ensure distributed observability. This mathematical model can be implemented,

for example, by a wireless communication network where the sampling time is long

enough as compared to, for example, coherence time of the wireless communication

channel [32]. This point could be considered another drawback for the multi time scale

estimation where high rate of communication potentially encounters more packet loss.

To avoid this, reliable communication channels with smaller coherence time is required

in multi time scale scenario.

We illustrate the distributed and centralized estimation problem in Fig. 1.2. It

should be mentioned that in this thesis we design the communication network such

that all agents can track the global state of the dynamical system. Therefore the

observability condition could not be checked locally as we assume that the system is

not observable at any agent or in its direct neighborhood. In terms of implementation,

global inference/tracking requires the knowledge of the entire system matrix, while

the measurement matrix is distributed among the agents. This is for any distributed

12
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estimation protocol claiming global state inference. The other scenario could be to

estimate a local portion of system states. For example, in a spatially distributed

system, each agent might be interested to only monitor its neighboring area instead

of the entire system. In partial inference, the observability condition might be checked

locally at each agent.

1.2.1 Notations

In this section we list all the notations in Table 1.1. Some of these notations may be

introduced in the next chapters.

1.2.2 Assumptions

In the rest of this thesis we make these general assumptions:

(i) The communication between the agents is stable (static), i.e., the network topol-

ogy is time-invariant;

(ii) We impose no hierarchy in the multi-agent network, i.e., we assume that the

processing/communication capabilities of all agents are the same;

(iii) The system is globally (A,H)-observable;

(iv) For every agent, i, the pairs, (A,Hi) or (A,∑j∈N (i)H
T
j Hj), are not necessarily

observable.

(v) The system is dynamic and in general it might be unstable, i.e. its spectral

radius is greater than 1 (ρ(A) > 1).

(vi) We assume no packet loss in communication channels.

13
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Table 1.1: List of Notations.

x System state vector k Sampling-time/Time-step
n Number of states N Number of measurements
A System matrix A Structured system matrix
v System noise y Measurement vector
H Measurement matrix H Structured measurement matrix
⊗ Kronecker matrix product r Measurement noise
K Gain matrix K Block-diagonal gain matrix
x̂ State estimate ê Estimation error
G Graph E Set of edges
V Set of nodes Gnet Network of agents/observers
X Set of state nodes Y Set of measurement nodes
Gsys System digraph GDist Distributed system digraph
Ð→ Direct link in graph path

Ð→ Path in graph
W Prediction-fusion matrix U Measurement-fusion matrix
x̂i
k∣k

Estimate of agent i at time k N (i) Neighborhood of agent i
given information by time k

DH Global measurement matrix DH Global measurement matrix
(no information fusion)

O Observability Gramian ΓA Bipartite graph
V− Set of end nodes in ΓA V+ Set of start nodes in ΓA
M Maximal matching ΓMA Auxiliary graph
δM+ Unmatched nodes in V+ C Contraction set
S Set of states in SCC Sp Parent SCC
Sc Child SCC S↺ Matched SCC
α,β,γ Measurement/Agent types Nα Neighboring α agents
Nβ Neighboring β agents Gα Graph of α agents
Gβ SC Graph of β agents G∗α Graph of β agents (Type II)
G0 Graph of self-cycles z Global measurement
x Global state ρ(.) Spectral radius of matrix
N(.) Gaussian distribution Hγ Matrix of non-critical measurements
Hα Matrix of α measurements Hβ Matrix of β measurements
nα Number of α states nβ Number of β states

14
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Assumption (ii) increases the reliability of node/link failure by avoiding agent hi-

erarchy. Assumption (iii) is a typical assumption in distributed estimation implying

the observability of centralized estimator; without this, no estimation scheme works.

Assumption (iv), in practice, makes the networked estimation problem more challeng-

ing. This is where this work becomes significantly different from current approaches.

Assumption (v) is another challenge in distributed estimation. The reason is that

for stable systems, the stability analysis of the estimation error is not related, since

all states and estimates eventually reach the stability (boundary). In other words,

for stable systems the MSEE converges to stability boundary for any estimation pro-

tocol. In terms of implementation, assumption (vi) is practically feasible where the

dynamic sampling is long as compared to, for example, coherence time of the wireless

communication channel. This allows sufficient time to re-transmit the wrong packet

till one received successfully.

1.3 Contributions and Thesis Organization

We summarize the contributions of this thesis in Fig.1.3, and in more details in the

following:

• In Chapter 3, we define measurement partitioning and observational

equivalence in system estimation. Using the related graph-theoretic con-

cepts, we derive the necessary set of states required to ensure LTI state-space

observability (in both distributed and centralized cases). Further, we show that

the set of crucial measurements required for centralized observability can be

subdivided into two types, based on their role in distributed observability. This

15



CHAPTER 1. INTRODUCTION

Bounded Estimation Error

Sufficient Condition Necessary Condition

Distributed ObservabilityDistributed ObservabilityDistributed Observability

G
a

in
 m

at
ri

x

Observational Equivalence

Figure 1.3: Thesis contribution.

partitioning is driven by both graphical and algebraic methods used to define the

corresponding measurements. Using both graphical and algebraic methods, we

find the observational equivalent sets. These equivalence set of measurements

are applicable to recover for the loss of observability.

• In Chapter 4, we mathematically derive distributed observability from

the first principles. In particular, we extend the centralized estimation setup

to a distributed framework where in addition to the state and sensing, we also

have communication among the agents. Combining the estimates at all of the

sensors, we arrive at the networked estimator, which subsequently results into

the corresponding networked dynamics. We show that the networked dynam-

ics are not just a mere extension of the original dynamics repeated (block-

diagonally) to accommodate for each sensor, but belongs to a large class of

systems that naturally defines the allowable collaboration among the agents.

Further, we cast the NKE estimator with two recursive measurement-fusion

and prediction-fusion levels, where adding the prediction step is a distinction
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from the existing works. We verify that the error stability of the NKE estimator

leads to the characterized distributed observability.

• In Chapter 5, we derive the necessary and sufficient conditions for

distributed observability and we design the multi-agent network ac-

cordingly. We define two graph topology determining the connectivity of dif-

ferent types of agents and their role to recover observability. The communi-

cation network among the agents Gnet is the union of these two graphs. The

proposed condition on network sparsity is in contrast with the current densely

wired networks in the literature [16, 40]. Particularly, for NKE estimator, we

perform measurement- and prediction-fusion over different graphs. Moreover,

we provide a system classification based on the system rank, and we compare

the network connectivity of the distributed observer for (structurally) full rank

and rank deficient systems.

• In Chapter 6, we propose application of observational equivalency to

recover the observability of power systems. Further, we show applica-

bility of the distributed estimation/observability setup in social net-

work inference. The graph-theoretic approach in this work gives scalable and

computationally efficient algorithms for distributed estimation over large-scale

social systems, while the time-varying but structured nature of power systems

further motivates application of our robust observability analysis.

In each chapter, we give graphical examples and/or simulations to illustrate the prob-

lem and support the results. Chapter 7 of this thesis concludes the results and re-

states the contributions. In the appendix, we provide combinatorial algorithms (of
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polynomial order) for graph-theoretic analysis of this work. Also, the block-diagonal

feedback gain matrix to stabilize the MSEE of the NKE (see Fig.1.3) is given in the

appendix. The results of this thesis are published in the peer-reviewed conferences

and journals [41–49].
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Chapter 2

Background

In this chapter, we provide the general background and preliminaries on graph theo-

retic observability and distributed estimation protocols. Recall from Chapter 1 that

we are interested to estimate discrete-time linear (structured) time-invariant (DT LTI)

dynamical systems in the form:

xk+1 = Axk + vk, (2.1)

yik = Hixk + rik, (2.2)

First we state the centralized case where all the measurements are conveyed to a

central processor. We state the Centralized Kalman Filter (CKF), its tracking error

dynamics, and the general requirement for it to be bounded at steady state. In

this regard, the concept of observability and different approaches to check for it are

discussed. In particular, structured system theory and related basic graph notions are

studied in this chapter. These concepts establishes the basis of the graph theoretic

approach in this work; more advanced graph notions are postponed to Chapter 3.
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Next, we review the common distributed estimation protocols in the literature. These

notions along with other related preliminaries, such as Kronecker product of matrices,

are employed in the next chapters to derive the main results of the thesis.

2.1 Introduction to graph theory

Let X = {x1, . . . , xn} and Y = {y1, . . . , yp} denote the set of states and measurements,

respectively. The system digraph is a directed graph defined as Gsys = (Vsys,Esys),

where Vsys = X ∪Y is the set of nodes and Esys is the set of edges; this digraph is induced

by the structure of the system and measurement matrices, A = {aij}, and H = {hij}.

An edge, xj→xi, in Esys exists from xj to xi if aij ≠ 0. Similarly, an edge, xj→yi, in Esys

exists from xj to yi if hij ≠ 0. A path from xj to xi (or yi) is a sequences of nodes

originating from xj and terminating to xi (or yi) with each subsequent edge in Esys.

Denote such a path as xj
path
Ð→ xi. A path is called Y-connected, denoted by path

Ð→ Y, if

it terminates in a measurement/output node (i.e., in a measured state node). Here,

we assume that each node is included in a path only once (a simple path). A cycle is

a path where the originating and terminating nodes are the same. A cycle family is a

group of cycles which are mutually disjoint, i.e. they don’t share any node. Similarly,

a path and a cycle are disjoint if they do not share any node.

Here, we provide some useful graph properties. A directed graph Gsys is Strongly-

Connected (SC) if every two nodes are connected by a path, i.e., xi
path
Ð→ xj for ev-

ery xi, xj ∈ X . A non-SC graph is called acyclic. In an acyclic digraph define Strongly

Connected Components (SCCs), denoted as Si, as its maximal strongly connected

partitions or sub-graphs. A directed tree is a directed graph where every node has

exactly one incoming link, except the root of the tree (also known as the leader) which
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Figure 2.1: A dynamical system, the state-space representation and digraph repre-
sentation. The cycle in graph represents the dynamical mode of the system.

has no incoming link. A graph contains a spanning tree if a subset of edges form a

directed tree that connects (spans) all nodes. A dynamical system of states can be

represented as a graph. Each node represents a dynamic state and the edges represent

the interaction of different states governed by a dynamic equation, see Fig. 2.1. For

example, representing two system states xi and xj as two nodes in the graph, an edge

from xi to xj implies ẋj = f(xi) in continuous time model or xj(k + 1) = f(xi(k)) in

discrete time model where f(.) represents a smooth function. The discussed graph

features each imply a property of dynamic system. For example, an SC graph implies

an irreducible system matrix and a cycle in the system digraph represents a dynam-

ical mode of the system. We refer interested readers to [50, 51] for more detailed

explanation on graph concepts.

2.2 Kronecker Product of Matrices

The Kronecker product of matrices are known to have implications in network theory

and estimation. In [52], authors show that the graph associated to Kronecker product

of matrices, termed as Kronecker graphs, mimics the structural properties of large real

networks. Such recursively generated graphs are statistically proved to have proper-

21



CHAPTER 2. BACKGROUND

ties, e.g. diameter and degree distribution, matching those of real networks. Further,

Spectral analysis of Kronecker matrices with an application in LTI observability is

primarily stated in [53]. In this thesis, we apply this concept to derive the distributed

observability condition in Chapter 4.

Algebraically, the Kronecker product of two matrices WN×N and An×n is defined

as,

W ⊗A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w11A w12A ⋯ w1NA

w21A w22A ⋯ w2NA

⋮ ⋮ ⋱ ⋮

wN1A wN2A ⋯ wNNA

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.3)

where each block matrix wijA is,

wijA =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

wija11 wija12 ⋯ wija1n

wija21 wija22 ⋯ wija2n

⋮ ⋮ ⋱ ⋮

wijan1 wijan2 ⋯ wijann

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.4)

Kronecker product can be applied for representation of consensus protocols over vector

space. Consider consensus of agents over a vector state ξ,

ξik =
N

∑
j=1
wijξ

j
k−1 (2.5)

Concatenating the state vectors at all agents, the global state vector is in the following
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form,

ξ
k

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1

ξ2

⋮

ξN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
k

= 1N ⊗ ξk, (2.6)

Then the consensus equation (2.9) can be written as the following matrix form,

ξ
k
= (I ⊗Wk)ξk−1

, (2.7)

where I is the N ×N identity matrix. We specifically employ such Kronecker product

to derive the distributed formulation results in chapter 4.

2.3 Consensus Algorithms

Consensus algorithms have potential application in distributed data processing and

synchronization. The objective of a consensus algorithm is to lead a group of agents

to reach a common state or certain quantity of interest (see Fig. 2.2 as an example).

This concept is introduced in preliminary works of [2,4] for average consensus. Later,

complementary works on dynamically changing sparse networks [54], asynchronous

updates [55,56], nonlinear protocols [57], and finite-time convergence [58,59] are dis-

cussed in the literature. We refer interested readers to [1,60,61] for a survey of related

works and applications. Here, we state a brief review of the general case of discrete-

time consensus. Consider N agents distributed over a network, GW , with adjacency

matrix W defining the interaction weights of the agents on each other. Assume each
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Figure 2.2: Consensus of 10 states in discrete-time.

agent is associated with a dynamic state ξ evolving as,

ξik =
N

∑
j=1
wijξ

j
k−1, (2.8)

where k is the discrete-time index. Notice that in general the interaction topology

GW may change over time. In the matrix form the above equation can be written as,

ξk =Wkξk−1, (2.9)

where the subscript k in Wk is to consider possibly time-varying weight matrices.

Definition 2.3.1. Matrix W is called row stochastic if ∑nj=1wij = 1. Matrix W is

called column stochastic if ∑ni=1wij = 1. Matrix W is doubly stochastic if it is both row

and column stochastic.

Lemma 2.3.1. [60] The dynamics in (2.9) reaches asymptotic consensus among
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agents if and only if:

(i) Matrix W is row-stochastic.

(ii) The algebraic multiplicity of largest eigen-value of W is 1, i.e., λW = 1 is a

simple eigen-value.

This lemma is a result of Gershgorin’s disc theorem. If λW = 1 is simple and v is a

column left eigen-vector of W (i.e., vW = vλ) then,

lim
k→∞

W k → 1vT . (2.10)

This implies that,

ξk =W
kξ0

k→∞
Ð→ 1vT ξ0, (2.11)

ξik
k→∞
Ð→ vT ξ0, (2.12)

∣ξik − ξ
j
k∣
k→∞
Ð→ 0. (2.13)

implying that consensus is reached. The second condition in Lemma 2.3.1 has an

interpretation in graph theoretic sense,

Corollary 2.3.1. [54] λW = 1 is a simple eigen-value of row-stochastic matrix W if

and only if the interaction graph, GW , includes a directed spanning tree.

A typical assumption in consensus literature is to assume GW to be SC, or the matrix

W to be irreducible. This is a sufficient condition for consensus follows from the

Perron-Frobenius theorem.
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Lemma 2.3.2. [1] If the matrix W is doubly stochastic and the digraph GW is SC,

then the dynamics (2.9) reaches average-consensus. Mathmatically, v = 1
n1, and

ξik
k→∞
Ð→ vT ξ0 =

1
n

n

∑
j=1
ξj0. (2.14)

In [54,59] authors investigate necessary and sufficient conditions on consensus over

dynamically changing interaction graphs. It is shown that consensus can be reached

if the union of interaction graph contains a spanning tree over sufficiently enough

sequence of time-intervals. An immediate result is given in the following,

Lemma 2.3.3. Interaction dynamics (2.9) reaches asymptotic consensus over fixed

graphs with time-varying weights if and only if:

(i) Matrix W remains row-stochastic at every time step.

(ii) Fixed topology GW includes a spanning tree.

The consensus protocols found recent application in filtering, pioneering by works

of Olfati-saber et al. [5, 62]. In these works the consensus state is tracking a time-

varying input, as opposed to stable dynamics considered in [2]. Recently, such consen-

sus based estimation and filtering are proposed in distributed estimation literature.

2.4 Brief Review of Centralized Estimation

Estimation and observability of linear dynamical systems has been discussed since

the pioneering works by Kalman [12, 33]1. Kalman filter is a recursive algorithm to

optimally infer the variable x representing the dynamical state of the system from
1For a detailed introductory discussion on Kalman filter we refer the interested reader to [63].
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the sample measurement y. The term recursive implies that, unlike the other filtering

algorithms, this filter does not rely on the past system information. In more detail, to

estimate xk (state x at sample-time k) only system information at current step (yk)

and last step (xk−1) are required. This along with its performance in terms of error

optimality distinguishes the Kalman estimator for practical applications.

Let x̂c
k∣k

and x̂c
k∣k−1 be the centralized Kalman estimate at time k given all the

observations, yik, and yik−1, respectively. The Centralized Kalman Filter (CKF) is

defined as two recursive steps:

(i) Prediction step:

x̂ck∣k−1 = Ax̂ck−1∣k−1, (2.15)

(ii) Correction step:

x̂ck∣k = x̂ck∣k−1 +K
c
k (yk −Hx̂ck∣k−1) . (2.16)

It can be shown that the Kalman estimator error, êc
k∣k

= xk − x̂c
k∣k
, is given by,

êck∣k = (A −Kc
kHA)êck−1∣k−1 + ηk, (2.17)

where Kc
k is the centralized Kalman gain and the vector ηk collects the remaining

terms that are independent of êc
k−1∣k−1. It is well known that the centralized Kalman

error, êc
k∣k

is stable if and only if Schur condition for stability is satisfied, i.e., ρ(A −

Kc
kHA) < 1 [13]. However, to satisfy the Schur condition, the existence of the Kalman

gain matrix Kc
k is tied with the concept of observability which is discussed next.
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2.5 Observability

The concept of observability is a determining factor in state estimation. Generally

speaking observability implies inferring the internal states of the system from its mea-

surements in finite time. In linear but static cases, observability defines the solvabil-

ity of the set of measurement equations to recover an n-dimensional state parameter,

subsequently requiring at least as many measurements as the number of unknown

states, p ≥ n. Observability in LTI dynamics is more challenging since the number, p,

of measurements is typically less than the number, n, of states. The reason is that

many state variables of interest cannot be measured/observed directly, hence needed

to be inferred from other measured quantities. Simply, an observable dynamic system

has enough state dependencies that can be exploited towards estimation of unmea-

sured states. There are different approaches to check for observability of LTI systems:

(i) algebraic method of finding the rank of the observability Gramian [13, 14]; (ii)

the Popov-Belevitch-Hautus (PBH) test [64]; and, (iii) graph-theoretic analysis of

the system graph [16–18, 21, 34, 65, 66]. We briefly go through these methods in the

following.

2.5.1 Algebraic method: Gramian matrix

Algebraically, the linear system (2.1) is observable by the given set of measurements

(2.2) if there exists a finite number of time steps m ≤ n such that sequence of mea-

surements y0,y1, ...,ym gives sufficient information to determine initial state of the
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system, x0. Consider the set of measurements as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 =Hx0

y1 =Hx1 =HAx0

⋮

ym−1 =Hxk =HAm−1x0

(2.18)

These equations can be compactly expressed as,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y0

y1

⋮

ym−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H

HA

⋮

HAm−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Om

x0 (2.19)

For the above to have a solution for x0 the matrix Om, known as observability

Gramian, should be full-rank.

rank(Om) = n. (2.20)

It is known that for any m > n we have rank(Om) = rank(On). This is a result of

Cayley-Hamilton theorem and implies that taking more than n-step of measurements

does not improve the rank of On. Algebraic tests for observability, therefore, check

the Gramian, On, to be full-rank or the matrix OTnOn to be invertible.
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2.5.2 Symbolic test: PBH

An alternative method is the PBH (Popov-Belevitch-Hautus) observability test [64],

which checks the rank of the following matrix,

Ã =

⎛
⎜
⎜
⎝

A − sI

H

⎞
⎟
⎟
⎠

, (2.21)

Observability implies Ã be full-rank for all values of s ∈ C where I is the n×n identity

matrix. The matrix, A− sI, is full rank for all (probably complex) values of s, except

for the eigenvalues of A. This simply implies that the PBH test has to be checked

only for these values. In other words, an LTI system is not observable if and only if

there exist a right eigenvector of A in the null space of measurement matrix, H, i.e.

{∃w ∈ Rn∣ Aw = λw, Hw = 0}. (2.22)

2.5.3 Graph theoretic test: Structural observability

Note that, both these algebraic and symbolic methods rely on the knowledge of ex-

act values of each element in the matrices A and H. However, in many dynamical

systems, only the sparsity (zero and non-zero pattern) of these matrices may remain

fixed while the non-zero elements are subject to change, for example, when the en-

tries of these matrices depend on certain parameters or operating points. Hence, the

conventional methodologies fail to check for observability in such cases and graph-

theoretic techniques are to be employed. To analyze such graph-based methods, we

first introduce preliminaries on structured system theory and related graph notions.
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2.6 Structured System Theory

Structural analysis deals with system properties that do not depend on the numerical

values of the parameters but only on the underlying structure (zeros and non-zeros)

of the system [16–21, 34, 65–68]. It turns out that if a structural property is true for

one admissible choice of non-zero elements as free parameters it is true for almost

all choices of non-zero elements and, therefore, is called a generic property of the

system [69]. Furthermore, it can be shown that those particular (non-admissible)

choices for which the generic property does not hold lie on some algebraic variety

with zero Lebesgue measure [70]. In statistical sense, this implies that having random

numbers as system parameter the probability that a random point lies on this subspace

is almost zero. A simple geometrical example would be a line in R2 space. The area,

as Lebesgue measure, of this line is almost zero. In probabilistic sense this means that

the chance of having a randompoint in R2 to be on such line is approximately zero.

2.7 Structural Observability

Instead of using the algebraic/symbolic tests for observability, an alternate is a graph-

theoretic approach. Structural (also known as generic) observability is based on struc-

tured systems theory. This method only relies on the structure of system matrices

A and H (i.e. the topology of the system digraph Gsys). The main theorem on

generic observability–dual of the generic controllability result in [17]– is stated in the

following,

Theorem 2.7.1. A system is generically (A,H)-observable if and only if in its di-

graph Gsys:
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(i) Every state xi is the begin node of a Y-connected path, i.e. xi
path
Ð→ Y,∀i ∈

{1, . . . , n};

(ii) There exist a family of disjoint Y-connected paths and cycles covering all state

nodes.

The first condition is known as accessibility and the second as the S-rank or matching

condition. The above conditions, however, are known to have algebraic meanings,

which is discussed in Chapter 3 of this thesis. In LTI state-space observability, a

significant question is to find a set of critical measurements to satisfy Theorem 2.7.1.

Recent literature [15, 19, 66] discusses different aspects and approaches towards this

problem. In these works, the LTI systems are modeled as digraphs and graph-theoretic

algorithms are adapted to find the corresponding critical measurements. Since these

results are structural, they ensure generic observability, i.e. the underlying LTI sys-

tems are observable for almost all choices of non-zeros in the corresponding matrices A

and H [18]. In this regard the dynamical equations (2.1) and (2.2) may be represented

in linear structured-invariant (LSI) form as,

xk+1 = Axk + vk, (2.23)

yk = Hxk + rk, (2.24)

where A and H represent the structured form (zero-nonzero pattern) of system matrix

A and measurement matrix H, respectively.
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2.8 Structural Rank

Another generic property of the system is structural rank or generic rank. The def-

inition of structural rank (S-rank in short) and its properties can be described as

follows.

Definition 2.8.1. S-rank of a matrix, A = [aij], is the maximal rank of structured

matrix A over all numerical values of the non-zero entries aij ≠ 0.

In the algebraic sense, the S-rank implies maximum number of non-zero elements

in distinct rows and columns of a matrix [71]. It is clear that for any given matrix A,

rank(A) ≤ S-rank(A) (2.25)

From the definition 2.8.1, it immediately follows that, a full rank system is also struc-

turally full rank and a structurally rank deficient system is always rank deficient.

Lemma 2.8.1. A system matrix, A, is full S-rank if and only if there exists a disjoint

family of cycles spanning all the state vertices in its digraph GA; otherwise, the system

is S-rank deficient. Further, condition (ii) in Theorem 2.7.1 on generic observability

of (An×n,HN×n) is equivalent to,

S-rank
⎛
⎜
⎜
⎝

A

H

⎞
⎟
⎟
⎠

= n. (2.26)

Lemma 2.8.2. A matrix, W , with all non-zero diagonals is full S-rank. This is

because GW includes a disjoint family of self-cycles at all nodes.

Examples of S-rank deficient systems are shown in Fig. 2.3. For both graphs,
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Figure 2.3: Examples of system digraph: (Left) an S-rank deficient SC digraph,
(Middle) an S-rank deficient non-SC digraph, and (Right) a full S-rank digraph.

there are no family of disjoint cycles spanning all state nodes. More discussion on the

structural observability and its algebraic implications are given in Chapter 3.

2.9 Distributed Estimation

Advances in distributed algorithms and data processing motivated estimation over a

(distributed) network of observers. Instead of a central unit receiving all the obser-

vations and performing the estimation, the information processing is localized and

shared among a group of agents. As mentioned in the last section, consensus algo-

rithms are proved to be an efficient tool for information fusion among the agents.

Particularly, in the context of sparsely-connected networks, where the main focus is

to reduce the uncertainty of the individual estimates by averaging on collaborative

data. The literature on this subject exists from earlier work in [23, 24] and refer-

ences therein, where parallel Kalman filter architectures are considered, generally, for

all-to-all connected networks, to more recent works in [5–8,61,62,72], where average-

consensus based Kalamn filtering has been studied as an effective method for dis-

tributed computing and estimation over sparsely connected networks. This approach

34



CHAPTER 2. BACKGROUND

requires two time-scales where communication is implemented over a much faster rate

than the sampling of the dynamics (Fig. 1.1). Assuming a faster communication rate

becomes practically in-feasible when the underlying system is operating under power

constraints and has restricted communication and computation budgets.

To avoid these, single time-scale estimation is proposed recently in [10, 31, 40, 73]

and has been used widely in the literature [9, 25, 26, 29, 32, 35–39]. In single time-

scale estimation, communication is implemented at the same sampling rate as of the

dynamics. Since the communication and sampling have the same time-scales, the

communication network among the agents plays a key role in the observability of the

agents. On the contrary, in average-consensus based approaches (two time-scales), the

communication network becomes irrelevant due to more information exchanges among

the agents (a sparsely connected graph looks like a fully connected graph when a large

number of information exchanges are carried out). In single time-scale estimation a

key consideration is the observability of the networked estimator. In general, it can

be shown that an arbitrary communication network among the agents may not suffice

to make the networked system observable. Hence, an important infrastructure design

question is to design communication networks that can recover the observability of

the distributed system. Distributed observability, however, is shown to be related

to the Kronecker product of system matrix and adjacency matrix of the multi-agent

network.

More recent solutions exists for distributed estimation, including diffusion-based

schemes in Kalman filtering and smoothing [35] with application in distributed binary

detection [36]. Meanwhile, incremental adaptive distributed strategies are proposed in

[25,74] along with distributed moving horizon estimation [37] to minimize estimation
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error variance for constrained problems. State estimators based on low-cost single-

bit data transmission is proposed in [38] with binary sign of innovations (sign of

difference of measurement and estimated value). [32] considers distributed estimation

of time-varying scalar signals. The paper propose a distributed estimator with both

measurement and estimate consensus update for tracking quasi-stationary systems.

The filtering process on estimation and error covariance is local at each agent where

the estimation bound is tied with the number of neighboring agents (network density).

Further, the optimal estimation parameters (consensus weights) are defined locally to

minimize the MSE. In other work, information theoretic approach based on consensus

over the Kullback-Leibler average of Gaussian PDFs is exploited in [39]. It should be

noted that not all of these literature are dynamic estimation but some consider the

target state to be (quasi) stationary over time.2 Dynamic estimation [5–9,23,37–39],

however, tracks the time-evolution of the system.

As mentioned in Chapter 1, in single-time estimation, and specifically dynamic

case, the structure of the communication network plays a key role on the stability

of the distributed estimator [10, 11]. In this sense, [16, 18–20, 34] study observability

with a structural point of view. The prevalent assumption requires the communication

network to be (strongly) connected or cyclic as in [6,11,25,26,29,32,35,36,39]. On the

other hand, [15, 16, 19] structurally determine the communication network such that

(A,∑j∈N (i)H
T
j Hj) is observable, i.e. each agent i is observable in its neighborhood

N (i). Reference [40] introduces a single-time consensus and innovation estimator over

connected un-directed agent communication network. However, in their approach they
2As stated in [26], diffusion algorithms can be extended for non-stationary (dynamic) tracking

when the target is not moving too fast, i.e. its state is relatively stationary over a period such that
the algorithm can converge.
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assume local observability, i.e. observability of (A,∑j∈N (i)H
T
j Hj). With the same

assumption, [75] investigates distributed detectability of a single-time consensus-based

estimator over the given multi-agent network, referred to as filter graph. Applying

an algebraic approach on graph Laplacian, the necessary condition for observability

is defined as each cluster having a spanning tree.

As compared to literature, our goal is to design the network with minimal com-

munication. Specifically, our methodology is independent of exact system parameter

values, relying on the system structure. Such generic approach is helpful when the

parameters may vary depending on the system operating point (e.g. linearization of

smooth non-linear dynamics [20]) and is, further, independent of the exact value of

the weights chosen for data fusion. This leads to a robust estimator design where

the analysis is not algebraic, as in the conventional Grammian or PBH observability

tests, but graph-theoretic [18]. It should be emphasized that, as stated in Chapter

1, we make no assumption on the communication network, but we aim to design the

network structure. Further, unlike [76,77], we do not impose any agent hierarchy, i.e.,

all agent duties are the same, increasing reliability to node/link failure.

2.10 Conclusions

In this chapter, we set the preliminaries on structural observability and corresponding

graph-theoretic methods. In general, there exist combinatorial algorithms to check

for observability conditions on system digraph, as given in the Appendix I of this

thesis. The vector-space consensus algorithms are employed in Chapter 4 to derive

the algebraic formulation for distributed observability.
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Chapter 3

Measurement Partitioning and

Observational Equivalence

In this chapter, we first consider the problem of finding a set of state measurements

that are required for observability. Next, we show that each such set of critical mea-

surements can be further partitioned into two types: α and β; these different types

of measurements have different algebraic and graph-theoretic interpretations that we

characterize. Further, for a given set of sufficient measurements (measurements satis-

fying observability condition) we classify the unnecessary (non-critical) ones as Type-

γ. Contrary to [15, 19, 21] we further classify critical measurements for their role in

distributed analysis in subsequent chapters.

The second problem we consider here is observational equivalence. This is to de-

fine the states that are equivalent in terms of observability–the equivalence relation

is denoted by ‘∼’. Indeed, the set of necessary measurements for observability is not

unique; this motivates to search for all possible sets that ensure observability. In
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particular, if two states, xi and xj are observationally equivalent, i.e. xi ∼ xj, then

measuring any one of them suffices for observability. Hence, the corresponding mea-

surements are also equivalent, i.e. yi ∼ yj. We characterize this notion of observational

equivalence towards state estimation in both algebraic and graph-theoretic sense.

To derive the results, recall from Chapter 2 that algebraic observability is related

to the rank of Gramian matrix, and graph-theoretic observability calls for the two

conditions in Theorem 2.7.1 stated below:

(i) Accessibility condition: every state xi is the starting node of a Y-connected path.

(ii) Rank condition: a family of disjoint Y-connected paths and cycles (L) going

through all state nodes.

3.1 Advanced Graph-Theoretic Notions

In order to develop our results in the structural context, we need some advanced

graph-theoretic concepts borrowed from [78]. These concepts provide the foundations

and related preliminaries for measurement classification and deriving equivalence sets,

and further, necessary conditions on designing the agent communication network in

Chapter 5.

3.1.1 Contractions in digraphs

The graph-theoretic concepts stated in this section are built on the graph notations

in Chapter 2.

• Bipartite graph: denoted by Γ = (V+,V−,EΓ), includes two disjoint set of nodes: V+

and V−, with set of edges ∈ EΓ originating in V+ and terminating in V−. To con-
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struct bipartite graph, ΓA from system digraph GA define V+ = X and V− = X ∪Y,

and EΓA , as collection of edges (v−j , v
+
i ) with (vj, vi) ∈ EA.

• Matching: denoted byM, is defined as subset of edge set EA with no common

end-states. In ΓA, a matching is a subset of edges non-incident on the same node,

i.e., edges are mutually disjoint. The number of edges inM defines the size of

the matching, ∣M∣. A maximum size matching is called maximal matching,

denoted by M. It is known that M is not unique. in general. If ∣M∣ = n it is

called perfect matching.1

• Unmatched nodes: Let ∂M+ and ∂M− be the state nodes incident to edges

in maximal matching M, respectively, in V+ and V−. Denote by δM+ the

unmatched nodes in V+, i.e., δM+ = V+/∂M+ .

• Auxiliary graph: denoted by ΓMA , is a bipartite graph associated to M by re-

versing all edges inM while preserving direction of other edges, i.e., EΓA/M, in

the bipartite graph, ΓA.

• Alternating path: is defined as sequence of edges originating from an unmatched

node in δM+ and every second edge in M in the auxiliary graph. The name

comes from the fact that the edges alternate between E/M andM.

• Contraction: denoted by Ci, is assigned to an unmatched node, v ∈ δM+ such

that it contains all states reachable by alternating paths from vj in ΓMA . In GA

a contraction represents state nodes connected (contracted) to less number of

nodes. Further, define C as the set of all Ci’s.
1A perfect matching indicates that all n columns are adjacent to all n rows of the associated

matrix of the system digraph. This is known as the Hall property [79].
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Figure 3.1: (a) System digraph GA. (b) Bipartite graph, ΓA with maximal matching
colored in blue. (c) Auxiliary graph ΓMA . (d) Alternating path. (e) Contraction. (f)
Parent/Child SCC classification of another simple digraph.

Example: In Fig. 3.1, a simple 3-node graph is given to illustrate the above definitions.

3.1.2 Parent/Child Strongly Connected Components

• Matched SCC: denoted by S↺i , is an SCC including a union of disjoint cycles,

also referred to as Strong Components [78]. S↺ denotes the set of all matched

SCCs.

• Parent SCC: denoted by Spi , is an SCC with no outgoing edge to any state

out of it. A non-parent SCC is a child, denoted by Sci . Let Sp be the set

of all parent SCCs. Following the same convention, S↺,p
i denotes a matched

parent SCC, and S↺,p denotes the set of all matched parent SCCs, and so on.

The parent/child classification is also known as root/non-root SCC classification

in [66]. It is known that the SCCs of an acyclic digraph can be uniquely and
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efficiently classified as a union of parent and child SCCs using the depth first

search (DFS) or Tarjan algorithm [80,81].

• Partial order: ⪯, defines the existence of edge(s) from one component to another.

For example, Si ⪯ Sj implies that Si is a child component and some of it nodes

have a path to some nodes in Sj.

Remark 3.1.1. In an SC graph, for every child SCC, Sci , there exists a parent

SCC, Spj , i.e., Sci ⪯ S
p
j .

Example: In the example of Fig. 3.1–(a), the graph is SC and the entire graph may

be considered as one unmatched parent SCC since it has no outgoing link. On the

other hand, Fig. 3.1–(f) gives another example of Parent/Child classification.

3.2 Measurement Partitioning

In this section, we describe the process of measurement partitioning. Given a set of

observable measurements (matrix H)–such that (A,H) is observable–we partition the

measurements into three types: α, β, and γ based on their role in generic observability.

Type-α and Type-β are critical for observability (assuming fixed H) while Type-γ

measurements are unnecessary.

Definition 3.2.1. Given system matrices, A and H, a measurement is called critical

if and only if removing it renders the system unobservable.

For a given H, represent sub-matrices of partition, α, β, and γ, respectively,

by Hα, Hβ, and Hγ. Further, Hα,β represent the sub-matrix of both α and β mea-
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surements. Using this notation, the above definition can be summarized as:

rank
⎛
⎜
⎜
⎝

O

⎛
⎜
⎜
⎝

A,

⎛
⎜
⎜
⎝

Hα,β

Hγ

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

= rank (O (A,Hα,β)) = n. (3.1)

The rest of this chapter characterize these partitions in lieu of Theorem 2.7.1 and

ensuring that each of the two (graph-theoretic) conditions (i) and (ii) are satisfied. It is

straightforward to note that graph-theoretic interpretation is based on Theorem 2.7.1,

while algebraic interpretation is described in Propositions 3.2.1 and 3.2.2.

3.2.1 Graph-theoretic

The first type of necessary measurements is characterized via maximum matching and

graph contractions defined in Section 3.1. Having the maximum matching, M, and

set of unmatched states δM+, we define Type-α measurement as follows:

Definition 3.2.2. Measurement of an unmatched node, vj ∈ δM+ is Type-α.

On the other hand, Type-β measurements are related to SCCs in the system di-

graph. In a non-SC digraph, define Parent/Child SCCs and partial order as given in

Section 3.1.

Definition 3.2.3. A Type-β measurement is the measurement of a state in a matched

Parent SCC, S↺,p
i .2

Example: in Fig. 3.1–(e) measurement of state v1 or v3 is Type-α, and in Fig. 3.1–

(f) measurement of state v4 or v5 is Type-β.
2Throughout this thesis we name {α,β, γ} classification for the states, their measurements, and

the assigned agents measuring those states.
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3.2.2 Algebraic

Recall the algebraic implications of the structural system observability conditions in

Chapter 2.

Proposition 3.2.1. Accessibility is tied with the irreducibility of the matrix ( A⊺ H⊺ )
⊺

.

Having an inaccessible node in the system digraph implies the existence of a permu-

tation matrix P such that,

PAP −1 =

⎛
⎜
⎜
⎝

A11 A12

0 A22

⎞
⎟
⎟
⎠

, PH = [0 ∣ H1]. (3.2)

Proposition 3.2.2. S-rank condition is related to the structural rank of the system,

i.e.

S-rank
⎛
⎜
⎜
⎝

A

H

⎞
⎟
⎟
⎠

= n. (3.3)

Clearly, a measurement described in Proposition 3.2.2 may not satisfy a measure-

ment given by Proposition 3.2.1, i.e. a measurement recovering accessibility may not

improve the S-rank of [A⊺ H⊺]⊺. In this sense, Type-α measurement improves the

S-rank of [A⊺ H⊺]⊺ by 1. Consequently, for full rank systems3, there is no state

measurement of Type-α, and Type-β measurements recover accessibility.

Definition 3.2.4. In the algebraic sense, measurement αi, the Type-α measurement
3Notice that if system is full-rank, it is also structurally full-rank.
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from state xi, satisfies the following:

S-rank
⎛
⎜
⎜
⎝

A

Hαi

⎞
⎟
⎟
⎠

= S-rank(A) + 1, (3.4)

where Hαi is a row vector of size n with only non-zero at its i location.

Each Type-α measurement thus improves the S-rank condition by exactly 1.

Definition 3.2.5. The Type-β measurement of state xi, denoted by βi, does not im-

prove the S-rank, i.e.

S-rank
⎛
⎜
⎜
⎝

A

Hβi

⎞
⎟
⎟
⎠

= S-rank(A), (3.5)

However, from Def. 3.2.1, a Type-β measurement satisfies Eq. (3.5) and

rank
⎛
⎜
⎜
⎝

O

⎛
⎜
⎜
⎝

A,

⎛
⎜
⎜
⎝

Hα

Hβi

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

= rank (O (A,Hα)) + 1. (3.6)

3.3 Observational Equivalence

Set theory and abstract algebra literature defines the equivalence relation, ‘∼’, as hav-

ing three properties: reflexivity, symmetry, and transitivity [82]. Towards observa-

tional equivalence in state estimation, reflexivity implies that every state is equivalent

to itself, i.e. xi ∼ xi; symmetry implies that if xi ∼ xj then xj ∼ xi; and transitivity im-

plies that if xi ∼ xj and xj ∼ xm, then xi ∼ xm. With this notation define observational

equivalence as:
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Definition 3.3.1. Let Hi denote a row vector of size n with only non-zero at ith entry

denoting measurement of state xi. Observational equivalence among two states, xi ∼

xj, is defined as

rank O(A,Hi) = rank O(A,Hj) = rank O
⎛
⎜
⎜
⎝

A,

⎛
⎜
⎜
⎝

Hi

Hj

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

.

It can be easily verified that the above definition follows three properties of transitivity,

reflexivity, and symmetry.

3.3.1 Graph-theoretic

Applying the concept of maximal matching and contractions in Section 3.1, we have

the following results:

Lemma 3.3.1. Any choice of maximal matching renders the same contraction set C.

Any state vj reachable from vi ∈ δM+
1 through an alternating path is unmatched in

another maximal matchingM+
2 , i.e. vj ∈ δM+

2 [78]. Also, any maximal matching,M,

includes only one unmatched state in every contraction, Ci. [83]

Lemma 3.3.2. Given a contraction, Ci, the unmatched node, vj(Ci), within this con-

traction is not unique. In other words, for two vertices vj(Ci) and vg(Ci), vj(Ci) ∈ δM+
1

and vg(Ci) ∈ δM+
2 , where M1 and M2 are two choices of maximum matching.

Proof. The proof follows from the fact that maximum matching, in general, is not

unique. This is from DM decomposition as given in [78]. To find a contraction,

pick an unmatched state node, e.g. in δM+
1 and then in bipartite representation the

contraction states can be reached. However, within a contraction Ci there are options
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for unmatched node, each of them related to an unmatched set δM+
2 . In other words,

every contraction includes exactly one unmatched node for any choice ofM.

Lemma 3.3.3. Two state measurements xi and xj from the same contraction, Ci, are

equivalent Type-α measurements.

Proof. The equivalency of Type-α measurements is related to the choice of unmatched

nodes in the corresponding contraction. Since measurement of each unmatched state

increases the S-rank by 1 and considering that each contraction contributes to one

rank-deficiency, it is straightforward to deduce three properties of the equivalence

relation.

Example: We illustrate these Lemmas in Fig. 3.2 with a contraction of 3 state

nodes, C1 = {x1, x3, x5}, into 2 nodes, {x2, x4}. The number of possible maximal

matching is (3
2) = 3. From Fig. 3.2, a maximal matching, M, gives one unmatched

node in C1: e.g. in Fig. 3.2 (b), M = {(x5, x4), (x3, x2)} (highlighted edges) and x1

is the unmatched node. δM+ = {x1} and after reversing the edges in that maximal

matching, nodes x3 and x5 are reachable from x1. Similarly, Figs. 3.2 (c) and (d)

show other possible choices of maximal matching.

Next, we define Type-β equivalence relation.

Lemma 3.3.4. Two Type-β measurements, βi and βj, of states xi and xj, are equiv-

alent, βi ∼ βj, if they belong to the same parent SCC, S↺p
i . Immediately follows that

all states belonging to the same parent SCC are equivalent.

Proof. The proof follows the strong connectivity of S↺p
i . This implies existence of a

path through all state nodes to an observable node in the same SCC, and consequently,

satisfying the second condition for structural observability.
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TexPoint fonts used in EMF.  
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(a) (b)

(c)

(d)

Figure 3.2: Possible maximal matching (shaded arrows) in a contraction. The red
shaded arrow represents the measurement of the unmatched node.

Since all SCCs are disjoint in the system digraph, Type-β equivalent sets are disjoint.

Notice that, an unmatched parent SCC has at least one Type-α measurement. This

recovers both conditions for observability in Theorem 2.7.1 with no need of any other

(Type-β) measurement.

3.3.2 Algebraic

Here, we provide the algebraic interpretation of equivalence among the Type-α and

Type-β measurements.

Lemma 3.3.5. Two Type-α measurements are equivalent, αi ∼ αj, if and only if,

S-rank
⎛
⎜
⎜
⎝

A

Hαi

⎞
⎟
⎟
⎠

= S-rank
⎛
⎜
⎜
⎝

A

Hαj

⎞
⎟
⎟
⎠

= S-rank

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A

Hαi

Hαj

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.7)

implying that all equivalent Type-α measurements improve the S-rank only by 1.

Proof. Reflexivity and symmetry are directly induced by Eq. (3.7). For transitivity,
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consider three Type-α measurements, αi, αj, αm, with αi ∼ αj and αj ∼ αm. Eqs. (3.4)

and (3.7) give,

span
⎛
⎜
⎜
⎝

A

Hαi

⎞
⎟
⎟
⎠

= span
⎛
⎜
⎜
⎝

A

Hαj

⎞
⎟
⎟
⎠

, span
⎛
⎜
⎜
⎝

A

Hαj

⎞
⎟
⎟
⎠

= span
⎛
⎜
⎜
⎝

A

Hαk

⎞
⎟
⎟
⎠

(3.8)

and transitivity follows. Similar arguments may be stated for sufficiency.

The notion of (row) span in Lemma 3.3.5 is the maximal span over all possible

choices of non-zeros in the corresponding matrix and is driven by structural rank.

Lemma 3.3.6. Let Hα denote the Type-α measurement matrix. Two Type-β mea-

surements, βi and βj, are equivalent, when

rank
⎛
⎜
⎜
⎝

O

⎛
⎜
⎜
⎝

A,

⎛
⎜
⎜
⎝

Hα

Hβi

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

= rank
⎛
⎜
⎜
⎝

O

⎛
⎜
⎜
⎝

A,

⎛
⎜
⎜
⎝

Hα

Hβj

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

=

rank

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Hα

Hβi

Hβj

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= rank (O (A,Hα)) + 1. (3.9)

Proof. Reflexivity and symmetry are trivial. Transitivity follows from the fact that

equivalent Type-β measurements belong to the same irreducible block of A (see [78]).

Indeed, proper row-column permutation of the block structure proves the equivalency.
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3.4 Necessary Measurements for Centralized Ob-

servability

Given system (matrix), A, this section states the graph-theoretic conditions on the

necessary measurements for centralized observability. This is the prerequisite of

generic distributed analysis in the next chapters.

Theorem 3.4.1. Both following conditions are critical for observability:

(i) distinct measurement of (at least) one state in each contraction, Ci.

(i) distinct measurement of (at least) one state in each parent SCC, S↺p
j .

Such set of measurements are critical for observability, and according to Assumption–

(iii) in Chapter 1, we assume that any given set of measurements meet these two

conditions for (minimum) observability.

3.5 Illustration

In this section we provide different examples which will be used in the next chapters

to illustrate the results.

Example 3.5.1. Consider a simple system digraph shown in Fig. 3.3 with the given

set of measurements. The structured matrices A and H, are as follows:
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c
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Figure 3.3: A digraph of state and measurement state nodes. This system is (A,H)-
observable.

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0

0 × 0 0 0 0 0

× × 0 0 0 0 0

0 0 × 0 0 0 0

0 0 × 0 0 × 0

0 0 0 0 × 0 ×

0 0 0 0 × × 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.10)

This system is S-rank deficient. The output matrix has the following structure:

H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ha

Hb

Hc

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 × 0 0 0

0 0 0 0 0 × 0

0 × 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.11)

Recall that system is globally observable by collection of the three measurements. By

definition, agent a measuring the unmatched state {4} is Type-α, agent b measuring

a state in parent SCC {5,6,7} is Type-β (crucial agents) and agent c is non-crucial

(Type-γ).
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Example 3.5.2. Consider a 12-node graph given in Fig. 3.4. The structure of the

adjacency matrix of this graph is as follows with each × sign representing a non-zero,

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 × 0 0 0 0 0 0 0 0 0 0

× 0 × × 0 0 0 0 0 0 0 0

0 × 0 0 0 0 0 0 0 0 0 0

0 × 0 0 0 0 0 0 0 0 0 0

0 0 0 × 0 × 0 0 0 0 0 0

0 0 0 0 × 0 × 0 0 0 0 0

0 0 0 0 0 × 0 × 0 0 0 0

0 0 0 0 0 0 × 0 0 0 0 0

0 0 0 × 0 0 0 0 0 × 0 0

0 0 0 0 0 0 0 0 × 0 × 0

0 0 0 0 0 0 0 0 0 × 0 ×
0 0 0 0 0 0 0 0 0 0 × 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.12)

A possible maximum matching is

M = {(1,2), (2,4), (6,5), (5,6), (8,7), (7,8), (10,9), (9,10), (11,12), (12,11)}

with set of unmatched states δM+ = {3,4}. The assigned bipartite graph represen-

tation, ΓA and the auxiliary graph, ΓMA are shown, along with the alternate path

associated with each unmatched node. Node x1 is reachable via alternate path from

x3; therefore, C1 = {1,3} makes a contraction. Similarly, C2 = {4,6,8,10,12,1} and

the contraction set is C = {C1,C2}. Further, this graph contains three SCCs; where

S1 = {5,6,7,8} and S2 = {9,10,11,12} are matched and S3 = {1,2,3,4} is unmatched.

Further, {S1,S2} have no outgoing edges and therefore make the Type-β equivalent

set S↺p. S3, however, has outgoing edges to states {x5, x9} and therefore is a child

SCC: S3 ⪯ S2, S3 ⪯ S1. This example is an improvement to [21] where the parent

cycle condition is revised to matched parent SCC condition. A possible set of system

observations is {x3, x6, x10}:
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Figure 3.4: This figure shows the digraph of Example 3.5.2, a possible maximum
matching, its bipartite graph, auxiliary graph, alternating paths, and contractions.
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Figure 3.5: Type α and β equivalent sets for graph of Example 3.5.3. (Left) Type β
equivalence sets (parent SCCs) are shown in red and green. (Right) Type- α equivalent
sets (contractions) are shown in orange, purple, and green.

H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 × 0 0 0 0 0 0 0 0 0

0 0 0 0 0 × 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 × 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.13)

Example 3.5.3. Consider the system digraph given in Fig 3.5. This digraph has three

contractions, {{2,7,9},{4,15},{10,12}}, constituting the equivalent Type-α sets; and

two matched parent SCCs, {{11,12,13,14},{9}}, constituting the equivalent Type-β

sets (the SCC, {16,17,18}, e.g., has an outgoing edge and hence is not parent). Three

unmatched nodes each from a contraction make the Type-α sets: α1 ∈ {2,7,9}, α2 ∈

{10,12}, α3 ∈ {4,15}. Notice that both Type-β sets share nodes with the Type-α sets.

Therefore, at least three measurements, e.g. {4,9,12}, are necessary.

H =
⎛

⎝

0 0 0 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 × 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 × 0 0 0 0 0 0 0 0

⎞

⎠
(3.14)
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In the case of not observing a shared α/β state, e.g. {12}, more than three observations

are required; for example, {4,9,10,13} is another set of necessary measurements.

H =
⎛
⎜
⎝

0 0 0 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 × 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 × 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 × 0 0 0 0 0 0 0

⎞
⎟
⎠

(3.15)

3.6 Conclusions

In this chapter, we first derive both graph-theoretic and algebraic representations of

two classes of critical measurements, Type-α and Type-β. This two-fold construction

of partitions leads to establishing the notion of equivalence among both Type-α and

Type-β measurements with different graph-theoretic and algebraic interpretations.

We employ the graph-theoretic approach in the next chapters to formulate and solve

the distributed observability problem in generic sense. As mentioned before, there

exist combinatorial algorithms of polynomial order to define SCCs and their partial

order, and matching/contractions; see Appendix I for more details.

The results of this chapter on observational equivalence specifically have applica-

tion in fault detection. This is after the identification of faults, where observational

equivalence provides a list of new states to be measured [84, 85] for system observ-

ability recovering. This may further improve estimation accuracy or provide low-cost

benefits, to extend the work in [86,87]. Another application is to define minimum or-

der of input-output equations for Linear Time-Varying (LTV) filters as stated in [88].
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Chapter 4

Distributed Observability from

First Principles

The problem of estimating the state, xk, from the set of state measurements, y, can

be fundamentally considered in two different contexts;

• Centralized observability: all observations are transmitted to a central unit

where the state estimate is processed. Such central coordinator is able to es-

timate the global state of the system with bounded error in steady state (e.g.

Kalman Filtering) if and only if the pair (A,H) is observable [33].

• Distributed observability: the agents interact with each other over a network

(graph). Each agent then estimates the state, xk, given the measurements

and/or predictions of its neighbors. In this case, (W ⊗ A,DH) observability

implies system is observable in distributed sense, i.e., estimation of every agent

based on its local information is bounded steady state error [9, 27, 47].
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In the previous chapter, we cast the necessary measurement, such that it includes

(at least) one state observation from each set of equivalent sets. In this chapter, given

a system with matrices (A,H) satisfying such observability condition, we establish

the problem of distributed observability, i.e., the system to be observable locally

at each agent. We derive the generalized mathematical term for observability of

any distributed observer/estimator from first principles. Further, we support the

results on distributed observability, via the example of our Networked Kalman-type

Estimator (NKE). We derive the NKE error evolution and we show its stability under

the proposed setup.

4.1 Distributed Observability

Recall Gnet = (Vnet,Enet) as the agent interaction graph and N (i) as the neighborhood

of agent i. Each agent i is to estimate the state, xk, with its observations, yik, and with

its neighboring observations, {yjk}j∈N (i). Recall that, each agent, i, thus, estimates

the state-vector, described by

xk+1 = Axk + vk, (4.1)

from the following observations:

yjk =Hjxk + rjk, j ∈ Nα(i). (4.2)

Let us assume that the neighbor set hasNα(i) neighbors, and is indexed by i1, i2, . . . , iNα(i).

Define matrix U as the adjacency matrix determining this neighborhood. Then,
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agent i is to estimate xk from the neighboring observations, yik,y
i1
k , . . . ,y

iNα(i)
k . Or,

equivalently, with the following:

ỹik ≜

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yik

⋮

yiNik

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Hi

⋮

HNi

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

xk +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rik

⋮

rNik

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.3)

The above observation model is equivalent to [9]:

zik = ( H⊺
i . . . H⊺

Ni
) ỹik ≜ H̃ixk + r̃jk, (4.4)

with H̃i ≜ ∑
j∈Nα(i)

H⊺
jHj, r̃ik ≜ ∑

j∈Nα(i)

H⊺
j rjk. (4.5)

In fact, Eq. (4.4) is just a compact way of writing Eq. (4.3). The distributed es-

timation problem over the communication graph, Gnet, is now to estimate xk at

each agent, i, with the observations, zik. From the standard estimation theory ar-

guments [13], we know that such an estimation is possible at any agent i, if and only

if, the pair, (A, H̃i), is observable. For observability at all of the agents, we must

consider all such pairs, (A, H̃1), (A, H̃2), . . . , (A, H̃N), i.e. the observability of

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

A

⋱
A

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,
⎛
⎜⎜⎜⎜⎜
⎝

H̃1

⋱
H̃N

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜DH

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (4.6)

compactly written as (I⊗A,DH). It is straightforward to show that a centrally observ-

able system does not necessarily imply that the distributed system is also observable,
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i.e.

(A,H)-observability⇏ (I ⊗A,DH)-observability. (4.7)

We note that the above straightforward description of distributed observability

is actually misleading. The primary reason is that although observation exchanges

are considered, the agents may also exchange their local predictions. This latter ex-

change does not appear in the above characterization of distributed observability.

In the following, we provide a novel construction to derive distributed observability

that accommodates for both observation and prediction exchanges, and show that

distributed observability does not require each agent to be observable in its neighbor-

hood.

4.1.1 Derivation

Consider again the distributed estimation problem where we wish to estimate the

dynamics in Eq. (2.1) via the observations in Eq. (1.4). Recall that x̂i
k∣k

denotes the

estimate of the state, xk, using all of the observations available at agent i, and its

neighboring agents up to time k. Concatenating the estimates at all agents, the global

state estimate in the network is

x̂k∣k ≜

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x̂1
k∣k

⋮

x̂N
k∣k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.8)
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Considering x̂k∣k to be an estimate of some state, we seek the corresponding dynamical

system to this state-estimate. Clearly, the corresponding dynamical system has the

following global state vector:

xk ≜

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xk

⋮

xk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1N ⊗ xk. (4.9)

where 1N is a column vector of N ones. To this end, let us assume that the dynamics

associated to the above global state-vector, xk, are given by some linear system:

xk+1 = Zxk + vk, (4.10)

where we have Z ∈ Z, and Z is defined as a class of system matrices such that if

we choose any matrix Z ∈ Z, Eq. (4.10) remains a valid representation of the global

state vector as given by concatenating the system dynamics of Eq. (2.1). We now

characterize this class of system matrices, Z. We have,

xk+1 = 1N ⊗ xk+1,

= 1N ⊗ (Axk + vk),

= 1N ⊗Axk + 1N ⊗ vk,

= (W ⊗A)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z

xk + 1N ⊗ vk
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

vk

, (4.11)
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where the last equality follows if and only if W is row-stochastic, as described next,

(W ⊗A)xk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w11 ⋯ w1N

⋮ ⋱ ⋮

wN1 ⋯ wNN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗A

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

xk (4.12)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w11A ⋯ w1NA

⋮ ⋱ ⋮

wN1A ⋯ wNNA

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xk

⋮

xk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w11Axk +⋯ +w1NAxk

⋮

wN1Axk +⋯ +wNNAxk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.13)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Axk

⋮

Axk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1N ⊗Axk (4.14)

This leads to the conclusion that any matrix that cannot be decomposed asW ⊗A

is not a system matrix for the dynamics described by xk+1, i.e.

Z = {Z ∣ Z = (W ⊗A) and W is stochastic}. (4.15)

The propositions below follows the above arguments.

Proposition 4.1.1. The distributed estimation of the dynamics in Eq. (2.1) mon-

itored by measurements according to Eq. (1.4), interacting over a communication
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graph, Gnet, is equivalent to the centralized estimation of the following system:

xk+1 = (W ⊗A)xk + vk+1, (4.16)

zk ≜ DHxk + r̃k, (4.17)

where W is stochastic.

We are now in a position to write the filtering equations for the centralized system

(equivalent to the distributed estimation problem) in Eqs. (4.16)-(4.17):

x̂k∣k−1 = (W ⊗A)x̂k−1∣k−1, (4.18)

x̂k∣k = x̂k∣k−1 +Kk (zk −DH x̂k∣k−1) , (4.19)

where Kk is the gain matrix (similar to Kalman filtering). The following theorem

formally defines the distributed observability.

Theorem 4.1.1. A dynamical system monitored by a network of interacting agents

is distributively observable if and only if (W ⊗ A,DH) is observable, where W is a

row-stochastic matrix.

Proof. The proof relies on the fact that the distributed estimation problem is equiv-

alent to the centralized estimation problem with the pair of system matrices, W ⊗A

and DH .

As discussed in Chapter 2, the observability of the pair (W⊗A,DH) can be checked

using different observability tests, and among those we adapt structural observability.

The structure of the matrix W that makes (W ⊗A,DH) observable, thus defines the

sub-topology of the underlying agent communication, see Proposition 4.1.1. In the
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next chapter, we derive the necessary conditions on the communication topology, Gnet,

to recover the distributed observability. But, we first give an example of a distributed

observer in the next section.

4.2 Distributed Estimator

Although the centralized system, Eqs. (4.16)-(4.17), is equivalent to the distributed

estimation problem, we still have to verify if the filtering equations, Eqs. (4.18)-(4.19),

can be implemented in a distributed fashion. To this end we propose a distributed

example in this section. Note that Eqs. (4.18)-(4.19) consists of two information fusion

steps:

(i) Information fusion in the prediction space:

x̂k∣k−1 = (W ⊗A)x̂k−1∣k−1,

(ii) Information fusion in the observation space:

x̂k∣k = x̂k∣k−1 +Kk (zk −DH x̂k∣k−1) .

Consider information fusion in the prediction space (a priori step) to be implemented

over the graph, Gβ, and information fusion in the observation space (a posteriori step)

to be implemented over the graph Gα. Considering separate graphs is important since

different connectivity conditions may be required for each fusion step. We may call Gα

and Gβ respectively α-network and β-network throughout this thesis. With this two-

layered approach, it is immediate to see that Gnet = Gα ∪ Gβ. Finally, we denote the
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neighborhood at agent i (including agent i itself) as Nα(i) and Nβ(i), in Gα and Gβ,

respectively, with structured adjacency matrices U and W .

First consider the prediction-update in Eq. (4.18). It can be immediately observed

that Eq. (4.18) is distributed:

x̂ik∣k−1 = ∑
j∈Nβ(i)

wijAx̂j
k−1∣k−1, (4.20)

with W = {wij}. Next consider the observation fusion case, i.e. Eq. (4.19). Note

that since the Kalman gain, Kk, is a full matrix in general, Eq. (4.19) cannot be

immediately distributed. In order to keep the implementation of Eq. (4.19) distributed

and local, an alternate is to assume that the gain matrix,Kk, is block-diagonal, leading

to

x̂ik∣k = x̂ik∣k−1 +K
i
k ∑
j∈Nα(i)

H⊺
j (yjk −Hjx̂ik∣k−1) . (4.21)

Now, recall the estimation error at time k,

eik = xk∣k − x̂ik∣k,

ek =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1
k

⋮

eNk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.22)

Rewrite the estimation error at agent i as,

eik = xk − (x̂ik∣k−1 +K
i
k ∑
j∈Nα(i)

HT
j (y

j
k −Hjx̂ik∣k−1)) (4.23)
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Then from (4.20)-(4.21) we have the following,

eik = xk −
⎛

⎝
∑

j∈Nβ(i)

wijAx̂j
k−1∣k−1 +K

i
k ∑
j∈Nα(i)

HT
j

⎛

⎝
yjk −Hj ∑

j∈Nβ(i)

wijAx̂j
k−1∣k−1

⎞

⎠

⎞

⎠
(4.24)

Replacing the system equations (2.1)-(1.4) we get,

eik = (Axk−1 + vk−1) − (∑j∈Nβ(i)wijAx̂j
k−1∣k−1 +

Ki
k∑j∈Nα(i)H

T
j (Hjxk + rik −Hj∑j∈Nβ(i)wijAx̂j

k−1∣k−1)) (4.25)

= (Axk−1 + vk−1) −∑j∈Nβ(i)wijAx̂j
k−1∣k−1 −

Ki
k∑j∈Nα(i)H

T
j (Hj(Axk−1 + vk−1) + rik −Hj∑j∈Nβ(i)wijAx̂j

k−1∣k−1) (4.26)

= Axk−1 −∑j∈Nβ(i)wijAx̂j
k−1∣k−1 −K

i
k∑j∈Nα(i)H

T
j (HjAxk−1 −Hj∑j∈Nβ(i)wijAx̂j

k−1∣k−1)

+vk−1 −∑j∈Nα(i)H
T
j Hjvk−1 −∑j∈Nα(i)H

T
j rik (4.27)

Note that the second term is a weighted linear function of the system and output

noise and we can collect these noise terms in a new parameter qk.

eik = Axk−1 − ∑
j∈Di

x̂j
k−1∣k−1

− Ki
k ∑
j∈Nα(i)

HT
j Hj

⎛

⎝
Axk−1 − ∑

j∈Nβ(i)

wijAx̂j
k−1∣k−1

⎞

⎠
+ qk (4.28)

Using the fact that matrix W is stochastic, we get

Axk−1 = ∑
j∈Nβ(i)

wijAx̂j
k−1∣k−1 (4.29)
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and thus,

eik = ∑
j∈Nβ(i)

wijA(xk−1 − x̂j
k−1∣k−1)

− Ki
k ∑
j∈Nα(i)

HT
j Hj ∑

j∈Nβ(i)

wijA(xk−1 − x̂j
k−1∣k−1) + qk (4.30)

Now define,

Kk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K1
k 0

⋱

0 KN
k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

DH =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑j∈Nα(1)H
T
j Hj 0

⋱

0 ∑j∈Nα(N)H
T
j Hj

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Every block diagonal, ∑j∈Nα(i)HT
j Hj, in matrix DH , can be thought of as all the

measurements in the (extended) neighborhood of agent i in sub-network Gα. This is

because HT
j Hj is the square matrix of the measurement vector Hj, and have the same

output information as in Hj. Finally, it can be shown that the networked error in the

distributed estimator, Eqs. (4.20)-(4.21), evolves as,

ek = (W ⊗A −KkDH(W ⊗A))ek−1 + qk, (4.31)
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According to Kalman Observability [13], it is known that this error dynamics can be

stabilized if the following pair is observable,

(W ⊗A,DH). (4.32)

Following Schur condition, a Kalman-type gain matrix, K, exists such that

ρ(W ⊗A −KDH(W ⊗A)) < 1, (4.33)

if (W⊗A,DH) is observable1. Notice that, theoretically, to satisfy this (W⊗A,DH) ob-

servability, we meet the observability conditions of Theorem 2.7.1 over distributed

system digraph GDist. However, in this thesis we constrain the gain matrix to be

block-diagonal, denoted by Kk. This implies that the resulting distributed estima-

tor, Eqs. (4.20)-(4.21), is equal to the centralized counterpart, Eqs. (4.18)-(4.19), but

with the extra condition of block-diagonal Kk. In general, Kk cannot be computed

locally from the standard procedures. However, computing such a constrained gain

is possible via an iterative cone-complementary optimization algorithm stated in the

Appendix II of this thesis. Nevertheless, if the centralized equivalent Eq. 4.31 has no

(unconstrained) solution, then the distributed problem cannot have any solution to

ensure observability of (W ⊗A,DH).
1In fact, this is straightforward to see by comparing to the Centralized Kalman-Filtering

(CKF) (2.17) with error equation (4.31)
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4.3 Conclusions

In this chapter, we formulate the distributed observability as the observability of the

pair (W ⊗A,DH), where W and DH are defined over different graphs (neighborhoods

for each agent). We provide a novel construction to show that distributed observ-

ability does not require each agent to be observable in its neighborhood. This is by

considering a step of priori estimate or prediction fusion as discussed. This is in con-

trast with the current trivial solutions for distributed observability, where each agent,

i, is densely connected to be observable in its neighborhood [16, 40]. Intuitively, we

expect distributed observability to be more relaxed, and this formulation holds for

general distributed-type observers. In the next chapter, to satisfy this observabil-

ity condition, we determine the structure of the network that agents communicate

through.
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Chapter 5

Necessary and Sufficient Network

Connectivity

In this chapter, we provide the main results on the structure of the agent communi-

cation network to reach distributed observability. In simple words, we aim to define

the structure of W and U (or DH) such that the matrix (W ⊗A,DH) is observable

in generic sense. Intuitively, these matrices define the communication links in the

network, through which agents can share critical information on their observations

and/or predictions. This information potentially may recover partial observability of

each agent.

We define two graph topology Gβ and Gα, the union of which builds the multi-

agent network structure, Gnet. Assuming no information loss or package drop over the

communication links, we first state sufficient condition(s) and the main theorem on

the structure of the communication network. Then, we state a step-by-step proof of

the theorem, first for full-rank and then for (structurally) rank deficient systems. Next,
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we use the same line of reasoning to discuss the necessary condition(s) on network

topology. Finally, a system classification in terms of observability and, further, the

network density of the monitoring distributed observer is given.

5.1 Graph Notations

In this work, we deal with three different graphs as described below:

(i) System digraph, Gsys, representing the states of dynamic system (2.1) and (2.2),

as defined in detail in Chapter 2.

(ii) Communication network, Gnet, defines the interaction of the agents. Let Gnet =

(Vnet,Enet), where Vnet = {1, . . . ,N} is the vertex set consisting of N agents,

Enet = {(i, j) ∣ i ← j} is the set of edges (communication links), and N (i) =

{i}∪{j ∣ (i, j) ∈ Enet} denotes the extended neighborhood of agent i. Notice that,

unlike many works in the literature we do not constrain Gnet to be undirected.

In fact, no assumption on the topology is considered here, as designing Gnet is

the main contribution of this chapter.

(iii) The distributed system digraph, GDist, is the digraph associated with the dis-

tributed system (W⊗A,DH). Indeed, the GDist is built on the Kronecker product

of the matrices W and A [52], along with the (neighboring) measurements.

5.2 Agent Topology Design

In this section we define connectivity of Gnet to satisfy the distributed observability

condition. To this aim, we define the following graphs over Vnet:
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Definition 5.2.1.

(i) Define E0 = {(i, i) ∣ i ∈ Vnet}, and G0 = (Vnet,E0). Such graph consists of only

self-edges at each node (agent).

(ii) Let Eα = {(j, i) ∣ i ∈ A, j ∈ Vnet, j ≠ i}, i.e. there is a direct edge from every

Type-α agent to all other agents; where Gα = (Vnet,Eα) is the graph with such

edges. Let Nα(i) be the (extended) neighborhood of agent i in Gα ∪ G0. Indeed,

adjacency matrix U represents the graph Gα ∪ G0.

(iii) Define Gβ to be a SC graph over Vnet. Subsequently, let Eβ to be the set of edges

induced by Gβ and let Nβ(i) be the (extended) neighborhood of agent i in Gβ ∪G0.

In this case, matrix W represents the adjacency of Gβ ∪ G0.

Remark 5.2.1.

(i) Each Type-α agent is a hub of Gα, and the sub-graph of Type-α agents is a

complete graph.

(ii) An example of Gβ is a cycle graph, however, Gβ is not necessarily cyclic.

The network structure defining the communication among the agents is the union

of these three sub-graphs, i.e.

Gnet = G0 ∪ Gα ∪ Gβ (5.1)

Notice that, different type of information is shared over these networks. Unlike the

existing works in the literature, e.g. [26, 89] among others, we do not constrain Gnet

to be undirected.
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5.3 Distributed System Characterization

Refer (W ⊗ A,DH) as the distributed system associated with digraph GDist. Recall

from last chapter that W = {wij} is the weight matrix for prediction-fusion and is

stochastic as defined in Chapter 2. On the other hand, measurement-fusion is defined

by DH over graph Gα.

DH =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑j∈Nα(1)H
T
j Hj 0

⋱

0 ∑j∈Nα(N)H
T
j Hj

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.2)

To clarify the role of measurement and prediction fusion, we first consider W = I and

DH =DH defined as follows:

DH =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

HT
1 H1 0

⋱

0 HT
NHN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.3)

This implies no information exchange/fusion among the agents. This distributed

system, (I ⊗ A,DH), can be thought of as N decoupled subsystems (as shown in

Fig. 3.3). In the matrix representation, each of these subsystems is associated to

an n×n block diagonal as in Fig. 5.2–(Right). Now considerW to have some non-zero

off-diagonal entries. These entries define the intra-connections among the subsystems.

As an illustrating example, consider Fig. 3.3–(Left), where we show a n = 7-state

dynamical system with N = 3 agents/measurements, {a, b, c}. Agent a measures x3,

agent b measures x5, and agent c measures x7. Each agent is required to estimate the
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Figure 5.1: (Left) System digraph GA, and (Right) distributed digraph associated
with (I ⊗A,DH). This graph includes N decoupled subsystems each associated to a
measurement/agent, where no subsystem is locally observable.

entire n = 7 dimensional state-vector. Without any information fusion each agent only

has a local observation of the system as it is shown in Fig. 3.3–(Right). Therefore,

each agent has to acquire the missing information (measurements and/or predictions)

via communicating with agents in its immediate neighborhood. However, in this

illustration, no agent finds any measurement in its neighborhood in addition to what

it already has. Information sharing among the agents by applying prediction- and

measurement-fusion provides more linking in GDist. These extra links, respectively

captured by the non-zeros in W and U (or the summation in DH), implies more

information sharing in the distributed system and potentially may improve generic

distributed observability. For example, consider the case of measurement-fusion by

adding the edge b← a in Gα. This implies a ∈ Nα(b) and enables agent b to access the

measurement of state x3 observed by agent a.

The case for prediction-fusion is more challenging. A path, for example, from

agent c to agent b (Type-β) may imply either b ← c, or b ← a ← c. Consider the

latter case: the edge a ← c implies wac ≠ 0, which in the distributed system ma-

trix, W ⊗A, represent as edges from parent SCC, {4,5,6}, in agent c’s subsystem to
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Figure 5.2: (Left) Matrix structure of the distributed system with no data fusion.
Every block diagonal Wii ⊗ A is a subsystem with a measurement monitored by an
agent i. (Right) Adding information fusion, the intra-connections among the subsys-
tems depends on the non-diagonals Wij ⊗A, i ≠ j.

the corresponding parent SCC in agent a’s subsystem. Similarly, b ← a adds edges

from the parent SCC, {4,5,6}, in agent a’s subsystem to the corresponding SCC in

the subsystem of agent b. Since b is Type-β, it has a measurement of this SCC, say x5

in this example; this entire setup allows the parent SCC at agent c (with no output)

to be output-connected through a path (via agent b). This implies Y-connectivity of

states in the associated parent SCC and therefore enhances the output accessibility

and observability.

A detailed discussion on the role of prediction-fusion–role of matrixW and graph Gβ–

is stated in Section 5.5, and then the role of measurement-fusion–role of matrix U

and graph Gα–in Section 5.6. The description of prediction and measurement-fusion

is summarized in Table 5.1 1. Separating solutions for prediction and measurement-

fusion is for intuition, obviously, in real applications if two agents are linked together
1We define the graph G∗α in section 5.6.
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Table 5.1: Distributed system and network topology for information fusion.

Fusion level Adj(GDist) Gnet
No information fusion (I ⊗A,DH) G0
Only prediction-fusion (W ⊗A,DH) G0 ∪ Gβ
Only measurement-fusion (I ⊗A,DH) G0 ∪ Gα ∪ G∗α
Measurement & prediction-fusion (W ⊗A,DH) G0 ∪ Gα ∪ Gβ

they may share all their information to maximally improve their estimation perfor-

mance.

5.4 Sufficiency: Preliminary Analysis

In this section, we give some preliminaries to distributed observability analysis.

Remark 5.4.1. All diagonal entries of W are nonzero (wii ≠ 0, ∀i). This is because

every agent is in its own (extended) neighborhood and uses its own information. From

Lemma 2.8.2, this immediately gives S-rank(W ) = N .

In the following we state the main result on sufficient network connectivity; we

defer the proof to Section 5.7 as it requires more development on prediction and

measurement fusion from Sections 5.5-5.6.

Theorem 5.4.1. Assume a given set of measurements H of system A, such that (A,H)

is structurally observable; then Gnet as in Definition 5.2.1 is sufficient for distributed

observability in generic sense.2

Note that, the notion of distributed observability in generic sense is similar to (cen-

tralized) generic observability but extended to a distributed estimator. As we showed
2This condition is not a tight sufficient connectivity on the network. In theory, there might be

weakly connected networks that return distributed observability.
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in the last chapters, having centralized observability is a necessary condition for dis-

tributed observability, but not sufficient. Therefore, as stated in the assumption–(iii)

in Chapter 1, and particularly for the proof of sufficiency it is assumed that centralized

(A,H)-observability is given (as in Theorem 2.7.1 and Theorem 3.4.1). With this as-

sumption, Theorem 5.4.1 states that prediction and measurement fusion respectively

over Nβ(i) and Nα(i) guarantee distributed observability. Let us assume for now that

this statement is true, then the following corollaries are immediate:

Corollary 5.4.1. For a full S-rank system, A, a strongly-connected network is suffi-

cient for distributed observability.

Proof. For a full S-rank system, there are no Type-α agents and thus Nα(i) = {i},∀i,

implying no measurement sharing and therefore no Gα. However, according to Defi-

nition 5.2.1–(iii) a strongly-connected network ensures that the conditions on Gβ are

satisfied, see Remark 5.2.1–(i).

A direct consequence of the above corollary is that for full S-rank systems no agent

requires any measurement other than its own, i.e., measurement-fusion is not required.

Corollary 5.4.2. If system, A, is S-rank deficient, distributed observability does not

hold when Nα(i) = ∅, i.e. without measurement-fusion.

Proof. Since S-rank deficiency implies existence of Type-α agents. This immediately

verify from Theorem 5.4.1 that measurement-fusion is required (unlike the full S-

rank case) as Nα(i) includes more than self-measurements. This is true even for

strongly-connected networks as they do include Gβ as a sub-graph, but the connectivity

requirements on Gα, see Definition 5.2.1–(ii), are not necessarily satisfied.
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The above corollary shows that when A is S-rank deficient, using prediction-fusion

cannot guarantee distributed observability of the system and thus, the agents need

access more measurements to recover their observability. Furthermore, we explicitly

show that these additional measurements have to come only from Type-α agents

and not from Type-β agents. This result is in contrast with existing work in the

literature [15, 16, 19], because in these works: (i) only fusion in the measurement

space is considered; and (ii) crucial agents are classified into a single category without

recognizing their different roles towards distributed observability. Subsequently, they

require all Type-α and Type-β agents to be included in measurement-fusion.

5.5 Prediction-fusion

In this section, according to Table 5.1, we analyze the structure of Gβ for (W ⊗

A,DH) observability. First, we consider the system matrix, A, to be full S-rank.

This is the case, for example, in linearization of nonlinear systems where the system

matrix almost always has non-zero diagonal entries (e.g., [16] considers such a non-zero

diagonal matrix).

Theorem 5.5.1. With a full S-rank system, A, the pair (W ⊗A,DH) is generically

observable over Gβ.

Proof. For (W ⊗A) to be generically observable, the system diagraph, GDist, should

follow (i) and (ii) in Theorem 5.4.1. From Remark 5.4.1 and Lemma 2.8.2, (W ⊗A)

is full S-rank, which ensures condition (ii) in Theorem 2.7.1. To satisfy condition (i),

according to Theorem 3.4.1–(ii), every parent SCC, S↺p
i , in every subsystem of GDist

has to be Y-connected, i.e. to reach a measurement (see Fig. 3.3 for illustration). Let
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= ⨂
=

Figure 5.3: This figure illustrates the proof of Theorem 5.5.1, showing that A directed
path from agent i to agent j in W implies a directed path from states in subsystem
of i to subsystem of agent j in (W ⊗A) and consequently yj.

us assume that agent i has no measurement of parent SCC S↺p
i in its subsystem.

Then, according to Gβ, there is a path from i to another agent j measuring a state in

SCC S↺p
j (counterpart of SCC S↺p

i ). This implies that every SCC in subsystem of

agent i has a path to its counterpart SCC in subsystem of agent j, that implies S↺p
i →

S
↺p
j (see Fig. 5.3). Therefore, every state in SCC S↺p

i is also connected to yj, and

thus, S↺p
i is Y-connected. Having this for every parent SCC in every subsystem, all

SCCs in (W ⊗A,DH) are Y-connected and the theorem follows.

For example, consider again the system in Fig. 3.3. Having nodes {4,5,6} as

parent SCC, agent b is Type-β. According to the above theorem any other agent

without any measurement in {4,5,6}, like agent c, must have a path to agent b. This

provides a connection from SCC {4,5,6} in subsystem of c to the subsystem of b

in GDist and, in turn, implies its Y-connectivity.
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Theorem 5.5.2. If the system, A, is S-rank deficient, then (W ⊗ A,DH) is not

generically observable.

Proof. Let i be an agent for which condition (i) in Theorem 2.7.1 does not hold, i.e.

S-rank
⎛
⎜
⎜
⎝

A

HT
i Hi

⎞
⎟
⎟
⎠

< n. (5.4)

Such an agent always exists because: (i) based on the Assumption–(iv) in Chapter 1,

the entire system is not observable at any agent; and (ii) the matrix A is not full-rank.

Now consider (W⊗A,DH) for the best-case scenario where Gβ is a complete graph, and

thus,W has all non-zero elements. LetWi be the ith column ofW . Obviously,Wi⊗A

is the ith block column of (W ⊗A), and contains block matrices wjiA, j = 1, . . . ,N .

It follows that,

S-rank
⎛
⎜
⎜
⎝

wjiA

HT
i Hi

⎞
⎟
⎟
⎠

< n, (5.5)

for all j = 1, ...,N, as wji ≠ 0 and scalar multiplication does not change the structure

and the S-rank (maximum possible rank over all values). Since A is not full S-

rank, Wi ⊗ A has rank less than n as stacking matrices with the same structure on

top of each other (see Fig.5.4–(Left)) does not improve the S-rank. This immediately

results in,

S-rank
⎛
⎜
⎜
⎝

Wi ⊗A

HT
i Hi

⎞
⎟
⎟
⎠

< n. (5.6)

Consequently, according to Fig. 5.4, the structure of the matrix W ⊗A is given as the

side-by-side concatenation of the matrices Wi ⊗A. Thus we have,
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Figure 5.4: This figure illustrates the structure of Wi ⊗A (Left) and matrix W ⊗A
(Right) in the proof of Theorem 5.5.2.

S-rank
⎛
⎜
⎜
⎝

W ⊗A

DH

⎞
⎟
⎟
⎠

< Nn. (5.7)

This holds for all choices of non-zero elements in full matrix W . Therefore, condition

(ii) in Theorem 2.7.1 is violated and the theorem follows.

The above theorem shows that when A is S-rank deficient, then using prediction-

fusion alone cannot guarantee the distributed observability of the system, and thus,

the agents need access to more measurement data to recover their observability, which

is discussed next.

5.6 Measurement-Fusion

In this section, we discuss the other information fusion level, i.e. measurement-fusion.

Each agent, i, shares its measurement with its direct neighbors and implements this
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as an innovation to update its prediction. According to the Table 5.1 measurement-

fusion is tied with the observability of (I ⊗A,DH). Based on the definition of DH ,

in the distributed system graph GDist, this is equivalent to adding all neighboring

measurements to its subsystem. However, with no prediction-fusion the only way to

update is to directly include Type-β (necessary) measurements similar as for Type-

α. Thus, here we need to define a new communication graph for Type-β agents as

follows:

Definition 5.6.1. Define G∗α to be a graph among Vnet such that for every matched

parent SCC in A, say S↺p

l , if agent i does not have a measurement of a state in S↺p

l ,

then it receives a direct link from any agent j with state measurement in S↺p

l . Sub-

sequently, E∗α is the set of edges induced by G∗α and let N ∗
α(i) be the neighborhood of

agent i in G∗α ∪ G0.

Applying this definition the main result on measurement-fusion is stated below.

Theorem 5.6.1. The system (I ⊗A,DH) is distributedly observable in generic sense

over {Gα ∪ G∗α} ∪ G0.

Proof. Sufficiency: With the given conditions (i) and (ii), each agent has access to all

necessary measurements. In this case, every agent is generically observable similar to

a centralized case.

Necessity: If agent, i, is not connected to a crucial agent (α or β), then it is missing

a necessary measurement and the statement follows.

Notice that, G∗α contains all the Type-β agents but with a stringent connectivity

requirement as compared to Gβ. In G∗α, every Type-β agent is directly connected to

all other agents; a restriction imposed by only considering measurement fusion, see [16]

81



CHAPTER 5. NECESSARY AND SUFFICIENT NETWORK CONNECTIVITY

for related works. Clearly, this requires stronger connectivity as compared to strong

connectivity in Gβ. In this work, we combine both measurement and prediction-

fusion to obtain necessary and sufficient connectivity, where we need direct links

only from the Type-α agents. This is particularly of interest in resource-constrained

applications, where we cannot afford possibly long-distance links in the network.

5.7 Proof of Theorem 5.4.1

Finally, the developments of Section 5.5 and 5.6 lead to the proof of Theorem 5.4.1.

Proof. The proof of Theorem 5.4.1 is a direct consequence of the Theorems 5.5.1,

5.5.2, and 5.6.1 stated in previous sections.

Recall that Theorem 5.5.1 sets the condition for prediction-fusion for full S-rank

systems, i.e. conditions for (W ⊗A,DH) generic observability. Theorem 5.5.2 states

that for general S-rank deficient systems distributed observability cannot be achieved

via the prediction-fusion alone. Measurement-fusion, i.e. generic observability of (I ⊗

A,DH), is discussed in Theorem 5.6.1. Combining these results, the proof for generic

observability of the distributed system (W ⊗A,DH) is immediate. Loosely speaking,

in our approach prediction-fusion is applied to the full S-rank part of the system, while

measurement-fusion covers the S-rank deficient part. In the following we provide some

additional comments.

Remark 5.7.1.

(1) In the case of Type-β agents, the connectivity is either through a directed path

(as in Theorem 5.4.1) or a direct link (as in Theorem 5.6.1); either one of these
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is sufficient for observability. Notice that, the first strategy may exploit nearest-

neighbor or similar communication topology, while the second may require long-

distance communication.

(2) An agent may have no system measurement and still be able to estimate the global

system states via the proposed strategies. Such agents, for example, may play a

role to provide and maintain connectivity of the communication network as in [90],

or assist in providing directed paths to Type-β agents in Gβ.

(3) If system is not (A,H) observable then even using a fully-connected communica-

tion network does not recover observability irrespective of any estimation strategy.

Clearly, the only way to recover observability is by increasing the number of state

measurements to recover centralized observability [19].

(4) In general, adding more measurements of the system and/or more communica-

tion among the agents improve the estimation efficiency by decreasing the MSEE.

In simple words, having more information/understanding of the system renders

tighter bounds on the estimation error. This is the case for Type-γ agents as com-

pared to Type-α and Type-β agents. The reason is that γ agents receive necessary

information from the critical agents, but they benefit from their own non-critical

measurement, which improves the bound on MSEE.
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5.8 Necessity: Recovering Observability at Each

Agent

In this section, we define necessary connectivity for distributed observability based on

the necessary measurement partitioning and equivalent sets defined in Chapter 3.

Theorem 5.8.1. Consider system, A, with the necessary equivalent measurement sets

given. The system is generically observable in distributed sense if every agent, i, in

the network has the followings:

(i) For every contraction set, Cl, agent i receives a direct link from an α-agent, k,

sharing a state measurement in Cl;

(ii) Either one of the following for every matched parent SCC, S↺p

l :

a. Agent i receives a direct link from a β-agent, j, sharing a state measurement

in S↺p

l ;

b. Agent i is connected through a sequence of agents to a β-agent, j, observing

a state in S↺p

l (sharing predictions).3

Proof. Necessity follows a similar argument as in sufficiency in Theorem 5.4.1 and

the results given in Chapter 3. The proof of parts (i) and (ii)–(a) is directly from

Theorem 5.4.1; in part (i), receiving a state observation from every contraction set Cl

recovers S-rank condition, while, in part (ii)–(a), receiving a state measurement of

every parent set S↺p

l directly recovers the accessibility at agent i. Part (ii)–(b)
3Theoretically, this condition is also almost sufficient for distributed observability in generic sense

of Theorem 2.7.1, i.e. the observability of graph GDist.
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indirectly recovers the accessibility in W ⊗A. By a directed path from agent i to β-

agent j, the inaccessible parent SCC S↺p

l of agent i become accessible through agent j.

Intuitively, states in parent SCC S↺p

l of agent i affect the states of the same parent

SCC of agent b and therefore any measurement of the latter one renders inference of

the first one.

Again we mention that, condition (i) defines an α-network, Gα, where agents share

their measurement directly with each other. This simply implies that the necessary

α measurements are required to be known for all agents at every sampling time k.

On the other hand, condition (ii)–b defines an SC β-network, Gβ, over which the

agents only share their predictions; further, condition (ii)–a defines G∗α over which

β agents share their measurements, as in [15, 16, 19]. Notice that, this connectivity

requirement is more relaxed than the necessary condition in [27] where each agent

requires to transmit/share both its observations and predictions to every other agent

over the same network.

5.9 Design of W matrix

This section states the design of W matrix defining consensus weights on state pre-

dictions. In previous sections we discussed two conditions needed to be satisfied by

W matrix:

(i) The structure of W is associated to the topology of the network Gβ. Implying

that W has to be irreducible to satisfy the SC condition on Gβ. 4

(ii) The elements in W are such that it is row-stochastic.
4It should be noted that the irreducible condition satisfies the condition (ii) in Lemma 2.3.1.
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For implementation the consensus update matrix W need to satisfy the above

conditions. The generic result implies that each agent i may (locally) assign different

weights wij on its fixed neighborhood while ∑nj=1wij = 1. These weights may represent

how each agent trust the prediction of its neighbors. There might be many factors

to define this trust among agents. For example, reliability/noise of the communica-

tion channel, the SNR of the transmitted signal, or even the spatial location of the

neighboring agent. This weight could be a measure of importance/reliability of the

incoming data. The typical choice to design such matrix is to reach average consen-

sus [2, 4, 54] implying W matrix to be doubly-stochastic. As discussed in Chapter 2,

other than arithmetic mean, consensus weights could be designed such that agent i

takes the geometric mean or mean of order p of the neighboring predictions. Further,

in [91] authors design the optimal weights according to Metropolis-Hastings method

to reach fast convergence. The convergence rate is of particular interest to improve

the estimation performance in single time-scale filtering.

5.10 System Classification

In general systems can be classified based on their structural rank. Recall that struc-

tural rank or S-rank of a matrix, A, is the maximal rank over all numerical values of

its non-zero parameters. We summarize the results given in this chapter and Chapter

3 in the following remark:

Remark 5.10.1.

• For full-rank systems there is no unmatched state node and, therefore, no Type-α

measurement.
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• For structurally rank-deficient systems number of Type-α agents equals the sys-

tem rank-deficiency (number of unmatched nodes).

This remark immediately results in the following lemma:

Lemma 5.10.1.

• For full-rank systems

1. centralized observability only requires β measurements.

2. for distributed observability, (i) there is no hub (α agent) in Gnet (multi-

agent network), and (ii) strong connectivity is sufficient.

• For rank-deficient systems

1. centralized observability further requires measurements of αs.

2. for distributed observability, (i) there are hubs (α agents) in Gnet, and (ii)

in general, more than strong connectivity is required.

5.11 Illustrative Examples and Simulation

Example 1: Reconsider Example 3.5.1 and the system digraph in Fig. 3.3 with

measurements of {x2, x4, x6}. Recall that system is (A,H) observable by collecting

all measurements at a central unit. By definition, a is Type-α, b is Type-β, and c is

Type-γ. We propose the communication graphs G∗α and Gβ in Fig. 5.5, respectively,

associated to matrices U , W1 and W2 in the following,
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U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

× 0 0

× × 0

× 0 ×

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

× × 0

0 × 0

0 × ×

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

× 0 ×

× × 0

0 0 ×

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.8)

Graph G∗α is based on Theorem 5.6.1, where each crucial agent directly shares its

measurement to every other agent. On the other hand, Gβ is based on Theorem 5.4.1;

agent a (Type-α) directly communicates with all other agents, while SC network

connect agent b (Type-β) to all other agents. For both case (W ⊗A,DH) is generically

observable.

For simulation, apply NKE in Chapter 4. We choose all the system non-zeros

randomly in [0.2,1.2]. A typical unstable system with ρ(A) = 1.2 > 1 is chosen.

Random link weights for W is chosen while satisfying stochastic condition. The noise

chosen to be standard Gaussian vk ∼ N(0, In×n) and rik ∼ N(0,1) and gain matrix K

with blocks defined as following,

K(1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0.0012 0 0 0

0 0 0 0.1072 0 0 0

0 0 0 −0.0704 0 0 0

0 0 0 1.0000 0 0 0

0 0 0 0.7211 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

K(2) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −0.0026 0 0 0

0 0 0 −0.0490 0 0 0

0 0 0 0.0992 0 0 0

0 0 0 1.0000 0 0 0

0 0 0 0.7211 0 0.5588 0

0 0 0 0 0 1.5215 0

0 0 0 0 0 0.6925 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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K(3) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0.1144 0 0.0043 0 0 0

0 1.0720 0 0.0037 0 0 0

0 0.7114 0 0.0507 0 0 0

0 0 0 1.0000 0 0 0

0 0 0 0.7211 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

which gives,

ρ(W ⊗A −KDH(W ⊗A)) = 0.8498 (5.9)

The MSEE is averaged over the Monte-Carlo trials and is normalized by max(MSEE)

as shown in Fig. 5.6. As it can be seen, despite system instability MSEE is bounded

steady state stable. This is a good example of how more measurement of the system

may improve the MSEE. As we can see in this example, agent C measures a non-

critical state, which is not shared by the other two agents. Having more information

improves the estimation performance of this agent. As we see in the simulation, the

MSEE at agent C is smaller as compared to other two agents.

Example 2: For this example, we consider the necessary set of measurements and

connectivity for distributed observability. Consider the Example 3.5.2. Choose one

measurement from each equivalent set Ci and S↺p
j . According to Theorem 5.8.1, we

need state measurements of each equivalent set. Consider 3 agents taking necessary

measurements from states {3,6,11}. Matrices A and H and type of agents are given

in Chapter 3. The necessary communications among the agents are defined as in

Fig. 5.7. Every α agent communicates with all other agents directly, and β agent

shares prediction over a directed path. The associated structured adjacency matrices

89



CHAPTER 5. NECESSARY AND SUFFICIENT NETWORK CONNECTIVITY

are given as follows:

U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

× × 0

× × 0

× × ×

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

× 0 ×

× × 0

0 × ×

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.10)

To verify our results we simulate the estimation using the proposed NKE. We choose

initial state values x0 randomly in (−1.5,1.5). Nonzero system parameters in Eq.(3.13)

are randomly chosen such that ρ(A) = 1.1 and the measurement gains in H are equal

to 1. We choose random values for the non-zeros in associated matrix of Gβ and Gα

and divide it by row-sum to make it stochastic as discussed in Chapter 2. System

and measurement noise are Gaussian vik ∼ N(0,0.052) and rik ∼ N(0,0.22), and the

block-diagonal gain matrix K is defined as in the Appendix II. The block diagonals

are as follows:

K(1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.2864 0 0 0.0001 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.0017 0 0 0.0004 0 0 0 0 0 0

0 0 0.8391 0 0 −0.0004 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.0006 0 0 1.0001 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 −0.0168 0 0 0.1732 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.0706 0 0 0.0145 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.0078 0 0 0.0008 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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K(2) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.2856 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.9994 0 0 −0.0001 0 0 0 0 0 0

0 0 0.8471 0 0 0.0010 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 −0.0005 0 0 0.9999 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 −0.0179 0 0 0.1730 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.1345 0 0 0.0273 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.0439 0 0 0.0078 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

K(3) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.2856 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.0380 0

0 0 0.9994 0 0 0 0 0 0 0 0 0

0 0 0.8390 0 0 −0.0002 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.0073 0

0 0 −0.0007 0 0 0.9999 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −0.0058 0

0 0 −0.0115 0 0 0.1745 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.3058 0

0 0 0.2417 0 0 0.0249 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1.1976 0

0 0 0.1099 0 0 0.0090 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For this K matrix, we have

ρ(W ⊗A −KDH(W ⊗A)) = 0.7669 (5.11)

Next, for each agent, we record the sum of Mean Squared Estimation Errors (MSEE)

at all states at every iteration k, average it over 1000 Monte-Carlo simulation, and

finally normalize it by the max(MSEE). The simulation results over k = 50 time-

iterations is given in Fig. 5.8. As shown in the figure, error at every agent is bounded

steady state even though the system dynamics is unstable. This simulation verifies

that the linear structured system in Eq.(3.13) over the multi-agent network in Fig 5.7

is almost always observable. In other words, (W ⊗A,DH) is generically observable.
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5.12 Conclusions

In this chapter we state the main result on necessary and sufficient connectivity of the

multi-agent network for distributed observability. It is noteworthy that as opposed to

the current approaches in the literature we didn’t constrained our approach to only

measurement sharing, but we added prediction sharing. In particular, when the sys-

tem is full S-rank this makes a big difference on necessary network connectivity. In

such systems, any strongly connected network ensures distributed (generic) observ-

ability. This is a prevalent network assumption to guarantee stability of distributed

estimation schemes, e.g. in [11, 26, 29, 30], however, as we have shown, it is only ap-

plicable to full S-rank systems. For S-rank deficient systems more connectivity of

α agents as hubs of the network is required. We used the NKE protocol and sim-

ple academic examples to verify our results. However, the combinatorial algorithms

are scalable and practically feasible for any large-scale system and any distributed

estimator. Application in larger scale is provided in the next chapter.
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Figure 5.5: (Left) system digraph, and sufficient communication networks for Ex-
ample 3.5.1: (Right) the graph Gnet1 = G0 ∪ Gα ∪ G∗α, and (Right) the graph Gnet2 =
G0 ∪ Gα ∪ Gβ.
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Figure 5.7: Necessary network connectivity for Example 3.5.2: Gnet = G0 ∪ Gα ∪ Gβ.
Self edges are not shown for simplicity.
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Figure 5.8: Evolution of MSEE for agents estimating the system states in Exam-
ple 3.5.2 over the network G0 ∪ Gα ∪ Gβ in Fig. 5.7.
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Chapter 6

Applications

As mentioned previously, complexity and larger-scale in practical applications makes

traditional estimation solutions obsolete. Generic single time-scale distributed solu-

tion provides estimators robust to system disturbance, with no central processor, and

less communication/processing load at agents. However, the challenge is to ensure dis-

tributed observability with measurements distributed over the multi-agent network.

In this context, the challenges are two-fold:

(i) the system parameters may change over time, e.g. due to dynamic loading

conditions and the intermittent nature of the renewable sources in power systems;

(ii) the properties of the underlying estimator depends on the underlying agent

communication graph and data fusion principles.

For example, in electric power systems, the parameters depend on the physical

quantities that may change over time, whereas, in the case of linearization of a non-

linear model, system parameters depend on the operating point [20]. This is the

motivation behind this research, where the design methodologies are generic, inde-

pendent to exact system values and only rely on the system structure.
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6.1 Applications in Social Networks

In the context of the above discussion, distributed estimation is particularly relevant

to social and economic networks. In such networks, the state of each node may

represent an opinion [92], or a belief [93], of an individual, while the interconnections

between such states represent social interactions and opinion sharing, see [94, 95],

for additional details on social phenomena. The estimation problem is to estimate

the state (opinions, beliefs, origin of a rumor [96, 97]) with the help of a multi-agent

network, where each agent has observations from certain observer nodes and is able

to exchange information with the neighboring agents, see Fig. 6.1.

Clearly, the estimation problem now is distributed and no agent may be able to

infer the network opinion (global state-vector) from its observations (or neighboring

observations) alone. A natural question in this regard is the following: what commu-

nication network among the agents result in distributed observability given the agent

observations. The idea is to provide interagent communication topology to ensure dis-

tributed observability. If a social network is distributedly observable the social opinion

can be discovered by adversaries. Towards security of social networks, our results can

also be utilized to ensure that the social network is not distributedly observable by

adversaries [98].

Social networks and complex networks, in general, have been modeled using both

linear and nonlinear dynamics, see [94,95,99], and references within. Examples of lin-

ear models are in consensus/agreement problems [100–102] and Markov-based opinion

formation [92, 103]. Two well-known linear models are social influence networks by

Freidkin and Johnson [102] and French model [104]. The French model formulates the

formation of opinions (states) under the interpersonal influence of peers. Similarly,
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Multi-agent Network 

Social Digraph 

Social state (opinion) 

Social interaction 

Figure 6.1: A multi agent network monitoring a social digraph.

Freidkin and Johnson model the process of social influence on opinion evolution. An-

other socio-economic example is [105], where product prices as states linearly evolve

on a daily basis according to a competitiveness matrix (auction game).

Of significant relevance to this work is the characterization in [106] and [107]

where the structure of the linear model is assumed to be fixed but with time-varying

interaction weights. In particular, Reference [106] describes examples of a linear

state-space on the social networks resulting from email communication, and social

interaction of Monks (members of a particular religious order). On the other hand,

Reference [107] discusses a linear state-space for influence networks, where attitudes,

sentiments, or expectations (states) evolve over time-varying influences of other actors.

For nonlinear social dynamics, simplified modeling methods have been considered,

e.g. [20, 66]. Particularly, observability of nonlinear dynamics is characterized by

the structural observability of the corresponding linearized system [66]. Hence, it is

natural to model the social phenomena as LSI systems, where any (non-zero) element

of the system matrix may change (modeling distinct or time-varying phenomena) as

long as the structure (social digraph) is not violated, e.g. see [106] and [107].

Towards modeling the social systems we specifically address the following ques-
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tions:

(i) Which individuals (observer nodes in Fig. 6.1) are critical for the global infer-

ence of the social system? and,

(ii) Given such critical opinions observed by a network of agents, what are the

connectivity requirements on the agent network to ensure distributed observability?

The first question aims the contribution of each observation towards the under-

standing of the social phenomena, based on the results of Chapter 3; and the latter

question, defines the communication of the observing agents, based on the results of

Chapter 5. In this case, the critical observer nodes can be divided into α and β types,

for which α types directly share their state observation, while β types share their

state prediction over a SC network. The analysis and design procedures addressed in

this thesis have significance in very large-scale social networks and related physical

phenomena. This is primarily because of the structural analysis where (distributed)

observability is considered as a generic property of the system.

6.1.1 Large-scale examples

We provide some insights of our results towards inference in social networks. Consider

a social group of actors with states, e.g. opinions, sentiments, emotions, etc., that

evolve over social interactions. The influence network, e.g. friendship, co-authorship,

swarming, etc., is time-invariant but the influence weight of actors may vary over

time, and different weight assignment model the evolution of different states resulting

into different social phenomena. Our aim is to infer such phenomena by observing

some critical states without considering any particular dynamics but only the social

interactions (digraph). For distributed inference, first, we classify these states (and
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Table 6.1: Social network examples: summary of inference features.

Networks n = ∣VA∣ E = ∣EA∣ nα nβ
Monks 18 88 0 1
Blogs 1224 19025 436 0
Books 105 882 0 1

Dolphins 62 159 2 0
Coauthorship 1461 5484 37 248

the agents observing them) according to Definitions 3.2.3 and 3.2.2 in Chapter 3. The

necessary network of agents is defined according to Theorem 5.4.1 in Chapter 5.

Following the discussion in Chapter 5, the structure of any social digraph is highly

relevant to the dynamics that may take place over the social network. In this con-

text, we use some of the well-known social network models [108, 109] and explore

the graphical observability results developed in this work. These networks have been

used for the estimation of corresponding social phenomena modeled as LSI systems.

Each node (circles in Figs. 6.3–6.5) represents a state, e.g., heading, opinion, buying

habits, etc., in the social digraph and evolves over social interactions. Theorem 2.7.1

characterizes the necessary observerations. These observations (and their associated

agents) are classified as Type-α (red circles) and Type-β (green circles). Finally, The-

orem 5.4.1 characterizes the network of these agents accordingly (a typical illustration

of such network is presented in Fig. 6.2). The results are summarized in Table 6.1.

(a) Political Blogs: A social digraph of hyperlinks between weblogs on US poli-

tics [110], shown in Fig. 6.3–(Left). Each node represents a blog linked to other

political blogs; the state at each node could be the popularity of the blog evolving

via political commentary [111]. The blogs can be seen to have two dominant clus-

ters constituting blogs that are more followed and hyperlinked. The digraph has
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Type‐ Type‐ Type‐

Figure 6.2: A typical symbolic sufficient linking of the agents based on their type
following Theorem 5.4.1.

nα = 436 unmatched nodes. We may observe that most of the Type-α agents ap-

pear on the boundary of the network where the blogs are less cited (hyperlinked),

and thus, may not be inferred from the interior nodes. This specific example of

inference of the popularity of such blogging network shows that: (i) hubs (nodes

with high degrees) are not critical for observability; and, (ii) to extract the pop-

ularity of all blogs in a distributed way, a fully-connected network is necessary

(and sufficient [47]).

(b) Books on US Politics: Amazon.com data–undirected edges represent co-purchasing

of books by the same buyers [112], digraph is shown in Fig. 6.3–(Right). The net-

work has full Srank, thus nα = 0, and is further connected so nβ = 1, and can be

an observation from any node.

(c) Sampson’s Monastery Network is a directed network of interactions among the

Monks in a monastery. The digraph from [109] is shown in Fig. 6.3–(Left). The

network is full Srank, implying nα = 0, and is strongly-connected so nβ = 1. To il-

lustrate agent connectivity, assume a collection of such monasteries, each observed

by a β-agent. From our results, it is necessary for the agents to communicate over

100



CHAPTER 6. APPLICATIONS

Figure 6.3: Social digraphs: (Left) Political blogs during the 2004 US Elections with
1224 nodes; (Right) Network of political books with 105 nodes.

a strongly-connected network in order to estimate any social phenomena on the

union of the corresponding social digraphs.

(d) Dolphin Social Network: An undirected social network of frequent associations

between dolphins [113], see Fig. 6.4–(Right). It can be verified that this network

contains one connected component with nα = 2 unmatched nodes.

(e) Co-authorship in Network Science: A graph of researchers in network theory [114],

Figure 6.4: (Left) Directed Sampson’s network with 18 actors; (Right) Undirected
dolphin social network with 62 nodes.
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shown in Fig. 6.5. The states may model a novel concept or a result and the links

represent the influence among the authors. The digraph contains 268 components

out of which 248 are matched. All of matched components are parent resulting

into nβ = 248; and, nα = 37. Wiring according to Theorem 5.4.1, each agent may

infer any phenomena that evolves over this social digraph.

Figure 6.5: Co-authorship network with 1461 nodes
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6.2 Applications in Power Systems

The future smart grid is envisioned to be a diverse mixture of conventional power

plants (natural gas, coal) and renewable energy sources (solar, wind) providing new

opportunities for electricity generation and distribution with a focus on an eco-friendly

green planet. The overall operation is required to efficiently integrate this green ini-

tiative with modernized sensing/communication infrastructure while considering the

possibility of an intelligent consumer and the physical limitations, e.g., the intermit-

tent nature of renewable energy sources. The novel sensing methodologies hold the

promise of allowing faster and distributed response to perturbations of the grid behav-

ior. As mentioned before, such time-varying systems requires generic methodologies

irrespective of system parameters.

In this regard, graphical model of a power system consists of nodes represent-

ing voltages and phases at different buses and edges defined by the topology and

impedance parameters, see e.g. [115, 116] on related estimation scenarios where our

results on measurements partitioning in Chapter 3 and scenarios on sensor place-

ment [117, 118] are applicable. Moreover, the advent of fast sensing devices, like

phasor measurement units (PMUs), also presents the possibility of instrumenting

in large scale (say, regional, or national) power grid with a wide sensing network.

Such networked systems typically consists of power-constrained and relatively cheap

sensors/robots that can locally communicate (limited) system measurements/infor-

mation.
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6.2.1 Example

In order to motivate the concepts on structural equivalent partitioning, we illustrate

the results on the Western States power grid borrowed from [108, 119] where the

original data and description of the state nodes can be found. Since the sparsity of the

actual system matrix has some resemblance to this structure and the corresponding

dynamics may depend on what state-vector is being modeled (power flow, voltage,

and/or angles), we choose to illustrate the results on the power network instead of

a particular system matrix. The inference diagram of the network is presented in

Fig. 6.6.

This network includes 6594 interaction edges connecting 4941 state nodes includ-

ing 575 unmatched nodes. Without loss of generality, let assume each unmatched

state is assigned to an α-agent, and since the network is one connected component,

there is no β-agent. In the case of failed sensing of any of red states (in Fig. 6.6), the

observability might be recovered by choosing any state in the corresponding contrac-

tion. Two examples are given in Fig. 6.7. The left figure is the largest contraction

(blue colored) in the power system with 52 state nodes implying that a failed obser-

vation in this set may be recovered– in terms of observability– by observing any of 51

other states. On the other hand, the recovery of any failed observation of the green

colored contraction in the right figure is restricted to only 2 options.
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Figure 6.6: A power-grid system with 4941 state nodes and 6594 edges: red states in
the network represent unmatched states.
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Figure 6.7: Two examples of equivalent states in contractions, represented as colored
state nodes.
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Chapter 7

Conclusions and Future Work

In this thesis, we formulate the distributed observability in the context of single time-

scale distributed estimation, where communication and dynamics operate at the same

time-steps. This is different from the multi time-scale consensus-based estimator

that is prone to very large communication in between every two dynamical time-

steps. Therefore, that does not require the availability of all crucial measurements but

only a strongly-connected network. In contrast, the centralized and semi-centralized

estimation approach requires all the crucial measurements. In the specific context of

single-time distributed estimation, first, this thesis challenges the following question:

Do we require the availability of all crucial measurements at each agent? And, the

answer in the context of [15,19,40], and other related references, is ’Yes’. The prime

contribution of this thesis is to show that the answer to the aforementioned question

is ’Not necessarily.’ In particular, we subdivide the agents taking crucial measurements

into two classes, namely: Type-α and Type-β. We show that:

(i) Only the measurements of Type-α are required at each agent;
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(ii) The measurements of Type-β are not necessarily required as long as strong

connectivity holds, i.e. they are required to be shared through a path.

Note that (i) and (ii) are significant in terms of both the analysis (arriving at the

results) and their applicability (e.g., in topology design).

We generalize formulation of distributed observability; for example, similar works

[15, 19] in the literature are a special case of our formulation when distributed ob-

servability is given by (I ⊗ A,DH), where I ⊗ A represents no fusion on the state

predictions. In Chapter 5, Theorem 5.6.1, we show that with no information fusion

on prediction space, all Type-β agents must have the same connectivity requirements

as Type-α agents– represented as G∗α. A very simple illustration where such estima-

tor is practically infeasible is distributed estimation of a full rank system when the

agents are randomly deployed, e.g., random field estimation. According to Chapter

5–Corollary 5.4.1, we show that no direct connection is required in a full Srank sys-

tem and strong-connectivity is sufficient; it is clear that strong-connectivity can be

assumed given a reasonable density vs. communication radius relation. On the con-

trary, estimation over G∗α, requires direct connections to each agent from every crucial

agent; for a random (e.g., geometric) deployment, this requires a communication ra-

dius as large as the maximum distance between any two nodes in a random graph.

Notice that we do not necessarily assume (A,Hi) to be observable at any agent i, see

assumptions–(iv) in Chapter 1. In our proposed formulation, even when all Type-α

agents are included in the neighborhood of agent i, agent is not assumed to be locally

observable in its neighborhood (unless there are no Type-β agents). In other words,

we do not make any assumption on the observability of (A,∑j∈Nα(i)H
T
j Hj). This is

contrary to another typical approach in the existing literature [16, 40], where local
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observability of every agent in its neighborhood is a pre-assumption.

In the context of topology design, we view the multi-agent network as an SC

graph of β-agents plus a hub network of α agents.1 It can be readily seen that

although strong-connectivity plus additional direct Type-α links are sufficient, weakly-

connected networks may satisfy (i) and (ii). To the best of our knowledge, in literature,

strong-connectivity is almost always assumed unless strict assumptions of either local

observability, or availability of all crucial measurements at each agent are employed.

As mentioned before, we introduce two new graph constructs, namely Gα and Gβ:

(a) Over SC graph Gβ every agent shares its prediction Ax̂k−1∣k−1 over a directed-path;

Prediction fusion: x̂ik∣k−1 = ∑
j∈Nβ(i)

wijAx̂j
k−1∣k−1, (7.1)

(b) The graph Gα is such that every Type-α agent directly shares its observation with

every other agent;

Measurement fusion: x̂ik∣k = x̂ik∣k−1 +K
i
k ∑
j∈Nα(i)

HT
j (y

j
k −Hjx̂ik∣k−1). (7.2)

The other contribution of this thesis is to realize that the set of all dynamical

systems can be partitioned into systems with full Srank matrices and systems with

Srank deficient matrices. This partitioning leads to a novel estimator formulation and

the subsequent analysis. This is because each of the prediction- and measurement-

fusion steps are now particularly designed in order to address the structural aspects

of the system matrix. For example, we show that Type-α agents only exist in Srank
1Note that for topology design, a strongly-connected network always satisfy this property, how-

ever, strong-connectivity is not necessary.
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deficient systems, and thus, measurement-fusion is not required in full Srank systems,

i.e., prediction-fusion alone leads to bounded MSEE. From the topology perspective,

this formally proves that strongly-connected network is sufficient for all full Srank

systems–as no α agent exist in the system. This justifies the reason why invertability

of system matrix is a typical assumption in distributed estimation literature.

We further address problem of finding sets of all equivalent states for observability.

We provide graph theoretic algorithms to search for these equivalent sets in system

digraph and also the algebraic implications of these sets. Graphically, contractions

build equivalent α-sets while parent SCCs contain set of equivalent β-agents. This

equivalence formulation is of interest specifically to find the minimal number of mea-

surements for observability, and also, to recover failed observability. For example, for

a failed α agent its observation might be recovered by measuring its equivalent state

in a contraction, and a failed β communication link might be recovered by any path

connecting the two agents in communication network. An interesting result is that

having enough redundancy in Gβ improves resiliency of the distributed estimator to

failed/disrupted communications. As we mentioned in the introduction, in this re-

search we guarantee the inference of the global state of the system. As future works,

we may consider partial state estimation at agents. For example, consider the case

where each agent only intend to track its spatially neighboring states. In such scenario

only partial system observability is required at each agent.

The results of this thesis are independent of what fusion rule (e.g., Metropolis-

Hastings [91]) is chosen in (7.1). The reason is that we analyze observability problem

generically, such that it is true for almost all possible choices of the fusion rule (weight

matrices). Furthermore, generic properties are, in general, easily verified. For exam-
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ple, there are efficient graph theoretic, [34], flow theoretic, [120], and linear program-

ming, [121], methods that can be employed to check for generic properties. In terms

of computational complexity and application, the structural-based algorithms in this

work are of polynomial order and scalable for large scale, motivating application in

power systems and social networks. As discussed in Chapter 6, in power systems,

continually evolving nature of these systems along with disturbances make the pre-

cise representation of exact system parameters unavailable, while on the other hand,

social networks typically have time-invariant structures but time-evolving parameters.
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Combinatorial Algorithms

There are known combinatorial algorithms to define SCCs and their partial order in

the system digraph. Depth-First-Search (DFS) algorithm [81] and Tarjan algorithm

[80] are two common and well-known examples of polynomial order O(n2) [81]. On

the other hand, maximal matching can be defined via, for example, Hopcraft-Karp

algorithm with running time of O(n2.5) [122]. The size of the maximum matching of

the bipartite graph, further, defines the S-rank(A).

A general algorithm to determine SCCs, their partial order, maximum match-

ing, and contractions in the system digraph is Dulmage-Mendelsohn decomposition

(DM decomposition in short) [78, 123]. Thus, this algorithm yields both Type-α

and β agents. The computational complexity of the algorithm is O(
√
n∣EA∣), i.e.

maximum order of O(n2.5). A modified version of DM decomposition is given in

Algorithm 1. The algorithm gives unique decomposition of the bipartite graph into

irreducible subgraphs–called Dulmage-Mendelsohn components–and their partial or-

der. In Algorithm 1, the unmatched nodes are included in V0 while matched parent

SCCs are in {V1, ...,Vk}. Further, the partial order identifies the parents in {V1, ...,Vk}.
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Algorithm 1 Dulmage-Mendelsohn Decomposition algorithm.
Given: Maximum matchingM, Auxiliary graph ΓMA .

1. Let V0 = {V+0 ∪ V
−
0 } such that {v ∈ V+ ∪ V−∣ u

path
Ð→ v for some u ∈ δM on ΓMA . This

set defines the contractions.

2. Let V∞ = {V+∞ ∪V−∞} such that {v ∈ V+ ∪V−∣ v
path
Ð→ u for some u ∈ V−/∂M− on ΓMA .

3. Define ΓM
−{V0∪V∞}, i.e. the bipartite graph obtained from ΓMA by deleting the nodes

(and associated edges to) {V0 ∪ V∞}.

4. Define a partial order ⪯ on {V0,V1, ...,Vk,V∞} as {Vi ⪯ Vj} ⇐⇒ {vi
path
Ð→

vj for some vi ∈ Vi, vj ∈ Vj}

5. Define Vi = {V+i ∪V
−
i } , i ∈ {1, ..., k} in the graph ΓM

−{V0∪V∞} as matched SCCs of the
system digraph.
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Local Estimator Gain Design

We consider the design of the estimator gain matrix, Kk, in Eq.(4.19). Notice that

having (W ⊗ A,DC) observable guarantees a full gain matrix, Kk, to stabilize the

MSEE. However, according to protocol (4.19), we need a local gain matrix, Kk, which

is block-diagonal with N blocks of n×n matrices. Here, we design a constant estimator

gain matrix, K, independent of time, k.

A partial list of references devoted to find constrained estimator gain for control

and estimation are [11, 124–127]. Here, we use the Linear Matrix Inequality (LMI)

approach in [125, 126]. However, in general, the corresponding LMIs do not have a

solution, because of the structural constraints (block-diagonal) on the gain matrix,

K. This is the main difficulty in distributed estimation and control as convex/semi-

definite approaches are not directly applicable. To this end, an iterative procedure is

implemented to solve LMIs under structural constraints. In this regard, the estimator

gain matrix, K, is the solution of the following optimization problem. Interested
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readers may find more details in [11,125].

min trace(XY )

subject to X,Y > 0,
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X ÂT

Â Y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X I

I Y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0,

K is block-diagonal.

(7.3)

where,

Â =W ⊗A −KDH(W ⊗A) (7.4)

In fact, we need a K such that Â is Schur (i.e. ρ(Â) < 1). Notice that, the solution

to the second LMI is equivalent to X = Y −1, which gives the minimum trace and

the optimal value as nN . The nonlinear product of X and Y can be replaced with a

linear approximation [125,126,128], φlin(X,Y ) = trace(Y0X +X0Y ) and an iterative

algorithm [126] can be used to minimize trace(XY ) under the given constraints.

It is shown in [126] that trace(YkX +XkY ) is a non-increasing sequence that con-

verges to 2nN . In this regard, a stopping criterion in step 3 of the above algorithm

can also be established in terms of reaching within 2nN +ε of the trace objective. The

iterative procedure given above is centralized, however, the center has to implement

this process only once, off-line; then it transmits the estimator gains to each agent

and plays no further role in the implementation of local estimators; each agent, sub-

sequently, observes and performs in-network operations to implement the estimator.

A single time-scale algorithm can also be employed, where the above iterative proce-

dure is implemented at the same time-scale k as of the dynamical system. With this

115



approach, the estimator gain iterations, Kk, at each k is applied to the estimator at

time-step, k, and may be transmitted to each agent at each step k. This is helpful

when the implementation is assumed in real-time.

Algorithm 2 Iterative calculation of local estimator gain matrix, K.

1. Find feasible points X0, Y 0,K. If no such points exist, Terminate.

2. At iteration k > 0 minimize trace(YkX +XkY ) under the constraints given in (7.3)
and find X,Y,K.

3. If ρ(Â) < 1 terminate, otherwise set Yk+1 = Y, Xk+1 =X and run the step 2 for next
iteration k = k + 1.
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