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Abstract

Observation of cosmic (super)strings can serve as a useful hint to un-

derstand the fundamental theories of physics, such as grand unified theories

(GUTs) and/or superstring theory. In this regard, I present new mechanisms

to produce particles from cosmic (super)strings, and discuss their cosmological

and observational effects in this dissertation.

The first chapter is devoted to a review of the standard cosmology, cosmic

(super)strings and cosmic rays.

The second chapter discusses the cosmological effects of moduli. Moduli

are relatively light, weakly coupled scalar fields, predicted in supersymmetric

particle theories including string theory. They can be emitted from cosmic

(super)string loops in the early universe. Abundance of such moduli is con-

strained by diffuse gamma ray background, dark matter, and primordial ele-

ment abundances. These constraints put an upper bound on the string tension

as strong as Gµ . 10−28 for a wide range of modulus mass m. If the modulus

coupling constant is stronger than gravitational strength, modulus radiation

can be the dominant energy loss mechanism for the loops. Furthermore, mod-

ulus lifetimes become shorter for stronger coupling. Hence, the constraints on

string tension Gµ and modulus mass m are significantly relaxed for strongly

coupled moduli predicted in superstring theory. Thermal production of these

particles and their possible effects are also considered.

In the third chapter, moduli emitted from cosmic string cusps are studied.

Highly boosted modulus bursts emanating from cusps subsequently decay into

gluons and generate hadronic cascades which in turn produce large number of
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neutrinos. For reasonable values of the modulus mass and coupling constant,

observable ultra high energy neutrino fluxes can be produced for a wide range

of string tension Gµ.

The fourth chapter discusses cosmic rays produced by the charged particles

ejected from cusps of superconducting cosmic strings. In many particle physics

theories, cosmic strings respond to external magnetic fields, e.g., in clusters

of galaxies, and develop currents. Observable UHE neutrino fluxes can be

achieved for a range of symmetry breaking scale of strings. In this model,

neutrinos with E & 1011 GeV are expected in correlation with clusters of

galaxies. Another unique signature of the model is simultaneous appearance

of several neutrino-produced showers in the field of view of very large detectors,

such as JEM-EUSO. The flux of UHE protons from cusps may account for a

large fraction of the observed events at the highest energies.

The dissertation ends with overall conclusions.
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Chapter 1

Introduction

“The universe is the poor man’s accelerator.” Yakov Borisovich Zel’dovich

Cosmic (super)strings and other topological defects could serve as traces

of the early universe if they exist. They are the Hieroglyphs of the universe

which carry that information in their very core. Hieroglyphs can only tell us

about what happened a couple of thousands years ago, whereas topological

defects can do a lot better: They can tell us about the very beginning of the

universe since they carry the energy densities of the time they are formed,

namely energy scales of Grand Unified Theories (GUTs) and/or superstring

theory.

Topological defects arise as stable solutions in particle physics models,

which include domain walls, cosmic strings, monopoles and textures. The

stability of such objects is guaranteed by topological reasons, hence the name.

Cosmic superstrings, on the other hand, can be formed at the end of the so

called brane inflation –a model of inflation in Type IIB string theory– and
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share most of the properties of the ordinary cosmic strings1.

Monopoles and local domain walls could be disastrous for the universe

if they exist. Since monopoles act as nonrelativistic matter, they rapidly

dominate the energy density of the universe [5]. Domain walls also dominate

the energy density quickly and have unacceptably large gravitational field that

cause large anisotropies in the CMB [6, 7]. Cosmic strings, on the other hand,

can exist without causing much trouble. They can actually be responsible

for the highest energy events occurring in the universe, such as ultra high

energy (UHE) cosmic rays [8, 9, 10, 11]. They can also produce a variety of

other observational effects, which include gravitational lensing [7, 12], linear

discontinuities in the cosmic microwave background (CMB) [13, 14, 15, 16,

17], B-mode polarization of the CMB photons [18], electromagnetic bursts

[19, 20, 21, 22] and gravitational radiation, both in the form of a stochastic

background and localized bursts [23, 24].

Of particular interest to this dissertation are the UHE particles, especially

neutrinos, emanating from cusps –parts of cosmic string loops where extremely

large Lorentz factors are achieved momentarily– and observational constraints

resulting from string interaction with moduli predicted in supersymmetric

theories.

This dissertation is organized as follows: In the following sections of this

chapter, a brief history of the universe is given to set the grounds and the

notation. Then, various properties of cosmic (super)strings including their

formation, evolution and effects on cosmology are discussed. Finally, a review

about cosmic rays with a particular emphasis on UHE neutrinos is given.

1For an extensive review of the subject, see [1, 2, 3, 4].
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In Chapter 2, cosmological constraints on scalar particles emitted from cos-

mic string loops at earlier epochs are discussed with a special attention given

to the strongly coupled moduli. The production mechanism relies on the ex-

istence of moduli –relatively light, weakly coupled scalar fields, predicted in

supersymmetric particle theories, including string theory. Moduli couple to

strings linearly and would be copiously radiated by oscillating loops of string

at early cosmic times when the loops are very small and their frequency of

oscillation is greater than the modulus mass. The emitted moduli and their de-

cay products can manifest themselves observationally in many different ways.

Abundance of such moduli is constrained by diffuse gamma ray background,

dark matter, and primordial element abundances if their lifetime is of the or-

der of the relevant cosmic time. This leads to stringent constraints on both

the cosmic string tension and modulus mass for the moduli with gravitational-

strength couplings to matter [25, 26, 27]. It will be shown that the constraints

from modulus radiation are significantly relaxed when the couplings are much

stronger [28]. Such strongly coupled moduli appear to be quite generic in

superstring theory [29, 30, 31, 32, 33, 34, 35].

In Chapter 3, modulus emission from cosmic string cusps is studied. At

late times, moduli can only be emitted from cusps since the characteristic

frequency of loop oscillation is much smaller than the mass of a modulus.

Therefore, modulus production is suppressed, except in the vicinity of cusps,

where extremely high frequencies can be reached. Hence, sharp bursts of high

energy moduli are emitted from cosmic string loops and eventually moduli

decay into standard model particles. Gravitationally coupled moduli have very

long mean lifetimes, thus the cosmic ray fluxes are negligible. On the other
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hand, for stronger coupling, moduli production by cosmic strings is enhanced

by α2, where α/mp is the modulus coupling constant. They also decay faster

since their mean lifetime, τ ∝ α−2, where α >> 1. It will be shown that this

way their decay products can yield observable cosmic ray fluxes, in particular

UHE neutrinos that can be detected at the future sensitive detectors such as

space based neutrino observatory JEM-EUSO.

In Chapter 4, a different mechanism to emit particles from cusps of cosmic

string loops is studied. Cosmic strings predicted in many grand unified models

respond to external electromagnetic fields as thin superconducting wires. As

they move through cosmic magnetic fields, such strings develop electric cur-

rents. Oscillating loops of current-carrying string emit highly boosted charged

particles from cusps. The emitted particles and their decay products can be

observed as UHE cosmic rays. It is found that observable UHE neutrino and

proton fluxes can be obtained for a wide range of cosmic string parameters

[11].

The dissertation ends with the overall conclusions.

Natural units along with the Gaussian units are used in this dissertation,

namely, Planck constant ~ = 1, speed of light c = 1, Boltzmann’s constant

kB = 1, unit electric charge e = 0.1. The following conversion relations and

quantities will be used quite often: Newton’s constant G = m−2
p , Planck mass

mp = 1.2 × 1019GeV, Planck time tp = 5.4 × 10−44s, 1GeV= 1.8 × 10−24g,

1GeV−1 = 2.0 × 10−14cm= 6.6 × 10−25s, 1GeV= 1.2 × 1013K, 1Gauss= 7.0 ×

10−20GeV2, 1Mpc= 3.1 × 1024cm.
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1.1 Brief history of the universe

The standard model of the universe is based on the following basic observa-

tional facts: Recession of galaxies, homogeneity and isotropy of the cosmic

microwave background (CMB) –the relic radiation that propagates to us from

the time at which the universe became transparent to photons. This can be

summarized as a cosmological principle: The universe is homogeneous and

isotropic beyond the scales of order 100 Mpc. In other words, on large scales

there is no center to the universe. The isotropy is clearly seen in the CMB

data up to accuracy about one part in 105 [36]. The expansion along with

the CMB suggests that the universe was hot and dense in the beginning. As

it cooled down and the initial perturbations grew, structures such as stars,

galaxies and clusters were formed.

Friedmann found a solution to the Enstein’s equation for an expanding

universe in 1922 and showed that the expansion rate can be calculated from

the so called Friedman equations [37]. Georges Lemaitre independently found

similar solutions and derived what is known as Hubble law in 1927 [38]. In

1929, Edwin Hubble showed the linear relationship between the recession ve-

locities of the galaxies and their distance as [39]

v = H0r, (1.1)

where H0 = 100h km/s/Mpc is the Hubble parameter at the present epoch

and h = 0.7 [36]. The metric describing the modern cosmology was derived

by Robertson and Walker on the basis of homogeneity and isotropy [40, 41].

5



In the comoving coordinates, the Robertson-Walker (RW) metric is given by

ds2 = −dt2 + a2(t)

(

dr2

1 − kr2
+ r2dΩ2

)

, (1.2)

where a(t) is the scale factor representing the relative size of the spacelike

hypersurfaces as a function of coordinate time t and k is the curvature param-

eter. k = +1, 0, −1 for a closed, flat and open Friedman-Lemaitre-Robertson-

Walker (FLRW) universe, respectively. As the universe expands, the frequency

of a photon redshifts as its wavelength is stretched by the expansion. Red-

shift is defined as 1 + z = λobserved/λemitted, where λ is the wavelength of the

photon. Since any physical length will scale as x(t) ∝ a(t) in this spacetime,

the redshift can be related to the scale factor in the following useful relation

1 + z =
a0

aemitted

. (1.3)

Therefore, redshift is a useful measure for the distance and/or time in cosmol-

ogy.

Using Einstein’s equation

Rµν −
1

2
gµν = 8πGTµν , (1.4)

and the energy-momentum tensor for a perfect fluid with the components

T00 = ρ and Tij = pgij, where ρ is the energy density and p is the pressure

of the fluid, and then, substituting RW metric into Einstein’s equation, one

obtains the Friedmann equations

H2 =
8πGρ

3
− k

a2
, (1.5)

where H ≡ ȧ/a is the Hubble parameter and

ä

a
= −4πG

3
(ρ + 3p). (1.6)
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Using (1.5) and (1.6), a useful relation for the conservation of energy can be

obtained as

ρ̇ + 3H(ρ + p) = 0. (1.7)

The equation of state takes the form p = ωρ with ω = constant for some

special cases. For instance, ω = −1, 1/3, 0 for vacuum, radiation and matter,

respectively. It can be easily seen from (1.7) that energy density scales as

ρ ∝ a−3(1+ω), (1.8)

i.e., ρ ∝ a0, a−4, a−3 for vacuum, radiation and matter dominated universe,

respectively. Note that vacuum energy is constant by definition, and thus,

it remains constant during the expansion. Matter is diluted as the volume

increases by a factor of a3. Radiation is diluted even more since the energy

decreases due to the redshift, i.e., E ∝ λ−1 ∝ a−1, where λ is the wavelength

of the particle.

The comoving distance r(t) travelled by light between time t to t0 in a

FLRW universe is

r(t) =

∫ t0

t

dt′

a(t′)
, (1.9)

and the corresponding physical distance is d(t) = a(t)r(t). Comoving volume

in the interval (r, r + dr) is dVc = 4πr2dr and the physical volume is dV =

a3dVc.

Density of the universe determines its geometry. The density parameter is

defined as

Ωi =
ρi

ρc

, Ω ≡
∑

i

Ωi, (1.10)

where

ρc ≡
3H2

8πG
= 7.8 × 10−47 h2 GeV 4, (1.11)
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is called the critical density and the summation is over the different compo-

nents, such as radiation, matter and the vacuum. The equation (1.5) can be

written as

k

H2a2
= Ω − 1. (1.12)

It is easy to see from (1.12) that the universe is open if Ω < 1, closed if Ω > 1,

and flat if Ω = 1.

When the universe is dominated by radiation, i.e., Ωr >> Ωi, where i

represents the other components, the solution for the scale factor can be found

from (1.5) as

a(t) = a′
(

t

t0

)1/2

, (1.13)

and when the matter is the dominant component, it is

a(t) =

(

t

t0

)2/3

. (1.14)

Using (1.3), the relation between cosmic time and redshift can be obtained

as t = t0(1 + zeq)
1/2(1 + z)−2 for the radiation era and t = t0(1 + z)−3/2 for

the matter era, where zeq is the redshift at which matter-radiation equality

occurs. Note that the scale factor is normalized such that a(t0) = 1, and thus,

a′ = (1 + zeq)
−1/4. The distance between an observer on Earth and a source

at redshift z in the radiation and matter eras can be calculated from (1.9) as

r(z) ≈ 3t0, z > zeq, (1.15)

r(z) = 3t0[1 − (1 + z)−1/2], z < zeq, (1.16)

and the physical volume in the interval (z, z + dz) is

dV (z) = 72πt30(1 + zeq)
1/2(1 + z)−5dz, z > zeq, (1.17)

dV (z) = 54πt30[(1 + z)1/2 − 1]2(1 + z)−11/2dz, z < zeq. (1.18)
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When the vacuum energy is the dominant component of the energy density

in the universe, the solution for the scale factor is a(t) ∝ e(Λ/3)1/2t, where

Λ = 8πGρΛ is the cosmological constant. A Λ > 0 solution exists for any

spatial curvature and it is known as the de Sitter space (dS) [42]. On the other

hand, when Λ < 0, there is only a solution with negative spatial curvature

and the scale factor is a(t) ∝ sin[(Λ/3)1/2t]. This solution is known as the

anti de Sitter space (AdS) [42].

Now, some of the most important problems in the standard model of cos-

mology and a profound solution to them (inflation) will be discussed briefly.

According to the most recent data the total density parameter Ω = 1 to a

good accuracy [36]. Defining conformal time as dτ = dt/a(t) and using (1.7)

and (1.12), the time evolution of Ω can be obtained as

dΩ

dτ
=

1

a

da

dτ
Ω(Ω − 1). (1.19)

In an expanding universe the scale factor always increases with time, i.e.,

da/dτ > 0. Hence, Eq. (1.19) implies that when Ω < 1, dΩ/dτ < 1, namely,

the density parameter decreases and we are left with a curvature dominated

universe. When Ω > 1, on the other hand, dΩ/dτ > 1, and thus, the density

parameter becomes larger and larger. This simple argument shows that only

when the density parameter is finely tuned at about Ω = 1, the universe stays

flat. This is known as the flatness problem in cosmology.

One of the most important evidence that supports the big bang theory was

the discovery of the cosmic microwave background (CMB) in 1964 by Arno

Penzias and Robert Wilson [43]. The CMB has a blackbody spectrum with

temperature TCMB = 2.7K and it is isotropic to one part in 105 [36]. The
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anisotropy in the CMB –the imprints of the density fluctuations in the early

universe– [44] and the blackbody spectrum [45] were first confirmed by the

COBE satellite. Another important conclusion one can draw from the CMB

measurements is that causally disconnected points in the sky have nearly the

same temperature. A causally connected patch of the sky at the surface of

last scattering only subtends an angle of an order 1o whereas the temperature

of the CMB is the same in all directions. The puzzle is how these causally

unrelated patches come to a thermal equilibrium. This is known as the horizon

problem in cosmology.

Grand unified theories (GUTs) is the generic name for the gauge theories

that unifies the electroweak and the strong interactions. GUTs have a larger

simple symmetry group G that breaks into the standard model symmetry

group SU(3)c × SU(2)L × U(1)Y as the universe cools down. As the larger

symmetries are broken down to smaller symmetry groups, topological defects

may arise. Monopoles can exist if the vacuum manifold has a nontrivial second

homotopy group. In the case of breaking of G into SU(3) × U(1), the second

homotopy group π2(G/SU(3)×U(1)) ∼= Z. Hence, the existence of monopoles

is guaranteed in GUTs independent of the symmetry group [5]. As a relic of

the GUTs, monopoles can be very heavy, i.e., mM ∼ mGUT ∼ 1016 GeV,

and the universe rapidly becomes monopole dominated since they scale as

matter, ρM ∝ a−3. If this was the case, we would have about one monopole

per nucleon, which is in total disagreement with what is observed [1]. This is

known as the monopole problem.

All these problems, namely, the flatness, horizon and monopole problems

can be avoided with an early period of exponentially fast expansion of the

10



universe, i.e., the so called inflation [46, 47, 48]. Density fluctuations that

are seen as anisotropies in the CMB can also be explained well within the

inflationary paradigm in terms of quantum fluctuations of the inflaton field

that later serve as the seeds for the structure formation in the universe [49].

All the inhomogeneities and topological defects formed before inflation are

swept away. In other words, inflation erases the memory of the universe and

gives it a fresh start.

In a nutshell, inflation is caused by a scalar field slowly rolling down its po-

tential, thus the energy density stays almost constant, hence the exponential

growth of the scale factor. As the inflaton oscillates back and forth about the

minimum of the potential, the inflaton potential energy is converted into ther-

mal radiation and particles in this stage, which is known as reheating. This

process heats up the universe to high enough temperatures so that baryo-

genesis –the mechanism to create baryon-antibaryon asymmetry–, and then,

nucleosynthesis could occur [50].

After reheating, the universe is filled with hot and dense plasma of ul-

trarelativistic particles, namely, quarks, leptons, neutrinos, gauge bosons and

their anti-particles. Thanks to the decrease in the effective strength of the

electroweak and strong interactions at high energies, the equation of state can

be approximated as p = ρ/3 and by using Bose-Einstein and Fermi-Dirac dis-

tributions, the energy density ρ(T ) and entropy density s(T ) can be obtained

as a function of temperature for the ultrarelativistic particles as [50]:

ρ(T ) =
π2

30
N (T )T 4, (1.20)

s(T ) =
2π2

45
N (T )T 3, (1.21)
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where N(T ) is the effective number of degrees of freedom given by

N(T ) = NB(T ) +
7

8
NF (T ), (1.22)

for the bosonic and the fermionic species available at temperature T . Us-

ing (1.5) and (1.20), a useful relation between time and temperature can be

obtained as

t =
1

4π

(

45

πN (T )

)1/2 m2
p

T 2
, (1.23)

which can be calculated as t/sec ∼ (T/MeV )2 taking N(T ) ∼ 100.

The following main events occurred during the thermal history of the uni-

verse: Intermediate stages of symmetry breaking could have occurred after

the reheating which leads to formation of topological defects including cosmic

strings [1]. At about 102 GeV, electroweak symmetry breaking occurs that

breaks the Standard Model (SM) symmetry group SU(3)c × SU(2)L ×U(1)Y

down to SU(3)c×U(1)em via Higgs mechanism. QCD phase transition occurs

at T ∼ 102 MeV, where chiral invariance in strong interactions is broken and

free quarks are confined to form baryons and mesons. Nucleosynthesis begins

at T ∼ 0.8 MeV when the neutron-proton ratio freezes out. Then, most of

the neutrons form bound state with protons via interaction p + n → D + γ

at T ∼ 0.1 MeV. Then, in a series of interactions, 3He, 4He and 7Li nuclei

are formed. The primordial abundances of these nuclei can be calculated by

using the standard model of cosmology as Y4He ∼ 0.25, YD ∼ 3×10−5, Y3He ∼

2 × 10−5, Y7Li ∼ 10−9. The observed value of the primordial 4He abundance

Y4He = 0.248 agrees well with the estimates of the hot big bang theory with

nucleon to photon ratio of η = 5.81 × 10−10 [51].

Before nucleosynthesis, there was a small excess of matter over antimatter.
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This can be achieved via non-equilbrium processes, where baryon number, C

and CP are violated so that pair annihilations do not occur efficiently, hence,

the baryon asymmetry is established [52].

As the universe expands, the matter density catches up with the radiation

density and eventually becomes dominant when Ωm(zeq) = Ωr(zeq). This

occurs at redshift zeq = 3200 [36].

As the universe reaches to the temperature below the hydrogen reionization

threshold 13.1 eV, electrons and protons form neutral hydrogen atoms. This

process is called recombination. At this stage, there is a sudden decrease

in the electron to photon ratio as a result of which the universe becomes

transparent to photons. This stage of the thermal history of the universe is

also called decoupling. We observe the relic radiation propagating to us from

the decoupling time as the CMB today. The decoupling occurs at redshift

zdec = 1090 [36].

This section will be closed with the current parameters of cosmology. Ac-

cording to WMAP 7-year-data combined with astrophysical data, h = 0.7,

the age of the universe t0 = 13.8 Gyr, and the density parameter for baryons

Ωb = 0.0458, cold dark matter Ωc = 0.229, radiation Ωr = 9 × 10−5 and

dark energy ΩΛ = 0.725 [36]. Therefore, the energy density in the universe

is mostly composed of dark energy that causes an accelerated expansion of

the universe today and dark matter that only interacts gravitationally. The

equation of state of the dark energy component is ω ≈ −1, which is in favor

of the cosmological constant. Besides, inflationary paradigm agrees well with

the observed CMB temperature anisotropies [36].

In the next section, various properties of cosmic (super)strings will be
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discussed.

1.2 Cosmic strings

1.2.1 Gauge theories and spontaneous symmetry

breaking

Lagrangian2 of a field theory respects the symmetries of that theory. However,

in some cases the vacuum state does not respect the symmetry of the theory

in which case the symmetry is said to be spontaneously broken. A simple

example in relativistic field theory was the self interacting complex scalar

field with the potential

V (φ) =
1

4
λ(φ∗φ − η2)2, (1.24)

which is called the Goldstone model [53]. This model is invariant under global

phase transformations, namely φ(x) → eiαφ(x), but the minima of the poten-

tial have a non-zero expectation value ηeiθ that transforms as ηei(θ+α). There-

fore, the vacuum does not remain invariant under the global phase transfor-

mations, hence the symmetry is spontaneously broken. The low energy states

can be expressed as

φ(x) =

(

η +
1√
2
ϕ(x)

)

eiv(x), (1.25)

where ϕ(x) corresponds to the radial excitations about the minima whereas

v(x) corresponds to the motion around the circle of minima [1]. Ignoring the

2The term Lagrangian will be used instead of Lagrangian density for brevity in what
follows.

14



interaction terms the Lagrangian can be written in terms of these fields as

L ∼ 1

2
(∂µϕ)2 + η2(∂µv)2 − 1

2
λη2ϕ2. (1.26)

Note that in addition to the massive field ϕ, there is a massless field v known

as the Goldstone boson. According to the Goldstone theorem, the Goldstone

modes are inevitable in theories with spontaneously broken global symmetries.

The problem with massless scalar fields is that they create infinite range forces

like gravity, hence ruled out by non-existance of such forces in nature. On the

other hand, when the theory has a local gauge symmetry, i.e., the symmetry

transformations are spacetime dependent, then the degree of freedom carried

by the Goldstone mode is absorbed into the vector boson. In other words,

the spontaneous breaking of a local gauge symmetry generates a mass for the

massless vector gauge bosons [54, 55, 56]. The simplest model with local gauge

symmetry is the Abelian Higgs model given by the Lagrangian [54]

L = D∗
µφ

∗Dµφ − 1

4
λ(φ∗φ − η2)2 − 1

4
FµνF

µν , (1.27)

where Dµ = ∂µ − ieAµ, Aµ is the gauge vector boson, e is the gauge coupling

constant and Fµν = ∂µAν−∂νAµ is the field strength tensor. This theory is in-

variant under the local phase transformations, i.e., it has local U(1) symmetry,

and the fields transform as φ(x) → eiα(x)φ(x) and Aµ(x) → Aµ(x)+e−1∂µα(x).

Substituting the low energy states as in Eq. (1.25) and ignoring the interaction

terms, we arrive at the effective Lagrangian

L ∼ ∂µϕ∗∂µϕ − 1

2
λη2ϕ2 − 1

4
FµνF

µν + e2η2AµAµ. (1.28)

Note that the Goldstone mode is absent in this case; its degree of freedom

is absorbed into the vector gauge boson, hence the mass term for Aµ. Gen-

eralization of this model to non-abelian gauge groups, in particular to SU(2)
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[57], opened up a new way to understand fundamental interactions of particle

physics. One of the most successful theories in particle physics is the elec-

troweak theory of Glashow-Weinberg-Salam [58, 59, 60], where SU(2)L×U(1)Y

gauge group is broken via Higgs mechanism to U(1)em. The prediction of this

theory was three massive vector bosons W±, Z0 that are responsible for the

weak interactions. Weinberg predicted their masses from the gauge couplings

as mW > 40 GeV, mZ > 80 GeV [59]. In 1983, the electroweak theory was

confirmed with the discovery of W±, Z0 bosons at CERN [61, 62] with the

masses close to what Weinberg predicted. The Higgs boson still awaits to be

discovered at the LHC at CERN as of today.

The developments in particle physics such as the electroweak theory and

quantum chromodynamics made physicist wonder about larger gauge groups,

where strong and electroweak interactions are unified. Such theories are gener-

ically called grand unified theories (GUTs). The first GUT was based on the

gauge group SU(5) [63], which had some problems, such as too small lifetime

for protons. Later, several other models have been proposed all of which have

the problem that the three gauge couplings do not unify at a single energy

unless the theory is supersymmetric.

Supersymmetry was invented in order to combine the internal symmetries

with the spacetime symmetries. In 1967, Coleman and Mandula showed that

it is not possible to combine the internal symmetries of the S matrix with the

spacatime symmetries non-tirivially in terms of Lie groups [64]. This no-go

theorem basically tells the following: Assume that the S matrix exists and

non-trivial, the vacuum is non-degenerate and there are finite number of par-

ticles whose mass is less than a given value. Under these assumptions, a Lie
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group which combines the internal symmetry group with the Poincare group

leads to an S matrix which is zero for all processes [65]. Coleman-Mandula the-

orem relates the transformations between bosons and bosons or fermions and

fermions. Therefore, these transformations are generated either by operators

satisfying commutators for bosons or operators satisfying anticommutators for

fermions. Supersymmetry has a Z2-graded Lie algebra which relates bosons

to fermions and vice versa in a given theory. Thus, the obvious prediction

of supersymmetry is the existence of superpartners for every particle in the

standard model. Since we do not observe such particles in nature, supersym-

metry must have been broken at some high energy. TeV scale supersymmetry

is phenomenologically preferred since it solves the gauge hierarchy problem.

The LHC has also been searching for supersymmetric particles as of today.

The running of gauge coupling constants for the minimal supersymmetric stan-

dard model (MSSM) by using the renormalization group techniques showed

that the coupling constants actually do unify at 1016 GeV [67].

Supersymmetry is also required for consistency in string theory –a frame-

work, where all the interactions of nature are explained in terms of the rela-

tivistic quantum theory of one dimensional objects, namely open and closed

strings. There are five distinct supersymmetric string theories which are re-

lated to one another and to 11D supergravity via dualities [68].

In the next sections, cosmological phase transitions in terms of breaking of

larger symmetry groups down to SU(3)c × U(1) and formation of topological

defects as the relics of these processes will be discussed.
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1.2.2 Phase transitions in cosmology and topological

defects

The universe goes through phase transitions as it cools down. As the sym-

metries of gauge theories with larger gauge groups are spontaneously broken,

topological defects can appear as the residues of the false vacuum at the cor-

responding energies. After the success of the gauge theories with symmetry

breaking, it was shown that the gauge symmetries can be restored at high

temperatures [69, 70] as in the case of melting of ice –as the ice melts the

lattice structure disappears, hence the rotational symmetry is restored above

the melting temperature.

According to the standard model of cosmology, the universe was a lot hot-

ter and denser in the earlier epochs, hence larger symmetry groups could be

broken as it cooled down leaving the topological defects as relics. When the or-

der parameter –a parameter characterizing the order of the phases before and

after the phase transition– changes continuously from zero in the symmetric

phase to a non-zero value in the broken phase, the process is called the second

order phase transition [50]. In a second order phase transition, two phases do

not coexist. For instance, the spontaneous breaking of a gauge symmetry via

Higgs mechanism is a second order phase transition, where the order param-

eter φ changes continuously from zero to its final value < φ >= η. On the

other hand, if different phases coexist, then the symmetric phase develops a

metastable state which is subject to decay to the absolute minima via bubble

formation, similar to formation of bubbles in boiling water. The so called old

inflation scenario is an example of a first order phase transition, where the
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order parameter changes discontinuously via quantum tunneling from a local

minimum to the absolute minimum [46].

The first topological defect solution in the context of gauge theories was

the vortex solution in the Abelian Higgs model by Nielsen and Olesen [71].

In the radial gauge Aρ = 0, the cylindrically symmetric ansatz for the gauge

field of the model (1.27) can be written as [2]

φ =
η√
2
f(eηρ)einϕ, Aθ =

n

eρ
a(eηρ), (1.29)

where ρ and θ are the radial and polar coordinates in the cylindrical coordinate

system, respectively, n ∈ Z is the winding number, f and a are the solutions of

the equations of motion, which cannot be expressed in terms of the elementary

functions, but the asymptotic behaviors can be obtained as:

f ∼ f0ξ
|n|, a ∼ a0ξ

2 − |n|f 2
0

4(|n| + 1)
ξ2|n|+2, ξ → 0, (1.30)

f ∼ 1 − f1ξ
−1/2e−

√
βξ, a ∼ 1 − a1ξ

1/2e−ξ, ξ → ∞, (1.31)

where β = λ/e2 and ξ = eηρ. When β > 4, f(∞) is given by f ∼ 1−f1ξ
−1e−2ξ.

The asymptotic behavior of the vortex solution shows that it is regular at the

origin, i.e., there is no singularity, and the fields approach to their absolute

vacuum value η at larger distances. The vortex contains a tube of magnetic

flux 2πn/e. When β < 1, this solution is stable for all winding numbers n.

When β > 1, it is only stable for n = 1. The tension of the vortex, which is

also equal to the energy per unit length, can be calculated from

µ =

∫

dϕdρρE(ρ) ∼ πη2ǫ(β), (1.32)

where E is the energy density of the vortex and ǫ is a slowly varying parameter

of order one [2]. At the critical coupling, i.e., β = 1, ǫ = 1 [72]. Therefore, in
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general it is safe to assume that the string tension is µ ∼ η2.

Topological structure of the vacuum manifold determines whether domain

wall, vortex or monopole solutions exist in a given theory. In the Nielsen-

Olesen vortex solution discussed above, the vacuum manifold is not simply

connected, i.e., it contains closed curves which cannot be shrunk to zero con-

tinuously. It can be easily seen from the potential term in Eq. (1.27) that the

vacuum is not a single point, but a circle of minima φ ∼ ηeinθ. Technically

speaking, the fundamental homotopy group of this manifold is non-trivial, i.e.,

π1(U(1)) = Z [1].

The classification of the topological defects according to the homotopy

groups of their vacuum manifolds was suggested by Kibble [73]. Homotopy

groups classify the mapping from an n-sphere into the manifold, hence they

are used to understand the topological properties of manifolds.. If the vac-

uum manifold M has disconnected components, domain walls can form. This

occurs when the zeroth order homotopy group π0(M) is non-trivial. They ap-

pear in theories with broken discrete symmetries [6, 7], such as the breaking

of the reflection symmetry, φ → −φ, in a model with a double-well potential

V (φ) = (λ/4)(φ2 − η)2, where φ is a real scalar field. If M is not simply con-

nected as explained above for the Nielsen-Olesen vortex, i.e., the fundamental

homotopy group π1(M) 6= I, then string solutions can exist. Thus, whenever

a U(1) symmetry is broken, there is a string solution since π1(U(1)) = Z.

If there are unshrinkable surfaces in M, i.e., π2(M) 6= I, then monopole

solutions exist.
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1.2.3 Kibble mechanism and cosmic string evolution

As the universe cools down below the temperature at which spontaneous sym-

metry breaking occurs, topological defects can form in the universe via so

called Kibble mechanism [73]. As an example let us consider the Abelian

Higgs model given by Eq. (1.27). The Higgs field acquires a nonzero expecta-

tion value with an arbitrary phase < φ >∼ ηeiθ after the symmetry breaking.

As the symmetry breaking occurs in different regions of the universe that are

causally disconnected from each other, the phase of the Higgs field takes an

arbitrary value in each region, i.e., different regions of the universe randomly

falls into minima with different phases. In two dimensions, core of a string

can be visualized as a point around which the phase of the Higgs field changes

continuously from 0 to 2π. Closed curves cannot be shrunk to zero around

such points, hence the non-trivial fundamental homotopy group of the vac-

uum manifold. Considering this picture in three dimensions, we can identify

the line along the extension of this point to the third dimension as a cosmic

string. Cosmic string networks form with a characteristic scale ξ whose upper

bound is the causal horizon, i.e., ξ . H−1 ∼ t. Then, the energy density of

the string network can be estimated as ρ ∼ µ/ξ2.

When the cosmic string network forms, the universe is still very dense and

hot, thus, the motion of the strings is heavily damped. The damped epoch

lasts until time td ∼ (Gµ)−2tp [1] after which strings start moving freely. Since

the thickness of a string is much less than its radius of curvature, its motion

can be described by the Nambu-Goto action

S = −µ

∫

d2σ
√−γ, (1.33)
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where γ is the determinant of the worldsheet metric γab = gµνX
µ
,aX

ν
,b, Xµ(σa)

is the string worldsheet –two dimensional surface characterizing the history of

a string. This description of string motion is valid for strings that do not in-

tersect with themselves or other strings. However, strings can interact in three

ways. They can pass through each other, reconnect or get entangled. Field

theory simulations of Abelian Higgs model show that strings intercommute,

i.e., exchange partners with probability p ≈ 1 [74, 75, 76]. String solutions

with the parameter λ < e2 are stable for large winding numbers and these can

form bound states [77]. Furthermore, strings can form bound states in mod-

els, where vacuum manifold has a non-abelian fundamental homotopy group

[78]. Reconnection of cosmic F- and D-strings is a quantum mechanical pro-

cess, thus the reconnection probability can be much smaller than unity, i.e.,

10−3 < p < 1 [79]. They can also form bound states called FD string networks

[80]. We will discuss cosmic F-, D-strings in the following section in more

details.

Both theoretical analyses [81] and simulations [82, 83, 84] show that the

string network reaches a scaling regime. It may first seem problematic that if

the string network scales with the horizon, the energy density of the strings

will dominate the universe since strings will be stretched and the density goes

as ρ ∝ 1/t2. However, loops are formed via intercommuting of a string with

itself or with other strings. Loops radiate gravitational waves, hence, some

energy is removed from the network of strings. The typical size of a loop is

determined by the scaling parameter β = L/t, where L is the invariant length

of a loop. According to the largest simulations performed up to date, the

value of the scaling parameter is β ∼ 0.1 in the radiation era, and β ∼ 0.15
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in the matter era [84]. There is still a debate about whether most of the

energy goes into these large loops with β ∼ 0.1 or smaller loops that have

lifetimes smaller than Hubble time. Analytical studies suggest that there are

two populations of loops: Scaling large loops of size of order horizon scale and

non-scaling small loops that have gravitational back reaction scale (ΓGµ)νt

with ν = 1.5, 1.2 for matter and radiation eras, respectively [85]. On the

other hand, the most recent and the largest simulation shows that the non-

scaling small loop population is transient and the scaling large loops eventually

dominate [84].

1.2.4 Superconducting strings

Cosmic strings become superconducting when a local gauge invariance is spon-

taneously broken within their core. This can be achieved via a scalar field [86]

or a charged vector field in a non-abelian theory [87]. The simplest model

consists of two gauge and two scalar fields with Ū(1) × U(1) symmetry and

has a Lagrangian [86]

L = |D̄µφ|2 + |Dµχ|2 − V (φ, χ) − 1

4
F̄µνF̄

µν − 1

4
FµνF

µν , (1.34)

where D̄µ = ∂µ − igĀµ, Dµ = ∂µ − ieAµ and

V (φ, χ) =
1

4
λφ(|φ|2 − η2

φ) +
1

4
λχ(|χ|2 − η2

χ) + γ|φ|2|χ|2. (1.35)

Superconductivity is achieved when γ is larger than the self couplings λφ, λχ

and, m2
χ = γη2

φ − λχη2
χ > 0. Ū(1) is broken when λφη

4
φ > λχη4

χ whereas U(1)

is not broken. In this case, the vacuum with |φ| = ηφ, |χ| = 0 becomes stable.

However, for a large region in the parameter space, bound states exist as scalar

condensates in the core of the string, where |χ| 6= 0 [88, 89, 90].
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Superconducting strings develop currents as they oscillate and travel through

the regions of space that has magnetic fields. The current has a value of order

J ∼ e2BL, where B is the magnitude of the magnetic field [1]. The current

inside the string is saturated when it reaches a critical value Jc ∼ iceη, where

0 < ic < 1 is a model dependent parameter. Particles are ejected from the

portions of the strings, where the critical current is reached. This occurs most

efficiently around the cusps, where the current is boosted to extremely large

values, hence the emission of electromagnetic [20, 21, 22] and neutrino bursts

[11]. The latter effect has unique signatures, such as multiple hits from the

same burst that can be detected at the planned neutrino detector JEM-EUSO.

This model will be discussed in detail in Chapter 4.

Similar observable effects can be expected for cosmic strings with bosonic

condensates [10]. In particular, standard model Higgs condensates can form

on cosmic strings and can emit ultra high energy cosmic rays from cusps [10].

1.2.5 Cosmic F- and D-strings

The possibility that superstrings might have cosmic sizes was first discussed

by Witten [91]. Witten argued that the strings of superstring theory have

tension close to Planck scale, Gµ & 10−3, which would produce very large

inhomogeneities in the CMB that is in conflict with the observations. Besides

this scale is above the upper bound on the inflaton vacuum energy, thus, they

would not have been produced after inflation and any strings produced be-

fore inflation would be diluted away. In Type-I theory, macroscopic strings

suffer instability against breaking into smaller strings. Furthermore, macro-

scopic heterotic strings appear as the boundaries of axion domain walls, whose
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strong gravitational forces make the strings collapse [92]. However, recent de-

velopments in superstring theory, namely, the discovery of non-perturbative

objects such as D-branes and the idea of flux compatification, make it possi-

ble to have stable cosmic superstrings with smaller tensions. The tension of

superstrings can be well below Planck scale due to gravitational redshift effect

of the warped geometry or large extra dimensions [80].

Brane inflation was suggested as an inflation mechanism within the frame-

work of Type-IIB string theory [93]. Later, it was shown that cosmic super-

strings can form when the brane inflation ends [94]. In the brane inflation

scenario, the role of the inflaton is played by the radial modulus characteriz-

ing the distance between a D3-brane and an anti D3-brane. The potential for

the radial modulus is similar to that of the hybrid inflation model [95]. As the

separation between the branes gets below a certain value, the radial modulus

becomes tachyonic like in hybrid inflation, i.e., its mass squared term becomes

negative. Each brane has a U(1) gauge field confined on its worldvolume, one

of which experiences a spontaneous symmetry breaking via coupling to the

tachyon field. This leads to formation of D-strings via Kibble mechanism.

When the brane and anti-brane annihilate, the other U(1) is confined as flux

tubes which are identified as F-strings.

Unlike ordinary gauge theory strings, cosmic F- and D-strings do not al-

ways reconnect. Reconnection is a quantum mechanical process and depends

primarily on the string coupling constant gs < 1. It can be estimated as

p ∼ g2
s , hence smaller reconnection probability. With a smaller reconnection

probability, it takes several attempts for strings to reconnect. Therefore, the

density of strings is expected to be larger than ordinary strings with p = 1.
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The dependence of the density of strings on p can be estimated as ρ ∝ p−1

based on the simple arguments in Refs. [24, 96]. Reconnection probability has

been estimated as 10−3 . p . 1 for F-strings and 10−1 . p . 1 for D-strings

[79]. F- and D-strings can also form bound states provided that they live in

the same potential well in the bulk space. The tension of the FD-network

is determined by the number of F- and D-strings involved in the junctions

[80]. Reconnection probability might be useful to distinguish between the or-

dinary gauge theory strings and F-, D-strings since the latter will have a larger

density, and thus, they will have stronger effects than ordinary strings.

1.2.6 Observable effects of cosmic strings

Cosmic (super)strings can be a significant source of gravitational waves. The

stochastic background of gravitational waves coming from cosmic string loops

at different cosmic epochs disturbs the timing of the pulses from milisecond

pulsars which otherwise act as very accurate clocks. The current upper bound

on the string tension from pulsar timing is Gµ . 1.5 × 10−8 [97]. This is the

most stringent upper bound on the string tension so far.

In addition to the stochastic background, gravitational wave bursts can be

produced from cusps. These bursts should be detectable by LIGO and LISA

interferometers for string tensions as small as Gµ ∼ 10−14 [23].

Spacetime around a straight cosmic string is locally flat, i.e., particles near

a cosmic string do not experience gravitational attraction since tension of the

string is equal to its energy density in magnitude, hence, the attractive force

due to the energy density is cancelled exactly by the repulsive force due to the

tension of the string. However, globally the spacetime is conic with a deficit
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angle δ = 8πGµ [7]. If an astrophysical object happens to be behind a cosmic

string, then a double image of the object is created with an angular separation

of order δ. This is true for a straight string, but some distortion of the images

could occur because of wiggles on the strings. The recent upper limit due to

this effect is given as Gµ < 2.3 × 10−6 based on a survey that compares the

optical images of close pairs of similar objects [12].

Cosmic strings can also generate scale invariant density perturbations

which was considered to be the source of the primordial density fluctuations

[98]. The accurate measurements of the CMB by WMAP show that the cos-

mic string contribution to the total power is less than 10 % [14, 16, 15]. The

acoustic peaks in the observed CMB power spectrum are explained well within

the inflationary paradigm whereas cosmic strings can only produce a single

peak from which an upper bound on the string tension is obtained by using

WMAP data as Gµ . 2.1 × 10−7 [17].

Cosmic strings can be sources of temperature anisotropies in the CMB –

known as the Kaiser-Stebbins effect [13]. When a cosmic string passes through

the uniform background of photons with speed v, the photons ahead of the

strings redshift whereas the ones behind it blueshift due to the conical geom-

etry of the spacetime around it. This effect can show itself as a discontinuous

change in the temperature of the background as δT/T ∼ 8πGµv, which might

be detected by the Planck satellite that is collecting data now.

Inflation predicts scalar and tensor fluctuations, on the other hand, cosmic

strings mostly produce vector perturbations except for the very small scales.

This unique property can serve as a way of detecting cosmic strings in the

B-mode polarization of the CMB [18] which will also be detectable by the
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Planck satellite.

Since cosmic strings have the energy densities of up to order of GUT or

string theory scales, they could also be responsible for the highest energy

events in the universe, such as gamma ray bursts and UHE cosmic rays.

Several mechanisms have been suggested for UHE particle production from

cosmic strings. Emission of particles from a collapse of a loop into a double

line [99, 100] produce very small fluxes since the probability of the collapse is

very small [101]. As a cosmic string loop loses its energy via gravitational and

particle radiation, it shrinks and eventually annihilate into UHE particles. It

turns out that this mechanism also produces a few particles per loop whose

flux is too small to be observable [102]. As a cosmic string loop oscillates,

it might self intersect and split into smaller loops. If this process is efficient

enough, the resulting small loops can decay into UHE particles in turn [101].

However, this mechanism is not supported by the cosmic string simulations,

namely such small loops constitute only a very small fraction of the total

energy density of the network [84]. Small portion of a cosmic string can be

annihilated when a string doubles on itself about the very tip a cusp. This

cusp annihilation mechanism also does not turn out to yield observable UHE

particle fluxes [103, 104, 105].

Good news is that there are other mechanisms, where observable UHE

cosmic ray fluxes can be obtained which constitute a large portion of this

dissertation. It has been suggested that radiation from cusps of supercon-

ducting cosmic strings could explain the highest energy gamma ray bursts

in the universe [19, 20, 21]. Vachaspati also suggested that superconducting

cosmic string cusps could produce electomagnetic bursts and argued that an
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observed radioburst in the extragalactic region of the space could be explained

by this mechanism [22]. Higgs condensates can form on cosmic strings and

large number of Higgs particles can be produced from cusps, which leads to

UHE cosmic rays [10]. Superconducting cosmic strings can also produce UHE

neutrino bursts from cusps that can be observed at JEM-EUSO. This model

has a unique signature, such as multiple hits coming from the same direction

without a time lapse [11], and thus, it can be interpreted as a clear signal that

can be accounted for cosmic strings. This model will be discussed in detail in

Chapter 4. There is yet another mechanism to produce UHE cosmic rays, in

particular neutrinos, from cosmic string cusps which does not require super-

conductivity. This model is based on the existence of relatively light scalar

particles called moduli –scalar particles that are predicted in supersymmetric

field theories including superstring theory. Moduli are often assumed to have

gravitational strength couplings, in which case the resulting particle flux is

too small. However, with the recent developments in string theory, namely,

the models with warped and large extra dimensions, there exist moduli with

stronger coupling to matter, which can lead to observable UHE cosmic ray

fluxes. The effect of such moduli in the early universe cosmology [28] and

their observable effects will be discussed in detail in Chapter 2 and Chapter 3,

respectively. Now, we will turn our attention to some more detailed discussion

of cosmic rays.
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1.3 Cosmic rays

Cosmic rays are particles that can have solar, galactic or extragalactic ori-

gins, namely they can be produced by stars, active galactic nuclei (AGN) and

topological defects. Primary cosmic ray particles can be heavy nuclei, protons,

electrons, neutrinos and gamma rays, where protons constitute about 90% of

them. As they enter the earth’s atmosphere, they interact with the nuclei in

the air molecules and give rise to secondary particles, mostly muons, which

in turn decay into electrons, positrons and neutrinos, hence they are detected

via interaction of these secondary particles at the detectors on earth. Cosmic

rays span a wide energy range from a few MeV all the way up to 1011 GeV.

The dependence of the flux on energy can be seen in Fig. 1.1 The flux in units

of number of particles per (cm2 sec GeV) can be fit as I(E) ∝ E−n. For the

energy range between 100 GeV and 106 GeV, n = −1.7. At about E ∼ 106

GeV, there is a knee, after which the index n ranges from −2 to −2.2. Eventu-

ally, there is a steepening to n = −2.7. The knee is considered to occur about

the maximum energy that supernovae can accelerate cosmic rays. There is a

dip in the spectrum which is caused by pair production from protons inter-

acting with the CMB photons. There is also a cutoff at the high energy end

of the spectrum due to photo-pion production from protons interacting with

the CMB.

There are several energy loss mechanisms for cosmic rays. Due to the

expansion of the universe, the energy of an ultrarelativistic particle produced

at redshift z decreases as E ∝ 1/(1+z). Besides, charged particles interacting

with the CMB photons produce electron-positron pairs and pions. Heavy
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Figure 1.1: The energy spectrum of cosmic rays. The spectrum can be
expressed by a power law from 102 GeV to 1011 GeV with only small changes
of slope around 106 GeV (the first knee), 109 GeV (the second knee) and
1011GeV (the ankle) (The figure is taken from [106]).

nuclei interacting with photons disintegrate into smaller nuclei. Protons lose

energy via pair production effect above energies m2
e/ECMB ∼ 106 GeV which

is considered to be the reason for the dip in the spectrum. They also lose

energy via photo-pion production above energies mπmproton/ECMB ∼ 1011

GeV, which shows itself as a cutoff in the spectrum. The latter effect was

first studied by Greisen [107], Zatsepin and Kuz’min [108] and is known as

the GZK process. Due to this effect, protons with energies above 1011 GeV

are strongly suppressed, hence not expected to be observed. The most recent

data from HiRes and AUGER experiments confirms the cutoff at E ∼ 6×1010

GeV [109, 110].
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1.3.1 Ultra high energy neutrinos

UHE neutrinos lose energy as they interact with the cosmic neutrino back-

ground. This leads to an effective horizon for neutrinos beyond which they

are absorbed due to νν̄ interactions. The neutrino horizon is given by zν ∼

7.9× 104E
−1/3
3 in the radiation dominated era and zν ∼ 220E

−2/5
11 in the mat-

ter era, where E3 ≡ E/(103 GeV) and E is the neutrino energy [111]. If

neutrinos are produced at large redshifts, they could produce MeV photons in

electromagnetic cascades, which in turn produce D and 4He. Therefore, pri-

mordial element abundances restrict the flux of neutrinos at large redshifts.

When neutrinos are produced from the decay of pions and kaons, they are

always accompanied by high energy photons, electrons and positrons. As the

primary photons and electrons interact with the CMB photons, a cascade

photon background is produced, hence restricted by diffuse gamma ray back-

ground [112, 113]. This is one of the most important restriction on the models

that will be discussed in Chapter 3 and 4, where UHE neutrinos are produced

from hadronic cascades, i.e., via decays of pions and kaons.

1.3.1.1 The cascade bound

The neutrino fluxes are limited from above. The most general upper bound for

UHE neutrinos, valid for both cosmogenic neutrinos –neutrinos produced via

decays of photo-pions originated from interaction of protons with the CMB

photons– and neutrinos from top-down models, is given by the cascade up-

per limit, first considered in [114, 115]. The production of neutrinos in these

scenarios is accompanied by production of high energy photons and electrons.
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Colliding with low-energy target photons, a primary photon or electron pro-

duces an electromagnetic cascade due to the reactions γ + γtarget → e+ + e−,

e + γtarget → e′ + γ′, etc. The cascade spectrum is very close to the EGRET

and FERMI-LAT observations in the range 3 MeV - 100 GeV [112, 113]. The

observed energy density in this range is ωFermi ≈ 5.8 × 10−7 eV/cm3. It pro-

vides the upper limit for the cascade energy density. The upper limit on UHE

neutrino flux Jν(> E) (sum of all flavors) is given by the following chain of

inequalities

ωcas > 4π

∫ ∞

E

E ′Jν(E
′)dE ′ > 4πE

∫ ∞

E

Jν(E
′)dE ′ ≡ 4πE2Jν(> E) . (1.36)

In terms of the differential neutrino spectrum, Eq. (1.36) gives Jν(E) as

E2Jν(E) <
1

4π
ωcas, with ωcas < ωFermi. (1.37)

Eq. (1.37) gives a rigorous upper limit on the neutrino flux. It is valid

for neutrinos produced by HE protons, by topological defects, by annihilation

and decays of superheavy particles, i.e., in all cases when neutrinos are pro-

duced through decay of pions and kaons. It holds for an arbitrary neutrino

injection spectrum decreasing with energy. If one assumes some specific shape

of neutrino spectrum, the cascade limit becomes stronger. For a generation

spectrum proportional to E−2, which is often assumed in model calculations,

one obtains a stronger upper limit. Given for one neutrino flavor it reads [116]

E2Ji(E) ≤ 1

3

1

4π

ωcas

ln(Emax/Emin)
, (1.38)

where Emax and Emin give the range of neutrino energies to which the E−2

spectrum extends, and i = νµ + ν̄µ, or i = νe + ν̄e, or i = ντ + ν̄τ . This upper
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Figure 1.2: The experimental upper limits on UHE neutrino fluxes in com-
parison with the electromagnetic cascade upper limit in assumption of E−2

generation spectrum (labeled “E−2 cascade”) and with predictions for cosmo-
genic neutrinos. Neutrino fluxes are given for one neutrino flavor νi + ν̄i.

limit is shown in Fig. 1.2. One can see that the observations almost reach the

cascade upper limit and thus almost enter the region of allowed fluxes.

The most interesting energy range in Fig. 1.2 corresponds to Eν > 1021 eV,

where astrophysical acceleration mechanisms cannot provide protons with suf-

ficient energy for production of these neutrinos. At present the region of

Eν > 1021 eV, and especially Eν ≫ 1021 eV is considered as a signature of

top-down models, which provide these energies quite naturally.

1.3.1.2 UHE neutrino sources

Ultra high energy cosmic ray (UHECR) particles interacting with the CMB

photons produce cosmogenic neutrinos. Besides, there may be neutrinos pro-
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duced in decays or annihilation of superheavy particles. Cosmogenic neutri-

nos were first discussed in [117], soon after the prediction of the GZK cutoff

[107, 108]. There, it was shown that UHE neutrino fluxes much higher than

the observed UHECR flux can be produced by protons interacting with CMB

photons at large redshifts. The predicted flux depends on the cosmological

evolution of the sources of UHE protons and on the assumed acceleration

mechanisms. Recent calculations of cosmogenic neutrino fluxes [118, 119] are

normalized to the observed UHECR flux, with different assumptions about

the sources.

The energies of cosmogenic neutrinos are limited by the maximum energy

of acceleration, Emax
acc . To provide neutrinos with energies above 1×1020 eV, the

energies of accelerated protons must exceed 2 × 1021 eV. For non-relativistic

shocks, the maximum energy of acceleration Emax
p can optimistically reach

1× 1021 eV. For relativistic shocks this energy can be somewhat higher. Pro-

duction of cosmogenic neutrinos with still higher energies depends on less

developed ideas, such as acceleration in strong electromagnetic waves, exotic

plasma mechanisms of acceleration and unipolar induction.

The top-down scenarios, on the other hand, naturally provide neutrinos

with energies higher and much higher than 1× 1020 eV [120]. The mechanism

common to many models assumes the existence of superheavy particles with

very large masses up to the GUT scale ∼ 1016 GeV. Such particles can be

produced by topological defects (TD)s. They then rapidly decay and produce a

parton cascade, which is terminated by production of pions and other hadrons.

Neutrinos are produced in hadron decays.

The production of unstable superheavy particles –the constituent fields
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of TD– is a very common feature of the TD [9]. However, the dynamics of

TD is highly nonlinear and complicated, the distance between TDs is model-

dependent, and the calculation of UHE particle fluxes requires special consid-

eration for different types of TD [8].

Apart from TDs, superheavy particles can naturally be produced by ther-

mal processes [121, 122] and by time-varying gravitational fields [123, 124]

shortly after the end of inflation. These particles can survive until present

and produce neutrinos in their decays. Protected by symmetry, e.g. discrete

gauge symmetry, in particular R-parity in supersymmetric theories, these par-

ticles can have very long lifetimes exceeding the age of the universe. The re-

sulting neutrino flux may exceed the observed flux of UHECR. However, like

any other form of cold dark matter (CDM), superheavy particles accumulate

in the Milky Way halo and produce a large flux of UHE photons. The non-

observation of these photons puts an upper limit on the neutrino flux from

intergalactic space.

Some of the greatest discoveries in the field of high energy physics were

thanks to studying cosmic rays, which include discovery of positron in 1932

[125], muon in 1936 [126, 127] and pion in 1947 [128]. Besides, the discov-

ery of heavier mesons and baryons in cosmic ray experiments eventually led

to the theory of strong interactions. Later, the experimental particle physics

was taken over by accelerator experiments, where particles can be produced

in a controlled way and their properties can be measured more accurately. As

of today, the highest energies that can be reached at a particle accelerator

is 14 TeV at the large hadron collider (LHC) at CERN. On the other hand,

one needs to go beyond these energies to understand the physics of the early
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universe, namely GUTs or superstring theory. Any piece of information from

the early universe could serve as useful hints in this respect, hence the im-

portant role of UHE cosmic rays. One area of research, where fundamental

physics and cosmic rays meet is the topological defects, in particular cosmic

strings. Therefore, cosmic ray physics might be awaiting some new exciting

discoveries.

As it was mentioned in the previous sections cosmic strings can produce

observable UHE cosmic ray fluxes. Neutrinos are of particular interest to

us since they can travel large cosmic distances without being absorbed or

scattered much. The source of the neutrinos can be identified more accurately

since they do not deflect in cosmic magnetic fields as protons do. We will

estimate UHE neutrino fluxes originated from the cusps of cosmic string loops

and the detectability conditions at the planned space based neutrino detector

JEM-EUSO [129], which is the subject of Chapter 3 and 4.

Before closing this chapter, let us summarize the basic properties of the

neutrino detector JEM-EUSO. JEM-EUSO will detect the extensive air show-

ers (EAS) from the surface of the earth –UHE neutrinos produce EAS as they

enter Earth’s atmosphere. 90% of the energy is radiated as isotropic fluores-

cent light that can be detected by the optical telescope of the JEM-EUSO

detector in space. JEM-EUSO has an optical telescope with a diameter of 2.5

m and it will observe an area of order 105 km2 with a threshold energy 6×1010

GeV. It is planned to operate in 2012 [129].

Now in Chapter 2, we will turn our attention to the cosmological con-

straints on the abundance of moduli produced by the small loops of cosmic

strings in the early universe.
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Chapter 2

Cosmological Constraints

2.1 Introduction

String theory requires the presence of scalar fields called moduli such as com-

plex structure and Kahler moduli which parametrize the volume and the shape

of a six dimensional manifold representing the extra dimensions in string the-

ory. There is also the modulus called dilaton whose expectation value de-

termines the strength of the string coupling constant. Moduli are originally

massless and their values are presumably fixed by the dynamics of the theory

so that in the effective theory they become massive scalar fields. The idea of

flux compactification made it possible to fix moduli by turning on some fluxes

in the internal manifold [130]. The possibility of having a large number of

values for different fluxes leads to the picture of string theory landscape where

there exist 10500 different vacua [131]. In this large landscape of vacua, there

are attractive models where some of the long standing problems are revisited

such as the hierarchy [130, 32], the possibility of having a de Sitter vacuum
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in string theory [132], brane inflation as the origin of inflation [93, 133] and

cosmic superstrings [94, 134, 80, 3].

Moduli can be produced by the oscillating loops of cosmic strings1. Such

moduli can have effects on big bang nucleosynthesis (BBN) and can also con-

tribute to dark matter and diffuse gamma ray background. These effects for

the gravitationally coupled moduli have been studied in detail [25, 27, 26].

Moduli are often expected to have Planck mass suppressed couplings. How-

ever, it was recently argued that some moduli couple to matter more strongly

than the Planck mass suppressed coupling in warped and large volume flux

compactification scenarios [34, 35, 33]. Refs. [34, 35] argue that the dilaton is

localized in the IR region of a throat for a large warping, i.e., they are local-

ized on the brane where all standard model fields live on. The dilaton mass

is suppressed by the warp factor and coupling to matter is stronger than the

Planck mass suppressed coupling. Localization of wavefunctions and stronger

couplings to matter are expected for other moduli as well [34, 35].

The Giddings-Kachru-Polchinski model [130] was the first string theory

realization of producing large hierarchies from pure numbers, i.e., quanta of

fluxes. It was argued that the RS model gives an effective description of the

warped compactification scenario with a large warp factor where the bulk

space is replaced by the UV brane and all the 4D physics except for gravity

is localized on the IR brane located at the bottom of the throat [31]. In the

original RS model, the radial modulus is not fixed and left as a free param-

eter. A mechanism for stabilizing this modulus was proposed by Goldberger

1Moduli can also be produced thermally if the reheating temperature is high enough.
We will comment on that possibility in Section 2.5.
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and Wise [30], who showed that this modulus has a TeV suppressed coupling

rather than Planck mass suppressed and has a TeV scale mass if the hierarchy

problem is solved. Brummer et al. further showed that the RS model with the

radial modulus stabilized by the Goldberger-Wise mechanism is the effective

description of the warped compactification scenario [31]. Therefore, moduli

with strong coupling seem generic in the warped Type-IIB flux compactifica-

tion scenario.

Another model where a strongly coupled modulus is present is the so called

large volume compactification where volume becomes exponentially large [32].

It was shown in [33] that one of the Kahler moduli can have mass m ∼ 106

GeV and coupling to matter suppressed by the string mass scale ms ∼ 1011

GeV for a particular value of the volume which leads to TeV scale SUSY

breaking. In this model, there is another Kahler modulus with m ∼ 1 MeV

and Planck mass suppressed coupling to matter, which suggests the presence

of both strongly and weakly coupled moduli together.

In this chapter, we derive the constraints on strongly and weakly coupled

moduli produced by oscillating loops of cosmic strings and show that they are

significantly relaxed for large modulus coupling constants. Organization of this

chapter is as follows: In Sec. 2.2, modulus radiation from cosmic string loops

is summarized. In Sec. 2.3, modulus and loop lifetimes are estimated and the

density of loops in the universe is given. In Sec. 2.4, we derive the abundance

of moduli produced by strings and obtain the upper limits on both strongly

and weakly coupled moduli abundances from diffuse gamma ray background

[112], big bang nucleosynthesis [135, 136, 137], the dark matter density [36],

and use the lower limit on scalar field mass from Cavendish-type experiments
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[138]. The regions free from constraints are shown in Fig. 2.1 and Fig. 2.2 for

the parameter space in terms of string tension Gµ and modulus mass m for

various values of modulus coupling constant α. Finally, in Sec. 2.5, thermal

production of moduli is discussed.

2.2 Modulus radiation from strings

A modulus φ couples to matter via trace of its energy momentum tensor

[25, 30, 33]

Lint ∼
α

mp

φT µ
µ , (2.1)

where α is the modulus coupling constant, mp is the Planck mass and T µ
µ is

the trace of the matter energy momentum tensor.

We consider oscillating loops of cosmic strings coupled to a modulus as

a periodic source of moduli production. Modulus radiation from a loop of

cosmic string occurs with the power [25]

Pm ∼ 30α2Gµ2, (2.2)

when the loop size L . 4π/m, where m is the modulus mass. This part of the

spectrum corresponds to moduli produced from small oscillating loops and so

it is relevant to the early universe. We will call this part of the spectrum as

background moduli. The corresponding average particle emission rate is

Ṅ ∼ 13
α2Gµ2

ω
, (2.3)

where ω is the energy of a modulus in the rest frame of the loop. Moduli are

mainly produced in the fundamental oscillation mode with ω = 4π/L, where
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L is the size of the loop [25]. Thus, the particle emission rate can be expressed

as

Ṅ ∼ 13

4π
α2Gµ2L. (2.4)

When L >> 4π/m, the main contribution to the radiation spectrum comes

from cusps and has a different power spectrum. Such moduli are produced in

late epochs and have larger lifetimes due to large boost factors of the cusps.

Possible observable effects of such moduli will be discussed in Chapter 3. Here,

we will only consider the background moduli and their cosmological effects.

2.3 Lifetime and loop density

The rate of decay of a modulus into the standard model (SM) gauge bosons

can be estimated as

Γ ∼ nSM

(

α

mp

)2

m3, (2.5)

where nSM = 12 is the total number of spin degrees of freedom for all SM

gauge bosons, and m is the modulus mass and we assume interaction of the

form [33]

Lint ∼
α

mp
φFµνF

µν . (2.6)

The mean lifetime of such a modulus in its rest frame can be estimated as the

inverse of the decay rate as

τ ∼ 8.1 × 1012α−2m−3
GeV s, (2.7)

where mGeV ≡ m/(1 GeV).

An oscillating loop of cosmic string also produces gravitational radiation
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with the power [1]

Pg ∼ 50Gµ2. (2.8)

The main energy loss mechanism for a loop of cosmic string is the gravita-

tional radiation provided that Pg & Pm which occurs when α . 1. The α ∼ 1

case was worked out in Refs. [25, 26, 27], where they found the upper bound

on string tension as strong as Gµ . 10−20 for a wide range of m. On the other

hand, when moduli are strongly coupled to matter, i.e., α >> 1, modulus ra-

diation becomes the dominant energy loss mechanism for the loops, hence this

leads to significant modifications of the constraints obtained in [25, 26, 27].

When the modulus radiation dominates, lifetime of a loop is given by

τL ∼ µL

Pm

∼ L

30α2Gµ
. (2.9)

The constraints we will obtain in the next section depend upon the length

of the loops formed from the cosmic string network. There is still no consensus

on the evolution of string network; Analytical works [81, 139, 140] and different

simulations [141, 142, 82, 83, 84] yield different answers. However, the biggest

recent simulations [84] suggest that a loop formed at cosmic time t has a

typical length

L ∼ βt, (2.10)

with β ∼ 0.1.

The loops of interest to us are the ones formed in the radiation dominated

era whose number density is given by [1]

n(L, t) ∼ ζβ1/2(tL)−3/2, (2.11)

where ζ ∼ 16, 30α2Gµt . L . βt.
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Loops cannot produce moduli efficiently at times t . td ∼ tp/(Gµ)2, where

tp is the Planck time, since they lose most of their energy due to plasma friction

[1]. Therefore, we consider later times where the loops reach a scaling solution

and the modulus radiation becomes the main energy loss mechanism.

The particle emission rate (2.4) is valid for the loops of size L . 4π/m,

which exist only at t . tm, and tm can be obtained from (2.9) as

tm ∼ 4π

30
α−2(Gµ)−1m−1. (2.12)

Thus, we will be interested in moduli produced in the time interval

td . t . tm. (2.13)

This implies tm & td, which can be expressed as

Gµ &
30

4π
α2 m

mp

∼ 2 × 10−19α2mGeV . (2.14)

We represent this condition on the parameter space plots given in the next

section as a dashed line below which no moduli are produced. Thus, the

corresponding region is free from the constraints2.

2.4 Cosmological constraints on moduli

2.4.1 Abundance

Modulus abundance is given by Y (t) = nm(t)/s(t) where nm(t) is the modulus

number density and s(t) is the entropy density given by

s(t) = 0.0725N 1/4
(mp

t

)3/2

, (2.15)

2Plasma friction may or may not affect cosmic F- and D-strings depending on whether
they interact with ordinary matter or not. However, thermally produced bulk field back-
ground, such as moduli, might have a similar effect on cosmic F- and D-strings. If they are
not affected by friction, the condition (2.14) is removed for these types of cosmic strings.
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where N ∼ 100 is the total number of spin degrees of freedom in the radiation

dominated era at early times t.

The total number of moduli produced by a single loop until cosmic time

t < τL can be obtained from (2.4) as

N ∼ Ṅt ∼ 13

4π
α2Gµ2Lt. (2.16)

By using (2.11) and (2.16), the number density of moduli in the universe

produced by the loops of size L can be found as

nm(t) ∼ Nn(L, t) ∼ 13

4π
ζβ1/2(Lt)−1/2α2Gµ2. (2.17)

Thus, the modulus abundance can be estimated as

Y ∼ 4.5ζβ1/2L−1/2tm−3/2
p α2Gµ2, (2.18)

Note that the smallest loops of size Lmin ∼ 30α2Gµt dominate the abundance.

After substituting L = Lmin in (2.18), it can be seen from (2.13) that t = tm

gives the most dominant contribution to the abundance. Using these facts,

we obtain

Y ∼ 2.7(Gµ)
(mp

m

)1/2

∼ 9.4 × 109(Gµ)m
−1/2
GeV . (2.19)

Note that the dependence on Gµ in equation (2.19) is different from that found

in [25], since there it was assumed that β ∼ 50Gµ. Although β ∼ 0.1 seems to

lead to more stringent constraints on string tension Gµ, we will see that the

constraints are relaxed when the coupling constant α becomes large enough.

2.4.2 Constraints on strongly coupled moduli

Short distance tests of Newton’s Law of gravity in Cavendish-type experiments

give a lower bound on the modulus mass as m > 10−3 eV, i.e., mGeV > 10−12
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Figure 2.1: log Gµ vs. log mGeV for strongly coupled moduli. The region above
the solid line is forbidden by the cosmological constraints. The region below
the dashed line is free from the constraints for the loops affected by plasma
friction since such moduli are never produced because of friction domination.
Note that if F- and D-strings do not interact with ordinary matter like solitonic
cosmic strings do, the friction domination does not apply, and thus one should
ignore the dashed line in that case.

[138].

If moduli are long-lived, i.e., τ & t0, they contribute to the dark matter

in the universe. Here, t0 ∼ 4.3 × 1017s is the age of the universe. Thus,

we have the upper bound Ωmh2 < 0.13 [36] or in terms of abundance Y <

9.6 × 10−10m−1
GeV .

If moduli are long-lived, they also contribute to the diffuse gamma ray

background [111]. When τ & t0, the energy density of moduli that decayed
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into photons until the present time can be estimated as

ρm ∼ Y s(t0)m
t0
τ

∼ 2.2 × 1017Y m4
GeV α2 eV cm−3, (2.20)

where t0/τ is the fraction of the decayed moduli and s(t0) = s(teq)(teq/t0)
2 ∼

2.9 × 10−38 GeV3. According to EGRET data, an approximate upper bound

on the diffuse gamma ray density for the photons of energy > MeV is ργ ∼

2.0 × 10−6 eV cm−3 [112]. Using this upper bound, we can estimate the limit

on the abundance from the constraint ρm . ργ as Y . 9.1 × 10−24α−2m−4
GeV .

When tdec ∼ 1013 s . τ . t0, the most stringent constraint comes from the

diffuse gamma ray background [111]. Assuming all the moduli decay by the

time τ , the energy density can be estimated as

ρm ∼ Y s(τ)m ∼ 1.1 × 1022Y α4m7
GeV eV cm−3, (2.21)

where s(τ) = s(teq)(teq/τ)2 ∼ 8.2 × 10−29α4m6
GeV GeV3. Redshifting the

photon energy density to time t = τ , we find

ργ(τ) ∼ ργ

(

t0
τ

)8/3

∼ 1.0 × 107α16/3m8
GeV eV cm−3, (2.22)

which gives and upper bound on the modulus abundance as Y . 9.1 ×

10−16 α4/3mGeV .

If the modulus lifetime is shorter than tdec, they can have effects on pri-

mordial element abundances [135, 136, 137]. When such moduli decay electro-

magnetically, they dissolve the light elements created during nucleosynthesis.

Besides, modulus-gluon coupling leads to hadron production which can also

change the primordial light element abundances. We made a piecewise power

law approximation to the results of [135, 136, 137], where the upper bounds
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τs Y
104 . τs . 1013 10−14m−1

GeV

102 . τs . 104 10−8τ
−3/2
s m−1

GeV

10 . τs . 102 10−11m−1
GeV

10−2 . τs . 10 10−11τ
−5/2
s m−1

GeV

Table 2.1: BBN constraints on the strongly coupled modulus abundance. This
table shows the approximate upper bounds on the strongly coupled modulus
abundance as a function of modulus lifetime and modulus mass. Note that
τs ≡ τ/sec.

on the abundance of long lived particles on BBN are given as a function of

their lifetime. We summarized the upper bounds in Table 2.1.

Using the bounds obtained from Cavendish-type experiments, diffuse gamma

ray background, BBN and dark matter constraints, we obtain the limits on

string tension Gµ, modulus mass m and modulus coupling constant α. Using

all these constraints, we obtained Fig. 2.1 for the parameter space of Gµ vs.

mGeV for various values of α. The analytic forms of the constraints in all

parameter ranges are given in Table 2.2. As it can be seen from Fig. 2.1, the

constraints become weaker as α increases. The condition (2.14) shifts towards

the upper end of the parameter space which leads to the region free from the

constraints below the dashed line where no moduli are produced from cosmic

strings.

2.4.3 Constraints on weakly coupled moduli

In the previous section, we analyzed the cosmological constraints on strongly

coupled moduli. In this section, we will assume that there is at least one

strongly coupled modulus and one weakly coupled modulus (coupling sup-
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Figure 2.2: log Gµ vs. log mGeV for weakly coupled moduli when mweak &

mstrong. The region above the solid line is forbidden by the cosmological con-
straints. The region below the dashed line is free from the constraints for
the loops affected by plasma friction since such moduli are never produced
because of friction domination. Note that if F- and D-strings do not interact
with ordinary matter like solitonic cosmic strings do, then the friction dom-
ination does not apply, and thus one should ignore the dashed line in that
case.
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mGeV Gµ

10−12 . mGeV . 3 × 10−2α−2/3 1.0 × 10−19m
−1/2
GeV

10−12 . mGeV . 3 × 10−2α−2/3 9.7 × 10−34α−2m
−7/2
GeV

3 × 10−2α−2/3 . mGeV . 9.3 × 10−1α−2/3 9.1 × 10−26α4/3m
3/2
GeV

9.3 × 10−1α−2/3 . mGeV . 9.3 × 102α−2/3 1.1 × 10−24m
−1/2
GeV

9.3 × 102α−2/3 . mGeV . 4.3 × 103α−2/3 4.6 × 10−38α3m4
GeV

4.3 × 103α−2/3 . mGeV . 9.3 × 103α−2/3 1.1 × 10−21m
−1/2
GeV

9.3 × 103α−2/3 . mGeV . 9.3 × 104α−2/3 5.7 × 10−54α5m7
GeV

Table 2.2: Constraints on the string tension Gµ for strongly coupled moduli.
This table shows the upper bounds we obtain from Cavendish type experi-
ments, diffuse gamma ray background, BBN and dark matter density con-
straints on Gµ for strongly coupled moduli as a function of modulus mass m
and modulus coupling constant α.

pressed by at least Planck mass) with coupling constants α >> 1 and αW . 1,

respectively. We will estimate the cosmological constraints on weakly coupled

moduli similar to the previous section.

Note that the dominant energy loss mechanism for the loops is still via

strongly coupled modulus radiation, thus the loop lifetime is given by (2.9)

and the minimum size of the loops is Lmin ∼ 30α2Gµt. On the other hand,

the modulus lifetime depends upon its coupling to matter and is given by

τW ∼ 8.1 × 1012α−2
W m−3

GeV s. (2.23)

The abundance of weakly coupled moduli can be calculated as

YW ∼ 9.4 × 109α−2α2
W (Gµ)m

−1/2
GeV . (2.24)

which is valid for mweak & mstrong where mweak and mstrong are the masses

of the strongly and the weakly coupled moduli, respectively. However, if

mweak < mstrong, although the strongly coupled moduli production termi-

nates at tmstrong(α) given by equation (2.12), weakly coupled moduli are still
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produced and the process terminates at tmweak
(α = 1). At this point, gravi-

tational radiation starts dominating and the abundance becomes YW ∼ 5.6×

109α2
W (Gµ)m

−1/2
GeV . Therefore, the constraints are the same as given on Fig. 2.1

for α = 1 case when mweak < mstrong assuming αW ∼ 1.

In the opposite regime, when mweak > mstrong, by using (2.24) and all the

constraints we discussed in the previous section, we obtained the parameter

space in Fig. 2.2 for various values of αW and α. Once again, the analytic

forms of the constraints are given in Table 2.3. As can be seen from Fig. 2.2,

the constraints become less important as α increases and αW decreases since

the abundance is suppressed by α−2α2
W . Besides, the condition (2.14) becomes

stronger for larger α and there is a larger region in the parameter space below

the dashed line free from the constraints.

mGeV Gµ

10−12 . mGeV . 3 × 10−2α
−2/3
W 1.0 × 10−19α2α−2

W m
−1/2
GeV

10−12 . mGeV . 3 × 10−2α
−2/3
W 9.7 × 10−34α2α−4

W m
−7/2
GeV

3 × 10−2α
−2/3
W . mGeV . 9.3 × 10−1α

−2/3
W 9.1 × 10−26α2α

−2/3
W m

3/2
GeV

9.3 × 10−1α
−2/3
W . mGeV . 9.3 × 102α

−2/3
W 1.1 × 10−24α2α−2

W m
−1/2
GeV

9.3 × 102α
−2/3
W . mGeV . 4.3 × 103α

−2/3
W 4.6 × 10−38α2αW m4

GeV

4.3 × 103α
−2/3
W . mGeV . 9.3 × 103α

−2/3
W 1.1 × 10−21α2α−2

W m
−1/2
GeV

9.3 × 103α
−2/3
W . mGeV . 9.3 × 104α

−2/3
W 5.7 × 10−54α2α3

W m7
GeV

Table 2.3: Constraints on the string tension Gµ for weakly coupled moduli.
This table shows the upper bounds we obtain from Cavendish-type experi-
ments, diffuse gamma ray background, BBN and dark matter density con-
straints on Gµ for weakly coupled moduli when mweak & mstrong as a func-
tion of modulus mass m and moduli coupling constants α and αW . When
mweak < mstrong, one should set α = 1 in the above table.
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2.5 Thermally produced moduli background

So far we have discussed the production of moduli from cosmic strings. Moduli

can also be produced thermally if the reheating temperature is high enough.

The photon-modulus interaction can be written as

Lint ∼
α

mp
φF µνFµν . (2.25)

Moduli should be in thermal equilibrium with photons for the thermal

production to occur. The lowest order process which contributes to the in-

teraction γγ → φφ is second order and the cross section can be estimated

as

σ ∼
(

α2

m2
p

)2

E2, (2.26)

where E ∼ T is the energy of photons at temperature T .

For substantial thermal production of moduli to occur, the rate of thermal

modulus production should be greater than the expansion rate of the universe

H , i.e.,

Γth ∼ σnγ & H, (2.27)

where nγ is the photon density at temperature T . Using (2.26), nγ ∼ T 3 and

H ∼ T 2/mp in (2.27), we obtain

T & α−4/3mp. (2.28)

For instance, when α ∼ 109, (2.28) implies Trh & 107 GeV. Since reheating

temperature is also model dependent, strongly coupled moduli may or may

not be produced thermally. On the other hand, weakly coupled moduli cannot

be produced since Trh & mp is required for α . 1.
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Assuming strongly coupled moduli are produced thermally and dominate

the universe, we can estimate the temperature after their decay. The decay

rate of moduli is

Γdec ∼
(

α

mp

)2

m3, (2.29)

and when Γdec ∼ H ∼ T 2/mp, moduli will decay and reheat the universe to

temperature T . Using that, we obtain

T ∼ α

(

m

mp

)1/2

m. (2.30)

The weakest constraint one can consider is that T should be at least at

the nucleosynthesis temperature ∼ 1 MeV. Using T & 1 MeV, we obtain the

constraint

α & 106m
−3/2
GeV . (2.31)

2.6 Conclusions

We consider oscillating loops of cosmic strings as periodic sources of moduli

production. When α . 1, gravitational radiation is the dominant energy loss

mechanism for the loops. The constraints for this case are identical to α = 1

case for the strongly coupled moduli as we have shown on Fig. 2.1. Note that

our results for α ∼ 1 are more stringent than that of [25, 27, 26]. This is

mainly because of the fact that they assume β ∼ 50Gµ in their calculations

whereas we use β ∼ 0.1 from the recent simulations [82, 83, 84].

When a modulus is strongly coupled to matter, i.e., α & 1, modulus ra-

diation is the dominant energy loss mechanism for the loops. Hence, loop

lifetimes depend upon α. Besides, modulus lifetime shortens as α is increased

53



if the modulus mass is kept constant. These two effects make the cosmological

constraints we obtained for the strongly coupled moduli less severe. Basically,

for moduli to have effects on BBN, and to contribute to dark matter and

diffuse gamma ray background, their lifetime should be long enough. As can

seen from Fig. 2.1, this implies that strongly coupled moduli can have effects

on cosmology only if their mass is small enough, since lighter moduli have

longer lifetimes compared to the more massive ones.

In addition, loops cannot radiate moduli effectively in the friction domi-

nated epoch since they lose their energy mostly via friction. The condition for

friction domination (2.14) becomes stronger when α is larger. A larger region

of the parameter space is allowed as α is increased since friction domination

does not let moduli to be produced by cosmic strings in that region. This may

not be the case for F- and D-strings since they may or may not interact with

ordinary matter depending on where they are located in extra dimensions.

However, if there is a thermally produced moduli background, a similar effect

might occur for F- and D-strings which needs further investigation.

We consider warped and large volume compactifications as the two exam-

ples where at least one strongly coupled modulus is present. In the warped

compactification scenario, there is some evidence for moduli localization in

long throat regions which leads to stronger coupling to matter and smaller

moduli masses [34, 35]. This suggests that warped compactification with a

long throat can be effectively described by the RS model with its radion sta-

bilized by Goldberger-Wise mechanism [31]. As it was argued some time ago

by Goldberger and Wise, RS radion has TeV suppressed coupling to matter

[30]. Interpolating our results for this particular case, we see that the RS
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radions produced by cosmic strings are free from the cosmological constraints

we considered in this work.

As a second example, we consider large volume compactification where a

strongly coupled modulus is present. One of the Kahler moduli in this scenario

has a mass m ∼ 106 GeV and a string mass scale suppressed coupling where

ms ∼ 1011 GeV [33]. In our notation, this means that α ∼ 108, hence a

strongly coupled modulus. As we can see from Fig. 2.1, this modulus is free

from the cosmological constraints we considered.

In the large volume compactification scenario, there is another Kahler mod-

ulus with Planck mass suppressed coupling to matter, i.e., α ∼ 1. This sug-

gests the possibility of having at least one strongly coupled and a weakly cou-

pled modulus together. We also calculated the constraints on weakly coupled

moduli and show our results in Fig. 2.1 with α = 1 for mweak < mstrong case

and in Fig. 2.2 for mweak & mstrong case. In particular, the constraints on the

weakly coupled Kahler modulus of the large volume scenario are the same as in

the first plot of Fig. 2.1 (α = 1), since mweak ∼ 1 MeV < mstrong ∼ 106 GeV.

Note that in this model, the maximum string tension can only be Gµ ∼ 10−16.

If we take αW ∼ 1 and mweak ∼ 1 MeV, the constraints on this weakly coupled

modulus are not stringent. On the other hand, as can be seen from Fig. 2.2,

constraints are quite weak for the α = 108, αW = 1 case. If αW << 1, then

weakly coupled moduli with mweak & mstrong are free from constraints since

their abundance is suppressed by α−2α2
W .

We also consider the possibility of producing moduli thermally. We found

that if the universe has ever reached the temperature of order T ∼ α−4/3mp,

then moduli can be produced thermally. If the hierarchy problem is solved
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with warped geometry, the RS radion couples to matter with α ∼ 1015 and

(2.31) implies m & 10−6 GeV for the RS radion mass. Since it is expected

that m ∼ 1 TeV [30], the RS radion is free from both the cosmological con-

straints from cosmic strings and the thermally produced radion background

constraint. For the strongly coupled Kahler modulus in the large volume

scenario, the constraint (2.31) implies m & 10−2 GeV. Since m ∼ 106 GeV

in this model [33], it is also free from the thermally produced moduli back-

ground constraint. Finally, we also found that weakly coupled moduli cannot

be produced thermally since T & mp would be required for this to happen.

In this chapter, we assumed that the reconnection probability of strings is

p = 1 which is true for the ordinary cosmic strings. However, for cosmic F-

and D-strings p < 1 which leads to an enhancement of the string density in

the universe [134, 80]. Therefore, the constraints are expected to be a little

bit stronger for p < 1 case. However, this turns out to be an insignificant

effect [27].

The main conclusion of this chapter is that when there is at least one type

of strongly coupled modulus, both the cosmological and the thermally pro-

duced moduli background constraints on strongly and weakly coupled moduli

become less severe and for sufficiently large values of α, they are free from the

constraints considered in this chapter.
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Chapter 3

Modulus radiation from cusps

3.1 Introduction

In this chapter, we will discuss modulus radiation from cosmic string cusps as a

mechanism of cosmic ray production, which does not assume string supercon-

ductivity or Higgs condensates. It relies on the existence of moduli –relatively

light, weakly coupled scalar fields, predicted in supersymmetric particle theo-

ries, including string theory. Moduli would be copiously radiated by oscillating

loops of string at early cosmic times, when the loops are very small and their

frequency of oscillation is greater than the modulus mass. The emitted mod-

uli and their decay products can manifest themselves observationally in many

different ways; this leads to stringent constraints on both the cosmic string

tension and modulus mass as discussed in Chapter 2 [25, 26]. We showed in

Chapter 2 that the constraints are relaxed significantly for strongly coupled

moduli [28]. It turns out that the range of the parameters for strongly coupled

moduli that give rise to observable neutrino fluxes are in the allowed range of
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the constraints discussed in Chapter 2.

At later times, moduli can only be emitted from cusps, resulting in sharp

bursts of high-energy moduli. Eventually moduli decay into standard model

particles, and their decay products can be observed as cosmic rays. Of par-

ticular interest are neutrinos, which can travel over cosmological distances, so

moduli decaying in a wide redshift interval from z = 0 to the neutrino horizon

zν ∼ 102 can yield observable events.

In this chapter, we will treat the modulus mass and coupling constant

and the string tension as free parameters. We will estimate the ultra-high

energy (UHE) neutrino flux resulting from modulus decays and indicate some

values of the parameters that can yield observable fluxes. This chapter is

organized as follows. In Sec. 3.2, we review modulus emission from cosmic

string cusps. In Sec. 3.3, we discuss modulus decay, UHE neutrino production

in the resulting hadronic cascades, and subsequent neutrino propagation. In

Sec. 3.4, we review the size distribution of cosmic string loops and calculate

the rate of bursts and the diffuse flux of UHE neutrinos. We also discuss

the upper bound on the neutrino flux, resulting from the diffuse gamma ray

background observations. In Sec. 3.5, we give an illustrative example where

our scenario can be implemented, namely the strongly coupled moduli in the

large volume compactification model in string theory, and find the values of

the string tension µ for which observable UHE neutrino fluxes can be obtained.
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3.2 Modulus radiation from cosmic string cusps

The effective action for a modulus field φ interacting with a cosmic string of

tension µ is given by [25, 30, 33]

S = −
∫

d4x

[

1

2
(∇φ)2 +

1

2
m2φ2 +

√
4πα

mp
φT ν

ν

]

− µ

∫

d2σ
√−γ, (3.1)

where γ is the determinant of the induced worldsheet metric γab = gµνX
µ
,aX

ν
,b,

Xµ(σ, τ) is the string worldsheet, T ν
ν is the trace of the energy momentum

tensor of the string, α is the modulus coupling constant, m is the modulus

mass and mp is the Planck mass. For α ∼ 1, the modulus coupling to matter

is suppressed by the Planck scale. Here, we treat α as a free parameter and are

mainly interested in α ≫ 1. Then, the mass scale characterizing the modulus

interactions is ∼ mp/α ≪ mp. Values as large as α ∼ 1015 have been discussed

in the literature [30].

The modulus field equation has the form

(∇2 − m2)φ(x) = −
√

4πα

mp
T ν

ν (x), (3.2)

with

T ν
ν (x) = −2µ

∫

dτdσ
√−γδ4(xα − xα(σ, τ)). (3.3)

The power spectrum of modulus radiation from an oscillating loop of string

can be decomposed in Fourier modes as [25]

dPn

dΩ
=

Gα2

2π
ωnk|T (k, ωn)|2, (3.4)

where G is the Newton’s constant, ωn =
√

k2 + m2 = 4πn/L, L is the length

of the loop,

T (k, ωn) = −4µ

L

∫

d4x

∫

dσdτ
√−γδ4(xα − xα(σ, τ))eikνXν(σ,τ), (3.5)
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and kν = (ωn,k).

We will be interested in the modulus emission from large loops of string,

having length L ≫ m−1. In this case, the characteristic frequency of loop

oscillation is ω ∼ 1/L ≪ m, so modulus production is suppressed, except in

the vicinity of cusps, where extremely high frequencies can be reached in a

localized portion of the loop for a brief period of time. Lorentz factors greater

than γ are reached in a fraction of the loop of invariant length ∆L ∼ L/γ.

In a flat background, i.e., gµν = ηµν = diag(−1, 1, 1, 1), the equation of

motion for the string worldsheet Xµ(σa) is

∂a

(√−γγabXµ
,b

)

= 0. (3.6)

Using the conformal gauge and σ0 ≡ τ , σ1 ≡ σ one obtains

Ẍµ − X ′′µ = 0, (3.7)

and the gauge conditions are

Ẋ·X′ = 0, (3.8)

Ẋ2 + X′2 = 1. (3.9)

In this gauge, the worldsheet coordinate τ can be identified with the Minkowski

time coordinate t. The solution for (3.7) can be written in terms of the right

moving and the left moving waves as

X(σ, τ) =
1

2
[X+(σ+) + X−(σ−)] , (3.10)

where the lightcone coordinates are defined as σ+ ≡ σ + τ , σ− ≡ σ − τ . The

corresponding gauge conditions are X′
+

2 = X′
−

2 = 1, where primes denote

derivatives with respect to the lightcone coordinates.
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Using the lightcone coordinates, Eq. (3.5) can be written in the form

T (k, ωn) = −µ

L

∫ L

−L

dσ+

∫ L

−L

dσ−
(

1 + X′
+·X′

−
)

e
i
2
[(ωnσ+−k·X+)−(ωnσ−+k·X−)].

(3.11)

Since we will be mainly interested in moduli bursts from cusps, we use

the expansion of string worldsheet about a cusp, which we take to be at

σ+ = σ− = 0. The functions in the integrand of (3.11) can be calculated from

the expansions as

1 + X′
+·X′

− ≈ −4π2s

L2
σ+σ−, (3.12)

and

k · X± ≈ k

(

±σ± ∓ 2π2

3L2
σ3
±

)

, (3.13)

where s is an O(1) parameter which depends on the loop trajectory and k is

assumed to be in the direction of the string velocity at the cusp.

Eq. (3.11) can now be separated into two integrals as

T (k, ωn) =
4π2µ s

L3
I+I−, (3.14)

where

I± =

∫ L

−L

dσ± σ± e
±i

h

ωn−k
2

σ±+ π2k
3L2 σ3

±

i

. (3.15)

After a change of variables, we obtain the integral

I±(u) =
L2

2π2

(ωn

k
− 1

)

∫ ∞

−∞
dx x e±i 3

2
u[x+ 1

3
x3], (3.16)

where

u ≡ Lk

3
√

2π

(ωn

k
− 1

)3/2

, (3.17)

and we have approximated the upper and lower limits of integration as ±∞.

The real part of the integral is zero since it is an odd function of x. The
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imaginary part can be expressed in terms of the modified Bessel function,

I±(u) = ±i
L2

2π2

(ωn

k
− 1

) 2√
3
K2/3(u). (3.18)

Then, (3.14) can be calculated as

T (k, ωn) =
4Lµ s

3π2

(ωn

k
− 1

)2

K2
2/3(u), (3.19)

and the power spectrum for the moduli radiation (3.4) from a cusp is

dPn

dΩ
=

8L2α2s2Gµ2

9π5
ωnk

(ωn

k
− 1

)4

K4
2/3(u). (3.20)

The asymptotic form of the power spectrum for k >> m and ωn ≈ k, i.e.,

u << 1, is1

dPn

dΩ
≈ Γ̃α2s2Gµ2n−2/3. (3.21)

where Γ̃ ∼ 1. This is the same as the power spectrum for gravitons, except

that for gravitons there is no additional coupling constant α and the numerical

coefficient is somewhat different.

The average rate of modulus radiation per solid angle is

dṄ

dΩ
=

∑

n

1

ωn

dPn

dΩ
. (3.22)

The sum over n can be converted into an integral over k by using the relation

ωn = 4πn
L

=
√

k2 + m2

∑

n

=
L

4π

∫

k dk√
k2 + m2

. (3.23)

Here we only consider the modulus bursts which have very large Lorentz fac-

tors, thus we keep the leading order term in the limit k >> m. In this limit,

1When u << 1, Kν(u) ≈ Γ(ν)
2

(

2
u

)ν
.
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(3.17) becomes u ≈ Lm3

12πk2 . By substituting (3.20) into (3.22), using (3.23) and

also by making a change of variable u ≡ Lm3

12πk2 , we obtain

dṄ ∼ α2s2Gµ2

m
K4

2/3(u)u2dudΩ. (3.24)

The function K2/3(u) dies out exponentially at u & 1. Hence, the main

contribution to the rate comes from the region u . 1 which corresponds to

k & kmin = kc ∼
1

4
m
√

mL. (3.25)

For k >> kmin, Eq. (3.24) gives

dṄ ∼ α2s2Gµ2L1/3k−5/3dkdΩ. (3.26)

From (3.26), the number of moduli emitted from a cusp in a single burst, into

solid angle dΩ, having momentum between (k, k + dk) can be estimated as

dN ∼ LdṄ ∼ α2s2Gµ2L4/3k−5/3dkdΩ. (3.27)

Here, we assumed one cusp event per oscillation period of a loop.

Moduli are emitted into a narrow opening angle around the direction of

the string velocity v at the cusp. The spectral expansion (3.26) has been

calculated for moduli emitted in the direction of v. For moduli emitted at a

small angle θ relative to v, Eq. (3.26) still applies, but now the spectrum is

cut off at kmax ∼ 1/Lθ3. In other words, the opening angle for the emission

of particles with momenta & k is

θk ∼ (kL)−1/3. (3.28)

Integration over Ω in (3.26) gives a factor ∼ θ2
k,

dṄ ∼ α2s2Gµ2L−1/3k−7/3dk. (3.29)
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Therefore, the number of moduli emitted in a single burst with momenta

k in the interval dk (in the center of mass frame of the loop) is given by2

dN(k) ∼ α2Gµ2L2/3k−7/3dk. (3.30)

This distribution applies for k > kc, where

kc ∼
1

4
m
√

mL. (3.31)

At smaller k the distribution is strongly suppressed, dN ≈ 0.

The dominant contribution to the modulus emission comes from the lower

momentum cutoff kmin ∼ kc, so the total number of moduli per burst is

N ∼ α2Gµ2

m2
. (3.32)

The particles come from a portion of the loop that reaches Lorentz factors

in excess of

γc ∼ kc/m ∼ 1

4

√
mL, (3.33)

and are emitted into a narrow opening angle θc around the direction of the

string velocity v at the cusp,

θc ∼ γ−1
c ∼ 4(mL)−1/2. (3.34)

The total power of modulus radiation can be similarly calculated as

Pm ∼ α2Gµ2L−1/3k−1/3
c ∼ α2Gµ2

√
mL

. (3.35)

The loops also radiate gravitational waves with the power

Pg ∼ ΓGµ2, (3.36)

2Our detailed analysis confirms the results of Refs. [10, 26].
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where Γ ≈ 50 [1]. Pg ∼ Pm when L ∼ L∗ which is given by

L∗ ∼ Γ−2α4m−1. (3.37)

The lifetime of a loop which mainly radiates gravitationally is

τg ∼ µL

Pg
∼ L

ΓGµ
, (3.38)

which implies that the characteristic size of the smallest (and most numerous)

loops surviving at time t is

Lg
min ∼ ΓGµt. (3.39)

On the other hand, modulus radiation dominates when Pg . Pm and the loop

lifetime is given by

τm ∼ µL

Pm

∼ L3/2m1/2

α2Gµ
. (3.40)

The corresponding minimum loop size is

Lm
min ∼ α4/3(Gµ)2/3m−1/3t2/3. (3.41)

The transition between the two regimes occurs at

t∗ ∼
α4

Γ3Gµm
. (3.42)

Therefore, the minimum loop length is given by (3.39) for t & t∗ and by (3.41)

for t . t∗. The redshift corresponding to t∗ is given by3

z∗ ∼ Γ2α−8/3(Gµ)2/3(mt0)
2/3, (3.43)

3Throughout this chapter, we assume cosmology with Λ = 0 and Ωm + Ωr = 1 and
use H0 = 72 km/sMpc, t0 = 4.3 × 1017 s, teq = 2.4 × 1012 s, 1 + zeq = 3200, the scale
factor in the matter and radiation dominated eras are ar(t) ∝ t1/2 and am(t) ∝ t2/3. The
corresponding time-redshift relations are respectively given by (t/t0) = (1+zeq)

1/2(1+z)−2

and (t/t0) = (1 + z)−3/2.
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where we have assumed that 1 < z∗ < zeq. An expression for the case when

z∗ > zeq can be similarly obtained, but we will not need it in what follows. If

Eq. (3.43) gives a value z∗ < 1, this means that modulus radiation dominates

at all redshifts.

Anticipating the parameter values for which detectable neutrino fluxes can

be obtained, we define

m5 = m/105GeV, α7 = α/107, µ−20 = Gµ/10−20. (3.44)

Then Eq. (3.43) gives

z∗ ∼ 404m
2/3
5 α

−8/3
7 µ

2/3
−20. (3.45)

3.3 Particle propagation

3.3.1 Neutrino propagation

When a UHE neutrino interacts with a neutrino in the cosmic neutrino back-

ground, the possible channels are νν̄ → e+e−, µ+µ−, τ+τ− and d̄d, s̄s, c̄c, ū, u

for three colors of each quark. The total cross section is

σν ∼ N

π
G2

F s, (3.46)

where N ∼ 15, GF = 1.17×10−5 GeV−2, s(z) = 2Emν(1+z), E is the neutrino

energy at the present epoch and mν ∼ 0.1− 0.2 eV is the neutrino mass. The

cosmic neutrino background energy is ǫν = 3.15T (1+z) = 5.29×10−4(1+z) eV

and number density is nν = 56(1+z) cm−3. UHE neutrino absorption becomes

effective when the absorption rate is greater than the Hubble parameter. This

occurs when [111]
∫

dtσν(z)nν(z) = 1. (3.47)
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In a flat, matter dominated universe

dt =
3

2
t0(1 + z)−5/2dz. (3.48)

Substituting (3.48) in (3.47), we obtain the neutrino horizon as

1 + zν = 220E
−2/5
11 , (3.49)

where E11 ≡ E/1011 GeV.

3.3.2 Modulus decay

The mean lifetime of the modulus in its rest frame is

τ0 ∼ 8.1 × 10−17m−3
5 α−2

7 s. (3.50)

from Eq. (2.7) in Chapter 2. The lifetimes of moduli emitted from cusps

are boosted by large Lorentz factors. Modulus emitted with momentum k at

redshift z and decaying at redshift zd has a lifetime

τ = τ0γ(z, zd), (3.51)

where

γ(z, zd) =
k

m

1 + zd

1 + z
. (3.52)

In order for neutrinos to reach the Earth, they should be produced within

the neutrino horizon at redshifts zd . zν . Moduli emitted from cusps at z > zν

can therefore yield observable events only if they have large enough lifetime,

allowing them to survive until they reach zν . This gives the condition

τ(z) ∼ τ0
k

m

1 + zν

1 + z
& t(zν) ≈ t0(1 + zν)

−3/2, (3.53)
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where in the last step we used the fact that in the energy range of interest

zν . zeq.

This condition turns out to be difficult to satisfy. As we will see, in order

to get a detectable neutrino flux, the modulus coupling α has to be rather

large, α & 106. This makes the lifetime (3.50) very short. For relevant values

of the parameters, only a fraction of the moduli, emitted from a small vicinity

of the cusp, will have their lifetime boosted enough to reach zν . We have

verified that the resulting neutrino flux is too low to be detected in this case.

In what follows we will consider only cusp events occurring at z < zν < zeq.

There are no restrictions on the modulus lifetime in this case, except that it

should be short enough for sufficient fraction of moduli to decay before they

reach the Earth. This is always satisfied in the parameter range of interest.

The decay channel relevant for the neutrino production is the decay into

gluons, via the modulus-gluon interaction of the form (2.6). As moduli decay

into gluons, gluons produce a cascade of decays into quarks, which eventually

are converted into hadrons. Most of these hadrons decay into neutrinos and

pions, which in turn decay into neutrinos and leptons again. Thus, modulus-

gluon coupling leads to copious neutrino production.

To simplify the analysis, we will assume a simple fragmentation function

of the modulus into hadrons, dN/dE ∝ E−2, which is close to the form E−1.92

obtained using Monte Carlo simulations and the DGLAP method [143]. Then

the neutrino spectrum, at the present epoch, produced by the decay of a

modulus with momentum k at epoch z is

dNν

dE
≡ ξν(E, k) ≈ b

1 + z

k

E2
, (3.54)
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where E is the neutrino energy,

b = [ln(Emax/Emin)]−1, (3.55)

and the energies Emax and Emin define the range over which the spectrum

(3.54) applies. Assuming a two-jet decay of the modulus and rough equipar-

tition of particle energies in pion decays π± → e±ννν, we have

Emax ∼ 1

8
k(1 + z)−1, (3.56)

and

Emin ∼ 1

8

k

m
mπ(1 + z)−1, (3.57)

where mπ is the pion mass in the last equation. This lower cutoff is due

to the fact that the hadronic cascade terminates at energies ∼ mπ. For the

normalization of the spectrum, we will use b ∼ 0.1 in our numerical estimates.

Note that moduli are emitted with Lorentz factors γ = k/m & γc, with most

of them saturating the lower bound, γ ∼ γc. Then, Emin can be found as

Emin(z < z∗) ∼ 9.0 × 1012m
1/2
5 µ

1/2
−20(1 + z)−7/4 GeV, (3.58)

Emin(z > z∗) ∼ 2.0 × 1012m
1/3
5 µ

1/3
−20α

2/3
7 (1 + z)−3/2 GeV. (3.59)

We will require the energy of the neutrinos to be greater than Emin to make

sure the cascade produces neutrinos with the energies we are interested in.

3.4 Neutrino bursts from moduli

3.4.1 Loop distribution

The predicted flux of UHE neutrinos depends on the typical length of loops

produced by the string network. The characteristic length of loops formed at
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cosmic time t is given by the scaling relation [84]

L ∼ βt (3.60)

with β ∼ 0.1.

The number density of loops with lengths in the interval from L to L+dL

can be expressed as n(L, t)dL. Of greatest interest to us are the loops that

formed during the radiation era (t < teq) and still survive at t > teq. The

density of such loops is given by

n(L, t)dL ∼ p−1ζ(βteq)
1/2t−2L−5/2dL, (3.61)

where p is the string reconnection probability and ζ ∼ 16 is the parameter

characterizing the density of infinite strings with p = 1, ρ∞ = ζµ/t2.

The dependence of the loop density on p is somewhat uncertain and can

only be determined by large-scale numerical simulations. Here we have adopted

the p−1 dependence suggested by simple arguments in, e.g., [24, 96]. The re-

connection probability is p = 1 for ordinary cosmic strings. Its value for F-

and D-strings of superstring theory has been estimated as [79]

10−3 . p . 1. (3.62)

The distribution (3.61) applies for L in the range from the minimum length

Lmin to Lmax ∼ βteq. The lower cutoff Lmin depends on whether the energy

dissipation of loops is dominated by gravitational or by modulus radiation.

It is given by (3.39) for z < z∗ and by (3.41) for z∗ < z < zeq, with z∗ from

Eq. (3.43). For z∗ > zeq, the dominant energy loss is gravitational radiation

and Eq. (3.39) for Lmin applies in the entire range of interest.

70



The string motion is overdamped at early cosmic times, as a result of

friction due to particle scattering on moving strings. The overdamped epoch

ends at [1]

td ∼ (Gµ)−2tp, (3.63)

where tp is the Planck time. In the above analysis we have assumed that loops

of interest to us are formed at t > td. The corresponding condition is

Lmin(t) & βtd. (3.64)

This bound assumes that the strings have non-negligible interactions with the

standard model particles, so it may not apply to F- or D-strings of superstring

theory. In any case, we have verified that (3.64) is satisfied for parameter

values that give a detectable flux of neutrinos.

3.4.2 The rate of bursts

The rate of cusp events that occur at redshift z in the interval (z, z + dz) can

be expressed as

dṄc =
n(L, z) dL

L/2

dV (z)

1 + z
, (3.65)

where the proper volume in the matter era is given by

dV (z) = 54πt30[(1 + z)1/2 − 1]2(1 + z)−11/2dz, (3.66)

and we have assumed one cusp event per loop oscillation period L/2. The rate

of modulus bursts emitted into solid angle Ω ∼ πθ2 is given by

dṄb ∼ dṄc
Ω

4π
∼ 1

4
dṄc(kcL)−2/3. (3.67)

Here, θ ∼ (kcL)−1/3 and kc ∼ 1
4
m
√

mL is the lower momentum cutoff.
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The total rate of bursts that occur at redshift z in the interval ∆z ∼ z and

whose opening angle includes the Earth is given by

Ṅb(z) ≡ (1 + z)

∫ βt(z)

Lmin(z)

dL
dṄb

dzdL
. (3.68)

This gives

Ṅb(z) ∼ 68πp−1ζ β1/2

(

teq
t0

)1/2

(mt0)
−1t

5/2
0

[(1 + z)1/2 − 1]2

(1 + z)5/2

∫ βt(z)

Lmin

dL L−9/2.

(3.69)

The integral over L is dominated by the lower limit Lmin, thus the burst rate

is given by

Ṅb(z) ∼ 1.2 × 10−57p−1m−1
5 (Lmin/t0)

−7/2(1 + z)−3/2 yr−1, (3.70)

where we have assumed z ≫ 1 and used ζ ∼ 16, β ∼ 0.1.

For z . z∗, we use Lmin ∼ ΓGµt0(1 + z)−3/2 with Γ ∼ 50, which gives

Ṅb(z < z∗) ∼ 1.3 × 107p−1m−1
5 µ

−7/2
−20 (1 + z)15/4 yr−1. (3.71)

If z∗ < zν , we also have to consider the regime z∗ . z . zν , with Lmin ∼

α4/3(Gµ)2/3(mt0)
−1/3t0(1 + z)−1. We then have

Ṅb(z > z∗) ∼ 4.8 × 1011p−1m
1/6
5 µ

−7/3
−20 α

−14/3
7 (1 + z)2 yr−1. (3.72)

3.4.3 Average neutrino flux

The average flux of neutrinos from bursts originating at redshifts ∼ z can be

estimated as

Jν(E; z) =
(1 + z)

4π

∫

dṄc

dz

Ωk

4π
ξν(E, k)

dN(k)

Ωkr2(z)
, (3.73)
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where dN(k) is the number of moduli with momentum k in the interval (k, k+

dk) emitted per burst, given by (3.30), r(z) = 3t0(1+z)−1/2[(1+z)1/2−1] is the

proper distance in the matter era, and ξν(E, k) is the neutrino spectrum from

the decay of a modulus with momentum k, given by (3.54). The factor Ωk/4π

is the probability that a randomly oriented burst is directed to the observer,

and Ωkr
2(z) is the area of the irradiated spot at the observer’s location. The

integrations in (3.73) are over the loop length L and over momentum k. Both

integrations are dominated by their lower bounds.

Substitution of (3.65) and (3.54) into (3.73) gives

E2Jν(E; z) ∼ 7

4π
p−1ζβ1/2b

(

teq
t0

)1/2
α2(Gµ)2

(mt0)1/2
(1 + z)−5/2(Lmin/t0)

−2mpt
−1
p t−2

0 .

(3.74)

Once again, considering separately the regimes z < z∗ and z > z∗, we find

E2Jν(E; z < z∗) ∼ 2.1 × 10−10p−1m
−1/2
5 α2

7(1 + z)1/2 GeV/(cm2 s sr), (3.75)

and

E2Jν(E; z > z∗) ∼ 7.5 × 10−8p−1m
1/6
5 µ

2/3
−20α

−2/3
7 (1 + z)−1/2 GeV/(cm2 s sr).

(3.76)

The total neutrino flux is obtained by integrating over z,

Jν(E) =

∫ zν(E)

0

dz

1 + z
Jν(E, z). (3.77)

To estimate Jν(E), we note from Eq. (3.75) that for z∗ > zν the differential

flux Jν(E, z) is a growing function of z all the way up to zν . Hence,

E2Jν(E) ≈ 2E2Jν(E, zν(E)) ∼ 6.2 × 10−9p−1m
−1/2
5 α2

7E
−1/5
11 GeV/(cm2 s sr).

(3.78)
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For z∗ < zν , the differential neutrino flux grows with the redshift at z < z∗

and decreases at z∗ < z < zν , so the total flux can be estimated as

E2Jν(E) ≈ 2E2Jν(E, z∗) ∼ 8.4 × 10−9p−1m
−1/6
5 µ

1/3
−20α

2/3
7 GeV/(cm2 s sr).

(3.79)

It should be noted that the average flux in Eq. (3.77) can be in principle

be different from the observed flux. The reason is that neutrinos come in

bursts, and we should exclude the contribution of very rare bursts which are

not likely to occur during the observation time, even though such bursts may

carry large numbers of neutrinos. The rate of bursts increases with redshift,

so the condition that bursts occur at a rate of least once in the observation

time of a detector T gives a lower bound on the redshift,

z > zb. (3.80)

The observed neutrino flux can then be expressed as

J (obs)
ν (E) =

∫ zν(E)

0

dz

1 + z
Jν(E, z)θ(z − zb). (3.81)

With T ∼ 1 yr, we find from Eqs.(3.71),(3.72)

(1 + zb)(z < z∗) ∼ 1.3 × 10−2p4/15m
4/15
5 µ

14/15
−20 (T/yr)−4/15, (3.82)

(1 + zb)(z > z∗) ∼ 1.4 × 10−6p1/2m
−1/12
5 µ

7/6
−20α

7/3
7 (T/yr)−1/2. (3.83)

The flux sensitivity of the JEM-EUSO detector in its tilted mode can be

fit with a power law as [129]

E2Jν(E)JEM ≈ 8 × 10−9 E0.5
11 GeV/(cm2 s sr), (3.84)

where this fit is valid for the energies above 1.6 × 1011 GeV. For observable

events at JEM-EUSO, flux given by Eqs. (3.78) and (3.79) should be greater

than the or equal to the limit given by (3.84).
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3.4.4 Cascade upper bound

An upper bound on the neutrino flux comes from the diffuse gamma-ray back-

ground, since neutrino production via pion/kaon decays is accompanied by

high energy electron and photon production. A high energy electron or photon

interacts with low energy photons and produces an electromagnetic cascade.

The energy density of the resulting gamma-ray background cannot exceed the

value ωFermi = 5.8 × 10−7 eV/cm3, measured by Fermi-LAT [113].

The energy density for the electromagnetic cascade radiation resulting from

modulus decays can be expressed as

ωcas =
1

2

∫ zcas

0

dz

(1 + z)4

∫

Lmin

dLn(L, z)

∫

kc

dN(k)k (3.85)

where dN(k) is given by (3.30), n(L, z) is given by (3.61) and k is the mod-

ulus energy in the rest frame of the loop. The upper limit of z-integration,

zcas ∼ 60, is the epoch at which the high-energy edge of cascade radiation is

absorbed. The integrals over k and L are dominated by their lower limits,

namely, Lmin(z) and kc ∼ m
√

mL/4. After these integrations, we obtain

ωcas ∼
9

8
p−1ζβ1/2

(

teq
t0

)1/2
α2(Gµ)2

(mt0)1/2

mp

tp t20

∫ zcas

0

dz(1 + z)−7/2(Lmin/t0)
−2.

(3.86)

Using Lmin(z) from (3.39) and (3.41) and integrating over z, for zcas < z∗ we

have

ωcas ∼ 6.3 × 10−9p−1m
−1/2
5 α2

7(zcas/60)1/2 eV/cm3, (3.87)

where the integral over z is dominated by z ∼ zcas, and for z∗ < zcas

ωcas ∼ 1.6 × 10−8p−1m
−1/6
5 µ

1/3
−20α

2/3
7 eV/cm3, (3.88)
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where the integral is dominated by z ∼ z∗. The condition

ωcas < ωFermi (3.89)

provides a constraint on the parameters of the model.

It should be noted that in our model the gamma radiation is produced

in bursts, just like the UHE neutrinos. These bursts can be dispersed due

to deflection of the cascade electrons and positrons in cosmic magnetic fields,

resulting in a diffuse gamma ray background. The bound (3.89) applies if the

intergalactic magnetic fields are strong enough for this process to be efficient;

otherwise the bound may be significantly relaxed. This issue requires further

study.

3.5 An illustrative example

The expressions for the neutrino flux that we obtained in the preceding sec-

tion, combined with the cascade bound, can be compared with the expected

sensitivity of detectors like JEM-EUSO. This would yield the range of the

parameters α, m and Gµ for which detectable UHE neutrino fluxes can be ob-

tained. This analysis, however, turns out to be rather tedious, mainly because

the neutrino flux is given by different expressions, depending on the relative

magnitude of zν , z∗ and zb. We also find that, for JEM-EUSO sensitivity, the

resulting allowed parameter space is rather small, due to the conflicting con-

straints imposed by the detectability conditions and the cascade bound. In

order to simplify the discussion, we will restrict the analysis to an illustrative

example of a string theory inspired model.
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Figure 3.1: log Gµ vs. log EGeV for the heavy modulus in the large volume
scenario. The figure on the left is for ordinary cosmic strings with reconnection
probability p = 1, and the one on the right is for cosmic F- and D-strings with
p = 0.1. The lines represent (a): E2Jν(E) = E2Jν(E)JEM , (b): Emin = E, (c):
zν = z∗, (d): zb = zν and the subscripts 1, 2 denote the regimes zν . z∗ and
zν & z∗, respectively. The shaded regions correspond to observable neutrino
events that can be detected by JEM-EUSO in the tilted mode. The other
constraints that do not interfere with the shaded regions are not shown in the
figures.

Specifically, we will consider the large volume string compactification model

[32], which is characterized by an intermediate string scale ms ∼ 1011 GeV

and a TeV-scale supersymmetry (SUSY) breaking. The hierarchy between the

Planck and the SUSY breaking scales in this model is due to an exponentially

large volume of the compact extra dimensions, Vcomp ≡ Vl6s , where V ∼ 1015

and ls ∼ m−1
s is the string length scale.

Apart from the volume modulus, which has gravitational strength cou-

plings to ordinary matter, the other Kahler moduli have large couplings of the

order [33]

α ∼
√
V. (3.90)

With V ∼ 1015, we have α ∼ 107.5.

77



z . z∗ z & z∗

Ṅb/(yr−1) 1.8 × 1015 p−1µ
−7/2
−20 α2

7.5(z/zν)15/4 1.4 × 1014p−1µ
−7/3
−20 α−5

7.5(z/zν)2

E2Jν(E)/(GeV/cm2 s sr) 3.0 × 10−8 p−1α3
7.5(z/zν)1/2 3.0 × 10−9 p−1µ

2/3
−20α

−1
7.5(z/zν)−1/2

Table 3.1: Formulae for the heavy modulus of the large volume scenario.
zν = 220 has been used as the neutrino horizon.

zν . z∗ zν & z∗

Gµ & 9.2 × 10−20 E−0.6
11 α6

7.5 Gµ . 9.2 × 10−20 E−0.6
11 α6

7.5

E2Jν(E) & E2Jν(E)JEM E11 . 6.6 p−10/7α
30/7
7.5 Gµ & 1.9 × 10−21 p3α−3

7.5E
1.5
11

Emin < E Gµ . 4.5 × 10−17 α2
7.5E

0.6
11 Gµ & 9.0 × 10−22 α9

7.5E
−1.5
11

Table 3.2: Detectability conditions for the heavy modulus of the large volume
scenario. Emin is evaluated at zν for zν < z∗ regime and, it is evaluated at z∗
for z∗ < zν regime.

The modulus masses are given by [33]

m ∼ lnV
V mp. (3.91)

It is useful to parametrize m in terms of α. Since we are interested in α ∼ 107.5,

the factor lnV can be replaced by 35. Hence, we obtain for the mass

m ∼ 35mpα
−2. (3.92)

For α ∼ 107.5, we have m ∼ 4.3 × 105 GeV. The formulae and detactability

constraints for this specific case are given given in Table 3.1 and Table 3.2,

respectively.

For observable neutrino events, Eqs. (3.78) and (3.79) should be greater

than the flux sensitivity limit of JEM-EUSO in the tilted mode given by

Eq. (3.84). Since the particles come as bursts, we should make sure zb <

zν in the regime zν < z∗ and, zb < z∗ in the regime z∗ < zν , which yield
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the conditions Gµ . 3.4 × 10−16 p−2/7α
4/7
7.5 (T/yr)2/7E−0.43

11 and Gµ . 2.9 ×

10−8 p−1α−13
7.5 (T/yr), respectively.

The cascade upper bound (3.89) can be expressed using Eqs. (3.87) and

(3.88) as α . 8.4 × 107 p1/3 for zcas . z∗, and Gµ . 9.0 × 10−17p3α−3
7.5 for

z∗ . zcas.

There are some additional constraints that need to be considered. The

modulus mass m cannot exceed the mass scale of the string, i.e., m . mp(Gµ)1/2,

which yields a bound on the string tension,

Gµ & 10−32α−4
7.5. (3.93)

Using all the constraints that are discussed above, we obtained Fig. 3.1 that

shows the range of string tension Gµ corresponding to observable events at

JEM-EUSO as a function of observed neutrino energy E. The range for the

string tensions that give rise to observable neutrino events at JEM-EUSO

tilted mode can be summarized as follows. For ordinary cosmic strings (re-

connection probability p = 1), we get detectable neutrino events for the range

of string tension

10−21 . Gµ . 10−16, (3.94)

and for cosmic F- and D-strings with reconnection probability p = 0.1,

10−22 . Gµ . 10−16 (3.95)

for energies E & 1011 GeV. The allowed range of Gµ can be significantly

enlarged for future, more sensitive detectors. Note also that although it is

easier to detect the signal for p . 0.1, the cascade upper bound may be

violated, hence, such high neutrino fluxes are constrained from above and the
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parameter space shrinks considerably. On the other hand, if the intergalactic

magnetic fields are not strong enough to disperse the electromagnetic cascade

from the bursts, this constraint may be relaxed, hence, there would be a larger

parameter space for observable neutrino events from cosmic superstrings with

p . 0.1.

3.6 Conclusions

We consider moduli produced by cosmic string cusps as a source of UHE

neutrinos. Moduli are scalar particles predicted by superstring theory and

supersymmetric field theories. Of particular interest to us are the moduli that

couple to matter stronger than gravitational strength [32, 33, 34, 35, 30, 31].

We show that unlike gravitationally coupled ones, they can lead to observable

UHE cosmic rays. Since the number density of loops is larger in earlier epochs,

we get the most numerous events from higher redshifts. Therefore, we are

interested in neutrinos produced by modulus decays since they can travel

over large cosmological distances without being absorbed much. We treat the

string tension Gµ, modulus mass m and modulus coupling constant α as free

parameters and show that for reasonable values of these parameters, i.e., the

values anticipated by theoretical arguments and restricted by detectability

conditions, observable UHE neutrino events can be expected at the space

based neutrino observatory JEM-EUSO.

We calculate emission of moduli from a cosmic string cusp and find that

the spectrum dies out at small energies; there is a minimum energy cutoff

given by kc ∼ m
√

mL/4. This is basically because of the fact that moduli are
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produced by strings only when the oscillation frequency of a loop ω ∼ 1/L

is greater than the mass of a modulus, i.e., L . 1/m, which for large loops

only occur around a region called cusp where extremely high frequencies can

be reached for a brief period of time. We further show that the number of

moduli decrease as their energy increases. Since moduli are emitted with very

large Lorentz factors from cusps,
√

mL >> 1, the number of particles emitted

by a cusp is dominated by this minimum energy cutoff kc. Therefore, most of

the particles have a Lorentz factor of order γc ∼
√

mL/4. Actually, there is

a distribution of Lorentz factors in the vicinity of a cusp. As we go near the

tip of the cusp it increases up to a maximum value set by cusp annihilation,

which is given by γmax ∼ η
√

ηL, where η ≡ mp(Gµ)1/2 is the mass scale of the

string [105]. However, note that for larger Lorentz factors, number of particles

decrease substantially. Therefore, most of the moduli have γ ∼ γc.

We consider modulus decay into gluons and hadronic cascade initiated by

these gluons as the way to generate the UHE neutrinos. We assume that the

number of neutrinos produced by the decay of a single modulus has energy

dependence ∼ E−2, where E is the neutrino energy at present epoch. Actu-

ally, the energy dependence is given by E−1.92 [143] for masses m ∼ 1012 GeV,

and E−1.7 for m ∼ 106 GeV [144]. The actual spectrum introduces a weak

dependence on the parameters of the model and can be ignored within our or-

der of magnitude estimates. We also assume a flat matter dominated universe

when carrying out our analysis which helps expressing the dependence of the

calculations on the parameters of the model analytically.

In Fig. 3.1 we show our results for a string theory inspired model. The

allowed range for the string tension that give rise to observable neutrino events
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that can be detected at JEM-EUSO tilted mode is roughly 10−21 . Gµ .

10−16 for ordinary cosmic strings (p = 1), and 10−22 . Gµ . 10−16 for cosmic

F- and D-strings with p = 0.1. It is easier to observe strings with p . 0.1

because of enhanced number density of the loops, hence, larger neutrino fluxes.

However, the cascade upper bound may be violated badly for such strings and

the parameter space becomes too small. The parameter space for such cosmic

superstrings can significantly increase if the intergalactic magnetic fields are

not strong enough the disperse the electromagnetic cascade particle bursts

accompanying the neutrinos so that the upper bound on the cascade radiation

is relaxed.

These moduli are subject to the constraints that we discussed in Chapter 2.

We showed in Chapter 2 that for large enough values of the modulus coupling

constant, the cosmological constraints on such moduli are relaxed significantly.

In particular, the anticipated values of the parameters used in this chapter are

free from these constraints [28].

The main conclusion of this chapter is that moduli which couple to matter

stronger than gravitational strength, i.e., α >> 1, may give rise to observable

UHE neutrino fluxes with energies E & 1011 GeV that can be detected at the

space based neutrino detector JEM-EUSO, which is scheduled to operate in

a few years. This model can be realized in a string theory inspired scenario,

e.g., large volume compactification model, where observable neutrino events

can be achieved with the anticipated values of the parameters.
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Chapter 4

Superconducting loops

4.1 Introduction

In a wide class of particle physics models, cosmic strings can be supercon-

ducting, in which case they respond to external electromagnetic fields as thin

superconducting wires [86]. String superconductivity arises when a conden-

sate of charged particles (which can be either bosons or fermions) is bound to

the string. These particles have zero mass in the bound state, whereas away

from the string they have some mass mX . Loops of superconducting string

develop electric currents as they oscillate in cosmic magnetic fields. Near a

cusp, a section of string acquires a large Lorentz boost γc, and simultaneously

the string current is increased by a factor γc. If the current grows to a critical

value Jmax charge carriers rapidly scatter off each other and are ejected from

the string. The decay products of these particles can then be observed as

cosmic rays. This model will be the subject of this chapter.

We consider superconducting string loops as a source of UHE neutrinos.
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We consider a simple model in which a magnetic field of magnitude B, occupy-

ing a fraction of space fB, is generated at some epoch zmax ∼ 2–3. The strings

are characterized by two parameters: the fundamental symmetry breaking

scale η and the critical current Jmax. We take the mass per unit length of

string to be µ = η2.

As was assumed in the previous chapters, we use for the characteristic

length of loops formed at cosmic time t

L ∼ βt, (4.1)

with β ∼ 0.1. For simplicity and transparency of the formulae obtained in

this paper we use several simplifications. We assume cosmology without Λ

term with Ωcdm + Ωb = 1, the age of the universe t0 = (2/3)H−1
0 = 3× 1017 s,

teq ∼ 1× 1012 s, and (1 + z)3/2 = t0/t for the connection of age t and redshift

z in the matter era.

We also assume the fragmentation function for the decay of superheavy X

particle into hadrons is

dN/dE ∝ E−2, (4.2)

while Monte Carlo simulation and the DGLAP method give closer to E−1.92

[143].

These simplifications give us a great advantage in understanding the depen-

dence of calculated physical quantities on the basic parameters of our model,

in particular on fundamental string parameter η. Our aim in this paper is to

obtain the order of magnitude of the flux of UHE neutrinos and to indicate

the signatures of the model. We believe our simplified model assumptions are

justified, given the uncertainties of string evolution and of the evolution of
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cosmic magnetic fields.

4.2 Particle emission from superconducting strings

4.2.1 Particle bursts from cusps

As first shown by Witten [86], cosmic strings are superconducting in many

elementary-particle models. As they oscillate in cosmic magnetic fields, such

strings develop electric currents. Assuming that the string loop size is smaller

than the coherence length of the field L . LB ∼ 1Mpc, the electric current

can be estimated as [86, 1]

J ∼ 0.1e2BL. (4.3)

Particles are ejected from highly accelerated parts of superconducting

strings, called cusps, where large electric currents can be induced [145, 19].

The current near a cusp region is boosted as

Jcusp ∼ γcJ, (4.4)

where J is the current away from the cusp region and γc is the Lorentz factor

of the corresponding string segment. Particles are ejected from portions of the

string that develop Lorentz factors

γc ∼ Jmax/J, (4.5)

where the current reaches the critical value Jmax. This maximum current is

model-dependent, but is bounded by Jmax . eη, where η is the symmetry

breaking scale of the string and e ∼ 0.1 is the elementary electric charge in

Gaussian units, renormalized to take into account self-inductance [1].
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One may parametrize Jmax by introducing the parameter ic < 1:

Jmax = iceη, (4.6)

If the charge carrier is a superheavy particle X with mass mX , the case

which will be considered here, one may use ǫr
X for the energy of X-particle

in the rest system of the cusp and ǫX in the laboratory system. Then ǫr
X =

γmX = icη and

ǫX ∼ icγcη, (4.7)

respectively, where γ is the average Lorentz factor of X-particle in the rest

system of the cusp. In Eq. (4.7) we took into account that the energy of X-

particle in the laboratory system is boosted by the Lorentz factor of the cusp

γc.

The number of X particles per unit invariant length of the string is ∼ J/e,

and the segment that develops Lorentz factor γc includes a fraction 1/γc of

the total invariant length L of the loop. Hence, the number of X particles

ejected in one cusp event (burst) is

N b
X ∼ (J/e)(L/γc) ∼ J2L/eJmax . (4.8)

The oscillation period of the loop is L/2, so assuming one cusp per oscillation,

the average number of X particles emitted per unit time is

ṄX ∼ 2J2/eJmax, (4.9)

and the luminosity of the loop is

Ltot ∼ ṄXǫX . (4.10)
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The X particles are short-lived. They decay producing the parton cascade

which is developed due to parton splitting in the perturbative regime, until at

the confinement radius the partons are converted into hadrons, mostly pions

and kaons, which then decay producing gamma rays, neutrinos, and electrons.

These particles together with less numerous nucleons give the observational

signatures of superconducting cusps.

The neutrino spectrum at present epoch z = 0, produced by the decay of

one X-particle with energy ǫX ∼ icγcη at epoch z can be calculated using the

fragmentation function (4.2) for an X-particle at rest:

ξν(E) ≈ icηγc

2(1 + z) ln(Erest
max/E

rest
min)

1

E2
, (4.11)

where Erest
max and Erest

min are the maximum and minimum neutrino energies in

the rest system of X-particle.

Particle emission from a cusp occurs within a narrow cone of opening angle

θc ∼ γ−1
c ∼ J/Jmax. (4.12)

4.2.2 Superconducting loops in the universe

In any horizon-size volume of the universe at arbitrary time there are a few

long strings crossing the volume and a large number of small closed loops. As

loops oscillate under the force of string tension, they lose energy by emitting

gravitational waves at the rate

Ėg ∼ ΓGµ2, (4.13)

where µ ∼ η2 is the string mass per unit length, G = 1/m2
p is the gravitational

constant and Γ ∼ 50 is a numerical coefficient.
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The number density of loops with lengths in the interval from L to L+dL

at time t can be expressed as n(L, t)dL. Of greatest interest to us are the

loops that formed during the radiation era t < teq and still survive at t > teq.

The density of such loops at time t is given by [1]

n(L, t)dL ∼ t1/2
eq t−2L−5/2dL, (4.14)

in the range from the minimum length Lmin to the maximum length L ∼ βteq,

where

Lmin ∼ ΓGµt ∼ 3 × 1011η2
10(1 + z)−3/2cm, (4.15)

and η10 = η/1010 GeV. Here and below we assume that the loop length pa-

rameter in (4.1) is β ∼ 0.1, as suggested by simulations [84]. Loops of the

minimum length are of most importance in our calculations because they are

the most numerous.

For a loop of length L at redshift z, the Lorentz factor at the cusp γc can

be expressed as

γc =
Jcusp

J
=

iceη

0.1e2BL
= γc(Lmin)

Lmin

L
, (4.16)

where γc(Lmin) = γ0(1 + z)3/2 and

γ0 =
10icη

eBt0ΓGµ
= 1.1 × 1012icB

−1
−6η

−1
10 , (4.17)

where B−6 is the magnetic field in microgauss.

4.2.3 Limits on η

The string motion is overdamped at early cosmic times, as a result of friction

due to particle scattering on moving strings. The friction-dominated epoch
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ends at

td ∼ (Gµ)−2tp, (4.18)

where tp is the Planck time. In the above analysis we have assumed that loops

of interest to us are formed at t > td. The corresponding condition,

ΓGµt0/β & td, (4.19)

yields

η & 109 GeV. (4.20)

For strings with η < 109 GeV, loops of the size given by (4.15) never form.

Instead, the smallest loops are those that form at time td with length

Lmin ∼ βtd , (4.21)

and then survive until the present day.

We should also verify that energy losses due to particle emission and to

electromagnetic radiation in recent epochs (after magnetic fields have been

generated) are sufficiently small, so the lifetimes of the loops (which we es-

timated assuming that gravitational radiation is the dominant energy loss

mechanism) are not significantly modified.

The average rate of energy loss due to particle emission is

Ėpart ∼ fBṄXǫX ∼ 2fBJJmax/e
2, (4.22)

where we have used Eqs. (4.9) and (4.7). The electromagnetic radiation power

is smaller by a factor e2 ∼ 10−2.

The factor fB in Eq. (4.22) is the filling factor – the fraction of space filled

with the magnetic field. It gives the fraction of time that cosmic string loops
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spend in magnetized regions. We assume that loop velocities are sufficiently

high that they do not get captured in magnetized cosmic structures (such as

galaxy clusters or LSS filaments). To justify this assumption, we note that

particle emission can start only after the cosmic magnetic fields are generated,

that is, at z ∼ 3 or so. Before that, gravitational radiation is the dominant

energy loss mechanism, and the loops are accelerated to high speeds by the

gravitational rocket effect [146, 147]. The smallest loops of length (4.15) have

velocities v ∼ 0.1, certainly large enough to avoid capture.

The particle emission energy rate (4.22) should be compared to the gravi-

tational radiation rate (4.13).

The ratio of the two rates is zero at z > zmax, where zmax ∼ 2–3 is the

red-shift of magnetic field production. At z < zmax it is given by

Ėpart/Ėg ∼ 50f−3B−6icη
−1
10

(

L

Lmin

)

(1 + z)−3/2. (4.23)

where f−3 = fB/10−3 and Lmin is given by (4.15).

If particle emission is the dominant energy loss mechanism, then the life-

time of a loop is

τpart ∼
µL

Ėpart

∼ 5η

eicfBB
∼ 0.025

t0η10

f−3B−6ic
. (4.24)

Note that τ is independent of L. This means that all loops surviving from the

radiation era decay at about the same time.

For the time being, we shall assume that particle radiation is subdominant.

We shall discuss the opposite regime in Section 4.2.7.
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4.2.4 Rate of cusp events

The rate of observable cusp bursts (i.e., the bursts whose spot hits the Earth)

is given by

dṄb = fB
dΩ

4π
ν(L, z)dL

dV (z)

1 + z
(4.25)

where, as before, fB is the fraction of space with magnetic field B, dΩ = 2πθdθ

is the solid angle element, with θ limited by the angle of cusp emission θc ∼

1/γc; ν(L, z) = n(L, z)/(L/2) is the frequency of the bursts with n(L, z) given

by Eq. (4.14), and dV (z) is a proper volume of space limited by redshifts z

and z + dz,

dV (z) = 54πt30[(1 + z)1/2 − 1]2(1 + z)−11/2dz. (4.26)

Integrating Eq. (4.25) over θ, l and z, we obtain

Ṅb =
54

100πΓ1/2

(

e

ic

)2 (

teq
t0

)1/2
t0mp

η3

∫ zmax

0

dz [(1 + z)1/2 − 1]2

(1 + z)11/4
fB(z)B2(z),

(4.27)

where zmax is the redshift at which the magnetic fields are generated. Since

the earth is opaque to neutrinos with the energies we are considering, only half

of these bursts can actually be detected by any given detector at the surface

of the earth or using the atmosphere.

The value of the integral in (4.27) depends on one’s assumptions about

the evolution of the magnetic field B and of the volume fraction fB. This

evolution is not well understood. If we take these values out of the integral

in Eq. (4.27) as the average and characterize them by the effective values of

parameters B−6 and f−3 in the range 0 < z < zmax, then Eq. (4.27) reduces

to

Ṅb = 2.7 × 102B2
−6f−3i

−2
c η−3

10

I

0.066
yr−1, (4.28)
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where the integral

I =

∫ z′

0

dz
[(1 + z)1/2 − 1]2

(1 + z)11/4
, (4.29)

can be calculated as

I =
4

3
[1 − (1 + z′)−3/4] − 8

5
[1 − (1 + z′)−5/4] +

4

7
[1 − (1 + z′)−7/4], (4.30)

and it is equal to 0.015, 0.042 and 0.066 for z′ = zmax = 1, 2 and 3, respectively.

The integrand in Eq. (4.27) includes the product fB(z)B2(z). In the calcu-

lations of other physical quantities below, similar integrals will have different

combinations of fB(z) and B(z). Nevertheless, we shall assume that the av-

erage values taken out of the integral are characterized by approximately the

same values of f−3 and B−6.

All cosmic structures –galaxies, clusters, and filaments of the large-scale

structure– are magnetized and contribute to the rate of cusp bursts. In the

recent epoch, z . 1, the dominant contribution is given by clusters of galaxies

with B2
−6f−3 ∼ 1. The magnetic fields of galaxies have about the same mag-

nitude, but the corresponding filling factor fB is orders of magnitude smaller.

We shall assume that this holds in the entire interval 0 < z < zmax. The

sources in our model are then essentially clusters of galaxies.

4.2.5 Diffuse flux of UHE neutrinos

The diffuse differential neutrino flux, summed over all produced neutrino fla-

vors, is given by the formula

Jν(E) =
1

4π

∫

dṄbN
b
Xξν(E)

1

Ωjetr2(z)
, (4.31)

where dṄb is the rate of cusp bursts (4.25), N b
X is the number of X parti-

cles produced per burst, given by Eq. (4.8), ξν(E) is the neutrino spectrum
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produced by the decay of one X-particle, given by (4.11),

Ωjet = πθ2
c =

π

γ2
c

, (4.32)

r(z) = 3t0[1 − (1 + z)−1/2] (4.33)

is the distance between a source at redshift z and the observation point at

z = 0, and Ωjetr
2 is the area of the burst spot at the Earth from a source at

redshift z.

Using expressions (4.14) and (4.26), and assuming that the product fB(z)B(z)

does not change much in the interval 0 < z < zmax, we obtain1

E2Jν(E) =
0.3ic(teq/t0)

1/2(eBt20)fB

7π(Γ)1/2 ln(Erest
max/E

rest
min)

mp

t30
[1 − (1 + zmax)

−7/4]. (4.34)

Numerically, this gives for the neutrino flux summed over neutrino flavors

E2Jν(E) = 6.6 × 10−8ic B−6 f−3 GeV/(cm2 s sr), (4.35)

where we have set zmax = 3 and estimated the logarithmic factor as ∼ 30.

For ic ∼ 1, the flux (4.35) is close to the cascade upper limit shown in

Fig. 1.2. Notice that the diffuse neutrino flux (4.34) does not depend on η.

The neutrino flux must correlate with clusters of galaxies.

To detect this flux, we need to monitor a target with some large mass M.

The effective cross-section of the detector is then

Σ = σνNM/mN (4.36)

where σνN ∼ 3 × 10−32 cm2 is the neutrino-nucleon cross section at E &

1010 GeV and mN the mass of a nucleon. Because of the opacity of the earth,

1We note that numerical simulations of the magnetic field evolution performed by Ryu
et al. [148] do indicate that the space average of the magnetic field 〈B(z)〉 = fB(z)B(z)
remains roughly constant at ∼ 10−9 G for 0 < z . 3 and decreases at larger values of z.
The effective values B−6 and f−3 could be different from those in Eq. (4.28) for the rate of
bursts, but we neglect the possible difference.
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the detector will see solid angle about 2π sr. The detection rate of particles

with energy above E is

2πEJν(E)Σ ≈ 23

(

M

1018g

) (

1010 GeV

E

)

ic B−6 f−3 yr−1 (4.37)

In the case of JEM-EUSO in tilt mode, M ∼ 5 × 1018g, and thus we expect

about 100ic detections per year, so events can be expected for ic & 0.01.

4.2.6 Neutrino fluence and the number of neutrinos

from a burst

The fluence of neutrinos incident on the detector from a burst at redshift z

can be calculated as

Φ(> E) =
N b

Xξν(> E)

Ωjetr2(z)
(4.38)

Consider a neutrino burst from a loop of length l at redshift z. Using N b
X

from (4.8), Lmin from (4.15) and ξν(> E) from (4.11), we obtain for a loop of

any length l,

Φ(> E) ≈ 10i3c
18πe(Bt20) ln(Erest

max/E
rest
min)[(1 + z)1/2 − 1]2

η3

E
, (4.39)

which numerically results in

Φ(> E) ≈ 1.2 × 10−2i3c η3
10 B−1

−6

(

1010 GeV

E

)

1

[(1 + z)1/2 − 1]2
km−2 (4.40)

The number of neutrinos detected in a burst is

Ndet
ν ∼ Φ(> E)Σ (4.41)

With M ∼ 5 × 1018g as above,

Ndet
ν (> E) ≈ 0.11

1010 GeV

E
i3c η3

10 B−1
−6

1

[(1 + z)1/2 − 1]2
(4.42)
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Figure 4.1: The region of parameter space where neutrinos can be seen by
a detector with the parameters of JEM-EUSO. The curved lines show the
left edges of the regions in which bursts containing at least 2, 3, and 10
neutrinos can be expected at least once per year. Below the dotted line,
particle radiation is the dominant channel of energy loss from loops.

Therefore, for a certain range of icη10 values and source redshifts z, multiple

neutrinos can be detected as parallel tracks from a single burst. For example,

for icη10 ∼ 3, and z ∼ 1, Ndet
ν ∼ 17.

For neutrino energies of interest, Eν & 1 × 1020 eV, the neutrino Lorentz

factor is so large that there is practically no arrival delay for neutrinos with

smaller energies. All neutrinos from a burst arrive simultaneously and produce

atmospheric showers with parallel axes, separated by large distances.

For other sets of parameters Ndet
ν < 1 , i.e. only one neutrino from a

burst (or no neutrino) is detectable. As η increases, the rate of bursts (4.28)
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diminishes while the number of neutrinos per burst increases, so that the total

neutrino flux remains unchanged.

The rate of detected neutrino bursts with the number of detected neu-

trinos Ndet
ν > ζ for each burst, is given by Eqs (4.28) and (4.30), with

zmax determined by Ndet
ν (> E, zmax) = ζ . Using Eq. (4.42) we obtain for

xmax ≡ (1 + zmax):

xmax(> E, ζ) =

[

1 +

(

0.11

ζ

i3cη
3
10

B−6

1010 GeV

E

)1/2
]2

, (4.43)

if (4.43) is less than 4, and xmax = 4 if (4.43) is larger than 4. Introducing in

Eq. (4.28) coefficient 1/2 which approximately takes into account the absorp-

tion of UHE neutrinos crossing the Earth we obtain for the rate of detected

bursts with Ndet
ν ≥ ζ

Ṅdet
b (≥ ζ) = 2.1 × 103f−3B

2
−6

i2cη
3
10

I(zmax) yr−1, (4.44)

where I(zmax) is given by Eq. (4.30) with zmax from Eq. (4.43).

In Fig. 4.1, we have shaded the region of the parameter space (η, ic) cor-

responding to a detectable flux of neutrinos. Curved lines in the figure mark

the regions where we expect a burst with a given multiplicity of neutrinos,

ζ = 2, 3 or 10, detected simultaneously by a detector with the parameters of

JEM-EUSO tilted. To the left of the 2-neutrino-burst line, only a diffuse flux

of single neutrinos can be observed. This flux depends only on ic, and the

vertical left boundary of the shaded region marks the value of ic at which it

drops below one particle detected per year.

Note that the regions shown for multiple events are those where we expect

at least one burst per year whose average multiplicity is the given ζ or more.
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But it is possible even if the parameters are to the left of the ζ = 2 line that we

would happen to observe multiple neutrinos from a single burst, which would

give a clear signature of neutrino-jet emission from cusps.

Another quantity of interest is the rate of detected neutrinos fν(≥ ζ) in

the events with neutrino multiplicity greater than ζ . It is given by

fν(≥ ζ) =
1

2

∫

fB

2

1

γ2
c

n(L, z)dL

L

dV (z)

1 + z
Ndet

ν (> E, z, L). (4.45)

The important feature of the calculations is the independence of Ndet
ν (> E, z, L)

from L. This allows us to integrate over L in Eq. (4.45) to obtain

fν(≥ ζ) = 2.1×103 f−3B
2
−6

i2cη
3
10

∫ zmax(ζ)

0

dz

[

(1 + z)1/2 − 1
]2

(1 + z)11/4
Ndet

ν (> E, z), (4.46)

where zmax(ζ) is given by Eq. (4.43). Using Eq. (4.42) for Ndet
ν (> E, z) results

in

fν(≥ ζ) = 1.3 × 102icf−3B−6[1 − x−7/4
max (ic, η10)] yr−1. (4.47)

for E > 1 × 1019 eV. The asymptotic expression at 0.11i3cη
3
10/B−6ζ ≪ 1 gives

fν(≥ ζ) =
1.5 × 102

√
ζ

i5/2
c η

3/2
10 B

1/2
−6 yr−1. (4.48)

4.2.7 Neutrino fluxes in the particle-emission dominated

regime

So far we have assumed that gravitational radiation is the dominant energy

loss mechanism of strings. In the opposite regime, where the particle emission

energy losses dominate, the loop’s lifetime τpart is independent of its length

and is given by Eq. (4.24). We shall analyze this regime in the present section.
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As before, we shall adopt the idealized model where the magnetic field B

is turned on at time t = tB, corresponding to redshift zmax,

tB ∼ t0(1 + zmax)
−3/2. (4.49)

The loops decay at the time tdec ∼ tB +τpart. The rate of observable bursts Ṅb

is given by Eq. (4.28) with I from Eq. (4.30), where the integration is taken

between zdec and zmax and zdec is the redshift corresponding to the time tdec.

If τpart & tB, the redshift zdec is significantly different from zmax, with

∆z = zmax − zdec & 1, and the value of I is not much different from that

evaluated in Sec. 4.2.4. This is an intermediate regime, in which the results

we obtained in Sections 4.2.4 and 4.2.5 for the rate of bursts and for the diffuse

flux can still be used as order of magnitude estimates.

For τpart ≪ tB, the loops lose all their energy to particle emission in

less than a Hubble time. The condition τpart ∼ tB can also be expressed

as Ėpart/Ėg(zmax) ∼ 1. Using Eq. (4.23) with zmax ∼ 3, we find this condition

is met for the smallest loops when

η ∼ 6 × 1010icf−3B−6 GeV. (4.50)

It marks the boundary of the strong particle-emission domination regime and

is shown by the inclined dotted line in Fig. 4.1. Below this line, the results

of the preceding sections do not apply even by order of magnitude, but as we

shall see, detectable neutrino fluxes can still be produced.

The redshift interval ∆z = zmax − zdec for τpart ≪ tB can be estimated as

∆z ≈ 2

3

τpart

tB
(1 + zmax) ≪ 1, (4.51)
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and the integral I in Eq. (4.30) is given by

I ≈ ∆z
[(1 + zmax)

1/2 − 1]2

(1 + zmax)11/4
. (4.52)

With zmax ∼ 3, we have tB ∼ t0/8, and

τpart

tB
∼ 0.2

η10

f−3B−6ic
. (4.53)

The rate of bursts that are actually detected, Ṅdet
b , can be expressed as a

product of Ṅb and the probability pdet
ν that at least one neutrino from the burst

will be detected. This probability is simply related to the average number of

detected neutrinos per burst Ndet
ν , given by Eq. (4.42),

pdet
ν = 1 − exp(−Ndet

ν ). (4.54)

For Ndet
ν ≪ 1, we have

pdet
ν ≈ Ndet

ν (4.55)

and again taking E > 1 × 1019 eV,

Ṅdet
b ∼ ṄbN

det
ν ∼ 60η10

(1 + zmax)7/4
yr−1 ∼ 5η10 yr−1, (4.56)

where in the last step we have used zmax ∼ 3. Requiring that Ṅdet
b & 1 yr−1,

we obtain the condition

η & 109 GeV. (4.57)

Note that at the boundary of detectability, where η ∼ 109 GeV, we always have

Ndet
ν ≪ 1, and thus the approximation (4.55) is justified. This boundary is

the lower horizontal line bounding the observable parameter range in Fig. 4.1.

Note also that Eq. (4.57) coincides with with the condition (4.20) for the

burst-producing loops to be unaffected by friction.
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It is interesting to note that the detection rate (4.56) in the particle-

emission dominated regime is independent of ic and depends only on the sym-

metry breaking scale η. This is in contrast with Eq. (4.37) for the case of

gravitational radiation dominance, where the rate is proportional to ic and

independent of η.

4.2.8 Cascade upper limit on neutrino flux

In this section, we calculate the energy density of the cascade radiation in our

model and compare it with ωcas = 5.8×10−7 eV/cm3 allowed by FERMI-LAT

measurements [113].

The cascade energy density can be calculated as

ωcas =

∫ zmax

0

dz

(1 + z)4

∫ Lmax(z)

Lmin(z)

dLfBn(L, t)Lem(L, t) (4.58)

where Lem(L, t) ∼ 1
2
Ltot(L, t) is the loop luminosity in the form of UHE elec-

trons and photons produced by pion decays. The standard calculation (for

zmax = 3) results in

ωcas ≈
1.2ic(eBt20)(teq/t0)

1/2fB

7Γ1/2

mp

t30

[

1 − (1 + zmax)
−7/4

]

, (4.59)

which numerically gives

ωcas ≈ 8.3 × 10−7 ic f−3 B−6 eV/cm3. (4.60)

The energy density (4.60) does not depend on η and since ωcas < ωFermi for

ic . 0.7, it respects the general upper limit (1.38). For ic ∼ 1, the predicted

neutrino flux (4.35) is close to the upper limit shown in Fig. 1.2.
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4.3 UHE protons from superconducting strings

The cusps of superconducting strings in clusters of galaxies produce UHE

nucleons at fragmentation of parton jets with a fraction of nucleons ǫN = 0.12

[149] relative to the total number of hadrons. The generation rate Qp(Γp) of

UHE protons with Lorentz factor Γp per unit comoving volume and unit time

can be expressed through emissivity,

E0 =

∫ Γmax
p

Γmin
p

dΓpmNΓpQp(Γp) , (4.61)

where the emissivity E0 is the energy released in UHE protons at z = 0 per

unit comoving volume per unit time, Γmax
p and Γmin

p ∼ 1 are the maximum and

minimum Lorentz factors of the protons, respectively, and mN is the nucleon

mass. For a power-law generation spectrum Qp(Γp) ∼ Γ−2
p , we have

Qp(Γp) =
E0

mN ln Γmax
p

Γ−2
p . (4.62)

The emissivity is calculated as

E0 = ǫNfB

∫ Lmax

Lmin

dLn(L)E cusp
tot (L), (4.63)

where Lmin is given by (4.15), while n(L) and Lcusp are given by (4.14) and

(4.10), respectively. For Lcusp
tot one readily obtains

Lcusp
tot =

J2l

eJc

icγcη

l/2
= 0.2iceBlη, (4.64)

and after a simple calculation we have

E0 ≈ 0.4
icǫNfB(teq/t0)

1/2e(Bt20)

Γ1/2

mp

t40
, (4.65)
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which numerically yields

E0 ≈ 1.4 × 1045icf−3B−6 erg/(Mpc3 yr). (4.66)

One more parameter relevant for the calculation of Qp(Γp) is Γmax
p = Emax

p /mN .

It can be estimated using Emax
p ∼ 0.1ǫX , where ǫX = icγcη is the energy of

the boosted X particles in the laboratory system, which being estimated for

loops of length lmin, gives

Γmax
p = 1 × 1010η10i

2
c

1

ΓGµ

η

eBt0

(

1 GeV

mN

)

. (4.67)

Notice that Γmax
p does not depend on η and that it enters Qp(Γp) through

ln Γmax
p .

Now we can calculate the space density of UHE protons using the genera-

tion rate Qp(Γp) given by (4.62) and taking into account propagation through

CMB radiation with the help of the kinetic equation [150, 151]

∂

∂t
np(Γp, t) −

∂

∂Γp

[b(Γp, t)np(Γp, t)] = Qp(Γp, t), (4.68)

where b(Γp, t) = −dΓ/dt describes energy losses of UHE protons interacting

with CMB photons. For Γ > 3 × 1010, the proton energy losses become large

and one can neglect the first term in the lhs of equation (4.68). Then Eq. (4.68)

becomes stationary and its solution for t = t0 reads

np(Γp) =
1

b(Γp)

∫ Γmax
p

Γp

Qp(Γp)dΓp ≈
E0

mNΓp b(Γp) ln Γmax
p

. (4.69)

In terms of the proton energy E = mNΓp and the diffuse flux Jp(E) =

(1/4π)np(E), we have, in the standard form of presentation,

E3Jp(E) ≈ 1

4π

E0

ln Γmax
p

E2

b(E)
, (4.70)
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where b(E) = dE/dt. With b(E) taken from [151] a numerical estimate at

E = 3 × 1019 eV gives

E3Jp(E) ≈ 1.3 × 1024icf−3B−6 eV 2/(m2 s sr). (4.71)

With ic ∼ 1, the calculated flux (4.71) coincides well with the mea-

surements at the same energy, e.g., with the HiRes [109] flux E3Jp(E) =

2.0 × 1024 eV 2 m−2 s−1 sr−1, so the cusp emission may account for the ob-

served events at the highest energies. For ic . 0.1 the UHE proton flux from

superconducting strings is subdominant.

The UHE proton spectrum from superconducting strings has a sharper

GZK cutoff than the standard spectrum for homogeneously distributed sources.

This is due to the absence of clusters of galaxies in the vicinity of our galaxy.

The nearest cluster, Virgo, is located at 18 Mpc from the Milky Way; other

clusters are located at much larger distances. Nearby sources affect the spec-

trum at E > 1 × 1020 eV, where the proton spectrum from superconducting

strings is predicted to be steeper than the standard one. The experimental

data at present have too low statistics to distinguish the two cases.

In contrast, homogeneously distributed sources such as necklaces [152],

give the dominant contribution at E > (7 − 8) × 1019 eV in the form of UHE

photons, coming from nearby sources. In the case of superconducting strings

such component is absent. The UHE photon component from superconducting

strings is not dominant at energy lower than 5 × 1019 eV, because absorption

of photons at these energies is stronger than for protons.
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4.4 Conclusions

Superconducting cosmic strings produce high energy particles in the decay of

charge carriers, X particles, ejected from the string cusps. The large Lorentz

factor γc of the cusp boosts the energies of these particles and collimates them

in a narrow beam with opening angle θ ∼ 1/γc. The basic string parameter is

η, the scale of symmetry breaking, which we parametrize as η = η101010 GeV .

Another free parameter ic . 1 determines the critical electric current in the

cusp, Jmax = iceη, and the mean energy of the charge carriers X escaping

from the string, ǫX = icγcη.

The astrophysical parameter which determines the electric current induced

in the string is the magnitude of the magnetic field B in the relevant cosmic

structures. The fraction fB of the universe occupied by magnetic field B deter-

mines the flux of high-energy particles produced by superconducting strings.

The most favorable values of B and fB for the generation of a large flux of

UHE neutrinos are B ∼ 10−6 G and fB ∼ 10−3. They correspond to clusters

of galaxies.

The main uncertainties of our model are related to the uncertainties in our

understanding of the evolution of cosmic strings and of the origin and evolu-

tion of cosmic magnetic fields. On the cosmic string side, the key unknown

quantity is the parameter β which sets the characteristic length of string loops

in Eq. (4.1). Here, we used the value of β ∼ 0.1, as suggested by numerical

simulations in Refs. [82, 83, 84].

On the astrophysical side, basically unknown is the cosmological evolution

of the magnetic field parameters fB(z) and B(z) in the redshift interval 0 <
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z < zmax, where zmax ∼ 2 – 3 is the redshift when the magnetic field was

generated. For the space average value 〈fB(z)B(z)〉 we use the numerical

simulation by Ryu et al. [148], according to which this value remains roughly

constant at 0 < z < 3. Some important quantities, such as the diffuse neutrino

flux Jν(E), the cascade energy density ωcas, and the UHE proton emissivity

are determined by the evolution of the product fB(z)B(z). However, some

other quantities, such as the rate of neutrino bursts and fluence depend on

the evolution of fB(z) and B(z) in other combinations. In these cases we

consider the parameters f−3 and B−6 as effective values, using f−3 ∼ B−6 ∼ 1.

In addition, we adopted the following simplifying assumptions. The Lorentz

factor of the cusp is characterized by a single fixed value γc, while in reality

there is a distribution of Lorentz factors along the cusp. The spectrum of

particles in a jet is approximated as E−2, while a QCD calculation [143] gives

a spectrum which is not a power law, with the best power-law fit as E−1.92.

We use cosmology with Λ = 0. The diffuse spectrum of UHE protons is calcu-

lated using very rough approximations. Given the uncertainties of string and

magnetic field evolution, these simplifications are rather benign. On the other

hand, they have the advantage of yielding analytic formulae, which allow us

to clearly see the dependence of the results on the parameters involved in the

problem. In particular, with the assumed particle spectrum ∼ E−2, the diffuse

flux of neutrinos, the cascade upper limit and the diffuse flux of UHE protons

do not depend on η. Since the realistic spectrum is very close to E−2, this

means that the quantities listed above depend on η very weakly.

We summarize the results obtained in this chapter as follows.

As our calculations show, among different sources, such as galaxies, group
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of galaxies, filaments, etc., the largest diffuse flux is produced by clusters of

galaxies with B ∼ 10−6 G in a cluster core and fB ∼ 10−3. The calculated

diffuse neutrino flux for three neutrino flavors and for zmax = 3 is

E2Jν(E) ∼ 6.6 × 10−8 ic f−3 B−6 GeV/(cm2 s sr). (4.72)

This flux respects the cascade upper limit, provided by the energy density of

electrons, positrons and photons, which initiate electromagnetic cascades in

collisions with CMB photons. The cascade energy density is calculated from

Eq. (4.72) as

ωcas ≈ 8.3 × 10−7 ic f−3 B−6 eV/cm3. (4.73)

and is close to the cascade limit for ic ∼ 1. It is the same as given by Eq. (4.60).

At energies E . 1022 eV, the flux (4.72) is detectable by future detectors

JEM-EUSO and Auger (South + North). The signature of the supercon-

ducting string model is the correlation of neutrinos with clusters of galaxies.

We note, however, that the neutrino flux from the nearest cluster, Virgo, is

undetectable by the above-mentioned detectors.

Another signature of the model is the possibility of multiple events, when

several showers appear simultaneously in the field of view of the detector, e.g.

JEM-EUSO. They are produced by neutrinos from the same jet. The time

delay in arrival of neutrinos with different energies is negligibly small. Such

multiple events are expected to appear for a certain range of parameters, as

indicated in Fig. 4.1.

As an illustration, in Table 4.1 we show, for a representative value η =

5 × 1010 GeV, the diffuse neutrino flux, in units of the cascade upper limit

Jmax
ν , the rate of bursts, and the average shower multiplicity for several values
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of ic. Note that the bottom row in the table is the average multiplicity, that

is, the average number of neutrinos detected per burst. For example, the low

multiplicity at ic = 0.1 indicates that only a small number (about 5) out of

the 220 bursts per year will actually be detected. For ic = 1/3, the average

multiplicity is below 1, but Fig. 4.1 shows that we can expect at least one

2-neutrino burst per year.

ic 1.0 1/2 1/3 0.1
Jν/J

max
ν 0.42 0.21 0.14 0.042

rate of bursts 2.2 yr−1 8.7 yr−1 19.6 yr−1 220 yr−1

multiplicity 26 3.2 0.95 0.026

Table 4.1: The diffuse flux Jν(E) in units of the cascade upper limit Jmax
ν

for 3 neutrino flavors, found from (1.38), the rate of neutrino bursts, and the
shower multiplicity (the average number of neutrinos detected in one bursts),
for η = 5 × 1010 GeV, zmax = 3 and different values of ic. The multiplicity is
shown for neutrinos with E & 1010 GeV from a burst at z = 2.

The diffuse flux of UHE protons is suppressed by the small fraction of

nucleons produced at decay of X particles (the factor ǫN = 0.12 is obtained

in MC and DGLAP calculations [143]), and by energy losses of protons in-

teracting with the CMB during propagation. The calculated flux at energy

E > 3 × 1019 eV is given by the approximate formula

E3Jp(E) ≈ 1

4π

E0

ln Γmax
p

E2

b(E)
(4.74)

where b(E) = −dE/dt is the energy loss rate of protons, Γmax
p is the maximum

Lorentz factor of a proton at production, and E0 is the emissivity (energy in

the form of protons emitted per unit comoving volume per unit time), given
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by

E0 ≈ 1.4 × 1045 ic f−3 B−6 erg/(Mpc3 yr) (4.75)

For ic ∼ 1 and E ∼ 3 × 1019 eV , the proton flux can reach the value

1.3 × 1024 eV 2 m−2 s−1 sr−1, which can be compared for example with 2 ×

1024 eV 2 m−2 s−1 sr−1 measured by HiRes [109]. Thus, radiation from cusps

may account for observed events at the highest energies. The predicted spec-

trum at E > 8 × 1019 eV is steeper than the standard UHECR spectrum

with homogeneous distribution of sources. The accompanying UHE gamma

radiation is very low, due to large distances between the sources (clusters of

galaxies).

As already mentioned, practically all predicted quantities, such as the dif-

fuse neutrino flux (4.72), the cascade energy density (4.73), the diffuse flux of

UHE protons (4.74) and the proton emissivity (4.75), do not depend on the

basic string parameter η. There are only two observable quantities that do,

the rate of neutrino bursts Ṅb and the neutrino fluence Φ(> E):

Ṅb ∼ 3 × 102B2
−6f−3

i2cη
3
10

yr−1 (4.76)

Φ(> E) ≈ 1 × 10−2 i3cη
3
10

B−6

(

1010 GeV

E

)

1

[(1 + z)1/2 − 1]2
km−2, (4.77)

As η decreases (at a fixed ic), the rate of neutrino bursts goes up and the

number of neutrinos detected in a burst,

Ndet
ν (> E) ≈ 0.11

1010 GeV

E

i3cη
3
10

B−6

1

[(1 + z)1/2 − 1]2
(4.78)

goes down, while the product ṄbN
det
ν remains η-independent.

We have considered here only ordinary field theory cosmic strings. Re-

cent developments in superstring theory suggest [94, 153, 134] that the role of
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cosmic strings can also be played by fundamental F-strings and by D-branes.

Such strings may be superconducting, in which case they will also emit bursts

of relativistic particles from their cusps. The main difference from the case of

ordinary strings is that the probability for two intersecting strings to recon-

nect, which is p = 1 for ordinary strings, can be p < 1 and even p ≪ 1 for F

or D-strings. A low reconnection probability results in an enhanced density

of loops; the particle production by loops is increased correspondingly.

UHE neutrinos from superconducting strings may have the following im-

portant signatures: correlation with clusters of galaxies and multiple neutrino-

induced showers observed simultaneously in the field of view of a detector, e.g.,

JEM-EUSO.
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Chapter 5

Conclusions

In this dissertation, we presented two new mechanisms for producing particles

from cosmic (super)string loops and discussed their cosmological and observa-

tional effects. The first mechanism relies on the existence of moduli and the

second one requires superconductivity.

Moduli are emitted by oscillating loops of cosmic strings provided that the

frequency of oscillation is greater than the modulus mass m. This occurs when

the loop sizes are very small, i.e., L . 1/m, hence moduli produced by this

mechanism can have effects on the early universe cosmology. There are very

stringent constraints on string tension for gravitationally coupled moduli. We

showed that for moduli coupling to matter stronger than gravitational strength

these constraints are significantly relaxed.

Moduli can also be produced from cusps with very large Lorentz boosts of

order γc ∼
√

mL. This occurs for the loops of size L & 1/m. We studied UHE

neutrinos produced via hadronic decays of such moduli. We presented our

results for a specific string theory inspired model, namely, the large volume
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compactification scenario. We found that observable UHE neutrino fluxes

can be achieved for the anticipated values of the modulus mass and coupling

constant. For a wide range of string tension Gµ, UHE neutrino events with

energies E & 1011 GeV are expected at sensitive neutrino detectors such as

JEM-EUSO.

Superconducting cosmic strings can emit superheavy charge carriers from

their cusps. Similar to the mechanism discussed above, these particles can

decay via hadronic cascade and produce observable UHE neutrino fluxes. We

showed that this can be realized with reasonable assumptions about the cosmic

magnetic fields. This model predicts correlation with the clusters of galaxies

and multiple neutrino-induced showers observed simultaneously in the field of

view of a detector such as JEM-EUSO.
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