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ABSTRACT 

To study low frequency oscillations (around 0.1 Hz) of tissue, oxy-hemoglobin and deoxy-

hemoglobin concentrations measured by near-infrared spectroscopy, we proposed two phase 

analysis methods: one is a cross-correlation phasor method, and another is a phase 

synchronization analysis method. Both methods yield similar results and provide a 

straightforward visualization of the phase relationships between deoxy- and oxy-hemoglobin 

concentrations with the help of circular statistics. We argued that measured oscillations of deoxy- 

and oxy-hemoglobin with an intermediate phase difference which is neither 0 nor � may results 

from the interplay of different physiological processes that are out-of-phase with respect to each 

other. We observed that in most cases under the Watson-Williams statistical test, there is a 

change in the phase difference between deoxy- and oxy-hemoglobin from rest conditions to 

mental workloads. The change in standard deviation of the phase distribution may be connected 

with the change in regulation of physiological processes in human cerebral cortex. The analytical 

tools we developed from phasor concepts, such as phase-sector (to display the phase distribution) 

and TARGET map (to display the temporal evolution of the phase), can be powerful tools for 

dynamic monitoring and physiological assessment. The phase methods in this thesis would 

provide novel opportunities for understanding cerebral autoregulation, functional connectivity 

networks and physiological processes underlying the measured near-infrared signals. 
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1. Motivation and thesis outlook 

Phase is a measure of the fraction of a complete oscillation cycle with respect to a specified point 

at a reference time. We can sense the phase and phase change everywhere: in alternating current 

used in our home, in traffic light switching in the street, in telephone, in audio waves in theatre, 

in 3-D movies, and even in moon shape and stars in the sky.  In our research, the phase in 

hemodynamic oscillations has special meaning in brain autoregulation, functional connectivity 

and physiological processes. By investigating the phase and the phase difference between oxy- 

and deoxy-hemoglobin which are uniquely measured by near-infrared spectroscopy, we have a 

chance to understand the dynamic of physiologic parameters like blood volume, blood flow and 

oxygen consumption, which are widely studied nowadays. In this thesis, we will first explain 

why we chose the phase difference of hemodynamic oscillations as our experimental parameter 

and its physiological meaning. Then we will introduce near-infrared spectroscopy and the 

physiological models that underlie the changes in the detected signals. Afterwards we will 

discuss the details the phase analysis methods that we proposed: the cross-correlation phasor 

method and the phase synchronization analysis. We would also like to introduce some analytical 

tools based on phasors which would help us in the future to better monitor and characterize 

cerebral hemodynamics. Finally, we will present two sets of experimental data collected during 

two protocols of brain activation: a) a protocol involving the use of working memory; b) a 

protocol for the activation of the motor cortex.  
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2. Phase Relationship between Hemoglobin Species 

“Phase”, in this thesis unless stated otherwise, is defined as the phase relationship between 

oscillations of deoxy-hemoglobin and oxy-hemoglobin concentrations changes with respect to 

baseline values (���� and ����� respectively) at frequencies in the range (0.06, 0.1) Hz. In this 

chapter, we will first introduce the low frequency oscillations (LFO) and their importance to 

understand the physiological mechanisms in human brain, and explain why we chose this 

frequency band rather than others, such as those centered on the heart or respiratory rate. Then 

we will use three sections to discuss the motivation of selecting phase as our research topic: 1) 

phase is the fundamental indicator related to brain auto-regulation; 2) phase is the important in 

functional connectivity studies; and 3) phase is the key to understand the basic underlying the 

physiological processes. 

 

2.1 Spontaneous Low Frequency Oscillations 

It is well known that spontaneous low frequency hemodynamic oscillations (LFOs) around 0.1 

Hz happen in cerebral hemodynamics and metabolisms and they have been widely studied by 

different techniques and in different species (Obrig et al., 2000; Katura et al., 2006; Cordes et al., 

2001; Chance et al., 1993; Golanov et al., 1994; Livera et al., 1992). Besides in cerebrum, LFOs 

had also been observed in the arterial blood pressure and heart rate of human adults and infants 

(Guyton et al., 2000; Siebenthal et al., 1999), these researchers called spontaneous oscillation 

around 0.1 Hz as “Mayer wave” (Mayer, 1876), “Vasomotion”, “V-Signal” etc.  
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Generally, the amplitude of LFO is at least one order of magnitude greater than that of the 

response signal elicited by some cerebral task, and its period is comparable to the duration of the 

response signals (Mayhew et al., 1998; Spitzer et al., 2001). LFOs are characterized by their 

spontaneity, and they can be distinguished from other oscillatory phenomena such as the heart 

beat (0.6 to 1.2 Hz) and respiratory frequency (0.1 to 0.5 Hz) and can be influenced by 

pharmacological interventions with inhibitor of the NO synthase and by pathological conditions, 

e.g. ischemia, large and small artery disease (Obrig et al., 2000). Diehl’s group (Diehl et al., 

1995) investigated the phase relationship between the oscillation in blood flow and in arterial 

pressure. They have revealed that the oscillations may be used to explain autoregulatory 

mechanisms of the brain vasculature. Biswal’s group (Biswal et al., 1995) has studied the 

synchronous oscillations in cerebro-cortical capillary blood velocity after nitric oxide synthase 

inhibition, and concluded that some temporal synchrony low frequency fluctuations send 

messages across corpus callosum and possibly carries messages synchronizing the activity 

between the bilateral, symmetric functional regions.  

LFOs are helpful to uncover meaningful physiological mechanisms, lots of scientists put great 

efforts on LFOs’ research. However, the origins of LFOs are still controversial: Fagrell et al 

stated that the fluctuations result from changes in arteriole diameter (Fagrell et al. 1980). 

Golanov et al presented evidence for a neurogenic origin (Golanov et al. 1994). Cooley and 

colleagues (Cooley et al., 1998) looked at the relationship between the arterial pressure and RR-

interval which is the time elapsing between two consecutive R waves in the electrocardiogram, 

and thought that these oscillations originate from a central oscillator. Some studies believed that 

LFOs signals result from the oscillations in the arterial supply (Tomita et al., 1981; Colantuoni et 

al., 1994). Hudetz’s group analyzed the mysterious origin of LFOs and proposed that this kind of 
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spontaneous oscillations in cerebral hemodynamics may represent autoregulatory processes of 

cerebral blood flow (Hudetz et al, 1998). Another recent research from Katura’s group argued 

that although “Mayer waves” in arterial pressure and heart rate have similar spectral features of 

cerebrovascular LFOs, it is difficult to tell the causal relations between them only with spectral 

characteristics because of their nonlinear interrelations. And the origin of LFOs in cerebral 

hemodynamics may lie in the regulation of regional cerebral blood flow change and energetic 

metabolism rather than due to the systemic regulation of the cardiovascular system (Katura et al., 

2006). 

Because LFOs have the characteristics to reveal the autoregulatory mechanisms in the human 

brain, in this thesis, LFO around 0.1 Hz is the major frequency components of the hemodynamic 

signals we investigate. 

 

2.2 Cerebral Autoregulation 

In healthy adults, Cerebral Autoregulation (or brain autoregulation) refers to a homeostatic 

process whereby cerebral blood flow (CBF) remains constant between a mean arterial blood 

pressure (MAP) of 60 mm Hg and 160 mm Hg or between a cerebral perfusion pressure (CPF) of 

50 mm Hg and 150  mm Hg (Paulson et al. 1990).  

By observing the pial artery reaction to manipulation of MAP through a cranial window, Fog 

(Fog. 1937) introduced the cerebral autoregulation for the first time. CBF in humans was 

measured by Kety and Schmidt in 1948 (Kety and Schmidt, 1948) and Finnerty et al used Kety’s 

method to determine cerebral hemodynamics of the ischemic brain after an acute reduction in 

MAP in attempt to define what now would be considered the lower limit of cerebral 
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autoregulation (Finnerty et al., 1954). Later, Lassen refined the concept of cerebral 

autoregulation and illustrated the relative stability of CBF over a wide range of blood pressure. 

He also identified the lower and upper limits of cerebral autoregulation by a decrease in CBF at a 

low MAP and an increase in CBF when MAP remains at a high level (Lassen, 1974). In 1989, 

Aaslid et al invented the transcranial Doppler method to determine mean flow velocity in basal 

cerebral arteries (Aaslid et al, 1989). Because transcranial Doppler reports a continuous mean 

flow velocity, cerebral perfusion could be followed during the drop in MAP that follows release 

of thigh cuffs. Transcranial Doppler ultrasound and non-invasive beat to beat blood pressure 

monitors allowed the dynamic relation between cerebral blood flow velocity and mean arterial 

pressure to be quantified giving a measure of so-called dynamic cerebral autoregulation which 

was referred as the acute response of cerebral perfusion to a change in MAP. The static cerebral 

autoregulation was assessed using steady state blood pressure changes and assessing the 

alteration in CBF without taking into account the speed at which the CBF recovers following a 

change in blood pressure. Dynamic cerebral autoregulation was believed to have different 

underlying pathophysiological control mechanisms than those in static cerebral autoregulation 

(Tiecks et al, 1995). Moreover, dynamic cerebral autoregulation has been shown to be influenced 

differently from static cerebral autoregulation in disease states such as stroke (Dawson et al, 

2000). 

Because the cerebrum is encompassed in the skull, the cerebral autoregulation is vital for 1) 

preventing cerebral edema and hemorrhage; 2) counteracting the effect on CBF of a reduction in 

MAP in response to hemorrhage or a change in body position. For example, when rising from a 

supine position, sometimes one may experience blurred vision or dizziness which are the 

symptoms of a reduced CBF. Nevertheless, with the help of dynamic cerebral autoregulation, 
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healthy adults would recover in seconds. Nowadays, the assessment of cerebral autoregulation 

has been widely used in clinical diagnosis and pathophysiologic researches (Rangel-Castilla et al, 

2008; Urbano et al, 2008; Brady et al, 2008). 

In previous observations in cerebral autoregulation, cerebral perfusion, even at rest, is not a 

constant but permanently oscillates at different frequencies. One of the most important 

frequencies is the spontaneous low frequency oscillations (LFOs) around 0.1 Hz. Diehl et al have 

shown that LFO of cerebral blood flow velocity (CBFV) in the large basal arteries do not occur 

simultaneous to those of arterial blood pressure (ABP) but with a phase shift, that is CBFV leads 

ABP (Diehl et al, 1998). Kuo et al explained this phase shift as the result of fast and steady effort 

of the cerebral autoregulatory system to counter-regulate the repetitive oscillations of cerebral 

blood flow during oscillating ABP (Kuo et al, 2003). The most appealing part is that this phase 

shift would be reduced in various acute and chronic cerebrovascular diseases. In LFO frequency 

band, Reinhard’s group studied the phase relationship between oscillations of blood pressure, 

NIRS signal and CBFV in the middle of cerebral artery in 38 healthy adults and 28 patients with 

unilateral severe obstructive carotid disease. Their results in Fig. 2.1 and Fig. 2.2 clearly showed 

that 1) blood pressure induced cortical microvascular oscillations follow those of macrovascular 

oscillations with a 80 to 90 degree phase difference; 2) oscillations of oxy- and deoxy- 

hemoglobin are around 180 degree i.e. out-of-phase; 3) hemodynamic compromise in carotid 

obstruction leads to delayed microvascular oscillations in comparison to ABP due to disturbed 

autoregulation and an abrogation of the oxy- and deoxy-hemoglobin out-of-phase (Reinhard et al, 

2006). 
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Fig. 2.1 (Reinhard et al, 2006) schematic illustration of phase relationship, in 

control subjects, between oscillations in arterial blood pressure and different 

cerebral hemodynamic parameters. 
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Fig. 2.2 (Reinhard et al, 2006) schematic illustration of phase relationship, in 

patients with unilateral carotid obstruction, between oscillations in arterial 

blood pressure and different cerebral hemodynamic parameters. “ipsilateral” 

refers to the injured side of the brain. 
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They argued that, due to cerebral autoregulatory action and circulatory transit time, specific 

phase relationships exist when cortical microvascular hemodynamic responds to blood 

oscillations. In case of unilateral carotid obstruction or impaired hemodynamics, these phase 

shifts are significantly changed reflecting disturbed autoregulation (Reinhard et al, 2006). 

Therefore, by measuring and comparing the phases in hemodynamic oscillations, we can 

understand the cerebral autoregulation. 

Recently, using near-infrared spectroscopy, Steiner et al studied the correlation between a 

dynamic index of cerebral autoregulation assessed with blood flow velocity and tissue 

oxygenation index. They suggested that near-infrared spectroscopy would show promise for the 

continuous assessment of cerebral autoregulations (Steiner et al, 2008). So, in this thesis, we will 

use near-infrared spectroscopy to study the phase shift and development in hemodynamics, 

which would in the future provide a noninvasive, low cost and high temporal resolution 

methodology for cerebral autoregulation assessment. 

 

2.3 Functional Connectivity 

In human brain, all communication between nerve cells, with a few notable exceptions such as 

diffusible messengers, is carried out along physical connections, often linking cells that are 

separated by large distances. Signals within these connections consist of series of action 

potentials of unit magnitude and duration. The arrival of an action potential at a synaptic junction 

triggers numerous biochemical and biophysical processes and further cause the transmission of 

electrical signals to the postsynaptic cell or so-called receiving cell, which may in turn generate 

an output spike transmitted along the neuron’s axon. Neurons in the cerebral cortex maintain 
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thousands of input and output connections with other neurons, forming a dense network of 

connectivity spanning the entire thalamocortical system. The human cerebral cortex 

approximately contains 8.3 billion neurons and 67 trillion connections. If one straightens all of 

connections within one human brain, the length would be from 100,000 km (equivalent to 10 

times the diameter of the Earth) to 10,000,000 km (equivalent to 10 round-trip Earth to Moon). 

Despite this massive connectivity, cortical networks are exceedingly sparse, with an overall 

connectivity factor of around 10-6, which is defined as the number of connections present out of 

all possible. Nevertheless, due to predominant feature of brain networks, local connectivity ratios 

can be significantly higher than those suggested by random topology. The brain is neither 

random nor still. Many brain networks remain plastic throughout the lifetime of the organism, 

exhibiting specific modifications of synaptic efficacy at multiple time scales, as well as 

continuous morphological change. As a result, the detailed structure and morphology of brain 

networks is the result of continuous interaction between neural substrate, ongoing neuronal 

activity and embodied action of an individual organism within an environment, thus will 

somehow reflect the history of development and experiences of the individual organism. 

Neural connectivity and neural activity are so close in relationship that they support some 

specific patterns of functional interactions. The connectivity can be defined into two categories: 

1) Anatomical Connectivity 

Anatomical connectivity refers to the set of physical or structural connections linking 

neuronal units in spatial levels at a given time. At the local circuit level, it would focus on 

the pattern of synaptic connections between individual neurons. At the intra-areal patterns 

level, it would involve connection bundles or synaptic patches linking local neuronal 
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populations. At the large scale patterns level, it would focus on connection pathways that 

consist of millions of individual fibers linking clustered areas of the brain. 

2) Functional Connectivity 

Functional connectivity refers to the pattern of temporal correlations that exists between 

distinct neuronal units (Friston. 1993, Friston. 1994). Such temporal correlations are 

often the result of neuronal interactions along anatomical or structural connections. 

However, functional connectivity doesn’t necessarily imply a physical pathway, because 

some observed correlations may be due to common input from an external neuronal or 

stimulus source. Therefore, functional connectivity potentially includes patterns of 

connectivity that are entirely mediated by the common influence of some external event 

on distant neural areas. Deviations from statistical independence between neuronal 

elements are commonly captured in a covariance matrix which may be viewed as a 

representation of the system’s functional connectivity. Although temporal correlations are 

usually applied to represent statistical patterns in neuronal network, recent studies also 

took spectral coherence as an indicator of functional connectivity (Bressler et al, 2001). 

Anatomical connectivity is a major constraint on the kinds of patterns of functional connectivity 

that can be generated. On the other hand, functional connectivity can contribute to the shaping of 

the underlying anatomical structures. This is accomplished either directly through activity 

dependent synaptic modification or through effects of functional connectivity over longer time 

scales on an organism’s perceptual, cognitive or behavioral capabilities, which in turn affect 

adaptation and survival.  
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The structure of brain networks is a result of the combined forces of natural selection and neural 

activity during evolution and development. Two of the major problems brains have to solve are 

the extraction of information from inputs and the generation of coherent states that allow 

coordinated perception and action in real time. Solutions to these problems are reflected in the 

dual organizational principles of functional segregation and functional integration found 

throughout the cerebral cortex. The requirement to achieve segregation and integration 

simultaneously imposes severe constraints on the set of possible cortical connection patterns. 

Very likely there are many more ways in which structural properties of brain networks impact 

upon the dynamical and informational patterns neurons can generate and maintain. The dynamic 

patterns generated by brain networks underlie all of cognition and perception. At least some 

aspects of vision seem to be embedded in the structural connectivity of parts of the 

thalamocortical system, and disruptions of the wiring of these networks result in severe and 

specific alterations of mental and perceptual function. The nature of awareness and 

consciousness itself may be rooted in the rapid integration of information requiring a structural 

network capable of sustaining this process (Sporns et al 1991, Singer et al, 1995). 

Over the last century, due to the availability of diffusion tensor imaging (DTI), functional 

connectivity has been widely studied. Much of the study is carried out by examining inter-

regional correlations in resting BOLD data (Blood-oxygen-level dependence, which is the MRI 

contrast of blood deoxyhemoglobin, first discovered in 1990 by Seiji Ogawa (Ogawa, 1990)). 

This approach is first introduced by Biswal (Biswal et al, 1995), who observed correlations 

between activity in left and right somatosensory cortex during resting BOLD. Usually, for 

functional connectivity, the experiments are taken under REST. Temporal correlations in resting 

data are of special interest because they are not easily explained by externally imposed task 
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demands. Resting BOLD is more than just the absence of cognitively evoked activity. By 

contrast, during task performance, the strong correlation between cortex and task sheds no new 

light on functional connectivity analysis. Another major practical advantage of connectivity 

studies carried out in resting data is that the same data may be used repeatedly. At this point, a 

lot of resting BOLD data is available either publicly or through local repositories. In addition, 

Fox et al. have shown that some of the coherent signal in resting BOLD contributes roughly 

linearly to task-evoked BOLD. In this way, better understanding of the task independent 

component of the signal can lead to markedly better sensitivity to detect task-evoked activation 

(Fox et al, 2006).  Culver’s group (Zeff et al, 2007) reported functional mapping of the human 

visual cortex made possible by a high-density DOT (diffuse optical tomography) imaging system. 

Franceschini et al used near-infrared spectroscopy (NIRS) and diffuse optical imaging (DOI) 

with 32 source-detector pairs to collect optical data from prefrontal, sensorimotor, and visual 

cortices in both hemispheres simultaneously. By applying cross-correlation, they were able to 

generate functional maps of multiple brain regions’ responses to brain activation and distinguish 

brain activation signals from physiological signal including cardiac, respiratory and blood-

pressure (Franceschini et al, 2006). Katura et al were able to separate blood-related brain-

function measurements in low frequency oscillation (LFO) from physiological noise by using 

information transfer analysis (Katura et al, 2006). Their work also shed light on functional 

connectivity study with NIRS, because such analysis of information transfer may be useful in 

revealing the complex interrelation between elements regulating one another. Therefore, within a 

specific frequency band such as LFO in brain study, as one of the most important parameters in 

cross-correlation map, phase study would be meaningful of the spatio-temporal relations between 

different optical channels, ultimately in functional connectivity. 
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One point deserves special emphasis here. In this thesis, because of current limited amount of 

source and detector pairs, our major purpose is to introduce phase analysis methods. Therefore 

we will mainly focus on task-evoked activation rather than rest. However, the phase analysis 

methods are designed for future functional connectivity studies, in which we will study in rest or 

sleeping status and use whole-head helmet and customized ISS machine with large number of 

channels. 

 

2.4 Underlying Physiological Processes 

Using non-invasive optical topography, Taga et al reported spontaneous changes in the cerebral 

oxygenation state of infants during quiet sleeping (Taga et al, 2000). Their results shed light on 

our research motivation and method. They used first derivatives of Δ���� and Δ����� in order 

to remove the long-term drift of the baseline of the values. 
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Fig 2.3 from (Taga et al, 2000), (A) the first derivative of Δ����� and Δ����. (B) 

instantaneous phases of changes in HbO and Hb. (C) Relative phase between 

Δ����� and Δ����. (D) the first derivative of the Δ����� 
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Fig 2.4 from (Taga et al, 2000), phase plane plots of the first derivative of Δ���� 
against Δ�����. 
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Their results in Fig 2.3 and Fig 2.4 clearly showed that the spatially synchronized oscillations of 

the hemoglobin oxygenation state exist throughout the occipital cortex of neonates. The phase 

lag of [HbO] relative to [Hb] was stable at around 3�/4. To explain the origins of this phase lag, 

they suggested that the reason would be the interplay between the vasomotion and the oxygen 

consumption in relation to brain activity. 

In out experiments, we also observed similar phase lag of [Hb] against [HbO], though not a 

3�/4  stable value. Nevertheless, such phase lag would serve as an important role in 

understanding the underlying physiological processes in human brain. 

 

2.5 Summary 

In this chapter, we clarified the reason of why we want to focus on phase and develop phase 

analysis method in our research project, because phase will help us to better understand the 

cerebral autoregulation, functional connectivity and underlying physiological processes. It is a 

bridge to connect optical findings and physiological processes. In addition, since low frequency 

oscillations have the characteristics to reveal the autoregulatory mechanisms in the human brain, 

we investigate the oscillations of optical and hemoglobin signals in frequency band of LFO 

around 0.1 Hz. 
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3. Diffuse near infrared spectroscopy 

3.1 Introduction 

Our research is based upon near infrared spectroscopy (NIRS), which has been proved as an 

effective technology in studying the dynamics of physiological processes especially the brain 

hemodynamics. Noninvasiveness, low-cost and high temporal resolution are some of its typical 

advantages over traditional clinical functional brain studies such as PET and MRI. In order to 

make light to have its maximum depth of penetration in tissue, we choose a spectrum window of 

(600 ~ 900 nm) as the optimal wavelengths for noninvasive functional brain imaging. In this 

NIRS window, the main absorbers of the brain (i.e. water, oxy- and deoxyhemoglobin) have the 

minimal absorption. Near-infrared light can reach as far as 2 to 3 cm inside the tissue, therefore 

also the gray matter, where the most brain functions of conscious level happen. In this chapter, 

we will introduce the basic interactions between the photons and the tissue, namely scattering 

and absorption. Then we will introduce the diffusion theory and modified Beer-Lambert Law 

which is the fundamental of NIRS measurements. Finally, we will discuss the hemodynamic 

model for the physiological interpretation of in vivo NIRS measurements of the concentration of 

oxy- and deoxyhemoglobin. 

 

3.2 Absorption and Scattering 

The main absorbers of NIRS in human brain are water, oxy- and deoxyhemoglobin. Their 

absorption spectra are shown in Fig 3.1. in which the concentration of oxy-hemoglobin and 

deoxy-hemoglobin are set to be 50µM that is a typical value in blood-perfused tissues. 
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Fig 3.1 Absorption spectra of oxy-hemoglobin (HbO), deoxy-hemoglobin (Hb) 

and Water (H2O) from 300 nm to 1300 nm. 

 

We use absorption coefficient � to describe the absorption properties of tissues. It is defined as 

the inverse of the average photon path length before absorption. The relationship between � and 

concentrations of � chromophore in the tissue is (Fantini and Franceschini, 2002): 

 ���� �  � ����� · ��
�
�  (3.1) 

in which, �  is wavelength dependent absorption coefficient in unit of cm-1; �����  is the 

extinction coefficient of the ith chromophore, in unit of M-1cm-1; �� is the concentration of the ith 

chromophore in unit of M. In our studies, we usually focused on the concentration changes of 
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oxy- and deoxy-hemoglobin (����� and ���� respectively), from Eq (3.1) we can get the change 

of � as: 

 Δ� � ε���Δ����� � �� Δ���� (3.2) 

The typical value of � in the tissue is 0.02 cm-1 – 0.3 cm-1 in near-infrared range. 

Although within the NIRS spectrum window (600 – 900 nm) the photons are weakly absorbed in 

tissue, they are highly scattered. The scattering coefficient �! is used to describe this scattering 

optical property. It’s defined as the cross-sectional area for scattering per unit volume of medium 

with unit of cm-1. The inverse of �! is the average photon path length between two consecutive 

scattering events.  

However, after few scattering events, the photon would totally lose its memory of the previous 

direction and becomes isotropic in scattering. Therefore, in order to describe inverse average 

path length over which the direction of propagation of photon is randomized, we usually use 

another parameter- reduced scattering coefficient�!"  to describe the scattering in tissues. It is 

defined as (Fantini and Franceschini, 2002): 

 �!" � �!�1$% cos ) *� (3.3) 

in which % +,-) * is the average cosine of the scattering angles ). Since the most scattering 

events in tissues are in forward direction, the normal value of % +,-) * is 0.8 to 0.9.  

The typical value of �!"  is 2 to 20 cm-1, which is one to two orders of magnitude bigger than � in 

tissues. Generally, �!"  is a monotonically decreasing function of the wavelength of the probing 

light. In Mie scattering where the scattering particles are homogenous spheres, �!" ��� �
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. / 00123 
in which . is the reduced scattering coefficient at the reference wavelength �4 and � is 

the scattering power. 

 

3.3 Diffusion Theory 

To mathematically understand the photon migration in highly scattering medium, we use the 

diffusion approximation to the radiative transport equation. If we make the following 

assumptions: 1) highly scattered medium � 5 �!"  and we consider points of the medium far 

from the sources and the boundary; 2) isotropic light source; and 3) time scale of the variations 

of photon density and source are much greater than the average time between isotropic 

equivalent collisions 
6789: , the diffusion equation in homogeneous media will be reduced to 

(Fantini and Franceschini, 2002): 

 ;<�=>, @�;@ � ABC<�=>, @� $ D�<�=>, @� � E4�=>, @� (3.4) 

in which <�=>, @� is the photon density in unit of cm-3; A � D �3��!" � ���⁄  is defined as the 

diffusion coefficient in unit of cm2sec-1; D is the speed of light in the medium; E4�=>, @� is the 

source distribution of photons. In addition, the photon flux G>�=>, @�, in unit of sec-1cm-2, can be 

obtained by Fick’s law 

  G>�=>, @� � $AB<�=>, @� (3.5) 

Eq. (3.4) is the diffusion equation in time domain. In the frequency domain, the diffusion 

equation (3.4) takes the form of the Helmholtz equation 
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 �BC � HC�<�=>� � $E4�=>�/A (3.6) 

where HC � �IJ $ D��/A 

The diffusion equation is applicable in highly scattering medium, which is the case in many 

biological tissues, especially in brain. In most of the brain study where NIRS is applied, both 

source and detector are placed on the surface of the tissue. Because of this arrangement, typically 

the frequency domain solution of diffusion equation in semi-infinite medium is used. The 

approaches to solve the diffusion equation in semi-infinite medium are from applying 

appropriate boundary conditions and replacing the incident pencil beam with single scattering 

source. The boundary condition for the semi-infinite medium can be satisfied when the photon 

density < is zero at an extrapolated boundary at some distance K � 2.A36 which is in the unit 

of cm (Fantini and Franceschini, 2002). The parameter .  is related to the refractive index 

mismatch of the two media. To achieve the boundary condition, a negative photon source E� is 

placed at the opposite side of the boundary with the actual photon source E placed within the 

medium. The net sum of the photons density from these two sources is zero at extrapolated 

boundary. In addition to satisfy the boundary condition, we have to make the following 

assumption. It has been shown that a pencil-like incident beam on the surface can be replaced by 

a single scattering source lying at depth K4 � 68MN89, which is the length of one effective photon 

mean free path. Therefore, the relations for equations DC and AC photon density, and the phase 

at the surface are given as follows (Fantini and Franceschini, 2002): 
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 <OP!� � 2Q�4��CA R3S/78MT 2UV
=W /1 � = D�A 2 �K � K4�

·
X
YZK � 3A [1 $ �K � K4�C � 3KC2=C \

X
Z3 � =C D�A

1 � = /D�A 26C]
^

]
_̂ 

(3.7) 

 

<P!� � 2Q�J�4�AD R3S/78MCT 2UV`a
=W b1 � = c2D�A d6C eN � =C D�A [1 � c JD�dC\6Cf

6C

g �K � K4�
hij
ikK � 3A [1 $ �K � K4�C � 3KC2=C \

g
X
YZ2 � 1 � = /D�2A 26C eN

1 � = /2D�A 26C eN � =C D�A c1 � / JD�2Cd6C]
_̂

� = /D�2A 26C eN
lim
in

 

(3.8) 

 

o!� � = /D�2A 26C e3 $ arctan
X
Z = /D�2A 26C e3

1 � = /D�2A 26C eN]
^ (3.9) 

where superscript si denotes “semi-infinite”; eN � [c1 � / t78M2Cd � 1\UV
and e3 � [c1 �

/ t78M2C2 $ 1\UV
 



24 

 

When photons are injected into the diffusive medium, after hundreds of effectively isotropic 

scattering events, some of them are absorbed, some of them are scattered out of the tissue, and 

the rest of them will reach the detector fiber. We define the overlapping paths of these photons as 

sample volume for the specific source-detector pair, because it describes the most sensitive area 

for a given source-detector pair. 

In the semi-infinite medium such as brain studies in NIRS, the sample volume of a source-

detector pair resembles a banana-shape in the tissue as shown in Fig 3.2.  

 

Fig 3.2. Illustration of “banana shape” given by photon hitting-density function 

with the source and detector at coordinates (0,0,0), (d,0,0) respectively (Feng et al, 

1995) 

and is given by the photon hitting-density function: 



25 

 

 

Q��u, v, K� � KCRw3xyz{VN|VN}V~UVNz�O3{�VN|VN}V~UV��
�uC � vC � KC�WC��� $ u�C � vC � KC�WC

g ���uC � vC � KC�6C � 1� ����� $ u�C � vC � KC�6C � 1� 
(3.10) 

in which, Q��u, v, K�  is the photon hitting density function, which is proportional to the 

probability density per unit volume that a photon injected at (0,0,0) and detected at (d,0,0). The 

effective coefficient � is defined as � � �3��!"  (Feng et al, 1995).  

For a given source-detector pair, the detected photons are known to more likely have traveled 

through the central area of the banana shape than through its outer portions. The likelihood 

values over the entire cross-section of the medium add up to one because the measured photons 

must have come through the medium somewhere. Because photons are more likely to pass 

through the central regions of banana shape, the measurement is most sensitive to objects found 

in that area. In brain studies, if the source-detector distance is less than 1 cm, the detected 

photons on average will only reach a few millimeter of depth so that only scalp and skull are 

sampled; if the source-detector distance is more than 3 cm, the detected photons will reach 1-2 

cm of depth and therefore sample the cerebral cortex. 

 

3.4 Modified Beer-Lambert Law 

The Beer-Lambert Law investigates the absorption of light to the properties of the material 

through which the light is traveling. Without scattering, the Beer-Lambert Law is: 
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 ���� � $ ln [ �����4���\ � �� (3.11) 

where ���� is the absorbance; � is the source detector distance; � is the absorption coefficient; 

����  and  �4���  are the detected light intensity and the incident light intensity respectively 

(Fantini and Franceschini, 2002). 

If consider both absorption and scattering, the modified Beer-Lambert Law in the highly 

scattering medium can be expressed as: 

 Δ���� � $ ln [ ������������������\ � ������Δ���� (3.12) 

where ������ is the mean path length of detected photons; ����� and ������� are the detected light 

intensity after and before the concentration change. Eq. (3.12) describes the relationship between 

the change in the concentration of hemoglobin to the change in the detected light intensity. Δ� 

is defined as  Δ� � ��@� $ �4, where �4 is the baseline absorption coefficient before the 

concentration change while ��@�  is the absorption coefficient after the change, which is a 

function of time. ������ is the mean path length of detected photons, which is assumed to be time 

independent (at least in functional studies) depends also on the source-detector distance �: 

 ������ � AQ���� · � (3.13) 

where DPF is differential path length factor. The DPF can be measured from time domain 

measurements using ultra-short pulse. In the semi-infinite medium, under the assumption 

�8M8M1 5 1 and �!"  is constant, we can get approximated DPF as (Fantini and Franceschini, 2002) 

 AQ� � 3��!"2��4
��3�4�!"��3�4�!" � 1 (3.14) 
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In the near-infrared region, the chromophores for absorption are oxy- and deoxy-hemoglobin. 

Therefore, combining Eq.(3.2) with Eq.(3.12) and Eq.(3.13), we can get (Fantini and 

Franceschini, 2002) 

 Δ���� � $ ln [ ������������������\ � ��� ����Δ����� � �� ���Δ����� · AQ���� · � (3.15) 

If we measure the changes in two wavelengths, particularly �6 �690 nm and �C �830 nm in our 

studies, we could get concentration change of oxy- and deoxy-hemoglobin (Δ����� and Δ���� 
respectively) as (Fantini and Franceschini, 2002): 

 Δ����� � �� ���C� Δ���6�AQ���6� $ �� ���6� Δ���C�AQ���C�� · ��� ���C��� ��6� $ �� ���6��� ��C�� 
(3.16) 

 Δ���� � �� ��6� Δ���C�AQ���C� $ �� ��C� Δ���6�AQ���6�� · ��� ���C��� ��6� $ �� ���6��� ��C�� 
(3.17) 

Eq. (3.16) and Eq. (3.17) are the key functions we used to calculate the concentration change of 

hemoglobin in NIRS brain studies. 

 

3.5 Hemodynamic Model of in vivo NIRS measurements 

From above sections, we understand that by taking NIRS measurements using two near-infrared 

wavelengths on a specific source-detector distance we can get the concentration change of 

deoxy- and oxy-hemoglobin within the tissue volume of banana-shape identified by the source-

detector distance. Nevertheless, we have to make appropriate physiological interpretation of 

these hemoglobin-related measurements. 
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First of all, we need to establish a model to represent our problem as shown in Fig. 3.3 (Fantini, 

2002) 

 

Fig. 3.3 Schematic representation of physiological model. 

where eis the tissue region probed by NIRS, i.e. the volume that contains most of the photon 

migration paths from the illumination point to the collection optical fiber. There is a blood vessel 

with cross-section � 7 cross e with an intersection length � 7 and intersection volume e 7. The 

blood flow in this blood vessel has a speed of +� ���O�. As the blood flows within volume e, due 

to the oxygen diffusion to tissue cells, the concentration of oxygen ��C�� ���O� in the blood 

decrease with a rate proportional to the difference between oxygen concentrations in the plasma 

��C����!��and in the tissue ��C����!!���. This relationship is described in the following equation 

(Fantini, 2002): 

 ���C�� ���O��� � $ H+� ���O� z��C����!� � $ ��C����!!���~ � $ H=+� ���O� ��C�� ���O� (3.18) 

where = � ���C����!�� $ ��C����!!����/��C�� ���O�, H is the probability of extraction per unit 

time for each oxygen molecule, and � is the line coordinate along the blood vessel. By making 

the assumption that oxygen extraction ��V � H= and +� ���O� are independent of �, we have 
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 ��C�� ���O���� � ��C�4� ���O�R3 ��VP��������
 (3.19) 

With the assumption that ��Vis uniform over the length � 7 of the blood vessel but associated 

with changes in ��C����!!��� which reflect changes in the cellular metabolic rate of oxygen, the 

concentration of oxyhemoglobin in the tissue volume e can be written as the average 

concentration of oxyhemoglobin in the blood times the blood volume fraction e 7/e 

 ��������!!��� � ������� ���O��` · e 7/e    (3.20) 

Using proportionality between oxyhemoglobin and oxygen concentrations, we can get (Fantini, 

2002) 

 ��������!!��� �  E�C|4� ���O������� ���O� [1 $ R3 ��V¢�£P�������\ +� ���O�� 7��Ve     (3.21) 

where  E�C|4� ���O� is the initial oxygen saturation of hemoglobin at � � 0, before any oxygen 

extraction occurs in volume e . ������ ���O� � ������ ���O� � ����� ���O�  is the total 

hemoglobin concentration in the blood, which is independent of �.  
With Eq. (3.21), it’s straightforward to calculate the following analytical relationship between 

concentration of hemoglobin and physiological parameters (Fantini, 2002). 

 �������!!��� � ��������!!��� $ ��������!!���

� ������ ���O� e 7e [1 $  E�C|4� ���O� [1 $ R3 ��V¢�£P�������\ +� ���O���V� 7 \    (3.22) 

 ��������!!��� � ������ ���O� e 7e     (3.23) 

If there’re multiple blood vessels (indicating by superscripts (MV)) in the probed volume e, we 

can make the summation of single-blood-vessel case in Eq.(3.21), (3.22) and (3.23) to obtain the 
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more general case where the volume e  includes arteries, capillaries and veins with the 

superscripts (a), (c) and (v) respectively as follows (Fantini, 2002): 

��������!!���¥`

� ¦ E�C|�3 ���O�e 7��

�  E�C|4�P3 ���O� §1 $ R3 ��V¢�£�¨�
P�¨©������ª +�P3 ���O�� 7�P�

��V

�  E�C|�73 ���O�e 7�7�« ������ ���O�e     

(3.24) 

 �������!!���¥`

� bz1 $  E�C|�3 ���O�~e 7�� � e 7�P�

g ¦ 1 $ E�C|4�P3 ���O� §1 $ R3 ��V¢�£�¨�
P�¨©������ª +�P3 ���O�

��V� 7�P� «

� z1 $  E�C|�73 ���O�~e 7�7�f g ������ ���O�e     

(3.25) 

��������!!���¥` � /e 7�� � e 7�P� � e 7�7�2 ������ ���O�e     (3.26) 

Physiological analysis of single blood vessel case in Eq. (3.21-23) can be described in the 

following table: 
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Physiological change 
Hemoglobin Concentration 

Change 

Phase between ¬�®¯� and ¬�®� 
Total hemoglobin concentration in blood 

������ ���O� ° 
��������!!��� °; �������!!��� ° 0° 

Blood partial volume � 7 ° ��������!!��� °; �������!!��� ° 0° 

Initial blood oxygen saturation 

 E�C|4� ���O� ° 
��������!!��� °; �������!!��� ² 180° 

Oxygen utilization rate ��V ° ��������!!��� °; �������!!��� ² 180° 

Speed of blood flow +� ���O� ° ��������!!��� °; �������!!��� ² 180° 

Tab 3.1. Relationship of physiological parameters change and the phase between 

the concentration change of oxy- and deoxy-hemoglobin in single blood vessel 

case 

However, Tab 3.1 only explains the simple situation, in observations of most experiments, the 

phase between Δ����� and Δ���� is neither 0° nor 180°. The reasons of these intermediate 

phase values result from multiple blood vessels or multiple physiological parameters change 

(Fantini, 2002). In the first case, the superposition of multiple blood vessels would cause 

different relative contributions of different blood vessels, and further lead to an arbitrary phase 

difference between ��������!!���¥`  and �������!!���¥` ; in the second case, there might be 

multiple physiological change even for single blood vessel (Fantini, 2002). For example, a blood 

volume increase would associate with a blood flow accelerates. A time lag of the superposition 

of these in-phase change and out-of-phase changes would result in an intermediate phase 

difference in hemoglobin concentration. A further interpretation of this arbitrary phase between 

oxy- and deoxyhemoglobin will be discussed in the next chapter. 
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3.6 Summary 

In this chapter, we introduced the NIRS technology we used in our experiments. Diffusion theory 

is the fundamental mathematical model in diffusive near-infrared spectroscopy; we showed how 

from diffusion theory the banana-shape, which is the region of highest sensitivity for the 

migrating photons, is calculated. Based on the theory, we derived the modified Beer-Lambert 

law which is the key equation to calculate concentration change of oxy-and deoxy-hemoglobin 

from detected light intensity change. Finally, we presented a hemodynamic model that can be 

used to guide the physiological interpretation of oxy- and deoxy-hemoglobin concentration 

measurements in tissue using NIRS. This model indicates the possible sources of oscillatory 

components of oxy- and deoxy- hemoglobin concentrations that are in-phase, out-of-phase or 

arbitrary angle. This model is the foundation stone of our phase analysis of low frequency 

hemodynamic oscillations.  
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4. Phase Analysis Method 

In this chapter, we will introduce our phase analysis method. There are two major phase analysis 

method, one is cross-correlation PHASOR method; the other is the phase synchronization 

analysis. In addition, we will discuss circular or directional statistics, which is the qualified 

statistical method for phase measurements, rather than traditional statistical method for linear 

variables. 

4.1 Cross-correlation PHASOR Method 

The idea of using Phasor notation for hemodynamic oscillations measured with NIRS was first 

proposed by our group (Zheng et al, 2010). A Phasor is a 2D polar vectors characterized by 

amplitude A and phase ³.  

     

Fig. 4.1. One demo example of how to generate phasors from cross-correlation of 

signal u6�@� and uC�@� filtered around LFO 
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As explained in Chapter 2, we are interested in hemoglobin concentration oscillations at a 

specific frequency – low frequency hemodynamic oscillations (LFO) around 0.1 Hz which is 

meaningful in brain autoregulation, functional connectivity and physiological studies. Filtered 

with a relative narrow frequency band around LFO, oxy- and deoxy-hemoglobin concentrations 

are harmonic oscillations at a fixed angular frequency (J). In addition, in order to minimize the 

intrinsic phase and amplitude variations and make sure each time-point sampled in experiments 

corresponding to one phasor or one relative phase, we calculated the phasor at one time-point by 

isolating a few periods of oscillations within a window which is centered at the specific time-

point. To better understand the algorithm we used, here is an example shown in Fig. 4.1. At a 

given time-point @, we calculate the cross-correlation of LFO filtered oscillations of signal u6�@� 

against uC�@� within a window containing a few periods of oscillations. The exampled plot of 

cross-correlation is on the left side of Fig. 4.1. There will be a maximum value of ¶µ{U, {V�´�¶, 
which corresponds to ´·¸¹ in the time axis of the cross-correlation plot. The relative phase of 

signal u6�@� and uC�@�  is defined as 

 ³{U,   {V�@� � J´�{  ��� Iº µ{U,   {V�´�{� % 0� (4.1) 

In the case of Fig.4.1, the relative phase is calculated as 230° because the maximum value of 

¶µ{U,   {V�´�¶ reaches withµ{U,   {V�´�{� � $0.8836 % 0. Therefore, the phasor’s arrow direction 

is pointed to  ³{U,   {V�@� � 230° counterclockwise to the horizontal right. If the phasor is used to 

represent each physical quantity, i.e. oxy- and deoxy-hemoglobin concentration, the phasor 

amplitude is defined as one half the peak-to-peak ranges of the measured oscillations, so that the 

length of the arrow is given by ¿max�u6�@�� $ min�u6�@��Ã/2; note that in this case the phase of 

one hemoglobin species (oxy-hemoglobin) is set arbitrarily at zero. If the phasor is used to 

represent the correlation between two signals, the length of the phasor is given by the value of 
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¶µ{U,   {V�´�{�¶, as shown in Fig. 4.1, the length of phasor is 0.8836 taken 1.0 as the reference 

length. 

One point we need to address here is that the signal u6�@� and uC�@� can be either hemodynamic 

oscillations or physiological signals, which would certainly take the phasor method to much 

broader application in near-infrared imaging. In specific, the relative phase of the oscillations of 

deoxy-hemoglobin �����@� and oxy-hemoglobin ������@� is defined in Eq. (4.2) by rewritten 

from Eq. (4.1):  

 ³�� �,�� ���@� � J´�{ ��� Iº µ�� �,�� ���´�{� % 0� (4.2) 

The phasor model in tissue measurement can be illustrated in Fig. 4.2. In a tissue model having 

reduced scattering coefficient and absorption coefficients �!" � 10 +Ä36 , ��690 �Ä� �
0.12 +Ä36 and ��830 �Ä� � 0.13 +Ä36 respectively, we consider two cubic regions where 

[HbO] and [Hb] oscillate around LFO: (a) single region of hemoglobin oscillations: the region is 

a cube of 5 mm side, centered 5 mm to the right of the incident light point at a depth of 6 mm. (b) 

double region: one cube has the same size and location as (a), and another cube is 5 mm sided, 

centered 13 mm to the right of the source point at a depth of 8 mm. The oscillations of [HbO] 

and [Hb] in tissue region are visually represented by phasors. In Fig.4.2 (a), Δ�������!!�� �
5 �Ç and Δ������!!�� � 1.6 �Ç are in a relative phase of 48.6°. In Fig.4.2 (b), on the left hand 

side region, Δ�������!!��6 � 5 �Ç and Δ������!!��6 � 1.6 �Ç oscillating in phase; on the right 

hand side region, Δ�������!!��C � 5 �Ç and Δ������!!��C � 1.6 �Ç out of phase with respect to 

each other but Δ������!!��C  has a relative phase 48.6° with respect to Δ�������!!��6 . The 

relationship of hemoglobin concentration change in tissue Δ�������!!��  and Δ������!!��  and 
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those measured Δ�������! and Δ������! can be expressed in Eq. (4.3) and (4.4) (Zheng et al, 

2010) 

 

Fig. 4.2. Phasor representation of oscillations in concentrations of 

deoxyhemoglobin (thick phasors) and oxyhemoglobin (thin phasors) at localized 

cubic regions in tissue (a) single region and (b) two regions. For the simulations 

we considered a fixed light incident source position (downward dotted arrow) and 

two collection detector positions (upward arrows): the nearer one is 1 cm distant 

from the source and the farther one is 4 cm distant from the source. 
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 Δ�������! � 1A � È�� 0U �� 0V /H�0U $ H�0V2Δ������!!���É
�Ê6

� /�� �0U �� 0V H�0U $ �� �0V �� 0U H�0V2Δ�������!!��� Ë 

(4.3) 

 Δ������! � 1A � È/�� �0U �� 0V H�0V $ �� �0V �� 0U H�0U2Δ������!!���É
�Ê6

$ �� �0U �� �0V /H�0U $ H�0V2Δ�������!!��� Ë 

(4.4) 

where N represents the number of regions considered, N=1 in Fig.4.2(a) and N=2 in Fig.4.2(b); 

A � �� �0U �� 0V $ �� �0V �� 0U  and H�0Ì  are the ratios of partial over total mean path length (j=1,2 

representing two wavelengths we use) 

 H�0Ì � ���0Ì���Í0Ì� (4.5) 

Eq. (4.3) and (4.4) show that Δ������!  and Δ�������! are the linear combinations of 

Δ������!!���  and Δ�������!!��� . So if  Δ������!!���  and Δ�������!!���  in tissue regions are all 

either in phase or out-of-phase because of the physiological effects listed in Tab. 3.1, the phase 

difference between Δ������! and Δ�������! can only be either in-phase oscillations (0°) or 

out-of-phase oscillations (180°). However, if there is a time difference between the onset of these 

physiological effects, the phase shift between Δ������! and Δ�������! will be neither 0 nor 

�. In Fig.4.2 (a), the time difference happens in the same tissue region, which leads to the same 

intermediate phase difference between Δ������! and Δ�������! in both near and far source-

detector pairs. In Fig.4.2(b), the time difference happens in two different tissue regions. The left 

hand side tissue region’s in phase oscillation possibly resulted from the increase of arterial blood 

volume change; while right hand side tissue region’s out-of-phase oscillation possibly resulted 
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from the blood flow velocity increase but has a time delay to the left hand side volume change. 

These two tissue regions lead to a 25.2° phase shift in near source-detector pair while a 144.0° 

phase shift in far source-detector pair. 

This intermediate phase shift can be further interpreted in vector concepts in Fig.4.3 

 

Fig. 4.3. Phasor representation of [Hb] (thick phasors) and [HbO] (thin phasors) 

in response to physiological signals change. 
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In Fig.4.3, Increase in (a) cerebral blood volume (CBV) can lead to the in-phase (0°) relationship 

between Î��ÏÏÏÏÏ>Ð��!!���
 and Î���ÏÏÏÏÏÏÏÏÏ>Ð��!!���

. Increases in (b) blood flow velocity (BF.vel), (c) cerebral 

metabolic rate of oxygen (CMRO2), and (d) arterial saturation (SaO2) can lead to the out-of-

phase (180°) difference between Î��ÏÏÏÏÏ>Ð��!!���
 and Î���ÏÏÏÏÏÏÏÏÏ>Ð��!!���

. Taken the vector sum, in Fig.4.3 (e) 

we show that how Î��ÏÏÏÏÏ>Ð��! and Î���ÏÏÏÏÏÏÏÏÏ>Ð��! phasors can be decomposed in terms of phasors 

associated with different hemodynamic/metabolic parameters, but they have an intermediate 

phase shift ~150°. These intermediate phase shifts have been reported by Wolf et al, 2002 and 

Taga et al, 2000. In this example, measured [Hb] oscillations leading measured [HbO] 

oscillations are consistent with cerebral blood volume (CBV) changes that lead blood flow 

velocity (BF.vel) changes.  

From Fig.4.3, we can clearly see the advantage of phasor representation that it can lead to a 

practical characterization and visualization of cerebral hemodynamics and to a more 

sophisticated approach to the optical study of neurovascular coupling effects. 

Based upon the phasor, we can develop a bunch of novel representations of hemodynamic 

oscillations relationships. Because each time-point corresponds to a phasor between deoxy- and 

oxy-hemoglobin oscillations, we can generate a phasor developing movie. This changes the static 

representation of phase relationship to a dynamic/animated demonstration and even real-time 

monitor in the future. In addition, for phase-distribution in a time range, we can use sophisticated 

circular statistics to generate a phasor sector of which the average direction is the mean phase 

and the half sector width is the standard deviation. This phasor sector can be used to classify 

phase distribution patterns in different time range or during different protocols of mental 
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activation time in specific. All these phasor analytical tools will be demonstrated in detail in 

Chapter 6. 

 

4.2 Phase Synchronization Analysis 

Another method to obtain phase information from hemodynamic signals is phase 

synchronization analysis. Phase synchronization is generally defined as a specific relationship 

between two signals of arbitrary nature, including non-periodic and noisy signals. In our case, 

the hemodynamic signals filtered by relative narrow frequency band around 0.1 Hz (LFO) can be 

considered as periodic, quasiharmonic signals. Two periodic non-identical oscillators having 

phases o6�@� and oC�@� are phase synchronized if there are two integers n and m such that (Toss 

et al, 1998) 

 |�o6�@� $ ÄoC�@�| % +,�-@. (4.6) 

For periodic oscillators, we can consider it as a modulating signal in Fig.4.4 
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Fig.4.4. Envelope and instantaneous phase of frequency modulated signal. 

(Boashash, 1992). Frequency Modulated signal is -�@� � .�@�cos �o�@��; a(t) is 

envelop; o�@� is phase 

The instantaneous frequency at @ � ´ is defined as 

 º�´� � 12�  �o�@��@ ÑÒ (4.7) 

Eq.(4.7) for the pulsation J becomes: 

 J � oÓÔÕÕÕÕ�@� (4.8) 

where overbar denotes the time average. If we insert Eq. (4.8) into Eq. (4.6), we have  

 �J6 � ÄJC (4.9) 

Therefore phase synchronization implies frequency synchronization, but the opposite is not 

generally valid. 
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For a real function of time -�@�, the phase can be defined as the phase of the complex analytical 

continuation of the given function into the complex plane (Toronov et al. 2000). Using Hilbert 

Transform, the complex formation of -�@� is Ö�@� 

 Ö�@� � -�@� � I×�@� � -�@� � I Ø -�Ù���@ $ Ù� �ÙÚ
3Ú

 (4.10) 

where I � √$1; -�@� itself is the real part of Ö�@�, while ×�@� is the imaginary part of Ö�@�. 

Therefore, for signal -��@�,  i = 1, 2 we have 

 o��@� � arg zÖÝ�@�~ (4.11) 

Eq. (4.11) is the equation we used to obtain instantaneous phase value of hemodynamic 

oscillations filtered around LFO. The relative phase between deoxy-hemoglobin and oxy-

hemoglobin is 

 ³�� �,�� ���@� � �o�� ��@� $ Äo�� ���@� (4.12) 

where the n and m are defined as a ratio from Eq. (4.9) 

 �: Ä � º�� ��: º�� � (4.13) 

where º�� �� and º�� � are the frequency of oxy-hemoglobin oscillation and deoxy-hemoglobin 

oscillation respectively. 

Eq. (4.13) is very important because every time before calculating the phase difference between 

oxy- and deoxy-hemoglobin using the phase synchronization method, one should identify the 

ratio n: m and in turn change the coefficient values in Eq. (4.12). In our study, because we are 

interested in LFO and oxy- and deoxy-hemoglobin are derived by running a relative narrow band 

pass filte, the oscillation frequencies are very close. Therefore, we have always assumed that n: 
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m = 1: 1. Similar requirement exists in the Phasor method because the cross-correlation should 

be taken between two signals with comparable oscillation frequencies. Therefore, in our 

computer program for phase data analysis, we manually added a condition 

 2: 3 % º�� ��: º�� � % 3: 2 (4.14) 

For any two signals, if their frequencies ratio is less than 1.50 and larger than 0.67, we can use 

cross-correlation phasor and 1: 1 phase synchronization methods to calculate the phase 

difference; otherwise, an exception returns and the data is discarded. In future work, we should 

break this restriction and allow any n: m values by using Eq. (4.12) and improve cross-

correlation phasor method. 

The strength of phase synchronization is described by phase synchronization index (PSI). For 

random signals (like oxy- and deoxy-hemoglobin) the wrapped phase ³ over the interval �$�, �� 

has a probability distribution. The sharpness of the probability distribution Q� over ß bins can be 

quantified by Shannon entropy (Toronov et al. 2000). 

 à � $ � Q�ln �Q��É
�Ê6  (4.15) 

where Q� is the probability that a phase value belongs to an angular bin "I" (I � 1,2, … … , ß). A 

uniform distribution has the entropy value à�{ � ln�ß�. 

The phase synchronization index (PSI) is designed to characterize the deviation of a distribution 

from the uniformity 

 QE� � à�{ $ àà�{  (4.16) 

From Eq.(4.16), we have two boundary values of the PSI 
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 QE� � �0    ãäR� à � à�{:  Ù�Iº,=Ä �I-@=I�Ù@I,�1     ãäR� à � 0:    å ºÙ�+@I,� �I-@=I�Ù@I,�  (4.17) 

PSI value is the parameter to determine if two signals are phase synchronized or not. One may 

use large iterations of Gaussian random number simulation to decide the threshold value 

corresponding to noise. 

 

4.3 Circular Statistics 

Circular statistics is devoted to the development of statistical techniques for data on an angular 

scale. In contrast to a linear scale, there is no designated zero and the definition of high and low 

values is arbitrary. For example, a phase of 1° is much closer to 359° than to 90°, although 

mathematically the difference between 90° and 1° is less than 359° and 1°. Another example: in 

order to calculate the mean value of two phase values: 1° and 359°, if one uses linear statistics, 

one would get 180°, which is incorrect, since both angles point to a common direction of 0°. In 

this section, we will briefly introduce the circular statistics we used. 

For a sample of the angular variable æ of size N, the angles are first transformed to unit vectors 

in the two-dimensional plane by 

 =� � �cos�æ�� , sin�æ��� (4.18) 

The mean resultant vector =ç is therefore given by 

 =ç � è1ß � cos�æ��� , 1ß � sin�æ��� é (4.19) 

From Eq. (4.19) we have two parameters to describe angular average (Fish, 1995) 
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 =R-Ù�@.�@ DR+@,= �R�ê@ä:  µ �  ë=çë 

+I=+Ù�.= ÄR.�:  æÕ � arg �=ç� 
(4.20) 

The median direction of a sample æ is the direction for which half of the data points fall on 

either side. For circular data, we have to find the diameter of the unit circle that divides the 

whole data points into two equally sized groups. The median is the endpoint of the diameter 

closer to the center of mass of the data. If the data points are drawn from a uniform distribution 

or evenly spaced around the circle, there’s no well-defined median direction. 

The circular variance e�µ of the variable æ is closely related to the length of the mean resultant 

vector 

 e�µ � 1 $ µ (4.21) 

Because the mean resultant vector length is in the range of 0 and 1, the circular variance e�µ is 

also bounded in the interval�0,1� . If all samples point into the same direction, µ � 1  and 

e�µ � 0; if all sample are spread uniformly around the circle, µ � 0 and e�µ will be 1. Hence, 

the circular variance e�µ is indicative of the spread in a data set. 

There are two definitions for standard deviation. First is defined as (Fish, 1995) 

 -@� � �2�1 $ µ� (4.22) 

Second is defined as 

 -@�4 � √$2 ln µ (4.23) 

Generally, the first one is preferred, because it is bounded in the interval �0, √2�; while the 

second one ranges from 0 to ∞. 
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A common question in circular statistics is whether a data sample is distributed uniformly around 

the circle or has a common mean direction. One of these tests for circular uniformity is Rayleigh 

test which asks how large the resultant vector length µ  must be to indicate a non-uniform 

distribution. It is particularly suited for detecting a unimodal deviation from uniformity. The null 

hypothesis is 

H0: The population is distributed uniformly around the circle 

With alternative hypothesis 

Ha: The population is a unimodal distribution 

The approximate p-value under H0 is computed as 

 ì � Rwí6NîÉNîzÉV3ïðV~3�6NCÉ��
 

(4.24) 

where µ� � µ · ß. This approximation is valid up to three decimal places for ß as small as 10. 

The Rayleigh test can also be applied to axial data after suitable transformation. Importantly, it 

assumes sampling from a von Mises distribution. 

The von Mises distribution is a continuous probability distribution on the circle. It is similar to 

the normal distribution wrapped on the circle. It can be considered a circular analogue of the 

normal distribution. Its probability density function is (Fish, 1995) 

 º�æ|�, � � � Rxñòó �ô38�2��4���  (4.25) 

where � is the mean value of sample of æ; � is the concentration parameter and 1/� is analogous 

to �C in the normal distribution; and �4 is the modified Bessel function of order zero. 
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Circular statistics also has its own statistical test analogue of the two sample t-test or the one-

factor ANOVA. It is called Watson-Williams test (Fish, 1995), which assesses the question 

whether the mean direction of two or more samples are identical or not. 

H0: All of s groups share a common mean direction, i.e. æ6ÕÕÕÕ � æCÕÕÕÕ � õ � æ!ÕÕÕ 

Ha: Not all s groups have a common mean direction 

Rejecting the null hypothesis only provides evidence that not all of the s groups come from a 

population with equal mean direction, not if all groups have pairwise differing mean directions 

or evidence of which of the groups differ. The test statistic is calculated by 

 � � ö �ß $ -�z∑ µø!øÊ6 $ µ~�- $ 1�zß $ ∑ µø!øÊ6 ~ (4.26) 

where µ is the mean resultant vector length when all samples are pooled and µø  is the mean 

resultant vector length computed on the j-th group alone. The correction factor ö � 1 � Wùx, 

where � is the maximum likelihood estimate of the concentration parameter of a von Mises 

distribution with resultant vector length =ú . =ú  is the mean resultant vector length of the s 

resultant vector =ø computed for each group individually. The obtained value of the test statistic 

is then compared to a critical value at the å level obtained from �û�6�,6,É3C (which can be found 

in a table of F test). 

The Watson-Williams test assumes underlying von Mises distribution with equal concentration 

parameter, but has proven to be fairly robust against deviations from these assumptions. The 

sample size for each individual sample should be at least 5. And bin widths should be no larger 

than 10°. 
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There is a multi-sample test for equal median directions, which is a circular analogue to the 

Kruskal-Wallis test. 

 H0: Any of s groups share a common median direction, i.e. æü6 � æüC � õ � æü! 

Ha: Not all s groups have a common median direction 

The test statistic is computed as 

 Q � ßCÇ�ß $ Ç� � Ä�C��
!

�Ê6 $ ßÇß $ Ç (4.27) 

where �� is the number of samples in each group. We first compute the total median direction æü 

by pooling all groups. Then we compute the number Ä� of samples within the i-th group, whose 

angular distance �zæø� , æü~ to the total median is negative, where æø�  indicates the j-th sample 

from the i-th group. The result of Eq.(4.27) is compared to the upper 1 $ å-percentile of a ý!36C  

distribution. This statistical test also requires the sample size for each group greater than 10. 

 

4.4 Summary 

In this chapter, we introduced the phasor concept used to describe the phase relationship of oxy- 

and deoxy-hemoglobin and also for describing the phase relationship of physiological parameters. 

From the phasor representation, we can develop various derivatives for experimental data 

demonstration. The phasor is a novel approach to near-infrared functional imaging and we will 

use it in the following chapters. Besides phasor, phase synchronization analysis also provides a 

way to analyze the phase relationship of hemodynamic signals. The instantaneous frequency and 

phase approach together with the phasor method offers two effective tools of real-time phase 



49 

 

analysis. Because of the angular characteristics of phases, we have to use the circular statistics 

tools instead of linear statistics. 
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5. Experimental Methods 

5.1 Instrumentation 

The optical instrument was a near-infrared optical spectrometer from ISS, Inc., Champaign, IL 

(OxiplexTS). In our studies, there are two detector channels (A and B) and a total of 16 laser 

diodes, 8 emitting at a wavelength of 690 nm and 8 at 830 nm. The wavelengths choice is based 

upon the absorption spectra window in Fig. 3.1. All sources and detectors are coupled to optical 

fibers. The source and detector fibers are 3 m long with 0.4 and 3 mm in core diameter 

respectively. They were arranged on the optical helmet (in Fig. 5.1) according to two circular 

arrays with the detectors at the centers and the laser sources at four locations of the perimeters. 

The source-detector distance is 3 cm for all 8 source-detector pairs. The source and detector 

fibers were firmly held in the pads on the helmet and somewhat flexible to adapt to the curved 

surface of the subjects’ forehead. The helmet is fixed by an adjustable bolt. Each probe received 

one detector fiber (from channel A for the right forehead side and from channel B for the left 

side) and four pairs of individual source fibers (each pair consisting of one fiber for 690 nm and 

one fiber for 830 nm). The connection of sources and detectors are schematically shown in Fig. 

5.1.  The acquisition rate of the optical system was set to 6.25 Hz, so that we collected on data 

point every 160 millisecond. With the same sampling rate we also monitored arterial oxygen 

saturation and heart rate by means of a pulse oximeter (Nellcor N-200) and also the respiration 

by means of a chest gauge (Sleepmate/Newlife Technologies). 
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Fig. 5.1. (Upper Left) the optical helmet with the source (transparent) and detector 

(black) fibers. (Upper Right) schematic of the experimental apparatus. (Bottom) 

arrangement of sources and detectors, the source ids are clockwise on either side, 

detector A is placed on the right side of the forehead; detector B on the left side 

  

1 2 
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8 7 

A B 

3cm 

Right Side Left Side 
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5.2 Experimental Protocol 

Rotating Cube Experiment 

Five healthy subjects completed seven cognitive tasks where they viewed five sides of a rotating 

cube on a computer screen. The side faces of the cube consisted of sections of different colors. In 

the experiment, the cube presented to the subject had either uniform gray or three/four sections 

of different colors, and the number of colored sections defined the level of mental workload. 

Some subjects were challenged with workload 0 (uniform gray) and workload 3 (three colors), 

while some subjects were challenged with workload 0 and workload 4 (four colors). The 

experimental schematic was shown in Fig. 5.2. 

            

Fig. 5.2. Schematic of rotating cube presented to the subjects, (Left) workload 0 

with a uniform gray color; (Right) workload 3 with a three different colors. 

 

Workload 0 Workload 3  
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During each task, the subjects were asked to count the total number of sections of each color in 

the five cube sides (lateral and top sides) and their final answer was recorded either by vocal or 

manually input by arrow buttons on keyboard for verification. Each lateral face of the cube was 

presented to the subjects for 8 seconds; then the cube underwent a 90° rotation lasting about 3 

seconds and stopped when the next lateral face was facing the subject. The process was repeated 

three times for a total rotation angle of 270° during which four lateral faces of the cube were 

shown to the subjects. Four extra seconds were finally allowed at the end of the last rotation for 

the examinations of the colored sections on the top face. The period of time during which five 

cube sides were presented to the subjects, which lasted 45 seconds, defined a workload period. 

Workload 0 is a uniform gray colored cube rotating in the same way as in workload 3 but 

subjects were asked to clear their minds and not to engage in any particular mental task. Each 

workload was followed by a 40 seconds of rest, for a total trial period of 85 seconds. Two 

different workload levels (0, 3) or (0,4 for some subjects) were presented randomly six times to 

the subjects, for a total measurement duration of about 20 minutes including one to three minutes 

of initial baseline.  

 

Finger Tapping Experiment 

One subject completed two finger tapping tasks in different days. The helmet setup was similar 

to the one in Fig. 5.1, but the source-detector pairs were located on the motor cortex instead of 

frontal hemispheres as shown in Fig. 5.3. The subject was asked to sit comfortably on the chair 

with right hand naturally put on the table. After a three to four minutes baseline, the subject 

started using one’s thumb finger to tap in sequence the first, middle, ring, little, ring, middle, first 
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finger forth and back. This finger tapping workload lasted for 2 minutes and followed by a 2 

minutes rest. These trials repeated by 5 times while we collected heart rate, respiration and pulse 

simultaneously. 

           

Fig. 5.3. (Left) Motor cortex location (dark red) on the human brain. (Right) The 

finger tapping: thumb taps other four fingers in a sequence of first, middle, ring, 

little, ring, middle, first… forth and back. 
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6. Results 

The continuous intensities of the optical data were processed by calculating an average rest value, 

defined as �4, in order to apply the modified Beer-Lambert Law (described in Chapter 3.4) to 

translate intensity changes into absorption changes. The changes of oxy-hemoglobin Δ����� and 

deoxy-hemoglobin concentrations Δ���� were calculated from the data at 3 cm source-detector 

distance by assuming differential path-length factors (DPF, derived from Eq. 3.15) of 6.5 and 5.8 

at the wavelengths of 690 nm and 830 nm respectively. After the temporal trends of Δ����� and 

Δ���� were detrended with a third order polynomial algorithm, we computed a folding average 

to the 6 repetitions of workload 0 and workload 4 respectively. We studied the statistical 

significance of the points in the folding average by using a modified t-test at the level of 

significance � � 5%, which offers a heuristic method to control the rate of statistical errors of 

type I (false positives) when the data points are correlated (Sassaroli et al. 2008). The results of 

folding averages for rotating cube experiments are shown from Fig. 6.1 to Fig. 6.7. In each figure, 

the folding average relative to changes in oxy-hemoglobin concentration Δ����� is located on 

the left panel and the relative to changes in deoxy-hemoglobin concentration Δ���� is located on 

the right panel. Every panel shows eight near-infrared channels from left to right and upper to 

lower. The detailed arrangement of sour-detector channels can be found in Fig. 5.1. 

The results for finger tapping are shown from Fig. 6.8 to Fig. 6.9. The labels are the same as 

rotating cube. However, due to the hair at the motor cortex location, signals from channel 1, 2, 3, 

4 and 6 are too weak to be detected. The subject was asked to perform finger tapping using right 

hand, so channel 5, 7 and 8 detected relative strong optical signal changes in finger tapping 

workload. 
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Fig. 6.1 (A). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 0 on Subject A (trial 1). X-axis is 

the time in seconds, 45 sec workload 0 followed by 40 sec rest 

 

Fig. 6.1 (B). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 4 on Subject A (trial 1). X-axis is 

the time in seconds, 45 sec workload 4 followed by 40 sec rest 
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Fig. 6.2 (A). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 0 on Subject A (trial 2). X-axis is 

the time in seconds, 45 sec workload 0 followed by 40 sec rest 

 

Fig. 6.2 (B). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 4 on Subject A (trial 2). X-axis is 

the time in seconds, 45 sec workload 4 followed by 40 sec rest 
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Fig. 6.3 (A). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 0 on Subject B. X-axis is the time 

in seconds, 45 sec workload 0 followed by 40 sec rest 

 

Fig. 6.3 (B). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 4 on Subject B. X-axis is the time 

in seconds, 45 sec workload 4 followed by 40 sec rest 
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Fig. 6.4 (A). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 0 on Subject C. X-axis is the time 

in seconds, 135 sec workload 0 followed by 180 sec rest 

 

Fig. 6.4 (B). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 3 on Subject C. X-axis is the time 

in seconds, 135 sec workload 3 followed by 180 sec rest 
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Fig. 6.5 (A). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 0 on Subject D (trial 1). X-axis is 

the time in seconds, 45 sec workload 0 followed by 40 sec rest 

 

Fig. 6.5 (B). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 4 on Subject D (trial 1). X-axis is 

the time in seconds, 45 sec workload 4 followed by 40 sec rest 
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Fig. 6.6 (A). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 0 on Subject D (trial 2). X-axis is 

the time in seconds, 45 sec workload 0 followed by 40 sec rest 

 

Fig. 6.6 (B). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 4 on Subject D (trial 2). X-axis is 

the time in seconds, 45 sec workload 4 followed by 40 sec rest 

0 50

-2

0

2

∆[HbO] (µ M)

Chn 1
0 50

-2

0

2

Chn 2
0 50

-2

0

2

Chn 3
0 50

-2

0

2

Chn 4

0 50

-2

0

2

Chn 5
0 50

-2

0

2

Chn 6
0 50

-2

0

2

Chn 7
0 50

-2

0

2

Chn 8

0 50
-1

0

1
∆[Hb] (µ M)

Chn 1
0 50

-1

0

1

Chn 2
0 50

-1

0

1

Chn 3
0 50

-1

0

1

Chn 4

0 50
-1

0

1

Chn 5
0 50

-1

0

1

Chn 6
0 50

-1

0

1

Chn 7
0 50

-1

0

1

Chn 8

0 50

-2

0

2

∆[HbO] (µ M)

Chn 1
0 50

-2

0

2

Chn 2
0 50

-2

0

2

Chn 3
0 50

-2

0

2

Chn 4

0 50

-2

0

2

Chn 5
0 50

-2

0

2

Chn 6
0 50

-2

0

2

Chn 7
0 50

-2

0

2

Chn 8

0 50

-0.5

0

0.5

∆[Hb] (µ M)

Chn 1
0 50

-0.5

0

0.5

Chn 2
0 50

-0.5

0

0.5

Chn 3
0 50

-0.5

0

0.5

Chn 4

0 50

-0.5

0

0.5

Chn 5
0 50

-0.5

0

0.5

Chn 6
0 50

-0.5

0

0.5

Chn 7
0 50

-0.5

0

0.5

Chn 8



62 

 

 

Fig. 6.7 (A). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 0 on Subject E. X-axis is the time 

in seconds, 45 sec workload 0 followed by 40 sec rest 

 

Fig. 6.7 (B). Folding average of changes in Δ����� on left panels and of changes in Δ���� on 

right panels measured for 6 repeated Rotating Cube workload 4 on Subject E. X-axis is the time 

in seconds, 45 sec workload 4 followed by 40 sec rest 
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Fig. 6.8. Folding average of changes in Δ����� on left panels and of changes in Δ���� on right 

panels measured for 5 repeated finger tapping on Subject A (trial 1). X-axis is the time in 

seconds, 120 sec finger tapping followed by 120 sec rest. Channel 5, 7 and 8 are valid 

 

Fig. 6.9. Folding average of changes in Δ����� on left panels and of changes in Δ���� on right 

panels measured for 5 repeated finger tapping on Subject A (trial 2). X-axis is the time in 

seconds, 120 sec finger tapping followed by 120 sec rest. Channel 5, 7 and 8 are valid 
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After folding average, the temporal trends of Δ����� and Δ���� are bandpass filtered at the 

LFOs (0.05 to 0.10 Hz) by an elliptic bandpass filter. The frequency response of the bandpass 

filter is shown in Fig. 6.10. 

 

Fig. 6.10. The magnitude (dB) and phase response of bandpass filter (0.05 to 0.10 Hz) 

 

Figure. 6.11 shows a piece of data for example from channel 8 on subject A rotating cube trial 1. 

In the upper subplot are shown the raw oxyhemoglobin change in thin and red and raw deoxy-

hemoglobin change in thick and black; in the lower subplot are shown in the same time scale, 

Δ����� and Δ���� after band passed filtered in the band (0.05, 0.10) Hz. Comparing before and 
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after the elliptic bandpass filter, we can see that the characteristics oscillations around 0.10 Hz in 

the raw data are preserved and enhanced in the filtered data. 

 

Fig. 6.11. Example of raw data (top) and bandpass filtered (0.05, 0.10) Hz data 

(bottom) from rotating cube experiment. Thin red plot is change of oxy-

hemoglobin concentration Δ����� while thick black plot is change of deoxy-

hemoglobin concentration Δ���� 
 

Based on the hemodynamic oscillations filtered around LFO, we can use the phase method 

discussed in the previous chapters to investigate the phase difference between deoxy-hemoglobin 

and oxy-hemoglobin concentration changes. In phase synchronization analysis method, we 
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we used Eq. (4.11) to get the phase value of Δ���� and Δ�����. After assuming the frequencies 

of Δ���� and Δ����� are close or n: m ~ 1: 1, we can use Eq. (4.12) to calculate the phase 

difference ³�� �,�� ��. This is also called instantaneous phase value. On the other hand, after 

isolating 20 sec oscillations centered around each time point in the filtered Δ���� and Δ�����, 
we used the phasor cross-correlation method explained in Fig. 4.1 to calculate the phase 

difference ³�� �,�� �� by finding ́ �{and the corresponding phase value of the cross-correlation 

between Δ���� and Δ�����. The hemodynamic oscillations in Fig. 6.11 can be investigated by 

cross-correlation phasor method and phase synchronization analysis method to get the phase 

difference shown in Fig. 6.12: 

 

Fig. 6.12. Example of how phasor and PSI analysis method work. These plots 

refer to the same data (and the same temporal section) of Fig. 6.11. Upper subplot 

is the filtered Δ���� in thick black plot and filtered Δ����� in thin red plot. 
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Lower subplot is the corresponding phase difference between Δ���� and Δ����� 
in degree: blue and solid plot is calculated by PSI analysis method while red and 

dot plot is calculated by phasor method. 

From Fig.6.12, we can see that the results from cross-correlation phasor method and phase 

synchronization analysis method match each other very well. Rather than studying the single 

phase value, we would like to investigate the phase distribution during workload 0 and workload 

4, respectively. Also we would like to compare the phase distributions in task and rest and find 

out if there is any correlation in phase changes and the stimulus (either cognitive challenge or 

finger tapping). We introduced a circular histogram in which the entire 360° angle is divided into 

36 bins; each bin contains the frequency rate of the phase values located around a circle. 

Therefore, for all the experiments, we calculated the Δ���� and Δ�����, phase distribution of 

workload 0 and workload 4 according to both methods (phasor method and PSI method). From 

Eq. (4.14), we discarded the point where the relative ratio of frequency between deoxy- and oxy-

hemoglobin is either less than 2/3 or more than 3/2. We applied a Rayleigh test on circular 

statistics (Chapter 4) on the processed phase distribution to check if it is uniform or not. If the 

distribution is not uniform, we draw a red arrow in the center of the circular histogram map, of 

which direction is the mean value of the phase distribution and length is the resultant average 

length. On the contrary, if the distribution is uniform, we draw a blue arrow. Of course, the blue 

arrow usually is much shorter than the red arrow since the resultant length of uniform 

distribution is close to zero.  

Phase distributions in all experiments are shown as follow. Note that Fig. 6.20 and Fig. 6.21 only 

show the results from Channel 5, 7 and 8 because other channels have low Signal/Noise ratio. 
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Fig. 6.13 (A). Circular histogram of workload 0 on Subject A (trial 1) by Phasor method 

 
Fig. 6.13 (B). Circular histogram of workload 4 on Subject A (trial 1) by Phasor method 
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Fig. 6.13 (C). Circular histogram of workload 0 on Subject A (trial 1) by PSI method 

 
Fig. 6.13 (D). Circular histogram of workload 4 on Subject A (trial 1) by PSI method 
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Fig. 6.14 (A). Circular histogram of workload 0 on Subject A (trial 2) by Phasor method 

 
Fig. 6.14 (B). Circular histogram of workload 4 on Subject A (trial 2) by Phasor method 
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Fig. 6.14 (C). Circular histogram of workload 0 on Subject A (trial 2) by PSI method 

 
Fig. 6.14 (D). Circular histogram of workload 4 on Subject A (trial 2) by PSI method 
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Fig. 6.15 (A). Circular histogram of workload 0 on Subject B by Phasor method 

 
Fig. 6.15 (B). Circular histogram of workload 4 on Subject B by Phasor method 
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Fig. 6.15 (C). Circular histogram of workload 0 on Subject B by PSI method 

 
Fig. 6.15 (D). Circular histogram of workload 4 on Subject B by PSI method 
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Fig. 6.16 (A). Circular histogram of workload 0 on Subject C by Phasor method 

 
Fig. 6.16 (B). Circular histogram of workload 3 on Subject C by Phasor method 
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Fig. 6.16 (C). Circular histogram of workload 0 on Subject C by PSI method 

 
Fig. 6.16 (D). Circular histogram of workload 3 on Subject C by PSI method 
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Fig. 6.17 (A). Circular histogram of workload 0 on Subject D (trial 1) by Phasor method 

 
Fig. 6.17 (B). Circular histogram of workload 4 on Subject D (trial 1) by Phasor method 
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Fig. 6.17 (C). Circular histogram of workload 0 on Subject D (trial 1) by PSI method 

 
Fig. 6.17 (D). Circular histogram of workload 4 on Subject D (trial 1) by PSI method 
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Fig. 6.18 (A). Circular histogram of workload 0 on Subject D (trial 2) by Phasor method 

 
Fig. 6.18 (B). Circular histogram of workload 4 on Subject D (trial 2) by Phasor method 
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Fig. 6.18 (C). Circular histogram of workload 0 on Subject D (trial 2) by PSI method 

 
Fig. 6.18 (D). Circular histogram of workload 4 on Subject D (trial 2) by PSI method 
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Fig. 6.19 (A). Circular histogram of workload 0 on Subject E by Phasor method 

 
Fig. 6.19 (B). Circular histogram of workload 4 on Subject E by Phasor method 
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Fig. 6.19 (C). Circular histogram of workload 0 on Subject E by PSI method 

 
Fig. 6.19 (D). Circular histogram of workload 4 on Subject E by PSI method 
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Fig. 6.20 (A). Circular histogram of rest on Subject A (trial 1) by Phasor method 

 

Fig. 6.20 (B). Circular histogram of finger tapping on Subject A (trial 1) by Phasor method 

 

Fig. 6.20 (C). Circular histogram of rest on Subject A (trial 1) by PSI method 

 

Fig. 6.20 (D). Circular histogram of finger tapping on Subject A (trial 1) by PSI method 
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Fig. 6.21 (A). Circular histogram of rest on Subject A (trial 2) by Phasor method 

 

Fig. 6.21 (B). Circular histogram of finger tapping on Subject A (trial 2) by Phasor method 

 

Fig. 6.21 (C). Circular histogram of rest on Subject A (trial 2) by PSI method 

 

Fig. 6.21 (D). Circular histogram of finger tapping on Subject A (trial 2) by PSI method 
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Another representation of the phase distribution is the phasor-sector, of which the pie chart width 

denotes the standard deviation of phases defined in Eq. (4.22), the arrow direction is the average 

phase value and the arrow length is the resultant mean vector length. Results are shown below: 

Only PSI result shown in table due to similar results of PSI and Phasor 

Subject 
ID 

s-d 
Channel 

ID 
Workload 

Average 
Phase 

(degree) 

Resultant 
Vector 
Length 

Standard 
Deviation 
(degree) 

p-value of 
Rayleigh 
/Uniform 

Test 

p-value of 
Watson-
Williams 

Test/circular 
ANOVA Test 

Subject A 
(trial 1) –
Rotating 

Cube 

1 
Wkl0 121.6 0.79 37.3 0.0000 

0.0000 
Wkl4 137.4 0.78 38.2 0.0000 

2 
Wkl0 135.6 0.65 47.8 0.0000 

0.0025 
Wkl4 129.4 0.56 54.0 0.0000 

3 
Wkl0 128.6 0.83 33.5 0.0000 

0.0000 
Wkl4 136.6 0.86 30.1 0.0000 

4 
Wkl0 145.9 0.82 34.5 0.0000 

0.0059 
Wkl4 142.8 0.88 28.1 0.0000 

5 
Wkl0 216.9 0.48 58.3 0.0000 

0.0000 
Wkl4 272.0 0.34 65.8 0.0000 

6 
Wkl0 359.3 0.68 45.3 0.0000 

0.4223 
Wkl4 1.3 0.34 65.4 0.0000 

7 
Wkl0 29.4 0.17 73.9 0.0000 

0.0000 
Wkl4 5.4 0.48 58.2 0.0000 

8 
Wkl0 94.0 0.55 54.1 0.0000 

0.0000 
Wkl4 120.7 0.26 69.5 0.0000 

Subject A 
(trial 2) –
Rotating 

Cube 

1 
Wkl0 178.7 0.50 57.5 0.0000 

0.6408 
Wkl4 179.6 0.68 45.8 0.0000 

2 
Wkl0 118.3 0.29 68.1 0.0000 

0.0000 
Wkl4 195.0 0.15 74.6 0.0000 

3 
Wkl0 165.7 0.69 45.2 0.0000 

0.0000 
Wkl4 156.4 0.71 43.6 0.0000 

4 
Wkl0 143.2 0.23 71.0 0.0000 

0.0000 
Wkl4 169.4 0.49 57.9 0.0000 

5 
Wkl0 143.1 0.58 52.4 0.0000 

0.0000 
Wkl4 168.5 0.65 48.0 0.0000 

6 
Wkl0 143.8 0.69 44.8 0.0000 

0.0000 
Wkl4 161.2 0.70 44.3 0.0000 

7 
Wkl0 134.8 0.45 59.9 0.0000 

0.0000 
Wkl4 153.6 0.81 35.4 0.0000 

8 
Wkl0 174.1 0.78 38.1 0.0000 

0.0000 
Wkl4 167.4 0.76 39.7 0.0000 

Subject B 
–Rotating 

Cube 

1 
Wkl0 119.7 0.34 65.6 0.0000 

0.0000 
Wkl4 88.4 0.51 56.5 0.0000 

2 
Wkl0 176.3 0.60 51.4 0.0000 

0.0000 
Wkl4 143.8 0.65 47.6 0.0000 
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3 
Wkl0 118.9 0.43 61.2 0.0000 

0.0000 
Wkl4 135.6 0.59 51.7 0.0000 

4 
Wkl0 190.6 0.69 45.1 0.0000 

0.0000 
Wkl4 172.8 0.67 46.5 0.0000 

5 
Wkl0 151.1 0.71 43.9 0.0000 

0.0000 
Wkl4 139.7 0.80 36.2 0.0000 

6 
Wkl0 122.1 0.62 49.7 0.0000 

0.0000 
Wkl4 82.1 0.52 56.1 0.0000 

7 
Wkl0 153.8 0.50 57.3 0.0000 

0.0000 
Wkl4 137.8 0.45 60.0 0.0000 

8 
Wkl0 168.1 0.75 40.9 0.0000 

0.0000 
Wkl4 159.4 0.63 49.4 0.0000 

Subject C 
–Rotating 

Cube 

1 
Wkl0 175.5 0.78 38.1 0.0000 

0.0000 
Wkl3 170.9 0.83 33.2 0.0000 

2 
Wkl0 173.5 0.70 44.1 0.0000 

0.0000 
Wkl3 181.4 0.61 50.7 0.0000 

3 
Wkl0 172.3 0.87 28.9 0.0000 

0.6187 
Wkl3 172.0 0.78 38.2 0.0000 

4 
Wkl0 190.1 0.75 40.8 0.0000 

0.0000 
Wkl3 184.0 0.82 34.7 0.0000 

5 
Wkl0 154.9 0.87 29.2 0.0000 

0.0012 
Wkl3 153.1 0.84 32.2 0.0000 

6 
Wkl0 172.6 0.84 32.3 0.0000 

0.0000 
Wkl3 167.5 0.87 29.8 0.0000 

7 
Wkl0 171.4 0.87 29.0 0.0000 

0.0666 
Wkl3 170.5 0.90 25.3 0.0000 

8 
Wkl0 157.3 0.87 29.1 0.0000 

0.0198 
Wkl3 158.7 0.83 33.3 0.0000 

Subject D 
(trial 1) –
Rotating 

Cube 

1 
Wkl0 186.2 0.70 44.2 0.0000 

0.0910 
Wkl4 183.5 0.74 41.0 0.0000 

2 
Wkl0 156.8 0.56 53.6 0.0000 

0.0006 
Wkl4 163.0 0.76 39.7 0.0000 

3 
Wkl0 158.4 0.42 61.8 0.0000 

0.0000 
Wkl4 174.8 0.52 55.9 0.0000 

4 
Wkl0 173.6 0.87 29.4 0.0000 

0.0000 
Wkl4 186.5 0.70 44.1 0.0000 

5 
Wkl0 139.1 0.48 58.7 0.0000 

0.0000 
Wkl4 156.3 0.70 44.5 0.0000 

6 
Wkl0 170.7 0.51 56.5 0.0000 

0.0000 
Wkl4 179.8 0.69 45.4 0.0000 

7 
Wkl0 170.8 0.44 60.6 0.0000 

0.0000 
Wkl4 191.9 0.47 58.7 0.0000 

8 
Wkl0 235.0 0.06 78.4 0.0011 

0.0000 
Wkl4 161.4 0.39 63.1 0.0000 

Subject D 
(trial 2) –
Rotating 

Cube 

1 
Wkl0 152.5 0.27 69.1 0.0000 

0.0000 
Wkl4 223.6 0.47 59.1 0.0000 

2 
Wkl0 163.9 0.65 47.9 0.0000 

0.0000 
Wkl4 198.7 0.67 46.2 0.0000 

3 Wkl0 184.5 0.57 53.0 0.0000 0.0000 
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Wkl4 203.4 0.64 48.6 0.0000 

4 
Wkl0 191.7 0.56 53.7 0.0000 

0.0010 
Wkl4 185.1 0.65 48.2 0.0000 

5 
Wkl0 163.0 0.58 52.6 0.0000 

0.0000 
Wkl4 173.8 0.50 57.3 0.0000 

6 
Wkl0 167.8 0.52 55.9 0.0000 

0.0000 
Wkl4 186.1 0.73 42.4 0.0000 

7 
Wkl0 175.5 0.51 56.9 0.0000 

0.2265 
Wkl4 178.1 0.63 49.6 0.0000 

8 
Wkl0 107.2 0.33 66.3 0.0000 

0.0218 
Wkl4 99.2 0.23 70.9 0.0000 

Subject E 
–Rotating 

Cube 

1 
Wkl0 33.5 0.41 62.1 0.0000 

0.0000 
Wkl4 53.9 0.60 51.4 0.0000 

2 
Wkl0 100.1 0.44 60.5 0.0000 

0.0000 
Wkl4 116.2 0.64 48.7 0.0000 

3 
Wkl0 74.2 0.43 61.1 0.0000 

0.0230 
Wkl4 69.1 0.69 45.2 0.0000 

4 
Wkl0 175.4 0.38 63.8 0.0000 

0.0000 
Wkl4 143.8 0.60 50.9 0.0000 

5 
Wkl0 151.7 0.42 61.4 0.0000 

0.1842 
Wkl4 154.9 0.62 50.1 0.0000 

6 
Wkl0 3.8 0.47 58.9 0.0000 

0.0014 
Wkl4 355.0 0.38 64.0 0.0000 

7 
Wkl0 223.1 0.21 72.0 0.0000 

0.0000 
Wkl4 87.5 0.29 68.3 0.0000 

8 
Wkl0 191.0 0.61 50.6 0.0000 

0.0003 
Wkl4 183.4 0.55 54.4 0.0000 

Subject A 
(trial 1) –

Finger 
Tapping 

5 
Rest 140.1 0.37 64.3 0.0000 

0.0000 
Tapping 158.6 0.47 58.9 0.0000 

7 
Rest 181.4 0.47 59.2 0.0000 

0.0000 
Tapping 169.5 0.34 65.9 0.0000 

8 
Rest 91.8 0.46 59.3 0.0000 

0.0087 
Tapping 96.5 0.42 61.4 0.0000 

Subject A 
(trial 2) –

Finger 
Tapping 

5 
Rest 186.7 0.18 73.3 0.0000 

0.0000 
Tapping 218.3 0.19 73.1 0.0000 

7 
Rest 173.4 0.13 75.6 0.0000 

0.0002 
Tapping 185.5 0.09 77.0 0.0000 

8 
Rest 37.3 0.22 71.5 0.0000 

0.0000 
Tapping 22.4 0.25 70.2 0.0000 

Tab. 6.1. Table of phase distribution statistical results: for each workload on each experiment, 

average phase value, resultant mean vector length, standard deviation of phase distribution, and 

Rayleigh test and Watson-Williams test between workload 0 and workload 4 (or finger tapping). 

P-value in shadow means not to reject the null hypothesis; others reject and accept Ha 
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Fig. 6.22 (A). Phasor-sector on subject A (trial 1) calculated by Phasor method. Sector in white 

is Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 

 

Fig. 6.22 (B). Phasor-sector on subject A (trial 1) calculated by PSI method. Sector in white is 

Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 
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Fig. 6.23 (A). Phasor-sector on subject A (trial 2) calculated by Phasor method. Sector in white 

is Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 

 

 

Fig. 6.23 (B). Phasor-sector on subject A (trial 2) calculated by PSI method. Sector in white is 

Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 
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Fig. 6.24 (A). Phasor-sector on subject B calculated by Phasor method. Sector in white is Wkl 0 

and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 

 

 

Fig. 6.24 (B). Phasor-sector on subject B calculated by PSI method. Sector in white is Wkl 0 and 

gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 
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Fig. 6.25 (A). Phasor-sector on subject C calculated by Phasor method. Sector in white is Wkl 0 

and gray is Wkl 3. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 3 

 

 

Fig. 6.25 (B). Phasor-sector on subject C calculated by PSI method. Sector in white is Wkl 0 and 

gray is Wkl 3. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 3 
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Fig. 6.26 (A). Phasor-sector on subject D (trial 1) calculated by Phasor method. Sector in white 

is Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 

 

Fig. 6.26 (B). Phasor-sector on subject D (trial 1) calculated by PSI method. Sector in white is 

Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 
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Fig. 6.27 (A). Phasor-sector on subject D (trial 2) calculated by Phasor method. Sector in white 

is Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 

 

 

Fig. 6.27 (B). Phasor-sector on subject D (trial 2) calculated by PSI method. Sector in white is 

Wkl 0 and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 
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Fig. 6.28 (A). Phasor-sector on subject E calculated by Phasor method. Sector in white is Wkl 0 

and gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 

 

Fig. 6.28 (B). Phasor-sector on subject E calculated by PSI method. Sector in white is Wkl 0 and 

gray is Wkl 4. Arrow in blue is resultant vector in Wkl 0 and red in Wkl 4 
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Fig. 6.29 (A). Phasor-sector on subject A (trial 1) calculated by Phasor method. Sector in white 

is Rest and gray is Finger Tapping. Arrow in blue is resultant vector in Rest and red in Finger 

Tapping 

 

Fig. 6.29 (B). Phasor-sector on subject A (trial 1) calculated by PSI method. Sector in white is 

Rest and gray is Finger Tapping. Arrow in blue is resultant vector in Rest and red in Finger 

Tapping 
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Fig. 6.30 (A). Phasor-sector on subject A (trial 2) calculated by Phasor method. Sector in white 

is Rest and gray is Finger Tapping. Arrow in blue is resultant vector in Rest and red in Finger 

Tapping 

 

Fig. 6.30 (B). Phasor-sector on subject A (trial 2) calculated by PSI method. Sector in white is 

Rest and gray is Finger Tapping. Arrow in blue is resultant vector in Rest and red in Finger 

Tapping 

 

The previous results are statistical in nature, but we don’t know the dynamic of the phase 

temporal evolution during the experiment. Knowing the phase evolution is important because we 

can understand how the physiological processes change from one stage to another stage by the 

stimulus. We have developed a TARGET representation to demonstrate how the phase changes 

as a function of time. Fig. 6.31 shows the TARGET of subject D (trial 2) in rotating cube 

experiment. 
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Channel 2 (Subject D trial 2) 
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Channel 3 (Subject D trial 2) 

Channel 4 (Subject D trial 2) 
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 Channel 5 (Subject D trial 2) 

Channel 6 (Subject D trial 2) 
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 Channel 7 (Subject D trial 2) 

 Channel 8 (Subject D trial 2) 

Fig. 6.31. TARGET phase representation on rotating cube Subject D (trial 2). 
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In Fig. 6.31, we showed TARGET phase representation on rotating cube Subject D (trial 2) for 

all eight channels. Each phase point on the TARGET map relates to a time point data. The 

direction of the phase point equals to the phase value of the time point, and the radius of the 

phase point from the origin equals to the corresponding time value. Therefore x and y axis lower 

and upper limit are equal to the maximum time of experiment in seconds. The colors of the phase 

points represent the workloads: the blue and the red are workload 0 and workload 4 respectively. 

The cloud or the cluster of the phase points may become one of the indicators of the 

physiological or metabolic states in human brain. 
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7. Discussion 

From folding average results of Fig. 6.1 to Fig. 6.7, one can see that the rotating cube task did 

induce changes in the oscillations of Δ���� and Δ����� comparing with the workload 0 when 

subjects were at rest. The folding-average points that are significantly different from the initial 

baseline, according to the Dubey/Armitage-Parmar algorithm, are indicated by red color. In 

workload 0, all subjects, except subject C, show little significant difference from the baseline. 

Although Δ����  and Δ�����are not exactly flat in workload 0, the standard deviation are 

generally bigger than workload 4 and the trends are uncertain all over the channel. On the 

contrary, in workload 4, subject A, B, D (trial 1), and E show statistically significant 

concentration changes with an increase in Δ����� and a decrease in Δ����. Subject C performed 

workload 3 instead of workload 4, and the results show statistically significant changes in an 

opposite way: decrease in Δ����� and increase in Δ����. The possible reasons of this behavior 

were argued in a previous publication (Angelo et al, 2008). It is also interesting that subject C 

shows positive BOLD signal in rest but negative in rotating cube task, and the changes in rest 

and task are somehow inversed to each other. It suggests that subject C also had brain activity 

during the rest but acted as an opposite way during the task. Subject D (trial 2) didn’t show clear 

significant difference in workload 4, however the increase in Δ����� and the decrease in Δ���� 
are much evident. On the other hand, in workload 0, subject D (trial 2) showed slight decrease in 

Δ�����  and increase in Δ����  which are similar to subject C but opposite to himself in 

workload 4. For all the subjects, the Δ����� and Δ���� patterns are different from one channel 

to another channel suggest that these changes are due to localized cortex activities instead of 

global systematic changes. In finger tapping experiments, subject A showed the increase in 

Δ����� and the decrease in Δ���� with statistical significant difference to the baseline during 
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finger tapping task. Channel 5, 7, and 8 are located on the left motor cortex, so that they 

successfully detected significant deoxy- and oxy-hemoglobin changes stimulated by the right 

hand finger tapping. For those channels which didn’t detect signals or were covered by hairs, the 

folding averages showed large standard deviation without statistical significant points. Based on 

folding average, we can say that we detected significant changes in deoxy- and oxy-hemoglobin, 

but if we want to know the physiological processes behind these changes and why there are 

changes and how they developed time after time, we have to rely on other data analysis methods, 

such as phase analysis. 

Although cross-correlation phasor method and phase synchronization analysis method are two 

different methods, the results shown from Fig. 6.13 to Fig. 6.21 demonstrate that they yield 

similar results in phase calculation: not only the mean phase value but also the phase 

distributions are almost equivalent to each other. The circular histograms from Fig. 6.13 to Fig. 

6.21 have big advantages over traditional histogram especially for those having angles around 

180 degree or 0 degree. For convenience and validity in relatively broad bandpass filter, we 

discarded those points from phase distributions, of which frequency ratio in Δ���� and Δ����� 
are smaller than 2/3 or larger than 3/2. In the future, we might use more sophisticated way to deal 

with the frequency changes such as adaptive phase synchronization method which changes 

formula according to the n:m ratio as well as using very narrow bandpass filter to avoid dramatic 

frequency changes. 

The numeric results of Fig. 6.13 to Fig. 6.21 are listed in Tab. 6.1. We can see that, for all the 

channels on the subjects in rotating cube and channel 5, 7 and 8 on subjects in finger tapping, the 

phase distributions in workload 0 and workload 4 are non-uniform based on the p-value of 

Rayleigh test (p < 0.05), which means that the phase values in our experiments are not random 
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noises which are uniform in the range of 0 to 2� in distribution. One point needs to be addressed 

is that the small resultant vector length doesn’t necessarily suggest that the distribution is 

uniform. Taken workload 0 in channel 8 on Subject D (trial 1) for example, the resultant vector 

length is only 0.06, but in corresponding Fig. 6.17 (C) we can see that channel 8 still has two 

major phase bars around 225 degree and 315 degree but they are cancelled out by each other. 

And the whole distribution in channel 8 is not uniform around the circle. 

The Watson-Williams circular statistical test is used to accept or reject the null hypothesis that 

each of the samples is drawn from a von Mises distribution, a circular analog to the normal 

distribution of linear data having the same mean value. The p-values of Watson-Williams test 

between workload 0 and workload 4 (workload 3 in Subject C) suggested that 55 out of 62 

channels or 88.7% channels have significantly different average phase values between workload 

0 and workload 4/3. The phase changes from workload 0 to workload 4 have been frequently 

observed in our experiments. During experiments, there are two different cerebral statuses from 

workload 0 to workload 4, which involve multiple physiological changes because of challenging 

task stimulus, such as blood volume increases, blood flow velocity increases and oxygen 

saturation increases etc. The changes of these physiological processes can be interplayed within a 

specific tissue region like the increase of blood flow induces the increase of blood volume or can 

be due to redistributed background hemoglobin concentration and/or saturation and in turn 

resulted in a change of the relative weights in the linear combinations of tissue phasors (see 

stimulated example). As a result, the phase difference from workload 0 to workload 4 would be 

observed. 

In Fig. 6.16, Subject C shows similar phase distribution patterns between workload 0 and 

workload 3. Also in Tab 6.1, although p-values obtained when we applied the Watson-Williams 
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test are less than 0.05 in 6 channels, the average phase values between workload 0 and workload 

3 are pretty close. This may be because the workload 3 rotating cube test is relative easy to 

Subject C. In fact, Subject C gave all correct answers. If the experiment is too easy for the 

subject, there won’t be significant changes in physiological processes in subject’s cognitive 

cortex. Although in folding average, we observed statistical changes in hemoglobin in workload 

3 in subject C, we can’t separate the workload 0 and workload 3 in phase difference of deoxy- 

and oxy- hemoglobin. 

Except for Subject C and those channels with p>0.05 for the Watson Williams test, 5/7 or 71.4% 

of Subject A (trial 2), 6/7 or 85.7% of Subject D (trial 1) and 5/7 or 71.4% of Subject D (trial 2) 

have counter-clockwise mean phase value shift from workload 4 to workload 0 (or larger mean 

phase value in workload 4 than workload 0 in the range of 0 to 2�). On the contrary, 7/8 or 87.5% 

of Subject B and 5/7 or 71.4% of Subject E have clockwise mean phase value shift from 

workload 0 to workload 4. For Subject A (trial 1); these two possible outcomes are almost 

equiporbable. These results suggest that the change direction of average phase value or the 

phasor from workload 0 to workload 4 depends on subjects. This global phase shift may be 

resulted from characteristic physiological processes from different subjects. The reason why 

sometimes phase shifts are clockwise while sometimes counter-clockwise remains unknown so 

far. It is required further investigation. In finger tapping experiments, the average phase values 

are difficult to compare due to the relatively small resultant vector length. 

The standard deviation of phase distribution describes the phase spread on the phase circle. It is 

inversely changed to the resultant vector length. In our experiments, Subject A (trial 2), Subject 

D (trial 1 and 2) and Subject E respectively showed 6/8, 7/8, 6/8, and 6/8 of channels having 

smaller phase standard deviation in workload 4 than in workload 0. These subjects have a 
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concentrated mental efforts and in turn relatively narrower phase oscillation range in workload 4 

than in workload 0 which suggested that the rotating cube task might force the physiological 

processes in cognitive cortex more regular than those in the rest. Subject A (trial 1), Subject B 

and Subject C showed 3/8, 4/8 and 4/8 of channels having smaller standard deviation in 

workload 4 than in workload 0. These suggested that during these experiments the subjects might 

have more complicated physiological processes than others whose standard deviations of most 

channels in workload 4 are smaller than in workload 0. The more complicated the processes may 

cause the phase shifts spread in a wider angular range. 

One point needed to be addressed is that Watson-Williams test is parametric while a non-

parametric test should be more suitable to our experiments. Comparing p-value of Watson-

Williams test and the figures of phase-distribution in Fig. 6.13 to Fig. 6.21, in those cases where 

we can’t separate average phase values of workload 0 and workload 4 by naked eyes, Watson-

Williams returns p < 0.05, which means we might reject the null-hypothesis when it should not 

have been rejected - type I error by using Watson-Williams test. In the future, we should further 

develop a modified circular statistical test analog to ANOVA test to avoid possible type I errors. 

The Fig. 6.31 is a novel way to present the phase changes time by time during the experiment. 

Using phase points in different colors to represent different mental workloads, we can clearly see 

if the phase shift shows preferential directions in specific mental workloads. The cloud or the 

cluster of phase points may suggest a possible physiological status in the cerebral cortex. In Fig. 

6.31, the phase points are much denser in second and third quadrants instead of the first and 

fourth quadrants, which matched our phase circular histograms in Fig. 6.18. With an animation 

we can show how those phase points moving on the coordinates in TARGET map, and this may 

provide a way to understand how human cerebral cortex responds to the different mental 
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workloads and how the physiological processes shift from one stage to another stage. The Matlab 

code for generating such animated maps is written in appendix. Nevertheless, the shortcoming of 

the TARGET map is that for long time experiment, the far phase points look like much sparser 

even though they have similar distribution as near phase points. 
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8. Conclusion and Future Direction 

In this thesis, we reported phase analysis methods used in near-infrared spectroscopy. We 

suggested that the phase analysis has the potential in understanding the cerebral autoregulation, 

functional connectivity and underlying physiological processes in human brains. Two 

approaches were adopted to get the phase difference between deoxy- and oxy-hemoglobin. One 

is the cross-correlation phasor method; another is phase synchronization analysis method. Both 

methods produced similar results during two brain challenges: a) the rotating cube and b) the 

finger tapping tests. Instead of traditional statistical method, we used circular statistical test and 

methods to analyze phase distribution such as mean phase value, resultant vector length, circular 

standard deviation, Rayleigh test for uniformity and Watson-Williams test analog to ANOVA 

test. We developed circular histogram and novel phase-sector maps to represent the phase 

distribution in different mental workloads. Based on Watson-Williams test, for most subjects, 

there are phase shifts from workload 0 to workload 4, either counter-clockwise or clockwise, 

which may be resulted from the physiological processes change in cerebral cortex stimulated by 

the mental task. In most cases (Tab. 6.1), the standard deviation of phases in workload 4 is lower 

than those in workload 0 which may suggest that the mental tasks are going to regulate the 

physiological activities and in turn narrow the phase oscillations during workload 4 with respect 

to rest. The TARGET map was first introduced here to shed light on the future research to use it 

as a method to monitor the physiological evolution in a movie format. 

For future studies we need to: first, improve instruments. In order to investigate the LFO on 

brain-autoregulation or functional connectivity, we have to perform the experiments on the 

subjects in a long time rest or sleeping status to rule out the effects of outcome stimulus. Also it 
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is needed a much higher resolution whole head helmet with large number of source-detector 

pairs for functional connectivity studies. Second, we need to try different filters bandwidths. For 

this study we used relatively broad filter with a band of 0.05 to 0.10 Hz. The filtered signals 

show matched oscillations around LFO in original signals. However, both the phasor and PSI 

methods require the frequencies of both filtered signals cannot be too big. In current studies, we 

used a 20 sec window that includes a few oscillations of hemodynamic signals and assume that 

within this 20 sec window the frequency between deoxy- and oxy- hemoglobin oscillations is 

comparable (2/3 < f1/f2 < 3/2). In the future, there are two possible ways to solve this problem: 

one is to use many narrow filters which pass band are 0.01 Hz or less. The summation of all 

these narrow filters is equivalent to the frequency band of LFO; another approach is to use 

adaptive algorithms to calculate PSI phase based on the specific n:m ratio, while for phasor 

method we need a cross-correlation calculation to adapt signals in different frequencies. Third is 

the experimental protocol, in our studies, we have already observed that for some subjects like 

subject C the mental tasks were easier. In this case, the task that induces big hemodynamic 

changes in subject A might affect little on subject C. We need to develop new adaptive mental 

workloads to adjust the difficulty of workload based on the feedback of the subject, such as 

increase counted colors or decrease of cube static time to make the task more difficult. 

All in all, the analysis methods reported in the thesis could lead to a better characterization of 

cerebral hemodynamics, to provide opportunities for understanding the physiological origin of 

near-infrared signals and to a more sophisticated approach to the optical study of neurovascular 

coupling effects.  
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Appendix 

Main Function ========================================================= 

clear all; 
close all; 
clc; 
  
% === copyright @ Feng Zheng Tufts 2010 === 
% this the main function for data processing including phasors 
% generate figures of phasors and traditional histograms 
% contact via Feng.Zheng@tuft.edu 
% first version Nov 4, 2010 
% 
[FileName,PathName] = uigetfile('*.txt','Please select the .txt file...'); 
[data, physio] = fz_preprocessData(FileName, PathName); 
fs = 6.25; 
fid=fopen(strcat(PathName, FileName, '.set'),'rb', 'ieee-be'); 
r = str2num(fgetl(fid)); 
dc690 = data(:,str2num(fgetl(fid))); 
dc830 = data(:,str2num(fgetl(fid))); 
setting_physio = str2num(fgetl(fid)); 
disp('* SETTING DATA LOADED *'); 
fclose(fid); 
% default physiology sequence is: Heart Rate, Respiration, Pulse 
if  setting_physio(1) == 0 
    rate = [];     resp = [];    pulse = []; 
else 
    rate = physio(:,setting_physio(1)) ; 
    resp = physio(:,setting_physio(2)) ; 
    pulse = physio(:,setting_physio(3)); 
end 
timemat = data(:,1); 
[M, N] = size(dc690); 
aux0 = data(:,3); 
aux0 = fz_auxstatus(aux0, PathName); 
list0 = find(aux0 ~= 0); 
list1 = find(aux0 == 1);    % workload 0 
list2 = find(aux0 == 2);    % workload 2, light challenge 
list3 = find(aux0 == 3);    % workload 3, middle challenge 
list4 = find(aux0 == 4);    % workload 4, intense challenge 
list5 = find(aux0 == 5);    % workload 5, physical challenge 
list6 = find(aux0 == 6);    % rest 
mi = max(list0(1)-600, 1); ma = list0(1); 
mean1 = mean(dc690(mi:ma,:),1); 
mean2 = mean(dc830(mi:ma,:),1); 
dpf1=6.51; % 690 nm 
dpf2=5.86; % 830 nm 
mua1 = log((ones(M,1)*mean1)./dc690); % intensity change in 690nm 
mua2 = log((ones(M,1)*mean2)./dc830); % intensity change in 830nm 
k_mat = repmat(r,M,1); 
abs690=mua1./(dpf1*k_mat); % absorption change in 690nm 
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abs830=mua2./(dpf2*k_mat); % absorption change in 830nm 
% calculation oxy & deoxy 
value1 = input('Calculate HbO&Hb (y) or NOT (n)  ','s'); 
if  strcmp(value1,'y'); 
    eo1=0.956; % extinction coefficient of HbO mM^-1xcm^-1 (690 nm) 
    eo2=2.333; % extinction coefficient of HbO mM^-1xcm^-1 (830 nm) 
    ed1=4.854; % extinction coefficient of Hb mM^-1xcm^-1 (690 nm) 
    ed2=1.791; % extinction coefficient of Hb mM^-1xcm^-1 (830 nm) 
    den=eo1*ed2-eo2*ed1; 
    HbO = (abs690*ed2-abs830*ed1)/den*1000; % concentration change (micromolar) 
    Hb = (abs830*eo1-abs690*eo2)/den*1000;  % concentration change (micromolar) 
else 
    HbO = abs690; 
    Hb = abs830; 
end 
HbOp = polydetrend(HbO, timemat, 3); % polynomial detrend for HbO 
Hbp = polydetrend(Hb, timemat, 3);  % polynomial detrend for Hb 
value11 = input('Show folding average (y) or NOT (n)  ', 's'); 
if  strcmp(value11, 'y'); 
    foldingAverage(HbOp, Hbp, list0, list4); 
end 
lf = input('Please input the lower bound of frequency:   '); 
hf = input('Please input the higher bound of frequency:   '); 
value2 = input('Which filter do you prefer (1) ellip or (2) cheby1 (protocol freq):  '); 
value3 = input('Phasor final (1) or graphsPhasor sequence (2):   '); 
if  value2 == 1 
    str = 'ellip'; 
elseif value2 == 2 
    str = 'cheby1'; 
else 
    error('NO SUCH OPTION'); 
end 
figure(111) % draw the frequency response 
psifilter([], str, lf, hf); % show the frequency response of the filter 
HbOf = psifilter(HbOp, str, lf, hf); % filter the HbO 
Hbf = psifilter(Hbp, str, lf, hf);  % filter the Hb 
psiangle = angle(hilbert(Hbf)./hilbert(HbOf)); 
period_HbO = sponperiod(HbOf); % calculate the instantaneous period on HbO 
period_Hb = sponperiod(Hbf);   % calculate the instantaneous period on Hb 
clear data HbOp Hbp mua1 mua2 abs690 abs830 k_mat str; 
%% protocol frequency 
if  value3 == 2 

% draw the phasor movie if user asked for 
drawPhasorSequence(HbO,Hb,HbOf,Hbf,psiangle,period_HbO,period_Hb,list0,timemat); 

else 
    %% LFO frequency 
wlen = input('Please input the time window length (in sec)   '); 
phase_mat = zeros(M, N);    % phase calculated by psi method 
psi_mat = zeros(M, N);      % corresponding psi value 
phase_corr = zeros(M, N);   % phase calculated by phasor method 
corr_mat = zeros(M, N);     % corresponding crosscorrelation value 
for i = 1: M 
    [winlow, winhigh] = windowcut(i, wlen, M); 
    for ch = 1: N 
        [psi_mat(i,ch), phase_mat(i,ch)] = fpsi_mov(psiangle(winlow:winhigh,ch),(lf+hf)/2,1,0); 
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        [corr_mat(i,ch),phase_corr(i,ch)] = 
phasor_calc(HbOf(winlow:winhigh,ch),Hbf(winlow:winhigh,ch),period_Hb(i,ch),1); 
    end 
end 
phase_corr = 180*phase_corr/pi; % phase_mat and phase_corr are in range of 0 to 360 degree 
% ========================================================================= 
% =================   END OF PHASE CALCULATION ============================ 
% ========================================================================= 
baseline_pt = dividetrace(list0, [], M); 
wkl4_pt = dividetrace(list0, list4, M);  % extract the points of workload4 
wkl0_pt = dividetrace(list0, list1, M);  % extract the points of workload0 
if  N > 8 
    q = 5; 
else 
    q = 4; 
end 
p = ceil(N/q); 
for ch = 1: N 
% draw phase distribution histgram (psi method) 
    figure(11) 
    subplot(p,q,ch) 
    drawhistsingle_periodJudge(wkl0_pt,ch,phase_mat,period_Hb,period_HbO); 
    figure(12) 
    subplot(p,q,ch) 
    drawhistsingle_periodJudge(wkl4_pt,ch,phase_mat,period_Hb,period_HbO); 
% draw pie chart (psi method) 
    figure(13) 
    subplot(p,q,ch) 
    phasor_periodJudge(wkl0_pt,wkl4_pt,ch,phase_mat,period_Hb,period_HbO); 
% draw phase distribution histgram (phasor method) 
    figure(21) 
    subplot(p,q,ch) 
    drawhistsingle_periodJudge(wkl0_pt,ch,phase_corr,period_Hb,period_HbO); 
    figure(22) 
    subplot(p,q,ch) 
    drawhistsingle_periodJudge(wkl4_pt,ch,phase_corr,period_Hb,period_HbO); 
% draw pie chart (phasor method) 
    figure(23) 
    subplot(p,q,ch) 
    phasor_periodJudge(wkl0_pt,wkl4_pt,ch,phase_corr,period_Hb,period_HbO); 
end 
  
end 
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Data Preprocess Function ================================================ 

function [data, aux] = fz_preprocessData(FileName,PathName) 
%FZ_PREPROCESSDATA is used to pre-process the experimental data and fetch the auxiliary data as well as 
markers files. 
% === copyright (c) Feng Zheng === 2011 
% preprocess the iss data to remove header, process markers 
% return pure data and auxillary channels, if any; 
% first column of aux: heart rate 
% second column of aux: respiration 
% third column of aux: pulse 
% 
% fs = 6.25Hz 
% 
NirsFile = strcat(PathName, FileName); 
fid=fopen(NirsFile,'rb', 'ieee-be'); % expects big-endian 
% Remove the header 
target= '#'; 
tline = fgetl(fid); 
if  strcmp(tline(1:4),'BOXY')    % ISS data 
    data = []; 
    ii = 0; 
    while (~strcmp(tline, '#DATA BEGINS'))% remove the header of ISS file 
        tline = fgetl(fid); 
    end 
    tline = fgetl(fid); 
    tline = fgetl(fid); 
    tline = fgetl(fid); 
    while not (isequal(tline(1,1),target)) 
        data = [data;str2num(tline)]; 
        ii = ii + 1; 
        clc; 
        fprintf('NIRS DATA READ LINE %d',ii); 
        tline = fgetl(fid); 
    end 
    fprintf('\n'); 
    fclose(fid); 
    disp('* NIRS DATA HAS BEEN READ *'); 
    M = size(data,1); 
    data(:,1) = 0:0.16:0.16*(M-1); 
else 
    fclose(fid); 
    data = load(NirsFile); 
end 
if  (data(1,3) == 1) 
    data(:,3) = []; 
end 
if  (data(1,end) == 255) 
    data(:,end) = []; 
end 
aux = data(:,end-3:end); 
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Markers Process Function =============================================== 

function aux_out = fz_auxstatus(aux_in, PathName ) 
% FZ_AUXSTATUS function is used to transfer incremental markers into meaningful markers depends on 
insequence.txt file 
% input variables:  
%  aux_in: the markers ready for redefined 
%  PathName: the directory stored the insequence.txt file 
% output variables: 
%  aux_out: the redefined markers, numbers are defined as wkl level 
% Feng Zheng @ Tufts 2011 
% 
markersFile = strcat(PathName, 'insequence.txt'); 
markers = load(markersFile); 
allindx = find(aux_in~=0); 
nAux = length(allindx); 
nMarkers = length(markers); 
if  nAux == 2*nMarkers+1 
    nAux = nAux - 1; 
    aux_in(allindx(end)) = 0; 
    allindx(end) = []; 
elseif nAux == 2*nMarkers 
    1; 
else 
    error('<< INCORRECT INSEQUENCE.TXT >> '); 
end 
aux_out = zeros(size(aux_in)); 
if  isempty(find(markers==4, 1)) 
    markers(markers==3) = 4; 
end 
if  isempty(find(markers==1, 1)) 
    flag = true; 
else 
    flag = false; 
end 
i = 1; 
j = 1; 
while (i <= nAux) 
    aux_out(allindx(i)) = markers(j); 
    i = i + 1; 
    if  flag 
        aux_out(allindx(i)) = 1; 
    else 
        aux_out(allindx(i)) = 6; 
    end 
    i = i + 1; 
    j = j + 1; 
end 
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Filter Function ========================================================= 

function y = psifilter(x, str, lf, hf) 
% psifilter function is used to pack different filters into one single function file for future usage 
% Feng Zheng @ Tufts 2011 
if  nargin == 1 
    str = 'fircls'; 
    disp('FIR-CLS bandpass filter has been used'); 
elseif nargin > 4 || nargin < 1 
    error('No more than 4 input arguments needed'); 
else 
end 
  
if  strcmp(str,'fircls') == 1 
    Fs = 6.25;    % Sampling Frequency 
    N       = 50;    % Order 
    Fc1     = lf;   % First Cutoff Frequency 
    Fc2     = hf;   % Second Cutoff Frequency 
    Dstop1U = 3;     % Upper Stopband Attenuation 
    Dstop1L = 3;     % Lower Stopband Attenuation 
    DpassU  = 30;   % Upper Passband Ripple 
    DpassL  = 30;   % Lower Passband Ripple 
    Dstop2U = 3;     % Upper Stopband Attenuation 
    Dstop2L = 3;     % Lower Stopband Attenuation 
    % Calculate the coefficients using the FIRCLS function. 
    b  = fircls(N, [0 Fc1 Fc2 Fs/2]/(Fs/2), [0 1 0], [Dstop1U 1+DpassU ... 
        Dstop2U], [-Dstop1L 1-DpassL -Dstop2L]); 
    if  isempty(x) 
        freqz(b,1,512,Fs); 
    else 
        y = filter(b,1,x); 
    end 
elseif strcmp(str, 'movingaverage') == 1 
    flp = hf; 
    fs = 6.25; 
    rate= fs; 
    wwid = floor(rate / flp); 
    b = ones(wwid,1)/wwid; 
    a = 1; 
    ma1L = filtfilt(b, a, x); 
    %  
    %lower frequency 
    fhp = lf; 
    a_wwid = floor(fs / fhp); 
    a_b = ones(a_wwid,1)/a_wwid; 
    a_a = 1; 
    ma1H = filtfilt(a_b, a_a, x); 
    y = ma1L - ma1H; % filtered absorption changes       
elseif strcmp(str, 'ellip') == 1 
    fs = 6.25; 
    fhp = hf; flp = lf; 
    wp = [flp fhp]/(fs/2); 
    if  lf == 0.05 
        ws(1) = lf-0.01; ws(2) = hf+0.01; 
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        rp = 1; rs = 30; 
    else 
        ws(1) = lf-0.001; ws(2) = hf+0.001; 
        rp = 1; rs = 40; 
    end 
    ws = ws/(fs/2); 
    [nn,wn] = ellipord(wp,ws,rp,rs); 
    [bbb,aaa] = ellip(nn,rp,rs,wn); 
    if  isempty(x) 
        freqz(bbb,aaa,512,fs); 
    else 
        y = filtfilt(bbb,aaa,x); 
    end 
elseif strcmp(str, 'cheby1') == 1 
    fs = 6.25; 
    %CHEBY FILTER: 
    %How to make a cheby pass band: 
    Wp = 0.01/(fs/2); Ws = 0.02/(fs/2); 
    Rp = 1; Rs = 40; 
    [n,Wp] = cheb1ord(Wp,Ws,Rp,Rs); 
    [e,f] = cheby1(n,Rp,Wp); 
    if  isempty(x) 
        freqz(e,f,512,fs); 
    else 
        y = filtfilt(e,f,x); 
    end 
else 
    error('wrong input string'); 
end 
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Polynomial Detrend Function =============================================== 

function out = polydetrend( in, t, n ) 
%POLYDETREND function is used to detrend the input data by polynomial fitting 
% Feng Zheng @ Tufts 2011 
out = zeros(size(in)); 
col = size(in, 2); 
for i = 1: col 
    p = polyfit(t, in(:,i), n); 
    out(:,i) = in(:,i) - polyval(p, t); 
end 
 
 
Instantaneous Period Function =============================================== 

function period = sponperiod (signal) 
% This function is used to calculate the instantaneous period 
[M, N] = size(signal); 
yh = hilbert(signal);  period = zeros(size(signal)); 
for j = 1: N 
    for i = 1: M-1 
        anglediff = angle(yh(i+1,j))-angle(yh(i,j)); 
        while anglediff > 2*pi 
            anglediff = anglediff - 2*pi; 
        end 
        while anglediff < 0 
            anglediff = anglediff + 2*pi; 
        end 
        period(i,j) = 1/((1/(2*pi))*(anglediff/0.16)); 
    end 
    period(i+1,j) = period(i,j); 
    clear i; 
end 
 
Extracting Workload Trial Function =========================================== 

function x = dividetrace(list0, list, datalength) 
% extract specified workload (list) points in the whole data trace 
% list0 is the whole markers 
% list is the specified workload markers 
% datalength is size(data,1) in MAIN function 
% Feng.Zheng @ Tufts. edu 
if  isempty(list) 
    x = 1:(list0(1)-1); 
else 
    x = []; 
    for i = 1: length(list) 
        k = find(list0 == list(i)); 
        if  k == length(list0) 
            k1 = min(datalength, list0(k)+list0(k-1)-list0(k-2)+1); 
            x = [x list0(k):k1]; 
        else 
            x = [x list0(k):list0(k+1)-1]; 
        end 
    end 
end  
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Arrow Plot Function ====================================================== 

function handles = plot_arrow( x1,y1,x2,y2,varargin ) 
% plot_arrow - plots an arrow to the current plot 
% 
% format:   handles = plot_arrow( x1,y1,x2,y2 [,options...] ) 
% 
% input:    x1,y1   - starting point 
%           x2,y2   - end point 
%           options - come as pairs of "property","value" as defined for  
%                      "line" and "patch" 
% additional options are: 
%  'headwidth':  relative to complete arrow size, default value is 0.07 
%  'headheight': relative to complete arrow size, default value is 0.15 
% output:   handles - handles of the graphical elements building the arrow 
% 
% Example:  plot_arrow( -1,-1,15,12,'linewidth',2,'color',[0.5 0.5 0.5],'facecolor',[0.5 0.5 0.5] ); 
%           plot_arrow( 0,0,5,4,'linewidth',2,'headwidth',0.25,'headheight',0.33 ); 
%           plot_arrow;   % will launch demo 
if  (nargin==0) 
    figure; 
    axis; 
    set( gca,'nextplot','add' ); 
    for x = 0:0.3:2*pi 
        color = [rand rand rand]; 
        h = plot_arrow( 1,1,50*rand*cos(x),50*rand*sin(x),... 
            'color',color,'facecolor',color,'edgecolor',color ); 
        set( h,'linewidth',2 ); 
    end 
    hold off; 
    return 
end 
alpha       = 0.15;   % head length 
beta        = 0.07;   % head width 
max_length  = 22; 
max_width   = 10; 
if  ~isempty( varargin ) 
    for c = 1:floor(length(varargin)/2) 
        try 
            switch lower(varargin{c*2-1}) 
                % head properties - do nothing, since handled above already 
            case 'headheight',alpha = max( min( varargin{c*2},1 ),0.01 ); 
            case 'headwidth', beta = max( min( varargin{c*2},1 ),0.01 ); 
            end 
        catch 
            fprintf( 'unrecognized property or value for: %s\n',varargin{c*2-1} ); 
        end 
    end 
end 
% calculate the arrow head coordinates 
den         = x2 - x1 + eps;                                % make sure no devision by zero occurs 
teta        = atan( (y2-y1)/den ) + pi*(x2<x1) - pi/2;      % angle of arrow 
cs          = cos(teta);                                    % rotation matrix 
ss          = sin(teta); 
R           = [cs -ss;ss cs]; 
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line_length = sqrt( (y2-y1)^2 + (x2-x1)^2 );                % sizes 
head_length = min( line_length*alpha,max_length ); 
head_width  = min( line_length*beta,max_length ); 
x0          = x2*cs + y2*ss;                                % build head coordinats 
y0          = -x2*ss + y2*cs; 
coords      = R*[x0 x0+head_width/2 x0-head_width/2; y0 y0-head_length y0-head_length]; 
% plot arrow  (= line + patch of a triangle) 
h1          = plot( [x1,x2],[y1,y2],'k' ); 
h2          = patch( coords(1,:),coords(2,:),[0 0 0] ); 
% return handles 
handles = [h1 h2]; 
% check if styling is required  
% if no styling, this section can be removed! 
if  ~isempty( varargin ) 
    for c = 1:floor(length(varargin)/2) 
        try 
            switch lower(varargin{c*2-1}) 
             % only patch properties     
            case 'edgecolor',   set( h2,'EdgeColor',varargin{c*2} ); 
            case 'facecolor',   set( h2,'FaceColor',varargin{c*2} ); 
            case 'facelighting',set( h2,'FaceLighting',varargin{c*2} ); 
            case 'edgelighting',set( h2,'EdgeLighting',varargin{c*2} ); 
            % only line properties     
            case 'color'    , set( h1,'Color',varargin{c*2} ); 
            % shared properties     
            case 'linestyle', set( handles,'LineStyle',varargin{c*2} ); 
            case 'linewidth', set( handles,'LineWidth',varargin{c*2} ); 
            case 'parent',    set( handles,'parent',varargin{c*2} ); 
            % head properties - do nothing, since handled above already 
            case 'headwidth',; 
            case 'headheight',; 
            end 
        catch 
            fprintf( 'unrecognized property or value for: %s\n',varargin{c*2-1} ); 
        end 
    end 
end 
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Phasor Calculation Function =============================================== 

function phasor_periodJudge(wkl0,wkl4,ch,phase,periodHb,periodHbO) 
% flag = it's workload or rest 
% ch = chnum 
% phase = whole phase matrix 
% value = whole psi/xcorr value 
% thres = the threshold set 
flagmat1 = (periodHb < 1.5*periodHbO); 
flagmat2 = (periodHbO < 1.5*periodHb); 
flagmat = and(flagmat1, flagmat2); 
%warning('no period threshold set, refer to drawpiechartsingle_periodJudge.m for details'); 
flagmat = ones(size(flagmat)); 
%% 
y1 = []; 
for i = 1: length(wkl0) 
    if  flagmat(wkl0(i),ch) 
        y1 = [y1; phase(wkl0(i),ch)]; 
    end 
end 
%% 
y4 = []; 
for i = 1: length(wkl4) 
    if  flagmat(wkl4(i),ch) 
        y4 = [y4; phase(wkl4(i),ch)]; 
    end 
end 
%% 
y1 = y1*pi/180; 
y4 = y4*pi/180; 
p = circ_wwtest(y1,y4); 
[p1,z1] = circ_rtest(y1); 
[p4,z4] = circ_rtest(y4); 
%L = 10; 
[meany1,Ly1,Vary1,Disy1] = circularMean(y1); 
plot_arrow(0, 0, Ly1*cos(meany1), Ly1*sin(meany1), 'linewidth', 2, 'color', 'b', 'edgecolor', 'b', 'facecolor', 'b');  
axis(gca,'equal','off',[-1 1 -1 1]); 
hold on; 
[meany4,Ly4,Vary4,Disy4] = circularMean(y4); 
plot_arrow(0, 0, Ly4*cos(meany4), Ly4*sin(meany4), 'linewidth', 2, 'color', 'r', 'edgecolor', 'r', 'facecolor', 'r');  
axis(gca,'equal','off',[-1 1 -1 1]); 
hold on; 
plot([-1,1],[0,0],':k'); 
hold on; 
plot([0,0],[-1,1],':k'); 
hold on; 
circle([0,0],1,1000,':k'); 
title({[ 'Dsp0=',num2str(Disy1,'%10.2f')];[ 'Dsp4=',num2str(Disy4,'%10.2f')];[ 'p=',num2str(p,'%5.3f')];[ 'p1=',num2str(
p1,'%5.3f'),' p4=',num2str(p4,'%5.3f')];[ 'z1=',num2str(z1,'%5.3f'),' z4=',num2str(z4,'%5.3f')]});  
end 
Single Phasor Drawing Function =========================================== 

function phasorsingle_periodJudge(wkl,flag,ch,phase,periodHb,periodHbO) 
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% flag = 1 workload, 0 rest 
% ch = chnum 
% phase = whole phase matrix 
% value = whole psi/xcorr value 
% thres = the threshold set 
flagmat1 = (periodHb < 1.5*periodHbO); 
flagmat2 = (periodHbO < 1.5*periodHb); 
flagmat = and(flagmat1, flagmat2); 
%warning('no period threshold set, refer to drawpiechartsingle_periodJudge.m for details'); 
flagmat = ones(size(flagmat)); 
%% 
y = []; 
for i = 1: length(wkl) 
    if  flagmat(wkl(i),ch) 
        y = [y; phase(wkl(i),ch)]; 
    end 
end 
y = y*pi/180; 
[meany,Ly,Vary,Disy] = circularMean(y); 
if  flag 
    plot_arrow(0, 0, Ly*cos(meany), Ly*sin(meany), 'linewidth', 2, 'color', 'r', 'edgecolor', 'r', 'facecolor', 'r');  
else 
    plot_arrow(0, 0, Ly*cos(meany), Ly*sin(meany), 'linewidth', 2, 'color', 'b', 'edgecolor', 'b', 'facecolor', 'b');  
end 
axis(gca,'equal','off',[-1 1 -1 1]); 
hold on; 
plot([-1,1],[0,0],':k'); 
hold on; 
plot([0,0],[-1,1],':k'); 
hold on; 
circle([0,0],1,1000,':k'); 
title({[ 'Dsp=',num2str(Disy,'%10.2f')]});  
end 
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Phasor Sector Drawing Function ============================================ 

function drawpiechart_periodJudge(wkl0,wkl4,ch,phase,periodHb,periodHbO) 
% flag = it's workload or rest 
% ch = chnum 
% phase = whole phase matrix 
% value = whole psi/xcorr value 
% thres = the threshold set 
flagmat1 = (periodHb < 1.6*periodHbO); 
flagmat2 = (periodHbO < 1.6*periodHb); 
flagmat = and(flagmat1, flagmat2); 
%warning('no period threshold set, refer to drawpiechartsingle_periodJudge.m for details'); 
flagmat = ones(size(flagmat)); 
%% 
y1 = []; 
for i = 1: length(wkl0) 
    if  flagmat(wkl0(i),ch) 
        y1 = [y1; phase(wkl0(i),ch)]; 
    end 
end 
if  2*std(y1) > 180 
    for i = 1: length(y1) 
        while y1(i) > 180 
            y1(i) = y1(i) - 360; 
        end 
    end 
end 
%% 
y4 = []; 
for i = 1: length(wkl4) 
    if  flagmat(wkl4(i),ch) 
        y4 = [y4; phase(wkl4(i),ch)]; 
    end 
end 
if  2*std(y4) > 180 
    for i = 1: length(y4) 
        while y4(i) > 180 
            y4(i) = y4(i) - 360; 
        end 
    end 
end 
%% 
drawpie(mean(y1),std(y1),1.2); 
hold on; 
drawpie(mean(y4),std(y4),1); 
end 
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Circular Histogram Drawing Function ====================================== 

function hpol=circhist(v,varargin) 
% does a phase histogram between -180 and 180 
% first unwrap the data 
% function circhist(v,option1,option2,...) 
% includes a number of variable options  
% 'numcat',x,         : set number of bins, (default 36) 
% 'balls'             : Default: draws circles  
% 'polar'             : Standard polar plot 
% 'line'              :  Line plot  
% 'fill'              :  Filled line plot 
% 'smooth'            : Oversamples the histogram,  
%                       to make the places where it's zero to lie on the circumference 
%                       kernel-smoothing still has to be programmd 
% COMMENT: The Polygon is not defined well enough, so there is a problem importing to AI and  
%           one connecting line is visible. 
% 'arrow',kind        1:arrow of constantlength 
%                     2:arrow of variable length, reflecting the 1-variance 
%                     0:no arrow 
% 'color',c           : color of arrow and plot 
% 'scale',p           : maximal percentage on the radial axis 
%                       if not given it scales the max category to max=80% 
% Written December 2001, joern Diedrichsen jdiedri@socrates.berkeley.edu 
% Rewritten January 2011, Feng Zheng Feng.Zheng@tufts.edu 
  
% define the default constants 
plotlength=1; 
num_circ=20; 
circ_size=plotlength/num_circ; 
  
% defaults  
line_style = 'auto'; 
style='balls'; 
arrow=1;color='k';percent=-1; 
i=1;numcat=36; 
while (i<=length(varargin)) 
    switch varargin{i} 
    case 'numcat' 
        numcat=varargin{i+1}; 
        i=i+2; 
    case { 'balls','polar','line','fill' ,'smooth'}  
        style=varargin{i}; 
        i=i+1; 
    case 'arrow' 
        arrow=varargin{i+1}; 
        i=i+2; 
    case 'color' 
        color=varargin{i+1}; 
        i=i+2; 
    case 'scale' 
        percent=varargin{i+1}; 
        i=i+2; 
    otherwise 
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        fprintf('Unknown Option: %s\n',varargin{i}); 
        return; 
    end; 
end; 
  
over=find(v>360); 
under=find(v<0); 
v(over)=v(over)-360; 
v(under)=v(under)+360; 
binwidth=360/numcat; 
Edges=[0-(binwidth/2):binwidth:360-(binwidth/2)]; 
BinMid=[0:binwidth:360-binwidth]'; 
  
% count the occuances in the bins 
N=histc(v,Edges); 
rho=N(1:end-1); 
rho(1)=rho(1)+N(end); % leftovers 
theta=BinMid./180*pi; 
  
% transform data to Cartesian coordinates. 
% collect the number of circles 
% theta=-theta+pi/2; 
tot_count=sum(rho); 
if  percent==-1; 
   percent=max(rho./tot_count*130); 
end; 
rhoScale=tot_count/100*percent; 
one_circ=rhoScale/num_circ; 
barh=round(rho./one_circ);  
  
if (strcmp(style,'polar')); 
    polar(theta,rho); 
    return; 
end; 
  
% now calculate the arrow in length and angle 
  
cmean=circ_mean(v./180*pi); 
% cmean=-cmean+pi/2; % align with general zero-up +clockwise 
if  (arrow==1) 
    arrowlength=0.6; 
end; 
if  (arrow==2) 
%   arrowlength=(1-circvar(v/180*pi))*.8; 
    arrowlength = circ_r(v/180*pi); 
end;    
arrowhead=arrowlength*.83; 
  
% get hold state 
cax = newplot; 
next = lower(get(cax,'NextPlot')); 
hold_state = ishold; 
  
% get x-axis text color so grid is in same color 
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tc = get(cax,'xcolor'); 
ls = get(cax,'gridlinestyle'); 
% Hold on to current Text defaults, reset them to the 
% Axes' font attributes so tick marks use them. 
fAngle  = get(cax, 'DefaultTextFontAngle'); 
fName   = get(cax, 'DefaultTextFontName'); 
fSize   = get(cax, 'DefaultTextFontSize'); 
fWeight = get(cax, 'DefaultTextFontWeight'); 
fUnits  = get(cax, 'DefaultTextUnits'); 
set(cax, 'DefaultTextFontAngle',  get(cax, 'FontAngle'), ... 
    'DefaultTextFontName',   get(cax, 'FontName'), ... 
    'DefaultTextFontSize',   get(cax, 'FontSize'), ... 
    'DefaultTextFontWeight', get(cax, 'FontWeight'), ... 
    'DefaultTextUnits','data') 
  
% only do grids if hold is off 
if  ~hold_state 
% make a radial grid 
    hold on; 
    maxrho = 1+plotlength; 
     
    hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -maxrho]); 
    set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto') 
    v1 = [get(cax,'xlim') get(cax,'ylim')]; 
    ticks = sum(get(cax,'ytick')>=0); 
    delete(hhh); 
% check radial limits and ticks 
    rmin = 0; rmax = v1(4); rticks = max(ticks-1,2); 
    if  rticks > 5   % see if we can reduce the number 
        if  rem(rticks,2) == 0 
            rticks = rticks/2; 
        elseif rem(rticks,3) == 0 
            rticks = rticks/3; 
        end 
    end 
% define a circle 
    th = 0:pi/50:2*pi; 
    th =-th+pi/2; 
    xunit = cos(th); 
    yunit = sin(th); 
% now really force points on x/y axes to lie on them exactly 
    inds = 1:(length(th)-1)/4:length(th); 
    yunit(inds(2:2:4)) = zeros(2,1); 
    xunit(inds(1:2:5)) = zeros(3,1); 
% plot background if necessary 
    if  ~isstr(get(cax,'color')), 
       patch('xdata',xunit*rmax,'ydata',yunit*rmax, ... 
             'edgecolor',tc,'facecolor',get(gca,'color'),... 
             'handlevisibility','off'); 
    end 
% draw radial circles 
    c82 = cos(82*pi/180); 
    s82 = sin(82*pi/180); 
    for (i=1:plotlength:1+plotlength) 
        hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,... 
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                   'handlevisibility','off'); 
                 
        set(hhh,'linestyle','-') % Make outer circle solid 
     end; 
% plot spokes 
%     th_sp = [4*pi/12:-2*pi/12:-pi/2]; % start up and go around 
    th_sp = [pi/4:pi/4:pi]; 
    cst = cos(th_sp); snt = sin(th_sp); 
    cs = [-cst; cst]; 
    sn = [-snt; snt]; 
    %plot(rmax*cs,rmax*sn,ls,'color',tc,'linewidth',1,... 
    %     'handlevisibility','off') 
  
% annotate spokes in degrees 
    rt = 0.85;%1.1*rmax; 
    for i = 1:length(th_sp) 
        text(rt*cst(i),rt*snt(i),int2str(i*45),... 
             'horizontalalignment','center',... 
             'handlevisibility','off','FontSize',10); 
        if  i == length(th_sp) 
            loc = int2str(0); 
        else 
            loc = int2str(i*45+180); 
        end 
        text(-rt*cst(i),-rt*snt(i),loc,'horizontalalignment','center',... 
             'handlevisibility','off','FontSize',10) 
    end 
  
% set view to 2-D 
    view(2); 
% set axis limits 
    axis(rmax*[-1 1 -1.15 1.15]); 
end 
  
% Reset defaults. 
set(cax, 'DefaultTextFontAngle', fAngle , ... 
    'DefaultTextFontName',   fName , ... 
    'DefaultTextFontSize',   fSize, ... 
    'DefaultTextFontWeight', fWeight, ... 
    'DefaultTextUnits',fUnits ); 
  
% calculate circles 
if (strcmp(style,'balls')) 
    xx=[]; 
    yy=[]; 
    for (bar=1:length(theta)) 
        if (barh(bar)>0) 
            for(circ=1:barh(bar)) 
                radi=1+circ_size*circ-circ_size/2; 
                xx(end+1)=radi*cos(theta(bar)); 
                yy(end+1)=radi*sin(theta(bar)); 
            end; 
        end; 
    end; 
    % draw the circles 
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    q=[]; 
    for (circ=1:length(xx)) 
        posi=[xx(circ)-circ_size/2 yy(circ)-circ_size/2 circ_size circ_size]; 
        q(end+1)=rectangle('Position',posi,'Curvature',[1 1],'EdgeColor',color,'FaceColor',color); 
    end; 
end; 
  
rho(end+1)=rho(1); 
theta(end+1)=-pi/2; 
% draw line  
% plot data on top of grid 
if  (strcmp(style,'smooth')) 
    rho=interp1(theta,rho,th','linear'); 
    theta=th'; 
end;     
if (strcmp(style,'line') || strcmp(style,'fill' ) || strcmp(style,'smooth')) 
    xx = (1+rho/rhoScale).*cos(theta); 
    yy = (1+rho/rhoScale).*sin(theta); 
    q = plot(xx,yy,color); 
end; 
if (strcmp(style,'fill' )|| strcmp(style,'smooth')) 
    patch([xx;xunit'],[yy;yunit'],color); 
end; 
  
% draw the mean vector 
pvalue = circ_rtest(wrapToPi(v*pi/180)); 
if  pvalue < 0.05 
    color2 = 'r'; 
else 
    color2 = 'b'; 
end 
if  arrow>0 
    arrow=line([0 arrowlength*cos(cmean)],[0 arrowlength*sin(cmean)],'LineWidth',2); 
    set(arrow,'Color',color2); 
    % arrowhead 
    p=patch([arrowlength*cos(cmean) arrowhead*cos(cmean-0.1) 
arrowhead*cos(cmean+0.1)],[arrowlength*sin(cmean) arrowhead*sin(cmean-0.1) 
arrowhead*sin(cmean+0.1)],color2); 
    set(p,'EdgeColor',color2); 
end; 
  
if  nargout > 0 
    hpol = q; 
end 
if  ~hold_state 
    set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next); 
end 
set(get(gca,'xlabel'),'visible','on') 
set(get(gca,'ylabel'),'visible','on') 
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Circular Mean Function =================================================== 

function [meantheta, vectorlength, CI, dispersion] = circularMean(phi) 
%CIRCULARMEAN function is used to calculate the mean phase and statistical parameters 
% reference: N.I.Fisher, Statistical analysis of circular data, 1995 
% Feng Zheng @ Tufts University, 2010 
if  length(size(phi)) > 2 
    error('No more than 2 dimensions'); 
end 
[M,N] = size(phi); 
if  M == 1 
    phi = phi'; 
    M = N; 
end 
if  max(max(abs(phi))) > 2*pi 
    warning('Function circularMean''s input argument should be in radian angle'); 
end 
cosPhi = cos(phi); 
sinPhi = sin(phi); 
% calculate the mean phase 
meantheta = atan2(mean(sinPhi),mean(cosPhi)); 
% calculate the resultant vector length 
vectorlength = sqrt((sum(cosPhi)).^2 + (sum(sinPhi)).^2)/M; 
% calculate the confidential level 
CI = acos(sqrt((2*M*(2*M*M*vectorlength*vectorlength-M*3.841))/(4*M-3.841))/(vectorlength*M)); 
m2 = mean(cos(2*(phi-repmat(meantheta,M,1)))); 
% calculate the dispersion 
dispersion = (1-m2)./(2*vectorlength.*vectorlength); 
end 
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TARGET Map Movie Function ============================================== 

function drawPhaseDisk_mov(timemat, phase, aux0) 
% function drawPhaseDisk_mov is used to generate the TARGET Map movie 
% input variables:  
%   timemat – time sequence 
%   phase – corresponding phase values 
%   aux0 – markers 
% created by Feng Zheng @ Tufts Univ 2011 
if  nargin < 2  % read the input 
    error('At Least Two Input Arguments Required'); 
elseif nargin < 3 
    aux0 = []; 
end 
Ntime = length(timemat); 
[M,N] = size(phase); 
if  M < N 
    phase = phase'; 
    [M,N] = size(phase); 
end 
if  Ntime ~= M 
    error('Time and phase dimension unmatched'); 
end 
if  max(max(abs(phase))) > 2*pi % adjust the phase range 
    warning('Phase value changed to rad'); 
    phase = phase*pi/180; 
end 
figureid = input('which channel you want to watch movie?  '); 
step = input('step length?   ');  % adjust the fps for the movie 
x = timemat.*cos(phase(:,figureid)); 
y = timemat.*sin(phase(:,figureid)); 
list0 = find(aux0~=0); 
figure(110+figureid) 
pause; 
for i = 1: step: Ntime 
    scatter(x(1:i), y(1:i), '.k', 'SizeData',30); % build the TARGET 
    if  ~isempty(aux0)         
        for ti = 1: length(list0) 
            if  mod(ti,2) == 1 
                hold on;  % draw the markers circles 
                circle([0 0], timemat(list0(ti)), 10000, '--r'); 
            else 
                hold on; 
                circle([0 0], timemat(list0(ti)), 10000, '--b'); 
            end 
        end 
    end 
    axescenter; 
    set(gca,'pos',[.25 .1 .5 .8]); 
    ymax = max(timemat); 
    xlim([-ymax ymax]); 
    ylim([-ymax ymax]);     
    F(i) = getframe;   % catch the current frame 
end 
movie2avi(F,‘TARGET.avi’);  % output as avi file 
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Folding Average Function ================================================ 

function foldingAverage(HbO, Hb, list2, list) 
%FOLDINGAVERAGE function is used to calculate folding average function, compatible to MAIN.m 
% original written by Angelo Sassaroli and Yunjie Tong 
% rewritten by Feng Zheng @ Nov 2010 by packing it as a function for convenience 
  
fs = 6.25; 
t2 = list;    
t=[0:size(HbO,1)-1]'./fs; 
     
% Do the block average 
prePoints = 0; 
postPoints = ceil(mean([list2(3)-list2(1)+1, list2(5)-list2(3)+1, list2(7)-list2(5)+1])); 
aa = postPoints/fs; 
tavg = [-prePoints:postPoints]' / fs;  
nr=length(tavg); 
ch_av = 'y'; 
nBlocks = 0; 
% 
clear blocks 
%block average HbO 
for idx=1:length(t2) 
     if  (t2(idx)-prePoints)>=1 && (t2(idx)+postPoints)<=size(HbO,1) 
        nBlocks = nBlocks + 1;   
        Tonset( nBlocks ) = t2(idx); 
        if  ch_av=='y' 
           blocks_hbo(:,:,nBlocks) = HbO((t2(idx)-prePoints):(t2(idx)+postPoints),:)-ones(postPoints-
prePoints+1,1)*HbO((t2(idx)-prePoints),:); 
        else 
          blocks_hbo(:,:,nBlocks) = HbO((t2(idx)-prePoints):(t2(idx)+postPoints),:); 
        end 
        lastOnset = t2(idx); 
    end 
end 
blockAvgHbO = mean(blocks_hbo,3); 
errHbO=std(blocks_hbo,0,3); 
blockStdErrorHbO = std(blocks_hbo,0,3) / sqrt(nBlocks); 
nBlocks = 0; 
clear blocks 
  
%block average Hb 
for idx=[1:length(t2)] 
    if  (t2(idx)-prePoints)>=1 && (t2(idx)+postPoints)<=size(Hb,1) 
        nBlocks = nBlocks + 1; 
        Tonset( nBlocks ) = t2(idx); 
        if  ch_av=='y' 
            blocks_hb(:,:,nBlocks) = Hb((t2(idx)-prePoints):(t2(idx)+postPoints),:)-ones(postPoints-
prePoints+1,1)*Hb((t2(idx)-prePoints),:); 
        else 
            blocks_hb(:,:,nBlocks) = Hb((t2(idx)-prePoints):(t2(idx)+postPoints),:); 
        end 
        lastOnset = t2(idx); 
    end 
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end 
blockAvgHb = mean(blocks_hb,3); 
errHb=std(blocks_hb,0,3); 
blockStdErrorHb = std(blocks_hb,0,3) / sqrt(nBlocks); 
% 
nBlocks = 0; 
clear blocks 
% % 
ch10='tt'; 
ch11='an'; 
p_t= .05; 
ch12= 'mb'; 
nDet = size(blockAvgHbO,2); 
for idx=1:nDet 
        if  strcmp(ch_av,'y') 
            mat_HbO=squeeze(blocks_hbo(2:end,idx,:))'; 
            corrHbO=corrcoef(mat_HbO); 
            avg_corrHbO(idx)=(sum(sum(corrHbO))-nr+1)/((nr-1)*(nr-2)); 
            xx1_hbo=(sum(corrHbO,2)-ones(nr-1,1))/(nr-2); 
            if  strcmp(ch12,'mb') 
               mk_hbo=(nr-1).^(ones(nr-1,1)-xx1_hbo); 
            else 
                mk_hbo=(nr-1)*ones(nr-1,1); 
            end 
        else 
            mat_HbO=squeeze(blocks_hbo(:,idx,:))'; 
            corrHbO=corrcoef(mat_HbO); 
            avg_corrHbO(idx)=(sum(sum(corrHbO))-nr)/((nr)*(nr-1)); 
            xx1_hbo=(sum(corrHbO,2)-ones(nr,1))/(nr-1); 
            if  strcmp(ch12,'mb') 
                mk_hbo=(nr).^(ones(nr,1)-xx1_hbo); 
            else 
                mk_hbo=(nr)*ones(nr,1); 
            end 
        end 
    pnum_hbo=0; 
    cc_hbo=0; 
    pnum_new_hbo=0; 
    cc_new_hbo=0; 
    c_hbo=0; 
    c_new_hbo=0; 
    %_________________________________ 
    if  strcmp(ch_av,'y') 
        if  strcmp(ch10,'tt') 
            zz=(squeeze(blocks_hbo(2,idx,:))); 
            [h,p,ci] = ttest(zz,0); 
        elseif strcmp(ch10,'st') 
            zz=(squeeze(blocks_hbo(2,idx,:))); 
            [p,h] = signtest(zz,0); 
        else 
            zz=(squeeze(blocks_hbo(2,idx,:))); 
            [p,h] = signrank(zz,0); 
        end 
        c_hbo=p; 
         if  strcmp(ch11,'an') 
            [p1, anovatab] = anova1((squeeze(blocks_hbo(2:end,idx,:)))',[],'off'); 
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         else 
            [p1, anovatab] = kruskalwallis((squeeze(blocks_hbo(2:end,idx,:)))',[],'off'); 
         end 
        p_anova_hbo(idx)=p1; 
        p_new_hbo=1-(1-p)^mk_hbo(1,1); 
        c_new_hbo=p_new_hbo; 
        for i=3:length(tavg) 
            if  (p<p_t) 
                pnum_hbo=[pnum_hbo i-1]; 
                cc_hbo=1; 
            end 
            if  (p_new_hbo<p_t) 
                pnum_new_hbo=[pnum_new_hbo i-1]; 
                cc_new_hbo=1; 
            end 
            if  strcmp(ch10,'tt') 
                zz=(squeeze(blocks_hbo(i,idx,:))); 
                [h,p,ci] = ttest(zz,0); 
            elseif strcmp(ch10,'st') 
                 zz=(squeeze(blocks_hbo(i,idx,:))); 
                [p,h] = signtest(zz,0); 
            else 
                zz=(squeeze(blocks_hbo(i,idx,:))); 
                [p,h] = signrank(zz,0); 
            end 
            p_new_hbo=1-(1-p)^mk_hbo(i-1,1); 
            c_hbo=[c_hbo p]; 
            c_new_hbo=[c_new_hbo p_new_hbo]; 
        end 
    else 
        if  strcmp(ch10,'tt') 
            zz=(squeeze(blocks_hbo(1,idx,:))); 
             [h,p,ci] = ttest(zz,0); 
        elseif strcmp(ch10,'st') 
            zz=(squeeze(blocks_hbo(1,idx,:))); 
            [p,h] = signtest(zz,0); 
        else 
            zz=(squeeze(blocks_hbo(1,idx,:))); 
            [p,h] = signrank(zz); 
        end 
        c_hbo=p; 
        if  strcmp(ch11,'an') 
            [p1, anovatab]=anova1((squeeze(blocks_hbo(1:end,idx,:)))',[],'off'); 
         else 
            [p1, anovatab]=kruskalwallis((squeeze(blocks_hbo(1:end,idx,:)))',[],'off'); 
         end 
        p_anova_hbo(idx)=p1; 
        p_new_hbo=1-(1-p)^mk_hbo(1,1); 
        c_new_hbo=p_new_hbo; 
        for i=2:length(tavg) 
            if  (p<p_t) 
                pnum_hbo=[pnum_hbo i-1]; 
                cc_hbo=1; 
            end 
            if  (p_new_hbo<p_t) 
                pnum_new_hbo=[pnum_new_hbo i-1]; 
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                cc_new_hbo=1; 
            end 
            if  strcmp(ch10,'tt') 
                zz=(squeeze(blocks_hbo(i,idx,:))); 
                [h,p,ci] = ttest(zz,0); 
            elseif strcmp(ch10,'st') 
                 zz=(squeeze(blocks_hbo(i,idx,:))); 
                [p,h] = signtest(zz,0); 
            else 
                zz=(squeeze(blocks_hbo(i,idx,:))); 
                [p,h] = signrank(zz,0); 
            end 
            p_new_hbo=1-(1-p)^mk_hbo(i,1); 
            c_hbo=[c_hbo p]; 
            c_new_hbo=[c_new_hbo p_new_hbo]; 
        end 
    end 
end 
for idx = 1: nDet 
    a_up = max(max(abs(blockAvgHbO))) + max(max(abs(blockStdErrorHbO))); 
    a_low = -a_up; 
    figure(1984) 
    if  nDet > 8 
        subplot(nDet/5,5,idx); 
    else 
        subplot(nDet/4,4,idx); 
    end 
    set(gca,'FontSize',13); 
    errorbar(tavg,blockAvgHbO(:,idx),blockStdErrorHbO(:,idx),'Color','b') 
     
    if  (cc_new_hbo==1) 
        [f_new_hbo,g_new_hbo]=size(pnum_new_hbo); 
        count_new_hbo(idx)=g_new_hbo-1; 
        pnum_new_hbo=pnum_new_hbo(2:g_new_hbo); 
        hold on; 
        
errorbar(tavg(pnum_new_hbo),blockAvgHbO(pnum_new_hbo,idx),blockStdErrorHbO(pnum_new_hbo,idx),'Color',
'r'); 
    end 
    hold off 
    if  idx==1 
        title('\Delta[HbO] (\mu M)') 
    end 
    xlim([-prePoints/fs postPoints/fs]) 
    grid on 
    ylim([a_low a_up]) 
    xlabel(['Chn ',num2str(idx)]); 
end  
%     
nDet = size(blockAvgHb,2); 
for idx=1:nDet 
        if  ch_av=='y' 
            mat_Hb=squeeze(blocks_hb(2:end,idx,:))'; 
            corrHb=corrcoef((squeeze(blocks_hb(2:end,idx,:)))'); 
            avg_corrHb(idx)=(sum(sum(corrHb))-nr+1)/((nr-1)*(nr-2)); 
            xx1_hb=(sum(corrHb,2)-ones(nr-1,1))/(nr-2); 
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            if  strcmp(ch12,'mb') 
                 mk_hb=(nr-1).^(ones(nr-1,1)-xx1_hb); 
            else 
                 mk_hb=(nr-1)*ones(nr-1,1); 
            end 
        else 
            mat_Hb=squeeze(blocks_hb(:,idx,:))'; 
            corrHb=corrcoef((squeeze(blocks_hb(:,idx,:)))'); 
            avg_corrHb(idx)=(sum(sum(corrHb))-nr)/((nr)*(nr-1)); 
            xx1_hb=(sum(corrHb,2)-ones(nr,1))/(nr-1); 
            if  strcmp(ch12,'mb') 
                mk_hb=(nr).^(ones(nr,1)-xx1_hb); 
            else 
                mk_hb=(nr)*ones(nr,1); 
            end 
        end 
    pnum_hb=0; 
    cc_hb=0; 
    pnum_new_hb=0; 
    cc_new_hb=0; 
    c_hb=0; 
    c_new_hb=0; 
    %_________________________________ 
    if  strcmp(ch_av,'y') 
        if  strcmp(ch10,'tt') 
            zz=(squeeze(blocks_hb(2,idx,:))); 
             [h,p,ci] = ttest(zz,0); 
        elseif strcmp(ch10,'st') 
            zz=(squeeze(blocks_hb(2,idx,:))); 
            [p,h] = signtest(zz,0); 
        else 
            zz=(squeeze(blocks_hb(2,idx,:))); 
            [p,h] = signrank(zz,0); 
        end 
        c_hb=p; 
        if  strcmp(ch11,'an') 
            [p2, anovatab]=anova1((squeeze(blocks_hb(2:end,idx,:)))',[],'off'); 
         else 
            [p2, anovatab]=kruskalwallis((squeeze(blocks_hb(2:end,idx,:)))',[],'off'); 
         end 
        p_anova_hb(idx)=p2; 
        p_new_hb=1-(1-p)^mk_hb(1,1); 
        c_new_hb=p_new_hb; 
        for i=3:length(tavg) 
            if  (p<p_t) 
                pnum_hb=[pnum_hb i-1]; 
                cc_hb=1; 
            end 
            if  (p_new_hb<p_t) 
                pnum_new_hb=[pnum_new_hb i-1]; 
                cc_new_hb=1; 
            end 
            if  strcmp(ch10,'tt') 
                [h,p,ci] = ttest(blocks_hb(i,idx,:),0); 
            elseif strcmp(ch10,'st') 
                 zz=(squeeze(blocks_hb(i,idx,:))); 
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                [p,h] = signtest(zz,0); 
            else 
                zz=(squeeze(blocks_hb(i,idx,:))); 
                [p,h] = signrank(zz,0); 
            end 
            p_new_hb=1-(1-p)^mk_hb(i-1,1); 
            c_hb=[c_hb p]; 
            c_new_hb=[c_new_hb p_new_hb]; 
        end 
    else 
        if  strcmp(ch10,'tt') 
            [h,p,ci] = ttest(blocks_hb(1,idx,:),0); 
        elseif strcmp(ch10,'st') 
            zz=(squeeze(blocks_hb(1,idx,:))); 
            [p,h] = signtest(zz,0); 
        else 
            zz=(squeeze(blocks_hb(1,idx,:))); 
            [p,h] = signrank(zz,0); 
        end 
        c_hb=p; 
       if  strcmp(ch11,'an') 
            [p2, anovatab]=anova1((squeeze(blocks_hb(1:end,idx,:)))',[],'off'); 
         else 
            [p2, anovatab]=kruskalwallis((squeeze(blocks_hb(1:end,idx,:)))',[],'off'); 
         end 
        p_anova_hb(idx)=p2; 
        p_new_hb=1-(1-p)^mk_hb(1,1); 
        c_new_hb=p_new_hb; 
        for i=2:length(tavg) 
            if  (p<p_t) 
                pnum_hb=[pnum_hb i-1]; 
                cc_hb=1; 
            end 
            if  (p_new_hb<p_t) 
                pnum_new_hb=[pnum_new_hb i-1]; 
                cc_new_hb=1; 
            end 
            if  strcmp(ch10,'tt') 
                [h,p,ci] = ttest(blocks_hb(i,idx,:),0); 
            elseif strcmp(ch10,'st') 
                 zz=(squeeze(blocks_hb(i,idx,:))); 
                [p,h] = signtest(zz,0); 
            else 
                zz=(squeeze(blocks_hb(i,idx,:))); 
                [p,h] = signrank(zz,0); 
            end 
            p_new_hb=1-(1-p)^mk_hb(i,1); 
            c_hb=[c_hb p]; 
            c_new_hb=[c_new_hb p_new_hb]; 
        end 
    end 
end 
for idx = 1: nDet 
    a_up = max(max(abs(blockAvgHb))) + max(max(abs(blockStdErrorHb))); 
    a_low = -a_up; 
    figure(1986) 
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    if  nDet > 8 
        subplot(nDet/5,5,idx); 
    else 
        subplot(nDet/4,4,idx); 
    end 
    set(gca,'FontSize',13); 
    errorbar(tavg,blockAvgHb(:,idx),blockStdErrorHb(:,idx),'Color','b') 
    if  (cc_new_hb==1) 
        [f_new_hb,g_new_hb]=size(pnum_new_hb); 
        count_new_hb(idx)=g_new_hb-1; 
        pnum_new_hb=pnum_new_hb(2:g_new_hb); 
        hold on; 
errorbar(tavg(pnum_new_hb),blockAvgHb(pnum_new_hb,idx),blockStdErrorHb(pnum_new_hb,idx),'Color','r'); 
    end 
    hold off 
    if  idx==1 
        title('\Delta[Hb] (\mu M)') 
    end 
    xlim([-prePoints/fs postPoints/fs]) 
    grid on 
    ylim([a_low a_up]) 
    xlabel(['Chn ',num2str(idx)]); 
end  
 

 


