
TUIMS: Laying the Foundations for a Tangible User Interface Management System

Nancy Leland
Department of Computer Science
Tufts University
nleland@cs.tufts.edu

Orit Shaer
Department of Computer Science
Tufts University
oshaer@cs.tufts.edu

Robert J.K. Jacob
Department of Computer Science
Tufts University
jacob@cs.tufts.edu

ABSTRACT

This paper lays the foundations for the development of a
Tangible User Interface Management System (TUIMS). It
presents a paradigm for representing TUIs, the TAC
paradigm, which identifies the core components of TUIs.
Building upon the TAC paradigm, it introduces TUIML, a
high-level description language for TUIs. The concept of
TUIMS is proposed and a built proof of concept prototype
is discussed.

KEYWORDS

Tangible User Interface, Token and Constraints (TAC),
User Interface Management System (UIMS), User Interface
Description Language(UIDL).

INTRODUCTION

In the last decade we have seen a wave of new research
aimed at fusing the physical and digital worlds. This work
has led to the development of a collection of interfaces
referred to as Tangible User Interfaces [6] (TUIs).

Interaction with TUIs draws on a user's existing skills of
interaction with the real world, thereby offering the promise
of interfaces that are quicker to learn and easier to use.
However, these interfaces are currently more challenging to
build than traditional user interfaces.

TUI designers face unique conceptual, methodological and
technical challenges. Some of these challenges are:
mapping digital information to physical objects, specifying
the relationships between physical objects, describing the
tangible interaction dialogue and dealing with the lack of
standard technologies for implementing TUIs.

To address these challenges we propose the concept of a
Tangible User Interface Management System (TUIMS)
draws from earlier work on UIMS[4]. TUIMS allows
designers to specify tangible interaction in a high level
description language (TUIDL). This specification would
then be either automatically or semi-automatically
translated into a graphical simulator or a program
controlling a set of physical interaction objects.

THE TAC PARADIGM

The Token and Constraints (TAC) [5] paradigm is a unified
conceptual framework for TUIs. Our approach is based on
the notion that a TUI may be described as a set of
relationships between physical objects and digital

information. These relationships are defined by the TUI
designer and may be instantiated by the user. After a
relationship has been instantiated, a user may manipulate
the physical objects in order to access or manipulate digital
information.

As is common in evolving research areas, the terminology
used to discuss tangible user interfaces has not yet reached
widespread consensus. Therefore we would like to begin by
defining the following terms:

A Pyfo is a physical object that takes part in a TUI. There
are two types of Pyfos: Tokens and Constraints.

A Token is a graspable pyfo that represents digital
information or a computational function. The user interacts
with the token in order to access or manipulate digital
information.

A Constraint is a pyfo that limits the behavior of the token
with which it is associated. The physical properties of the
constraint guide the user in manipulating the associated
token and interpreting the compositions of a token and a set
of constraints.

A Variable is a data object, or a computational function in
an application.

A TAC (Token And Constraints) is a relationship
between a token, a variable and a set of constraints. The
physical manipulation of a TAC is the manipulation of a
token in respect to a set of constraints, and it has
computational implications.

The TAC Paradigm contains five key properties:

Couple, A Pyfo must be coupled with a variable in order to
be considered a token.

Relative Definition, Each Pyfo may be defined as a token,
a constraint or both.

Association, A new TAC is created when a token is
physically associated with a constraint. New constraints
may be added to an existing TAC.

Computational Interpretation, The physical manipulation
of a TAC has computational interpretation.

Manipulation, Each TAC can be manipulated discretely,
continuously or in both ways.

In order to evaluate the ability of the TAC Paradigm to
describe a full range of TUIs we used the TAC paradigm to

specify existing TUIs. We selected a variety of TUIs that
covers the familiar TUI design space and showed that the
TAC Paradigm may be easily used to specify these
interfaces. A description of the selected TUIs and their
specifications may be found in [5].

HIGH LEVEL DESCRIPTION LANGUAGE FOR TUIS

TUIML (Tangible User Interface Markup Language) is a
high level description language for TUIs. It draws from two
main foundations: the TAC Paradigm [5] and model based
user interfaces [9]. In order to provide an effective TUIDL,
the TUIML design satisfies the following requirements: a
comprehensive design process support, a repository of
design data, representation of both abstract and concrete
aspects of TUIs, the use of XML as an underlying
technology.

 TUIML predefines five basic components: Task, Domain,
Representation, TAC and Control. The task and domain
components describe the semantics of the TUI. The
representation and TAC components describe the syntax of
the TUI system. The representation component defines a set
of logical physical objects, the TAC component defines the
context for interaction actions performed upon these logical
physical objects and determines which semantic functions
are invoked as a result of an interaction action. These
components do not specify the TUI implementation
mechanism. The Control component keeps track of the TUI
system state during run time and maps lexical level
(implementation mechanism) events to the syntactic level
interaction actions thus provides desirable technology
independence. Following is a portion of the TAC model
describes the Marble Answering Machine[3].

<TAC_MODEL id=’tacm1’>

 <TAC_ELEMENT ID=’tac1’ NAME=’Marble in replay indentation’ >

<RELATION_STATEMENT DEF=’is_token’ REF=’r1’/>

 <RELATION_STATEMENT DEF=’is constraint’ REF=’r2’/>

<MANIPULATION_ELEMENT ID=’Construct’>

 <RELATION_STATEMENT DEF=’invokes’ REF=’t1’/>

 </MANIPULATION_ELEMENT >

 </TAC_ELEMENT>

</TAC_MODEL>

In order to validate the expressiveness and usefulness of
TUIML, we undertook a number of validation activities
include: Hand coded representation of new and existing
TUIs.

TUI MANAGEMENT SYSTEM

A TUIMS allows designers to specify TUIs using TUIDL.
This specification would then either be automatically or
semi-automatically translated into a graphical simulator or a
program controlling a set of physical interaction objects.
With a TUIMS an interactive application consists of two
parts: a lexical handler handling the communication with
the user and an application component containing the

application logic. The TUIMS Dialogue Manager
component is responsible for the communication between
these two components.

We built a prototype TUIMS which provide designers a 3d
graphical modeling tool and form based tools to specify
TUIs (see figure 1). The system translates the TUI
description into a TUIML representation and simulates the
tangible interaction in a Java3D based VR environment.
We use this prototype in the development of a new TUI.

Figure 1, A TUIMS prototype is used to graphically simulate a TUI

FUTURE WORK

We intend to continue developing our prototype TUIMS
into of a full TUIMS for specifying, programming and
testing TUIs . We are currently developing an automatic
generator of interactive C code from TUIML specification
which supports TUI prototyping using a Handyboard
microcontroller. We are also looking forward to cooperate
with existing physical toolkits such as iStuff[1] and Papier-
Mâché [8] to extend the technologies supported by the
TUIMS.

CONCLUSION

In this paper we have presented the concept of a TUIMS
and laid the foundation for its development. We presented
the TAC paradigm which identifies the core components of
TUIs. Building upon the TAC paradigm, we presented
TUIML, a high-level description language for TUIs.
Finally, we discussed the TUIMS concept which was used
in building a prototype TUIMS.

REFERENCES

1. Anderson Ballagas, R., Ringel, M, Stone, M., Borchers,
J, “iStuff: A Physical User Interface Toolkit for
Ubiquitous Computing Environments”, CHI 2003

2. B.Ullmer, H. Ishii, and R.J.K. Jacob, "Tangible Query
Interfaces: Physically Constrained Tokens for
Manipulating Database Queries," Proc. INTERACT
2003 Conference, 2003.

3. Crampton Smith, G. “The Hand That Rocks the Cradle.”
I.D., May/June 1995, pp. 60-65.

4. D. Olsen. “User Interface Management Systems: Models
and Algorithms.” Morgan Kaufmann, San Mateo, CA,
1992.

5. E.H. Calvillo Gamez, N. Leland, O. Shaer, and R.J.K.
Jacob, "The TAC Paradigm: Unified Conceptual

Framework to Represent Tangible User Interfaces,"
CLIHC 2003 Latin American Conference on Human-
Computer Interaction, 2003.

6. Ishii, H., and Ullmer, B. “Tangible Bits: Towards
Seamless Interfaces between People, Bits and Atoms”.
In Conference on Human Factors and Computing
Systems, March 1997.

7. Klemmer S.R, "Papier-Mâché: Toolkit support for
tangible interaction." in UIST 2003 Doctoral
Consortium.

8. P. Szekely. “Retrospective and challenges for model-
based interface development.” In F. Bodart and J.
Vanderdonckt, editors, Computer Aided Design of User
Interfaces (CADUI’96), pages 1–27, Wien, 1996.
Springer-Verlag.

