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Abstract. We consider the reconstruction problem for limited angle tomogra-
phy using filtered backprojection (FBP) and Lambda tomography. We use mi-
crolocal analysis to explain why the well-known streak artifacts are present at the
end of the limited angular range. We explain how to mitigate the streaks and
prove that our modified FBP and Lambda operators are standard pseudodiffer-
ential operators, and so they do not add artifacts. We provide reconstructions to
illustrate our mathematical results.
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1. Introduction

Computed tomography (CT) is one of the standard modalities in medical imaging. Its
goal consists in finding the density f : R2 → R of an unknown object by measuring and
processing the attenuation of x-rays along a large number of lines through the object.
The mathematical problem of this process consists in finding the density function f
from the knowledge of its Radon transform

Rf(θ, s) =

∫ ∞
−∞

f(sθ + tθ⊥) dt,

where s ∈ R, θ ∈ S1, and θ⊥ is the unit vector π/2 radians counterclockwise from θ.
In the classical setting of CT the tomographic data y = Rf(θ, s) is assumed to be

known for all values (θ, s) ∈ S1 × R. This tomographic problem has been extensively
studied in the last decades and many reconstruction algorithms are available for
complete data, see for example [27, 28]. Here, the most prominent reconstruction
algorithm is the so-called Filtered Backprojection (FBP), which will be described in
Section 2.2 of this article.



Characterization and reduction of artifacts in limited angle tomography 2

Figure 1 – Original image (left), Filtered Backprojection (FBP) reconstruction (middle)
and Lambda reconstruction (right) for an angular range, (−Φ,Φ) with Φ = 45◦ (right). Note
the streak artifacts and the missing boundaries in the limited angle reconstruction.

The success of CT has initiated the development of new tomographic imaging
techniques where the tomographic data Rf(θ, s) is no longer available for all (θ, s) ∈
S1 × R, but is given only on a restricted subset of lines. Such data are called limited
tomographic data.

Lambda tomography (Λ-CT) is an important algorithm related to FBP but that
uses limited tomographic data. To image a function f at the point x using Λ-CT, one
needs only data over lines that are arbitrarily close to x, so called Region of Interest
(ROI) data. This algorithm does not reconstruct the object f but an image that
emphasizes region boundaries and can provide high quality reconstructions. It is used
for medical CT when doctors want to image only a small region in the body and it is
used in micro-CT of industrial objects [6, 7, 45] (see also [21, 24, 39] for other local
methods). We will describe this algorithm in Section 2.2.

The problem we study in this article is limited angle tomography : the data are
restricted to lines in a limited angular range, i.e., Rf(θ, s) is known for all s ∈ R but for
θ ∈ S1

Φ where S1
Φ is a subset of S1. Typical examples of modalities where such problems

arise are digital breast tomosynthesis [29, 40], dental tomography [18, 26], or electron
microscopy [3]. In electron microscopy limited angle Lambda CT is used for region
of interest reconstruction [34]. In such situations, the problem is to reconstruct from
data obtained using the limited angle Radon transform RΦ : f 7→ Rf |S1

Φ×R, and the

applications of existing reconstruction methods (originally designed for the full angular
problem) are no longer straightforward. In fact, the problem is highly ill-posed, as can
be seen from the singular values [23]. To this end, dedicated inversion methods were
developed in [2, 14, 20, 22, 31, 37, 38, 44, 40]. However, in practice, the FBP algorithm
is still the preferred reconstruction method, cf. for example [4, 5, 25, 30, 41, 42].

However, the FBP inversion formula requires completeness of the tomographic
data. As a result, the use of the FBP algorithm in limited angle tomography
reconstructs only specific features of the original object and creates additional artifacts
in the reconstruction, cf. Figure 1. Though it is very well understood that only visible
singularities can be reconstructed stably from a limited angle data [33], the artifacts
at the ends of the angular range have not (to our knowledge) been heavily studied in
the literature so far.

The main goals of this article are to explain why streak artifacts are generated
by the FBP and Λ-CT algorithms for a limited angular range and to derive an
artifact reduction strategy. Using the framework of microlocal analysis we will prove
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characterizations of the artifacts in limited angle FBP and Λ-reconstructions. Those
characterizations will precisely explain where and why artifacts are created by these
algorithms. Based on these characterizations, we will explain how to mitigate those
artifacts and construct versions of limited angle FBP and Λ-CT that do not produce
added artifacts.

Microlocal analysis has been used to understand visible and invisible singularities
as well as artifacts in other tomography problems besides X-ray CT, including cone
beam CT [9], conical tilt electron microscopy [8], and an elegant abstract setting [13]
that includes these cases. Added artifacts also occur in synthetic aperture Radar in
the so-called left-right ambiguity [1, 43]. These problems are different from X-ray CT
because the microlocal analysis is more subtle; for our transform and full data R∗R is
an elliptic pseudodifferential operator, and for these other problems, the reconstruction
operators involving backprojection are not, in general, standard pseudodifferential
operators, even for “complete” data. As a result, the artifact reduction strategies
in [8, 9] only reduce the strength of artifacts; they do not eliminate them. In a
more complicated setting in electron microscopy, the reduction strategy only reduces
artifacts locally [35].

This paper is organized as follows. Section 2 of this article provides general
definitions and basic facts about computed tomography and lambda CT. In particular,
we define the reconstruction operators and characterize what these operators
reconstruct for a limited angular range (Theorem 2.1). In Section 3, we review the
framework of microlocal analysis including the notion of a singularity (wavefront set),
and we recall the definition of a pseudodifferential operator. Our main results are
presented in Section 4, where we use these concepts to derive precise characterizations
of the microlocal properties of our reconstruction operators. Using this, we describe
the added artifacts (Theorem 4.1). Moreover, we derive an artifact reduction strategy
and prove that our modified reconstruction operators are standard pseudodifferential
operators (Theorem 4.2). As a result, the modified reconstruction methods do not
produce added artifacts (Corollary 4.3). Finally, in Section 5, we present some
numerical experiments which illustrate our theory in practice. In the Appendix we
prove a key theorem (Theorem A.1) and provide proofs of our main theorems.

2. Tomographic Reconstruction for a Limited Angular Range

In this section we define the FBP and Lambda reconstruction operators for the full
angular range and investigate what these operators reconstruct when applied to limited
angle data. We begin by fixing the notation and giving some basic definitions.

2.1. Notation and Basic Definitions

In what follows, D(Rn) is the set of smooth functions on Rn with compact support,
S(Rn) is the Schwartz space of rapidly decreasing functions, and E(Rn) = C∞(Rn).
Moreover, D′(Rn) will denote the set of all distributions (i.e., the dual space to D(Rn)
with the weak-∗ topology). The set of tempered distributions, S ′(Rn), is the dual
space to S(Rn), and the set of distributions with compact support is denoted by
E ′(Rn), cf. [10, 17].
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The Fourier transform of a function f ∈ S(Rn) is defined as

Ff(ξ) = f̂(ξ) = (2π)
−n/2

∫
Rn

e−ix·ξ f(x) dx,

F−1f(x) = f̌(x) = (2π)
−n/2

∫
Rn

eix·ξ f(ξ) dξ.

(1)

The Lambda operator plays an important role in computed tomography. For
f ∈ S(Rn), we define

Λxf(ξ) = F−1
(
‖ξ‖ f̂

)
, (2)

and, as a pseudodifferential operator, Λx =
√
−∆ since ‖ξ‖2 is the symbol of −∆.

Note that Λx is weakly continuous from E ′(R2) to S ′(R2) since it is a pseudodifferential
operator [32].

We define the convolution on R2 using the factor 1/2π:

f ∗ g(x) =
1

2π

∫
y∈R2

f(x− y)g(y)dy, (3)

and with this definition, F(f ∗ g) = (Ff) (Fg).
We further define S(S1 × R) and the partial Fourier transform for functions on

S1 × R. First, we say that the function g(θ, s) ∈ S(S1 × R) if g is C∞ on S1 × R
and rapidly decreasing on R along with its derivatives, uniformly for θ ∈ S1. For
g ∈ S(S1 × R) we define the partial Fourier transform and its inverse with respect to
the second variable:

Fsg(θ, τ) =
1√
2π

∫
R
e−isτ g(θ, s) ds,

F−1
s g(θ, s) =

1√
2π

∫
R
eisτ g(θ, τ) dτ.

(4)

Accordingly, we define the Lambda operator Λs for g = g(θ, s) ∈ S(S1 × R) by

Λsg = F−1
s (|τ |Fsg ). (5)

As noted above for Λx, the operator Λs =
√
−d2/ds2 is weakly continuous from

E ′(S1 × R) to S ′(S1 × R).

2.2. Computed Tomography with Full Data

Here, we summarize the general definition and basic facts of CT and Λ-CT with
data on a full angular range.

In what follows we let θ be a unit vector in S1. When needed, we parametrize
points on the unit sphere, S1, using angles φ ∈ [−π, π]:

θ = θ(φ) = (cos(φ), sin(φ)), θ⊥ = θ⊥(φ) = (− sin(φ), cos(φ)) (6)

where θ(φ) is the unit vector in direction φ and θ⊥(φ) = θ(φ + π/2). For (θ, s) ∈
S1 × R, we define

L(θ, s) =
{
x ∈ R2 : x · θ = s

}
. (7)
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Note that L(θ, s) is the line which is perpendicular to θ and containing the point sθ.
Then the Radon transform of a function f ∈ L1(R2) is defined by

Rf(θ, s) =

∫
L(θ,s)

f(x) ds =

∫ ∞
−∞

f(sθ + tθ⊥) dt, (8)

where ds denotes the arc length measure on the line. The dual transform (or the
backprojection operator) is defined for g ∈ S(S1 × R) as

R∗g(x) =

∫
θ∈S1

g(θ, x · θ) dθ, (9)

which is the integral of g over all lines through x (since, for each θ, x ∈ L(θ, x · θ)).
One uses duality to show these transforms are both defined and weakly continuous for
classes of distributions, and this is discussed at the start of the Appendix.

For f ∈ S(R2), a well-known inversion formula [27] for the Radon transform is

f =
1

4π
R∗ (ΛsRf) = B(Rf), (10)

where the reconstruction operator B is defined for g ∈ S(S1 × R) as

Bg =
1

4π
R∗ (Λsg) . (11)

The implementation of the inversion formula (10) is known as Filtered Backprojection
(FBP) algorithm. Note that the reconstruction operator B may also be applied to
distributions with compact support g ∈ E ′(S1 × R) and the inversion formula (10) is
valid for f ∈ E ′(R2), cf. [27] and Theorem A.1.

Lambda tomography (Λ-CT) is a related reconstruction method [6, 7, 45]. For
g ∈ E ′(S1 × R)

Lg =
1

4π
R∗
(
− ∂2

∂s2
g

)
, (12)

and L does not reconstruct f but reconstructs Λxf = L (Rf) [7]. The advantage of
Lambda CT is that it uses local data: To recover Λxf(x), one needs only data Rf
over lines near x since

(
− d2

ds2

)
is a local operator and R∗ integrates over lines through

x. A refinement proposed by Kennan Smith, which we will use, is to add a multiple
of R∗Rf to provide contour to the reconstruction. Let µ ≥ 0 then

Lµg =
1

4π
R∗
(
− d2

ds2
+ µ

)
g. (13)

A straightforward calculation shows that

Lµ(Rf) = Λxf + f ∗ µ

‖x‖
=: Λµf (14)

where equation (14) gives the definition of Λµf and we recall that the convolution
is defined by (3). The term Λxf highlights boundaries since it “takes a derivative”,
and the convolution term helps objects stand out from the background because the
convolution with µ

‖x‖ is more influenced by values of f near x (if f is large near x, so

is the convolution). Note that L = Lµ for µ = 0.
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Φ

WΦ

Figure 2 – The figure shows S1
Φ (solid curve) as a subset of S1 (dotted curve). The wedge

WΦ = R · S1
Φ is indicated by the gray shaded area.

2.3. Characterization of Limited Angle Reconstructions

In this work, we study the reconstruction problem for limited angle tomography where
a portion of the projections Rf is missing. That is, the data Rf(θ, s) is known only
for θ ∈ S1

Φ ( S1 and s ∈ R, where

S1
Φ :=

{
θ ∈ S1 : θ = ±(cosφ, sinφ), |φ| < Φ

}
(15)

and the angular range parameter Φ is assumed to satisfy 0 < Φ < π/2, cf. Figure 2.
In order to compute a limited angle reconstruction, we therefore have to deal with the
limited angle Radon transform

RΦ : f 7→ Rf
∣∣
S1

Φ×R
(16)

rather than data for all θ ∈ S1. We define the polar wedges

WΦ := R · S1
Φ =

{
rθ : θ ∈ S1

Φ, r ∈ R
}
, and WΦ = cl(WΦ) \ {0}. (17)

Moreover, we define the projection operator

PΦf = F−1(χWΦ
f̂), (18)

where χWΦ
denotes the characteristic function of the set WΦ.

The backprojection (or dual operator) for the limited angle Radon transform is
given by

R∗Φg(x) =

∫
θ∈S1

Φ

g(θ, x · θ) dθ. (19)

Since R∗Φ truncates the angles to S1
Φ, evaluating R∗Φ on Rf is the same as evaluating

R∗Φ on RΦf . So, from now on, we will assume that we have data Rf , and we
use R∗Φ to restrict the data. This will have the effect of reconstructing only using
tomographic data for (θ, s) ∈ S1

Φ ×R, that is, reconstructing from limited angle data.
This convention also makes the theory easier when we deal with distributions.

The operator R∗Φ is defined for g ∈ S(S1 × R) and it can be extended to g in the
image R(E ′(R2)) as noted in Theorem 2.1. With this observation in mind, for such g,
we define

BΦg(x) =
1

4π
R∗ΦΛs(g) (20)
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and the limited angle filtered backprojection formula is BΦRf . We define the operators

LΦg =
1

4π
R∗Φ

(
− d2

ds2
g

)
, (21)

and, for µ ≥ 0,

Lµ,Φg =
1

4π
R∗Φ

(
− d2

ds2
+ µ

)
g. (22)

These give two limited angle Lambda reconstruction formulas LΦRf and Lµ,ΦRf .
Since the limited angle data g = RΦf is highly incomplete, we cannot expect to
obtain the function f by applying the filtered backprojection reconstruction formula
(20) to data g. Similarly, we cannot expect to recover Λxf by applying LΦ. However,
we can precisely characterize what these operators do reconstruct.

Theorem 2.1. Let f ∈ S(R2). Then, the limited angle FBP reconstruction formula
(20) satisfies

BΦ(Rf) = PΦf (23)

and the limited angle Lambda CT formulas

LΦ(Rf) = PΦ(Λxf) , Lµ,Φ(Rf) = PΦ(Λµf). (24)

These formulas are also valid for f ∈ E ′(R2) in the sense that Rf is a distribution on
S1 × R on which Λs and −d2/ds2 can be applied and R∗Φ can be applied on the image
of such distributions. Furthermore, the maps, BΦR, LΦR and Lµ,ΦR are all weakly
continuous from E ′(R2) to S ′(R2).

Thus, these limited angle formulas recover PΦ of what the full-angle formulas
recover. The proof will be given in the appendix since it follows from a more general
theorem proven there. A calculation similar to equation (23) was proven by Tuy [44].

3. Microlocal Analysis and Pseudodifferential Operators

The concepts in this section will allow us to characterize the streaks in Figure 1.
Microlocal analysis is a powerful concept which enables us to describe simultaneously
the locations x ∈ Rn and directions ξ ∈ Rn∗ of singularities of a distributions. For
general facts about the theory of distributions and more details on microlocal analysis
we refer to [10, 17].

Here and in what follows we will use the notation

Rn∗ = Rn \ {0} .

A function f(ξ) is said to decay rapidly in a conic open set V if it decays faster
than any power of 1/ ‖ξ‖ in V . The singular support of a distribution, f , sing supp(f),
is the complement of the largest open set on which f is a C∞ function. It follows
directly from this definition that sing supp(f) ⊂ supp(f), and sing supp(f) = ∅ if and
only if f ∈ C∞(Rn).

Definition 3.1 (Frequency Set [17, §8.1]). Let f ∈ E ′(Rn). We define the frequency

set Σ(f) of f as the set of all directions ξ ∈ Rn∗ in which f̂ does not decay rapidly in
any conic neighborhood of ξ.
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We note the following fundamental property [17, Lemma 8.1.1] of the frequency
set: For f ∈ E ′(Rn) and ϕ ∈ D(Rn) it holds

Σ(ϕf) ⊂ Σ(f). (25)

The singular support sing supp(f) of a distribution gives the location of the
singularities, whereas, the frequency of set Σ(f) describes, in some sense, all directions
in which f is singular. However, both concepts are not yet correlated; if Σ(f) 6= ∅, then
f 6∈ C∞(Rn), but we don’t know the location of the singularity(ies) corresponding to
any ξ ∈ Σ(f). The notion of a wavefront set combines both of these concepts and
simultaneously describes the location and the direction of a singularity. In order to
define the wavefront set, we first need the following notion of a localized frequency
set.

Definition 3.2 (Localized Frequency Set). Let f ∈ D′(Rn). The localized frequency
set of f at x ∈ Rn is defined as

Σx(f) =
⋂
{Σ(ϕf) : ϕ ∈ D(Rn), ϕ(x) 6= 0} . (26)

We first note that, by (25), Σx(f) ⊂ Σ(f). Therefore, the localized frequency set
Σx(f) of f at x can be interpreted as the set of directions in which f is singular at x.
This gives us a definition of singularity that includes location and direction.

Definition 3.3 (Wavefront Set). Let f ∈ D′(Rn). The wavefront set of f is given by

WF(f) = {(x, ξ) ∈ Rn × Rn∗ : ξ ∈ Σx(f)} . (27)

If (x, ξ) 6∈WF(f) one says that f is microlocally smooth near (x, ξ).

The frequency set Σ(f) is the projection of WF(f) on the second coordinate ([17,
Proposition 8.1.3]) and sing supp(f) is the projection onto the first coordinate.

Now we specialize to R2 in preparation for our tomography problem.

Example 3.1. Let Ω ⊂ R2 be such that the boundary ∂Ω is a smooth manifold.
Then, the wavefront set of χΩ is the set of normal vectors to the boundary of Ω:

(x, ξ) ∈WF (χΩ) ⇔ x ∈ ∂Ω, ξ ∈ Nx, (28)

where χΩ denotes the characteristic function of Ω and Nx is the normal space to ∂Ω
at x ∈ ∂Ω. The proof of this fact is non-trivial and we refer the reader to [17, p. 265].

For Φ ∈ (0, π/2) and f ∈ D′(R2), we define

WFΦ(f) = WF(f) ∩
(
R2 ×WΦ

)
(29)

and
WFΦ(f) = WF(f) ∩

(
R2 ×WΦ

)
. (30)

These sets represent the part of WF(f) that is inWΦ orWΦ and they will be important
when we analyze the limited angle operators in the next section.

In this article we will use some facts from the theory of pseudodifferential
operators (PSIDOs), which we now define. For functions f ∈ D(Rn), the operator

Pf(x) =
1

(2π)n

∫
ξ∈Rn

eix·ξ a(x, ξ)Ff(ξ) dξ (31)
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is a PSIDO of order m ∈ R if its symbol a(x, ξ) satisfies the following bounds at ∞ in
ξ: for each compact set K ⊂ Rn, and any two multi-indices α and β in {0, 1, 2, . . . }n
there is a constant CK,α,β such that

∀x ∈ K ∀ξ ∈ Rn, ‖ξ‖ > 1,
∣∣∣Dα

xD
β
ξ a(x, ξ)

∣∣∣ ≤ CK,α,β(1 + ‖ξ‖)m−|β|,

where |β| is the order of the differential operator Dβ . Because of our application, we
assume a(x, ξ) is locally integrable and smooth away from ξ = 0; in the usual definition,
a is assumed to be C∞ everywhere. Any operator with such a singularity at ξ = 0 can
be written as pseudodifferential operator with C∞ symbol plus a smoothing operator,
so its properties are the same as in the case for operators with smooth symbols at
ξ = 0. In what follows, we need only to consider a very classical type of PSIDO on
E ′(R2): operators whose symbol a(x, ξ) is a sum of a finite number of terms each of
which is homogeneous in ξ and smooth away from the origin. Such operators satisfy
the bounds to be PSIDOs [32, p. 198, §6]. For example, the operator Λµ is a PSIDO
of order one with symbol a(x, ξ) = ‖ξ‖ + µ

‖ξ‖ as can be seen from (14). We refer to

[32] for the properties of pseudodifferential operators.
Pseudodifferential operators satisfy the pseudolocal property, namely if P is a

PSIDO and f ∈ E ′(R2), then WF(Pf) ⊂ WF(f). This means that any PSIDO P
does not add singularities to the “reconstruction” Pf that are not already present
in f .

A PSIDO P with symbol a(x, ξ) is elliptic of order m ∈ R on an open conic
set V ⊂ Rn if the operator is order m and for each compact set K ⊂ Rn, there
are constants cK > 0 and LK such that for all x ∈ K and ξ ∈ V with ‖ξ‖ > LK ,
cK (1 + ‖ξ‖)m ≤ |a(x, ξ)|. If P is elliptic in V then singularities of f in directions in
V will show up in Pf , that is if ξ ∈ V and (x, ξ) ∈WF(f), then (x, ξ) ∈WF(Pf).

4. Characterization and Reduction of Limited Angle Artifacts

This section contains our main results. Here, we will explain why and where added
singularities are generated and prove an artifact reduction strategy. In the first part
we will present a precise characterization of microlocal properties of the operators
(20)-(22). In the second part, we will define modified reconstruction operators and
prove that they are standard pseudodifferential operators and thus do not produce
streak artifacts.

4.1. Characterization of Limited Angle Artifacts

We begin by deriving a precise characterization of the microlocal properties of our
reconstruction operators, including the added artifacts at the ends of the angular
range.

Theorem 4.1 (Characterization of Limited Angle Artifacts). Let Φ ∈ [0, π/2) and
let f ∈ E ′(R2). Let H be any one of the operators BΦ, LΦ, Lµ,Φ defined in (20)-(22).
Then

WFΦ(f) ⊂WF (H(Rf)) ⊂WFΦ(f) ∪ AΦ(f), (32)

where

AΦ(f) =
{

(x+ rθ⊥(φ), αθ(φ)) : (x, αθ(φ) ∈WF(f), r, α ∈ R∗, φ = ±Φ
}

(33)

is the set of possible added singularities in the reconstruction HRf .
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Figure 3 – Filtered backprojection reconstruction of χB(0,1) (left) and Lambda
reconstruction of χB(0,1) (middle), both windowed display, at an angular range [−Φ,Φ],
Φ = 45◦ and an illustration of added singularities (right). According to Theorem 4.1, the
additional singularities (streak artifacts) are located on lines l(r) = xf + rθ(±Φ), where xf is
such that (xf , αθ(±Φ)) ∈ WF(f), α 6= 0. The correspondence of the theoretical description
(right) and practical reconstructions (left + middle) is remarkable, cf. Theorem 4.1.

The theorem is proved in the appendix because the proof is technical and it relies
heavily on the key theorem of that section, Theorem A.1.

Theorem 4.1 is of particular interest for limited angle tomography since it provides
a precise characterization of the wavefront set of limited angle filtered backprojection
and Lambda reconstructions. In particular, it explains all effects that we observed
in reconstructions that we showed in the introduction of this article (cf. Figure 1).
For this discussion, let H be any of the operators BΦ, LΦ, or Lµ,Φ. First, note that
the only singularities of f that are visible from our reconstruction operators are those
with directions in WΦ; singularities of f with directions outside WΦ will be smoothed
by HR. This is true because of containment (32); since the right-hand term includes
only such singularities so the left hand term does, too. This is to be expected because
a singularity of f at (x, ξ) is visible from Radon data Rf in a neighborhood of (θ, s) if
and only if the line L(θ, s) contains x and is normal to ξ (e.g., [33]). So, if a singularity
is not normal to a line in the data set, it will not be imaged.

With this in mind, we will call a singularity of f at (x, ξ) visible from limited angle
data (with θ ∈ S1

Φ) if ξ ∈ WΦ. We justify this by noting that WFΦ(f) ⊂ WF(HRf)
by (32). We exclude singularities at θ(±Φ) from this definition because they could
also be added singularities as we now explain.

Each singularity in A(f) will be called an added singularity since it comes from
a singularity of f at a different point. If (x, ξ) ∈WF(f) in one of the four directions
±θ(±Φ), then the added singularities are on the line through x normal to ξ. That is,
if ξ is parallel to θ(±Φ), and (x, ξ) ∈ WF(f), then singularities of the limited angle
operators (20)-(22) can occur at any point along the line through x and perpendicular
to ξ. This is seen in the reconstructions in Figure 1; the artifacts are created along
lines at the end of the data set that are perpendicular to singularities of f as these
lines correspond to φ = ±Φ. An illustration of this discussion is shown in Figure 3.

We conclude this section by noting that a good reconstruction algorithm, on the
one hand, should be able to reliably reconstruct visible singularities, and on the other
hand, avoid the production of the added singularities.
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4.2. Reduction of Limited Angle Artifacts

Our aim in this section is to derive an artifact reduction strategy for the limited angle
filtered backprojection (FBP) algorithm, BΦ, and the limited angle Lambda operators
LΦ and Lµ,Φ. In order to reduce artifacts, our idea consists in modifying the above
reconstruction formulas in such a way that they output a function TΦf which

(i) does not include additional singularities, i.e., WF(TΦf) ⊂WFΦ(f),

(ii) is a good approximation to PΦf (or for limited angle Lambda CT a good
approximation to PΦΛµ).

(iii) contains most of the visible singularities of f , i.e., for some Φ′ ∈ (0,Φ),
WFΦ′(f) ⊂ WF(TΦf) (where WFΦ′(f) is the part of the wavefront set of f
with directions in WΦ′).

Let us first point out why PΦf = F−1(χWΦ f̂) may contain singularities (x, ξ)
which do not belong to the wavefront set of f . To this end, we write

BΦRf =
1

4π
f ∗ ǔΦ,

where ǔΦ = F−1(χWΦ
). Then, by examining the proof of Theorem 4.1 (in particular

the part between (A.17) and (A.20)) it is easy to see that the set of additional
singularities AΦ(f) may be written as

AΦ(f) =
{

(x+ y, ξ) ∈ R2 × R2
∗ : (x, ξ) ∈WF(f), (y, ξ) ∈WF(ǔΦ), y 6= 0

}
.

Therefore, by the “duality” for wavefront set of homogeneous distributions and
their Fourier transforms, Lemma A.4, added singularities are produced because
sing supp(uΦ) 6= {0}. To clarify this point, if sing supp(uΦ) were {0}, then the
only singularities in the convolution f ∗ ǔΦ would be those from f . However, since
sing supp(uΦ) is larger, artifacts can be added to the convolution and hence to BΦRf .
In order to avoid the production of added singularities, it is therefore appropriate to
aim at replacing uΦ by a homogeneous distribution with a smooth Fourier transform
on R2

∗ (i.e., away from the origin).
Another way to say this is to note that BΦR is not a standard pseudodifferential

operator because its symbol is not smooth. This is seen from (A.2b) with K = χS1
Φ

:

the symbol of BΦR, χS1
Φ

(ξ), is not smooth.

Remark 1. To come up with an artifact reduction strategy, we will consider more
general weights for the backprojection. We define the multiplication operator

K : S(S1 × R)→ S ′(S1 × R), Kg(θ, s) = κ(θ)g(θ, s)

where κ : S1 → R, supp(κ) ⊂ cl(S1
Φ)

(34)

and use K as a cutoff for the weighted backprojection: R∗K.
If κ = χΦ, then R∗K = R∗Φ. In general, since supp(κ) ⊂ cl(S1

Φ), then R∗K
uses only limited angle data for θ ∈ cl(S1

Φ), so R∗K is a weighted limited angle
backprojection.

Furthermore, if κ is in C∞(S1), then as we will claim in Corollary 4.3, BΦK and
Lµ,ΦK will not add singularities to the reconstructions, as suggested just above this
remark.



Characterization and reduction of artifacts in limited angle tomography 12

Although one cannot, in general, evaluate R∗K on arbitrary distributions in
S ′(S1 × R), we will prove (Theorem A.1) that one can evaluate R∗K on distributions
in R(E ′(R2)) as long as κ is piecewise continuous. Separating out the weight K from
the backprojection makes the discussion more general and useful, and we will take
this viewpoint from now on.

Theorem 4.2. Let κ : S1 → R be a smooth function and assume supp(κ) ⊂ cl(S1
Φ).

Let K be the operator that multiplies by κ

Kg(θ, s) = κ(θ)g(θ, s) .

Then the operators
BΦKR, LΦKR, Lµ,ΦKR (35)

are all standard pseudodifferential operators and their full symbols are, respectively,

κ

(
ξ

‖ξ‖

)
, κ

(
ξ

‖ξ‖

)
‖ξ‖ , κ

(
ξ

‖ξ‖

)(
‖ξ‖+

µ

‖ξ‖

)
. (36)

Our next corollary shows that using a smooth cutoff, κ, on S1
Φ does achieve the

goals listed in items (i)-(iii).

Corollary 4.3 (Reduction of Limited Angle Artifacts). Let κ : S1 → R be a smooth
function supported in cl(S1

Φ) and assume Φ′ ∈ (0,Φ) and κ = 1 on SΦ′ . Assume H is
any one of the operators BΦK, LΦK, Lµ,ΦK for this κ and f ∈ E ′(R2). Then

WFΦ′(f) ⊂WF(HRf) ⊂WFΦ(f) (37)

and each of the operators

(BΦKR− BΦR) , (LΦKR−LΦR) , (Lµ,ΦKR−Lµ,ΦR) (38)

is a smoothing operator for directions in WΦ′ (i.e., for (BΦKR− BΦR), if f ∈ E ′(R2),
then WF((BΦKR− BΦR) f) ∩ R2 ×WΦ′ = ∅).

Theorem 4.2 and Corollary 4.3 will be proven in the appendix since they depend
on the key theorem of that section, Theorem A.1.

Corollary 4.3 shows that using a smooth κ achieves the goals at the start of this
section; (37) shows that goal (i) and (ii) at the start of this section hold. Then,
since each of the operators in (38) (e.g., BΦKR − BΦR), is smoothing for directions
in WΦ′ , the smoothed operator (e.g., BΦKR) has the singularities at the same points
and of the same order as the non-smoothed one (e.g., BΦR), at least for directions
in WΦ′ . This shows goal (iii) is satisfied. So, a preprocessing of the data Rf ,
namely the multiplication of the data by the smooth function κ in (34) and the
subsequent application of BΦ, LΦ or Lµ,Φ leads to reconstructions that do not contain
added artifacts. Furthermore, we now understand why these artifacts appear without
preprocessing.

5. Reconstructions

The goal of this section it is to verify the results of Section 4.2 numerically. In order
to implement our artifact reduction strategy, we need a smooth (i.e. C∞(S1)) cutoff
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function κε : S1 → R which satisfies the assumptions of Corollary 4.3. Then, the
multiplication operator

Kεg(θ, s) = κε(θ)g(θ, s)

will satisfy the assumptions of Theorem 4.2 and therefore may be used for artifact
reduction.

In what follows, we let 0 < ε < π/2 and define ϕε : [−π, π] → [0, 1] to be a

π-periodic function which is given by ϕε(x) = exp( x2

x2−ε2 ) for |x| ≤ ε and ϕε(x) = 0

for ε < |x| < π/2. Then, we define the cutoff function κε : S1 → R via

κε(θ(φ)) =


ϕε(φ+ (Φ− ε)), φ ∈ [−Φ,−(Φ− ε)],
1, φ ∈ [−(Φ− ε),Φ− ε],
ϕε(φ− (Φ− ε)), φ ∈ [(Φ− ε),Φ],

0, else,

(39)

where φ ∈ [−π, π). Note that κε ≡ 1 on S1
Φ−ε and has smooth transition from 1 to 0

in S1
Φ \ S1

Φ−ε. Although the κε is not smooth at ±θ(±Φ), we may use it for artifact
reduction because, in practice, it is evaluated at a finite number of points and there
is a smooth function that has these values at these points.

We have implemented our modified reconstruction operators BΦKε, LΦKε and
Lµ,ΦKε for parallel geometry in Matlab using the function κε which is defined in
(39). The resulting reconstructions for ε ∈ {0◦, 20◦, 40◦} are shown in Figure 4 and
Figure 5. Here, one can clearly observe the effect of artifact reduction: While the
limited angle artifacts are visible in FBP and Lambda reconstructions (left column),
the implementation of the artifact reduction strategy, using a cutoff κε in the operator
Kε, mitigates the production of the added singularities (middle and right column).

Remark 2. Note that the cutoff function κε satisfies κε(±θ(±Φ)) = 0. According
to that, the data which is given by projections with respect to orientations ±θ(±Φ)
is not used by the algorithm. To account for that, we set κε(±θ(±Φ)) = δ, for some
small δ > 0, in the practical implementation of our artifact reduction strategy.

Next, let us comment on the choice of the parameter ε ∈ (0,Φ] in (39). For
convenience, let’s talk just about BΦ. The analogous statements hold for LΦ and
Lµ,Φ. Firstly, according to Theorem 4.2 every choice of the parameter ε ∈ (0,Φ]
leads to a reconstruction which does not contain additional artifacts as opposed to
BΦR. Secondly, the function κε converges pointwise to χWΦ

as ε → 0. Therefore,
a small value of the parameter ε ensures that BΦKεRf is close to BΦRf = PΦf
(cf. requirement (ii) and that BΦKεRf − BΦRΦf is smoothing in R2 ×WΦ′). That
is, a small parameter ε leads to a reconstruction which is a good approximation to
BΦRf and does not contain additional artifacts, i.e., the requirements (i)-(iii) are
satisfied. Moreover, note that by (38), BΦKεRf has singularities at the same locations
in R2×WΦ′ as f does (and as BΦRf does). However, for small values of ε the streaks
might still be visible in the reconstructions, at least near supp(f), as can be seen
from the middle column of Figure 4. This is because κε decays very rapidly near the
boundary ∂WΦ for small values of ε so singularities are smoothed, but their derivatives
can still be large. On the other hand, large values of ε may lead to smoothing of visible
singularities with directions near ±θ(±Φ). This effect can be particularly observed
in Figure 5 by comparing left and right columns, where the original image has many
singularities with directions near ±45◦. To sum up, we observe a trade-off between
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Original

ε = 0◦ ε = 20◦ ε = 40◦

BΦKε(Rf)

LΦKε(Rf)

Lµ,ΦKε(Rf)

Figure 4 – Reconstruction of a phantom (top row) using the operators (35) with µ = 1 ·10−3

and the cutoff function κε defined in (39). The tomographic data was generated in Matlab for
the angular range [−Φ,Φ], Φ = 45◦. The effect of artifact reduction can be clearly observed
for ε = 20◦ and ε = 40◦. However, for ε = 20◦, streaks are still visible near supp(f), whereas
for ε = 40◦ some visible singularities are smoothed with directions near ±45◦.

smoothing of visible singularities and the visibility of streaks. Due to that fact, the
parameter ε has to be chosen carefully in practical reconstructions. Moreover, we
would like to note that the use of different cutoff functions κε for the operator Kε may
affect the artifact reduction performance. Therefore, a more detailed investigation of
practical implementations of our artifact reduction strategy is needed, which is out of
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Original

ε = 0◦ ε = 20◦ ε = 40◦

BΦKε(Rf)

FBP reconstruction: ε =0
°

FBP reconstruction: ε =20
°

FBP reconstruction: ε =40
°

LΦKε(Rf)

Λ reconstruction: ε =0
°

Λ reconstruction: ε =20
°

Λ reconstruction: ε =40
°

Lµ,ΦKε(Rf)

Λ
µ
 reconstruction: ε =0

°
Λ

µ
 reconstruction: ε =20

°
Λ

µ
 reconstruction: ε =40

°

Figure 5 – Reconstruction from noisy Radon data (noise level=1%) of the brain [36] (top
row) using the operators (35) with µ = 5 · 10−4 and the cutoff function κε defined in (39).
The noisy tomographic data was generated in Matlab for the angular range [−Φ,Φ], Φ = 45◦.
The effect of artifact reduction can be clearly observed for ε = 20◦ and ε = 40◦. However,
some visible singularities are smoothed with directions near ±45◦.

scope of this article.
Furthermore, in our experiments we observed that the noise sensitivity of our

modified reconstruction operators (35) is comparable to the sensitivity of standard
reconstruction operators (20)-(22), cf. Figures 4 and 5.
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6. Concluding Remarks

In this paper we explained why streak artifacts are present in limited angle FBP and
Lambda reconstructions and we showed where they occur. We developed a method to
reduce those artifacts. To these ends, we provided a thorough mathematical analysis
of the reconstruction operators and their microlocal properties. In particular, we
explained how to mitigate the streaks. We proved that our modified FBP and Lambda
operators are standard pseudodifferential operators, and so they do not add artifacts.
In numerical experiments we illustrated that our mathematical results translate into
practice. To this end, we used a very fine angular sampling (∆θ = 0.1◦) in all of our
experiments.

We also note that our artifact reduction strategy not only applies to FBP but to all
reconstruction algorithms which are based on forward and backprojection operators.
For example, an artifact reduced version of the Ladweber iteration fn = fn−1 +
ωR∗Φ(g−RΦfn−1), 0 < ω ≤ ‖RΦ‖−2

, can be achieved by replacing the backprojection
operator R∗Φ by the weighted backprojection R∗ΦK at each iteration. Then, an artifact
reduced version of the Landweber iteration is given by fn = fn−1+ωR∗ΦK(g−RΦfn−1).
This scheme can also be applied to more elaborate reconstruction methods. In [11],
for example, the author successfully applied this artifact reduction strategy to the
method of curvelet sparse regularization [12] and observed a similar artifact reduction
performance as in Figures 4 and 5.

Moreover, we believe that similar weighting should work for fan beam data, and
it should help for cone beam data as well and for other limited data problems. The
microlocal details would be different, and this is worth exploring.

Finally, we should note that the implementation of our artifact reduction strategy
is not yet analyzed for problems with sparse angular sampling which occur in
tomosynthesis [29, 40] and in dental CT [19]. Without further analysis, we cannot
say how our artifact suppression would work with such data. However, our reduction
strategy works well in experiments with noisy non-sparse data. Also, one could analyze
how to choose optimal cutoff functions κε. According to the above discussion, a more
detailed investigation of practical implementations of our artifact reduction strategy
is needed, but this is beyond the scope of this article.
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Appendix A. Proof of a Key Theorem and Main Theorems

In this section we prove a theorem that gives the relation between the Fourier transform
and each of the operators we consider, and then we use that theorem to prove the
results in the article.

We first introduce notation we will use throughout the appendix. The action of a
distribution f on a test function ψ will be denoted by 〈f, ψ〉, and when needed we will
indicate the ambient space by 〈 , 〉Rn or 〈 , 〉S1×R or 〈 , 〉R. The transformsR andR∗
are defined on distributions by duality. Since R∗ : E(S1 × R)→ E(R2) is continuous,
R : E ′(R2) → E ′(S1 × R) is weakly continuous using the following definition: for
f ∈ E ′(R2), Rf is the distribution defined by 〈Rf, g〉S1×R = 〈f,R∗g〉R2 , One defines
R∗ : S ′(S1 × R)→ S ′(R2) in a similar way, and R∗ is weakly continuous, too.

It is clearer and easier to investigate general backprojection operators, not just
R∗Φ. To this end, we let κ : S1 → R be a piecewise smooth bounded function supported
in cl(S1

Φ) and, as noted previously, K is the operator:

K : S(S1 × R)→ S ′(S1 × R), Kg(θ, s) = κ(θ)g(θ, s). (A.1)

In the process of proving our theorem, we will show K is defined and weakly continuous
on the range of the Radon transform, R(E ′(R2)) and on Λs of this range.

Theorem A.1 (Key Theorem). Let κ : S1 → R be piecewise continuous and supported
in cl(S1

Φ), and let K be the operator given in (A.1). Let f ∈ S(R2) and let µ ∈ R.
Then,

BΦKRf =
1

4π
R∗KΛsRf (A.2a)

= F−1

(
κ

(
ξ

‖ξ‖

)
Ff
)

(A.2b)

= F−1

(
κ

(
ξ

‖ξ‖

))
∗ f (A.2c)

Lµ,ΦKRf =
1

4π
R∗K

(
− d2

ds2
+ µ

)
Rf (A.3a)

= F−1

(
κ

(
ξ

‖ξ‖

)(
‖ξ‖+

µ

‖ξ‖

)
Ff
)

(A.3b)

= F−1

(
κ

(
ξ

‖ξ‖

)(
‖ξ‖+

µ

‖ξ‖

))
∗ f . (A.3c)

Each operator making up the transforms in (A.2) and (A.3) is defined, and the
transforms are weakly continuous from E ′(R2) to S ′(R2).

This theorem will allow us to show the operators in the article are standard
pseudodifferential operators when κ is smooth, and it will allow us to analyze the
added singularities for the other operators.

Proof. Note that K commutes with Λs and
(
− d2

ds2 + µ
)

because they operate on

different variables, and, as we will prove, they are defined and weakly continuous
on the distributions to which we apply them. This justifies switching K and these
operators in (A.2a) and (A.3a).
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First, we prove the formulas for f ∈ S(R2), and in the process, we show each
operation is defined. For f ∈ S(R2), Rf ∈ S(S1 × R) [15], and so ΛsRf is a smooth
function (because its Fourier transform in s is rapidly decreasing at infinity and smooth
in θ). Then, KΛsRf is a piecewise continuous function and, therefore, R∗KΛsRf is
defined. This allows us to do the following calculation using the Fourier slice theorem
(cf. [27]), Fs(Rf)(θ, τ) =

√
2πf̂(τθ):

R∗KΛsRf(x) =

∫
S1

κ(θ)ΛsRf(θ, x · θ) dθ (A.4)

=
1√
2π

∫
S1

κ(θ)

∫ ∞
−∞

eiτx·θ |τ | FsRf(θ, τ) dτ dθ

= 2

∫
S1

∫ ∞
0

eix·τθ κ

(
τθ

τ

)
f̂(τθ)τ dτ dθ

= 2

∫
ξ∈R2

eix·ξ κ

(
ξ

‖ξ‖

)
f̂(ξ) dξ . (A.5)

= 4πF−1

(
κ

(
ξ

‖ξ‖

)
Ff
)

(A.6)

and now the equality between parts (A.2a)-(A.2c) is easy to show. One can see from
(A.6) that the Fourier transform of R∗KΛsRf is rapidly decreasing at infinity, so
R∗KΛsRf ∈ E(R2) if f ∈ S(R2).

The proof of (A.3) for f ∈ S(R2) is similar.

We now prove that formulas (A.2a)-(A.2b) are valid in a distributional sense for
f ∈ E ′(R2). Part (A.2c) is just a different way of writing (A.2b) using properties of
the Fourier transform and convolution (which are valid for distributions in S ′, if one
of them has compact support [17, Theorem 7.1.15]).

First, we show the left-hand side of (A.2a) is defined and then we show it is weakly
continuous for f ∈ E ′(R2). Then, we prove that the expression in (A.2b) is weakly
continuous. Since we have shown these right sides of (A.2) are equal for f ∈ D(R2),
this will show that they are equal for f ∈ E ′(R2).

For f ∈ E ′(R2), we claim R∗KΛsRf is a distribution in S ′(R2) and each of the
operators in the composition is defined. Since R : E ′(R2)→ E ′(S1 × R) is continuous
and Λs : E ′(S1 × R) → S ′(S1 × R) is continuous, we have that ΛsR : E ′(R2) →
S ′(S1 × R) is continuous. Proposition 1.09 and Remark 1.10 in [16] show that for
f ∈ E ′(R2), Rf ∈ C∞(S1, E ′(R)). This means that for each θ ∈ S1, Rf(θ, ·) is a
distribution in E ′(R) and θ 7→ Rf(θ, ·) is a smooth function from S1 to E ′(R). Since Λs
can be viewed as an operator from : E ′(R) to S ′(R), the function θ 7→ κ(θ)ΛsRf(θ, ·)
is a piecewise continuous map from S1 to S ′(R). Therefore, for g ∈ S(S1 × R), the
integral ∫

θ∈S1

κ(θ) 〈ΛsRf(θ, ·), g(θ, ·)〉R dθ (A.7)

is defined. Since this integral is equal to 〈KΛsRf, g〉 for f ∈ S(R2), this allows us to
define KΛsR on distributions using this integral (A.7):

〈KΛsRf, g〉 =

∫
θ∈S1

κ(θ) 〈ΛsRf(θ, ·), g(θ, ·)〉R dθ (A.8)

=
√

2π

∫
θ∈S1

κ(θ)

∫
τ∈R
|τ | Ff(τθ)F−1

s g(θ, τ) dτ dθ . (A.9)
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The integral in (A.8) is equal to the integral (A.9) by duality of the Fourier transform
and the Fourier Slice theorem, which is true for E ′ by, e.g., [16, Proposition 1.13].
Since g ∈ S(S1 × R), and f ∈ E ′(R2) (so Ff is a polynomially increasing function),
this integral converges. One uses the integral (A.9) to show KΛsRf is a distribution
in S ′(S1 × R) (i.e., a continuous linear functional on S): if gj → g in S(S1 × R) then,
since F−1

s is continuous on S, F−1
s gj → F−1

s g in S and therefore

√
2π

∫
θ∈S1

κ(θ)

∫
τ∈R
|τ |Ff(τθ)F−1

s gj(θ, τ) dτ dθ

−→
√

2π

∫
θ∈S1

κ(θ)

∫
τ∈R
|τ | Ff(τθ)F−1

s g(θ, τ) dτ dθ

as j → ∞ by dominated convergence. Finally, since R∗ : S ′(S1 × R) → S ′(R2) is
continuous, R∗KΛsRf is defined as a tempered distribution for f ∈ E ′(R2).

We now prove that the functional

E ′(R2) 3 f 7→ KΛsRf

is weakly continuous to S ′(S1 × R). Let fj → f weakly in E ′(R2) and let g ∈
S(S1 × R). Using (A.8), we get

〈KΛsRfj , g〉S1×R =

∫
θ∈S1

κ(θ)
〈
Rfj(θ, ·),Λtsg(θ, ·)

〉
R dθ (A.10)

=

∫
θ∈S1

κ(θ)
〈
fj(x),Λtsg(θ, x · θ)

〉
R2 dθ (A.11)

where Λts = Fs |τ | F−1
s . To get from (A.10) to (A.11), note that the dual of

Rθf := Rf(θ, ·) (for fixed θ) is R∗θg = g(θ, x · θ).
To finish the proof that R∗KΛsRf is weakly continuous, we show we can switch

the evaluation 〈 , 〉R2 and the integral in (A.11). For each fixed j, fj is a distribution
in E ′(R2) so it has finite order and fixed compact support. Since g ∈ S(S1 × R), the
map θ 7→ Λsg(θ, x · θ) is a smooth function of θ ∈ S1 that is bounded along with all of
its derivatives for θ ∈ S1 and for x ∈ supp(fj). Since S1 is compact and κ is piecewise
continuous in θ, we can use limits of Riemann sums to justify switching the evaluation
with fj and the integral in θ to get

〈KΛsRfj , g〉S1×R =

〈
fj(x),

∫
θ∈S1

κ(θ)Λsg(θ, x · θ) dθ

〉
R2

. (A.12)

Now, because S1 is compact, and Λsg is smooth, the function

x 7→
∫
θ∈S1

κ(θ)Λsg(θ, x · θ) dθ

is C∞. Since fj → f weakly in E ′(R2), the expression in (A.12) goes to

〈KΛsRf, g〉S1×R =

〈
f(x),

∫
θ∈S1

κ(θ)Λsg(θ, x · θ) dθ

〉
R2

,

and so KΛsR is continuous from E ′(R2) to S ′(S1 × R). Since R∗ is weakly continuous
from S ′(S1 × R) to S ′(R2), we see that R∗KΛsR is weakly continuous from E ′(R2) to
S ′(R2).
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Finally, we will prove that the expression in (A.2b) is weakly continuous for
f ∈ E ′(R2). As discussed above, this will show (A.2) holds for f ∈ E ′(R2).

Let h ∈ S(R2) and let fj → f weakly in E ′(R2). Then,〈
F−1κ

(
ξ

‖ξ‖

)
Ffj , h

〉
=

〈
fj ,F−1

[
κ

(
ξ

‖ξ‖

)
Fh
]〉

(A.13)

and F−1
[
κ
(

ξ
‖ξ‖

)
Fh
]

is C∞ since the expression in square brackets is rapidly

decreasing as Fh ∈ S(R2) and κ is bounded. Using equation (A.13) we see〈
F−1κ

(
ξ

‖ξ‖

)
Ffj , h

〉
=

〈
fj ,F−1

[
κ

(
ξ

‖ξ‖

)
Fh
]〉

→
〈
f,F−1

[
κ

(
ξ

‖ξ‖

)
Fh
]〉

=

〈
F−1κ

(
ξ

‖ξ‖

)
Ff, h

〉
Thus (A.2) holds for f ∈ E ′(R2), and this finishes the proof for BΦ.

The proof for (A.3) is similar but easier since one can use the fact that(
− d2

ds2
+ µ

)
Rf = R ((−∆ + µ) f)

and prove the theorem for R∗KR.

Proof of Theorem 2.1. This theorem follows from Theorem A.1 by writing R∗Φ =
R∗KΦ where KΦ is the operator that multiplies by κ(θ) = χS1

Φ
(see Remark 1). For BΦ,

we apply equality (A.2a) and (A.2b) with this κ. For Lµ,Φ, we use a similar argument
using A.1, equations (A.3a) and (A.3b). These formulas are valid for f ∈ E ′(R2) as
well as for f ∈ S(R2).

Proof of Theorem 4.1. First, we show WFΦ(f) ⊂ WF(H(Rf)). This part uses
Theorem 4.2 (which is proved independently of this theorem) and the following useful
lemma.

Lemma A.2. Let u be a distribution in S ′(Rn) such that û is a locally integrable
function bounded at infinity by a polynomial in ‖ξ‖. Assume that û is supported away
from the open cone V . Then for any x ∈ Rn, and any ξ ∈ V , (x, ξ) /∈WF(u).

Note that if u ∈ E ′(Rn) then this follows immediately from the definition of
wavefront set and (25). The proof for our case is identical to the proof of Lemma 8.1.1
in [17] because of our growth assumptions for û.

Getting back to the theorem, we prove the left-hand containment of (32) for BΦ.
We let ξ0 ∈ WΦ and let ϕ be a smooth cutoff function supported in S1

Φ and equal to

1 in a neighborhood of ξ0
‖ξ0‖ . Let Kϕ be the multiplier operator in (34) with κ = ϕ.

Then, by Theorem 4.2, BΦKϕR is a standard pseudodifferential operator of order

zero with symbol ϕ
(

ξ
‖ξ‖

)
, which is elliptic near ξ0. So, if (x0, ξ0) ∈ WF(f), then

(x0, ξ0) ∈WF(BΦKϕRf). Now, note that

F (BΦ (1−Kϕ)Rf) =

(
χWΦ − ϕ

(
ξ

‖ξ‖

))
Ff,
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and since this Fourier transform is zero on a conic neighborhood of ξ0, BΦ (1−Kϕ)Rf
is smooth in direction ξ0 at all points by Lemma A.2. Therefore, since (x0, ξ0) ∈
WF(BΦKϕRf), (x0, ξ0) ∈ WF(BΦRf). This proves the left containment of (32) for
BΦ. The proofs for LΦ and Lµ,Φ are similar.

We now prove the right hand containment in (32) in Theorem 4.1 for BΦ.
We let uΦ(x) = χWΦ(x) and ǔΦ = F−1(uΦ). Then uΦ, ǔΦ ∈ S ′(R2) and

BΦRf = PΦf =
1

4π
f ∗ ǔΦ,

which is true by Theorem A.1 equation (A.2c) for κ = uΦ. An important result in
microlocal analysis gives us the wavefront set of convolutions.

Lemma A.3 ([17, Equation (8.2.16), p. 270]). Let f and g be distributions such that
either f or g has compact support. Then,

WF(f ∗ g) ⊆
{

(x+ y, ξ) ∈ R2 × R2
∗ : (x, ξ) ∈WF(f), (y, ξ) ∈WF(g)

}
.

Then by Lemma A.3 we have

WF(BΦRf) ⊆
{

(x+ y, ξ) ∈ R2 × R2
∗ : (x, ξ) ∈WF(f), (y, ξ) ∈WF(ǔΦ)

}
. (A.14)

Now observe that ǔΦ is homogeneous since uΦ is homogeneous, and our next lemma
gives the wavefront of a homogeneous distribution.

Lemma A.4 ([17, Theorem 8.1.8]). Let u ∈ S ′(R2) be homogeneous in R2
∗, then

(x, ξ) ∈WF(u) ⇔ (ξ,−x) ∈WF(û ), whenever ξ 6= 0 and x 6= 0 (A.15)

(0, ξ) ∈WF(u)⇔ ξ ∈ supp(û). (A.16)

Therefore, by Lemma A.4 it suffices to compute the wavefront set WF(uΦ). To
this end, we first note that

sing supp (uΦ) = ∂WΦ = (R · θ(Φ)) ∪ (R · θ(−Φ)) , (A.17)

and so the wavefront set of uΦ for points x 6= 0 is the set of normals to WΦ, so outside
of the origin points in the wavefront set of uΦ can be written(

αθ(φ), rθ⊥(φ)
)

where α ∈ R∗, r ∈ R∗ and φ = ±Φ (A.18)

By (A.16), we see that the localized frequency set for x = 0 is

Σ0(ǔΦ) = WΦ. (A.19)

Now, using Lemma A.4 and equation (A.18) and finally equation (A.19), we have

WF(ǔΦ) =
{

(rθ⊥(φ), αθ(φ)) : r, α ∈ R∗, φ = ±Φ
}
∪
(
{0} ×WΦ

)
. (A.20)

Equation (32) in the theorem follows now by inserting (A.20) into (A.14) and
using the definition of AΦ(f), (33).

To prove the theorem for LΦ we use a similar proof but starting with Theorem
A.1 and equation (A.3). We replace uΦ by uΦ(ξ) ‖ξ‖ and repeat the proof above since
uΦ(ξ) ‖ξ‖ is a homogeneous distribution with singular support ∂WΦ. For Lµ,Φ we use
a similar proof to show (A.20) for the homogeneous distribution uΦ(ξ) µ

‖ξ‖ and then

use the fact that the wavefront set of a sum is contained in the union of the wavefront
sets.
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Proof of Theorem 4.2. Theorem A.1 and expressions (A.2b)-(A.3b) show that these
operators have the form of pseudodifferential operators. Since κ is smooth on R2

∗
and is homogeneous of degree zero, each of the symbols of the operators in (A.2b)-
(A.3b) is a standard smooth symbol, so each operator is a standard pseudodifferential
operator. Here we are using the fact that operators as in (31) that include sums of
homogeneous symbols differ by smoothing operators from pseudodifferential operators
with C∞ symbols. This is discussed after (31). Since (A.2)-(A.3) are exact formulas,
these symbols are full symbols, not just top-order symbols.

Proof of Corollary 4.3. Since the support of the symbols given in (36) contains WΦ′ ,
each of the operators is a standard pseudodifferential operator that is elliptic in
R2 × WΦ′ , and this explains the left containment in (37). By Lemma A.2, HRf
is smooth in directions outside of WΦ and this justifies right-hand containment in
(37).

Now, consider the operator M = (BΦKR− BΦR). It’s Fourier transform can be
written

F (Mf) =

[
χΦ

(
ξ

‖ξ‖

)
− κ

(
ξ

‖ξ‖

)]
Ff(ξ),

and this Fourier transform is zero for ξ ∈WΦ′ since κ
(

ξ
‖ξ‖

)
= 1 on that set. Then, by

Lemma A.2, Mf is smooth in directions on WΦ′ and so M is a smoothing operator
in those directions. The proofs for the other operators are almost the same.
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[34] E. T. Quinto and O. Öktem. Local tomography in electron microscopy. SIAM J. Appl. Math.,

68:1282–1303, 2008.
[35] E. T. Quinto and H. Rullg̊ard. Local singularity reconstruction from integrals over curves in

R3. Inverse Problems and Imaging, 7(2):585–609, 2013.
[36] Radiopedia.org. 2010. http://radiopaedia.org.
[37] A. G. Ramm. Inversion of Limited Angle Tomographic data. Computers & Mathematics with

Applications, 22(4/5):101–111, 1991.
[38] A. G. Ramm. Inversion of limited angle tomographic data II. Applied Mathematics Letters,

5(2):47–49, 1992.
[39] A. G. Ramm and A. Katsevich. The Radon Transform and Local Tomography. CRC Press,

Boca Raton, FL, 1996.
[40] I. Reiser, J. Bian, R. Nishikawa, E. Sidley, and X. Pan. Comparison of reconstruction

algorithsm for digital breast tomosynthesis. Technical report, University of Chicago, 2009.
arXiv:0908.2610v1, phyusics.med-ph.

[41] K. Sandberg, D. N. Mastronarde, and G. Beylkin. A fast reconstruction algorithm for electron
microscope tomography. Journal of Computational and Applied Mathematics, 144(1-2):61–
72, Oct. 2003.

http://radiopaedia.org


Characterization and reduction of artifacts in limited angle tomography 24

[42] W. C. Scarfe, A. G. Farman, and P. Sukovic. Clinical Applications of Cone-Beam Com-
puted Tomography in Dental Practice. Feb. 2006. URL: http://www.orthodent3d.com/

news-resources/Clinical%20Applications%20of%20Cone-Beam%20Computed%20Tomography.

pdf.
[43] P. Stefanov and G. Uhlmann. Is a curved flight path in SAR better than a straight one? SIAM

J. Appl. Math., 73(4):1596–1612, 2013.
[44] H. Tuy. Reconstruction of a Three-dimensional Object from a Limited Range of Views. J.

Math. Anal. Appl., 80:598–616, 1981.
[45] E. Vainberg, I. A. Kazak, and V. P. Kurozaev. Reconstruction of the internal three-dimensional

structure of objects based on real-time integral projections. Soviet Journal of Nondestructive
Testing, 17:415–423, 1981.

http://www.orthodent3d.com/news-resources/Clinical%20Applications%20of%20Cone-Beam%20Computed%20Tomography.pdf
http://www.orthodent3d.com/news-resources/Clinical%20Applications%20of%20Cone-Beam%20Computed%20Tomography.pdf
http://www.orthodent3d.com/news-resources/Clinical%20Applications%20of%20Cone-Beam%20Computed%20Tomography.pdf

	Introduction
	Tomographic Reconstruction for a Limited Angular Range
	Notation and Basic Definitions
	Computed Tomography with Full Data
	Characterization of Limited Angle Reconstructions

	Microlocal Analysis and Pseudodifferential Operators
	Characterization and Reduction of Limited Angle Artifacts
	Characterization of Limited Angle Artifacts
	Reduction of Limited Angle Artifacts

	Reconstructions
	Concluding Remarks
	Proof of a Key Theorem and Main Theorems

