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We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with
dynamical geometry. This model is an extension to two dimensions of the dynamical geometry
lattice gas model previously studied in one-dimension [1–3]. We expand upon a variation of the two-
dimensional flat space FHP model created by Frisch, Hasslacher and Pomeau, and independently
by Wolfram [4, 5], and modified by Boghosian, Love, and Meyer in [6]. We define a hydrodynamic
lattice gas model on an arbitrary triangulation, whose flat space limit is the FHP model. Rules that
change the geometry are constructed using the Pachner moves, which alter the triangulation but
not the topology [7]. We present results on the growth of the number of triangles as a function of

time. Simulations show that the number of triangles lattice grows with time as t
1
3 , in agreement a

mean field prediction. We also present preliminary results on the distribution of curvature over a
typical triangulation for these simulations.

I. INTRODUCTION

Lattice-gas automata (LGA) models for fluids date
from the sixties, when Kadanoff and Swift and Hardy,
de Pazzis and Pomeau introduced the first such mod-
els [8, 9]. Both of these models use a two-dimensional
Cartesian lattice and are anisotropic. Since simple fluids
are isotropic, these models are not capable of reproducing
hydrodynamics. This problem was solved in 1986 when
Frish, Hasslacher, and Pomeau, and independently Wol-
fram, introduced an isotropic model (the FHP model)
using a triangular lattice. They demonstrated that an
LGA models the Navier-Stokes equations in flat two-
dimensional space [4, 5].

All LGA methods are characterized by phases of prop-
agation and collision of particles that move on a lattice.
During the propagation phase, particles move from site
to site on the lattice, while during the collision phase
the particles rearrange themselves amongst the vectors
at each site (see Figure 1). Before we discuss the FHP
rules in detail, it is important to note that the rules that
govern these models are not meant to replicate the phys-
ical world on a small scale; the Navier-Stokes equations
emerge from the FHP rules on the macroscopic scale
for large lattice sizes and spatial or ensemble averaging.
The microscopic rules are only required to conserve to-
tal momentum, particle number, and energy. Addition-
ally, the lattice must be sufficiently symmetric to yield
an isotropic pressure tensor.

Many 2-D situations of physical interest use a Eu-
clidean plane as the underlying geometry, hence “lattice”
gases, in which the model is constructed on a translation
invariant discretization of Euclidean space. However sit-
uations exist, such as atmospheric flow, the experiments
of Seychelles [10], or surface flows in interfaces embedded
in fluid mixtures, in which a discretization of a sphere
or other surface in which the geometry is non-Euclidean
may be more appropriate. In such geometries, the angles
of a triangle need not sum to π. We may specialize to

simplicial complexes made up of equilateral triangles, as
any 2-D surface may be discretized in this way [7]. In
this case the geometry is defined locally by the number
of triangles meeting at each grid point. If six triangles
meet, the geometry is locally flat. If fewer than six trian-
gles meet, the geometry has positive local curvature. If
more than six triangles meet, the geometry has negative
local curvature. If the properties of the triangulation,
including the local curvature, are allowed to change we
call the geometry dynamical.

There are many situations in physics in which geom-
etry takes on a dynamical role. Perhaps the most fun-
damental is in Einstein’s general theory of relativity, in
which the idea of motion along geodesics in a Rieman-
nian manifold supervenes Newtonian ideas of accelera-
tion due to forces [11]. In the Regge treatment of general
relativity [12] and the causal dynamical triangulations
approach to quantum gravity [13, 14] these Riemannian
manifolds are replaced by simplicial complexes. The sta-
tistical mechanics and growth dynamics of random sur-
faces has been much studied for both 1-D interfaces [15]
and 2-D surfaces [16–19]. In spite of their origin in very
different physical systems, the common language of dis-
cretized surfaces can be informative. For example, the
crumpling transition of membranes [19] also occurs in
Euclidean approaches to simplical quantum gravity [13].

In this paper we present a hydrodynamic lattice gas
model for two-dimensional flows on curved surfaces with
dynamical geometry. We extend a variation of the FHP
model to arbitrary equilateral triangulations. We allow
the geometry so defined to become dynamical by apply-
ing the Pachner moves contingent on the particle con-
tent. The restriction of time-reversibility is used to re-
strict the rule space, as in the one dimensional version
of this model [1–3]. We present a mean-field prediction
and simulation results for the growth of the lattice as a
function of time, and give preliminary results on the dis-
tribution of curvature on the triangulations generated by
these simulations. We close the paper with some conclu-
sions and directions for future work.
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II. THE FHP MODEL

In the FHP lattice gas automata the particles move
on a triangular lattice. At each lattice site there are six
lattice vectors. Each vector can be occupied by at most
one particle - the model has an exclusion principle. The
vector which a particle occupies defines its velocity. In
Figure 1, for example, the site is occupied by a single
particle moving to the right. The state of a particular
site is given by its particle content. Each vector at each
site can have two states: occupied or unoccupied. This
gives a total of 26 = 64 states per site.

To facilitate the generalization from a Euclidean lattice
to an arbitrary triangulation, we would like to regard our
sites as triangles rather than a single point. We there-
fore enclose the site in a triangle and move the vectors to
the edges of the triangles, as demonstrated by Figure 1.
This “inflated” site is equivalent to the point site used by
Frisch, Hasslacher and Pomeau. This modification of the
FHP model was originally proposed by Boghosian, Love,
and Meyer [6]. Those authors proposed collisions on the
edges of the triangles, where four vectors meet and in-
troduced the possibility of having a rest particle of mass
two in the model for a total of five bits per state. This
model was analyzed by a grouping of triplets of trian-
gle edges sites followed by a Chapman-Enskog expansion
which yielded isotropic fluid equations.

However, running a channel flow simulation using their
proposed model produced the image in Figure 4. Note
that the structure of the lattice is evident on a macro-
scopic scale in the figure. This is due to a spurious
conserved momentum in collisions at the vertices of the
Kagome lattice. No momentum is transferred between
separate lines of the lattice, so momentum is conserved
in three directions in two-dimensional space. This leads
to unphysical flows, an example of which is shown in Fig-
ure 4. We therefore redefine the FHP model with colli-
sions occurring on the faces, rather than the edges, of the
triangle. It should be noted that the Chapman-Enskog
analysis presented in [6] remains valid for a model, such
as the one we present here, in which momentum is ex-
changed by collisions among all lattice directions.

The rules used for fixed geometry in the variant of the
FHP model we study are shown graphically in Figures 2
and 3. If two particles enter a site with opposite veloci-
ties, as in Figure 2, they flip to either of the other lines of
the lattice with equal probability. If three particles enter
a site such that their total momentum sums to zero, in
other words, there is a particle occupying every other vec-
tor, the particles switch from the occupied vectors to the
unoccupied vectors, shown in Figure 3. This three-body
collision breaks the separate conservation of momentum
along each line of the lattice. This is required because
extra conserved quantities lead to incorrect macroscopic
behavior. If particles enter in any other configuration,
they are simply allowed to propagate as usual to the next
site along their geodesic [4].

FIG. 1: An FHP lattice site has 6 possible velocities labeled 0
through 5, each of which represents the velocity of a particle.
Each vector can hold at most one particle, so that each site
has 26 = 64 states. The traditional representation of a site
in the FHP model is the star shown on the left. By moving
the vectors to the edges of a triangle, as shown in the center
picture, we convert the site from a single point to the face
of a triangle. These two sites are equivalent. If we remove
the arrow heads from the vectors, we produce the notation-
ally convenient right hand figure. We refer to the conversion
between the star and the triangle as inflation.

FIG. 2: A two-particle collision at a site. The particles switch
with equal probability to one of the other two directions of
the lattice. This rule applies to any two particles entering a
site with opposite velocities.

III. LATTICE GASES ON CURVED SURFACES

We now generalize the FHP model to arbitrary equilat-
eral triangulations. It is known that any manifold can be
approximated arbitrarily closely by a tiling of equilateral
triangles [7]. This allows us to triangulate any surface
and regard each face as an inflated FHP site. In the spe-
cial case of flat space the vectors in the array of inflated
sites (Figure 1) create a tiling of Stars of David, along
the lines of which the particles can move. This lattice is
known as the Kagome lattice. Figure 5 shows a triangu-
lation of a cylinder and an icosahedron where the nodes
of the triangulation are shown in white and the nodes of
the Kagome lattice are in red. These images were gener-
ated with visual python [20]. We now describe the rules
which couple the particles to the triangulation and allow
the geometry to become dynamical.

To allow the geometry to become dynamical, we em-
ploy the Pachner moves. A sequence of Pachner moves
cannot change the topology of a manifold, but it can take
the manifold from one triangulation to another: a torus
can morph into another toroidal geometry such as a cof-
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FIG. 3: A three-particle collision at a site. The particles
switch to the unoccupied vectors of the site. This move breaks
the separate conservation of momentum along each direction
of the lattice.

FIG. 4: Channel flow simulation with a barrier using the
model defined in [6]. Arrows indicate the velocity field, and
the color scale indicates vorticity. In this formulation of the
model collisions occur on the edges, rather than the faces, of
the triangulation. This leads to separate conservation of mo-
mentum along each lattice direction and hence an anisotropic
model. This anisotropy is evident in this simulation as the
structure of the lattice is visible in the flow.

FIG. 5: A Kagome lattice on a cylinder (left) and on an icosa-
hedron (right). The nodes of the triangulation are depicted as
white spheres. Any triangulation of a two-dimensional mani-
fold can be tiled with a Kagome lattice. Particles are allowed
to move along the lines of the Kagome lattice, and are shown
in black on the left. These images were generated with visual
python [20].

FIG. 6: Pachner Moves. A sequence of Pachner moves can
connect any pair of triangulations of a manifold, but cannot
change the topology. The two-to-two move (left) changes the
orientation of two triangles as show above, and the one-to-
three move (right) replaces one triangle with three, creating
a tetrahedron, or vice versa.

fee mug, but it can not morph into a sphere [7]. The state
of the system with static and flat geometry is specified
by the particle content of the sites alone, the state of the
system with dynamical geometry specified by both the
particle content and the geometry of the triangulation.

There are two Pachner moves for two dimensional tri-
angulations: a two-to-two move, where the number of tri-
angles is unchanged, and a one-to-three or three-to-one
move that increases or decreases the number of triangles
by two. We call the three-to-one and the one-to-three
move addition and deletion, respectively, because they
add or subtract a tetrahedron from the surface.

In three dimensions the two-to-two Pachner move (Fig-
ure 6, left) is not isometrically embeddable in general. If
two triangles are removed, turned, and replaced in the
triangulation, they will not fit unless the dihedral an-
gle between the original pair of triangles was that of the
tetrahedron. This is unsurprising since two-dimensional
manifolds are not generically embeddable in three dimen-
sions [21]. However, the one-to-three move, (Figure 6,
right), is generically immersible, although it is not gener-
ically embeddable because it may cause self-intersection
of the surface.

To couple the flow to the geometry we must specify how
the application of a particular Pachner move is triggered
by the particle content. The rules for fixed geometry in-
volve particles on a single triangle. The locality of a rule
which changes the geometry is determined by the local-
ity of the Pachner moves. The one-to-three, three-to-one
and two-to-two moves are triggered by the state of one,
three or two triangles respectively. As in one dimension,
the constraint of time reversibility is applied in order to
restrict the set of rules considered [3]. We first recall the
distinction between invertibility and reversibility. A rule
is invertible if every state has a unique preimage — given
the state (particle content plus geometry) one may recon-
struct the whole unique history leading to that state for
an invertible rule. For a reversible lattice-gas rule, the
history of a given state may be generated by an inverse
rule which can be interpreted as propagation and the
same collision rules that generate the forward time evo-
lution. One must recall that the inverse of the product
of collision and propagation CP , is P−1C−1.

We choose to apply a one-to-three Pachner move after
a three particle collision. The particles undergo the three-
body collision of Figure 3, and then propagate to neigh-
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FIG. 7: New geometry must be created empty so that one
state does not have two preimages, a problem illustrated in
this figure. Both figures on the left would produce the figure
on the right if they were allowed to time evolve. The particles
on the triangle in the upper left hand corner are therefore re-
quired to propagate off before the new geometry is created.
This allows rules with dynamical geometry in which every
state has a unique preimage, and which are therefore invert-
ible.

boring triangles. The Pachner move is applied in the
subsequent collision. The restriction of time-reversibility
is satisfied if we create new geometry after the particles
have propagated from the triangle. That is, we do not
create new geometry that contains particles. If we cre-
ated new geometry with particle content, the resulting
state may have two preimages: one preimage in which
the geometry is about to be created, and one preimage
in which particles are about to advect onto existing ge-
ometry. This problem is illustrated in Figure 7.

FIG. 8: Creation. A triangle is replaced by a tetrahedron.
This collision is triggered by a three particle collision, where
three particles enter a site on every other vector (all odd num-
bered vectors or all even numbered vectors) such that the
combined momentum of the three particles is zero. The par-
ticles then propagate away, and the tetrahedron is formed.

The rules for addition and deletion are illustrated in
Figures 8 and 9. When three particles enter a triangle on
all even numbered vectors or all odd numbered vectors
and then leave, that triangle is replaced by a tetrahe-
dron (see Figure 8). When three particles propagate off
a tetrahedron in the same manner, the tetrahedron is
deleted (see Figure 9).

We now determine rules for applying the two-to-two

FIG. 9: Deletion. Three triangles forming a tetrahedron are
replaced by a single triangle. This collision is triggered when
three particles propagate off the tetrahedron, as shown on
the left above. This also happens when the particles leave the
tetrahedron on the empty vectors that point to the surround-
ing triangles.

move. This move does not create new geometry and
so it is straightforward to ensure that the rule is time-
reversible. This move is triggered by two different states:
a four-particle state, and a two-particle state, shown in
Figure 10.

FIG. 10: The two to two move is triggered by two differ-
ent states: the two particle state, left, and the four particle
state, right. The particles remain where they are during these
moves.

The rules including dynamical geometry are therefore
modified from the stochastic FHP rules defined in Fig-
ures 2 and 3 by the fact that the three body rule of Fig-
ure 3 is followed by the one-to-three Pachner move shown
in Figure 8. The stochastic two-body rules remain un-
changed. The rule set also includes the two-to-two Pach-
ner moves shown in Figure 10 in which the geometry
changes by the particle states do not. Naturally, the in-
clusion of the stochastic two body rule of Figure 2 renders
the model as a whole irreversible. This could be remedied
by the addition of a rest particle and the replacement of
the stochastic two body rule by a deterministic rule as
described in [6]. Here we avoid the use of a rest particle
and retain the stochastic two-body rule.

The virtue of requiring reversibility of the dynamical
geometry rules is that the resulting model is fundamen-
tal, allowing study of the origin of thermodynamics in
its classical version, and in principal allowing a natural
generalization to a quantum version. Reversibility also
constrains the rule space to allow definition of a simple
and relatively natural model.
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IV. IMPLEMENTATION

Implementation of the rules defined in the previous
section presents several challenges. In this section, we
describe some of the details of our implementation which
allow the model to be efficiently simulated without refer-
ence to embedding space coordinates.

We first distinguish extrinsic geometry from intrinsic
geometry. When specifying a triangulation, one can use
an extrinsic definition of the geometry, or an intrinsic
definition. An extrinsic definition describes the triangu-
lation by relating it to an ambient or embedding space.
For example, a tetrahedron can be defined extrinsically
by giving the Cartesian coordinates of its vertices in three
dimensional Euclidean space.

Geometry can also be defined intrinsically, without ref-
erence to embedding in some higher dimensional space.
For example, we can define a tetrahedron intrinsically as
follows. First, we specify that a triangle is defined by
three points equidistant from each other. Then, we spec-
ify that we have four triangles, and that each triangle
shares exactly one edge with every other triangle. This
is illustrated in Figure 14. We have defined a tetrahedron
intrinsically. There was no reference to any coordinate
system, only reference to parts of the triangulation itself.

For a lattice gas model defined on an arbitrary triangu-
lation the flux of particles defines a velocity field. A ve-
locity vector on a triangulation lives in the tangent space
to the triangulation at that point. In general, transport
of tangent vectors on manifolds requires a description
of the relationship between tangent spaces at different
points on the manifold. For example, when computing a
covariant derivative on a Riemannian manifold one must
consider the variation of coordinate basis vectors with
position on the manifold. The components of the deriva-
tives with respect to the coordinates of the basis vectors
are the Christoffel symbols, which specify the connection
on the manifold. These quantities are intrinsic: they
may be computed from the metric without reference to
any higher dimensional embedding space.

The implementation of our model contains both in-
trinsic and extrinsic geometry information. The extrinsic
(embedding space) information is the set of vertex coor-
dinates, velocity vectors, and particle coordinates of our
two dimensional simulation in three dimensional space.
This is used to produce visualizations of the model, such
as those shown in Figures 4 and 5. It is possible to imag-
ine situations in which the extrinsic information is cou-
pled to the intrinsic model dynamics. For example, a
membrane embedded in a bulk fluid will have dynamics
driven in part by the embedding space fluid dynamics.
We only consider model dynamics defined intrinsically.
In particular this means that the dynamics remains per-
fectly well defined even if the triangulation is no longer
isometrically embedable in three dimensional Euclidean
space. We do include the possibility that moves which
would be allowed by the intrinsic dynamics are forbid-
den conditioned on the embedding, however, for all sim-

ulations described in this paper these constraints were
inactive.

The collision rules are defined locally and must con-
serve mass, momentum and energy of the particles. We
wish to apply the same collision rule on every triangle
expressed in terms of the vector labels. In general, trans-
lation of a triangle from one location on the triangulation
to another will induce a transformation of the vector la-
bels. A reflection of the vector labels through one of the
symmetry axes of the triangle will change the definition
of momentum between one triangle and another. Because
of this we restrict to labelings in which the transforma-
tion relating the vector labellings of any two triangles is
one of the three proper rotations of the labeled triangle
shown in Figure 1.

The propagation rule moves particles from one triangle
to another. This operation depends on the transforma-
tion of the labeling of vectors on going from one triangle
to another. For each triangle each of the six vectors car-
ries two pieces of connectivity information which define
this transformation. Firstly each vector carries a trian-
gle label which gives the triangle reached by propagation
along that vector. Secondly each vector carries a vec-
tor label which determines the vector the particle arrives
at after propagation. Because the vector labellings of
any two sites are related by one of three rotations, the
labelling of two adjacent triangles is determined by the
image of any one of the vectors. Hence the connectivity
information redundantly determines the geometry.

A. Implementing the two-to-two Pachner move

The two-to-two Pachner move changes the orientation
of two neighboring triangles but not the number of trian-
gles. After a collision applying such a move it is necessary
to change the connectivity information of the surround-
ing triangles. The move is shown in Figure 11, where
triangles a and b form a rhombus. During the two-to-
two move, the four vertices of the rhombus undergo a
cyclic permutation as the rhombus rotates. The con-
nectivity between the two triangles involved in the move
and the surrounding triangles must be updated, and the
positions of the vertices in embedding space will change
unless the dihedral angle between a and b is that of the
icosahedron. The connectivity between triangles a and b
does not change.

Triangle pairs which are candidates for the two-to-two
move are identified before the propagation phase. Trian-
gles in the appropriate states, for example the state of
triangle a in Figure 10, are identified. Then, their part-
ner triangle is examined to see if it in the the state shown
in triangle b in Figure 10. If it does, the move is per-
formed; connectivity is redefined with the surrounding
triangles and the vertices of the triangles are updated.

As noted above, unless the dihedral angle of the two
original triangles is that of the tetrahedron, applying the
two-to-two move will result in a triangulation which is



6

FIG. 11: The two-to-two Pachner move. The pair of triangles
is rotated in the lattice, so that vertex 1 goes to 2, vertex 2
goes to 3, vertex 3 goes to 4, and vertex 4 goes to 1. The
relationship between triangles a and b stays the same; only
the connectivity between each triangle and the surrounding
triangles is redefined, along with the vertices of each triangle.

FIG. 12: If the new edge, L, is more than a fraction x different
from L0, the two-to-two move is prevented.

not embeddable in three dimensional Euclidean space. A
control exists in the code which prevents the change in
the embedded length of edges from deviating from the
equilateral value by more than a specified fraction. If L0

is significantly different from L as shown in Figure 12, i.e.,
the new edge is significantly different from the new edge,
we do not allow the two-to-two move to be performed.
Given a fraction x, 0 < x ≤ 1, we determine whether or
not the change will be performed via the restriction

(1− x)L0 < |L| < (1 + x)L0. (1)

What values of x are relevant? For an initially flat
triangulation, L =

√
3L0, and for a single tetrahedron

added to an initially flat triangulation L =
√

2L0. For
triangles which meet with the dihedral angle of the icosa-
hedron L = φL0/2 where φ is the golden ratio. Hence

for x < (
√

2 − 1) with an initially flat triangulation no

two-to-two moves will be performed. For x < (
√

3 − 1)
positive curvature added to an initially flat triangulation
by a one-to-three move is frozen in place at the new ver-
tex, as no two-to-two moves may be applied involving any
face of the tetrahedron. For x < (φ/2− 1) no two-to-two
moves may be applied to an icosahedron.

The effect of these moves is therefore to increase the
edge lengths of the triangles according the the Euclidean
metric in three-dimensional embedding space. Either one
may imagine the triangulation inflated by a scale fac-
tor and embedded isometrically in a higher dimensional

space in such a way that the three dimensional embed-
ding is a projection of this higher dimensional embed-
ding. In this case the restriction specified by x is to
triangulations whose projections into three dimensional
Euclidean space are almost isometric. Alternatively, one
may regard the three dimensional embedding space itself
as no longer Euclidean. In this case, x represents a bound
on the deviation of the metric of the three-dimensional
embedding space from Euclidean. Note that because x
specifies a ratio between new and old embedded lengths
this constraint allows triangle edge lengths grow repeat-
edly by a succession of geometry changing moves. One
could also implement a constraint which would bound all
embedded edge lengths above by an additive constant.

B. Implementing the one-to-three Pachner move:
Addition.

Triangles triggered for addition are marked before
propagation, and undergo changes in geometry during
collision. First, the embedding space coordinates of the
apex of the new tetrahedron are determined. The three
triangles of the new tetrahedron each have two of the ver-
tices of the triggered triangle and the third vertex is the
apex. The move may be regarded as making three copies
of the original triangle and “rotating” each triangle along
a different edge so that its free vertex becomes the apex.
In Figure 13, triangle a has been rotated along the 1− 2
edge, triangle b has been rotated along the 0 − 1 edge,
and triangle c has been rotated along the 0−2 edge. One
of the three new triangles replaces the original. The con-
nectivity of the new tetrahedron is set to be that shown
in Figure 15 where a is the original triangle and b and c
are the two added triangles.

The curvature at any triangle vertex is equal to six
minus the number of triangles meeting at that vertex. If
the one-to-three Pachner move is implemented without
restriction, vertices of the triangulation with arbitrarily
large negative curvature may form. This is because the
one-to-three move adds a new vertex with positive cur-
vature and increases the number of triangles meeting at
each of the original three vertices of the triangle by one.
In order to allow simulations in which the curvature is
bounded between ±c we forbid addition of tetrahedra on
a triangle with any vertex with curvature c. Bounding
the curvature to be ±1 from the original triangulation is
equivalent to preventing new tetrahedra from forming on
existing tetrahedra.

C. Implementing the 3-1 Pachner move: Deletion.

The deletion rule depends on the state of three trian-
gles in a tetrahedral configuration. Tetrahedra are iden-
tified as sets of triangles whose neighbors are neighbors
using the intrinsic information - this test uniquely speci-
fies a tetrahedron (see Figure 14). Once tetrahedra have
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FIG. 13: The 1 − 3 Pachner move (creation). The triangles
are labelled x, a, b, and c, and the vertices by 0, 1 and
2. (mn refers to triangle m’s nth vertex). When triangle
x is triggered for addition, copies of triangle x are rotated
out of the plane of the paper along each edge. For example,
to produce triangle b triangle x is copied and rotated along
the edge joined by the vertices x1 and x0, matching vertex
x2 with the apex. Acting similarly for the other two sides,
triangle x on the left transitions to the tetrahedron on the
right. Deletion is the inverse of this process, and intersections
of common vertices and triangle neighbors are used to identify
the relevant vertices. The apex is identified as the intersection
of the vertices of triangles a, b, and c, since the apex is the
only vertex shared by all three triangles.

been identified, they are checked to see if their particle
content makes them a pre-image of deletion.

FIG. 14: A triangle whose neighbors are neighbors belongs to
a tetrahedron. This is an intrinsic definition of a tetrahedron.
On the left there are three triangles sharing one edge each with
the black triangle. They are the black triangle’s neighbors. If
the blue (top), red (bottom left), and yellow (bottom right)
triangles in the left figure are also neighbors as designated by
the arrows above, the three triangles fold into a tetrahedron,
right.

Deletion presents a computational issue, in that tri-
angles must be removed from the list in which they are
stored. This would change the indices of all triangles,
requiring a relabeling of the whole triangulation, a com-
putationally demanding process. It is more efficient to
disregard the triangles that have been deleted, and place
them on a dummy list. These obsolete triangles are ig-
nored whenever the state is updated, and hence relabel-
ing is avoided. To prevent the list of triangles from ex-
panding too quickly due to addition and deletion, one of
the three triangles in a deleted tetrahedron is replaced
with the single replacement triangle, placing the other
two on the dummy list. This is the inverse of the one-to-

three addition move in which the original single triangle
becomes one of the triangles of the new tetrahedron.

When a tetrahedron is deleted, three triangles are re-
placed with one. The triangle with the lowest index is
retained (in Figure 15, let this be triangle a (right)). This
triangle replaces the base of the tetrahedron, and so after
deletion it becomes triangle x in Figure 15 (left). Only
the coordinates of the apex of this triangle are updated,
since it rotates about its base (in the case of Figure 15,
the 1 − 2 edge). The vertices involved may be defined
intrinsically, without reference to their embedding space
coordinates. The vertex that must be updated is the in-
tersection of the vertices of all three triangles. The new
vertex location is the vertex shared by the two triangles
that are not the replacement triangle and which is not the
apex. In Figure 15, that is the vertex shared by triangles
b and c, but not shared by triangle a. The coordinates
of a0 are replaced by the coordinates of b0 or vertex c0.

The algorithm that performs deletion of tetrahedra de-
pends on the fact that triangles can only be rotated in
the surface, they can not be flipped. It is convenient to
define deletion in terms of an involution called inversion.
When a vector is inverted, the vector is mapped to the
other vector that occupies the same edge. Referring to
Figure 1, the pairs are vectors (0, 1), (2, 3) and (4, 5). If
an inversion is performed on vector 3, we get vector 2,
and so on. This involution is used, together with prop-
agation along the vectors, to redefine the connectivity
during deletion using only the intrinsic geometry infor-
mation

For example, Figure 15 shows a tetrahedron that will
undergo deletion and be replaced by triangle a. The con-
nectivity for vectors a5, a0, a4 and a3 (where ai for vector
i of triangle a) must be redefined, as they point to trian-
gles b and c which will be deleted. After deletion, when
the tetrahedron is replaced by triangle a, a particle occu-
pying a5 will propagate to k0 if undisturbed by collision.
Consider the propagation of a fictitious particle from a5
to b4. After a second propagation this particle would
end up on triangle c, which is incorrect. Inverting the
position of the particle, so that it now occupies b5 and
allowing the particle to propagate once more takes it to
k0, which is correct. This was achieved by propagating
once, inverting, and propagating again. The full set of re-
labellings given in terms of propagation and inversion are
shown in Table I. Vectors a4 and a5 are readily identified
as the vectors attached to the base of the lowest indexed
triangle of the tetrahedron. They are updated to point to
j5 and k0 respectively as shown in Table I. The other two
vectors may be updated by a similar sequence of prop-
agation and inversion, but it is more straightforward to
note that a0 is updated to k1 which is the inversion of
k0, and a3 is updated to j4 which is the inversion of j5.
Hence the update of vectors a0 and a3 is obtained by
inverting the images of a5 and a4, respectively.

A second useful involution is reflection, which returns
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FIG. 15: When a tetrahedron undergoes deletion, the con-
nectivity must be redefined. Here, the tetrahedron is being
replaced by triangle a.

a0 −→︸︷︷︸
P

b5 −→︸︷︷︸
P

k0 −→︸︷︷︸
I

k1

a3 −→︸︷︷︸
P

c4 −→︸︷︷︸
P

j5 −→︸︷︷︸
I

j4

a4 −→︸︷︷︸
P

c5 −→︸︷︷︸
I

c4 −→︸︷︷︸
P

j5

a5 −→︸︷︷︸
P

b4 −→︸︷︷︸
I

b5 −→︸︷︷︸
P

k0

TABLE I: The sequence of relabellings that occur when the
tetrahedron shown in Figure 15 is replaced in a three-to-one
move by the triangle a. P indicates propagation and I indi-
cates inversion.

the vector with opposite velocity on the triangle. A re-
flection on vector 1, for example, returns vector 4. Be-
cause deletion is allowed when “spectator” particles are
present on the six edges of the replacement triangle it
is necessary to update the particle occupancy of the re-
placement triangle. It is straightforward, in terms of the
involutions inversion and reflection, to identify the vec-
tors whose particle occupancy needs to be translated to
the replacement triangle.

D. Preventing degenerate triangulations

In a combinatorial triangulation each triangle is
uniquely defined by a set of 3 vertexes: it is combinatori-
ally unique. Triangulations which do not satisfy this cri-
terion are degenerate. For example, in a degenerate tri-
angulation two vertices may be connected by more than
one edge or triangles may share more than one edge. As
explained below, unrestricted application of the Pachner
moves can result in degenerate triangulations

One form of degeneracy occurs when two of a trian-

gle’s neighbors are the same triangle; in other words, two
triangles share two edges, or only two triangles meet at
a vertex. Such a feature resembles a “flap” attached to
the rest of the triangulation. This type of degeneracy is
avoided by preventing geometry moves whose post-image
contains a flap. We now consider the effect of the two-to-
two, one-to-three and three-to-one moves from the point
of view of avoiding degenerate triangulations.

Firstly, a flap may be created by the two-to-two Pach-
ner move. The two to two move increases or decreases
the number of triangles at a vertex by one. If three tri-
angles intersect at a point (the apex of a tetrahedron),
this will become a flap if two of the triangles are replaced
with one. The application of the two-to-two move to two
of the triangles of a tetrahedron will therefore result in a
flap. Preventing two triangles that are part of the same
tetrahedron from undergoing a two-to-two move avoids
this.

Second, a degenerate triangulation may not be pro-
duced by the one-to-three move (creation). Provided the
initial triangulation is not degenerate any vertex that is
not at a boundary is shared by at least three triangles.
The one-to-three move increases the number of triangles
at each existing vertex by at least one, so this move can
only create a flap if there were zero triangles to begin
with. Hence it is not possible for creation (the one-to-
three move) to result in a degenerate triangulation

Third, it is possible for the three-to-one move (dele-
tion) to produce a flap. The three to one move reduces
the number of triangles at a vertex by one. This move
can create a flap if the geometry as a whole is a tetra-
hedron, or if a tetrahedron is attached to a manifold by
one edge. For example a tetrahedron could be attached
to the rest of the manifold via a “neck”. To make this
explicit, take a tetrahedron and label its faces wxyz. Let
all the faces be connected except for x and y. Now, take
two adjacent triangles, a and b, in the manifold that are
not connected to each other, and glue the loose edge of
y to triangle a, and glue the loose edge of z to triangle b.
A triangulation with a feature like this is degenerate be-
cause the two vertices at the join between the tetrahedra
and the rest of the triangulation are connected by two
edges. If the tetrahedron that is attached by one edge
of two triangles were to undergo a deletion of three of
its faces, a flap would be created. This is illustrated in
Figure 16.

This type of structure can be produced from an ini-
tial geometry which is a tetraspiral - the triangulation
which results from successive reflections of each vertex of
a tetrahedron through the opposing face [22]. In this ge-
ometry, and any geometry composed of tetrahedra shar-
ing faces, a single three-to-one move results in two tetra-
hedra connected by a single edge. A second three-to-one
move will then result in a flap.

Such degenerate triangulations are prevented from
forming by two checks. First one prevents degeneracy
caused by two-to-two moves by checking prior to a two-
to-two move that both triangles involved do not belong
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FIG. 16: A tetrahedron attached by an edge to the main
body of the manifold. If deletion occurs to any triplet of the
triangles w − x− y − z, a flap will be created.

to the same tetrahedron. This prevents the formation of
flaps, and prevents the formation of tetrahedra attached
by a shared edge. Second, we check that the three-to-one
move is only applied to tetrahedra which are attached to
the rest of the triangulation by three edges. It is straight-
forward to verify that flaps are not produced in our sim-
ulations by verifying, for example, that the vertex degree
of all triangles is bounded below by three.

How does the prevention of such degenerate triangula-
tions affect the time reversibility of the model? Consider
the inversion of a sequence of moves involving the cre-
ation of a degenerate triangulation. Then disallowing
the formation of degenerate triangulations corresponds
to disallowing degenerate triangulations in the preimage
of the inverse rule. If such triangulations are not allowed
to form, one must naturally forbid them in the initial
geometry. Disallowing degenerate triangulations in the
initial condition is sufficient to maintain reversibility. If
such triangulations are allowed in the initial data, but not
in the dynamics, invertibility is violated because states
exist with two preimages: e. g. one where a flap has been
removed due to addition, and one where it was prevented
from forming.

V. GEOMETRY DYNAMICS

In this section we study some aspects of the dynamics
of the geometry degrees of freedom. In these simulations
the fluid represented by the particles is quiescent - there
is no forcing applied and because the initial velocities of
the particles are assigned randomly the average hydro-
dynamic velocity field will be zero. In one dimension,
where the only geometrical degree of freedom is the size
of the lattice, both numerical simulation and calculations
for particular sets of initial conditions result in an aver-
age growth of the lattice size of t

1
2 [1–3]. We perform the

comparable calculations and mean field theory treatment
of the two dimensional model. In addition, because the
varying vertex degree of the triangulation represents a
local geometrical degree of freedom we also present pre-
liminary results on the distribution of vertex degree on
the manifold.

A. Mean field theory

In this section we consider the average behavior of the
number of triangles in the model as a function of time.
First note that deletion is a rare event compared to addi-
tion. Addition requires exactly three particles in one of
two configurations of a single triangle. Deletion requires
exactly three particles in one of two configurations of
three triangles. If all configurations of a triangle occur
with equal probability deletion will be less likely than ad-
dition simply because it requires correlations between the
states of more than one triangle. Since addition is more
common than deletion, both by this argument and by ob-
servation of actual simulations, we construct a mean field
prediction for the behavior of our system with only addi-
tion of geometry. Mean field predictions tend to fail for
low dimensional systems. In the one-dimensional case,
for example, the lattice grew as t

1
2 , but a mean field

model predicted t
1
3 [1]. It is therefore of interest to de-

termine the validity of the mean field prediction in two
dimensions.

Let N represent the number of particles and S rep-
resent the number of triangles. The mean number of
particles per site is given by

ρ =
N

S
0 ≤ ρ ≤ 6. (2)

The probability for a site to undergo addition, P+, will
be proportional to the probability that three sites are
occupied and three sites are unoccupied.

P+ ∝ ρ3(1− ρ)3. (3)

The expected number of triangles which will undergo ad-
dition is

〈S+〉 = SP+ ∝ Sρ3(1− ρ)3. (4)

The expected change in the number of triangles is given
by

∆S = 2〈S+〉 ∝ Sρ3(1− ρ)3. (5)

∆S ∝
(
N3

S2
− 3

N4

S3
+ 3

N5

S4
+
N6

S5

)
(6)

In the limit in which creation dominates deletion and
the number of particles, N , is conserved, the first term
in the equation above will dominate. Disregarding the
last three terms, which will become small as the number
of triangles, S, grows, we convert this to a differential
equation and solve:

dS

dt
∝ N3

S2
(7)

S ∝ t
1
3 (8)

The mean field prediction is therefore that the lattice will
grow asymptotically as t

1
3 .
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B. Results

Four different types of simulations were performed,
each without restrictions upon the curvature of the mani-
fold (except those arising from forbidding degenerate tri-
angulations) or the embedding. All simulations began
from an initial icosahedral geometry in which each trian-
gular face was subdivided into 16 triangles by repeatedly
bisecting the edges. Simulations were performed with
only creation, only creation and deletion, only creation
and the two-to-two rule, and a simulation with creation,
deletion, and the two-to-two rule. While simulations with
creation but not deletion are not time reversible, they test
the hypothesis that the geometry dynamics is dominated
by addition. Thirty realizations were performed for each
type of simulation with 105 timesteps each to determine
the number of triangles as a function of time. The data
was fitted to a power law, S(t) = atb, where S(t) rep-
resents the number of triangles, in the lattice and t is
the number of timesteps. Fitting the data to the form
S(t) = a(t− t0)b gave values of t0 of order one, showing
that there is only a short transient before the power law
growth begins, and so fitting the data to S(t) = atb is
appropriate.

To evaluate the goodness of the fit χ2 per degree of
freedom for the fit function L(t) = atb was computed:

χ2(a, b) =
1

n− p
∑
i

[〈S(ti)〉 − f(ti, a, b)]
2

σ2
i

(9)

where n is the number of data points, p is the number of
parameters, in this case 2, a and b, and σi is the standard
deviation on the mean for each 〈Si〉, where

〈Si〉 =
1

r

∑
j

Sij . (10)

and j is the number of realizations.
For each type of simulation an initial fit using Ori-

gin 7.0 [23] was obtained (using a Levenberg-Marquardt
method) and an independent error analysis was per-
formed by computing χ2 in the a, b plane. The minimum
value of χ2 found via this method matches that found by
Origin 7.0. The parameter uncertainties were obtained
by this χ2 analysis by allowing χ2 to increase by one
above the minimum. The uncertainties so obtained are
larger than those given by Origin, presumably because we
allow a and b to vary independently. In all four types of
simulation the exponent value is consistent with a power
law exponent of 1/3, in agreement with the mean field
prediction. The data and χ2 analysis for the simulations
with all Pachner moves is shown in Figure 17, that for the
simulations with only the three-to-one (addition) Pach-
ner move is shown in Figure 18, with all Pachner moves
except the three-to-one move (deletion) in Figure 19 and
with all Pachner moves except the two-to-two move in
Figure 20

(a)

(b)

FIG. 17: All Pachner moves allowed. Number of trian-
gles as a function of time averaged over 30 realizations for
100000 timesteps each with no restrictions on the curvature
or embeddability of the triangulation, and all Pachner moves
utilized. The symbols in a) show the simulation data every
1000 timesteps and are larger than one standard deviation of
the mean. The solid line is a fit created in Origin 7.0 with a
Levenberg-Marquardt method for L(t) = atb to the complete
data set of 100000 points. Figure b) shows a contour plot
of χ2 using a sampling of 200 points evenly spaced along the
range of a and b. The minimum χ2 value lies at χ2 = 0.0319
at a = 196 and b = 0.33618 in agreement with the fit found by
Origin 7.0 and the outer-most contour represents a deviation
of 1.0 from this minimum. The fitted value of the exponent is
b = 0.33618 ± 0.0065, consistent with a power law exponent
of 1/3.

C. Curvature analysis

Unlike the one-dimensional model it is possible to de-
fine a curvature variable at each vertex of the triangu-
lation. As we do not restrict our triangulations in any
way in the simulations described above it is of interest to
quantify how curvature is distributed for a typical real-
ization. We performed four simulations of a single real-
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(a)

(b)

FIG. 18: Only addition of tetrahedra. Number of trian-
gles as a function of time averaged over 30 realizations for
100000 timesteps each. The simulations included only the
one-to-three Pachner move with no growth or embedding con-
trol. The symbols in a) show the simulation data every 1000
timesteps and are larger than one standard deviation of the
mean. The solid line is a fit created in Origin 7.0 with a
Levenberg-Marquardt method for L(t) = atb to the complete
data set of 100000 points. Figure b) shows a contour plot
of χ2 using a sampling of 200 points evenly spaced along the
range of a and b. The minimum χ2 value lies at χ2 = 1.106 at
a = 190.864 and b = 0.343 in agreement with the fit found by
Origin 7.0 and the outer-most contour represents a deviation
of 1.0 from this minimum. The fitted value of the exponent
is 0.337 ≤ b = 0.344 ≤ 0.350, consistent with a power law
exponent of 1/3.

ization of the type of simulation displayed in Figures 17,
18,19, 20. A histogram of the vertex degree is shown
in Figure 21. As expected, by allowing unrestricted ad-
dition of tetrahedran vertices of arbitrarily high degree
form in the triangulation. However, most of the vertices
of the triangulation have degree between three and ten.
While the data shown in Figure 21 is insufficient to sup-
port a detailed quantitative analysis of the distribution
of vertex degree, it appears by inspection to be consis-

FIG. 19: No deletion. Number of triangles as a function of
time averaged over 30 realizations for 100000 timesteps each.
The simulations included both two-to-two and one-to-three
Pachner moves with no growth or embedding control. The
symbols in a) show the simulation data every 1000 timesteps
and are larger than one standard deviation of the mean. The
solid line is a fit of L(t) = atb to the complete data set of
100000 points. The fit was created in Origin 7.0 using a
Levenberg-Marquardt method. Figure b) shows a contour
plot of χ2 using a sampling of 200 points evenly spaced along
the range of a and b. The minimum χ2 value lies at χ2 = 0.878
at a = 194.402 and b = 0.343 in agreement with the fit found
by Origin 7.0. The outer-most contour represents a deviation
of 1.0 from this minimum. The fitted value of the exponent
is 0.336 ≤ b = 0.343 ≤ 0.349, consistent with a power law
exponent of 1/3..

tent with an exponential distribution for degrees between
three and ten. Larger vertex degrees appear to be more
common than that predicted by this trend below vertex
degree 10, but there is insufficient data to draw conclu-
sions here. If we denote the number of tetrahedra added
to the original geometry N1, and tetrahedra added to
these N2 and so on, an exponential distribution is con-
sistent with the ratio of Ni to Ni+1 being a constant.

In Figure 22 we display visualizations of the triangu-
lation for a typical realization. This figure shows a sim-
ulation in which only the three-to-one Pachner move is
implemented, resulting in a triangulation which is always
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(a)

(b)

FIG. 20: No two-to-two moves allowed. Number of tri-
angles as a function of time averaged over 30 realizations for
100000 timesteps each. The simulations included both the
one-to-three and three-to-one Pachner moves with no two-
to-two moves and without restrictions on the curvature or
embeddability of the triangulation. The symbols in a) show
the simulation data every 1000 timesteps and are larger than
one standard deviation of the mean. The solid line is a fit of
L(t) = atb to the complete data set of 100000 points. The
fit was created in Origin 7.0 using a Levenberg-Marquardt
method. Figure b) shows a contour plot of χ2 using a sam-
pling of 200 points evenly spaced along the range of a and
b. The minimum χ2 value lies at χ2 = 0.666 at a = 197.060
and b = 0.335 in agreement with the fit found by Origin
7.0. The outer-most contour represents a deviation of 1.0
from this minimum. The fitted value of the exponent is
0.330 ≤ b = 0.335 ≤ 0.342, consistent with a power law expo-
nent of 1/3.

isometrically immersible in three dimensions. This simu-
lation shows that these triangulations self intersect many
times. This results in the appearance of many small tri-
angles in the visualization - in fact these are parts of tri-
angles which intersect each other. Visualizations of real-
izations with any combination of rules applied all showed
this feature. In addition, one observes clusters of added

FIG. 21: Histogram of number of triangles meeting at each
vertex. Results of four separate simulations for 100000
timesteps. The initial geometry was an icosahedron with each
of its faces subdivided into 16 equilateral triangles. Data is
shown for one simulation with all Pachner moves implemented
(Black circles), one simulation with only the three-to-one ad-
dition move implemented (Red upward pointing triangles),
one simulation with the one-to-three addition move and the
two-to-two move but no deletion (Blue stars) and one sim-
ulation with addition and deletion moves but no two-to-two
move (Green sideways pointing triangles).

tetrahedra in all simulations. This may be due to the
fact that added tetrahedra act as scattering centers for
particles, and so groupings of tetrahedra will naturally in-
crease the probability of further geometry-changing col-
lisions by causing particles to spend longer in a given
region.

VI. CONCLUSION

We have presented the first lattice-gas model with dy-
namical geometry in two dimensions. Our model is an
extension of the FHP hydrodynamic two-dimensional lat-
tice gas model, and the one-dimensional dynamical geom-
etry lattice gas [1–4]. We have defined and implemented
rules for dynamical geometry by both Pachner moves.
For a quiescent fluid on an initially icosahedral geometry
the number of triangles grows as t1/3 for all combinations
of rules simulated. This is in agreement with a mean field
prediction, a fact of some interest as mean field predic-
tions generally fail in low dimensions and in fact fail for
the one dimensional version of this model [1, 2].

Unlike the one-dimensional case, the flat space limit of
this model is non-trivial: it is the hydrodynamic FHP lat-
tice gas. For our model as defined it is therefore possible
to perform simulations in three regimes. Firstly, the fluid
may be quiescent, and the geometry dynamical, the limit
studied in this paper. Secondly, the geometry may be
fixed and non-trivial, and the fluid driven. This regime
is relevant for the simulation of surface flows on fixed
background geometry, such as atmospheric flows on the
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(a)

(b)

FIG. 22: Visualizations of the triangulation for a typical re-
alization. a) Initial condition for all simulations. b) Typical
geometry after 100000 time steps for a simulation with only
the three-to-one Pachner move (addition) implemented, with
no restriction on the curvature. The faces shown here are in-
dividual triangles - with only the three-to-one Pachner move
implemented the embedding is always isometric. The appear-
ance of many smaller triangles is due to the fact that the
surface is extensively self-intersected.

sphere, and in experiments with curved soap films [10].
Thirdly, the fluid may be driven and the geometry dy-
namical, a situation of relevance to surface flows in fluid
interfaces. Indeed, the equations for surface flow are well
known, including the case in which the surface is dynam-
ical [24, 25].

Given the model defined here, a natural question to

pose is: what are the macrodynamical equations of mo-
tion? In the regime where a non-trivial flow occurs on a
fixed background geometry, are the relevant fluid equa-
tions the Navier-Stokes equations on the manifold rep-
resented by the triangulation? In the regime where the
geometry is dynamical, does the time evolution of the
flow coupled to the geometry obey the continuum equa-
tions of surface flow given in [24, 25]?

The principal tool used to obtain the macrodynamical
equations of a given lattice-gas model is the Chapman
Enskog expansion [26]. This is an asymptotic expansion
around a local equilibrium distribution. It is valid in the
regime that local equilibrium, characterized by a few hy-
drodynamic fields, is reached rapidly, while global equi-
libration occurs on longer timescales by hydrodynamic
processes. Analysis of the model defined in this paper
requires a new variation of the Chapman Enskog expan-
sion.

To treat the model on a fixed, curved surface the Chap-
man Enskog analysis would need to be extended to arbi-
trary two-dimensional manifolds. To treat the case where
the geometry become dynamical it must be possible to
introduce the geometry degrees of freedom into the Chap-
man Enskog analysis. One way to do this is to define the
continuum limit of the triangulation in the same way
as the continuum limit of the velocity field. That is,
one considers an average (time, spatial or ensemble) over
many triangulations of the same surface. The macrody-
namical equations of surface flow given in [24, 25] might
then arise, for suitably chosen collision rules, from a
Chapman-Enskog analysis as the slow relaxation of fluid
plus geometry after a fast relaxation to an equilibrium
geometry. If such an analysis is valid for the model de-
fined in this paper, it would also allow simulation of fixed
geometries via simulation of an ensemble of dynamical
geometries fluctuating about an average continuum sur-
face.

The equilibrium statistical mechanics of two dimen-
sional triangulated surfaces embedded in three dimen-
sions has been well studied [16–18]. The model defined
here differs from this body of work in several ways. The
tethered surfaces studied in [16] have a fixed internal met-
ric and a Hamiltonian which depends only on extrinsic
embedding coordinates. The triangulations of our model
have an intrinsic metric which varies dynamically due
to application of the Pachner moves. In the terminology
of [16] this makes our surfaces liquid rather than tethered.
The object of study of [16] and subsequent work was the
equilibrium properties of embedded surfaces, here we are
interested in the non-equilibrium dynamics of surfaces on
which there is a non-trivial vector field whose dynamics
is coupled to the intrinsic geometry of the triangulation.

However, for the case simulated in this paper in which
the fluid degrees of freedom are quiescent it is interesting
to compare the typical geometries shown in Figures 22
with the equilibrium geometries in the crumpled phase of
random surface models. Two observations are relevant.
Firstly, as we allow self intersection and do not restrict
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the embedding our surfaces are phantom surfaces and
should be compared with random surface models which
have no extrinsic curvature term in their Hamiltonian.
The equilibrium geometries of such random surface mod-
els are crumpled and contain many “spiky” features.

The typical geometries in our simulations exhibit simi-
lar features - the high degree vertices shown in Figure 21
occur at branching points where many tetrahedra share
a common vertex. The geometries shown in Figure 22
also exhibit a concentration of new tetrahedra - showing
that tetrahedra are added on new tetrahedra more often
than on the original geometry. This can be explained by
the fact that the curvature produced by new geometry
will act as scattering centers for the particles - causing
particles to spend longer in the vicinity of new geometry,
where they will then scatter and add further new geme-
try. This will naturally lead to a branched polymer-like
structure where tetrahedra are added to tetrahedra and
particles become trapped on the new branches of the ge-
ometry.

Future study of the model should determine whether
the geometries produced by the model without constraint
are indeed in the crumpled phase. Simulations in which
constraints are applied to the local curvature or embed-
ding of the triangulation may result in geometries closer
to smooth manifolds and so may be necessary for appli-
cations in which one aims to simulate a fluid moving on
a smooth two dimensional surface.

Fluids, while frequently treated as continua, are in fact
composed of atoms or molecules. The lattice-gas and
lattice-Boltzmann methods use the existence of an under-
lying statistical description of a fluid to realize efficient
numerical methods for fluid simulation [27, 28]. While
a discretization of space and time underpins most nu-
merical methods for field theories, our most fundamental
current understanding is that spacetime is a continuous
Lorentzian manifold.

The idea that, like fluids, spacetime may have under-

lying discrete substructure occurs repeatedly in specula-
tive models for quantum gravity. A treatment of classical
general relativity on polyhedral simplicial complexes was
first considered by Regge [12]. In the causal dynamical
triangulations approach the four space-time dimensions
emerge from an ensemble of simplicial complexes, suit-
ably constrained by causality [29]. In the causal sets ap-
proach the underlying Lorentzian manifold is replaced by
a discrete set of points with a causal (partial) order [30].
In loop quantum gravity geometrical operators such as
area and length have a discrete spectrum [31]. In dis-
crete models of quantum gravity the apparently continu-
ous classical spacetime emerges at large scales due to the
smallness of the Planck length. In the more experimen-
tally accessible world of fluid dynamics, the continuum
picture is valid because of the largeness of Avagadro’s
number. The discrete model of fluid mechanics on ar-
bitrary triangulated surfaces presented here provides a
model in which the question of the emergence of smooth
manifold-like structures, and associated dynamics of a
classical field on the manifold, may be studied without
the numerous conceptual problems of both general rela-
tivity and quantum mechanics.
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