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Abstract of “Shape-based image reconstruction methods for hyperspectral diffuse op-

tical tomography”, by Fridrik Larusson, Ph.D.; Tufts University, October 2012.

Diffuse optical tomography (DOT) is an optical imaging modality that uses near
infrared light to recover functional information of tissue. In this thesis we focus on
breast imaging where estimation of the optical properties of the breast can assist in
detecting cancerous tumors and in judging overall breast health.

To this end we explore the application of a parametric level set method (PaLS)
for image reconstruction for hyperspectral DOT. Chromophore concentrations and
diffusion amplitude are recovered using a linearized Born approximation model and
employing data from over 100 wavelengths. The images to be recovered are taken
to be piecewise constant and a newly introduced, shape-based model is used as the
foundation for reconstruction. The Pal.S method significantly reduces the number of
unknowns relative to more traditional level-set reconstruction methods and has been
shown to be particularly well suited for ill-posed inverse problems such as the one
of interest here. We extend the PaLLS method to imaging problems by considering a
redundant dictionary matrix for basis functions allowing for recovery of a wide array
of shapes.

Additionally we explore the ability of diffuse optical tomography (DOT) to re-

cover 3D tubular shapes representing vascular structures in breast tissue. Using the



PaL.S method, we incorporate the connectedness of vascular structures in breast tis-
sue to reconstruct shape and absorption values from severely limited data sets. The
approach is based on a decomposition of the unknown structure into a series of two
dimensional slices. Using a simplified physical model that ignores 3D effects of the
complete structure, we develop a novel inter-slice regularization strategy to obtain
global regularity. We report on simulated and experimental reconstructions using
realistic optical contrasts where our method provides a more accurate estimation

compared to an unregularized approach and a pixel based reconstruction.
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Chapter 1

Introduction

Non-invasive imaging modalities are becoming increasingly important to monitor fe-
male breast health in the 215 century. The Cancer Prevention and Control division
of the Centers for Disease Control and Prevention (CDC) states that breast cancer
is the most common cancer among women of all races in the United States [53], and
the World Health Organization (WHO) lists it as the top cancer in women in both
the developed and developing world [25]. Among the leading causes of cancer death
among women, breast cancer ranks second outnumbered only by deaths due to lung
cancer. In the prevention and control protocol published by WHO great significance
is placed on early detection. Although some risk reduction is achieved by prevention,
i.e. promoting healthy diet and physical activity, these strategies cannot eliminate
the majority of breast cancers that develop in low- and middle income countries. Be-

cause of this, early detection is the cornerstone of achieving successful breast cancer



control [2].

To this end screening methods need to incorporate detection systems and imag-
ing modalities that are low-cost, portable and as we discuss in greater detail shortly
sensitive to functional information of the breast tissue. Keeping detection systems
low-cost is a significant factor, especially considering breast cancer mortality rates in
the developing world. The ratio of mortality to incidence is below 0.2 in North Amer-
ica, where it is 0.35 in Latin America and the Caribbean and 0.7 in Africa [87]. There
is a clear positive gradient between level of economic development and probability of
survivorship across and within regions, which is closely related to inequities in access
to knowledge, early detection and treatment.

Breast imaging researchers have for a long time been dependent on information
from 3D imaging modalities, such as X-ray computed tomography (CT) and mag-
netic resonance imaging (MRI). Still, there are some drawbacks that hamper these
imaging methods. MRI remains a large and fairly expensive system and can entail a
considerable maintenance cost. CT on the other hand exposes the patient to ionizing
radiation which can be non-ideal, specifically for patients in treatment. Recently the
idea of detecting breast cancer has shifted from anatomical information, obtained
from CT and MRI, and towards modalities that obtain functional information such
as the consumption of oxygen in tissue, which is relevant to processes such as tumor
growth [83].

Considering the constraints at hand; a system which needs to be low cost, portable,



sensitive to functional information, useful for early detection and monitoring overall
breast health, it has become clear that promising candidates are optical imaging
modalities, microwave tomography, electric impedance tomography and ultrasound,
which are expected to fulfill all of the conditions stated [104, 23, 13, 63]. The focus

of this thesis will be optical imaging tomography for this purpose.

1.1 Non-tomographic optical modalities

Research on optical imaging started in the 1920’s with a pioneering article from Max
Cutler on optical transillumination images of the breast [32]. Specifically, light has
been used to detect certain information such as the blood oxygenation level using pulse
oximeters since the 1930’s. While these methods did not generate images directly,
it illustrates one way where light carries information about the material through
which it travels. Cutler proposed using continuous light to detect breast lesions
but this idea was quickly dropped since the intensity of light required caused the
patient’s skin to overheat. In the 1970’s and the early 1980’s significant developments
were made that led to commercially available equipment for optical tomography of
the breast. Gros et al. [52] introduced a concept named diaphanography, in which
the breast was positioned between a visible or near-infrared light source and the
physician. From this setup the doctor perceived images using his eyes alone. These
advances led to the development of pulse oxymetry, laser Doppler blood-flowmetry

and near infrared spectroscopy (NIRS) which then led to development of various



optical breast imaging instruments utilizing continuous-wave, frequency domain or
time-domain light sources.

Pulse oxymetry originated in the 1930’s and is widely used to monitor blood
oxygenation, an important physiological parameter that is related to the well being
of the patient. Pulse oxymeters provide accurate information on arterial blood oxygen
saturation. The advantage of optical oxymeters over oxygen tension monitors, which
need to be a part of the circulation or have a blood sample, is that they provide a
rapid response to changes in blood oxygenation and yet are non-invasive [13].

The invention of the laser quickly gave rise to its use in medical applications. As
early as the 1970’s the laser was being used for laser Doppler studies of blood flow
[13]. When a beam of coherent light with uniform intensity is incident on a rough
surface, the reflection of the beam will not be completely uniform but will include
some dark and light spots [101]. These dark spots, called speckles, are caused by
light reflected many different times which causes interference at the detector. This is
exactly what occurs when coherent light travels though a highly scattering sample.
Additionally, if the scattering particles are moving the speckle pattern will fluctuate
with a time scale which depends on the motion. This was the basis for Laser Doppler
Blood Flowmetry in the 1960’s [101].

Attempts at applying pulse oxymetry and laser Doppler blood flowmetry to mea-
sure hemodynamics in the brain were hindered by photodetector bandwidth limits

and photon limits. In the 1970’s NIRS was developed to monitor baseline changes



in total oxygenation in the brain, as revealed by the average intensity of diffusely
reflected light |28, 64, 27|. Briefly, NIRS quantifies changes in chromophore concen-
tration within highly scattering tissue by measuring the change in the photon density
of light which is diffusely transported through it. The concentration change of each
chromophore is then computed by relating them to the measured change in photon
density. The measured change in photon density is directly related to the concen-
tration change by the extinction coefficient of the chromophores and the effective
pathlength of the tissue. The extinction coefficient is an intrinsic property of each
chromophore, but the effective pathlength must be estimated for each measurement
as it is heavily dependent upon the measurement setup and the optical properties of
the tissue [13].

In the late 1980’s and early 1990’s it was soon realized that photon migration spec-
troscopy measurements could be extended to imaging by solving the inverse problem
as is done with X-Ray computed tomography. Research investigating this possibility
began in the late 1980’s and is reviewed in |8, 9].

In optical imaging three measurement schemes are typically used for measuring

the light transmitted through tissue. They are:

1. Time domain systems that produce illumination by short pulses of light. This
pulse allows detection of the temporal distribution of photons as they exit the
tissue. The shape obtained from this distribution provides information about

the optical properties of tissue, especially the pathlengths and scattering of



photons.

2. Frequency-domain systems that utilize radio-frequency light intensity modu-
lation signals. For these systems the light is on constantly but is amplitude-
modulated at frequencies on the order of tens to hundreds of megahertz. This
allows the absorption and scattering properties of tissue to be obtained by

recording amplitude decay and phase delay of the detected signal [13].

3. Continuous wave (CW) systems emit light at a constant amplitude or are mod-
ulated at a certain frequency. These systems measure the amplitude decay of

the incident light.

Out of these schemes the CW method is the simplest, least expensive, and provides
the fastest data collection, however the inverse problem associated with CW does not
have unique solutions, where multiple sets of optical parameters can yield identical
data [29].

Due to the overall low absorption of breast tissue, it is possible to measure trans-
mitted light through a breast, either compressed or uncompressed. In other cases
where optical absorption is too strong, reflectance can be measured, such as the case
for brain imaging [30], where in some situations measuring both transmission and
reflection could be useful. Using the measurements schemes described above, one can
estimate the absorption or different chromophore concentrations based on the mea-
sured photons transmitted through tissue. Depending on the wavelength observed by

the detectors different scattering and absorption can be calculated from the measured



data.

These developments discussed in previous paragraphs led to optical imaging modal-
ities becoming more relevant for clinical applications. This thesis will focus on CW
and its usefulness for breast imaging using tomographic methods which use multiple
source detector pairs that can render accurate images of the underlying structure
in tissue. Accurate spatial maps of optical properties prove useful compared to the

non-tomographic spectroscopy methods discussed above.

1.2 Diffuse optical tomography

In the past 15 years there has been increasing research into the use of near-infrared
light to image inside the human body with tomographic approaches. Recent efforts
have demonstrated that these methods can provide useful information for tumor lo-
cation and optical parameters. In this setting tissue is illuminated with spatially dis-
tributed sources and measurement taken with an array of sources where tomographic
algorithms can be used to reconstruct slice images of the medium. These methods
can provide better localization of abnormalities in tissue and optical properties by
rendering accurate maps of the imaging domain and in some cases, spatial-temporal
profiles of chromophore concentrations (oxy- and deoxy-hemoglobin, water and lipids
etc.) which convey functional information about the body [72]. One of the tech-
niques of interest is diffuse optical tomography (DOT) [48]. DOT uses infrared light

which is, as was discussed above, sensitive to the functional state of tissue such as the



consumption of oxygen which is possibly relevant to processes such as the growth of
tumors, vascular structures as well as the state of brain activity. Specifically, existing
clinical studies have related concentrations of total hemoglobin with tumor locations,
which is promising for using light to locate tumors. Although many applications have
been shown for the DOT method the most promising ones are for brain imaging and
breast imaging. For the case of brain the dominant method is still topography, which
monitors haemodynamic and oxygenation changes, while breast imaging serves as our
focus in this thesis [42, 92].

Throughout this work we consider a standalone DOT device [44]. Although a
standalone device is considered, it is interesting to compare DOT to X-ray especially
since DOT offers functional information which can be hard to obtain with X-ray
mammography, whereas the later gives highly detailed anatomical information. Tu-
mor detection in X-ray is for example done by the identification of microcalcification
characteristic of malignant lesions, while optical mammography measures changes in
blood perfusion of the tissue surrounding the tumor. These changes occur early in
a tumor’s growth and can affect a relatively large area [95]. Some reasearches have
proposed that DOT be combined with other modalities, for example Li et al. |71]
proposed that the contrast seen in X-ray images should be assumed to be propor-
tional to the DOT contrast. A linear least-squares type of DOT image formation
problem was then posed to use the information from the X-ray measurements. The

image reconstruction was regularized using the Tikhonov method which is similar to
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Figure 1.1: The process of photons passing through tissue [13]. Black line represents
light injected into the medium, where part of it is reflected right at the surface, rep-
resented by the brown arrow. Purple line represents diffuse reflectance, where light is
scattered out the same side as the injected light. Blue line represent scattered and ab-
sorbed photons, where the green arrow is scattered photons that travel to the detector.

Finally, red line represent ballistic photons that undergo no scattering events.

what is tested in Chapter 5. The regularization in general was based on regions of
interest, mainly the tumor regions and background regions. Additionally, through
simulation they were able to show that their method improved the contrast-to-noise
ratio and resolution in the reconstructed image. Although, pairing DOT with other
imaging modalities is promising, the work in this thesis focuses on DOT as a stan-
dalone modality, serving as an independent tool to estimate female breast health,
without information gathered from X-ray imaging or other modalities. Additionally,
as has been discussed, mobility, cost and patient comfort are issues that are easier to

solve when considering a standalone DOT device.
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As discussed above, the functional information accessible by DOT shows signifi-
cant promise to apply it to breast cancer imaging. The use of near-infrared light is
essentially electromagnetic radiation but is at a significantly lower energy than CT,
making this method less harmful. Operating in the infrared spectrum, 650-950nm,
gives us a range which is sometime called the window of transparency [95]. In this
window light propagates relatively far into the tissue (on the order of centimeters)
before being absorbed, thereby allowing us to probe quite deeply. Additionally, light
is also scattered within the tissue as it interacts with subsurface inhomogeneities.
This process is illustrated in Fig. 1.1. Within the window, light is absorbed and scat-
tered differently at different wavelengths depending on the space-varying oxygenation
state of the tissue. This relation gives us a way to use multiple wavelengths when
estimating chromophore concentrations, the recovery of which is the main interest
of this thesis. Using different wavelengths, performing multispectral measurements
or using a higher number of wavelength (i.e., collecting a “hyperspectral” dataset) ,
more information is added to the imaging problem thereby improving our ability to
determine the concentrations of chromophores and ultimately detect cancers using
the methods discussed in the later part of this thesis. With this method it is possible
to increase the effectiveness and accuracy of the DOT method.

Recovering functional information with DOT is extremely useful if framed in the
early detection framework discussed above. Although our research initially considered

the case of tumor anomalies in breast tissue, it is clear that overall vascular structures
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need to be considered. Traditional imaging modalities, such as X-ray and CT, which
rely on anatomical information are insensitive to tumors in early stages of growth due
to smaller sizes and lower attenuation of X-rays, which focuses early detection on the
recovery of functional information of the breast such as oxygenation and vascularity
using optical modalities [23]. This drives the need to be able to discriminate and es-
timate structures embedded in breast tissue, including major vascular structure. To
this end, work in this thesis will involve how we are able to estimate three-dimensional
(3D) tubular structures, relating to vascular shapes detected in breast tissue, by ex-
tending the method we have developed for image reconstruction for DOT. To estimate
these structures and parameters the light propagation through tissue must be mod-
eled. Although the interaction of light and tissue is a highly complex problem, there
have been significant advances in recent years to solve the problem efficiently, both in
terms of theoretically modeling the physics and developing useful codes for simulating
the process.

Due to these advances, the DOT method has become the prime candidate for
future breast cancer detection systems. X-ray radiation in CT travels generally in a
straight line, excluding Compton and Rayleigh scattering, resulting in a much simpler
problem than what is found for optical modalities. In the case of diffuse optical
tomography the photon’s mean free path of travel between two scattering events is
very short due to high scattering, most often only a fraction of a millimeter. Because of

this, most photons travelling through a human breast undergoes numerous scattering
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events. Thus, unlike CT where the physics of the problem is basically straight line
propagation and yields a linear relationship between the quantity of interest tissue
density and the observed data, for DOT a more complex model is required [95].
More specifically, the physics of light interaction with the tissue is well modeled using
the diffusion approximation to the radiative transport equation(RTE) which yields a
nonlinear relationship between the chromophore concentrations and the observations
of scattered light [95|. This is called the diffusion equation which expresses the photon
density as a function of absorption coefficient and scattering coefficient and solving
it will provides the forward model needed to solve the inverse problem [48, 13|.

The significant computational challenge of DOT is that it is a ill-posed inverse
scattering problem due to the physics of the diffusion process just described and
in some cases the limited ability to collect quantities of data. Additionally, another
challenge is the fact that the measurement is related non-linearly to the parameters of
interest, which is often addressed with linear approximations [13]. The ill-posedness
poses a more substantive problem than the non-linearity since it leads to large changes
in parameters when fairly small changes occur in the data. In some sense this is a
physics-based phenomenon, which means there is a lack of sensitivity in the data to the
parameters. It also means that in the image formation process (if done naively), small
changes in the data from noise and unmodeled effects can cause very large changes to
the estimated profiles. In other words the reconstruction process is highly sensitive to

small perturbations in the data. Adding to these difficulties is the fact that in many
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cases one seeks to recover more degrees of freedom (voxel values times number of
chromophores) than one has data points [13]. Taken together, the physics-based ill-
posedness coupled with non-linearity pose a significant challenge for recovering optical
properties in DOT. Additionally, this thesis considers limited acquisition geometries
that result in underdetermined systems that dramatically complicates our ability to
stably recover useful information about the state of the tissue from DOT data. While
there do exist camera based systems which are overdetermined, where a significant
amount of source-detector pairs are placed around the medium, our work focuses
around a specific source detector setup described in Chapter 4 [86].

Considering anomalous structures like tumors or simply regions of interest, like
vessels, the imaging problem can be formed as a segmentation problem, detecting one
class of objects from the background [7]. This approach can help to constrain the
problem, decreasing the need for explicit regularization for the inverse problem. Sim-
ilarly, shape-based methods that utilize segmentation methods are promising for per-
forming image reconstruction by taking advantage of information from other imaging
modalities such as optical or X-ray mammography, where prior information regarding
tumor location, vessel structure or adipose tissue can be implemented [38].

Researchers have developed several instrumentation types for optical mammog-
raphy, some are similar to X-ray by compressing the breast but others use cone like
arrangement of sources and detectors which do not require compression [24, 113].

When the compression technique is used a laser source illuminates on one plate,
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which is transparent while a detector on the opposite plate measures over several
measurement locations for each source position [95]. This arrangement reduces the
thickness of the transilluminated tissue. This technique has of course been used for
several years in X-ray mammography and has been proven to improve the detectabil-
ity of deeply embedded objects. One down side of the compression method is that it
can cause blood to drain from the breast, thereby unpredictably altering the optical
properties [19].

The other method, with sources and detectors situated in a plane around an
uncompressed breast, has the patient lying prone on a table with the unsupported
breast suspended in a cavity [86]. The data acquisition might consist of a set of fixed
sources and detectors or a rotating system that scans the breast’s surface. This setup
can provide a more complete sampling data over the boundary, but makes defining
the problem’s geometry more difficult and requires higher sensitivity of detectors, due
to the longer photon path. This results in higher sensitivity near the skin but much
lower near the center of the breast. This also has the advantage that it should be much
more comfortable for the patient since numerous patients have felt the compression

method to be uncomfortable and sometimes painful.
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1.3 The purpose of this work

The key contribution of this work is developing a method to perform shape-based
image reconstruction for DOT, both in terms of tumor detection through recover-
ing chromophore concentrations utilizing hyperspectral data, and estimating vascular
structures of breast tissue. For reconstructing chromophore concentrations we fo-
cus on two-dimensional (2D) images, based on its simplicity and usefulness to judge
the performance of our method using both simulated data and experimental mea-
surements. Considering the vascular structures we extend our method of generating
2D images to estimate tubular objects representing vessels in breast tissue, using a
simplified model with extremely limited data.

In traditional inversion methods for DOT image regions are discretized into large
collections of voxels over which absorption, scattering or chromophore concentrations
are assumed constant. In this framework inversion needs to be carried out for a large
number of unknowns to estimate the image representing optical properties of the
breast. Due to the previously discussed ill-posedness of the problem pixel based re-
construction can pose significant challenges for image recovery. Instead of developing
methods to improve a pixel or voxel based reconstructions we utilize a shape-based
method which assumes that areas of interest in breast tissue can be divided into two
distinct piece-wise constant regions: background breast tissue, and structures of in-
terest, either anomalous areas or tubular structures, representing blood vessels. We

then aim to recover a low order accurate estimation of the underlying structures for



16

scenarios where the optical absorption contrast between the background and structure
of interest is within a range commonly found in realistic situations [44].

Our method emphasizes the use of simplified models describing the photon migra-
tion through tissue, where accurate representation of areas of interest can be achieved
by reducing the dimensionality of the problem. This renders the inversion compu-
tationally feasible and easily expandable for other accurate models calculated for a

variety of geometries.

1.4 Thesis Outline

The thesis is structured as follows. In Chapter 2 we discuss the fundamental concepts
of DOT, for image reconstruction and review previous efforts to recover images of the
female breast using DOT. In Chapter 3 the forward models used to compute the
photon migration in several different scenarios considered in this thesis are detailed.
Chapter 4 discusses experimental methods employed in this thesis to verify our claims.
In Chapter 5 the low order shape based method is described and compared to a pixel
based method. Chapter 6 contains brief discussion regarding a dictionary method
for the low order method followed by our method for recovering 3D structures with
2D primitives in Chapter 7. Finally, Chapter 8 contains discussion regarding future

efforts for this project.



Chapter 2

Background

This section will briefly discuss the formulation and concepts to be used in this thesis.
The main problem of recovering images will be discussed in general to be followed
with more detailed discussion in Chapters 5, 6 and 7. Throughout we reference major
works in the field of image reconstruction for DOT, which allows the reader to further

explore the topic.

2.1 Image reconstruction for DOT

The process of recovering images for DOT involves defining the forward problem,
which models the transport of photons through the relevant medium, as well as ad-
dressing the challenges of the inverse problem mentioned in Chapter 1.

Lets assume that the domain to be imaged is defined by F, a compact domain

in R", n > 2, where a physical model K acts on its properties. In the case of our

17
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Figure 2.1: Basic setup of the imaging problem in this thesis. It demonstrates where
optical properties c are separated into foreground and background. The model K acts

on the entire domain, F, to generate ®

application these properties include optical absorption or chromophore concentrations
and scattering defined by a vector of parameters, c, where the effect of K on F
generates a set of observations, or a measurement, ®. As discussed in Chapter 1
the measurement can be CW, time-domain or frequency domain data, where for this
thesis we consider the CW case. We define a non-linear forward model represented
by

® = K(c) (2.1)

where c itself belongs to a Hilbert space S.. We define the inverse problem— the
process of recovering an estimate € of ¢ from the measurement ®— as a variational

approach where we set up the estimation of € as an optimization problem defining



19
the inverse problem as

c= argmcin G(c)
where (2.2)
1 2
Gle) = 5IK(c) - B[
The data mismatch term in (2.2) is in a least square form which assumes that the
estimate, ¢, is mathematically consistent with the data, ®. However, the underlying
physics of photon migration, and limited data generally acquired in a traditional DOT
measurement, setup, result in a solution that is highly sensitive to noise and system
errors. Because of this challenge, and the fact that the basic forward model in (2.1)
is non-linear, significant care is required when performing the reconstruction.

As detailed by Arridge [3] researchers have taken established solution methods
from other applications and extended them to the optical tomography problem. Meth-
ods adapted from computed tomography have used the assumption that the Radon
transform could be applied to the DOT problem, where closed form solutions and
backprojection schemes are proposed [49]. Methods using linear matrix formulation
that are analogous to transfer functions in single photon emission computed tomog-
raphy have also been considered [49].

Essentially there are two types of image reconstruction schemes for DOT; linear
methods, where approximations are applied to linearize (2.1) and non-linear methods
that can be more accurate, but more computationally intensive. The remainder of

this chapter will discuss these different methods and regularization techniques applied
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to the optimization problem in (2.2).

2.2 Linear approximations

The non-linear problem in (2.1) can be linearized if certain assumptions are made
of the imaging medium. Detailed by Gibson et al. [49] the model can be linearized
if the actual optical properties are close to an initial estimate ¢, and the measured
data ® are close to the simulated data ®, = K(cg), generated by the forward model.
This approach is frequently used in difference imaging where data is collected before
and after an event that changes the optical properties, for example the injection of
a contrast agent or breathing exercise [49]. The linear approximation is defined by

Taylor series as
® =&+ K'(c)(c —¢) + K"(Co)(c —To)* + ... (2.3)

where K’ and K” are the first- and second-order Fréchet derivatives of K [4]. The
Fréchet derivative can be considered a linear integral operator that maps functions in
image space to measurement space. The kernel of this integral can be computed by
analytical Green’s functions, an approach used by Boas et al [14].

By neglecting higher order terms and strictly considering changes in optical prop-
erties Ac = c—cg and data A® = & — P the linear problem in (2.3) can be expressed
as

AP = KAc (2.4)
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where K is now the linear forward model. Ignoring the higher order terms this way
gives way to implementing two different linear approximations, the Born and Rytov

approximations, respectively.

2.2.1 Born Approximation

Sometimes referred to as single scatter method, the Born approximation consists of
taking the incident field in place of the total field as the driving field at each point in
the scatterer. This is equal to writing the total field as a sum of an incident field, ®"

and a scattered field ®° given by
® =o' + P°. (2.5)

Physically it amounts to treating each point in an inhomogeneity as if it existed in
isolation from the rest of the inhomogeneity ignoring the contributions of perturba-
tions of the scattered field from one part of an inhomogeneity on the field incident on
another part [48]. It is well established that the Born approximation deviates from
the true result when the perturbation Ac exceeds a certain limit [91] where extensive
analysis has been performed on the error in optical absorption images due to the
approximation [54| and error modeling has been used to perform corrections for the
Born approximation [103]. However, taking these limitations into account, the Born
approximation can be a useful tool to simplify the inverse problem and has been ex-
tensively used in DOT, both for simulations and clinical setting [48, 105|. It provides

a straightforward method to compute and linearize the forward model, which can be
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used to test reconstruction algorithms. Additionally, as noted by [91] the method can
be extended into higher orders, rendering more accurate results. For the purpose of

this thesis the Born approximation is used, and is discussed further in Chapter 3.

2.2.2 Rytov Approximation

Another approach is the Rytov Approximation which is computed by linearizing the
log intensity which reduces the dynamic range of ®, which assumes that the total

field can be computed as

& = &' exp (P°). (2.6)

It has been reported that Rytov approximation is better suited for experimental data,
in that it is less ill-posed than the Born Approximation 3], where it accounts for some
non-linear saturation due to increasing perturbation in the absorption coefficient.
However, where the Born approximation is only suitable for lower optical contrasts,
the Rytov approximation assumes that the scattered wave varies slowly, thus being
more suitable for larger perturbations [81]. Boas [11] reported that the Rytov approx-
imation has a discrepancy of about four times greater than the Born approximation,
but suggested that the Rytov approximation could be empirically modified. Recently
the Rytov approximation has successfully been employed for image reconstruction for
experimental and clinical measurements [79].

Using either of these linear approximations allows for directly inverting the K
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matrix in (2.4). To this end a variety of common techniques are available includ-
ing singular value decomposition, truncated singular value decomposition, Tikhonov

regularization or algebraic reconstruction technique (ART) [48].

2.3 Regularization techniques

Before applying regularization techniques, prior anatomical information can be con-
sidered for the purpose of regularizing the solution of the inverse problem that can
improve estimation of chromophore concentrations. Such prior information can be in-
cluded in the forward model, which usually involves implementing complex geometries
with numerical models. To this end various methods can be applied, including the
finite difference method discussed in Chapter 3. Including this kind of information in
the forward model allows for taking advantage of anatomical prior information while
using various forward models, as it has been shown that it is beneficial for both linear
and non-linear reconstructions [12]. Notably, prior information from X-ray images has
proven to be useful to define the segmentation between adipose and fibroglandular
tissue in the breast. Fang et al [38] demonstrated that constructing a regularization
matrix that incorporated structural priors from X-ray data into a finite element DOT
inversion resulted in accurate estimation for clinical data.

When prior structural information is not available, various techniques exist to
regularize the inverse solution. Throughout this thesis, we consider standalone DOT

device, and as such structural prior information is hard to come by. This requires
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implementing other methods for regularizing the inverse solution.

2.3.1 Reconstruction using the singular value decomposition

For K a m x p matrix with m > p, the singular value decomposition (SVD) takes the

form

p
K=USV" =) wow (2.7)
=1

where U is an m X m unitary matrix, the matrix ¥ is m X p diagonal matrix with
nonnegative real numbers on the diagonal, and V is an p X p unitary matrix.

The common convention is to order the diagonal entries ¥;; in non-increasing
fashion. The diagonal entries of 3 are known as the singular values of K. The

number of non-zero singular values, r, is the rank of K. Then X is written as:
3 = diag(oy,09,...,0;) (2.8)
The pseudo inverse of K, KT, is defined as
K™ =vxtu’ (2.9)

where X7 is formed by

>t =diag(oy ', 05", ..., 00 (2.10)

This pseudo inverse is then used to obtain Ac =K Ad

T

—~ 1
Ac =) —uvi(u;, A¢;) = VETUTAD (2.11)

O’.
i=1 °
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When dealing with a matrix, K, where the singular values decay over many orders of
magnitude towards zero, like in the DOT case, the problem becomes more complicated
due to the evaluation of o1

To see how the SVD gives insight into the ill-conditioning of K, consider the

following relations [57]:

Kv, = o, [Kvi: =0
(2.12)

K'u, = ovi, |[K'wl: =o;
where u;, v; are left and right singular vectors, basis for the row and column spaces
of K, respectively and represent the i’ elements in the V and U matrices. It can be
seen that a small singular value o, relative to o7 = ||K||2, means that there exists a
certain linear combination of the columns of K, characterized by the elements of the
right singular vector v;, such that ||Kv;||s = o; is small. The same holds for u; and
the rows of K. In other words, a situation with one or more small o; implies that
K is nearly rank deficient, and the vectors u; and v; associated with the small o;
are the numerical null vectors of K? and K respectively. From this property it can
be concluded that the matrix corresponding to a discrete ill-posed problem is always

highly ill-conditioned.

The SVD is an invaluable tool for analysis of problems with ill-conditioned ma-
trices and the truncated SVD (described below) has been used successfully to solve

a variety of ill-posed problems of the form 2.4. When A® in (2.4) is perturbed by

errors then the solution to the perturbed problem is very likely to be dominated by
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large amplitude, high frequency errors with structure of singular vectors correlated
to small singular values [56|. It is therefore necessary to use some sort of regulariza-
tion to compute a solution that is less sensitive to the perturbations. The Tikhonov
method is commonly used in this respect and will be discussed in detail in Section
2.3. An alternative method for regularization of (2.2) is the Truncated SVD. TSVD
uses a reduced rank approximation to K that is obtained by setting all but the first
[ largest singular values equal to zero and using only the first columns of U and V.

Thus the TSVD solution, A\cl, is defined by

I
Ac, ~ Z vi(us, g) = VEUTA®  where

i=1
3 =diag(oyt 05t ... 071,0,...,0)

The integer [ is called the truncation parameter. The TSVD becomes especially useful

when dealing with ill-posed problems such as the forward model matrices for the DOT

problem which are often poorly conditioned with a very wide range of singular values.

The singular value spectrum for the DOT problem can have a range of seven orders

of magnitude in the singular values [48].

2.3.2 Tikhonov Regularization

Considering the objective function in (2.2) the ill-posed inverse problem poses an in-
stability in the solution with respect to small variations. This results in non-unigeness

of solutions where large changes in optical properties result in small changes in the
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estimated solution to (2.2) which suggests the importance of augmenting the objec-
tive function by including regularization terms which modifies the objective function.
This approach allows for more accurate reconstruction compared to TSVD where
regularization terms can be specifically defined to incorporate prior information or

suppress edge artifacts. The objective function is then defined by
G(c) = [K(c) — @[3 + oLe|”. (2.13)

The second term includes the regularization matrix L weighted by the regularization
parameter «. Considering the linearized form of the forward model in (2.4) the

objective function in (2.13) can be expressed by
G = (KAc — A®)T(KAc — A®) + aAc LTLAC. (2.14)

Optimizing this equation is done by taking the partial derivative with respect to Ac

and setting equal to zero

ﬁ — 9KTKAc — 2KTA® + 2oL LAc
0Ac
0 = 2KTKAc — 2KTA® + 20L LAc (2.15)

Ac = (K™K + oL"L) 'K
There are multiple options for choice of the regularization matrix, L, which serves
the purpose of regularizing the solution to increase the quality of the reconstructed
image. In essence its choice requires taking into account a priori information regard-
ing the imaging medium at hand, which for our application, is breast tissue. When

it is chosen to be identity the implicit prior assumption is that the concentrations of
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chromophores are small, when « is chosen to be sufficiently large. When the imaging
medium is discretized on a relatively coarse grid the optical properties in the breast
can be considered being slowly varying, so the system can be assumed to be smooth.
This prior information leading to a reasonable choice of a spatial differential operator
as L.

The challenge in choosing the a parameter is of even greater importance when
implementing regularization in (2.13). Formal methods exist and are widely employed,
such as generalized cross-validation (GCV) or the L-curve method, which usually
verified with other error metrics and visual inspection. In the L-curve method a plot
of log(||Lic||?) is generated against log(]|W(K(c) — ®)||*) as « is varied. Larger «
makes the system better conditioned, but this new augmented system is farther away
from the original system, without regularization. Assuming no noise, any sufficiently
small value of a will produce the same result, but with increasing noise the need of
larger a grows. Gradient like regularization matrix and the L-curve method is applied
for multiple chromophores for pixel based reconstruction as in Chapter 5, while an

adjusted regularization matrix is utilized for estimating 3D shapes in Chapter 7.

2.4 Non-linear reconstruction

The aim of non-linear image reconstruction is to calculate optical properties at each
point within the model using measurements of light fluence from the tissue surface.

This is performed if the inverse problem cannot be assumed to be a recovery of
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values relative to a known background or a difference measurement, but a recovery
of absolute values of the optical properties. Solving the non-linear problem involves
iterating the objective function G in (2.2) which minimizes the mismatch between
modeled data from K(c) and measured data ®. As before in the case of breast
imaging ¢ is the images of optical properties. Finding the best estimate of ¢ to
minimize the data mismatch term requires an iterative reconstruction, which can be
seperated into two distinct approaches; gradient-based reconstruction, which has been
extensively studied by Arridge & Schwieger [6, 3| and Hielser et al [60], or Newton-like
methods [93].

Gradient based methods avoid the problem of Newton methods which involve the
algorithm becoming intractable as the size of the problem domain increases [6]. In
gradient based algorithms such as conjugate gradient, a set of conjugate search direc-
tions is generated to find the minimum of the objective function. At each iteration
step a one-dimensional line minimization along the current search direction is per-
formed. The update in gradient methods is computed from initial value c¥) to obtain
the estimate ¢

¢t =g — p)Og" (@) (2.16)

where i represents the number of iteration, where each step is taken along the minus
derivative direction of G, p is the step size which needs to reduce cost and be large
enough to reduce number of iterations and G’ represents the Fréchet derivative of

G. It should be noted that the gradient based method can be sensitive to variable
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scaling, which can effect problems where estimation is performed for different types
of unknowns with different orders of intensity [49]. This problem is encountered in
shape-based methods, where estimation is performed for both value of absorption and
shape, detailed in Chapter 5. This sensitivity can also be encountered when inverting
multiple chromophores, and scattering amplitude, where the parameters with larger
sensitivities are updated faster compared to low sensitivity unknowns, which does not
iterate some chromophore images from initial guess.

Newton methods seek to to find a zero of the gradient of G by expanding the
estimate at each iteration with Taylor expansion. This leads to an update at each

iteration computed by
(J"J + pH)h = —J"€ with p > 0 (2.17)

where J = K’ is the Jacobian of the data mismatch term and H is a Hessian matrix.
Commonly employed algorithm used to to solve the non-linear reconstruction with
Newton methods is the Levenberg Marquardt algorithm which involves defining a
large initial p and reducing it dynamically through iterations [3]. Reconstructions for
the shape-based method in this thesis are performed implementing the Levenberg-
Marquardt algorithm, detailed in Chapter 5.

What these two approaches share is that great care has to be taken when defining
when the optimal solution € has been achieved. This usually involves stopping the
iteration when the update to € is below a certain threshold, or a defined noise level

has been reached. Working with the Levenberg-Marquardt algorithm in this thesis
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we chose the second stopping criteria, detailed in Chapter 5.

2.5 Shape Based Methods

Wide variety of applied imaging problems involve determining a two dimensional (2D)
area or three-dimensional (3D) volume in a larger field of regard. In the context of
this thesis, this area of interest can be a cancerous tumor or a tubular like structure
representing vessels in breast tissue. One way to approach these problems and es-
timation of these structures is to reconstruct regions of interest without constraints
of the shapes of anomalous locations [59, 48, 33|. These reconstructions require post
processing where the segments of the recovered images are identified in terms of
background and area of interest. An alternative way is to directly estimate areas of
interest and the values of optical properties associated with each. These approaches
are known as shape-based methods and have been gaining interest for optical imaging
methods [1, 112, 16, 67, 7].

Shape-based methods involve separating the estimation of ¢ in (2.1) into recovery
of two distinct classes, foreground and background. This approach then estimates
the boundary of the area of interest, or foreground, and assigns a value for optical
properties inside this region and outside for background. The formulation presented
in this thesis assumes that values in the two separate areas are piecewise constant,
however adding texture functions to estimate variable concentrations in these areas

is straightforward [1]. Throughout this thesis we separate c¢ by defining it over the
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domain F as
¢ = c"x(,y) + 1 — x(z,9)] (2.18)

Here the function x is defined as a characteristic function defined as 1 inside of the
boundary of ¢ defined as 2 and 0 outside of it. Recovering the boundary of €2 is the
main goal in shape-based estimation, and is shown within the imaging domain F in
Fig. 2.2. Estimating this boundary can be done by evaluating a dense collection of
pixels, as is done in traditional image reconstruction for optical imaging. Another
approach is to parametrize the boundary of {2 and generate an estimate of ¢ by esti-
mating derivatives of the domain mapping the measurement to the optical parameters
of interest. Constraining the image formation with this segmentation approach and
a parametric curve lessens the need of added regularization terms in the objective
function (2.2) since the estimate is implicitly regularized through the formulation [1].
A significant drawback to this method is that a prior: information is required to
define the number of areas of interest which is a significant issue concerning medical

imaging modalities where the ground truth is hard to come by.

f

L.

Figure 2.2: Definition of anomalous region ) within the imaging domain F used for

shape-based methods.
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The need of prior information to estimate the curve can be circumvented by esti-
mating the boundary of (2 using a level-set representation of the unknown parameters
[114]. This is the primary approach considered in this thesis. In [34] level sets were
used in a two-step method for shape estimation assuming that prior information of
the absorption parameter was known. Schweiger et al. [94] and Kilmer et al. [67]
employed level sets for the DOT problem estimating parameter distributions using a
piecewise basis. Arridge et al. [7| investigated shape based methods by estimating
level-sets, specifically investigating an explicit method using basis functions and an
implicit shape reconstruction to recover absorption and diffusion coefficients assum-
ing a known background |7|. For a detailed review of the use of level sets in inverse
scattering problems we point the reader to [35].

The approach we consider in this thesis is significantly different from those in
[94, 34, 7]. In addition to the fact that none of these papers have considered the fully
hyperspectral case, some of these methods [94, 34, 67| require the recovery of unknown
quantities defined on a fine scale pixelated discretization of the region of interest. More
specifically in [7] absorption and scattering are estimated using level sets assuming
those of the background are known. With the Born approximation we assume the
absorption and diffusion coefficients are known in the background but here we estimate
chromophore concentrations and scattering amplitude of the object of interest as well
as chromophore concentration in the background. Traditional image reconstructions

methods use a pixel-based grid, estimating each pixel unconstrained by segmentation,
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while traditional level set methods work with a level set function defined on a pixel-
based grid. In both cases, regularization is required to obtain adequate results and
one is faced with the corresponding challenge of choosing regularization parameters
[85, 94].

In this thesis we consider the use of a shape-based approach to the hyperspectral
DOT problem based on a newly-developed parametric level set (PaLS) formulation.
In [1], a basis function expansion was used to provide a low order representation of
the level set function and yielded more accurate results for a number of highly ill-
posed inverse problems including a restricted form of the DOT problem where a single
wavelength was employed to determine only optical absorption. The method required
no explicit regularization and, due to the low-order nature of the model (number of
parameters significantly less than number of pixels) was amenable to Newton-type
inversion algorithms known to converge more rapidly than gradient-based schemes.
Moreover, in [1] it was demonstrated that experiments indicated a roubstness to the
selection of initial guess for the inversion algorithm.

Considering the case of DOT, the breast is a highly heterogeneous medium,
whereas in the level set method we assume the images to be recovered to be piecewise
constant. This assumption is supported in the literature. For example Schweiger et
al. assumed anatomical prior information to derive a piecewise constant region basis

[92]. In this thesis the choice of the piece-wise approximation is sufficient due to the
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underdetermined nature of our setup, where data is acquired with limited source-
detector pairs. This results in a high ill-posedness where high resolution information
is difficult to recover, making the piece-wise approximation useful.

Considering the heterogeneous medium encountered in this application, we ex-
plore the application of implementing the low-order model by taking advantage of
redundant dictionaries. This entails essentially creating a large matrix, containing a
library of shapes that can be be used to estimate the underlying structure. In this
context, a sparse representation means recovering the unknown optical properties by

including only few elements from the dictionary matrix.

2.5.1 Primitives for 3D shape estimation

Considering the case of estimating vascular structures of the breast, which as discussed
in Chapter 1 is important for breast imaging, the recovery of 3D structures is vital. To
this end researchers have implemented accurate numerical models which discretize the
imaging medium into voxels and recover 3D structures by assigning values to each
element [31], or reconstructed cross-sections of 3D objects to estimate their total
volume and location [33|. In the case of the ill-posed DOT problem, this can be
computationally intensive and hard to generate voxel meshes for different geometries
without prior information.

An alternative approach to reconstruction of 3D shapes is presented in [18]. In

this paper the authors represent this 3D object by a collection of vertically stacked
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unit height cylinders, which they refer to as primitives. The cross sectional density
of each primitive is represented as a function, f(r,~v), of a position vector r and a
vector of shape parameters 7. Specifically, in [18] the function f(r,~) is the indicator
function for an ellipse where the shape of each primitive is defined by a parameter
vector that holds the center and radius of the ellipse, the ratio of its semi-axes and
the orientation angle between its semi-axes. Under this model, each object primitive
is centered at a point, which corresponds to the vertical positioning of the center axis
for that primitive. However, since this model was developed for generalized cylinders,
where a known training set or prior information would optimize the selection of the
model parameters it is most effective when the objects are modeled as such [18].
Additionally, the approach in [18] restricted structures to not intersect in 3D space
and implemented a statistical method to determine if primitives in adjacent slices
should be connected.

Inspired by [18], we introduce a new, flexible approach to the modeling and es-
timation of 3D shapes. We define a 3D object using a set of 2D shapes, which we
also refer to as primitives [18]. Our model defines each primitive as a cross-section,
an infinitesimally thin area, whose structure is defined by a vector of parameters that
consists of a collection of basis functions defined by their center locations, weighting
factors and axis length, or dilation. This formulation allows for implementation of
the shape-based method to handle the estimation for each slice, and correlate them.

The overall 3D object structure is defined by “stacking” the primitive images together,
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creating a parametrized approximation to a 3D object. Specifically, in 3D Cartesian
coordinates (denoted by x —y — z), if z is assumed to correspond to the “vertical”,
then each primitive resides in an x — z plane. This takes advantage of the tubular
nature of vessels commonly found in parallel plate breast imaging (where the breast
is compressed) and the fact that major vessels in breast tissue generally travel per-
pendicular to the chest wall [62]. The reconstruction algorithm is capable of “deacti-
vating” any unnecessary basis functions and thereby discovering the required number
of active and passive primitives to effectively reconstruct the object’s shape struc-
ture. As such, the model can effectively image multiple spatially separate anomalies
against a background of potentially unknown structure. Correlating adjacent slices
we implement a regularization approach to augment the optimization method with
a cost term associated with the assumed linear relationship between adjacent primi-
tives. The source detector setup used for the purpose of this thesis, where source and
detector is scanned in tandem, relates our method to an optical mammography de-
vice currently being designed by Prof. Sergio Fantini’s group at the Tufts University
Biomedical engineering department. Our method of recovering shape, volume and
absorption estimates can utilize depth and oxygen saturation information acquired
by Prof. Fantini’s system as well as advancing the modality towards a standalone

device. This consideration is discussed further in Chapter 7.
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2.6 Hyperspectral information

Research for DOT has shown that including multiple wavelengths in measurements
can increase the accuracy of the measurement. Multispectral measurements made it
possible for Boverman et al. [15, 99| to obtain hemoglobin images of the concentration
and the hemoglobin oxygen saturation. Corlu et al. [30] showed that using multiple
wavelengths are the key for obtaining physiologically relevant tissue parameters with
CW light. Indeed, a factor in detecting breast cancer is the discrimination of actual
cancer and benign lesions or normal tissue inhomogeneities in the breast. Multi-
wavelength information has been shown to be useful to make this distinction [42],
which is due to the fact that determining the level of blood oxygenation in the breast
can show the local supply and demand of oxygen. Since cancer tumors were suspected
to have low-oxygen levels this information can be clinically useful in making the
difference between tumors and benign artifacts [42].

Multispectral data has also potential to reduce the non-unigness of the solution
to the DOT problem. This concept is not new and has been researched extensively
for the past 20 years [5]. In the case of CW measurements, it has been shown that
different sets of absorption and scattering parameters can yield identical data. Also,
inversions can suffer from cross-talk between absorption and scattering [5]. Cross-talk
happens when a reconstructed image of a chromophore shows traces of concentrations
from other chromophores. These "ghost" images greatly reduce accuracy of the over-

all reconstruction. Corlu et al. [30] showed how this nonuniqueness problem could
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Figure 2.3: Example of hyperspectral cube considered for multi wavelength imaging.
Each pizel in each 1mage on the spectral axis corresponds to an absorption value in

the near-infrared spectrum.

be solved by using multispectral data, provided that it is used with the correct wave-
lengths.

Implementing multispectral information for DOT requires an informed choice of
wavelengths to recover specific chromophore concentrations. Increasing the amount
of data used eliminates this choice and opens the option of generalizing the model to
simultaneously recovering multiple chromophores. Considering this it is imperative
to discuss how many wavelengths should be included in the measurement, and how
to optimally choose the added wavelengths. This is where hyperspectral measure-
ments come into play, which involves using a great number of wavelengths for the
measurement. However there is no set number of wavelengths that defines hyperspec-

tral imaging from multispectral imaging. Comparing hyperspectral vs. multispectral
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Figure 2.4: Molar extinction coefficients for oxy-hemoglobin (HbOy) deozy-hemoglobin
(HbR) shown as a function of wavelength.

imaging, the wavelengths available for a reconstruction is on the scale of ~100 in the
hyperspectral case and that for the multispectral case is less than ~10 spectral bins
[22].

Hyperspectral imaging has been used extensively in the fields of remote sensing
and geology of natural and man-made materials that are indistinguishable using stan-
dard color imagery [69, 96]. The fundamental basis for space-based remote sensing is
that information is potentially available from the electromagnetic energy field arising
from the earth’s surface and, in particular, from the spatial, spectral and temporal
variations in that field. This information is often represented by a 3D cube, where the
two face axes represent spatial locations, and the depth axis of the cube represents
spectral variations. This is referred to as a hyperspectral cube, shown in Fig. 2.6.
Researchers have moved on to look at how the spectral variations might be used in

cases where imaging modalities work with data with low spatial resolution. In the



41

case of DOT, these spectral variations are represented by the extinction coefficients of
the different chromophores being estimated, where the extinction coefficient spectrum
for oxyheomoglobin and deoxyhemoglobin are shown in Fig. 2.6.

When reconstructing images for concentrations of chromophores in DOT there
are generally two ways of using spectral information. In this project these two meth-
ods will be referred to as the direct method and the indirect method. The indirect
method generally requires three steps to obtain the concentration images. First,
measurements are taken at two or more wavelengths. Second, images of the absorp-
tion and reduced scattering coefficients at the different wavelengths are reconstructed
separately. Last, the concentration of the separate chromophores are derived from
the optical properties. On the other hand the direct method skips the step of con-
structing the spectral absorption images and directly reconstructs the chromophore
images from measured data [73]. For this thesis we implement the direct method for
recovering chromophore images.

In this thesis, we will explore the value of hyperspectral data for addressing the
many issues associated with ill-posedness encountered with DOT. It will be exam-
ined how hyperspectral data can increase resolution and reduce cross-talk. In other
words, the ability to localize small perturbations from individual species and ability

to separate multiple species.



Chapter 3

Forward Models

In this chapter we consider the forward models used to model photon migration for
the methods in this thesis. We consider the physics of mass transport as it is applied

to photon migration.

3.1 Diffusion approximation

For the purpose of this thesis we consider the diffusion approximation of the radia-
tive transport equation (RTE), an integro-differential equation, considered the most
general model for photon migration. Due to its complexity and high dimensional-
ity its solutions are generally solved using Monte Carlo or numerical methods like
finite element, finite difference or spherical harmonics method [77]. The diffusion

approximation assumes that the specific intensity develops a nearly isotropic angular

42
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distribution due to the multiple scattering effects. Additionally the diffusion approxi-
mation replaces the use of the RTE scattering phase function with a single parameter,

the reduced scattering coefficient, defined by

py = ps(1 = g) (3.1)

where ¢ is defined as the cosine of the scattering angle and the scattering coefficient
s is equal to the reciprocal of the transport scattering length. This length is defined
by the distance when a collimated beam becomes effectively diffuse, which is about
1 mm for near-infrared light in biological tissue. It should be noted that the RTE
can be derived by first principles by applying Maxwell’s equations to the problem of
multiple electromagnetic scattering in discrete random media [78§].

In the time dependent case, the diffusion approximation assumes that the photon
current is constant in time, where in general terms the assumption is that the absorp-
tion coefficient, p,, is dominated by scattering, stated by u, < p, such that the ratio
W/ (s + po) is close to unity. From this, the diffusive assumption can be justified
when scattering effects are predominant over absorption. Lastly the source-detector
separation must be greater that 1/ which is in the range of 1 mm. Considering our
application of breast imaging in transmission geometry, this constraint is upheld.

A model of light propagation in a highly scattering medium is necessary both to
compute the simulated fluence at the detectors and to map the fluence back to the
chromophore concentrations. Utilizing the diffusion approximation to the RTE we

obtain a useful and commonly employed model for the photon fluence in a highly
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scattering medium, which is often referred to as the Helmholtz frequency domain

diffusion equation
V- DO(r, )VB(r, A) + (jw — vpl(r, A)®B(x, A) = —vS(r, \) (3.2)

where ®(r, \) is the photon fluence rate at position r due to light of wavelength
A injected into the medium, v is the electromagnetic propagation velocity in the
medium, p2(r,)\) is the spatially varying absorption coefficient, and S(r,\) is the
photon source with units of optical energy per unit time per unit volume. For the
work in this thesis the source is considered to be delta sources in space and can be
written as S(r, A) = So(A)d(r —r,) with Sy(\) the source power at wavelength \. We
note that (3.2) includes the term jw where w is the modulation frequency of the light
intensity [108]. Throughout this thesis we consider exclusively problems for which
w = 0, representing CW measurements. For spatially varying scattering we assume
that the diffusion coefficient D%(r, \) follows Mie scattering theory where a scattering
prefactor ¥ depends on the size and density of scatterers while a scattering exponent
b depends on the size of the scatterers. Using this, we write the diffusion coefficient

as

D(r, \) = 3% (%)b — vTd(N). (3.3)

The arbitrarily chosen reference wavelength A is introduced to achieve a form of the

Mie model where ¥ has the units of mm~—! and ¥’ has units of mm.
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3.2 Discrete model and integral equation

Now as discussed in Chapter 2 we decompose the diffusion and absorption coefficient

as

D°(r,\) = D(A) + AD(r, \)
(3.4)

1o (r, A) = p1a(X) 4+ Apg(r, A).
By this we can show that the perturbation in Ay, and AD are related by an integral

transformation to the data which can be defined as
®(r,\) = ®'(r,\) + &5(r, \) (3.5)

where ®' and ®° are the incident and scattered field, respectively, as discussed in

Chapter 2. Using this we can rewrite (3.2) as

V- (D) +AD(x,\)V®(r,\) + (jw — v(pta(N) + Apa(r, X)) ®(r, \) = —0S(r, \).
(3.6)

The solution to (3.6) obeys the integral equation

B(r, ) = B(r, \) + / Glrt', V[V - AD(, MV — vAp]®(r, Ny’ (3.7)

where @’ is the incident field and G(r,r’, \) is the Green’s function that satisfies the

diffusion equation defined as

Uﬂa(rv )‘) B jw
DOV

[VZ+ |G(x,x', X)) =6(r —1'). (3.8)

In general the Green’s function G must satisfy boundary conditions on the boundaries

where sources and detectors are located as well as (3.8). The Green’s functions differ
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in terms of what geometry is considered, where throughout this thesis we consider
transmission geometry. In this kind of setup, demonstrated in Fig. 2.1, where a source
and detector are on opposite sides of the medium to be imaged, light is injected into
the medium from the source, which migrates through it and absorbs or scatters and

resulting signal is picked up by the detector.

3.3 Green’s Functions

Analytical solutions exist that directly compute the value of the Green’s functions re-
lating to each geometry. Working with Green’s functions require a choice of geometry
that is best suitable for the experimental setup at hand [77] where they are computed
when the source is considered to be a spatial and temporal delta function. Green’s
functions are commonly employed to compute the forward problem in image recon-
struction, especially when the medium can be approximated as a slab or an infinite
half-space, which is often considered for reflectance measurements. As noted by Gib-
son [49] some researches have extended this approach by implementing the Kirchoff
approximation, which models the Green’s function between two points in a medium
of arbitrary geometry by summing together Green’s functions in infinite space and
Green’s functions computed for waves reflected multiple times off the boundary [90].
Various geometries can be considered for this situation, and here we consider three
cases, the infinite medium, slab medium with boundary conditions on source and

detector planes, and a box with boundary conditions on all sides.
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For the case of an infinite medium, free-space Green’s functions are used to com-
pute G(r,r’;\) in (3.20) and 3.17 [48]. Physically this amounts to embedding the
source and detector in the medium and no boundary conditions are considered for
the photon fluence, although fields are required to obey asymptotic decay conditions.
As discussed by Fabrizio et. al [77] the geometry of the infinite medium is mainly
useful for understanding the intrinsic characteristics of photon migration, since this
geometry allows for studying only the effects due to optical properties, not bound-
aries. Obviously this setup is not realistic for a non-invasive imaging modality like
DOT, however, considering infinite boundaries allows for relatively simple computa-
tions and is a good starting point to test algorithms. Expanding each method to a
more complicated geometry, incorporating boundaries is relatively straightforward.

For the infinite medium, the free-space Green’s function is computed by

—1 , /
Gr,r/,\) = ho(lr—r'| 3.9
(r,r', ) 47TD(/\)\r—r’\e (3:9)

As discussed above, throughout this thesis a transmission geometry is considered,
shown in Fig. 2.1 , as it is most commonly used for the female breast imaging
scenario. A natural progression from infinite boundary is to consider infinite slab
geometry, where boundary conditions on the plane of the source and detector are
taken into account. In other settings we consider a infinite slab geometry where
boundaries are applied to the planes where sources and detectors reside. For the case

of constant scattering and where the estimation of absorption values is the goal the
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Figure 3.1: Setup of the slab geometry with example mirror sources used for calculating

the slab geometry Green’s function. Figure is not to scale.

Green’s function is [77]

. exp[ — fepr MNP+ (2 — znt)z}

G(r,\) = ——
N = by = VPP (-2 (3.10)

ea:p[ — terr (NP2 + (2 — zn;)Q] }
VPTG

and fierf 1S

Neff V :U’a /D \/3,U/a ) (3'11)

where p = \/Wy2 This solution is obtained by the method of images, sometimes
called “mirror images.” The method makes use of boundary conditions that assume
the fluence equal to zero on the physical boundary of the diffusive medium or on
an extrapolated surface at a certain distance from the physical boundary [58]. The

method of images allows for a solution of the photon fluence in the slab geometry as
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a superposition of solutions for the infinite medium. In this formulation, z; and z
represent real positive and negative source locations, respectively. As shown in Fig.

3.1 these sources are placed along the z-axis at

zh = 2m(s 4 2z.) + zs

m

(3.12)

2z = 2m(s + 2z.) — 2z, — 2
where m are the summation terms in (3.10), s denotes the thickness of the slab, and
z. denotes the extrapolated boundary. This simplifies computations somewhat, when

the solution for the infinite medium has already been established, and provides a useful

model when experiments are performed for a phantom with boundary conditions.

3.4 Born Approximation

To formulate the integral equation which is used for our inversion methods, we em-
ploy the Born approximation, which as discussed in Chapter 2 consists of taking the
incident field ®’, shown in (3.5), in place of the total field ® in the scatterer.

Now considering the perturbation theory for AD and Ay, and the assumption

that ®'(r, \) > ®°(r, \), which gives us a approximated solution of (3.2) as

&*(r, \) ~ —( / Ap(t', N G(ra, t', B (t', 1., \)dr'

—i—/AD(r', MVG(rg, ', N) - V@i(r’,rs,/\)dr') (3.13)

where r; is the location of the detector and ®'(r,r,, \) is used here to denote the

incident field at position r and wavelength A due to a delta-source located at r,.
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Examining (3.13) provides a linear relationship between the scattered fluence and the
absorption perturbation.

This equation can be discretized by considering only voxel points in the medium.
Then the value r; is defined as the position vector, denoting location in the medium
with r; denoting the location of the i such point within 7. More formally, we expand
Apa(r'; ) and AD(r', \) using Dirac delta functions

Ny
Apa(r',\) = az Apta(ri, N)o (' —1y)
N, (3.14)
AD(r',\) =a Z AD(r;, \)o(r' —r;)
where a represents the area of a pixel and N, number of field points, or pixels con-

sidered. Inserting (3.14) into equation (3.13) allows for discretization, by

®°(r,\) ~ —</aZA,ua(ri, N6(x —1)G(rg, ', \)®(r/, 1, \)dr’

(3.15)

Ny
- (a Z Apa (T, \)G(rg, T, )P (1,14, )

Nv
+a 3 AD(r;, )VG(rg ri, \) - VE'(ry, )\))

r

Considering (3.15) a linear relationship between absorption, diffusion coefficient and

measurement data has been established.
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As discussed in Chaper 1 some reconstruction results and methods strictly consider
reconstructing absorption values or chromophore concentrations. In this scenario the

diffusion coefficient in (3.3) is assumed to be spatially invariant as

. v
3l

D()) (3.16)

This changes (3.2) significantly and simplifies computations somewhat. We utilize
the same approach as before with the Born approximation, resulting in the linearized

discretized model is computed by
Nv
B°(rg, ) = —a »_ Glra,rj, )& (r;,1,, \)Apig(rs, \). (3.17)
j=1

Now as mentioned in Chapter 1, DOT is often used to image the concentration of
oxyhemoglobin and deoxy-hemoglobin along with other chromophores in tissue. The
technique exploits the fact that oxyhemoglobin, HbO,, and deoxy-hemoglobin, HbR,
are dominant absorbers in the infrared region |72]. It can be assumed that the ab-
sorption coefficient is dominated by the hemoglobin, then for these two chromophores

the absorption coefficient would be written as

At (r, N) = g0, (N Acmpo, (v) + empr(A) Achpr(r). (3.18)

where ex are the extinction coefficient of chromophore X and Acx represents the
concentration of the X chromophore. The dependence of r in (3.18) comes from
the concentration of each chromophore. Even though the DOT method benefits from

the reactions of hemoglobin to infrared light, it can be extended to image other
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chromophores, like water or lipids for example. For the case of N. chromophores
(3.18) would become,

A/La Z&k Ack (319)

Using (3.19), we write (3.15) as

Ne, Ny

®°(\) = —a Z < (rg, 15, )@ (v, v, \)es( M) Acy
k,j=1
+ VG(rd,rj,)\)-V@Z(rj,rs,/\)ADj(r,)\)). (3.20)

Similarly, (3.19) can be used with (3.17) to relate chromophore concentrations to
measurement, data, with uniform spatial scattering.

The computational tractability of the inversion scheme we implement in this the-
sis arises from the linear algebraic structure associated with (3.20). We start by
defining ¢, € R™ as the vector obtained by lexicographically ordering the unknown
concentrations associated with the k™ chromophore and ®°(r;, r,, A) to be the vector
of observed scattered fluence rate associated with all source-detector pairs collecting
data at wavelength A. Now, with N, the number of wavelengths used in a given

experiment, (3.20) is written in matrix-vector notation as

- 1T 1| Acy

q)s()\l) 81()\1)K(11 62()\1)K(11 Ce €NC()\1)K(11 Kcll
ACQ

‘I)S()\Q) 81(/\2)K% 62(/\2)K% C 5NC()\2)K3 Kg
ACNC

QS(AN/\) 81()\N>\)K(sz/\ 62()\NA)K(]IV)\ te €Nc()\N)\)K(]IV)\ K?V)\
L . - - A\II,

(3.21)
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where K{ represents the first term in the sum of (3.20) relating to chromophore
concentrations and K¢ is the second term relating to the scattering amplitude. For
the case of a constant diffusion coefficient as in (3.17) the formulation in (3.21) omits
the K¢ terms and AVU’, which represents the perturbation in diffusion amplitude.

It should be noted in (3.21) that the matrix has elements which are also the
matrices K¢ and K¢. The (m, 7)™ element of them both represents the m'* source-
detector pair and as before j represents the j* voxel. Assuming that for a given
experiment N4 source detector pairs operate at all N, wavelengths, then each K; has
N4 rows and N, columns so that the whole matrix K is of size NyyNy X N,N,.. If,
for example, in an experimental setup where N, = 57, N. = 2 chromophores, and
image reconstruction is done for 1800 pixels, N, = 1800, and N, = 126 results in a
K matrix of size 7182 x 3600. Combining the matrix elements in (3.21) we write it

in a more simple way as

®° = KAc. (3.22)



Chapter 4

Experimental methods

4.1 Measurements

Measurements are performed in collaboration with Prof. Sergio Fantin’s group in the
Biomedical Engineering Department at Tufts University. Two groups of experiments
were conducted. The first group involved a liquid phantom made to have realistic
optical properties comparable to the female breast. The purpose of these experiments
was to test the improvements of including hyperspectral information to solve the
inverse problem discussed in Chapter 2. The second group of experiments involved a
solid phantom made of cured silicon. These experiments were performed to provide
experimental validation of our method to recover 3D tubular structures, detailed in

Chapter 7.

o4
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4.2 Milk and Water phantom

Experiments were performed to simulate a problem in an unbounded domain. To
that end, a clear fish tank was filled with a milk and water solution in which sources
and detectors were submerged in the center away from edges in order to simulated

infinite boundaries. An example image of this experimental setup is shown in Fig.

4.4.

4.2.1 Liquid phantom

The background medium consists of water and milk in the ratio of 2:1, respectively.
Milk, with 2% fat, is used due to the similarities of the optical properties to human
breast tissue. Black India ink and blue food dye were added to mimic tissue chro-
mophores. The ink and dye are mixed into the background of milk and water to

achieve p, = 0.029 cm™!

, at 600 nm, which is in the range of optical absorption of
the female breast [36, 98]. The absorption spectra for the ink and dye inclusions,
shown in Fig. 4.1(b), have the most significant effect in the 450-700 nm range. These
chromophores are chosen because the spectral shapes of their absorption are similar
to those of HbO2 and HbR and have been widely used in literature [31, 75].

In order to obtain multi- and hyperspectral reconstruction values for p,(\) and
D()) the background has to be known and in the experimental measurements we

assume uniform scattering. Therefore we have the unperturbed representation of the

reduced scattering coefficient, p, which is given by
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Figure 4.1: Absorption spectra of the ink and dye solutions chromophores used in
experimental measurements. Specifically chosen wavelengths are marked with an as-

terisk.

(A
i = W<A_0> . (4.1)
This relates to the diffusion coefficient, D()), as it is defined in (3.16). Phase, ampli-
tude and average intensity data are obtained at two wavelengths using a frequency-
domain tissue spectrometer to estimate the ¥ and b parameters in (4.1). This allows
us to extrapolate values for ) at any wavelength [51].

The measurement to obtain values for the p calculation and to verify that 1, is
close to the values used from literature is performed at two wavelengths, 690 nm and

830 nm. The measurement give AC, DC and phase data for a signal travelling in the

medium which can be used to calculated p, and p, for the medium. In greater detail,
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this information is obtained by moving a detector away from a light source inside of
the medium. The change in AC amplitude, DC amplitude and phase is plotted as
a function of the position. Then S, S, and Ss are defined as the slopes when the
phase, In(DC' - r) and In(AC - r) are plotted respectively as a function of position of
r the source-detector separation, respectively. As shown by Fantini et al. [39] the
absorption coefficient and scattering coefficient can then be calculated from S, by

using

52— g2

/
M =
° 3Ha

" w <S¢ Sa>

where w is the modulation frequency set at 110 MHz, v is the speed of light divided

by the index of refraction set as n = 1.4 [40]. To verify these values, a separate

computation are made with, Ss, by using these relations

Ha

w 53 ~3 S2
= ——| == 1) !/ — [
a QU<S§ * s = 3,

Using this method the values in (4.1) were computed to be ¥ = 6.5 cm ™! and b = 0.4.
Since p, does not follow a defined law like 4, another approach has to be used
by estimating values by estimating extinction coefficient data for ink, dye, milk and
water. These extinction coefficient are measured in a standard spectrophotometer.
In our experiments, two phantom inclusions, named set 1 and set 2, are created
for different absorption contrasts relative to the background in the range of 3:1 to
1:1. The inclusion in set 1 contains 10% ink and 90% dye and the inclusion for set
2 contains 70% dye and 30% ink. This contrast range is comparable to traditional

tumour contrasts reported in literature, which have been close to 3:1 and lower [84].
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Figure 4.2: (a) Absorption spectra for the background, ., and the inclusion, p,+Ap,,
in experimental set 1, containing 10% ink and 90% dye. (b) Contrast between the

background and the inclusion for experimental set 1.

The reconstructions in Chapter 5 are done for 176 wavelengths equally spaced over
the whole spectrum and six specifically chosen wavelengths as A = [480, 550, 610, 630,
650, 690] nm. The wavelengths are chosen around the isosbestic point, at 610 nm in
Fig. 4.1, where the contrast between the chromophores is the highest and where each
chromophore has highest absorption. The absorption spectra and the contrast over

the spectrum for set 1 and set 2 are shown in Fig. 4.2 and Fig. 4.3, respectively.

4.2.2 Measurement setup

In experimental sets 1 and 2 one cylindrical inclusion containing ink and dye solutions
are placed in the background medium. These inclusions are 25 cm long transparent

tubes so that optical properties are assumed constant along the z-axis. The light
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Figure 4.3: (a) Absorption spectra for the background, ., and the inclusion, pi,+Ap,,
in experimental set 2, containing 70% ink and 30% dye. (b) Contrast between the

background and the inclusion for experimental set 2.

source is an arc lamp (Model No.6258, Oriel Instrument, Stratford, CT) whose emis-
sion is first spectrally filtered (400 -1000 nm) to reject ultraviolet and infrared light,
and then focused onto a 3-mm-diameter illumination optical glass fiber bundle, which
delivers light with an average illumination power of 280 mW, which translates into a
power density of 3.96 W/cm?. A 5 mm diameter collection optical glass fiber bundle
is located at three positions on the x axis, at x4 = {—1,0, 1} where the source loca-
tion is defined as x; = 0. As discussed above, we consider transmission geometry, so
sources are on the opposite side of the inclusions at a y-axis separation of 5 cm and
linearly scanned.

Experiments are made with the light source placed in succession at 8 positions with
1 cm increments for a total of 24 source-detector pairs. The collection optical fiber

delivers light to a spectrograph (Model No. SP-150, Acton Research Corp., Acton,
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Figure 4.4: The setup of sources and detectors for infinite geometry using liquid milk

and water phantom.

MA), which disperses the light onto the detector array of a charge coupled device
(CCD) camera (Model No. DU420A-BR-DD, Andor Technology, South Windsor,
CT). Two exposure times are used for the CCD camera to ensure that approximately
the same number of photons are collected for reconstructions using 6 wavelengths
and for 176 wavelengths. Longer exposure time of 10 s is used for the 6 wavelength
case and 500 ms for the 176 wavelength case. In Chapter 5, we will demonstrate the
improvement of including hyperspectral information, therefore, we setup the stage by
presenting an ideal case where the signal to noise ratio is large, thereby providing a
best-case scenario for the few-wavelength reconstruction against which we compare
our approach as well as using realistic absorption contrasts for the inclusions. The
spectrograph features a grating blazed at 700 nm with 350 g/mm, resulting in a

dispersion of 20 nm/mm at the exit port. The size of the CCD camera pixels of 26
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Figure 4.5: Silicon phantom used for experimental measurements. Homogeneous cylin-

drical slab, with two absorbing inclusions.

pumx26 pm results in a spectral sampling rate of two data points per nanometer,
even though the spectral resolution is not as high because of the size of the entrance
slit (2 mm) used to accommodate the large collection optical fiber bundle. From the
data we only retain the wavelength band 650-900 nm where the signal-to-noise ratio
is adequate.

In our experiments the incident field is a data set taken before the perturbation
is put into the medium. The scattered field is then computed as a dataset that has

the original unperturbed dataset subtracted from it.
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4.3 Silicon phantom

This experimental set was taken to validate our method to recover 3D tubular struc-
tures by reconstructing multiple 2D slices. To that end a silicon phantom was con-
structed by Elizabeth Rosenberg, undergraduate student in the Biomedical Engineer-
ing Department, and scans were acquired by Pamela G. Anderson, a doctoral student

in Prof. Fantini’s lab at the Tufts Medical Center.

4.3.1 Construction of Cylinder

The structure of the silicon phantom is shown in Fig. 4.5. It is made of two cylindrical
slabs, both made of identical homogeneous solutions, where one of them contains two
higher absorbing inclusions. The two slabs are cured independently, where the one
containing inclusions is fitted with cuvettes to create gaps where they are placed.
The homogeneous background slabs were made with 360 mL of PDMS (Silicone Inc,
P-4). The procedure begins by mixing 36 mL of curing agent (Silicone Inc, P-4) with
0.288 g TiO4 powder for 30 minutes, and the PDMS is mixed with 0.1008 g of India
ink and cured for 15 minutes. The PDMS/INK mixture is then placed into a vacuum
chamber to remove air bubbles. The two mixtures are then poured into a cylindrical
mold to form each half of the cylinder, which is then placed into a vacuum chamber
again for 15 minutes, after which each cylindrical slab which make up the phantom
take 24 hours to cure.

The two halves combined together form a 5 cm thick homogeneous slab, with
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Dand 4 = 10.1 em™! at 690 nm. The two absorbing

measured g, = 0.16 cm™
inclusions are each a cuboid with height and width of 1 cm and length of 4.5, separated
by 1.6 cm.

The cuboid inclusions have the same ) as the slab and the cuboids have 10
and 3 times the absorption of the background, respectively. The 10x absorption
results in a highly absorbing rod, where we define Ap, = 1.28 cm™! for ground
truth comparison, whereas the 3x cuboid has Au, = 0.33 cm™!. Although the 10x
absorbing rod has high absorption, the 3x rod is closet to realistic values found for
breast tumours. This experimental setup allows us to test our algorithm to recover

realistic tubular structures accurately even when highly absorbing areas, exceeding

the Born approximation limit, are present in the medium [84, 43].

4.3.2 Scanning measurments

Two different measurements are performed to test the robustness of the approach
when inclusions are angled with respect to scanning direction. The angle ¢ is defined
as the angle between the direction of the cuboids and the scanning direction, as shown
in Fig. 4.6. The first set is obtained where the inclusions are exactly perpendicular
to the scanning direction, ¢ = 90°, and a second set where ¢ = 30°. These source
detector placement is shown in Fig. 4.6 where the ground truth used for error metric
for each case is shown in Fig. 4.7. Both of these experiments are performed at the

Tufts Medical Center. The instrument in the clinic performs a two dimensional planar
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Figure 4.6: The setup of sources and detectors for simulation reconstructions. Same
orientation of azes is used for experimental data. The angle ¢ represents the angle
between the axis of the inclusion, along y in the figure, and the scanning direction,

along x in the figure.

scan, with an illumination and detection fiber operating in transmission geometry. For
three different detector positions at x4 = {£1,0} cm a 4 mm diameter fiber is placed
on the opposite side of the phantom. For each scan 32 light sources are considered
with 0.2 increments resulting in 96 source-detector pairs for each slice, where slices are
spaced 0.2 cm along the y-axis. Using a Xenon arc lamp light source emitting 13 mW,
optical data is then found by spatially sampling 25 points/cm? at wavelengths from
650-900 nm. The light is collected by the fiber attached to a spectrograph (Model
No. SP-150, Acton Research Corp., Acton, MA) with a 2 mm wide slit entrance. The
wavelengths are resolved by a cooled CCD Camera (Model No. DU420A-BR-DD,
Andor Technology, South Windsor, CT) giving a spectral sampling rate of 0.5 nm™?.

Reconstructions are performed for wavelength 690 nm.
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As in Section 4.2 the incident field needs to be estimated in order to apply the Born
approximation. To achieve this an extra homogeneous slab was cured, to generate a
solid 5 cm thick cylinder with the background absorption coefficient and scattering
detailed in Section 4.3.1. As with the actual phantom, it was ensured that no air gap
formed between the slabs. As discussed in Section 3.3, image reconstructions in this
experimental setup we utilize analytical Green’s functions for the forward model in

3.22, where we consider slab geometry Green’s function given by (3.10).

10x cuboid 3x cuboid 3x cuboid 10x cuboid

cm 640 cm

Figure 4.7: Calculated ground truth tmages for phantom angled at ¢ = 90° and ¢ =

30° relative to scanning direction along the x-azis.



Chapter 5

Hyperspectral PaLS Based

Reconstruction

5.1 Parametric level-set method

To counter the ill-posedness of the DOT problem we employ a Parametric Level-Set
Method (PaLS) [1]. For the purpose of this thesis we assume that all chromophore
concentrations and diffusion coefficient perturbations are co-located. This choice is
supported by reports in literature, where increase in hemoglobin and water concen-
tration along with scattering power are located at the cancer location and the lipid
concentrations increase at the same location [20, 97, 115]. This means that the ge-
ometry of the anomaly in the medium is the same for all chromophores and diffusion

amplitude. The domain €2 C F represents the support of the objects of interest, and

66
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F represents the homogeneous background within which the abnormality is located,

shown in Fig. 5.1(a).

F

L.

(a) (b)

Movable basis
functions

(c)
Figure 5.1: (a) Definition of domains used for the parametric level-set methods as
shown in Chapter 2. (b) Circles represent example basis functions placed on o fized
grid in the tmaging medium. The iteration process evolves k; to the estimated anomaly
structure. (c¢) Example of movable basis functions placed in the imaging medium. The

iteration process evolves k; and v, towards the estimated anomaly structure

Since the same support is used for each chromophore concentration the charac-

teristic function describing the shape is defined as
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Then each image to be reconstructed can be written as

cu(r) = x(r)ck + [1 = x(r)ley (5.2)

where ¢ = 1,2,..., N. + 1. In this formulation the unknown values are the constant
concentration values of the anomaly and background, ¢ and ¢} respectively.
The characteristic function x(r) is defined to be the 7-level set of a Lipschitz

continuous object function O : F — R such that

(

O(r)>7 VreQ

O(r)=71 Vrei

O(r) <7 VreF\Q
\
We assume that the general form of O(r) is known, so that the evolution of O is
required to solve the inverse problem at hand, which we achieve by expanding O

with known basis functions and evolving parameters that govern them.

Using O(r), x(r) is written as
x(r) = H(O(r) = 7) (5.3)

where H is the Heaviside step function. Shape-based reconstruction, as is presented
here, requires a smooth version of H(.). One common approximation of H(.) is called

the C'*° regularization and is computed as [1]

1 2
H = 5 <1 + —arctan <E)) (5.4)

™ €
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This version has been commonly used in shape based applications, and is discussed in
detail by [1]. Chan et al.|21] demonstrated that an alternative choice of the regularized

Heaviside function is the C? regularization computed as

(

1 if x> ¢,

Hs ) =% 0 if v < —e.

\% [1 + 2+ %sm(%)] if |z] <e.
and its derivative, 0o, is derived from H, |21, 114]. By using H, . the corresponding
delta function s is compactly supported so ds ¢ is only non zero for 7—e < ¥ < 7+e.
This choice of implementing the 7-level set is similar to a “narrow-banding” approach
discussed in [1], where the values of the level set function are only updated on a
narrow band around the zero level set and hence reducing the computational load.
For the case of using 7 level sets, this band is moved to 7—¢ < 19 < 7+¢ and the basis
functions which do not intersect with this band do not evolve at the corresponding
iteration. To achieve this 7 is chosen to be close to zero, while maintaining |7| > e.
As will be discussed in Section 6.1 we represent the object function O(z,y) para-
metrically, so instead of using a dense collection of pixel or voxel values [80], we

expand O and represent it by using basis functions.

L

O(r) = > rthy(r) (5.5)

=1

where k;’s are the weight coefficients of each basis function and L is the number of

basis functions used. The choice of basis functions is inherently an important part of
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the algorithm when working with Pal.S. Basis functions, belonging to the set

P = {’(pl?":an"'?’l:bL} (56)

are used to represent OQ(z,y), and can be chosen from a variety of options including
polynomial or radial basis functions. For the purpose of this thesis we use compactly
supported radial basis functions (CSRBFs) where we choose 7 to be close to zero.
These functions become exactly zero after a certain radius, while still retaining various
orders of smoothness, which reduces computational cost through the sparsity that
they provide. In the DOT case, where the physics in the forward model will only
allow for a coarse reconstruction of the underlying structure, the use of CSRBFs is
sufficient, especially for the relatively simple geometries and concentrations presented
in this chapter. Letting 1) > 0 be a smooth CSRBF we denote each basis function in
(5.5) as

Y, = P(Billr — ) (5.7)
where (; defines the dilation factor of the CSRBF. Here ||.| denotes the Euclidean
norm and r; are the centers of the /" CSRBF. In order to make the PaLS function (5.5)
globally differentiable with respect to # and r; we implement a smooth approximation

of the Euclidean norm given by

1x[1" = VIx[[* +n? (5.8)

where n # 0 is a small real number. Assembling our model we have

O(r) =) rah(r —ril) (5.9)
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For the case of fixed basis grid, shown in Fig. 5.1(b) the centers and sizes of the
¥’s in (5.9) are fixed so that the evolution of O strictly involves estimating ;. In
the case of DOT it can be useful to reduce the number of unknowns by fixing the
basis functions in this away. An example of a grid like this is shown in Fig. 5.1(b).
When optimizing with basis functions on a fixed grid, the width and number of the
CSRBFs determines how coarse or fine the reconstruction will be. A choice of few
basis functions will, on the one hand, result in a reduced number of unknowns. It will
on the other hand, give a coarser estimation of the shape, which can be a problem
for imaging finer more complex structures. This framework restricts the adaptability
of the method to different shapes, where if a basis function is fixed to a grid point,
off center relative to a center of an anomaly, will result in a reconstruction error.

A more general approach can be used where each basis function is allowed to
“roam” within the imaging medium. This allows the PaLS function to pick more
details, and estimating the dilation factor 5 allows the evolution to scale the CSRBFs
where it is required. Removing the fixed grid, and instead estimating the centers
of the basis functions allows for greater accuracy and adaptability for the method.
Additionally, fixing the basis functions to a grid requires care along the edges of the
medium, due to singularities and edge artifacts that can be encountered in DOT, as
was discussed in 3. Using this approach we estimate the centers, r;, of the CSRBFs
in (5.7) along with the weighting factor ; and the dilation factor 5; which together

control the size of the basis function. For the case of a movable basis functions all
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the parameters of the model would be gathered in one vector

0" = [c}, 5, ... kT BT 1] (5.10)
where
k= [k, ..., k5p]"
16 = [617 ‘“76L]T (511)

r=[rq,..r]".

For the case of a fixed grid, the parameter vector @ does not include 3 and r so

0" =[c, 2, ..., ¢, k"]. Now our linear forward model in (3.22)an be expressed as
P =K(0) = Kc(09) (5.12)

The forward model has now been parametrized with a vector containing all of the
unknowns, which are far fewer then what a pixel based method would attempt to

estimate.

5.2 Inversion using PaLS

The inverse problem, that of using ®° to recover the value of c, is solved with the PaLS
algorithm by implementing it with a Levenberg-Marquardt optimization problem of

the form

¢ = argmin [W(K(6) — ®%)|)5 (5.13)

The W matrix reflects the structure of the noise corrupting the data, containing

the reciprocal of the covariance of the measurement [48]. While a Poisson model is
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technically the most appropriate for DOT data, as is frequently done [55] for large
photon counts we employ a Gaussian approximation in which independent, zero mean
Gaussian noise is added to each simulated datum. The reason for this is that with a
sufficiently large number of detected photons, the Poisson statistics can be approxi-
mated by a Gaussian distribution [85]. Letting o2, denote the variance of the noise
corrupting the m!”" elements of ®°, W is constructed as a diagonal matrix with 1/0,,
the m™ element along the diagonal. For the experimental and simulated data the

variance is calculated from

_ SNRm,

ol =Q(m)10” "0, (5.14)

m

where (m) corresponds to the photon count for each source-detector pair. The SNR

for each element of ®° is then calculated from

SNR,, = 10log;,(Q2(m)/+/€2(m)). (5.15)

In experimental data /€2(m) is the standard deviation of the Poisson noise distribu-
tion.
The minimization of the cost function is then achieved by the Levenberg-Marquardt

algorithm. For that purpose an error vector is introduced

e = W(K(6) — &°). (5.16)

which can be used to write the cost function in term of € as

M) =€'e (5.17)
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In order to employ the Levenberg-Marquardt algorithm, the calculation of the
Jacobian matrix J is required. The Jacobian contains derivatives of € with respect to

each element in the parameter vector 6

J= [86—@] (5.18)

o{cl,..d Kk}
where details on calculating J are given in Appendix A. The solution is then obtained
by updating @ at each iteration as 8" = 6" + h where h is the solution to the

following linear system, previously discussed in Section 2.4,
(3T + pI)h = —J"€ with p >0 (5.19)

where I is the identity matrix, p is the damping parameter affecting the size and
direction of h and found via and appropriate line search algorithm |76].

The damping parameter p in (5.19) is noted to have several effects, most notable,
for all p > 0 the coefficient matrix is positive definite, which ensures that h is a
descent direction. The damping parameter influences both the direction and the size
of the step, which leads to a method without a specific line search. The choice of

initial p value is related to the size of elements in Ay = J(x0)TJ(xg), by letting
=7 © 5.20
Po =T mjax(ajj ) (5.20)

where 7 is manually chosen to be n = 1072. This value can be decreased to 107¢ if
there is confidence that the initial guess is close to a good estimation.
To judge when the Levenberg-Marquardt algorithm has reached an optimal solu-

tion we employ the discrepancy principle [106] as a stopping criteria when iterating
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(5.19). In that the iterations are stopped when the norm of the residual has reached

the noise level within a certain tolerance, given by

IK(0,) — ®°||; < 6. (5.21)

When estimating the parametric vector, we employ a cyclic coordinate decent
strategy [109] Essentially this is equivalent to estimating the shape only at even
iterations and the concentration values at odd iterations. This is repeated until
stopping criteria is reached. This process is expressed in pseudo-code in Algorithm 1,
where J, and J, denote the Jacobian strictly for the concentration value and shape,

respectively, and 7; represents a tolerance for the stopping critera.

Algorithm 1 Matlab-like pseudo-code for estimating shape and concentration value

simultaneously
while € < 7 do

while € < 75 do

(ITT, + PP D hyres = —JI1e
end while
while € < 73 do

(ITT, + p"Dhgpape = —ILe
end while
0" = 60" + [Dyatues; Dshape]

end while
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5.3 Comparing to a Pixel-based reconstruction

To judge the improvement of moving to a low-order parametric model, we perform
pixel-based reconstructions to compare with the results obtained with the PaLS al-
gorithm. Pixel based reconstruction for DOT involves a significantly rank-deficient
problem, where the number of pixels far out number the number of measurements. For
the pixel-based image formation the reconstruction method presented as the solution

to a non-negative least squares optimization problem of the form

¢ = argmin |[W(®* — Kc)|[; + | Le]; (5.22)

Tx is the squared two-norm of x. The first term in

where for any vector x, ||x]|3 = x
(5.22) requires that the reconstructed concentration images yield simulated data that
are consistent with the observations ®°. Following [48], the weight matrix W reflects
the structure of the noise corrupting the data.

The second term on the right-hand side in (5.22) represents the regularization.
As discussed in the Chapter 2, in this work we use a smoothness-type regularizer in
which the amount of regularization is allowed to vary for each chromophore. Due to
sensitivity of the reconstruction to the regularization parameters the optimal param-
eter for one chromophore is not necessarily the optimal value for another. Separating
the parameters for each chromophore allows the reconstruction to optimize it for each
chromophore and easily include many different species of chromophores.

The non-negative least squares (NNLS) problem is solved by using the lsgnonlin

algorithm in MATLAB. This algorithm uses a trust-region reflective algorithm that
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employs matrix-vector products instead of having to compute the value of the sum
of squares from (5.22) [26]. The K matrix is the Jacobian matrix of the measure-
ments used in our reconstruction scheme. For the case of DOT NNLS becomes highly
attractive for its computational efficiency when compared to a direct solution of tradi-
tional least squares. This is due in part to the fact that computing KTK can require
large amounts of computational overhead. The number of voxels in a given solution
becomes somewhat limited by the necessity of solving the system defined by KTK
or some regularized version thereof. Because of the design of K when the number of
voxels increases, the size of KTK and the computation required for elimination both
increase much more rapidly than with NNLS [82].

As discussed in the introduction a good initial guess is important to obtain a good
results. The approach we use here is as follows. We start by solving (3.2) ignoring
the positivity constraint in (5.22) with Isqgnonlin and using the the method discussed
in Section 5.3.1 below for determining the optimal regularization parameters. Set-
ting all negative values in the c vector to zero then provides the initial guess for
the constrained form of the problem. This initialization process allows us to obtain
good results from both simulation and experimental data. Like the unconstrained
problem the constrained problem is solved with [sqnonlin and optimal regularization

parameters are chosen independently in each case.
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5.3.1 Selecting optimal regularization for multiple chromophores

The challenge lies in how to choose the o parameter embedded in L in (5.22). There
exist formal methods for choosing the parameter, such as generalized cross-validation
(GCV) or the L-curve, but it is not necessary to use them in all cases [61]. The
appropriate value may be selected by trial and error and visual inspection. Larger «
makes the system better conditioned, but this new system is farther away from the
original system, the system without regularization. Under the noise-free assumption,
the algorithm is insensitive to the choice of a, making it straightforward to select
small values for a to generate results with high accuracy. When noise is encountered,
however, a may need to be made much larger. Furthermore the effect of having two
separate regularization parameters a; and as is explored. It is shown how the mean
square error behaves for reconstruction of two chromophores and how having separate
parameters for each hemoglobin increases the quality of the reconstruction. For that
case the regularization parameters are incorporated into the matrix and then L takes

the form

Vs
aq 0
Vy
L = (5.23)
Vs
0 (6)
vy
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To generalize this to n chromophores, one might want to have different regularization
parameters for each chromophore. Given the structure of the vector c defined in

(3.21), the regularization matrix takes the form

\
L="D(a)® (5.24)
vy
where o’ = [y ay ... ay,] is a vector of N, regularization parameters, D(x) is a

diagonal matrix with the elements of the vector x on the main diagonal, V, and V,
are matrices representing first difference approximations to the gradient operators
[50] in the horizontal and vertical directions respectively, and for matrices A and B,
A ® B is the Kronecker product [70] of A and B.

The choice of the optimal regularization parameters is done by inspecting the L-
hypersurface, which are plotted in Fig. 5.4 for the concentrations images shown in

Fig. 5.3 [10]. To construct the L-hypersurface we introduce the following quantity
z(@) = [|®° - Kc(a)|3 (5.25)

For a single constraint the L-hypersurface reduces to the conventional L-curve which
is simply a plot of the residual norm versus the norm of the regularized solution drawn
in an appropriate scale for a set of admissible regularization parameters. This allows
us to optimize the regularization to compromise between the minimization of these
two quantities. For a hypersurface the optimal regularization parameters then should
appear where the curvature is greatest in the surface, in other words in the corner

of the surface. This corner in the hypersurface which should correspond to a point
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where the error estimation is minimal. This curvature is computed as a special case

of Gaussian curvature |46 from

H= rtv;SQ (5.26)
where we have
wl=1+p*+q>
In (5.26) each element is a partial derivative of the surface which we write as
0z Oz 0%z 0%z 0%z (5.27)

= 3 =5, I'= ) t = y 8= :
P day d Doy dai a3 da10ay

Using this, an optimal regularization parameter can be chosen for the pixel based

reconstructions, as demonstrated in Section 5.6.1.

5.4 Implementing Hyperspectral information

Due to computational load, hyperspectral information has to be implemented effi-
ciently when constructing the forward model. Even though computational power
increases year to year, the amount of data that can be included with hyperspectral
information is significant. This is especially important when performing pixel based
reconstructions where for realistically sized problems, it is difficult to store the full K
matrix in memory. The processing methods developed in this thesis require only the
result of multiplying K or K (the transpose of K) by appropriately sized vectors.

Hence, we need only compute and store the N, matrices K; as well as the N, x N,
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array of extinction coefficients. Then computation of the product Kc can be car-
ried out using the Matlab-like pseudo-code in Algorithm 2 with a similar approach

possible for evaluating K7 ®*.

Algorithm 2 Matlab-like code for computing Kc product
for /=1 to N, do

for k=1to N, do
D =D, + ¢, (N)Ky;

end for
®° = [®°; P7];

end for

5.5 Simulation analysis

To best understand the utility of a hyperspectral data set, we employ the Born model
to generate simulated data. Though this may not be realistic, it allows us to avoid
the confounding factor of model mismatch in evaluating the inversion method being
considered in this chapter. Moreover, the shortcomings of this approach will be
mitigated in Section 5.6.2, where we consider the processing of experimental data
which, obviously, are not the product of the Born model. Specifically, the data we

use for our simulation analysis are computed as
®°=Kc+n (5.28)

where c represents the simulated concentration images for all chromophores and dif-

fusion amplitude, whereas n represents additive noise. Specifically, as in [48] n is
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2

a vector of zero mean, independent Gaussian random variables with variances o7,

defined in (2.8), chosen such that a pre-determined signal-to-noise ratio (SNR) is
achieved. This SNR is calculated from (5.15).

The reconstructed images are evaluated in three ways: 1) through visual inspec-
tion, 2) using mean square error (MSE) as a measure of overall quantitative accuracy
for each chromophore, and 3) examining the Dice coefficient to judge how well the
concentrations are localized |65, 107|. For the k™ chromophore, the MSE is computed

by using the following equation

ek —ll

llexlls

MSE), = (5.29)

If S is the reconstructed image and G is the ground truth created for each set,

the Dice coefficient between S and G is

2|SNG|
D = _— .

Since |S N G| contains all pixels that belong to the detected segment as well as the
ground truth segment, if S and G are equal the Dice coefficient is 1, indicating an
accurate reconstruction. To compute the D(S,G) we use the characteristic function,
X, which essentially works as a binary map of the reconstructed anomaly where the
object of interest is represented by 1’s.

The simulated data was generated in infinite geometry where separations were
set to 5 cm. In simulations, we reconstruct concentration images of oxygenated and

deoxygenated hemoglobin, HbO, and HbR respectively, along with lipid and water
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concentration and scattering amplitude. These chromophores are chosen since they
mainly cause near-infrared absorption in the breast [17], and breast cancer tumours
have been found to have higher HbO, and HbR concentrations than normal tissue
[100].

The concentration in the simulated images are defined in units of millimolars or
millimoles per liter, mM, for HbO, and HbR. Values for ¥ and b used to generate
data are obtained from [102| for the female breast. Values for p, are calculated from
the extinction coefficients, in the unit of cm™'/mM, obtained from data tabulated by
Scott Prahl [88]. For water and lipid the concentrations are in percent by volume and
the diffusion amplitude is measured in units of millimeter. The background has HbR
concentration of 0.01 mM, HbOy concentration of 0.01 mM, lipid concentration of
32%, water concentration of 13% and ¥’ is set to 1.6 mm. The target concentration
of the object of interest is set to 0.015 mM, 0.012 mM, 50 %, 20 % and 0.25 mm for
Hb0y, HbR, lipid, water and AW’, respectively.

The simulation set is created with all chromophore concentrations and diffusion
perturbations in the same location with different target values. The ground truth
images for simulations are shown in Fig. 5.3. Reconstruction is done for these im-
ages to explore effects of adding hyperspectral information to the problem, i.e. the
improvement in quantitative accuracy and the reduction of crosstalk where a con-
centration of one chromophore creates a false concentration in an image for another

chromophore as well as the performance of the shape based approach. The process
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is initialized with 21 Gaussian basis functions with width of approximately 8 pixels
placed uniformly on a grid over the whole medium to be imaged. A representative
image of the order of the basis functions is shown in Fig. 5.1(b). For all experiments

presented in this chapter, the k;’s weight coefficients are initialized to 1.

5.6 Results

5.6.1 Simulations

Table 5.1: The MSE is compared for each chromophore for multiple wavelength
choices. For the 8 wavelength case optimal wavelengths are used, where 176 wave-

lengths are equally spaced.

Pixel based method
# A | MSE HbO, | MSE HbR | MSE Lipid | MSE H,O | MSE D
8 0.075 0.030 0.048 0.010 0.052
176 0.062 0.021 0.034 0.015 0.030
PaLLS method
# A | MSE HbO, | MSE HbR | MSE Lipid | MSE H,O | MSE D
8 0.070 0.030 0.120 0.060 0.080
176 0.019 0.008 0.010 0.020 0.010

In Fig. 5.2 reconstruction results using the pixel based method are shown for
8 wavelengths, A = [660, 734, 760, 808, 826, 850, 930, 980] nm and hyperspectral
reconstruction using 176 wavelengths, which are equally spaced over the 650-1000 nm

range. In the 8 wavelength case the 6 first wavelengths are optimally chosen according
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Figure 5.2: Reconstruction using a pizel based method. Leftmost column are ground

truth images, middle column of images are generated with 8 wavelengths and rightmost
images are generated with 176 wavelengths. From top to bottom the rows show HbO-,
HOR, lipid, water and diffusion amplitude, respectively. Concentration units are in

mM.

to [37] with two wavelengths added where water and lipids have peak absorption.
Reconstructed images created with the PalLS method are shown in Fig. 5.3. In
simulations the SNR is set to 30 dB, as it is defined by (5.14) and (5.15). When
comparing the pixel based reconstruction in Fig. 5.2 to the PaLS reconstruction
in Fig. 5.3, it is evident that the PalLS method provides superior reconstructions.

Examining the PaLS results, the 8 wavelength case shows reasonable accuracy along
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Table 5.2: D(S, G) is compared for each chromophore for multiple wavelength choices.
In each case the reconstructions are done with equally spaced wavelengths over the
spectrum except for the 8 wavelength case. D(S, Q) is calculated comparing 80% of

the target peak to the reconstrucion.

Pixel based method
# X | D(S,G) HbO, | D(S,G) HbR | D(S,G) Lipid | D(S,G) H,O | D(S,G) D
8 0.12 0.088 0.089 0.65 0.8
176 0.554 0.1085 0.043 0.41 0.09
PaLS method
# X\ | D(S,G)
8 0.60
176 0.99

the = axis but rather diffuse results in y. We also see noticeable artifacts in the
reconstructions. Considering the concentration values, the values for HbO,, HbR
and water concentration come close to the actual value. Moving to hyperspectral
information, the reconstruction becomes more accurate, estimating the shape close
to the ground truth. It should also be noted that the runtime for each reconstruction
for the PaLLS method is significantly shorter compared to the pixel-based method.
A PaLS reconstruction takes around 30 seconds, which is 3-4 times faster than a
pixel-based method. Additionally, we do not employ any regularization parameters,
removing the computational load of selecting the optimal regularization parameters.

This is a major improvement in moving from a pixel-based approach to the PaLS

method.
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Leftmost column are ground truth

images, middle column of images are generated with 8 wavelengths and rightmost
images are generated with 176 wavelengths. From top to bottom the rows show HbOs,
HOR, lipid, water and diffusion amplitude, respectively. Concentration units are in

mM.

The comparison of the Dice coefficient between the Pal.S method and pixel-based
is tricky, since for the pixel-based method the Dice coefficient is plotted as a function
of a threshold. This threshold is required to create a binary map of the location on the
anomaly. If the threshold is chosen to only leave extreme peak concentration values in
each image, the Dice coefficient would be low due to edge artifacts as in Fig. 5.6(b).

Therefore, in simulations we compare D(S,G) for the pixel based reconstructions
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using a threshold of 80% to D(S,G) of the PaLS reconstructions. The improvement
of the PaLLS method is confirmed quantitatively through D(S,G) and MSE displayed
in Table 5.2 and Table 5.1, respectively. The Dice coefficient, shown in Table 5.2,
gives a clear view of how the shape estimation improves by added wavelengths, where
D(S, G) approaches 1 for the hyperspectral case and the PaL.S method shows superior
performance in the MSE values.

Because we know the ground truth for these simulations, it is possible to determine
optimal values (i.e., the one that minimized the MSE) for ay and «s. For a simple
chromophore concentrations as shown here, choosing the regularization parameters
is an easy problem. The reason for separating the regularization parameters in this
case is that the MSE for HbR reaches a lower value for a slightly different parameter
than HbOs.

The importance of separating the regularization parameters becomes even more
evident when regularizing more complex concentration sets. When doing reconstruc-
tion for more complicated sets the lowest MSE values for HbOy and HbR occur at
two very different values. For this set the separation of the regularization parameters
is very important. Using only one regularization parameter in this set and more com-
plicated ones, would result in a trade off between reconstructions of chromophores.
To reduce that trade off the separation of the chromophores becomes very important.

This separation becomes even more important when dealing with data sets with low
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Estimation error

Figure 5.4: (a) L-hypersurface, defined by (5.25) plotted against reqularization param-
eters. (b) H curvature, defined by (5.26), computed for the L-hypersurface. (¢) Error
estimation surface, defined by (5.31), plotted against reqularization parameters. The

optimal reqularization parameters are marked in each case with a red arrow.

SNR values such as true measurement data. The L-hypersurface and curvature com-
putation are additionally compared to the estimation error, which is available when

the ground truth is known, as in simulations presented here. The estimation error e
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is computed by

e=llc—gl; (5.31)

Demonstrating the choice of the a parameters, example reconstruction for HbO,

and HbR with corresponding hypersurface is shown in Fig. 5.5 and 5.4, respectively.

0.02 0.02
0.015 0.015
Es . 0.01 Es ‘ 0.01
0.005 0.005
10 o 10 s 15 Mo
cm

£5 . 0.01 £5 l 0.01

5 10 5 10
cm cm

Figure 5.5: Reconstruction for HbOy and HbR using a pixel based method. Upper row
is for the HbOy chromophore and the lower for HbR. Concentration units are in mM.

Reconstruction performed for 176 equally spaced wavelengths.

By examining hypersurface and curvature in Fig. 5.4 it is evident that this method
is useful when different levels of regularization is needed. In pixel-based reconstruc-
tions that are presented in Section 5.4 the choice of o for HbO,, HbR and AW were
performed using the hypersurface method, while it was unnecessary for the regular-

ization for water and lipid which were less sensitive to regularization.

5.6.2 Experimental validation

Pixel based reconstructions of absolute concentrations for both experimental sets are

shown in Fig. 5.6 and PaLS approach reconstructions in Fig. 5.7.
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A comparison of the absolute concentrations, ¢; and relative concentration, c] to
target concentration values is done to test the accuracy of the reconstructions. The

relative concentrations for ink are calculated as

—_

Cin = Cink/ (Cinks + Caye) (5.32)

and similarly for dye [41, 47]. The relative concentration is calculated from the peak
concentration value in each reconstruction. This allows us to inspect how well our
approach manages to separate and estimate each species of chromophores in the
process.

As expected, the hyperspectral information provides improved reconstruction for
both the pixel-based and PaLS methods. Focusing on the PaLLS methods, it is evident
that forming the reconstruction with shape-based constraints yields improved results.
The estimation of relative concentrations and MSE of the absolute values are exam-
ined in Table 5.4 and Table 5.5 for the pixel-based and PaLLS method, respectively.
The relative concentration values are better estimated in both cases using the PaLS
method, although the hyperspectral method does not show significant improvement
for experimental set 2, which was also the case for the pixel based method. Examin-
ing the images along with the MSE values for experimental set 1, Fig. 5.6-5.7(a) and
(c), it is noticeable how the reconstruction does not resolve the structure particularly
well along the z axis. This is somewhat unexpected since in DOT resolving depth
information, on the y axis, is usually the more difficult problem. This is noticeable

for both the pixel based and Pal.S methods, although the PaLLS method outperforms
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the pixel based method, especially in removing edge artifacts. This smear in the z
direction is most likely a combination of how the Gaussian basis are placed within the
imaging medium, and measurement error in placing the source and detectors when
taking the reference measurement.

For both experimental sets, the PaLS method resolves the location and the shape
of the inclusion more accurately, which is verified by the calculation of the Dice
coefficient shown in Table 5.3. The improvement is notable when compared to the
pixel-based reconstruction. As discussed in Section 5.6.1 a choice of a threshold is
needed to compare D(S, G) between pixel based reconstructins and the PaL.S method.
For the experimental reconstructions we use a threshold of 50% to compare D(S, G) of
the PaLS reconstructions. This demonstrates the usefulness of the PaLS method for
correctly and accurately localizing the anomaly. The PaLLS method does very well with
eliminating edge artifacts that were severe when doing pixel-based reconstructions for
the same data set. These effects are very noticeable in Fig. 5.6(b) and (d), where,
especially in the multispectral case, the edge artifacts were significant. Comparing
that to the same data in Fig. 5.7(b) and (d) it is obvious that the improvement
is significant. It is notable in Fig. 5.7(b) and (d) that the reconstructed inclusion
appears a little bit off center from where the actual location is centered. This is due
to the fixed grid of basis functions, where the closest grid point is off center from the

true location.
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Table 5.3: D(S, G) is compared for each chromophore for multiple wavelength choices.
In each case the reconstructions are done with equally spaced wavelengths over the
spectrum except for the 6 wavelength case where we use optimally chosen wavelengths.
D(S,G) is calculated comparing the half mazimum of the target peak to the reconstru-

cLon.

Pixel based method

PaLS method

D(S,G) Set 1 | D(S,G) Set 2
# M| Ink Dye Ink Dye
6 |0.143 | 0.113 | 0.139 | 0.145

# | D(S,G) Set 1 | D(S,G) Set 2
6 0.27 0.33

126 0.37 0.80

126 | 0.142 | 0.114 | 0.145 | 0.140

5.7 Discussion

In this chapter, using simulations and experimental measurements we have shown
that the PaLLS method provides more accurate estimation of chromophore concen-
trations than a regularized pixel-based inversion scheme. Hyperspectral information
results in improved performance in terms of both MSE and spatial localization as
measured using the Dice coefficient. The parametric approach is shown to give sig-
nificant improvements to image reconstruction, decreasing run time of the iterative
process and increasing the quality of reconstructed images. The PaLLS method is also
easily expandable to more complicated problems where multiple geometries need to
be considered.

Physical measurements were also performed to demonstrate these advantages for

actual measurement data. Although exact concentration values were not achieved,
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Table 5.4: Comparison of ¢; and 62" to target concentration values for erperimental

results, for the pizel-based method. Best performance is highlighted in bold.
Experimental set 1, 10% ink and 90% dye

Fig. | # A | Species | & |%] | ¢! [%] | MSE
5.6(2) | 6 | Ink 1 4 | 18
56(2) | 6 | Dye | 27 | 96 | 1.3
5.6(c) | 126 | Ik | 17 | 16 | 28
5.6(c) | 126 | Dye 88 84 1.2

Experimental set 2, 70% ink and 30% dye

Fig. | # X\ | Species | & [%] | ¢! [%] | MSE

5.6(b) | 6 Ink 56 82 | 18

56(b)| 6 | Dye 12 18 | 1.0

5.6(d) | 126 | Ink 65 61 | 1.4
(d)

126 Dye 41 39 2.0

there is a notable improvement associated with hyperspectral information in con-
junction with the PaLS method. Additionally, improved localization of inclusions
was observed for both sets when using hyperspectral information. This emphasizes
the advantage of hyperspectral information when doing reconstructions for more than
one chromophore.

Based on the results in this chapter, we want to extend the work to address more
realistic, clinical conditions. The results here show significant promise, and are en-
couraging to move to a more realistic situations considering more complicated shape

reconstructions and placing boundary conditions on the medium. We achieve this
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Table 5.5: Comparison of ¢; and 62" to target concentration values for erperimental

results, for the PaLS method. Best performance is highlighted in bold.
Experimental set 1, 10% ink and 90% dye

Fig. | # A | Species | & |%] | ¢! [%] | MSE

(a)| 6 | Ink | 48 | 21.0 | 1.2
5.7(a) | 6 | Dye | 17.9 | 79.0 | 0.9
()
()

126 Ink 5.8 7.7 1.1

126 Dye 69.0 92.3 0.8

Experimental set 2, 70% ink and 30% dye

Fig. | # X\ | Species | & [%] | ¢! [%] | MSE

57(b) | 6 Ink | 383 | 80.0 | 1.1

57(b) | 6 | Dye | 96 | 200 | 08

57(d) | 126 | Ink | 27.6 | 81.0 | 0.6
(d)

126 Dye 6.4 19.0 0.7

by first considering how we can expand the fixed grid basis to ensure recovery of
various different shapes of chromophore concentrations, discussed in Chapter 6. To
be able to estimate all shapes possible, we aim to increase the number of basis func-
tions to include different types. To avoid over complicating the image reconstruction
with a high number of basis functions we aim to pose the image reconstruction in a
compressed sensing framework where few optimal basis functions estimate a complex
shape. Additionally we expand the method to the estimation of 3D structures with

adaptable basis functions in Chapter 7.
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Figure 5.6: Pizel reconstruction from both experimental sets, set 1 containing 10% ink
and 90% dye and set 2 70% ink and 30% dye. Black circle denotes the true location

of the inclusion.
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Figure 5.7: PaLS Reconstruction from both experimental sets, set 1 containing 10%
ink and 90% dye and set 2 70% ink and 30% dye. Black circle denotes the true

location of the inclusion.
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Chapter 6

Dictionary Approach

6.1 Introduction

Figure 6.1: Ezample basis functions placed on a fized grid in the imaging medium,

where each grid point, f, has a set of different shaped basis functions,denoted by {l}.

As discussed in Chapter 1 the ability to recover a varied array of shapes is of great

importance for DOT, so image recovery methods need to be adaptable and able to

98
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reconstruct a wide range of shapes with accuracy. To achieve this, we consider a case
where our set of basis functions P is a large collection of a variety of shapes. This
kind of approach has been considered extensively in compressed sensing problems
where an array of known functions in a dictionary is used to recover sparse signals
[45, 89]. Although our problem is not a compressed sensing problem, we consider
the framework presented in [45], which is directly applicable to our problem where
we consider the case of the fixed basis set, described in Section 5.1. Rauhut et al.
[89] noted that most works with compressed sensing that assume sparsity, take the
assumption with respect to an orthonormal basis. This can be a strict limitation
in practice, and for some applications, it is more applicable to assume sparsity with
respect to a defined frame or dictionary. Essentially, the method could be applied
to a wide range of basis functions, to include polynomials, wavelets and Gaussians,
but for our application we aim to include differently dilated CSRBFSs to recover small
details of the underlying structure, with selectively chosen basis functions.

For the fixed grid shown in 5.1(b) each grid point is the center for a specific ¢, basis
function. To create a redundant dictionary for our problem we amend our basis set P
so it contains a set of different basis functions, ’l,blf , at each grid point f. An example
of this setup is shown in Fig. 6.1. The method from Chapter 5 is modified so that
the objective function O described by (5.5) is created by using a dictionary matrix

B which contains the dense collection of basis functions at a total of F' gridpoints,
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defined by

B=lyi vy . wf (6.1)

by this we define the object function using, B, the redundant dictionary matrix

O =Bk (6.2)
With this formulation our parametric vector is 87 = [c},c2, ..., ¢}, k7] where k =
k1, ...,k¥]T is the weighting vector, and the ¢ values denote the chromophore con-

centration values for each chromophore. Now for the set of model parameters 6, the
forward model is considered to be of the linear form as written in (3.22).

In this framework we strive to achieve a sparse estimate of k since B contains
multiple v’s at each grid point. This directs the estimate of the shape to only select
shapes from the redundant dictionary matrix B that best estimate the problem. In
traditional minimization problems the sparseness is induced on the solution using a
(1 regularization as an added term in the cost function. Instead of employing this
kind of soft constraint we restrict the k to be sparse by projecting it to the /;-norm
ball at each iteration.Visual representation of this relation is shown in Fig. 6.2.

This makes the method somewhat robust to the different shapes encountered as
well as using far fewer unknowns than traditional pixel based methods. To provide
an accurate and simple reconstruction we implemented a hard f;-norm constraint,
described below, to improve the estimation and generate accurate images with the
fewest possible basis functions. The development of this method improves on para-

metric shape based methods for the DOT application, especially when paired with
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Weight vector
K

~

Object vector Dense dictionary matrix B
o Each row is a basis function, qp{

Basis function 7

Weight 1,

Figure 6.2: Ezample of the object function O as defined by (6.2). The aim is to
estimate a Kk weighting vector with induced sparsity to pick out optimal basis functions

from a dense dictionary matriz B where 'gblf represent the I'" function at gridpoint f.

optical mammograms which can be used to provide prior spatial information of the
medium. For the purpose of this section we considered the infinite geometry discussed

in Section 3.3 as it serves as a good testing point for this approach.

6.2 Projected Levenberg-Marquardt

As before we consider the inverse problem, that of using ®° to recover the value of 8,
but now add a extra constraint. We seek the solution to the following optimization

problem.

arg mein||W(Kc(0) — ®%)||3 subject to ||k <gq (6.3)
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Figure 6.3: Projection, m(K) of the weight vector k to the {1 norm ball to induce
sparsness. This results in selecting the optimal collection of basis functions represent-
ing the shape.

The W matrix reflects the structure of the noise corrupting the data and ¢ represents
the radius of the ¢; norm ball. This constraint ensures sparsity of the solution, which
is dependent on the choice of q. The minimization of the cost function is achieved
by a projected Levenberg-Marquardt algorithm, where the minimization of (6.3) is
accomplished using a variant of the approach in [66].

As before we employ the Levenberg-Marquardt algorithm, the calculation of the
Jacobian matrix J is required which is computed from the derivative of € with respect
to each element in the parameter vector 8, as is shown in (5.19). When estimating the
parametric vector, we employ a cyclic coordinate decent strategy which is equivalent
to estimating the shape only at even iterations and the concentration values at odd

iterations.
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To sparsify the x; values we we want to ensure that the lowest number of basis
functions is being added to the recovery of the unknown shape. This is done by
enforcing the ¢;-norm constraint by projecting the guess of the weights at each iter-
ation, kK", to the £;-norm ball. This is done through Euclidean projection which is

formally defined by

m(k) = arg min ||x — &|f3. (6.4)
x:|[x[[1<q

This is represented visually in Fig. 6.3. We solve (6.4) by casting the projection
as a root finding problem as described in [74]. This is achieved by introducing a
Lagrangian variable £ for the constraint ||x||; < ¢ so that the Lagrangian of (6.4) can

be expressed as
1
L(x,€) = 5lx = &lI* + &(x[l = a). (6.5)

If the x* is the primal optimal point, and £* the dual optimal point, they should
satisfy ||x*||; < ¢ and £* > 0. Liu et al. [74] showed that the x* can be computed if

&* is defined as known. So x* is the optimal solution to the problem defined as
x* = argmin L(x, £¥) (6.6)

which has a unique solution since L(.,.) is strictly convex in the first argument. By

decoupling the variables in (6.6) we have

1
x; = argmin = 5(‘76’ — K,Z')Z + & (|z] — q) (6.7)

T
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where z; and &; are the i elements of x and &, respectively. This equation can be
expressed as

x; = sgn(k;) max(|x;| — &£, 0) (6.8)

where sgn(.) is the signum function. Through this methodology, the problem in (6.4)
can be solved by first solving for the dual optimal point £*, which is then used to
obtain x* using (6.8). This turns the Euclidean projection into a root finding problem
using auxiliary function which can be computed though a bisection algorithm which
is computationally efficient. We direct the reader to [74| for further details on this
approach.

Our approach uses a large dictionary (L = 220) to ensure that many different
shapes can be recovered. These functions are on a 11 by 5 grid over the imaging
domain where at each point there are 4 CRBFs at different dilations and rotations,
ensuring different angles can be recovered at each point.

To test the the approach we consider simulated data for three different cases.
Case I only contains a small elliptical shaped perturbation, which is expected to only
need very few basis functions to recover, resulting in a very sparse k vector. For
Case II and III, we consider the perturbation in the shape of two ellipses overlap-
ping and a collection of blob like structures, respectively. For these two cases the
vector is expected to stay sparse, although the larger areas with more complicated
structures will recover the inclusion of more basis functions. In all cases we consider

a realistic optical perturbation, using the same concentration values for HbO, and
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Figure 6.4: Reconstructions for Case I of low complexity. Top row shows HbO,,
middle 1s HbR and bottom row displays weights used in the reconstruction. Signal to

noise ratio 1s set to 50 dB.

HbR as in Chapter 5. Simulated data is generated with 40 source-detector pairs for
100 wavelengths. The source-detector pairs are aligned along the x-axis with 5 cm
separation. As before, we verify our shape recovery by calculate the Dice coefficient

for the estimated characteristic functions.

6.3 Results and Discussion

Figures 6.4-6.6 show reconstruction results for Case I, II and III, respectively. As

discussed in Section 6.2 all reconstruction use the same dictionary matrix of 220 basis
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Figure 6.5: Reconstructions for Case II of medium complexity. Top row shows HbO,,
middle 1s HbR and bottom row displays weights used in the reconstruction. Signal to

noise ratio 1s set to 50 dB.

functions. It is clear that implementing the sparsity constraint ensures that method
uses few functions to represent the shape. It is notable for the more complicated
shapes that cover a larger area, the weight vector remains sparse, utilizing less than
a third of all the CRBFs in the dictionary. As is expected in simulations the concen-
tration values of both HbO, and HbR are recovered close to the ground truth values.
The Dice coefficient varies from D(S, G) = 0.86 for Case III, D(S, G) = 0.90 for Case
IT and D(S,G) = 0.95 for Case L. For the reconstruction results shown here, ¢ was
chosen by visual inspection and verified by error metrics.

Although these preliminary results are encouraging, the redundant dictionary
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Figure 6.6: Reconstructions for Case III of high complexity. Top row shows HbO,,
middle 1s HbR and bottom row displays weights used in the reconstruction. Signal to

noise ratio 18 set to 50 dB.

method still has noticeable drawbacks. Considering a basis set P as it is applied
here, it does not show promise for a large improvement over a regular fixed grid. Due
to the low spatial resolution of DOT the discrimination between the different basis
functions at each grid point, becomes a challenging problem involving selecting the
optimal radius of the ¢/; norm ball. Examining the properties of the modality and
elements of P we observe the the DOT modality is best suitable for recovering “blob”
like structures, as well it is well established that reconstructed images are generally
more diffuse along the axis of source detector separation, considered as the z axis here.

This reduces the impact of this method, where the limitation of diffusion negates the
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approach. Additionally as is noted in the results discussion in Chapter 5, the location
of the fixed points becomes an issue, where structures off center relative to the grid
points are reconstructed with less accuracy. With this in mind and considering the
two main limitations, the limited data encountered in the DOT case and low spatial
resolution, we consider a move to a more adaptable and elegant method where the
need of a redundant dictionary is less, by incorporating movable basis functions which
are entirely made of uniform CSRBFs. This is discussed in detail in Chapter 7.
Although we do not extend the dictionary approach further, it is encouraging to
consider this approach for the PaLLS method for applications that deal with well-posed

problems.



Chapter 7

Parametric estimation of 3D tubular

structures using primitives

Expanding on the methods developed in Chapters 5 and 6, we aim to recover the
depth, volume and absorption values of fully 3D structures using “coupled” 2D recon-
structions within the PaLS framework. As discussed in Chapter 6 the adaptability of
the basis functions is imperative, so in this chapter we consider the case of movable
basis functions, as was detailed in Chapter 5, and shown in 5.1(c). Additionally, all
results discussed here consider bounded (at least partially bounded) domains, a more
realistic case than the infinite geometry setup studied in previous chapters.

In this chapter we consider a data limited problem as in Chapter 5 but recover
optical absorption images with only single wavelength data. This limits the data

further, where we cannot take advantage of multi- or hyperspectral information. This
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3D tubular structure

Estimated by 2D slices Primitive in slice K

Homogeneous
Medium

K ,

Each 6, correlated for connectedness

Figure 7.1: Example of how 2D slices are used to esitamte 3D structure with data
from measurements collected as in Fig. 4.6. FEach 2D primitive is estimated with
vector Oy. Regularization term in the objective function, (7.2), correlates each slice

primitive together, to generate a connected structure

is done for convenience since computing a hyperspectral data set using the finite
difference model would be significantly computationally intensive. In spite of these
limitations we demonstrate accurate reconstruction of 3D structures by using the
PaLLS method to reconstruct images for each slice along the y axis in Fig. 4.6. These
individual slices are then combined by “stacking” them together in order to estimate
the underlying structure along with optical properties, demonstrated in Fig. 7.1.
To this end, we setup our model to perform independent 2D image reconstruction
from the data collected in each slice, but impose a regularizing term on the low-
order parametric vector, to correlate the slices together. This takes advantage of the

connected nature of the tubular structures and improves the reconstruction.
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7.1 Forward Model for 2D slices

In order to approximate a 3D tubular structure using the model described in Eq.
(3.17) we aim to reconstruct slices of a 3D medium and combine them together to
estimate the underlying geometry. The physical setup is described in Fig 4.6, where
the source and detector are moved in tandem along the x axis, yielding K scans along
the y axis. Using our forward model we define ¢, € R as the vector of discretized
Lo associated with the k™ slice in the rectangular region and ®; the data collected
from the corresponding slice. Using this notation we can write the forward model

used for inverse processing for the whole rectangular region in matrix vector notation

as _ _ _ - - -
P: Ki 0 ... 0]]ec
q)g 0 K2 Ce 0 Co
- & & = Kc (7.1)
@;( 0 0 ce KK Ck

where the (m, j) element of the K;, represents the m' source-detector pair and ;"
pixel in the k% slice of the 3D medium. Assuming that for a given experiment N4
source-detector pairs are used for all K slices then if N, is the number of pixels in
each slice the dimensions of the whole matrix K is NyK x N, K.

It should be noted that the block diagonal nature of the model in 7.1 is a reflection
of the approximation we are making in which we ignore the effects of “out of plane”

physics in each slice of the reconstruction. Our method, detailed in Sections 5.1 and



112

7.2, of parameterizing the shape and regularization is able to recover accurate 3D
structures in spite of this severe physical model mismatch, even with limited data
sets. Additionally this approach is easily expandable, by filling in the off-diagonal

blocks of K which will be considered in future developments discussed in Chapter 8.

7.2 Image reconstruction

The image reconstruction method, recovering c from ®°, is formed as an regularized

optimization problem of the form

6 = argmin [|[W(®° — Kc(0)|2 + o|[LO|* (7.2)

where W represents the structure of the noise corrupting the data. The first term
in (7.2) requires that the estimated value of ¢ is consistent with the observed mea-
surement of ®°. The second term of (7.2) is a regularization term that correlates the
parameter vector between slices. Considering the prior information of tubular struc-
ture anatomy of breast tissues, it encourages correlating reconstructions between slices
in the cost functional. Therefore the second term (7.2) ensures that a reconstruction
between slices will result in connected structures, which provides better approxima-
tion of the structure than a unregularized function. We structure L to penalize the
difference between similar parameters on adjacent primitives. That is to say, we im-

pose a penalty for the difference between centers, r; and r;,; fori =1,..., N — 1, the
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value of absorption, cj and weight K so that L is given by.

L=L;®I (7.3)

Where [ is a diagonal matrix where number of diagonal elements are the same as
number of elements in 8;, and A ® B is the Kronecker product [70] of A and B and

L, is written as

_1 -1 0 0 0_
0 1 -1 0 0
Lg= |t - - o o (7.4)
0 0 1 -1 0
0O ... O 0 1 -1

In order to demonstrate the effectiveness of our regularization method, we evaluate
a tomographic reconstruction over a range of values for the regularization parameter
a. As « is varied the algorithm trades off the cost associated with the regularization
penalty against the cost associated with the data. To select the optimal regularization
parameter we employ the commonly used L-curve method, detailed in Section 7.4 [10].

The W matrix reflects the structure of the noise corrupting the data [48]. We

employ a Gaussian noise in which independent, zero mean Gaussian noise is assumed

2

to corrupt each datum where, as in Chapter 5, o7,

and the SNR,, are computed
by (5.14) and (5.15), respectively. In experimental data /€2(m) is the standard

deviation of the Poisson noise distribution.

The minimization of the cost function is then achieved by the Levenberg-Marquardt



114

algorithm. For that purpose an error vector,
e=lel €] (7:5)
is introduced where each term relates to the corresponding term in (7.2) given as

6 = W(K(®O) — @) (7.6)

€ = +alo. (7.7)

We denote by K the total number of primitives, and the plane in which the "
primitive resides as y = y;, ¢ = 1,..., K and the number of basis functions by L
in each plane where [ = 1,..., L. For simplicity, we assume that the primitives are
equally spaced, though this assumption can be easily relaxed. Thus far, our model
only defines the object at K points on the y-axis, as shown in Fig. 7.1, where in
essence the primitives may be interpreted as cross section of the overall 3D object.
The object description at all other points on the y axis is recovered independently,
and then combined to represent the 3D structure.

In order to employ the Levenberg-Marquardt algorithm, the calculation of the
Jacobian matrix J is required, where details are given in Appendix A. The Jacobian

contains derivatives of € with respect to each element in the parameter vector @

0e(0)

J—
oty s e (T, .. kI, (ﬁlT, s ﬁ%)T, (eT, .. rl)7}

(7.8)

The solution is then obtained by updating @ at each iteration as "' = " +h where

h is the solution to a linear system analogous to (5.19).
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To summarize, in our method we model the shape structure of the anomaly using
a set of 2D shape primitives representing the cross-section of the object in arbitrarily
oriented (but parallel) planes. As shown in Fig. 7.1, where the planes are perpendic-
ular to the y-axis, each primitive is itself a 2D shape, specifically a collection of radial
basis functions for this chapter, whose structure is defined by its center locations,
dilation and weighting factors. In this section we detail the object description when
the primitives are stacked along the y-axis. Under our model, the i** primitive is
fixed to exist on the plane y = y;. The following parameters are used to represent the

primitive.

e A 2-L x1 vector r; = [Xo;,%0,]", denoting the (z, z)-coordinates of the center

location of the basis functions forming the primitive on the plane y = y;
e The dilation factors 3;; of the underlying basis functions.

e The weighting factor of x;; of each basis function. A weighting factor of x;; = 0

deactivates a basis function from the reconstruction.

7.3 Simulation Analysis

Simulations are done to demonstrate the benefit of combining simple 2D reconstruc-
tions of more than one slice to approximate 3D structure. In this chapter, simulated
data are generated using a standard finite difference forward solution provided by

Prof. Misha Kilmer in the Tufts University Math Department. Simulated data are
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generated for a rectangular box with dimensions 7 cm X 7 cm X 6.3 cm discretized
into a 71 x 71 x 64 grid, with three cylinders placed close to the center. Boundary
conditions on the source and detector planes are Robin type conditions and Dirichlet
conditions are applied the sides of the box in the z — x and z — y planes. The true
geometry of the phantom is shown in Fig. 7.2. Each cylinder in the medium has
Ajtg = 0.04 cm™! where the background has p, = 0.02 cm™!, giving absorption con-
trast of 2:1, comparable to what is found in a clinical setting [84]. Diffusion coefficient
is assumed to follow Mie Scattering theory and to be uniform throughout the medium
and inclusion at g, =10.1 ecm™! at 690 nm [68].

The alignment of sources and detectors is the same as for the experimental setup
is shown in Fig. 4.6. Two different cases are considered, to demonstrate the effect
of limited data for our method. In Case 1 we use two detectors per source position
and 26 source locations along each slice for a total of only 52 measurements per slice.
In Case 2 we implement ten detectors for each source position, giving 260 source
detector pairs for each slice. These two cases demonstrate the effectiveness of our
method even when working with severely limited data such as in Case 1.

In order to obtain a quantitative measure of comparison between the actual and
estimated shapes and absorption values, we employ the Dice coefficient as in (5.30),
MSE given by (5.29) and add the Symmetric difference which is the fraction of entries

in the estimated image, S, where the corresponding entries in the ground truth image,
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G, are not equal. Mathematically, this is expressed as

1
dsa(S, G) = N, Z Liai#siy (7.9)

where 1, is the indicator function and S is the 0 — 1 characteristic matrix corre-
sponding to the estimated shape, and G the 0 — 1 characteristic matrix corresponding
to the actual object.

The symmetric distance is an important measure of the quality of reconstruction
because it measures the overall quality of shape reconstruction, by penalizing errors
in detecting object voxels as background and similarly background voxels as object
voxels. Symmetric difference assigns an equal penalty to an erroneous voxel, irre-
spective of whether it is detected as background or object. An important limitation
of the symmetric difference measure is that it does not reflect well on how close the
estimated absorption concentration value in the reconstructed image is to the true
value. The mean square error fills this gap by providing a measure on the quantitative
accuracy for each slices that measures both how well the shape and value of the Ap,
is recovered.

As discussed in Section 6.1 our method constrains the image formation problem
and reduces the number of unknowns when compared to a traditional pixel-based
approach. To demonstrate the effectiveness of our approach we perform pixel-based
reconstructions for the simulation cases presented in Section 7.4. We employ a pixel-

based optimization method using Levenberg-Marquardt algorithm where we modify



118

(7.2) so that the regularization term takes the form of traditional Tikhonov regular-
ization, where L = I. Tikhonov regularization is widely used for image reconstruction
for multiple imaging modalities and provides a suitable comparison for our method

85, 110, 56].

7.4 Results

7.4.1 Simulations

Reconstruction results from simulated data are presented in Figs. 7.5 and 7.6 using
2 detectors and 10 detectors for each source location, respectively. Examining the
reconstructions visually and with the error metrics presented in Table 7.1 it is evident
that the impact of correlation regularization is very important. Especially notable
is where unregularized reconstruction, shown in Figs. 7.5(a) and 7.6(a) recovers a
structure with gaps, due to the fact that the connected nature of the tubular structure
is not being emphasized. Additionally, evident by the shape metrics D(S, G) and dyq
the middle rod is recovered as a separate structure when the regularization is present.

The pixel-based reconstruction using traditional Tikhonov regularization is shown
in Fig. 7.4 for both the 2 detector and 10 detector setup. It is evident both by
visual inspection and error metrics shown in Table 7.1 that the constrained model
in PaLS and regularizing between slices results in a far more accurate estimation of

the structure. It should be noted that pixel based reconstructions for DOT can be
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very accurate, however as mentioned above the work in this chapter presents results
using a severely limited dataset. Pixel-based methods traditionally require significant
number of data points, resulting in the errors in the reconstruction shown here.

As mentioned in Section 7.2, to optimally select the regularization parameter o
we implement the L-curve method. In this method, we generate a plot of log(||L&|?)
against log(||[W (K(6) — ®°)||?) as « is varied. Figure 7.5(a) depicts the reconstructed
object when o = 0, where no regularization is being applied. From visual observation
as well as examining error metrics defined in Section 7.3, it is clear that some degree
of regularization is beneficial. The L-curve plot for the reconstruction of the simu-
lated phantom is shown in Figs. 7.3(a) and 7.3(b) for the 2 detector and 10 detector
setups, respectively. Note the encircled point on the curve denotes the “best” recon-
struction given the data. The parameter a was obtained in a similar fashion in all
our experiments. However, here in order to save space, we have only demonstrated
our results for a single case.

Representative slice image from the 10 detector reconstruction is shown in Fig.
7.7. Along with the MSE it allows for visually judging the methods ability to recover
the values of Apu,. As expected using the Born Approximation, the absorption values
are underestimated, but these results are encouraging, considering the limited data
sets being employed, and how each slice reconstruction is not modeled to incorporate
effects from the total 3D structure.

These results are especially encouraging considering the method is able to estimate
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the structure even with a severely limited data set, shown in Fig. 7.5, where only 2
detectors are used for each 26 source locations, and only a single wavelength is used.
This demonstrates the ability of the slice based PaLS method to accurately recover

3D tubular structures even with linear approximations and limited data sets.

= = B 10°
10 10

R 10 10° 10"1
logio (|[W(K(9) — 2)I1%) logio (|[W(K(9) — @)II%)

10"

Figure 7.3: (a) Example L-curve used to select optimal o for the reconstruction using
2 detectors at 30 dB SNR for simulated data. (b) Example L-curve used to select
optimal o for the reconstruction using 10 detectors at 30 dB SNR for simulated data.
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(b) Pixel-based reconstruction using 10 detectors, o = 300

Figure 7.4: Reconstruction results for a simulated geometry structure with realistic

optical contrast.

7.4.2 Experimental Validation

Reconstruction results for relative absorption reconstructions are shown in Figs. 7.8
and 7.9 for inclusions angled at 90° and 30°, respectively. As demonstrated in simu-
lations, including correlation between adjacent slices greatly improves accuracy and
allows for recovery of the underlying structure. Examining the images along with the

error metrics, D(S, ), dsq and MSE shown in Table 7.2 it is clear that this method
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(b) PaLS image reconstruction using 2 detectors, & = 1.5

Figure 7.5: Reconstruction results from simulated data with realistic optical contrast,

using 2 detectors for each source location

allows for recovery of tubular structures in a realistic breast phantom. It is notable
that the 10x absorbing inclusion is recovered as a larger structure, whereas the 3x
cuboid is recovered close to its true shape with more accurate absorption value. This
is demonstrated in an example slice image for the ¢ = 90° case in Fig. 7.10. This is
expected due to the aforementioned limitations of the Born Approximation [11] but

it is interesting to see, that the higher absorbing structure does not dominate the
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(b) PaLS image reconstruction using 10 detectors, a = 0.5

Figure 7.6: Reconstruction results from simulated data with realistic optical contrast,

using 10 detectors for each source location

optimization and our method correctly locates and recovers the 3x cuboid. Although
the recovered absorption contrast does not improve greatly for the ¢ = 30° case, the
shape is recovered much better when regularization is introduced. For the 30° case
improvements in both absorption values and shape are evident and examining Fig.

7.9 shows clearly that we are able to recover structures even though they are angled

close to the scanning direction.
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(b) Reconstructed slice image

for 10 detector setup.

Figure 7.7: Slice reconstruction from y = 5 e¢m, demonstrating absorption contrast.

3D reconstructed using 10 detectors shown in Fig. 7.6.

Table 7.1: Error metrics used to judge image reconstructions for simulated recon-

structions.

Fig. # detectors a | D(S,G) | dsq [%] | MSE
7.4(a) | 2(pixel-based) | 820 0.07 76 9.5
7.4(b) | 10(pixel-based) | 300 0.08 74 8.3
7.5(a) 2 0 0.43 11 1.2
7.5(b) 2 15| 083 10 | 09
7.6(a) 10 0 0.57 12 1.1
7.6(b) 10 19 | 082 9 | 089

The correlation term in (7.2) is shown to be as important for experimental recon-

structions as in simulations, both in error metrics in Table 7.2 and visually, in Fig.

7.9(a). For both experimental sets, the primitive 3D PaLS method resolves the loca-

tion and the shape of the inclusion more accurately, which is verified by all metrics.

It should be noted in Table 7.2 that D(S, G) is computed strictly for regions where

the inclusions are present. This is due to the Dice coefficient not being a useful metric
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Figure 7.8: Reconstruction results using experimental data and 3 detectors. Inclusions

are angled 90° relative to scanning direction, o = 12.

to judge reconstructions when the ground truth is an empty set image.

Table 7.2: Error metrics used to judge image reconstructions for experimental recon-

structions.
Fig. ® a | D(S,Q) | dsa [%] | MSE
78(a) | 90° | 0 | 0.23 86 | 0.99
7.8(b) | 90° | 0.5 0.55 6 0.97
79(a) | 30° | 0 0.31 136 | 1.10
7.9(b) | 30° | 0.1 0.65 10 0.98

7.5 Discussion

Using both simulations and experimental measurements we have shown that 3D tubu-

lar structures can be recovered by implementing a parametric primitive Pal.S method

by taking advantage of correlation of adjacent slices. Using an augmented cost func-

tion and optimizing regularization results in better performance compared to pixel
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Figure 7.9: Reconstruction results using experimental data and 3 detectors. Inclusions

are angled 30° relative to scanning direction, o = 80.

based and unregularized shape based approach measured in terms of MSE and spatial
localization as measured using the Dice coefficient and Symmetric difference. This
shows that even with implementing linear approximation and using severely limited
data sets, the underlying structures can be recovered with accuracy.

These results demonstrated that this approach has significant promise to recover
depth and shape estimation along with optical properties in realistic phantoms. With
some improvements it would be especially interesting to advance this method by
combining it with an optical mammography device, and expanding on the current

approach. This consideration is discussed further in Chapter 8



127

N

3

N

Absorption Contrast

=

(= N w
Absorption Contrast
cm
N
U1 Ul o

0
50 3 6 0 3 6
cm cm
(a) Ground truth image (b) Reconstructed slice image
for ¢ = 0° detector setup. for ¢ = 0° detector setup.

Figure 7.10: Slice reconstruction located at y = 3 ¢cm in Fig. 7.8, compared to ground

truth demonstrating absorption contrast.



Chapter 8

Conclusion

In this thesis, we have presented approaches which implement parametric shape-
based methods to improve reconstruction algorithms for diffuse optical tomography
(DOT). In Chapter 1, we discussed the motivation and basic challenges when working
with optical imaging modalities, DOT specifically, for the breast imaging application.
Although significant advancements have been made, current research is continuing to
improve the quality of the DOT method. Chapter 2 established the basic concepts of
the tomography problem and presented an introduction to existing work on solving
the inverse problem for optical tomographic techniques.

Chapter 3 detailed how the forward model was constructed for the different ge-
ometries considered in this thesis. In Chapter 4 we discussed the physical experiments
performed for the purpose of this thesis, which were used for the methods presented

in Chapters 5-7, which introduced the parametric level set method, and described
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how we apply it to the recovery problem of absorption, scattering and chromophore
concentration images for DOT. We presented simulated and physical experiments to
demonstrate the advantage of implementing a low-order model over a pixel-based for-
mulation for image reconstruction. The PalLS method not only proved to be more
accurate in terms of error metrics, but was demonstrated to be faster, due to the low-
order model and the fact that no implicit regularization was required for the image
reconstruction.

In Chapter 6 we expanded our method to consider differently shaped basis func-
tions, placed at each grid point, for a fixed based PaLLS approach. This was in order
to verify that our method could take advantage of a large dictionary matrix without
over complicating the estimation by inducing a sparsity constraint on the paramet-
ric vector. This method demonstrated some promising qualities for image recovery,
but for the case of an ill-posed problem like DOT, optimizing the sparseness of the
parametric vector, as well as restricting the movement of the basis functions affects
the accuracy of the solution. Estimating the centers of the basis functions and their
dilation factors proves to be more adaptable and straightforward rather than using
a large dictionary matrix. Because of this we moved to a more adaptable method in
Chapter 7.

The 3D estimation using primitives presented in Chapter 7 demonstrated that our
method, is able to estimate the shape, depth and optical properties of complicated

3D structures with realistic optical contrast. The recovered structured proved to be
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accurate, even when using extremely limited data sets, only 2-3 detectors for each
source, and reconstruction performed at a single wavelength. Although absorption
values where not recovered exactly at ground truth, this method is adaptable and
should be considered for further development.

Based on the results reported on in Chapter 7 we want to improve on this method
by testing it with more cases of silicon phantoms, exploring how the effect of low
absorption contrasts changes the recovery of structures. Additionally our method
is readily expandable to a model where interpolation functions can be applied to
the primitives between slices, where n'* order hold functions, sinc functions, or spines
could be used to interpolate the primitives to represent the 3D structures. These kind
of interpolating functions could help recover structures that are recovered with gaps,
or other artifacts. Incorporating hyperspectral data to improve recovery of absorption
values and allow for direct estimation of chromophore concentrations should also be
considered where our approach in Chapter 5 showed significant improvement for the
PaLLS method. Recovering chromophore information for a vascular structure as is
considered in Chapter 5 could be helpful for tumor detection.

As discussed in Section 7.1 our model assumes that for each slice the primitive is
invariant along the y-axis. This of course is significantly affects the mismatch between
the model and the true scenario, but our method demonstrated that correlating the
slice images and parameterizing the reconstruction allows for accurate recovery of

the vessel like structures. Future efforts will examine the effect of computing the
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off diagonal elements of (7.1) where it would be see how results would change if a
certain segment along the y-axis would be modeled in 3D. This would physically
represent stacking 3D slices with a certain thickness to recover a larger 3D structure
and examining reconstruction accuracy versus computational intensity is a natural
progression of our research.

Furthermore the plan is to advance the method to combine with a optical mam-
mography system that obtains depth information of vascular structures. In the end
the method presented here, along with optical mammograms, could serve as initial
guesses for a full 3D non-linear reconstruction. Providing an accurate initial guess
for a non-linear method would not only improve accuracy but significantly speed up
computation time commonly found in those types of reconstructions.

In more detail, Prof. Sergio Fantin’s group in the Tufts University Biomedical
Department, is currently developing and testing an optical mammography device at
the Tufts Medical Center. In this system broadband optical mammograms are used
for breast tumor detection on the basis of measured oxygen saturation of hemoglobin.
The data is collected in a collinear illumination-collection scan of the breast, which
is exactly the setup that was considered for the source detector setup in Chapter 7.
In addition to measured oxygen saturation, this system allows for depth discrimina-
tion in optical mammograms by exploiting directional information of spatial second
derivatives. With this in mind, the measurement obtained by the optical mammogra-

phy device, depth and saturation, could be implemented as an initial guess for our 3D
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Figure 8.1: Hemoglobin saturation maps measured, where false-color representation

of oxygenation values are superimposed on a gray level image. Image and data was

reported in Yu et al. [111].

primitive reconstruction presented in Chapter 7. This could prove to be extremely
useful, where a future clinical system could be considered a stand-alone optical imag-
ing device. Utilizing our method in conjuction with mammograms, the possible work

flow for the imaging system could be:

1. Data collection is performed in the clinic, where measurements are collected by
scanning sources and detectors in tandem, over the breast. Limited number of

detector are placed on- and off-axis, relative to the source.
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2. Optical mammogram device measures oxygen saturation, and estimates depth
information of detected tissue inhomogeneities. Typical optical mammogram

image with measured oxygen saturation is shown in Fig. 8.1.

3. 3D primitive Pal.S reconstruction performed using depth and absorption infor-

mation obtained in Step 2 as initial guess.

4. Full 3D non-linear reconstruction using a finite difference model using structural
information from Step 3, saturation and absorption information from Step 2 as

a initial guess.

Considering a work-flow like this is encouraging, especially considering the advantage
of the PaLLS method over pixel-based method presented in Chapter 5 and accuracy
in recovering 3D structures in Chapter 7. Steps 2-3 of this flow are methods and
algorithms that have already been tested and implemented, where step 3, the 3D
primitive method, can be improved by the items discussed earlier in this section. The
development of step 4, where implementation of the finite difference model used in
Chapter 8 will be developed to take the prior information as an initial guess and
render a estimation of the underlying vascular structures and optical properties.

It is also important to integrate the PaLLS method with a clinical device such as the
optical mammogram, to analyze and provide a rigid framework regarding the basis
and stopping criteria for the Levenberg Marquardt algorithm. The rigid framework
should take into account how many basis functions are “deactivated” in the estimation,

i.e. when the corresponding weight element « is estimated as zero, the basis function
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is considered as deactivated. Running the algorithm repeatedly with analysis could
result in an optimal choice of basis functions for each data set. Furthermore, relating
to the development of a framework for different basis functions, we will develop the
Levenberg Marquardt algorithm to have optimally chosen stopping criteria and step
size changes. This should increase robustness of our method and ensure accuracy of
estimation for different situations and settings in diffuse optical tomography.
Additionally, incorporating texture functions to estimate variable concentrations
and inhomogeneous backgrounds needs to be considered. In that setting, estimating
multiple level sets for different geometries could prove useful, especially to estimate
different regions of the heterogeneous background such as adipose and fibroglandular
tissue. However, a simple approach is to simply multiply the characteristic function x
with a 2D polynomial that results in a recovery varied concentration of chromophores
and absorption. This would allow the method to deal with areas that are not strictly

piecewise constant.



Appendix A

Jacobian for Levenberg Marquardt

optimization

As discussed in Chapters 5 and 7 in order to employ the Levenberg Marquardt algo-
rithm, we need to calculate the Jacobians. The size J depends on if we are considering
a fixed basis grid as in Chapter 5 or movable basis functions as in Chapter 7. As the
fixed grid is a simplified version of the movable basis, for this appendix we derive a
general case for the error function, €, as it is defined in Chapter 7 as € in Chapter 5
can be considered a simplified case of Chapter 7.

As before we define the cost function in terms of € as

M(0) =€"e (A.1)
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where € is defined as

IR CIERA(CORES "

€9 \/&LO

We begin by considering the derivative term contributed by €,. Clearly taking the

derivative with respect to 8 leaves us with

(562(0)
00

— JaL. (A.3)

This provides the complete characterization of the elements of the Jacobian matrix
corresponding to the regularization term. Now considering the derivative term con-

tributed by €,

der  S(Wi(Kgcri(r) — ®3))

00, 00
dcy,i(r)
00

(A.4)
= WiKp,

where we generalize for simplicity sake to consider the i** chromophore and the k"
slice.

Considering the parameters contained in 8 we start with by computing the deriva-
tive with respect to the concentration values of the region of interest and background,

a b :
¢ and ¢ ;, respectively, defined as

L W ()

Chji

o (A.5)
€1

S = W= (r)

Now we consider the derivative with regards of the weighting values of each of the

CSRBFS, k, where for simplification we consider the [** basis function and redefine
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the image formulation in (5.2) as

Cri(r) = (ch,; — Cz,i)Xk,i(r) + Cz,i
(A.6)
= (sz - Cz,i)H(“k,lw(ﬁk,lHr —rll) + Cz,i

To simplify the notation further, we consider the derivatives with respect to the

remaining parameters in @ by writing

31 ~ WKc(r)
O{ Kk, Bets That  O4Fk Brt Tha ) (A7)
= (. — . Wchi(r)
( ki k,z) 6{K,ﬁ, rk,l}

Using this we express the derivative with respect to the weighting element xj; as

dcg(r)
(S/ikJ

= P (Brallr — i) (A.8)

Next we consider the derivative with respect to f8; where we write

dcy(r) _ O0Hy (K (Bryllr — rral])
0Bk, 0Bk,

Jr — ry?

185.1(r — T11)

Now considering derivatives with respect to the center locations of the CSRBFS, ry;

(A.9)

= K10k, Hﬁze(ﬂk,l%b(ﬁiﬂr — 1) (Brallr — rrall)
which we split up into the = and z location by ry; = (Xy;, Zk,), and considering their

ht" component so that {z,z} € R" we write

(h)
dcg(r) — e 52 Xy — )
ax a2 — Xiea)

||*52,e(/€k,z¢(ﬁk,z||r — | (Brallr — rigll)  (A.10)

and

Z,Elfl) — 2B
183.1(2 — Zi,)

dcg(r)

= /‘ézﬂ?
YA

"*52,6(/‘61@,1’15(5&1”1' — DY (Brallr — reall)  (AL11)
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In (A.9)-(A.11) the term 7)(.) represents the derivative of the CSRBF.

For the simple case of the fixed grid, the Jacobian matrix contains simply the
terms relating to (A.5) and (A.8), as noted in (5.18), where the more complicated
situation with movable basis the Jacobian contains the terms (A.8)-(A.11) along with

(A.3) for the regularization term, as shown in (7.7) and (7.8).
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