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Abstra
t of �Shape-based image re
onstru
tion methods for hyperspe
tral di�use op-ti
al tomography�, by Fridrik Larusson, Ph.D., Tufts University, O
tober 2012.
Di�use opti
al tomography (DOT) is an opti
al imaging modality that uses nearinfrared light to re
over fun
tional information of tissue. In this thesis we fo
us onbreast imaging where estimation of the opti
al properties of the breast 
an assist indete
ting 
an
erous tumors and in judging overall breast health.To this end we explore the appli
ation of a parametri
 level set method (PaLS)for image re
onstru
tion for hyperspe
tral DOT. Chromophore 
on
entrations anddi�usion amplitude are re
overed using a linearized Born approximation model andemploying data from over 100 wavelengths. The images to be re
overed are takento be pie
ewise 
onstant and a newly introdu
ed, shape-based model is used as thefoundation for re
onstru
tion. The PaLS method signi�
antly redu
es the number ofunknowns relative to more traditional level-set re
onstru
tion methods and has beenshown to be parti
ularly well suited for ill-posed inverse problems su
h as the oneof interest here. We extend the PaLS method to imaging problems by 
onsidering aredundant di
tionary matrix for basis fun
tions allowing for re
overy of a wide arrayof shapes.Additionally we explore the ability of di�use opti
al tomography (DOT) to re-
over 3D tubular shapes representing vas
ular stru
tures in breast tissue. Using the



PaLS method, we in
orporate the 
onne
tedness of vas
ular stru
tures in breast tis-sue to re
onstru
t shape and absorption values from severely limited data sets. Theapproa
h is based on a de
omposition of the unknown stru
ture into a series of twodimensional sli
es. Using a simpli�ed physi
al model that ignores 3D e�e
ts of the
omplete stru
ture, we develop a novel inter-sli
e regularization strategy to obtainglobal regularity. We report on simulated and experimental re
onstru
tions usingrealisti
 opti
al 
ontrasts where our method provides a more a

urate estimation
ompared to an unregularized approa
h and a pixel based re
onstru
tion.
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Chapter 1
Introdu
tion
Non-invasive imaging modalities are be
oming in
reasingly important to monitor fe-male breast health in the 21st 
entury. The Can
er Prevention and Control divisionof the Centers for Disease Control and Prevention (CDC) states that breast 
an
eris the most 
ommon 
an
er among women of all ra
es in the United States [53℄, andthe World Health Organization (WHO) lists it as the top 
an
er in women in boththe developed and developing world [25℄. Among the leading 
auses of 
an
er deathamong women, breast 
an
er ranks se
ond outnumbered only by deaths due to lung
an
er. In the prevention and 
ontrol proto
ol published by WHO great signi�
an
eis pla
ed on early dete
tion. Although some risk redu
tion is a
hieved by prevention,i.e. promoting healthy diet and physi
al a
tivity, these strategies 
annot eliminatethe majority of breast 
an
ers that develop in low- and middle in
ome 
ountries. Be-
ause of this, early dete
tion is the 
ornerstone of a
hieving su

essful breast 
an
er1



2
ontrol [2℄.To this end s
reening methods need to in
orporate dete
tion systems and imag-ing modalities that are low-
ost, portable and as we dis
uss in greater detail shortlysensitive to fun
tional information of the breast tissue. Keeping dete
tion systemslow-
ost is a signi�
ant fa
tor, espe
ially 
onsidering breast 
an
er mortality rates inthe developing world. The ratio of mortality to in
iden
e is below 0.2 in North Amer-i
a, where it is 0.35 in Latin Ameri
a and the Caribbean and 0.7 in Afri
a [87℄. Thereis a 
lear positive gradient between level of e
onomi
 development and probability ofsurvivorship a
ross and within regions, whi
h is 
losely related to inequities in a

essto knowledge, early dete
tion and treatment.Breast imaging resear
hers have for a long time been dependent on informationfrom 3D imaging modalities, su
h as X-ray 
omputed tomography (CT) and mag-neti
 resonan
e imaging (MRI). Still, there are some drawba
ks that hamper theseimaging methods. MRI remains a large and fairly expensive system and 
an entail a
onsiderable maintenan
e 
ost. CT on the other hand exposes the patient to ionizingradiation whi
h 
an be non-ideal, spe
i�
ally for patients in treatment. Re
ently theidea of dete
ting breast 
an
er has shifted from anatomi
al information, obtainedfrom CT and MRI, and towards modalities that obtain fun
tional information su
has the 
onsumption of oxygen in tissue, whi
h is relevant to pro
esses su
h as tumorgrowth [83℄.Considering the 
onstraints at hand; a system whi
h needs to be low 
ost, portable,



3sensitive to fun
tional information, useful for early dete
tion and monitoring overallbreast health, it has be
ome 
lear that promising 
andidates are opti
al imagingmodalities, mi
rowave tomography, ele
tri
 impedan
e tomography and ultrasound,whi
h are expe
ted to ful�ll all of the 
onditions stated [104, 23, 13, 63℄. The fo
usof this thesis will be opti
al imaging tomography for this purpose.
1.1 Non-tomographi
 opti
al modalitiesResear
h on opti
al imaging started in the 1920's with a pioneering arti
le from MaxCutler on opti
al transillumination images of the breast [32℄. Spe
i�
ally, light hasbeen used to dete
t 
ertain information su
h as the blood oxygenation level using pulseoximeters sin
e the 1930's. While these methods did not generate images dire
tly,it illustrates one way where light 
arries information about the material throughwhi
h it travels. Cutler proposed using 
ontinuous light to dete
t breast lesionsbut this idea was qui
kly dropped sin
e the intensity of light required 
aused thepatient's skin to overheat. In the 1970's and the early 1980's signi�
ant developmentswere made that led to 
ommer
ially available equipment for opti
al tomography ofthe breast. Gros et al. [52℄ introdu
ed a 
on
ept named diaphanography, in whi
hthe breast was positioned between a visible or near-infrared light sour
e and thephysi
ian. From this setup the do
tor per
eived images using his eyes alone. Theseadvan
es led to the development of pulse oxymetry, laser Doppler blood-�owmetryand near infrared spe
tros
opy (NIRS) whi
h then led to development of various



4opti
al breast imaging instruments utilizing 
ontinuous-wave, frequen
y domain ortime-domain light sour
es.Pulse oxymetry originated in the 1930's and is widely used to monitor bloodoxygenation, an important physiologi
al parameter that is related to the well beingof the patient. Pulse oxymeters provide a

urate information on arterial blood oxygensaturation. The advantage of opti
al oxymeters over oxygen tension monitors, whi
hneed to be a part of the 
ir
ulation or have a blood sample, is that they provide arapid response to 
hanges in blood oxygenation and yet are non-invasive [13℄.The invention of the laser qui
kly gave rise to its use in medi
al appli
ations. Asearly as the 1970's the laser was being used for laser Doppler studies of blood �ow[13℄. When a beam of 
oherent light with uniform intensity is in
ident on a roughsurfa
e, the re�e
tion of the beam will not be 
ompletely uniform but will in
ludesome dark and light spots [101℄. These dark spots, 
alled spe
kles, are 
aused bylight re�e
ted many di�erent times whi
h 
auses interferen
e at the dete
tor. This isexa
tly what o

urs when 
oherent light travels though a highly s
attering sample.Additionally, if the s
attering parti
les are moving the spe
kle pattern will �u
tuatewith a time s
ale whi
h depends on the motion. This was the basis for Laser DopplerBlood Flowmetry in the 1960's [101℄.Attempts at applying pulse oxymetry and laser Doppler blood �owmetry to mea-sure hemodynami
s in the brain were hindered by photodete
tor bandwidth limitsand photon limits. In the 1970's NIRS was developed to monitor baseline 
hanges



5in total oxygenation in the brain, as revealed by the average intensity of di�uselyre�e
ted light [28, 64, 27℄. Brie�y, NIRS quanti�es 
hanges in 
hromophore 
on
en-tration within highly s
attering tissue by measuring the 
hange in the photon densityof light whi
h is di�usely transported through it. The 
on
entration 
hange of ea
h
hromophore is then 
omputed by relating them to the measured 
hange in photondensity. The measured 
hange in photon density is dire
tly related to the 
on
en-tration 
hange by the extin
tion 
oe�
ient of the 
hromophores and the e�e
tivepathlength of the tissue. The extin
tion 
oe�
ient is an intrinsi
 property of ea
h
hromophore, but the e�e
tive pathlength must be estimated for ea
h measurementas it is heavily dependent upon the measurement setup and the opti
al properties ofthe tissue [13℄.In the late 1980's and early 1990's it was soon realized that photon migration spe
-tros
opy measurements 
ould be extended to imaging by solving the inverse problemas is done with X-Ray 
omputed tomography. Resear
h investigating this possibilitybegan in the late 1980's and is reviewed in [8, 9℄.In opti
al imaging three measurement s
hemes are typi
ally used for measuringthe light transmitted through tissue. They are:1. Time domain systems that produ
e illumination by short pulses of light. Thispulse allows dete
tion of the temporal distribution of photons as they exit thetissue. The shape obtained from this distribution provides information aboutthe opti
al properties of tissue, espe
ially the pathlengths and s
attering of



6photons.2. Frequen
y-domain systems that utilize radio-frequen
y light intensity modu-lation signals. For these systems the light is on 
onstantly but is amplitude-modulated at frequen
ies on the order of tens to hundreds of megahertz. Thisallows the absorption and s
attering properties of tissue to be obtained byre
ording amplitude de
ay and phase delay of the dete
ted signal [13℄.3. Continuous wave (CW) systems emit light at a 
onstant amplitude or are mod-ulated at a 
ertain frequen
y. These systems measure the amplitude de
ay ofthe in
ident light.Out of these s
hemes the CW method is the simplest, least expensive, and providesthe fastest data 
olle
tion, however the inverse problem asso
iated with CW does nothave unique solutions, where multiple sets of opti
al parameters 
an yield identi
aldata [29℄.Due to the overall low absorption of breast tissue, it is possible to measure trans-mitted light through a breast, either 
ompressed or un
ompressed. In other 
aseswhere opti
al absorption is too strong, re�e
tan
e 
an be measured, su
h as the 
asefor brain imaging [30℄, where in some situations measuring both transmission andre�e
tion 
ould be useful. Using the measurements s
hemes des
ribed above, one 
anestimate the absorption or di�erent 
hromophore 
on
entrations based on the mea-sured photons transmitted through tissue. Depending on the wavelength observed bythe dete
tors di�erent s
attering and absorption 
an be 
al
ulated from the measured



7data.These developments dis
ussed in previous paragraphs led to opti
al imagingmodal-ities be
oming more relevant for 
lini
al appli
ations. This thesis will fo
us on CWand its usefulness for breast imaging using tomographi
 methods whi
h use multiplesour
e dete
tor pairs that 
an render a

urate images of the underlying stru
turein tissue. A

urate spatial maps of opti
al properties prove useful 
ompared to thenon-tomographi
 spe
tros
opy methods dis
ussed above.
1.2 Di�use opti
al tomographyIn the past 15 years there has been in
reasing resear
h into the use of near-infraredlight to image inside the human body with tomographi
 approa
hes. Re
ent e�ortshave demonstrated that these methods 
an provide useful information for tumor lo-
ation and opti
al parameters. In this setting tissue is illuminated with spatially dis-tributed sour
es and measurement taken with an array of sour
es where tomographi
algorithms 
an be used to re
onstru
t sli
e images of the medium. These methods
an provide better lo
alization of abnormalities in tissue and opti
al properties byrendering a

urate maps of the imaging domain and in some 
ases, spatial-temporalpro�les of 
hromophore 
on
entrations (oxy- and deoxy-hemoglobin, water and lipidset
.) whi
h 
onvey fun
tional information about the body [72℄. One of the te
h-niques of interest is di�use opti
al tomography (DOT) [48℄. DOT uses infrared lightwhi
h is, as was dis
ussed above, sensitive to the fun
tional state of tissue su
h as the
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onsumption of oxygen whi
h is possibly relevant to pro
esses su
h as the growth oftumors, vas
ular stru
tures as well as the state of brain a
tivity. Spe
i�
ally, existing
lini
al studies have related 
on
entrations of total hemoglobin with tumor lo
ations,whi
h is promising for using light to lo
ate tumors. Although many appli
ations havebeen shown for the DOT method the most promising ones are for brain imaging andbreast imaging. For the 
ase of brain the dominant method is still topography, whi
hmonitors haemodynami
 and oxygenation 
hanges, while breast imaging serves as ourfo
us in this thesis [42, 92℄.Throughout this work we 
onsider a standalone DOT devi
e [44℄. Although astandalone devi
e is 
onsidered, it is interesting to 
ompare DOT to X-ray espe
iallysin
e DOT o�ers fun
tional information whi
h 
an be hard to obtain with X-raymammography, whereas the later gives highly detailed anatomi
al information. Tu-mor dete
tion in X-ray is for example done by the identi�
ation of mi
ro
al
i�
ation
hara
teristi
 of malignant lesions, while opti
al mammography measures 
hanges inblood perfusion of the tissue surrounding the tumor. These 
hanges o

ur early ina tumor's growth and 
an a�e
t a relatively large area [95℄. Some reasear
hes haveproposed that DOT be 
ombined with other modalities, for example Li et al. [71℄proposed that the 
ontrast seen in X-ray images should be assumed to be propor-tional to the DOT 
ontrast. A linear least-squares type of DOT image formationproblem was then posed to use the information from the X-ray measurements. Theimage re
onstru
tion was regularized using the Tikhonov method whi
h is similar to
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Figure 1.1: The pro
ess of photons passing through tissue [13℄. Bla
k line representslight inje
ted into the medium, where part of it is re�e
ted right at the surfa
e, rep-resented by the brown arrow. Purple line represents di�use re�e
tan
e, where light iss
attered out the same side as the inje
ted light. Blue line represent s
attered and ab-sorbed photons, where the green arrow is s
attered photons that travel to the dete
tor.Finally, red line represent ballisti
 photons that undergo no s
attering events.what is tested in Chapter 5. The regularization in general was based on regions ofinterest, mainly the tumor regions and ba
kground regions. Additionally, throughsimulation they were able to show that their method improved the 
ontrast-to-noiseratio and resolution in the re
onstru
ted image. Although, pairing DOT with otherimaging modalities is promising, the work in this thesis fo
uses on DOT as a stan-dalone modality, serving as an independent tool to estimate female breast health,without information gathered from X-ray imaging or other modalities. Additionally,as has been dis
ussed, mobility, 
ost and patient 
omfort are issues that are easier tosolve when 
onsidering a standalone DOT devi
e.



10As dis
ussed above, the fun
tional information a

essible by DOT shows signi�-
ant promise to apply it to breast 
an
er imaging. The use of near-infrared light isessentially ele
tromagneti
 radiation but is at a signi�
antly lower energy than CT,making this method less harmful. Operating in the infrared spe
trum, 650-950nm,gives us a range whi
h is sometime 
alled the window of transparen
y [95℄. In thiswindow light propagates relatively far into the tissue (on the order of 
entimeters)before being absorbed, thereby allowing us to probe quite deeply. Additionally, lightis also s
attered within the tissue as it intera
ts with subsurfa
e inhomogeneities.This pro
ess is illustrated in Fig. 1.1. Within the window, light is absorbed and s
at-tered di�erently at di�erent wavelengths depending on the spa
e-varying oxygenationstate of the tissue. This relation gives us a way to use multiple wavelengths whenestimating 
hromophore 
on
entrations, the re
overy of whi
h is the main interestof this thesis. Using di�erent wavelengths, performing multispe
tral measurementsor using a higher number of wavelength (i.e., 
olle
ting a �hyperspe
tral� dataset) ,more information is added to the imaging problem thereby improving our ability todetermine the 
on
entrations of 
hromophores and ultimately dete
t 
an
ers usingthe methods dis
ussed in the later part of this thesis. With this method it is possibleto in
rease the e�e
tiveness and a

ura
y of the DOT method.Re
overing fun
tional information with DOT is extremely useful if framed in theearly dete
tion framework dis
ussed above. Although our resear
h initially 
onsideredthe 
ase of tumor anomalies in breast tissue, it is 
lear that overall vas
ular stru
tures



11need to be 
onsidered. Traditional imaging modalities, su
h as X-ray and CT, whi
hrely on anatomi
al information are insensitive to tumors in early stages of growth dueto smaller sizes and lower attenuation of X-rays, whi
h fo
uses early dete
tion on there
overy of fun
tional information of the breast su
h as oxygenation and vas
ularityusing opti
al modalities [23℄. This drives the need to be able to dis
riminate and es-timate stru
tures embedded in breast tissue, in
luding major vas
ular stru
ture. Tothis end, work in this thesis will involve how we are able to estimate three-dimensional(3D) tubular stru
tures, relating to vas
ular shapes dete
ted in breast tissue, by ex-tending the method we have developed for image re
onstru
tion for DOT. To estimatethese stru
tures and parameters the light propagation through tissue must be mod-eled. Although the intera
tion of light and tissue is a highly 
omplex problem, therehave been signi�
ant advan
es in re
ent years to solve the problem e�
iently, both interms of theoreti
ally modeling the physi
s and developing useful 
odes for simulatingthe pro
ess.Due to these advan
es, the DOT method has be
ome the prime 
andidate forfuture breast 
an
er dete
tion systems. X-ray radiation in CT travels generally in astraight line, ex
luding Compton and Rayleigh s
attering, resulting in a mu
h simplerproblem than what is found for opti
al modalities. In the 
ase of di�use opti
altomography the photon's mean free path of travel between two s
attering events isvery short due to high s
attering, most often only a fra
tion of a millimeter. Be
ause ofthis, most photons travelling through a human breast undergoes numerous s
attering



12events. Thus, unlike CT where the physi
s of the problem is basi
ally straight linepropagation and yields a linear relationship between the quantity of interest tissuedensity and the observed data, for DOT a more 
omplex model is required [95℄.More spe
i�
ally, the physi
s of light intera
tion with the tissue is well modeled usingthe di�usion approximation to the radiative transport equation(RTE) whi
h yields anonlinear relationship between the 
hromophore 
on
entrations and the observationsof s
attered light [95℄. This is 
alled the di�usion equation whi
h expresses the photondensity as a fun
tion of absorption 
oe�
ient and s
attering 
oe�
ient and solvingit will provides the forward model needed to solve the inverse problem [48, 13℄.The signi�
ant 
omputational 
hallenge of DOT is that it is a ill-posed inverses
attering problem due to the physi
s of the di�usion pro
ess just des
ribed andin some 
ases the limited ability to 
olle
t quantities of data. Additionally, another
hallenge is the fa
t that the measurement is related non-linearly to the parameters ofinterest, whi
h is often addressed with linear approximations [13℄. The ill-posednessposes a more substantive problem than the non-linearity sin
e it leads to large 
hangesin parameters when fairly small 
hanges o

ur in the data. In some sense this is aphysi
s-based phenomenon, whi
h means there is a la
k of sensitivity in the data to theparameters. It also means that in the image formation pro
ess (if done naively), small
hanges in the data from noise and unmodeled e�e
ts 
an 
ause very large 
hanges tothe estimated pro�les. In other words the re
onstru
tion pro
ess is highly sensitive tosmall perturbations in the data. Adding to these di�
ulties is the fa
t that in many
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ases one seeks to re
over more degrees of freedom (voxel values times number of
hromophores) than one has data points [13℄. Taken together, the physi
s-based ill-posedness 
oupled with non-linearity pose a signi�
ant 
hallenge for re
overing opti
alproperties in DOT. Additionally, this thesis 
onsiders limited a
quisition geometriesthat result in underdetermined systems that dramati
ally 
ompli
ates our ability tostably re
over useful information about the state of the tissue from DOT data. Whilethere do exist 
amera based systems whi
h are overdetermined, where a signi�
antamount of sour
e-dete
tor pairs are pla
ed around the medium, our work fo
usesaround a spe
i�
 sour
e dete
tor setup des
ribed in Chapter 4 [86℄.Considering anomalous stru
tures like tumors or simply regions of interest, likevessels, the imaging problem 
an be formed as a segmentation problem, dete
ting one
lass of obje
ts from the ba
kground [7℄. This approa
h 
an help to 
onstrain theproblem, de
reasing the need for expli
it regularization for the inverse problem. Sim-ilarly, shape-based methods that utilize segmentation methods are promising for per-forming image re
onstru
tion by taking advantage of information from other imagingmodalities su
h as opti
al or X-ray mammography, where prior information regardingtumor lo
ation, vessel stru
ture or adipose tissue 
an be implemented [38℄.Resear
hers have developed several instrumentation types for opti
al mammog-raphy, some are similar to X-ray by 
ompressing the breast but others use 
one likearrangement of sour
es and dete
tors whi
h do not require 
ompression [24, 113℄.When the 
ompression te
hnique is used a laser sour
e illuminates on one plate,



14whi
h is transparent while a dete
tor on the opposite plate measures over severalmeasurement lo
ations for ea
h sour
e position [95℄. This arrangement redu
es thethi
kness of the transilluminated tissue. This te
hnique has of 
ourse been used forseveral years in X-ray mammography and has been proven to improve the dete
tabil-ity of deeply embedded obje
ts. One down side of the 
ompression method is that it
an 
ause blood to drain from the breast, thereby unpredi
tably altering the opti
alproperties [19℄.The other method, with sour
es and dete
tors situated in a plane around anun
ompressed breast, has the patient lying prone on a table with the unsupportedbreast suspended in a 
avity [86℄. The data a
quisition might 
onsist of a set of �xedsour
es and dete
tors or a rotating system that s
ans the breast's surfa
e. This setup
an provide a more 
omplete sampling data over the boundary, but makes de�ningthe problem's geometry more di�
ult and requires higher sensitivity of dete
tors, dueto the longer photon path. This results in higher sensitivity near the skin but mu
hlower near the 
enter of the breast. This also has the advantage that it should be mu
hmore 
omfortable for the patient sin
e numerous patients have felt the 
ompressionmethod to be un
omfortable and sometimes painful.



151.3 The purpose of this workThe key 
ontribution of this work is developing a method to perform shape-basedimage re
onstru
tion for DOT, both in terms of tumor dete
tion through re
over-ing 
hromophore 
on
entrations utilizing hyperspe
tral data, and estimating vas
ularstru
tures of breast tissue. For re
onstru
ting 
hromophore 
on
entrations we fo-
us on two-dimensional (2D) images, based on its simpli
ity and usefulness to judgethe performan
e of our method using both simulated data and experimental mea-surements. Considering the vas
ular stru
tures we extend our method of generating2D images to estimate tubular obje
ts representing vessels in breast tissue, using asimpli�ed model with extremely limited data.In traditional inversion methods for DOT image regions are dis
retized into large
olle
tions of voxels over whi
h absorption, s
attering or 
hromophore 
on
entrationsare assumed 
onstant. In this framework inversion needs to be 
arried out for a largenumber of unknowns to estimate the image representing opti
al properties of thebreast. Due to the previously dis
ussed ill-posedness of the problem pixel based re-
onstru
tion 
an pose signi�
ant 
hallenges for image re
overy. Instead of developingmethods to improve a pixel or voxel based re
onstru
tions we utilize a shape-basedmethod whi
h assumes that areas of interest in breast tissue 
an be divided into twodistin
t pie
e-wise 
onstant regions: ba
kground breast tissue, and stru
tures of in-terest, either anomalous areas or tubular stru
tures, representing blood vessels. Wethen aim to re
over a low order a

urate estimation of the underlying stru
tures for



16s
enarios where the opti
al absorption 
ontrast between the ba
kground and stru
tureof interest is within a range 
ommonly found in realisti
 situations [44℄.Our method emphasizes the use of simpli�ed models des
ribing the photon migra-tion through tissue, where a

urate representation of areas of interest 
an be a
hievedby redu
ing the dimensionality of the problem. This renders the inversion 
ompu-tationally feasible and easily expandable for other a

urate models 
al
ulated for avariety of geometries.
1.4 Thesis OutlineThe thesis is stru
tured as follows. In Chapter 2 we dis
uss the fundamental 
on
eptsof DOT, for image re
onstru
tion and review previous e�orts to re
over images of thefemale breast using DOT. In Chapter 3 the forward models used to 
ompute thephoton migration in several di�erent s
enarios 
onsidered in this thesis are detailed.Chapter 4 dis
usses experimental methods employed in this thesis to verify our 
laims.In Chapter 5 the low order shape based method is des
ribed and 
ompared to a pixelbased method. Chapter 6 
ontains brief dis
ussion regarding a di
tionary methodfor the low order method followed by our method for re
overing 3D stru
tures with2D primitives in Chapter 7. Finally, Chapter 8 
ontains dis
ussion regarding futuree�orts for this proje
t.



Chapter 2
Ba
kground
This se
tion will brie�y dis
uss the formulation and 
on
epts to be used in this thesis.The main problem of re
overing images will be dis
ussed in general to be followedwith more detailed dis
ussion in Chapters 5, 6 and 7. Throughout we referen
e majorworks in the �eld of image re
onstru
tion for DOT, whi
h allows the reader to furtherexplore the topi
.
2.1 Image re
onstru
tion for DOTThe pro
ess of re
overing images for DOT involves de�ning the forward problem,whi
h models the transport of photons through the relevant medium, as well as ad-dressing the 
hallenges of the inverse problem mentioned in Chapter 1.Lets assume that the domain to be imaged is de�ned by F , a 
ompa
t domainin R

n, n ≥ 2, where a physi
al model K a
ts on its properties. In the 
ase of our17
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e
Dete
tors observing Φ

Area ofInterest
∆c

Ba
kground
c0
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Figure 2.1: Basi
 setup of the imaging problem in this thesis. It demonstrates whereopti
al properties c are separated into foreground and ba
kground. The model K a
tson the entire domain, F , to generate Φappli
ation these properties in
lude opti
al absorption or 
hromophore 
on
entrationsand s
attering de�ned by a ve
tor of parameters, c, where the e�e
t of K on Fgenerates a set of observations, or a measurement, Φ. As dis
ussed in Chapter 1the measurement 
an be CW, time-domain or frequen
y domain data, where for thisthesis we 
onsider the CW 
ase. We de�ne a non-linear forward model representedby
Φ = K(c) (2.1)where c itself belongs to a Hilbert spa
e Sc. We de�ne the inverse problem� thepro
ess of re
overing an estimate ĉ of c from the measurement Φ� as a variationalapproa
h where we set up the estimation of ĉ as an optimization problem de�ning



19the inverse problem as
ĉ = argmin

c
G(c)where

G(c) = 1

2
‖K(c)−Φ‖22.

(2.2)
The data mismat
h term in (2.2) is in a least square form whi
h assumes that theestimate, ĉ, is mathemati
ally 
onsistent with the data, Φ. However, the underlyingphysi
s of photon migration, and limited data generally a
quired in a traditional DOTmeasurement setup, result in a solution that is highly sensitive to noise and systemerrors. Be
ause of this 
hallenge, and the fa
t that the basi
 forward model in (2.1)is non-linear, signi�
ant 
are is required when performing the re
onstru
tion.As detailed by Arridge [3℄ resear
hers have taken established solution methodsfrom other appli
ations and extended them to the opti
al tomography problem. Meth-ods adapted from 
omputed tomography have used the assumption that the Radontransform 
ould be applied to the DOT problem, where 
losed form solutions andba
kproje
tion s
hemes are proposed [49℄. Methods using linear matrix formulationthat are analogous to transfer fun
tions in single photon emission 
omputed tomog-raphy have also been 
onsidered [49℄.Essentially there are two types of image re
onstru
tion s
hemes for DOT; linearmethods, where approximations are applied to linearize (2.1) and non-linear methodsthat 
an be more a

urate, but more 
omputationally intensive. The remainder ofthis 
hapter will dis
uss these di�erent methods and regularization te
hniques applied



20to the optimization problem in (2.2).
2.2 Linear approximationsThe non-linear problem in (2.1) 
an be linearized if 
ertain assumptions are madeof the imaging medium. Detailed by Gibson et al. [49℄ the model 
an be linearizedif the a
tual opti
al properties are 
lose to an initial estimate ĉ0 and the measureddata Φ are 
lose to the simulated data Φ0 = K(c0), generated by the forward model.This approa
h is frequently used in di�eren
e imaging where data is 
olle
ted beforeand after an event that 
hanges the opti
al properties, for example the inje
tion ofa 
ontrast agent or breathing exer
ise [49℄. The linear approximation is de�ned byTaylor series as

Φ = Φ0 +K
′(ĉ0)(c− ĉ0) +K

′′(ĉ0)(c− ĉ0)
2 + . . . (2.3)where K

′ and K
′′ are the �rst- and se
ond-order Fré
het derivatives of K [4℄. TheFré
het derivative 
an be 
onsidered a linear integral operator that maps fun
tions inimage spa
e to measurement spa
e. The kernel of this integral 
an be 
omputed byanalyti
al Green's fun
tions, an approa
h used by Boas et al [14℄.By negle
ting higher order terms and stri
tly 
onsidering 
hanges in opti
al prop-erties ∆c = c−c0 and data ∆Φ = Φ−Φ0 the linear problem in (2.3) 
an be expressedas

∆Φ = K∆c (2.4)



21where K is now the linear forward model. Ignoring the higher order terms this waygives way to implementing two di�erent linear approximations, the Born and Rytovapproximations, respe
tively.2.2.1 Born ApproximationSometimes referred to as single s
atter method, the Born approximation 
onsists oftaking the in
ident �eld in pla
e of the total �eld as the driving �eld at ea
h point inthe s
atterer. This is equal to writing the total �eld as a sum of an in
ident �eld, Φiand a s
attered �eld Φ
s given by

Φ = Φ
i +Φ

s. (2.5)Physi
ally it amounts to treating ea
h point in an inhomogeneity as if it existed inisolation from the rest of the inhomogeneity ignoring the 
ontributions of perturba-tions of the s
attered �eld from one part of an inhomogeneity on the �eld in
ident onanother part [48℄. It is well established that the Born approximation deviates fromthe true result when the perturbation ∆c ex
eeds a 
ertain limit [91℄ where extensiveanalysis has been performed on the error in opti
al absorption images due to theapproximation [54℄ and error modeling has been used to perform 
orre
tions for theBorn approximation [103℄. However, taking these limitations into a

ount, the Bornapproximation 
an be a useful tool to simplify the inverse problem and has been ex-tensively used in DOT, both for simulations and 
lini
al setting [48, 105℄. It providesa straightforward method to 
ompute and linearize the forward model, whi
h 
an be



22used to test re
onstru
tion algorithms. Additionally, as noted by [91℄ the method 
anbe extended into higher orders, rendering more a

urate results. For the purpose ofthis thesis the Born approximation is used, and is dis
ussed further in Chapter 3.2.2.2 Rytov ApproximationAnother approa
h is the Rytov Approximation whi
h is 
omputed by linearizing thelog intensity whi
h redu
es the dynami
 range of Φ, whi
h assumes that the total�eld 
an be 
omputed as
Φ = Φ

i exp (Φs). (2.6)It has been reported that Rytov approximation is better suited for experimental data,in that it is less ill-posed than the Born Approximation [3℄, where it a

ounts for somenon-linear saturation due to in
reasing perturbation in the absorption 
oe�
ient.However, where the Born approximation is only suitable for lower opti
al 
ontrasts,the Rytov approximation assumes that the s
attered wave varies slowly, thus beingmore suitable for larger perturbations [81℄. Boas [11℄ reported that the Rytov approx-imation has a dis
repan
y of about four times greater than the Born approximation,but suggested that the Rytov approximation 
ould be empiri
ally modi�ed. Re
entlythe Rytov approximation has su

essfully been employed for image re
onstru
tion forexperimental and 
lini
al measurements [79℄.Using either of these linear approximations allows for dire
tly inverting the K



23matrix in (2.4). To this end a variety of 
ommon te
hniques are available in
lud-ing singular value de
omposition, trun
ated singular value de
omposition, Tikhonovregularization or algebrai
 re
onstru
tion te
hnique (ART) [48℄.
2.3 Regularization te
hniquesBefore applying regularization te
hniques, prior anatomi
al information 
an be 
on-sidered for the purpose of regularizing the solution of the inverse problem that 
animprove estimation of 
hromophore 
on
entrations. Su
h prior information 
an be in-
luded in the forward model, whi
h usually involves implementing 
omplex geometrieswith numeri
al models. To this end various methods 
an be applied, in
luding the�nite di�eren
e method dis
ussed in Chapter 3. In
luding this kind of information inthe forward model allows for taking advantage of anatomi
al prior information whileusing various forward models, as it has been shown that it is bene�
ial for both linearand non-linear re
onstru
tions [12℄. Notably, prior information from X-ray images hasproven to be useful to de�ne the segmentation between adipose and �broglandulartissue in the breast. Fang et al [38℄ demonstrated that 
onstru
ting a regularizationmatrix that in
orporated stru
tural priors from X-ray data into a �nite element DOTinversion resulted in a

urate estimation for 
lini
al data.When prior stru
tural information is not available, various te
hniques exist toregularize the inverse solution. Throughout this thesis, we 
onsider standalone DOTdevi
e, and as su
h stru
tural prior information is hard to 
ome by. This requires



24implementing other methods for regularizing the inverse solution.2.3.1 Re
onstru
tion using the singular value de
ompositionFor K a m×p matrix with m > p, the singular value de
omposition (SVD) takes theform K = UΣVT =

p∑

i=1

uiσiv
T
i (2.7)where U is an m × m unitary matrix, the matrix Σ is m × p diagonal matrix withnonnegative real numbers on the diagonal, and V is an p× p unitary matrix.The 
ommon 
onvention is to order the diagonal entries Σi,j in non-in
reasingfashion. The diagonal entries of Σ are known as the singular values of K. Thenumber of non-zero singular values, r, is the rank of K. Then Σ is written as:

Σ = diag(σ1, σ2, . . . , σr) (2.8)The pseudo inverse of K, K+, is de�ned asK+ = VΣ
+UT (2.9)where Σ+ is formed by

Σ
+ = diag(σ−1

1 , σ−1
2 , . . . , σ−1

r ) (2.10)This pseudo inverse is then used to obtain ∆̂c = K+∆Φ

∆̂c =

r∑

i=1

1

σi
vi〈ui,∆φi〉 = VΣ

+UT∆Φ (2.11)



25When dealing with a matrix, K, where the singular values de
ay over many orders ofmagnitude towards zero, like in the DOT 
ase, the problem be
omes more 
ompli
ateddue to the evaluation of σ−1.To see how the SVD gives insight into the ill-
onditioning of K, 
onsider thefollowing relations [57℄: Kvi = σiui, ‖Kvi‖2 = σiKTui = σivi, ‖KTui‖2 = σi

(2.12)where ui, vi are left and right singular ve
tors, basis for the row and 
olumn spa
esof K, respe
tively and represent the i th elements in the V and U matri
es. It 
an beseen that a small singular value σi, relative to σ1 = ‖K‖2, means that there exists a
ertain linear 
ombination of the 
olumns of K, 
hara
terized by the elements of theright singular ve
tor vi, su
h that ‖Kvi‖2 = σi is small. The same holds for ui andthe rows of K. In other words, a situation with one or more small σi implies that
K is nearly rank de�
ient, and the ve
tors ui and vi asso
iated with the small σiare the numeri
al null ve
tors of KT and K respe
tively. From this property it 
anbe 
on
luded that the matrix 
orresponding to a dis
rete ill-posed problem is alwayshighly ill-
onditioned.The SVD is an invaluable tool for analysis of problems with ill-
onditioned ma-tri
es and the trun
ated SVD (des
ribed below) has been used su

essfully to solvea variety of ill-posed problems of the form 2.4. When ∆Φ in (2.4) is perturbed byerrors then the solution to the perturbed problem is very likely to be dominated by



26large amplitude, high frequen
y errors with stru
ture of singular ve
tors 
orrelatedto small singular values [56℄. It is therefore ne
essary to use some sort of regulariza-tion to 
ompute a solution that is less sensitive to the perturbations. The Tikhonovmethod is 
ommonly used in this respe
t and will be dis
ussed in detail in Se
tion2.3. An alternative method for regularization of (2.2) is the Trun
ated SVD. TSVDuses a redu
ed rank approximation to K that is obtained by setting all but the �rstl largest singular values equal to zero and using only the �rst 
olumns of U and V.Thus the TSVD solution, ∆̂cl, is de�ned by
∆̂cl ≈

l∑

i=1

vi〈ui, g〉 = VΣ
+
l UT∆Φ where

Σ
+
l = diag(σ−1

1 , σ−1
2 , . . . , σ−1

l , 0, . . . , 0)The integer l is 
alled the trun
ation parameter. The TSVD be
omes espe
ially usefulwhen dealing with ill-posed problems su
h as the forward model matri
es for the DOTproblem whi
h are often poorly 
onditioned with a very wide range of singular values.The singular value spe
trum for the DOT problem 
an have a range of seven ordersof magnitude in the singular values [48℄.2.3.2 Tikhonov RegularizationConsidering the obje
tive fun
tion in (2.2) the ill-posed inverse problem poses an in-stability in the solution with respe
t to small variations. This results in non-uniqenessof solutions where large 
hanges in opti
al properties result in small 
hanges in the



27estimated solution to (2.2) whi
h suggests the importan
e of augmenting the obje
-tive fun
tion by in
luding regularization terms whi
h modi�es the obje
tive fun
tion.This approa
h allows for more a

urate re
onstru
tion 
ompared to TSVD whereregularization terms 
an be spe
i�
ally de�ned to in
orporate prior information orsuppress edge artifa
ts. The obje
tive fun
tion is then de�ned by
G(c) = ‖K(c)−Φ‖22 + α‖Lc‖2. (2.13)The se
ond term in
ludes the regularization matrix L weighted by the regularizationparameter α. Considering the linearized form of the forward model in (2.4) theobje
tive fun
tion in (2.13) 
an be expressed by

G = (K∆̂c−∆Φ)T (K∆̂c−∆Φ) + α∆̂c
T
L

T
L∆̂c. (2.14)Optimizing this equation is done by taking the partial derivative with respe
t to ∆̂cand setting equal to zero

δG
δ∆̂c

= 2KT
K∆̂c− 2KT∆Φ + 2αLT

L∆̂c

0 = 2KT
K∆̂c− 2KT∆Φ + 2αLT

L∆̂c

∆̂c = (KT
K+ αLT

L)−1
K

TΦ

(2.15)
There are multiple options for 
hoi
e of the regularization matrix, L, whi
h servesthe purpose of regularizing the solution to in
rease the quality of the re
onstru
tedimage. In essen
e its 
hoi
e requires taking into a

ount a priori information regard-ing the imaging medium at hand, whi
h for our appli
ation, is breast tissue. Whenit is 
hosen to be identity the impli
it prior assumption is that the 
on
entrations of
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hromophores are small, when α is 
hosen to be su�
iently large. When the imagingmedium is dis
retized on a relatively 
oarse grid the opti
al properties in the breast
an be 
onsidered being slowly varying, so the system 
an be assumed to be smooth.This prior information leading to a reasonable 
hoi
e of a spatial di�erential operatoras L.The 
hallenge in 
hoosing the α parameter is of even greater importan
e whenimplementing regularization in (2.13). Formal methods exist and are widely employed,su
h as generalized 
ross-validation (GCV) or the L-
urve method, whi
h usuallyveri�ed with other error metri
s and visual inspe
tion. In the L-
urve method a plotof log(‖Lĉ‖2) is generated against log(‖W(K(ĉ) − Φ)‖2) as α is varied. Larger αmakes the system better 
onditioned, but this new augmented system is farther awayfrom the original system, without regularization. Assuming no noise, any su�
ientlysmall value of α will produ
e the same result, but with in
reasing noise the need oflarger α grows. Gradient like regularization matrix and the L-
urve method is appliedfor multiple 
hromophores for pixel based re
onstru
tion as in Chapter 5, while anadjusted regularization matrix is utilized for estimating 3D shapes in Chapter 7.
2.4 Non-linear re
onstru
tionThe aim of non-linear image re
onstru
tion is to 
al
ulate opti
al properties at ea
hpoint within the model using measurements of light �uen
e from the tissue surfa
e.This is performed if the inverse problem 
annot be assumed to be a re
overy of



29values relative to a known ba
kground or a di�eren
e measurement, but a re
overyof absolute values of the opti
al properties. Solving the non-linear problem involvesiterating the obje
tive fun
tion G in (2.2) whi
h minimizes the mismat
h betweenmodeled data from K(ĉ) and measured data Φ. As before in the 
ase of breastimaging ĉ is the images of opti
al properties. Finding the best estimate of c tominimize the data mismat
h term requires an iterative re
onstru
tion, whi
h 
an beseperated into two distin
t approa
hes; gradient-based re
onstru
tion, whi
h has beenextensively studied by Arridge & S
hwieger [6, 3℄ and Hielser et al [60℄, or Newton-likemethods [93℄.Gradient based methods avoid the problem of Newton methods whi
h involve thealgorithm be
oming intra
table as the size of the problem domain in
reases [6℄. Ingradient based algorithms su
h as 
onjugate gradient, a set of 
onjugate sear
h dire
-tions is generated to �nd the minimum of the obje
tive fun
tion. At ea
h iterationstep a one-dimensional line minimization along the 
urrent sear
h dire
tion is per-formed. The update in gradient methods is 
omputed from initial value c(0) to obtainthe estimate ĉ
ĉ
(i+1) = ĉ

(i) − ρ(i)G ′(ĉ) (2.16)where i represents the number of iteration, where ea
h step is taken along the minusderivative dire
tion of G, ρ is the step size whi
h needs to redu
e 
ost and be largeenough to redu
e number of iterations and G ′ represents the Fré
het derivative of
G. It should be noted that the gradient based method 
an be sensitive to variable



30s
aling, whi
h 
an e�e
t problems where estimation is performed for di�erent typesof unknowns with di�erent orders of intensity [49℄. This problem is en
ountered inshape-based methods, where estimation is performed for both value of absorption andshape, detailed in Chapter 5. This sensitivity 
an also be en
ountered when invertingmultiple 
hromophores, and s
attering amplitude, where the parameters with largersensitivities are updated faster 
ompared to low sensitivity unknowns, whi
h does notiterate some 
hromophore images from initial guess.Newton methods seek to to �nd a zero of the gradient of G by expanding theestimate at ea
h iteration with Taylor expansion. This leads to an update at ea
hiteration 
omputed by
(JTJ+ ρH)h = −JTǫ with ρ ≥ 0 (2.17)where J = K

′ is the Ja
obian of the data mismat
h term and H is a Hessian matrix.Commonly employed algorithm used to to solve the non-linear re
onstru
tion withNewton methods is the Levenberg Marquardt algorithm whi
h involves de�ning alarge initial ρ and redu
ing it dynami
ally through iterations [3℄. Re
onstru
tions forthe shape-based method in this thesis are performed implementing the Levenberg-Marquardt algorithm, detailed in Chapter 5.What these two approa
hes share is that great 
are has to be taken when de�ningwhen the optimal solution ĉ has been a
hieved. This usually involves stopping theiteration when the update to ĉ is below a 
ertain threshold, or a de�ned noise levelhas been rea
hed. Working with the Levenberg-Marquardt algorithm in this thesis



31we 
hose the se
ond stopping 
riteria, detailed in Chapter 5.
2.5 Shape Based MethodsWide variety of applied imaging problems involve determining a two dimensional (2D)area or three-dimensional (3D) volume in a larger �eld of regard. In the 
ontext ofthis thesis, this area of interest 
an be a 
an
erous tumor or a tubular like stru
turerepresenting vessels in breast tissue. One way to approa
h these problems and es-timation of these stru
tures is to re
onstru
t regions of interest without 
onstraintsof the shapes of anomalous lo
ations [59, 48, 33℄. These re
onstru
tions require postpro
essing where the segments of the re
overed images are identi�ed in terms ofba
kground and area of interest. An alternative way is to dire
tly estimate areas ofinterest and the values of opti
al properties asso
iated with ea
h. These approa
hesare known as shape-based methods and have been gaining interest for opti
al imagingmethods [1, 112, 16, 67, 7℄.Shape-based methods involve separating the estimation of c in (2.1) into re
overyof two distin
t 
lasses, foreground and ba
kground. This approa
h then estimatesthe boundary of the area of interest, or foreground, and assigns a value for opti
alproperties inside this region and outside for ba
kground. The formulation presentedin this thesis assumes that values in the two separate areas are pie
ewise 
onstant,however adding texture fun
tions to estimate variable 
on
entrations in these areasis straightforward [1℄. Throughout this thesis we separate c by de�ning it over the



32domain F as
c = caχ(x, y) + cb[1− χ(x, y)] (2.18)Here the fun
tion χ is de�ned as a 
hara
teristi
 fun
tion de�ned as 1 inside of theboundary of c de�ned as Ω and 0 outside of it. Re
overing the boundary of Ω is themain goal in shape-based estimation, and is shown within the imaging domain F inFig. 2.2. Estimating this boundary 
an be done by evaluating a dense 
olle
tion ofpixels, as is done in traditional image re
onstru
tion for opti
al imaging. Anotherapproa
h is to parametrize the boundary of Ω and generate an estimate of c by esti-mating derivatives of the domain mapping the measurement to the opti
al parametersof interest. Constraining the image formation with this segmentation approa
h anda parametri
 
urve lessens the need of added regularization terms in the obje
tivefun
tion (2.2) sin
e the estimate is impli
itly regularized through the formulation [1℄.A signi�
ant drawba
k to this method is that a priori information is required tode�ne the number of areas of interest whi
h is a signi�
ant issue 
on
erning medi
alimaging modalities where the ground truth is hard to 
ome by.

x

z
Ω

F

Figure 2.2: De�nition of anomalous region Ω within the imaging domain F used forshape-based methods.



33The need of prior information to estimate the 
urve 
an be 
ir
umvented by esti-mating the boundary of Ω using a level-set representation of the unknown parameters[114℄. This is the primary approa
h 
onsidered in this thesis. In [34℄ level sets wereused in a two-step method for shape estimation assuming that prior information ofthe absorption parameter was known. S
hweiger et al. [94℄ and Kilmer et al. [67℄employed level sets for the DOT problem estimating parameter distributions using apie
ewise basis. Arridge et al. [7℄ investigated shape based methods by estimatinglevel-sets, spe
i�
ally investigating an expli
it method using basis fun
tions and animpli
it shape re
onstru
tion to re
over absorption and di�usion 
oe�
ients assum-ing a known ba
kground [7℄. For a detailed review of the use of level sets in inverses
attering problems we point the reader to [35℄.The approa
h we 
onsider in this thesis is signi�
antly di�erent from those in[94, 34, 7℄. In addition to the fa
t that none of these papers have 
onsidered the fullyhyperspe
tral 
ase, some of these methods [94, 34, 67℄ require the re
overy of unknownquantities de�ned on a �ne s
ale pixelated dis
retization of the region of interest. Morespe
i�
ally in [7℄ absorption and s
attering are estimated using level sets assumingthose of the ba
kground are known. With the Born approximation we assume theabsorption and di�usion 
oe�
ients are known in the ba
kground but here we estimate
hromophore 
on
entrations and s
attering amplitude of the obje
t of interest as wellas 
hromophore 
on
entration in the ba
kground. Traditional image re
onstru
tionsmethods use a pixel-based grid, estimating ea
h pixel un
onstrained by segmentation,



34while traditional level set methods work with a level set fun
tion de�ned on a pixel-based grid. In both 
ases, regularization is required to obtain adequate results andone is fa
ed with the 
orresponding 
hallenge of 
hoosing regularization parameters[85, 94℄.In this thesis we 
onsider the use of a shape-based approa
h to the hyperspe
tralDOT problem based on a newly-developed parametri
 level set (PaLS) formulation.In [1℄, a basis fun
tion expansion was used to provide a low order representation ofthe level set fun
tion and yielded more a

urate results for a number of highly ill-posed inverse problems in
luding a restri
ted form of the DOT problem where a singlewavelength was employed to determine only opti
al absorption. The method requiredno expli
it regularization and, due to the low-order nature of the model (number ofparameters signi�
antly less than number of pixels) was amenable to Newton-typeinversion algorithms known to 
onverge more rapidly than gradient-based s
hemes.Moreover, in [1℄ it was demonstrated that experiments indi
ated a roubstness to thesele
tion of initial guess for the inversion algorithm.Considering the 
ase of DOT, the breast is a highly heterogeneous medium,whereas in the level set method we assume the images to be re
overed to be pie
ewise
onstant. This assumption is supported in the literature. For example S
hweiger etal. assumed anatomi
al prior information to derive a pie
ewise 
onstant region basis[92℄. In this thesis the 
hoi
e of the pie
e-wise approximation is su�
ient due to the



35underdetermined nature of our setup, where data is a
quired with limited sour
e-dete
tor pairs. This results in a high ill-posedness where high resolution informationis di�
ult to re
over, making the pie
e-wise approximation useful.Considering the heterogeneous medium en
ountered in this appli
ation, we ex-plore the appli
ation of implementing the low-order model by taking advantage ofredundant di
tionaries. This entails essentially 
reating a large matrix, 
ontaining alibrary of shapes that 
an be be used to estimate the underlying stru
ture. In this
ontext, a sparse representation means re
overing the unknown opti
al properties byin
luding only few elements from the di
tionary matrix.2.5.1 Primitives for 3D shape estimationConsidering the 
ase of estimating vas
ular stru
tures of the breast, whi
h as dis
ussedin Chapter 1 is important for breast imaging, the re
overy of 3D stru
tures is vital. Tothis end resear
hers have implemented a

urate numeri
al models whi
h dis
retize theimaging medium into voxels and re
over 3D stru
tures by assigning values to ea
helement [31℄, or re
onstru
ted 
ross-se
tions of 3D obje
ts to estimate their totalvolume and lo
ation [33℄. In the 
ase of the ill-posed DOT problem, this 
an be
omputationally intensive and hard to generate voxel meshes for di�erent geometrieswithout prior information.An alternative approa
h to re
onstru
tion of 3D shapes is presented in [18℄. Inthis paper the authors represent this 3D obje
t by a 
olle
tion of verti
ally sta
ked



36unit height 
ylinders, whi
h they refer to as primitives. The 
ross se
tional densityof ea
h primitive is represented as a fun
tion, f(r, γ), of a position ve
tor r and ave
tor of shape parameters γ. Spe
i�
ally, in [18℄ the fun
tion f(r, γ) is the indi
atorfun
tion for an ellipse where the shape of ea
h primitive is de�ned by a parameterve
tor that holds the 
enter and radius of the ellipse, the ratio of its semi-axes andthe orientation angle between its semi-axes. Under this model, ea
h obje
t primitiveis 
entered at a point, whi
h 
orresponds to the verti
al positioning of the 
enter axisfor that primitive. However, sin
e this model was developed for generalized 
ylinders,where a known training set or prior information would optimize the sele
tion of themodel parameters it is most e�e
tive when the obje
ts are modeled as su
h [18℄.Additionally, the approa
h in [18℄ restri
ted stru
tures to not interse
t in 3D spa
eand implemented a statisti
al method to determine if primitives in adja
ent sli
esshould be 
onne
ted.Inspired by [18℄, we introdu
e a new, �exible approa
h to the modeling and es-timation of 3D shapes. We de�ne a 3D obje
t using a set of 2D shapes, whi
h wealso refer to as primitives [18℄. Our model de�nes ea
h primitive as a 
ross-se
tion,an in�nitesimally thin area, whose stru
ture is de�ned by a ve
tor of parameters that
onsists of a 
olle
tion of basis fun
tions de�ned by their 
enter lo
ations, weightingfa
tors and axis length, or dilation. This formulation allows for implementation ofthe shape-based method to handle the estimation for ea
h sli
e, and 
orrelate them.The overall 3D obje
t stru
ture is de�ned by �sta
king� the primitive images together,
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reating a parametrized approximation to a 3D obje
t. Spe
i�
ally, in 3D Cartesian
oordinates (denoted by x − y − z), if z is assumed to 
orrespond to the �verti
al�,then ea
h primitive resides in an x − z plane. This takes advantage of the tubularnature of vessels 
ommonly found in parallel plate breast imaging (where the breastis 
ompressed) and the fa
t that major vessels in breast tissue generally travel per-pendi
ular to the 
hest wall [62℄. The re
onstru
tion algorithm is 
apable of �dea
ti-vating� any unne
essary basis fun
tions and thereby dis
overing the required numberof a
tive and passive primitives to e�e
tively re
onstru
t the obje
t's shape stru
-ture. As su
h, the model 
an e�e
tively image multiple spatially separate anomaliesagainst a ba
kground of potentially unknown stru
ture. Correlating adja
ent sli
eswe implement a regularization approa
h to augment the optimization method witha 
ost term asso
iated with the assumed linear relationship between adja
ent primi-tives. The sour
e dete
tor setup used for the purpose of this thesis, where sour
e anddete
tor is s
anned in tandem, relates our method to an opti
al mammography de-vi
e 
urrently being designed by Prof. Sergio Fantini's group at the Tufts UniversityBiomedi
al engineering department. Our method of re
overing shape, volume andabsorption estimates 
an utilize depth and oxygen saturation information a
quiredby Prof. Fantini's system as well as advan
ing the modality towards a standalonedevi
e. This 
onsideration is dis
ussed further in Chapter 7.



382.6 Hyperspe
tral informationResear
h for DOT has shown that in
luding multiple wavelengths in measurements
an in
rease the a

ura
y of the measurement. Multispe
tral measurements made itpossible for Boverman et al. [15, 99℄ to obtain hemoglobin images of the 
on
entrationand the hemoglobin oxygen saturation. Corlu et al. [30℄ showed that using multiplewavelengths are the key for obtaining physiologi
ally relevant tissue parameters withCW light. Indeed, a fa
tor in dete
ting breast 
an
er is the dis
rimination of a
tual
an
er and benign lesions or normal tissue inhomogeneities in the breast. Multi-wavelength information has been shown to be useful to make this distin
tion [42℄,whi
h is due to the fa
t that determining the level of blood oxygenation in the breast
an show the lo
al supply and demand of oxygen. Sin
e 
an
er tumors were suspe
tedto have low-oxygen levels this information 
an be 
lini
ally useful in making thedi�eren
e between tumors and benign artifa
ts [42℄.Multispe
tral data has also potential to redu
e the non-uniqness of the solutionto the DOT problem. This 
on
ept is not new and has been resear
hed extensivelyfor the past 20 years [5℄. In the 
ase of CW measurements, it has been shown thatdi�erent sets of absorption and s
attering parameters 
an yield identi
al data. Also,inversions 
an su�er from 
ross-talk between absorption and s
attering [5℄. Cross-talkhappens when a re
onstru
ted image of a 
hromophore shows tra
es of 
on
entrationsfrom other 
hromophores. These "ghost" images greatly redu
e a

ura
y of the over-all re
onstru
tion. Corlu et al. [30℄ showed how this nonuniqueness problem 
ould
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x axis (spatial)

y axis (spatial)
λ axis (spe
tral)

Figure 2.3: Example of hyperspe
tral 
ube 
onsidered for multi wavelength imaging.Ea
h pixel in ea
h image on the spe
tral axis 
orresponds to an absorption value inthe near-infrared spe
trum.be solved by using multispe
tral data, provided that it is used with the 
orre
t wave-lengths.Implementing multispe
tral information for DOT requires an informed 
hoi
e ofwavelengths to re
over spe
i�
 
hromophore 
on
entrations. In
reasing the amountof data used eliminates this 
hoi
e and opens the option of generalizing the model tosimultaneously re
overing multiple 
hromophores. Considering this it is imperativeto dis
uss how many wavelengths should be in
luded in the measurement, and howto optimally 
hoose the added wavelengths. This is where hyperspe
tral measure-ments 
ome into play, whi
h involves using a great number of wavelengths for themeasurement. However there is no set number of wavelengths that de�nes hyperspe
-tral imaging from multispe
tral imaging. Comparing hyperspe
tral vs. multispe
tral
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Figure 2.4: Molar extin
tion 
oe�
ients for oxy-hemoglobin (HbO2) deoxy-hemoglobin(HbR) shown as a fun
tion of wavelength.imaging, the wavelengths available for a re
onstru
tion is on the s
ale of ∼100 in thehyperspe
tral 
ase and that for the multispe
tral 
ase is less than ∼10 spe
tral bins[22℄.Hyperspe
tral imaging has been used extensively in the �elds of remote sensingand geology of natural and man-made materials that are indistinguishable using stan-dard 
olor imagery [69, 96℄. The fundamental basis for spa
e-based remote sensing isthat information is potentially available from the ele
tromagneti
 energy �eld arisingfrom the earth's surfa
e and, in parti
ular, from the spatial, spe
tral and temporalvariations in that �eld. This information is often represented by a 3D 
ube, where thetwo fa
e axes represent spatial lo
ations, and the depth axis of the 
ube representsspe
tral variations. This is referred to as a hyperspe
tral 
ube, shown in Fig. 2.6.Resear
hers have moved on to look at how the spe
tral variations might be used in
ases where imaging modalities work with data with low spatial resolution. In the
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ase of DOT, these spe
tral variations are represented by the extin
tion 
oe�
ients ofthe di�erent 
hromophores being estimated, where the extin
tion 
oe�
ient spe
trumfor oxyheomoglobin and deoxyhemoglobin are shown in Fig. 2.6.When re
onstru
ting images for 
on
entrations of 
hromophores in DOT thereare generally two ways of using spe
tral information. In this proje
t these two meth-ods will be referred to as the dire
t method and the indire
t method. The indire
tmethod generally requires three steps to obtain the 
on
entration images. First,measurements are taken at two or more wavelengths. Se
ond, images of the absorp-tion and redu
ed s
attering 
oe�
ients at the di�erent wavelengths are re
onstru
tedseparately. Last, the 
on
entration of the separate 
hromophores are derived fromthe opti
al properties. On the other hand the dire
t method skips the step of 
on-stru
ting the spe
tral absorption images and dire
tly re
onstru
ts the 
hromophoreimages from measured data [73℄. For this thesis we implement the dire
t method forre
overing 
hromophore images.In this thesis, we will explore the value of hyperspe
tral data for addressing themany issues asso
iated with ill-posedness en
ountered with DOT. It will be exam-ined how hyperspe
tral data 
an in
rease resolution and redu
e 
ross-talk. In otherwords, the ability to lo
alize small perturbations from individual spe
ies and abilityto separate multiple spe
ies.



Chapter 3
Forward Models
In this 
hapter we 
onsider the forward models used to model photon migration forthe methods in this thesis. We 
onsider the physi
s of mass transport as it is appliedto photon migration.
3.1 Di�usion approximationFor the purpose of this thesis we 
onsider the di�usion approximation of the radia-tive transport equation (RTE), an integro-di�erential equation, 
onsidered the mostgeneral model for photon migration. Due to its 
omplexity and high dimensional-ity its solutions are generally solved using Monte Carlo or numeri
al methods like�nite element, �nite di�eren
e or spheri
al harmoni
s method [77℄. The di�usionapproximation assumes that the spe
i�
 intensity develops a nearly isotropi
 angular42



43distribution due to the multiple s
attering e�e
ts. Additionally the di�usion approxi-mation repla
es the use of the RTE s
attering phase fun
tion with a single parameter,the redu
ed s
attering 
oe�
ient, de�ned by
µ′
s = µs(1− g) (3.1)where g is de�ned as the 
osine of the s
attering angle and the s
attering 
oe�
ient

µs is equal to the re
ipro
al of the transport s
attering length. This length is de�nedby the distan
e when a 
ollimated beam be
omes e�e
tively di�use, whi
h is about1 mm for near-infrared light in biologi
al tissue. It should be noted that the RTE
an be derived by �rst prin
iples by applying Maxwell's equations to the problem ofmultiple ele
tromagneti
 s
attering in dis
rete random media [78℄.In the time dependent 
ase, the di�usion approximation assumes that the photon
urrent is 
onstant in time, where in general terms the assumption is that the absorp-tion 
oe�
ient, µa, is dominated by s
attering, stated by µa ≪ µ′
s, su
h that the ratio

µ′
s/(µs + µa) is 
lose to unity. From this, the di�usive assumption 
an be justi�edwhen s
attering e�e
ts are predominant over absorption. Lastly the sour
e-dete
torseparation must be greater that 1/µ′

s whi
h is in the range of 1 mm. Considering ourappli
ation of breast imaging in transmission geometry, this 
onstraint is upheld.A model of light propagation in a highly s
attering medium is ne
essary both to
ompute the simulated �uen
e at the dete
tors and to map the �uen
e ba
k to the
hromophore 
on
entrations. Utilizing the di�usion approximation to the RTE weobtain a useful and 
ommonly employed model for the photon �uen
e in a highly



44s
attering medium, whi
h is often referred to as the Helmholtz frequen
y domaindi�usion equation
∇ ·D0(r, λ)∇Φ(r, λ) + (jω − vµ0

a(r, λ))Φ(r, λ) = −vS(r, λ) (3.2)where Φ(r, λ) is the photon �uen
e rate at position r due to light of wavelength
λ inje
ted into the medium, v is the ele
tromagneti
 propagation velo
ity in themedium, µ0

a(r, λ) is the spatially varying absorption 
oe�
ient, and S(r, λ) is thephoton sour
e with units of opti
al energy per unit time per unit volume. For thework in this thesis the sour
e is 
onsidered to be delta sour
es in spa
e and 
an bewritten as S(r, λ) = S0(λ)δ(r− rs) with S0(λ) the sour
e power at wavelength λ. Wenote that (3.2) in
ludes the term jω where ω is the modulation frequen
y of the lightintensity [108℄. Throughout this thesis we 
onsider ex
lusively problems for whi
h
ω = 0, representing CW measurements. For spatially varying s
attering we assumethat the di�usion 
oe�
ient D0(r, λ) follows Mie s
attering theory where a s
atteringprefa
tor Ψ depends on the size and density of s
atterers while a s
attering exponent
b depends on the size of the s
atterers. Using this, we write the di�usion 
oe�
ientas

D0(r, λ) = v

3Ψ

( λ
λ0

)b

= vΨ′d(λ). (3.3)The arbitrarily 
hosen referen
e wavelength λ0 is introdu
ed to a
hieve a form of theMie model where Ψ has the units of mm−1 and Ψ′ has units of mm.



453.2 Dis
rete model and integral equationNow as dis
ussed in Chapter 2 we de
ompose the di�usion and absorption 
oe�
ientas
D0(r, λ) = D(λ) + ∆D(r, λ)
µ0
a(r, λ) = µa(λ) + ∆µa(r, λ). (3.4)By this we 
an show that the perturbation in ∆µa and ∆D are related by an integraltransformation to the data whi
h 
an be de�ned as

Φ(r, λ) = Φ
i(r, λ) +Φ

s(r, λ) (3.5)where Φ
i and Φ

s are the in
ident and s
attered �eld, respe
tively, as dis
ussed inChapter 2. Using this we 
an rewrite (3.2) as
∇ · (D(λ) + ∆D(r, λ))∇Φ(r, λ) + (jω − v(µa(λ) + ∆µa(r, λ)))Φ(r, λ) = −vS(r, λ).(3.6)The solution to (3.6) obeys the integral equation

Φ(r, λ) = Φ
i(r, λ) + ∫

V

G(r, r′, λ)[∇ ·∆D(r′, λ)∇− v∆µa]Φ(r′, λ)dr′ (3.7)where Φ
i is the in
ident �eld and G(r, r′, λ) is the Green's fun
tion that satis�es thedi�usion equation de�ned as

[
∇2 +

vµa(r, λ)− jω

D(λ)

]
G(r, r′, λ) = δ(r− r′). (3.8)In general the Green's fun
tion G must satisfy boundary 
onditions on the boundarieswhere sour
es and dete
tors are lo
ated as well as (3.8). The Green's fun
tions di�er



46in terms of what geometry is 
onsidered, where throughout this thesis we 
onsidertransmission geometry. In this kind of setup, demonstrated in Fig. 2.1, where a sour
eand dete
tor are on opposite sides of the medium to be imaged, light is inje
ted intothe medium from the sour
e, whi
h migrates through it and absorbs or s
atters andresulting signal is pi
ked up by the dete
tor.
3.3 Green's Fun
tionsAnalyti
al solutions exist that dire
tly 
ompute the value of the Green's fun
tions re-lating to ea
h geometry. Working with Green's fun
tions require a 
hoi
e of geometrythat is best suitable for the experimental setup at hand [77℄ where they are 
omputedwhen the sour
e is 
onsidered to be a spatial and temporal delta fun
tion. Green'sfun
tions are 
ommonly employed to 
ompute the forward problem in image re
on-stru
tion, espe
ially when the medium 
an be approximated as a slab or an in�nitehalf-spa
e, whi
h is often 
onsidered for re�e
tan
e measurements. As noted by Gib-son [49℄ some resear
hes have extended this approa
h by implementing the Kir
ho�approximation, whi
h models the Green's fun
tion between two points in a mediumof arbitrary geometry by summing together Green's fun
tions in in�nite spa
e andGreen's fun
tions 
omputed for waves re�e
ted multiple times o� the boundary [90℄.Various geometries 
an be 
onsidered for this situation, and here we 
onsider three
ases, the in�nite medium, slab medium with boundary 
onditions on sour
e anddete
tor planes, and a box with boundary 
onditions on all sides.



47For the 
ase of an in�nite medium, free-spa
e Green's fun
tions are used to 
om-pute G(r, r′, λ) in (3.20) and 3.17 [48℄. Physi
ally this amounts to embedding thesour
e and dete
tor in the medium and no boundary 
onditions are 
onsidered forthe photon �uen
e, although �elds are required to obey asymptoti
 de
ay 
onditions.As dis
ussed by Fabrizio et. al [77℄ the geometry of the in�nite medium is mainlyuseful for understanding the intrinsi
 
hara
teristi
s of photon migration, sin
e thisgeometry allows for studying only the e�e
ts due to opti
al properties, not bound-aries. Obviously this setup is not realisti
 for a non-invasive imaging modality likeDOT, however, 
onsidering in�nite boundaries allows for relatively simple 
omputa-tions and is a good starting point to test algorithms. Expanding ea
h method to amore 
ompli
ated geometry, in
orporating boundaries is relatively straightforward.For the in�nite medium, the free-spa
e Green's fun
tion is 
omputed by
G(r, r′, λ) = −1

4πD(λ) | r− r′ |ejk0(λ)|r−r′| (3.9)As dis
ussed above, throughout this thesis a transmission geometry is 
onsidered,shown in Fig. 2.1 , as it is most 
ommonly used for the female breast imagings
enario. A natural progression from in�nite boundary is to 
onsider in�nite slabgeometry, where boundary 
onditions on the plane of the sour
e and dete
tor aretaken into a

ount. In other settings we 
onsider a in�nite slab geometry whereboundaries are applied to the planes where sour
es and dete
tors reside. For the 
aseof 
onstant s
attering and where the estimation of absorption values is the goal the
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z = 0

z = −ze

z = s
z = s+ ze

z+0 = zs Real sour
ez−0 = −2ze − zs

z−1 = −2s+ 2ze − zs
z+1 = −2s+ 4ze + zs

Area ofInterest
x

z

Figure 3.1: Setup of the slab geometry with example mirror sour
es used for 
al
ulatingthe slab geometry Green's fun
tion. Figure is not to s
ale.Green's fun
tion is [77℄
G(r, λ) = −1

4πD(λ)

m=+∞∑

m=−∞

{exp
[
− µeff(λ)

√
ρ2 + (z − z+m)

2
]

√
ρ2 + (z − z+m)

2

−
exp

[
− µeff(λ)

√
ρ2 + (z − z−m)

2
]

√
ρ2 + (z − z−m)

2

}
(3.10)

and µeff is
µeff(r, λ) = √

µa(r, λ)/D(λ) =
√

3µa(r, λ)µ′
s(λ) (3.11)where ρ =

√
x2 + y2. This solution is obtained by the method of images, sometimes
alled �mirror images.� The method makes use of boundary 
onditions that assumethe �uen
e equal to zero on the physi
al boundary of the di�usive medium or onan extrapolated surfa
e at a 
ertain distan
e from the physi
al boundary [58℄. Themethod of images allows for a solution of the photon �uen
e in the slab geometry as



49a superposition of solutions for the in�nite medium. In this formulation, z+m and z−mrepresent real positive and negative sour
e lo
ations, respe
tively. As shown in Fig.3.1 these sour
es are pla
ed along the z-axis at
z+m = 2m(s+ 2ze) + zs

z−m = 2m(s+ 2ze)− 2ze − zs

(3.12)where m are the summation terms in (3.10), s denotes the thi
kness of the slab, and
ze denotes the extrapolated boundary. This simpli�es 
omputations somewhat, whenthe solution for the in�nite medium has already been established, and provides a usefulmodel when experiments are performed for a phantom with boundary 
onditions.
3.4 Born ApproximationTo formulate the integral equation whi
h is used for our inversion methods, we em-ploy the Born approximation, whi
h as dis
ussed in Chapter 2 
onsists of taking thein
ident �eld Φ

i, shown in (3.5), in pla
e of the total �eld Φ in the s
atterer.Now 
onsidering the perturbation theory for ∆D and ∆µa and the assumptionthat Φi(r, λ) ≫ Φ
s(r, λ), whi
h gives us a approximated solution of (3.2) as

Φ
s(r, λ) ≈ −

( ∫
∆µ(r′, λ)G(rd, r′, λ)Φi(r′, rs, λ)dr′

+

∫
∆D(r′, λ)∇G(rd, r′, λ) · ∇Φ

i(r′, rs, λ)dr′) (3.13)where rd is the lo
ation of the dete
tor and Φ
i(r, rs, λ) is used here to denote thein
ident �eld at position r and wavelength λ due to a delta-sour
e lo
ated at rs.



50Examining (3.13) provides a linear relationship between the s
attered �uen
e and theabsorption perturbation.This equation 
an be dis
retized by 
onsidering only voxel points in the medium.Then the value ri is de�ned as the position ve
tor, denoting lo
ation in the mediumwith ri denoting the lo
ation of the ith su
h point within F . More formally, we expand
∆µa(r′, λ) and ∆D(r′, λ) using Dira
 delta fun
tions

∆µa(r′, λ) = a

Nv∑ri ∆µa(ri, λ)δ(r′ − ri)
∆D(r′, λ) = a

Nv∑ri ∆D(ri, λ)δ(r′ − ri) (3.14)where a represents the area of a pixel and Nv number of �eld points, or pixels 
on-sidered. Inserting (3.14) into equation (3.13) allows for dis
retization, by
Φ

s(r, λ) ≈ −
( ∫

a
Nv∑ri ∆µa(ri, λ)δ(r′ − ri)G(rd, r′, λ)Φi(r′, rs, λ)dr′

+

∫
a

Nv∑ri ∆D(ri, λ)δ(r′ − ri)∇G(rd, r′, λ) · ∇Φ
i(r′, rs, λ)dr′)

≈ −
(
a

Nv∑ri ∆µa(ri, λ) ∫ δ(r′ − ri)G(rd, r′, λ)Φi(r′, rs, λ)dr′
+a

Nv∑ri ∆D(ri, λ) ∫ δ(r′ − ri)∇G(rd, r′, λ) · ∇Φ
i(r′, rs, λ)dr′)

≈ −
(
a

Nv∑ri ∆µa(ri, λ)G(rd, ri, λ)Φi(ri, rs, λ)
+a

Nv∑ri ∆D(ri, λ)∇G(rd, ri, λ) · ∇Φ
i(ri, rs, λ))

(3.15)
Considering (3.15) a linear relationship between absorption, di�usion 
oe�
ient andmeasurement data has been established.



51As dis
ussed in Chaper 1 some re
onstru
tion results and methods stri
tly 
onsiderre
onstru
ting absorption values or 
hromophore 
on
entrations. In this s
enario thedi�usion 
oe�
ient in (3.3) is assumed to be spatially invariant as
D(λ) =

v

3µ′
s

. (3.16)This 
hanges (3.2) signi�
antly and simpli�es 
omputations somewhat. We utilizethe same approa
h as before with the Born approximation, resulting in the linearizeddis
retized model is 
omputed by
Φ

s(rd, λ) = −a
Nv∑

j=1

G(rd, rj, λ)Φi(rj, rs, λ)∆µa(rj , λ). (3.17)Now as mentioned in Chapter 1, DOT is often used to image the 
on
entration ofoxyhemoglobin and deoxy-hemoglobin along with other 
hromophores in tissue. Thete
hnique exploits the fa
t that oxyhemoglobin, HbO2, and deoxy-hemoglobin, HbR,are dominant absorbers in the infrared region [72℄. It 
an be assumed that the ab-sorption 
oe�
ient is dominated by the hemoglobin, then for these two 
hromophoresthe absorption 
oe�
ient would be written as
∆µa(r, λ) = εHbO2

(λ)∆cHbO2
(r) + εHbR(λ)∆cHbR(r). (3.18)where εX are the extin
tion 
oe�
ient of 
hromophore X and ∆cX represents the
on
entration of the Xth 
hromophore. The dependen
e of r in (3.18) 
omes fromthe 
on
entration of ea
h 
hromophore. Even though the DOT method bene�ts fromthe rea
tions of hemoglobin to infrared light, it 
an be extended to image other
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hromophores, like water or lipids for example. For the 
ase of Nc 
hromophores(3.18) would be
ome,
∆µa(r, λ) = Nc∑

k=1

εk(λ)∆ck(r) (3.19)Using (3.19), we write (3.15) as
Φ

s(λ) = −a
Nc,NV∑

k,j=1

(
G(rd, rj, λ)Φi(rj, rs, λ)εi(λ)∆ck,j

+ ∇G(rd, rj , λ) · ∇Φ
i(rj , rs, λ)∆Dj(r, λ)). (3.20)Similarly, (3.19) 
an be used with (3.17) to relate 
hromophore 
on
entrations tomeasurement data, with uniform spatial s
attering.The 
omputational tra
tability of the inversion s
heme we implement in this the-sis arises from the linear algebrai
 stru
ture asso
iated with (3.20). We start byde�ning ck ∈ R

Nv as the ve
tor obtained by lexi
ographi
ally ordering the unknown
on
entrations asso
iated with the kth 
hromophore and Φ
s(rj , rs, λ) to be the ve
torof observed s
attered �uen
e rate asso
iated with all sour
e-dete
tor pairs 
olle
tingdata at wavelength λ. Now, with Nλ the number of wavelengths used in a givenexperiment, (3.20) is written in matrix-ve
tor notation as




Φ
s(λ1)

Φ
s(λ2)...

Φ
s(λNλ

)




=




ε1(λ1)K
a
1 ε2(λ1)K

a
1 . . . εNc

(λ1)K
a
1 K

d
1

ε1(λ2)K
a
2 ε2(λ2)K

a
2 . . . εNc

(λ2)K
a
2 K

d
2... ... ... ... ...

ε1(λNλ
)Ka

Nλ
ε2(λNλ

)Ka
Nλ

. . . εNc
(λNλ

)Ka
Nλ

K
d
Nλ







∆c1

∆c2...
∆cNc

∆Ψ′


(3.21)



53where K
a
l represents the �rst term in the sum of (3.20) relating to 
hromophore
on
entrations and K

d
l is the se
ond term relating to the s
attering amplitude. Forthe 
ase of a 
onstant di�usion 
oe�
ient as in (3.17) the formulation in (3.21) omitsthe K

d
l terms and ∆Ψ′, whi
h represents the perturbation in di�usion amplitude.It should be noted in (3.21) that the matrix has elements whi
h are also thematri
es Ka

l and K
d
l . The (m, j)th element of them both represents the mth sour
e-dete
tor pair and as before j represents the jth voxel. Assuming that for a givenexperiment Nsd sour
e dete
tor pairs operate at all Nλ wavelengths, then ea
h Kl has

Nsd rows and Nv 
olumns so that the whole matrix K is of size NsdNλ × NvNc. If,for example, in an experimental setup where Nsd = 57, Nc = 2 
hromophores, andimage re
onstru
tion is done for 1800 pixels, Nv = 1800, and Nλ = 126 results in a
K matrix of size 7182 × 3600. Combining the matrix elements in (3.21) we write itin a more simple way as

Φ
s = K∆c. (3.22)



Chapter 4
Experimental methods
4.1 MeasurementsMeasurements are performed in 
ollaboration with Prof. Sergio Fantin's group in theBiomedi
al Engineering Department at Tufts University. Two groups of experimentswere 
ondu
ted. The �rst group involved a liquid phantom made to have realisti
opti
al properties 
omparable to the female breast. The purpose of these experimentswas to test the improvements of in
luding hyperspe
tral information to solve theinverse problem dis
ussed in Chapter 2. The se
ond group of experiments involved asolid phantom made of 
ured sili
on. These experiments were performed to provideexperimental validation of our method to re
over 3D tubular stru
tures, detailed inChapter 7.

54



554.2 Milk and Water phantomExperiments were performed to simulate a problem in an unbounded domain. Tothat end, a 
lear �sh tank was �lled with a milk and water solution in whi
h sour
esand dete
tors were submerged in the 
enter away from edges in order to simulatedin�nite boundaries. An example image of this experimental setup is shown in Fig.4.4.4.2.1 Liquid phantomThe ba
kground medium 
onsists of water and milk in the ratio of 2:1, respe
tively.Milk, with 2% fat, is used due to the similarities of the opti
al properties to humanbreast tissue. Bla
k India ink and blue food dye were added to mimi
 tissue 
hro-mophores. The ink and dye are mixed into the ba
kground of milk and water toa
hieve µa = 0.029 
m−1, at 600 nm, whi
h is in the range of opti
al absorption ofthe female breast [36, 98℄. The absorption spe
tra for the ink and dye in
lusions,shown in Fig. 4.1(b), have the most signi�
ant e�e
t in the 450-700 nm range. These
hromophores are 
hosen be
ause the spe
tral shapes of their absorption are similarto those of HbO2 and HbR and have been widely used in literature [31, 75℄.In order to obtain multi- and hyperspe
tral re
onstru
tion values for µa(λ) and
D(λ) the ba
kground has to be known and in the experimental measurements weassume uniform s
attering. Therefore we have the unperturbed representation of theredu
ed s
attering 
oe�
ient, µ′

s, whi
h is given by
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Figure 4.1: Absorption spe
tra of the ink and dye solutions 
hromophores used inexperimental measurements. Spe
i�
ally 
hosen wavelengths are marked with an as-terisk.
µ′
s = Ψ

( λ
λ0

)−b

. (4.1)This relates to the di�usion 
oe�
ient, D(λ), as it is de�ned in (3.16). Phase, ampli-tude and average intensity data are obtained at two wavelengths using a frequen
y-domain tissue spe
trometer to estimate the Ψ and b parameters in (4.1). This allowsus to extrapolate values for µ′
s at any wavelength [51℄.The measurement to obtain values for the µ′

s 
al
ulation and to verify that µa is
lose to the values used from literature is performed at two wavelengths, 690 nm and830 nm. The measurement give AC, DC and phase data for a signal travelling in themedium whi
h 
an be used to 
al
ulated µ′
s and µa for the medium. In greater detail,



57this information is obtained by moving a dete
tor away from a light sour
e inside ofthe medium. The 
hange in AC amplitude, DC amplitude and phase is plotted asa fun
tion of the position. Then Sϕ, Sα and Sδ are de�ned as the slopes when thephase, ln(DC · r) and ln(AC · r) are plotted respe
tively as a fun
tion of position of
r the sour
e-dete
tor separation, respe
tively. As shown by Fantini et al. [39℄ theabsorption 
oe�
ient and s
attering 
oe�
ient 
an then be 
al
ulated from Sα byusing

µa =
ω

2υ

(Sϕ

Sα

− Sα

Sϕ

)
µ′
s =

S2
α − S2

ϕ

3µa

.where ω is the modulation frequen
y set at 110 MHz, υ is the speed of light dividedby the index of refra
tion set as n = 1.4 [40℄. To verify these values, a separate
omputation are made with, Sδ, by using these relations
µa = − ω

2υ

(S2
ϕ

S2
δ

+ 1
)− 1

2

µ′
s =

S2
δ

3µa

− µaUsing this method the values in (4.1) were 
omputed to be Ψ = 6.5 
m−1 and b = 0.4.Sin
e µa does not follow a de�ned law like µ′
s, another approa
h has to be usedby estimating values by estimating extin
tion 
oe�
ient data for ink, dye, milk andwater. These extin
tion 
oe�
ient are measured in a standard spe
trophotometer.In our experiments, two phantom in
lusions, named set 1 and set 2, are 
reatedfor di�erent absorption 
ontrasts relative to the ba
kground in the range of 3:1 to1:1. The in
lusion in set 1 
ontains 10% ink and 90% dye and the in
lusion for set2 
ontains 70% dye and 30% ink. This 
ontrast range is 
omparable to traditionaltumour 
ontrasts reported in literature, whi
h have been 
lose to 3:1 and lower [84℄.
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Figure 4.2: (a) Absorption spe
tra for the ba
kground, µa, and the in
lusion, µa+∆µa,in experimental set 1, 
ontaining 10% ink and 90% dye. (b) Contrast between theba
kground and the in
lusion for experimental set 1.The re
onstru
tions in Chapter 5 are done for 176 wavelengths equally spa
ed overthe whole spe
trum and six spe
i�
ally 
hosen wavelengths as λ = [480, 550, 610, 630,650, 690℄ nm. The wavelengths are 
hosen around the isosbesti
 point, at 610 nm inFig. 4.1, where the 
ontrast between the 
hromophores is the highest and where ea
h
hromophore has highest absorption. The absorption spe
tra and the 
ontrast overthe spe
trum for set 1 and set 2 are shown in Fig. 4.2 and Fig. 4.3, respe
tively.4.2.2 Measurement setupIn experimental sets 1 and 2 one 
ylindri
al in
lusion 
ontaining ink and dye solutionsare pla
ed in the ba
kground medium. These in
lusions are 25 
m long transparenttubes so that opti
al properties are assumed 
onstant along the z-axis. The light
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Figure 4.3: (a) Absorption spe
tra for the ba
kground, µa, and the in
lusion, µa+∆µa,in experimental set 2, 
ontaining 70% ink and 30% dye. (b) Contrast between theba
kground and the in
lusion for experimental set 2.sour
e is an ar
 lamp (Model No.6258, Oriel Instrument, Stratford, CT) whose emis-sion is �rst spe
trally �ltered (400 -1000 nm) to reje
t ultraviolet and infrared light,and then fo
used onto a 3-mm-diameter illumination opti
al glass �ber bundle, whi
hdelivers light with an average illumination power of 280 mW, whi
h translates into apower density of 3.96 W/
m2. A 5 mm diameter 
olle
tion opti
al glass �ber bundleis lo
ated at three positions on the x axis, at xd = {−1, 0, 1} where the sour
e lo
a-tion is de�ned as xs = 0. As dis
ussed above, we 
onsider transmission geometry, sosour
es are on the opposite side of the in
lusions at a y-axis separation of 5 
m andlinearly s
anned.Experiments are made with the light sour
e pla
ed in su

ession at 8 positions with1 
m in
rements for a total of 24 sour
e-dete
tor pairs. The 
olle
tion opti
al �berdelivers light to a spe
trograph (Model No. SP-150, A
ton Resear
h Corp., A
ton,
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SourceDetectors
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Milk & water
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x
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zFigure 4.4: The setup of sour
es and dete
tors for in�nite geometry using liquid milkand water phantom.MA), whi
h disperses the light onto the dete
tor array of a 
harge 
oupled devi
e(CCD) 
amera (Model No. DU420A-BR-DD, Andor Te
hnology, South Windsor,CT). Two exposure times are used for the CCD 
amera to ensure that approximatelythe same number of photons are 
olle
ted for re
onstru
tions using 6 wavelengthsand for 176 wavelengths. Longer exposure time of 10 s is used for the 6 wavelength
ase and 500 ms for the 176 wavelength 
ase. In Chapter 5, we will demonstrate theimprovement of in
luding hyperspe
tral information, therefore, we setup the stage bypresenting an ideal 
ase where the signal to noise ratio is large, thereby providing abest-
ase s
enario for the few-wavelength re
onstru
tion against whi
h we 
ompareour approa
h as well as using realisti
 absorption 
ontrasts for the in
lusions. Thespe
trograph features a grating blazed at 700 nm with 350 g/mm, resulting in adispersion of 20 nm/mm at the exit port. The size of the CCD 
amera pixels of 26
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5 
m 3× 
uboid10× 
uboid 3× 
uboid

10× 
uboid
1.6 
mFigure 4.5: Sili
on phantom used for experimental measurements. Homogeneous 
ylin-dri
al slab, with two absorbing in
lusions.

µm×26 µm results in a spe
tral sampling rate of two data points per nanometer,even though the spe
tral resolution is not as high be
ause of the size of the entran
eslit (2 mm) used to a

ommodate the large 
olle
tion opti
al �ber bundle. From thedata we only retain the wavelength band 650-900 nm where the signal-to-noise ratiois adequate.In our experiments the in
ident �eld is a data set taken before the perturbationis put into the medium. The s
attered �eld is then 
omputed as a dataset that hasthe original unperturbed dataset subtra
ted from it.



624.3 Sili
on phantomThis experimental set was taken to validate our method to re
over 3D tubular stru
-tures by re
onstru
ting multiple 2D sli
es. To that end a sili
on phantom was 
on-stru
ted by Elizabeth Rosenberg, undergraduate student in the Biomedi
al Engineer-ing Department, and s
ans were a
quired by Pamela G. Anderson, a do
toral studentin Prof. Fantini's lab at the Tufts Medi
al Center.4.3.1 Constru
tion of CylinderThe stru
ture of the sili
on phantom is shown in Fig. 4.5. It is made of two 
ylindri
alslabs, both made of identi
al homogeneous solutions, where one of them 
ontains twohigher absorbing in
lusions. The two slabs are 
ured independently, where the one
ontaining in
lusions is �tted with 
uvettes to 
reate gaps where they are pla
ed.The homogeneous ba
kground slabs were made with 360 mL of PDMS (Sili
one In
,P-4). The pro
edure begins by mixing 36 mL of 
uring agent (Sili
one In
, P-4) with0.288 g TiO2 powder for 30 minutes, and the PDMS is mixed with 0.1008 g of Indiaink and 
ured for 15 minutes. The PDMS/INK mixture is then pla
ed into a va
uum
hamber to remove air bubbles. The two mixtures are then poured into a 
ylindri
almold to form ea
h half of the 
ylinder, whi
h is then pla
ed into a va
uum 
hamberagain for 15 minutes, after whi
h ea
h 
ylindri
al slab whi
h make up the phantomtake 24 hours to 
ure.The two halves 
ombined together form a 5 
m thi
k homogeneous slab, with



63measured µa = 0.16 
m−1 and µ′
s = 10.1 
m−1 at 690 nm. The two absorbingin
lusions are ea
h a 
uboid with height and width of 1 
m and length of 4.5, separatedby 1.6 
m.The 
uboid in
lusions have the same µ′

s as the slab and the 
uboids have 10and 3 times the absorption of the ba
kground, respe
tively. The 10× absorptionresults in a highly absorbing rod, where we de�ne ∆µa = 1.28 
m−1 for groundtruth 
omparison, whereas the 3× 
uboid has ∆µa = 0.33 
m−1. Although the 10×absorbing rod has high absorption, the 3× rod is 
loset to realisti
 values found forbreast tumours. This experimental setup allows us to test our algorithm to re
overrealisti
 tubular stru
tures a

urately even when highly absorbing areas, ex
eedingthe Born approximation limit, are present in the medium [84, 43℄.4.3.2 S
anning measurmentsTwo di�erent measurements are performed to test the robustness of the approa
hwhen in
lusions are angled with respe
t to s
anning dire
tion. The angle ϕ is de�nedas the angle between the dire
tion of the 
uboids and the s
anning dire
tion, as shownin Fig. 4.6. The �rst set is obtained where the in
lusions are exa
tly perpendi
ularto the s
anning dire
tion, ϕ = 90◦, and a se
ond set where ϕ = 30◦. These sour
edete
tor pla
ement is shown in Fig. 4.6 where the ground truth used for error metri
for ea
h 
ase is shown in Fig. 4.7. Both of these experiments are performed at theTufts Medi
al Center. The instrument in the 
lini
 performs a two dimensional planar
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Figure 4.6: The setup of sour
es and dete
tors for simulation re
onstru
tions. Sameorientation of axes is used for experimental data. The angle ϕ represents the anglebetween the axis of the in
lusion, along y in the �gure, and the s
anning dire
tion,along x in the �gure.s
an, with an illumination and dete
tion �ber operating in transmission geometry. Forthree di�erent dete
tor positions at xd = {±1, 0} 
m a 4 mm diameter �ber is pla
edon the opposite side of the phantom. For ea
h s
an 32 light sour
es are 
onsideredwith 0.2 in
rements resulting in 96 sour
e-dete
tor pairs for ea
h sli
e, where sli
es arespa
ed 0.2 
m along the y-axis. Using a Xenon ar
 lamp light sour
e emitting 13 mW,opti
al data is then found by spatially sampling 25 points/
m2 at wavelengths from650-900 nm. The light is 
olle
ted by the �ber atta
hed to a spe
trograph (ModelNo. SP-150, A
ton Resear
h Corp., A
ton, MA) with a 2 mm wide slit entran
e. Thewavelengths are resolved by a 
ooled CCD Camera (Model No. DU420A-BR-DD,Andor Te
hnology, South Windsor, CT) giving a spe
tral sampling rate of 0.5 nm−1.Re
onstru
tions are performed for wavelength 690 nm.



65As in Se
tion 4.2 the in
ident �eld needs to be estimated in order to apply the Bornapproximation. To a
hieve this an extra homogeneous slab was 
ured, to generate asolid 5 
m thi
k 
ylinder with the ba
kground absorption 
oe�
ient and s
atteringdetailed in Se
tion 4.3.1. As with the a
tual phantom, it was ensured that no air gapformed between the slabs. As dis
ussed in Se
tion 3.3, image re
onstru
tions in thisexperimental setup we utilize analyti
al Green's fun
tions for the forward model in3.22, where we 
onsider slab geometry Green's fun
tion given by (3.10).
10× 
uboid 3× 
uboid 3× 
uboid 10× 
uboid

x

y

z

ϕ = 90◦

x

y

z

ϕ = 30◦

Figure 4.7: Cal
ulated ground truth images for phantom angled at ϕ = 90◦ and ϕ =

30◦ relative to s
anning dire
tion along the x-axis.



Chapter 5
Hyperspe
tral PaLS BasedRe
onstru
tion
5.1 Parametri
 level-set methodTo 
ounter the ill-posedness of the DOT problem we employ a Parametri
 Level-SetMethod (PaLS) [1℄. For the purpose of this thesis we assume that all 
hromophore
on
entrations and di�usion 
oe�
ient perturbations are 
o-lo
ated. This 
hoi
e issupported by reports in literature, where in
rease in hemoglobin and water 
on
en-tration along with s
attering power are lo
ated at the 
an
er lo
ation and the lipid
on
entrations in
rease at the same lo
ation [20, 97, 115℄. This means that the ge-ometry of the anomaly in the medium is the same for all 
hromophores and di�usionamplitude. The domain Ω ⊂ F represents the support of the obje
ts of interest, and66
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F represents the homogeneous ba
kground within whi
h the abnormality is lo
ated,shown in Fig. 5.1(a).
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x

z r1[κ1, β1]r2[κ2, β2]r3[κ3, β3]r4[κ4, β4]Movable basisfun
tions
(
)Figure 5.1: (a) De�nition of domains used for the parametri
 level-set methods asshown in Chapter 2. (b) Cir
les represent example basis fun
tions pla
ed on a �xedgrid in the imaging medium. The iteration pro
ess evolves κi to the estimated anomalystru
ture. (
) Example of movable basis fun
tions pla
ed in the imaging medium. Theiteration pro
ess evolves κi and ψi towards the estimated anomaly stru
tureSin
e the same support is used for ea
h 
hromophore 
on
entration the 
hara
-teristi
 fun
tion des
ribing the shape is de�ned as

χ(r) = 



1 if (r) ∈ Ω,
0 if (r) ∈ F\Ω. (5.1)



68Then ea
h image to be re
onstru
ted 
an be written as
ck(r) = χ(r)cak + [1− χ(r)]cbk (5.2)where i = 1, 2, ..., Nc + 1. In this formulation the unknown values are the 
onstant
on
entration values of the anomaly and ba
kground, cai and cbi respe
tively.The 
hara
teristi
 fun
tion χ(r) is de�ned to be the τ -level set of a Lips
hitz
ontinuous obje
t fun
tion O : F −→ R su
h that





O(r) > τ ∀r ∈ Ω

O(r) = τ ∀r ∈ δΩ

O(r) < τ ∀r ∈ F\ΩWe assume that the general form of O(r) is known, so that the evolution of O isrequired to solve the inverse problem at hand, whi
h we a
hieve by expanding Owith known basis fun
tions and evolving parameters that govern them.Using O(r), χ(r) is written as
χ(r) = H(O(r)− τ) (5.3)where H is the Heaviside step fun
tion. Shape-based re
onstru
tion, as is presentedhere, requires a smooth version of H(.). One 
ommon approximation of H(.) is 
alledthe C∞ regularization and is 
omputed as [1℄

H1,ǫ =
1

2

(
1 +

2

π
arctan

(πx
ǫ

))
. (5.4)



69This version has been 
ommonly used in shape based appli
ations, and is dis
ussed indetail by [1℄. Chan et al.[21℄ demonstrated that an alternative 
hoi
e of the regularizedHeaviside fun
tion is the C2 regularization 
omputed as
H2,ǫ(x) =





1 if x > ǫ,

0 if x < −ǫ.

1
2

[
1 + x

ǫ
+ 1

π
sin(πx

ǫ
)
] if |x| ≤ ǫ.and its derivative, δ2,ǫ, is derived from Hǫ [21, 114℄. By using H2,ǫ the 
orrespondingdelta fun
tion δ2,ǫ is 
ompa
tly supported so δ2,ǫ is only non zero for τ−ǫ < ψ < τ+ǫ.This 
hoi
e of implementing the τ -level set is similar to a �narrow-banding� approa
hdis
ussed in [1℄, where the values of the level set fun
tion are only updated on anarrow band around the zero level set and hen
e redu
ing the 
omputational load.For the 
ase of using τ level sets, this band is moved to τ−ǫ < ψ < τ+ǫ and the basisfun
tions whi
h do not interse
t with this band do not evolve at the 
orrespondingiteration. To a
hieve this τ is 
hosen to be 
lose to zero, while maintaining |τ | ≥ ǫ.As will be dis
ussed in Se
tion 6.1 we represent the obje
t fun
tion O(x, y) para-metri
ally, so instead of using a dense 
olle
tion of pixel or voxel values [80℄, weexpand O and represent it by using basis fun
tions.

O(r) = L∑

l=1

κlψl(r) (5.5)where κl's are the weight 
oe�
ients of ea
h basis fun
tion and L is the number ofbasis fun
tions used. The 
hoi
e of basis fun
tions is inherently an important part of



70the algorithm when working with PaLS. Basis fun
tions, belonging to the set
P = {ψ1,ψ2, ...,ψL} (5.6)are used to represent O(x, y), and 
an be 
hosen from a variety of options in
ludingpolynomial or radial basis fun
tions. For the purpose of this thesis we use 
ompa
tlysupported radial basis fun
tions (CSRBFs) where we 
hoose τ to be 
lose to zero.These fun
tions be
ome exa
tly zero after a 
ertain radius, while still retaining variousorders of smoothness, whi
h redu
es 
omputational 
ost through the sparsity thatthey provide. In the DOT 
ase, where the physi
s in the forward model will onlyallow for a 
oarse re
onstru
tion of the underlying stru
ture, the use of CSRBFs issu�
ient, espe
ially for the relatively simple geometries and 
on
entrations presentedin this 
hapter. Letting ψ ≥ 0 be a smooth CSRBF we denote ea
h basis fun
tion in(5.5) as
ψl = ψ(βl‖r− rl‖) (5.7)where βl de�nes the dilation fa
tor of the CSRBF. Here ‖.‖ denotes the Eu
lideannorm and rl are the 
enters of the lth CSRBF. In order to make the PaLS fun
tion (5.5)globally di�erentiable with respe
t to β and rl we implement a smooth approximationof the Eu
lidean norm given by
‖x‖⋆ = √

‖x‖2 + n2 (5.8)where n 6= 0 is a small real number. Assembling our model we have
O(r) = L∑

l=1

κlψl(‖r− rl‖) (5.9)



71For the 
ase of �xed basis grid, shown in Fig. 5.1(b) the 
enters and sizes of the
ψ's in (5.9) are �xed so that the evolution of O stri
tly involves estimating κl. Inthe 
ase of DOT it 
an be useful to redu
e the number of unknowns by �xing thebasis fun
tions in this away. An example of a grid like this is shown in Fig. 5.1(b).When optimizing with basis fun
tions on a �xed grid, the width and number of theCSRBFs determines how 
oarse or �ne the re
onstru
tion will be. A 
hoi
e of fewbasis fun
tions will, on the one hand, result in a redu
ed number of unknowns. It willon the other hand, give a 
oarser estimation of the shape, whi
h 
an be a problemfor imaging �ner more 
omplex stru
tures. This framework restri
ts the adaptabilityof the method to di�erent shapes, where if a basis fun
tion is �xed to a grid point,o� 
enter relative to a 
enter of an anomaly, will result in a re
onstru
tion error.A more general approa
h 
an be used where ea
h basis fun
tion is allowed to�roam� within the imaging medium. This allows the PaLS fun
tion to pi
k moredetails, and estimating the dilation fa
tor β allows the evolution to s
ale the CSRBFswhere it is required. Removing the �xed grid, and instead estimating the 
entersof the basis fun
tions allows for greater a

ura
y and adaptability for the method.Additionally, �xing the basis fun
tions to a grid requires 
are along the edges of themedium, due to singularities and edge artifa
ts that 
an be en
ountered in DOT, aswas dis
ussed in 3. Using this approa
h we estimate the 
enters, rl, of the CSRBFsin (5.7) along with the weighting fa
tor κl and the dilation fa
tor βl whi
h together
ontrol the size of the basis fun
tion. For the 
ase of a movable basis fun
tions all



72the parameters of the model would be gathered in one ve
tor
θT = [ca1, c

a
2, ..., c

b
Nc
,κT ,βT , rT ] (5.10)where

κ = [κ1, ..., κL]
T

β = [β1, ..., βL]
Tr = [r1, ..., rL]T . (5.11)For the 
ase of a �xed grid, the parameter ve
tor θ does not in
lude β and r so

θT = [c1a, c
2
a, ..., c

l
b,κ

T ]. Now our linear forward model in (3.22)an be expressed as
Φ

s = K(θ) = K
(θ) (5.12)The forward model has now been parametrized with a ve
tor 
ontaining all of theunknowns, whi
h are far fewer then what a pixel based method would attempt toestimate.
5.2 Inversion using PaLSThe inverse problem, that of usingΦs to re
over the value of c, is solved with the PaLSalgorithm by implementing it with a Levenberg-Marquardt optimization problem ofthe form

ĉ = argmin
c

‖W(K(θ)−Φ
s)‖22 (5.13)The W matrix re�e
ts the stru
ture of the noise 
orrupting the data, 
ontainingthe re
ipro
al of the 
ovarian
e of the measurement [48℄. While a Poisson model is



73te
hni
ally the most appropriate for DOT data, as is frequently done [55℄ for largephoton 
ounts we employ a Gaussian approximation in whi
h independent, zero meanGaussian noise is added to ea
h simulated datum. The reason for this is that with asu�
iently large number of dete
ted photons, the Poisson statisti
s 
an be approxi-mated by a Gaussian distribution [85℄. Letting σ2
m denote the varian
e of the noise
orrupting the mth elements of Φs, W is 
onstru
ted as a diagonal matrix with 1/σmthe mth element along the diagonal. For the experimental and simulated data thevarian
e is 
al
ulated from

σ2
m = Ω(m)10−

SNRm

10 . (5.14)where Ω(m) 
orresponds to the photon 
ount for ea
h sour
e-dete
tor pair. The SNRfor ea
h element of Φs is then 
al
ulated from
SNRm = 10log10(Ω(m)/

√
Ω(m)). (5.15)In experimental data √

Ω(m) is the standard deviation of the Poisson noise distribu-tion.The minimization of the 
ost fun
tion is then a
hieved by the Levenberg-Marquardtalgorithm. For that purpose an error ve
tor is introdu
ed
ǫ = W(K(θ)−Φ

s). (5.16)whi
h 
an be used to write the 
ost fun
tion in term of ǫ as
M(θ) = ǫTǫ (5.17)



74In order to employ the Levenberg-Marquardt algorithm, the 
al
ulation of theJa
obian matrix J is required. The Ja
obian 
ontains derivatives of ǫ with respe
t toea
h element in the parameter ve
tor θJ =

[
∂ǫ(θ)

∂{c1a, ...clb,κ}

] (5.18)where details on 
al
ulating J are given in Appendix A. The solution is then obtainedby updating θ at ea
h iteration as θn+1 = θn + h where h is the solution to thefollowing linear system, previously dis
ussed in Se
tion 2.4,
(JTJ+ ρI)h = −JTǫ with ρ ≥ 0 (5.19)where I is the identity matrix, ρ is the damping parameter a�e
ting the size anddire
tion of h and found via and appropriate line sear
h algorithm [76℄.The damping parameter ρ in (5.19) is noted to have several e�e
ts, most notable,for all ρ > 0 the 
oe�
ient matrix is positive de�nite, whi
h ensures that h is ades
ent dire
tion. The damping parameter in�uen
es both the dire
tion and the sizeof the step, whi
h leads to a method without a spe
i�
 line sear
h. The 
hoi
e ofinitial ρ value is related to the size of elements in A0 = J(x0)

TJ(x0), by letting
ρ0 = η ·max

j
(a

(0)
jj ) (5.20)where η is manually 
hosen to be η = 10−3. This value 
an be de
reased to 10−6 ifthere is 
on�den
e that the initial guess is 
lose to a good estimation.To judge when the Levenberg-Marquardt algorithm has rea
hed an optimal solu-tion we employ the dis
repan
y prin
iple [106℄ as a stopping 
riteria when iterating



75(5.19). In that the iterations are stopped when the norm of the residual has rea
hedthe noise level within a 
ertain toleran
e, given by
‖K(θu)−Φ

s‖2 < δ. (5.21)When estimating the parametri
 ve
tor, we employ a 
y
li
 
oordinate de
entstrategy [109℄ Essentially this is equivalent to estimating the shape only at eveniterations and the 
on
entration values at odd iterations. This is repeated untilstopping 
riteria is rea
hed. This pro
ess is expressed in pseudo-
ode in Algorithm 1,where Jv and Js denote the Ja
obian stri
tly for the 
on
entration value and shape,respe
tively, and τi represents a toleran
e for the stopping 
ritera.Algorithm 1 Matlab-like pseudo-
ode for estimating shape and 
on
entration valuesimultaneouslywhile ǫ ≤ τ1 dowhile ǫ ≤ τ2 do
(JTv Jv + ρnI)hvalues = −JT

v ǫend whilewhile ǫ ≤ τ3 do
(JTs Js + ρnI)hshape = −JT

s ǫend while
θn+1 = θn + [hvalues;hshape]end while



765.3 Comparing to a Pixel-based re
onstru
tionTo judge the improvement of moving to a low-order parametri
 model, we performpixel-based re
onstru
tions to 
ompare with the results obtained with the PaLS al-gorithm. Pixel based re
onstru
tion for DOT involves a signi�
antly rank-de�
ientproblem, where the number of pixels far out number the number of measurements. Forthe pixel-based image formation the re
onstru
tion method presented as the solutionto a non-negative least squares optimization problem of the form
ĉ = argmin

c≥0
‖W(Φs −Kc)‖22 + ‖Lc‖22 (5.22)where for any ve
tor x, ‖x‖22 ≡ x

T
x is the squared two-norm of x. The �rst term in(5.22) requires that the re
onstru
ted 
on
entration images yield simulated data thatare 
onsistent with the observations Φs. Following [48℄, the weight matrix W re�e
tsthe stru
ture of the noise 
orrupting the data.The se
ond term on the right-hand side in (5.22) represents the regularization.As dis
ussed in the Chapter 2, in this work we use a smoothness-type regularizer inwhi
h the amount of regularization is allowed to vary for ea
h 
hromophore. Due tosensitivity of the re
onstru
tion to the regularization parameters the optimal param-eter for one 
hromophore is not ne
essarily the optimal value for another. Separatingthe parameters for ea
h 
hromophore allows the re
onstru
tion to optimize it for ea
h
hromophore and easily in
lude many di�erent spe
ies of 
hromophores.The non-negative least squares (NNLS) problem is solved by using the lsqnonlinalgorithm in MATLAB. This algorithm uses a trust-region re�e
tive algorithm that



77employs matrix-ve
tor produ
ts instead of having to 
ompute the value of the sumof squares from (5.22) [26℄. The K matrix is the Ja
obian matrix of the measure-ments used in our re
onstru
tion s
heme. For the 
ase of DOT NNLS be
omes highlyattra
tive for its 
omputational e�
ien
y when 
ompared to a dire
t solution of tradi-tional least squares. This is due in part to the fa
t that 
omputing K
T
K 
an requirelarge amounts of 
omputational overhead. The number of voxels in a given solutionbe
omes somewhat limited by the ne
essity of solving the system de�ned by K

T
Kor some regularized version thereof. Be
ause of the design of K when the number ofvoxels in
reases, the size of KT

K and the 
omputation required for elimination bothin
rease mu
h more rapidly than with NNLS [82℄.As dis
ussed in the introdu
tion a good initial guess is important to obtain a goodresults. The approa
h we use here is as follows. We start by solving (3.2) ignoringthe positivity 
onstraint in (5.22) with lsqnonlin and using the the method dis
ussedin Se
tion 5.3.1 below for determining the optimal regularization parameters. Set-ting all negative values in the c ve
tor to zero then provides the initial guess forthe 
onstrained form of the problem. This initialization pro
ess allows us to obtaingood results from both simulation and experimental data. Like the un
onstrainedproblem the 
onstrained problem is solved with lsqnonlin and optimal regularizationparameters are 
hosen independently in ea
h 
ase.



785.3.1 Sele
ting optimal regularization for multiple 
hromophoresThe 
hallenge lies in how to 
hoose the α parameter embedded in L in (5.22). Thereexist formal methods for 
hoosing the parameter, su
h as generalized 
ross-validation(GCV) or the L-
urve, but it is not ne
essary to use them in all 
ases [61℄. Theappropriate value may be sele
ted by trial and error and visual inspe
tion. Larger αmakes the system better 
onditioned, but this new system is farther away from theoriginal system, the system without regularization. Under the noise-free assumption,the algorithm is insensitive to the 
hoi
e of α, making it straightforward to sele
tsmall values for α to generate results with high a

ura
y. When noise is en
ountered,however, α may need to be made mu
h larger. Furthermore the e�e
t of having twoseparate regularization parameters α1 and α2 is explored. It is shown how the meansquare error behaves for re
onstru
tion of two 
hromophores and how having separateparameters for ea
h hemoglobin in
reases the quality of the re
onstru
tion. For that
ase the regularization parameters are in
orporated into the matrix and then L takesthe form
L =




α1




∇x

∇y


 0

0 α2




∇x

∇y







(5.23)



79To generalize this to n 
hromophores, one might want to have di�erent regularizationparameters for ea
h 
hromophore. Given the stru
ture of the ve
tor c de�ned in(3.21), the regularization matrix takes the form
L = D(ααα)⊗



∇x

∇y


 (5.24)where αααT = [α1 α2 . . . αNc

] is a ve
tor of Nc regularization parameters, D(x) is adiagonal matrix with the elements of the ve
tor x on the main diagonal, ∇x and ∇yare matri
es representing �rst di�eren
e approximations to the gradient operators[50℄ in the horizontal and verti
al dire
tions respe
tively, and for matri
es A and B,
A⊗B is the Krone
ker produ
t [70℄ of A and B.The 
hoi
e of the optimal regularization parameters is done by inspe
ting the L-hypersurfa
e, whi
h are plotted in Fig. 5.4 for the 
on
entrations images shown inFig. 5.3 [10℄. To 
onstru
t the L-hypersurfa
e we introdu
e the following quantityz(ααα) = ‖Φs −Kĉ(ααα)‖22 (5.25)For a single 
onstraint the L-hypersurfa
e redu
es to the 
onventional L-
urve whi
his simply a plot of the residual norm versus the norm of the regularized solution drawnin an appropriate s
ale for a set of admissible regularization parameters. This allowsus to optimize the regularization to 
ompromise between the minimization of thesetwo quantities. For a hypersurfa
e the optimal regularization parameters then shouldappear where the 
urvature is greatest in the surfa
e, in other words in the 
ornerof the surfa
e. This 
orner in the hypersurfa
e whi
h should 
orrespond to a point



80where the error estimation is minimal. This 
urvature is 
omputed as a spe
ial 
aseof Gaussian 
urvature [46℄ from H =
rt− s2w4

(5.26)where we have w2 = 1 + p2 + q2.In (5.26) ea
h element is a partial derivative of the surfa
e whi
h we write asp =
∂z
∂α1

, q =
∂z
∂α2

, r = ∂2z
∂α2

1

, t = ∂2z
∂α2

2

, s = ∂2z
∂α1∂α2

. (5.27)Using this, an optimal regularization parameter 
an be 
hosen for the pixel basedre
onstru
tions, as demonstrated in Se
tion 5.6.1.
5.4 Implementing Hyperspe
tral informationDue to 
omputational load, hyperspe
tral information has to be implemented e�-
iently when 
onstru
ting the forward model. Even though 
omputational powerin
reases year to year, the amount of data that 
an be in
luded with hyperspe
tralinformation is signi�
ant. This is espe
ially important when performing pixel basedre
onstru
tions where for realisti
ally sized problems, it is di�
ult to store the full Kmatrix in memory. The pro
essing methods developed in this thesis require only theresult of multiplying K or K

T (the transpose of K) by appropriately sized ve
tors.Hen
e, we need only 
ompute and store the Nλ matri
es Kl as well as the Nλ × Nc



81array of extin
tion 
oe�
ients. Then 
omputation of the produ
t Kc 
an be 
ar-ried out using the Matlab-like pseudo-
ode in Algorithm 2 with a similar approa
hpossible for evaluating K
T
Φ

s.Algorithm 2 Matlab-like 
ode for 
omputing Kc produ
tfor l = 1 to Nλ dofor k = 1 to Nc do
Φ

s
c = Φc + εk(λl)Kk;end for

Φ
s = [Φs;Φs

c];end for
5.5 Simulation analysisTo best understand the utility of a hyperspe
tral data set, we employ the Born modelto generate simulated data. Though this may not be realisti
, it allows us to avoidthe 
onfounding fa
tor of model mismat
h in evaluating the inversion method being
onsidered in this 
hapter. Moreover, the short
omings of this approa
h will bemitigated in Se
tion 5.6.2, where we 
onsider the pro
essing of experimental datawhi
h, obviously, are not the produ
t of the Born model. Spe
i�
ally, the data weuse for our simulation analysis are 
omputed as

Φ
s = Kc+ n (5.28)where c represents the simulated 
on
entration images for all 
hromophores and dif-fusion amplitude, whereas n represents additive noise. Spe
i�
ally, as in [48℄ n is



82a ve
tor of zero mean, independent Gaussian random variables with varian
es σ2
m,de�ned in (2.8), 
hosen su
h that a pre-determined signal-to-noise ratio (SNR) isa
hieved. This SNR is 
al
ulated from (5.15).The re
onstru
ted images are evaluated in three ways: 1) through visual inspe
-tion, 2) using mean square error (MSE) as a measure of overall quantitative a

ura
yfor ea
h 
hromophore, and 3) examining the Di
e 
oe�
ient to judge how well the
on
entrations are lo
alized [65, 107℄. For the kth 
hromophore, the MSE is 
omputedby using the following equation

MSEk =
‖ck − ĉk‖2

‖ck‖2
(5.29)If S is the re
onstru
ted image and G is the ground truth 
reated for ea
h set,the Di
e 
oe�
ient between S and G is

D(S,G) =
2|S ∩G|
|S|+ |G| . (5.30)Sin
e |S ∩ G| 
ontains all pixels that belong to the dete
ted segment as well as theground truth segment, if S and G are equal the Di
e 
oe�
ient is 1, indi
ating ana

urate re
onstru
tion. To 
ompute the D(S,G) we use the 
hara
teristi
 fun
tion,

χ, whi
h essentially works as a binary map of the re
onstru
ted anomaly where theobje
t of interest is represented by 1's.The simulated data was generated in in�nite geometry where separations wereset to 5 
m. In simulations, we re
onstru
t 
on
entration images of oxygenated anddeoxygenated hemoglobin, HbO2 and HbR respe
tively, along with lipid and water
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on
entration and s
attering amplitude. These 
hromophores are 
hosen sin
e theymainly 
ause near-infrared absorption in the breast [17℄, and breast 
an
er tumourshave been found to have higher HbO2 and HbR 
on
entrations than normal tissue[100℄.The 
on
entration in the simulated images are de�ned in units of millimolars ormillimoles per liter, mM, for HbO2 and HbR. Values for Ψ and b used to generatedata are obtained from [102℄ for the female breast. Values for µa are 
al
ulated fromthe extin
tion 
oe�
ients, in the unit of 
m−1/mM, obtained from data tabulated byS
ott Prahl [88℄. For water and lipid the 
on
entrations are in per
ent by volume andthe di�usion amplitude is measured in units of millimeter. The ba
kground has HbR
on
entration of 0.01 mM, HbO2 
on
entration of 0.01 mM, lipid 
on
entration of32%, water 
on
entration of 13% and Ψ′ is set to 1.6 mm. The target 
on
entrationof the obje
t of interest is set to 0.015 mM, 0.012 mM, 50 %, 20 % and 0.25 mm forHb02, HbR, lipid, water and ∆Ψ′, respe
tively.The simulation set is 
reated with all 
hromophore 
on
entrations and di�usionperturbations in the same lo
ation with di�erent target values. The ground truthimages for simulations are shown in Fig. 5.3. Re
onstru
tion is done for these im-ages to explore e�e
ts of adding hyperspe
tral information to the problem, i.e. theimprovement in quantitative a

ura
y and the redu
tion of 
rosstalk where a 
on-
entration of one 
hromophore 
reates a false 
on
entration in an image for another
hromophore as well as the performan
e of the shape based approa
h. The pro
ess



84is initialized with 21 Gaussian basis fun
tions with width of approximately 8 pixelspla
ed uniformly on a grid over the whole medium to be imaged. A representativeimage of the order of the basis fun
tions is shown in Fig. 5.1(b). For all experimentspresented in this 
hapter, the κl's weight 
oe�
ients are initialized to 1.
5.6 Results5.6.1 SimulationsTable 5.1: The MSE is 
ompared for ea
h 
hromophore for multiple wavelength
hoi
es. For the 8 wavelength 
ase optimal wavelengths are used, where 176 wave-lengths are equally spa
ed. Pixel based method

# λ MSE HbO2 MSE HbR MSE Lipid MSE H2O MSE D8 0.075 0.030 0.048 0.010 0.052176 0.062 0.021 0.034 0.015 0.030PaLS method
# λ MSE HbO2 MSE HbR MSE Lipid MSE H2O MSE D8 0.070 0.030 0.120 0.060 0.080176 0.019 0.008 0.010 0.020 0.010In Fig. 5.2 re
onstru
tion results using the pixel based method are shown for8 wavelengths, λ = [660, 734, 760, 808, 826, 850, 930, 980℄ nm and hyperspe
tralre
onstru
tion using 176 wavelengths, whi
h are equally spa
ed over the 650-1000 nmrange. In the 8 wavelength 
ase the 6 �rst wavelengths are optimally 
hosen a

ording
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Figure 5.2: Re
onstru
tion using a pixel based method. Leftmost 
olumn are groundtruth images, middle 
olumn of images are generated with 8 wavelengths and rightmostimages are generated with 176 wavelengths. From top to bottom the rows show HbO2,HbR, lipid, water and di�usion amplitude, respe
tively. Con
entration units are inmM.to [37℄ with two wavelengths added where water and lipids have peak absorption.Re
onstru
ted images 
reated with the PaLS method are shown in Fig. 5.3. Insimulations the SNR is set to 30 dB, as it is de�ned by (5.14) and (5.15). When
omparing the pixel based re
onstru
tion in Fig. 5.2 to the PaLS re
onstru
tionin Fig. 5.3, it is evident that the PaLS method provides superior re
onstru
tions.Examining the PaLS results, the 8 wavelength 
ase shows reasonable a

ura
y along



86Table 5.2: D(S,G) is 
ompared for ea
h 
hromophore for multiple wavelength 
hoi
es.In ea
h 
ase the re
onstru
tions are done with equally spa
ed wavelengths over thespe
trum ex
ept for the 8 wavelength 
ase. D(S,G) is 
al
ulated 
omparing 80% ofthe target peak to the re
onstru
ion.Pixel based method
# λ D(S,G) HbO2 D(S,G) HbR D(S,G) Lipid D(S,G) H2O D(S,G) D8 0.12 0.088 0.089 0.65 0.8176 0.554 0.1085 0.043 0.41 0.09PaLS method

# λ D(S,G)8 0.60176 0.99the x axis but rather di�use results in y. We also see noti
eable artifa
ts in there
onstru
tions. Considering the 
on
entration values, the values for HbO2, HbRand water 
on
entration 
ome 
lose to the a
tual value. Moving to hyperspe
tralinformation, the re
onstru
tion be
omes more a

urate, estimating the shape 
loseto the ground truth. It should also be noted that the runtime for ea
h re
onstru
tionfor the PaLS method is signi�
antly shorter 
ompared to the pixel-based method.A PaLS re
onstru
tion takes around 30 se
onds, whi
h is 3-4 times faster than apixel-based method. Additionally, we do not employ any regularization parameters,removing the 
omputational load of sele
ting the optimal regularization parameters.This is a major improvement in moving from a pixel-based approa
h to the PaLSmethod.
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Figure 5.3: Re
onstru
tion using the PaLS method. Leftmost 
olumn are ground truthimages, middle 
olumn of images are generated with 8 wavelengths and rightmostimages are generated with 176 wavelengths. From top to bottom the rows show HbO2,HbR, lipid, water and di�usion amplitude, respe
tively. Con
entration units are inmM.The 
omparison of the Di
e 
oe�
ient between the PaLS method and pixel-basedis tri
ky, sin
e for the pixel-based method the Di
e 
oe�
ient is plotted as a fun
tionof a threshold. This threshold is required to 
reate a binary map of the lo
ation on theanomaly. If the threshold is 
hosen to only leave extreme peak 
on
entration values inea
h image, the Di
e 
oe�
ient would be low due to edge artifa
ts as in Fig. 5.6(b).Therefore, in simulations we 
ompare D(S,G) for the pixel based re
onstru
tions



88using a threshold of 80% to D(S,G) of the PaLS re
onstru
tions. The improvementof the PaLS method is 
on�rmed quantitatively through D(S,G) and MSE displayedin Table 5.2 and Table 5.1, respe
tively. The Di
e 
oe�
ient, shown in Table 5.2,gives a 
lear view of how the shape estimation improves by added wavelengths, where
D(S,G) approa
hes 1 for the hyperspe
tral 
ase and the PaLS method shows superiorperforman
e in the MSE values.Be
ause we know the ground truth for these simulations, it is possible to determineoptimal values (i.e., the one that minimized the MSE) for α1 and α2. For a simple
hromophore 
on
entrations as shown here, 
hoosing the regularization parametersis an easy problem. The reason for separating the regularization parameters in this
ase is that the MSE for HbR rea
hes a lower value for a slightly di�erent parameterthan HbO2.The importan
e of separating the regularization parameters be
omes even moreevident when regularizing more 
omplex 
on
entration sets. When doing re
onstru
-tion for more 
ompli
ated sets the lowest MSE values for HbO2 and HbR o

ur attwo very di�erent values. For this set the separation of the regularization parametersis very important. Using only one regularization parameter in this set and more 
om-pli
ated ones, would result in a trade o� between re
onstru
tions of 
hromophores.To redu
e that trade o� the separation of the 
hromophores be
omes very important.This separation be
omes even more important when dealing with data sets with low
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)Figure 5.4: (a) L-hypersurfa
e, de�ned by (5.25) plotted against regularization param-eters. (b) H 
urvature, de�ned by (5.26), 
omputed for the L-hypersurfa
e. (
) Errorestimation surfa
e, de�ned by (5.31), plotted against regularization parameters. Theoptimal regularization parameters are marked in ea
h 
ase with a red arrow.SNR values su
h as true measurement data. The L-hypersurfa
e and 
urvature 
om-putation are additionally 
ompared to the estimation error, whi
h is available whenthe ground truth is known, as in simulations presented here. The estimation error e



90is 
omputed by
e = ‖c− ĉ‖22 (5.31)Demonstrating the 
hoi
e of the ααα parameters, example re
onstru
tion for HbO2and HbR with 
orresponding hypersurfa
e is shown in Fig. 5.5 and 5.4, respe
tively.
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Figure 5.5: Re
onstru
tion for HbO2 and HbR using a pixel based method. Upper rowis for the HbO2 
hromophore and the lower for HbR. Con
entration units are in mM.Re
onstru
tion performed for 176 equally spa
ed wavelengths.By examining hypersurfa
e and 
urvature in Fig. 5.4 it is evident that this methodis useful when di�erent levels of regularization is needed. In pixel-based re
onstru
-tions that are presented in Se
tion 5.4 the 
hoi
e of α for HbO2, HbR and ∆Ψ wereperformed using the hypersurfa
e method, while it was unne
essary for the regular-ization for water and lipid whi
h were less sensitive to regularization.5.6.2 Experimental validationPixel based re
onstru
tions of absolute 
on
entrations for both experimental sets areshown in Fig. 5.6 and PaLS approa
h re
onstru
tions in Fig. 5.7.



91A 
omparison of the absolute 
on
entrations, ĉi and relative 
on
entration, ĉri totarget 
on
entration values is done to test the a

ura
y of the re
onstru
tions. Therelative 
on
entrations for ink are 
al
ulated as
ĉrink = ĉink/(ĉink + ĉdye) (5.32)and similarly for dye [41, 47℄. The relative 
on
entration is 
al
ulated from the peak
on
entration value in ea
h re
onstru
tion. This allows us to inspe
t how well ourapproa
h manages to separate and estimate ea
h spe
ies of 
hromophores in thepro
ess.As expe
ted, the hyperspe
tral information provides improved re
onstru
tion forboth the pixel-based and PaLS methods. Fo
using on the PaLS methods, it is evidentthat forming the re
onstru
tion with shape-based 
onstraints yields improved results.The estimation of relative 
on
entrations and MSE of the absolute values are exam-ined in Table 5.4 and Table 5.5 for the pixel-based and PaLS method, respe
tively.The relative 
on
entration values are better estimated in both 
ases using the PaLSmethod, although the hyperspe
tral method does not show signi�
ant improvementfor experimental set 2, whi
h was also the 
ase for the pixel based method. Examin-ing the images along with the MSE values for experimental set 1, Fig. 5.6-5.7(a) and(
), it is noti
eable how the re
onstru
tion does not resolve the stru
ture parti
ularlywell along the x axis. This is somewhat unexpe
ted sin
e in DOT resolving depthinformation, on the y axis, is usually the more di�
ult problem. This is noti
eablefor both the pixel based and PaLS methods, although the PaLS method outperforms



92the pixel based method, espe
ially in removing edge artifa
ts. This smear in the xdire
tion is most likely a 
ombination of how the Gaussian basis are pla
ed within theimaging medium, and measurement error in pla
ing the sour
e and dete
tors whentaking the referen
e measurement.For both experimental sets, the PaLS method resolves the lo
ation and the shapeof the in
lusion more a

urately, whi
h is veri�ed by the 
al
ulation of the Di
e
oe�
ient shown in Table 5.3. The improvement is notable when 
ompared to thepixel-based re
onstru
tion. As dis
ussed in Se
tion 5.6.1 a 
hoi
e of a threshold isneeded to 
ompareD(S,G) between pixel based re
onstru
tins and the PaLS method.For the experimental re
onstru
tions we use a threshold of 50% to 
ompareD(S,G) ofthe PaLS re
onstru
tions. This demonstrates the usefulness of the PaLS method for
orre
tly and a

urately lo
alizing the anomaly. The PaLS method does very well witheliminating edge artifa
ts that were severe when doing pixel-based re
onstru
tions forthe same data set. These e�e
ts are very noti
eable in Fig. 5.6(b) and (d), where,espe
ially in the multispe
tral 
ase, the edge artifa
ts were signi�
ant. Comparingthat to the same data in Fig. 5.7(b) and (d) it is obvious that the improvementis signi�
ant. It is notable in Fig. 5.7(b) and (d) that the re
onstru
ted in
lusionappears a little bit o� 
enter from where the a
tual lo
ation is 
entered. This is dueto the �xed grid of basis fun
tions, where the 
losest grid point is o� 
enter from thetrue lo
ation.



93Table 5.3: D(S,G) is 
ompared for ea
h 
hromophore for multiple wavelength 
hoi
es.In ea
h 
ase the re
onstru
tions are done with equally spa
ed wavelengths over thespe
trum ex
ept for the 6 wavelength 
ase where we use optimally 
hosen wavelengths.
D(S,G) is 
al
ulated 
omparing the half maximum of the target peak to the re
onstru-
ion. Pixel based method

D(S,G) Set 1 D(S,G) Set 2
# λ Ink Dye Ink Dye6 0.143 0.113 0.139 0.145126 0.142 0.114 0.145 0.140

PaLS method
# λ D(S,G) Set 1 D(S,G) Set 26 0.27 0.33126 0.37 0.805.7 Dis
ussionIn this 
hapter, using simulations and experimental measurements we have shownthat the PaLS method provides more a

urate estimation of 
hromophore 
on
en-trations than a regularized pixel-based inversion s
heme. Hyperspe
tral informationresults in improved performan
e in terms of both MSE and spatial lo
alization asmeasured using the Di
e 
oe�
ient. The parametri
 approa
h is shown to give sig-ni�
ant improvements to image re
onstru
tion, de
reasing run time of the iterativepro
ess and in
reasing the quality of re
onstru
ted images. The PaLS method is alsoeasily expandable to more 
ompli
ated problems where multiple geometries need tobe 
onsidered.Physi
al measurements were also performed to demonstrate these advantages fora
tual measurement data. Although exa
t 
on
entration values were not a
hieved,



94Table 5.4: Comparison of ĉi and ĉri to target 
on
entration values for experimentalresults, for the pixel-based method. Best performan
e is highlighted in bold.Experimental set 1, 10% ink and 90% dyeFig. # λ Spe
ies ĉi [%℄ ĉri [%℄ MSE5.6(a) 6 Ink 1 4 1.85.6(a) 6 Dye 27 96 1.35.6(
) 126 Ink 17 16 2.85.6(
) 126 Dye 88 84 1.2Experimental set 2, 70% ink and 30% dyeFig. # λ Spe
ies ĉi [%℄ ĉri [%℄ MSE5.6(b) 6 Ink 56 82 1.85.6(b) 6 Dye 12 18 1.05.6(d) 126 Ink 65 61 1.45.6(d) 126 Dye 41 39 2.0there is a notable improvement asso
iated with hyperspe
tral information in 
on-jun
tion with the PaLS method. Additionally, improved lo
alization of in
lusionswas observed for both sets when using hyperspe
tral information. This emphasizesthe advantage of hyperspe
tral information when doing re
onstru
tions for more thanone 
hromophore.Based on the results in this 
hapter, we want to extend the work to address morerealisti
, 
lini
al 
onditions. The results here show signi�
ant promise, and are en-
ouraging to move to a more realisti
 situations 
onsidering more 
ompli
ated shapere
onstru
tions and pla
ing boundary 
onditions on the medium. We a
hieve this



95Table 5.5: Comparison of ĉi and ĉri to target 
on
entration values for experimentalresults, for the PaLS method. Best performan
e is highlighted in bold.Experimental set 1, 10% ink and 90% dyeFig. # λ Spe
ies ĉi [%℄ ĉri [%℄ MSE5.7(a) 6 Ink 4.8 21.0 1.25.7(a) 6 Dye 17.9 79.0 0.95.7(
) 126 Ink 5.8 7.7 1.15.7(
) 126 Dye 69.0 92.3 0.8Experimental set 2, 70% ink and 30% dyeFig. # λ Spe
ies ĉi [%℄ ĉri [%℄ MSE5.7(b) 6 Ink 38.3 80.0 1.15.7(b) 6 Dye 9.6 20.0 0.85.7(d) 126 Ink 27.6 81.0 0.65.7(d) 126 Dye 6.4 19.0 0.7by �rst 
onsidering how we 
an expand the �xed grid basis to ensure re
overy ofvarious di�erent shapes of 
hromophore 
on
entrations, dis
ussed in Chapter 6. Tobe able to estimate all shapes possible, we aim to in
rease the number of basis fun
-tions to in
lude di�erent types. To avoid over 
ompli
ating the image re
onstru
tionwith a high number of basis fun
tions we aim to pose the image re
onstru
tion in a
ompressed sensing framework where few optimal basis fun
tions estimate a 
omplexshape. Additionally we expand the method to the estimation of 3D stru
tures withadaptable basis fun
tions in Chapter 7.
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(a) 10% ink and 90% dye, (b) 70% ink and 30% dye,6 wavelengths used. 6 wavelengths used.
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tion from both experimental sets, set 1 
ontaining 10% inkand 90% dye and set 2 70% ink and 30% dye. Bla
k 
ir
le denotes the true lo
ationof the in
lusion.
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Chapter 6
Di
tionary Approa
h
6.1 Introdu
tion

x
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Figure 6.1: Example basis fun
tions pla
ed on a �xed grid in the imaging medium,where ea
h grid point, f , has a set of di�erent shaped basis fun
tions,denoted by {l}.As dis
ussed in Chapter 1 the ability to re
over a varied array of shapes is of greatimportan
e for DOT, so image re
overy methods need to be adaptable and able to98



99re
onstru
t a wide range of shapes with a

ura
y. To a
hieve this, we 
onsider a 
asewhere our set of basis fun
tions P is a large 
olle
tion of a variety of shapes. Thiskind of approa
h has been 
onsidered extensively in 
ompressed sensing problemswhere an array of known fun
tions in a di
tionary is used to re
over sparse signals[45, 89℄. Although our problem is not a 
ompressed sensing problem, we 
onsiderthe framework presented in [45℄, whi
h is dire
tly appli
able to our problem wherewe 
onsider the 
ase of the �xed basis set, des
ribed in Se
tion 5.1. Rauhut et al.[89℄ noted that most works with 
ompressed sensing that assume sparsity, take theassumption with respe
t to an orthonormal basis. This 
an be a stri
t limitationin pra
ti
e, and for some appli
ations, it is more appli
able to assume sparsity withrespe
t to a de�ned frame or di
tionary. Essentially, the method 
ould be appliedto a wide range of basis fun
tions, to in
lude polynomials, wavelets and Gaussians,but for our appli
ation we aim to in
lude di�erently dilated CSRBFs to re
over smalldetails of the underlying stru
ture, with sele
tively 
hosen basis fun
tions.For the �xed grid shown in 5.1(b) ea
h grid point is the 
enter for a spe
i�
 ψl basisfun
tion. To 
reate a redundant di
tionary for our problem we amend our basis set Pso it 
ontains a set of di�erent basis fun
tions, ψf
l , at ea
h grid point f . An exampleof this setup is shown in Fig. 6.1. The method from Chapter 5 is modi�ed so thatthe obje
tive fun
tion O des
ribed by (5.5) is 
reated by using a di
tionary matrix

B whi
h 
ontains the dense 
olle
tion of basis fun
tions at a total of F gridpoints,



100de�ned by
B =

[
ψ1

1 ψ1
2 . . . ψF

L

] (6.1)by this we de�ne the obje
t fun
tion using, B, the redundant di
tionary matrix
O = Bκ (6.2)With this formulation our parametri
 ve
tor is θT = [c1a, c

2
a, ..., c

l
b,κ

T ] where κ =

[κ11, ..., κ
F
L ]

T is the weighting ve
tor, and the c values denote the 
hromophore 
on-
entration values for ea
h 
hromophore. Now for the set of model parameters θ, theforward model is 
onsidered to be of the linear form as written in (3.22).In this framework we strive to a
hieve a sparse estimate of κ sin
e B 
ontainsmultiple ψ's at ea
h grid point. This dire
ts the estimate of the shape to only sele
tshapes from the redundant di
tionary matrix B that best estimate the problem. Intraditional minimization problems the sparseness is indu
ed on the solution using a
ℓ1 regularization as an added term in the 
ost fun
tion. Instead of employing thiskind of soft 
onstraint we restri
t the κ to be sparse by proje
ting it to the ℓ1-normball at ea
h iteration.Visual representation of this relation is shown in Fig. 6.2.This makes the method somewhat robust to the di�erent shapes en
ountered aswell as using far fewer unknowns than traditional pixel based methods. To providean a

urate and simple re
onstru
tion we implemented a hard ℓ1-norm 
onstraint,des
ribed below, to improve the estimation and generate a

urate images with thefewest possible basis fun
tions. The development of this method improves on para-metri
 shape based methods for the DOT appli
ation, espe
ially when paired with
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Obje
t ve
tor
O

Dense di
tionary matrix BEa
h row is a basis fun
tion, ψf
lWeight κ410Basis fun
tion ψ2

1

Weight ve
tor
κ

Figure 6.2: Example of the obje
t fun
tion O as de�ned by (6.2). The aim is toestimate a κ weighting ve
tor with indu
ed sparsity to pi
k out optimal basis fun
tionsfrom a dense di
tionary matrix B where ψf
l represent the lth fun
tion at gridpoint f .opti
al mammograms whi
h 
an be used to provide prior spatial information of themedium. For the purpose of this se
tion we 
onsidered the in�nite geometry dis
ussedin Se
tion 3.3 as it serves as a good testing point for this approa
h.

6.2 Proje
ted Levenberg-MarquardtAs before we 
onsider the inverse problem, that of using Φ
s to re
over the value of θ,but now add a extra 
onstraint. We seek the solution to the following optimizationproblem.

arg min
θ

‖W(K
(θ)−Φ
s)‖22 subje
t to ‖κ‖1 ≤ q (6.3)



102
q

κ

π(κ)

x

y

Figure 6.3: Proje
tion, π(κ) of the weight ve
tor κ to the ℓ1 norm ball to indu
esparsness. This results in sele
ting the optimal 
olle
tion of basis fun
tions represent-ing the shape.The W matrix re�e
ts the stru
ture of the noise 
orrupting the data and q representsthe radius of the ℓ1 norm ball. This 
onstraint ensures sparsity of the solution, whi
his dependent on the 
hoi
e of q. The minimization of the 
ost fun
tion is a
hievedby a proje
ted Levenberg-Marquardt algorithm, where the minimization of (6.3) isa

omplished using a variant of the approa
h in [66℄.As before we employ the Levenberg-Marquardt algorithm, the 
al
ulation of theJa
obian matrix J is required whi
h is 
omputed from the derivative of ǫ with respe
tto ea
h element in the parameter ve
tor θ, as is shown in (5.19). When estimating theparametri
 ve
tor, we employ a 
y
li
 
oordinate de
ent strategy whi
h is equivalentto estimating the shape only at even iterations and the 
on
entration values at odditerations.



103To sparsify the κi values we we want to ensure that the lowest number of basisfun
tions is being added to the re
overy of the unknown shape. This is done byenfor
ing the ℓ1-norm 
onstraint by proje
ting the guess of the weights at ea
h iter-ation, κn+1, to the ℓ1-norm ball. This is done through Eu
lidean proje
tion whi
h isformally de�ned by
π(κ) = arg minx:‖x‖1≤q

‖x− κ‖22. (6.4)This is represented visually in Fig. 6.3. We solve (6.4) by 
asting the proje
tionas a root �nding problem as des
ribed in [74℄. This is a
hieved by introdu
ing aLagrangian variable ξ for the 
onstraint ‖x‖1 ≤ q so that the Lagrangian of (6.4) 
anbe expressed as
L(x, ξ) = 1

2
‖x− κ‖2 + ξ(‖x‖1 − q). (6.5)If the x⋆ is the primal optimal point, and ξ⋆ the dual optimal point, they shouldsatisfy ‖x⋆‖1 ≤ q and ξ⋆ ≥ 0. Liu et al. [74℄ showed that the x⋆ 
an be 
omputed if

ξ⋆ is de�ned as known. So x⋆ is the optimal solution to the problem de�ned asx⋆ = argmin
x
L(x, ξ⋆) (6.6)whi
h has a unique solution sin
e L(., .) is stri
tly 
onvex in the �rst argument. Byde
oupling the variables in (6.6) we have

x⋆i = argmin
xi

=
1

2
(xi − κi)

2 + ξ⋆(|xi| − q) (6.7)



104where xi and κi are the ith elements of x and κ, respe
tively. This equation 
an beexpressed as
x⋆i = sgn(κi)max(|κi| − ξ⋆, 0) (6.8)where sgn(.) is the signum fun
tion. Through this methodology, the problem in (6.4)
an be solved by �rst solving for the dual optimal point ξ⋆, whi
h is then used toobtain x⋆ using (6.8). This turns the Eu
lidean proje
tion into a root �nding problemusing auxiliary fun
tion whi
h 
an be 
omputed though a bise
tion algorithm whi
his 
omputationally e�
ient. We dire
t the reader to [74℄ for further details on thisapproa
h.Our approa
h uses a large di
tionary (L = 220) to ensure that many di�erentshapes 
an be re
overed. These fun
tions are on a 11 by 5 grid over the imagingdomain where at ea
h point there are 4 CRBFs at di�erent dilations and rotations,ensuring di�erent angles 
an be re
overed at ea
h point.To test the the approa
h we 
onsider simulated data for three di�erent 
ases.Case I only 
ontains a small ellipti
al shaped perturbation, whi
h is expe
ted to onlyneed very few basis fun
tions to re
over, resulting in a very sparse κ ve
tor. ForCase II and III, we 
onsider the perturbation in the shape of two ellipses overlap-ping and a 
olle
tion of blob like stru
tures, respe
tively. For these two 
ases the κve
tor is expe
ted to stay sparse, although the larger areas with more 
ompli
atedstru
tures will re
over the in
lusion of more basis fun
tions. In all 
ases we 
onsidera realisti
 opti
al perturbation, using the same 
on
entration values for HbO2 and
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Figure 6.4: Re
onstru
tions for Case I of low 
omplexity. Top row shows HbO2,middle is HbR and bottom row displays weights used in the re
onstru
tion. Signal tonoise ratio is set to 50 dB.HbR as in Chapter 5. Simulated data is generated with 40 sour
e-dete
tor pairs for100 wavelengths. The sour
e-dete
tor pairs are aligned along the x-axis with 5 
mseparation. As before, we verify our shape re
overy by 
al
ulate the Di
e 
oe�
ientfor the estimated 
hara
teristi
 fun
tions.
6.3 Results and Dis
ussionFigures 6.4-6.6 show re
onstru
tion results for Case I, II and III, respe
tively. Asdis
ussed in Se
tion 6.2 all re
onstru
tion use the same di
tionary matrix of 220 basis
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Figure 6.5: Re
onstru
tions for Case II of medium 
omplexity. Top row shows HbO2,middle is HbR and bottom row displays weights used in the re
onstru
tion. Signal tonoise ratio is set to 50 dB.fun
tions. It is 
lear that implementing the sparsity 
onstraint ensures that methoduses few fun
tions to represent the shape. It is notable for the more 
ompli
atedshapes that 
over a larger area, the weight ve
tor remains sparse, utilizing less thana third of all the CRBFs in the di
tionary. As is expe
ted in simulations the 
on
en-tration values of both HbO2 and HbR are re
overed 
lose to the ground truth values.The Di
e 
oe�
ient varies from D(S,G) = 0.86 for Case III, D(S,G) = 0.90 for CaseII and D(S,G) = 0.95 for Case I. For the re
onstru
tion results shown here, q was
hosen by visual inspe
tion and veri�ed by error metri
s.Although these preliminary results are en
ouraging, the redundant di
tionary
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Figure 6.6: Re
onstru
tions for Case III of high 
omplexity. Top row shows HbO2,middle is HbR and bottom row displays weights used in the re
onstru
tion. Signal tonoise ratio is set to 50 dB.method still has noti
eable drawba
ks. Considering a basis set P as it is appliedhere, it does not show promise for a large improvement over a regular �xed grid. Dueto the low spatial resolution of DOT the dis
rimination between the di�erent basisfun
tions at ea
h grid point, be
omes a 
hallenging problem involving sele
ting theoptimal radius of the ℓ1 norm ball. Examining the properties of the modality andelements of P we observe the the DOT modality is best suitable for re
overing �blob�like stru
tures, as well it is well established that re
onstru
ted images are generallymore di�use along the axis of sour
e dete
tor separation, 
onsidered as the z axis here.This redu
es the impa
t of this method, where the limitation of di�usion negates the



108approa
h. Additionally as is noted in the results dis
ussion in Chapter 5, the lo
ationof the �xed points be
omes an issue, where stru
tures o� 
enter relative to the gridpoints are re
onstru
ted with less a

ura
y. With this in mind and 
onsidering thetwo main limitations, the limited data en
ountered in the DOT 
ase and low spatialresolution, we 
onsider a move to a more adaptable and elegant method where theneed of a redundant di
tionary is less, by in
orporating movable basis fun
tions whi
hare entirely made of uniform CSRBFs. This is dis
ussed in detail in Chapter 7.Although we do not extend the di
tionary approa
h further, it is en
ouraging to
onsider this approa
h for the PaLS method for appli
ations that deal with well-posedproblems.



Chapter 7
Parametri
 estimation of 3D tubularstru
tures using primitives
Expanding on the methods developed in Chapters 5 and 6, we aim to re
over thedepth, volume and absorption values of fully 3D stru
tures using �
oupled� 2D re
on-stru
tions within the PaLS framework. As dis
ussed in Chapter 6 the adaptability ofthe basis fun
tions is imperative, so in this 
hapter we 
onsider the 
ase of movablebasis fun
tions, as was detailed in Chapter 5, and shown in 5.1(
). Additionally, allresults dis
ussed here 
onsider bounded (at least partially bounded) domains, a morerealisti
 
ase than the in�nite geometry setup studied in previous 
hapters.In this 
hapter we 
onsider a data limited problem as in Chapter 5 but re
overopti
al absorption images with only single wavelength data. This limits the datafurther, where we 
annot take advantage of multi- or hyperspe
tral information. This109



110HomogeneousMedium
x

z

y

Slice 1
Slice 2
Slice K − 1
Slice K

Primitive in sli
e Kwith θK
Primitive in sli
e 1with θ1

3D tubular stru
tureEstimated by 2D sli
es

Ea
h θk 
orrelated for 
onne
tednessFigure 7.1: Example of how 2D sli
es are used to esitamte 3D stru
ture with datafrom measurements 
olle
ted as in Fig. 4.6. Ea
h 2D primitive is estimated withve
tor θk. Regularization term in the obje
tive fun
tion, (7.2), 
orrelates ea
h sli
eprimitive together, to generate a 
onne
ted stru
tureis done for 
onvenien
e sin
e 
omputing a hyperspe
tral data set using the �nitedi�eren
e model would be signi�
antly 
omputationally intensive. In spite of theselimitations we demonstrate a

urate re
onstru
tion of 3D stru
tures by using thePaLS method to re
onstru
t images for ea
h sli
e along the y axis in Fig. 4.6. Theseindividual sli
es are then 
ombined by �sta
king� them together in order to estimatethe underlying stru
ture along with opti
al properties, demonstrated in Fig. 7.1.To this end, we setup our model to perform independent 2D image re
onstru
tionfrom the data 
olle
ted in ea
h sli
e, but impose a regularizing term on the low-order parametri
 ve
tor, to 
orrelate the sli
es together. This takes advantage of the
onne
ted nature of the tubular stru
tures and improves the re
onstru
tion.



1117.1 Forward Model for 2D sli
esIn order to approximate a 3D tubular stru
ture using the model des
ribed in Eq.(3.17) we aim to re
onstru
t sli
es of a 3D medium and 
ombine them together toestimate the underlying geometry. The physi
al setup is des
ribed in Fig 4.6, wherethe sour
e and dete
tor are moved in tandem along the x axis, yielding K s
ans alongthe y axis. Using our forward model we de�ne ck ∈ R
Nv as the ve
tor of dis
retized

µa asso
iated with the kth sli
e in the re
tangular region and Φ
s
k the data 
olle
tedfrom the 
orresponding sli
e. Using this notation we 
an write the forward modelused for inverse pro
essing for the whole re
tangular region in matrix ve
tor notationas 



Φ
s
1

Φ
s
2...

Φ
s
K




=




K1 0 . . . 0

0 K2 . . . 0... ... ... ...
0 0 . . . KK







c1

c2...
cK




⇔ Φ
s = Kc (7.1)

where the (m, j)th element of the Kk represents the mth sour
e-dete
tor pair and jthpixel in the kth sli
e of the 3D medium. Assuming that for a given experiment Nsdsour
e-dete
tor pairs are used for all K sli
es then if Np is the number of pixels inea
h sli
e the dimensions of the whole matrix K is NsdK ×NpK.It should be noted that the blo
k diagonal nature of the model in 7.1 is a re�e
tionof the approximation we are making in whi
h we ignore the e�e
ts of �out of plane�physi
s in ea
h sli
e of the re
onstru
tion. Our method, detailed in Se
tions 5.1 and



1127.2, of parameterizing the shape and regularization is able to re
over a

urate 3Dstru
tures in spite of this severe physi
al model mismat
h, even with limited datasets. Additionally this approa
h is easily expandable, by �lling in the o�-diagonalblo
ks of K whi
h will be 
onsidered in future developments dis
ussed in Chapter 8.
7.2 Image re
onstru
tionThe image re
onstru
tion method, re
overing c from Φ

s, is formed as an regularizedoptimization problem of the form
θ̂ = argmin ‖W(Φs −Kc(θ)‖22 + α‖Lθ‖2 (7.2)where W represents the stru
ture of the noise 
orrupting the data. The �rst termin (7.2) requires that the estimated value of c is 
onsistent with the observed mea-surement of Φs. The se
ond term of (7.2) is a regularization term that 
orrelates theparameter ve
tor between sli
es. Considering the prior information of tubular stru
-ture anatomy of breast tissues, it en
ourages 
orrelating re
onstru
tions between sli
esin the 
ost fun
tional. Therefore the se
ond term (7.2) ensures that a re
onstru
tionbetween sli
es will result in 
onne
ted stru
tures, whi
h provides better approxima-tion of the stru
ture than a unregularized fun
tion. We stru
ture L to penalize thedi�eren
e between similar parameters on adja
ent primitives. That is to say, we im-pose a penalty for the di�eren
e between 
enters, ri and ri+1 for i = 1, ..., N − 1, the



113value of absorption, caK and weight κK so that L is given by.
L = Ld ⊗ I (7.3)Where I is a diagonal matrix where number of diagonal elements are the same asnumber of elements in θi, and A⊗B is the Krone
ker produ
t [70℄ of A and B and

Ld is written as
Ld =




1 −1 0 . . . 0 0

0 1 −1 . . . 0 0... . . . . . . . . . . . . ...
0 . . . 0 1 −1 0

0 . . . 0 0 1 −1




(7.4)
In order to demonstrate the e�e
tiveness of our regularization method, we evaluatea tomographi
 re
onstru
tion over a range of values for the regularization parameter
α. As α is varied the algorithm trades o� the 
ost asso
iated with the regularizationpenalty against the 
ost asso
iated with the data. To sele
t the optimal regularizationparameter we employ the 
ommonly used L-
urve method, detailed in Se
tion 7.4 [10℄.The W matrix re�e
ts the stru
ture of the noise 
orrupting the data [48℄. Weemploy a Gaussian noise in whi
h independent, zero mean Gaussian noise is assumedto 
orrupt ea
h datum where, as in Chapter 5, σ2

m and the SNRm are 
omputedby (5.14) and (5.15), respe
tively. In experimental data √
Ω(m) is the standarddeviation of the Poisson noise distribution.The minimization of the 
ost fun
tion is then a
hieved by the Levenberg-Marquardt



114algorithm. For that purpose an error ve
tor,
ǫ = [ǫT1 , ǫ

T
2 ] (7.5)is introdu
ed where ea
h term relates to the 
orresponding term in (7.2) given as

ǫ1 = W(K(θ)−Φ
s) (7.6)

ǫ2 =
√
αLθ. (7.7)We denote by K the total number of primitives, and the plane in whi
h the ithprimitive resides as y = yi, i = 1, ..., K and the number of basis fun
tions by Lin ea
h plane where l = 1, ..., L. For simpli
ity, we assume that the primitives areequally spa
ed, though this assumption 
an be easily relaxed. Thus far, our modelonly de�nes the obje
t at K points on the y-axis, as shown in Fig. 7.1, where inessen
e the primitives may be interpreted as 
ross se
tion of the overall 3D obje
t.The obje
t des
ription at all other points on the y axis is re
overed independently,and then 
ombined to represent the 3D stru
ture.In order to employ the Levenberg-Marquardt algorithm, the 
al
ulation of theJa
obian matrix J is required, where details are given in Appendix A. The Ja
obian
ontains derivatives of ǫ with respe
t to ea
h element in the parameter ve
tor θJ =

[
∂ǫ(θ)

∂{ca1, ..., caNc
, (κT

1 , ...,κ
T
K)

T , (βT
1 , ...,β

T
K)

T , (rT1 , ..., rTK)T}] (7.8)The solution is then obtained by updating θ at ea
h iteration as θn+1 = θn+h whereh is the solution to a linear system analogous to (5.19).



115To summarize, in our method we model the shape stru
ture of the anomaly usinga set of 2D shape primitives representing the 
ross-se
tion of the obje
t in arbitrarilyoriented (but parallel) planes. As shown in Fig. 7.1, where the planes are perpendi
-ular to the y-axis, ea
h primitive is itself a 2D shape, spe
i�
ally a 
olle
tion of radialbasis fun
tions for this 
hapter, whose stru
ture is de�ned by its 
enter lo
ations,dilation and weighting fa
tors. In this se
tion we detail the obje
t des
ription whenthe primitives are sta
ked along the y-axis. Under our model, the ith primitive is�xed to exist on the plane y = yi. The following parameters are used to represent theprimitive.
• A 2·L ×1 ve
tor ri = [x0,i, z0,i]T , denoting the (x, z)-
oordinates of the 
enterlo
ation of the basis fun
tions forming the primitive on the plane y = yi

• The dilation fa
tors βl,i of the underlying basis fun
tions.
• The weighting fa
tor of κl,i of ea
h basis fun
tion. A weighting fa
tor of κl,i = 0dea
tivates a basis fun
tion from the re
onstru
tion.

7.3 Simulation AnalysisSimulations are done to demonstrate the bene�t of 
ombining simple 2D re
onstru
-tions of more than one sli
e to approximate 3D stru
ture. In this 
hapter, simulateddata are generated using a standard �nite di�eren
e forward solution provided byProf. Misha Kilmer in the Tufts University Math Department. Simulated data are



116generated for a re
tangular box with dimensions 7 
m × 7 
m × 6.3 
m dis
retizedinto a 71 × 71 × 64 grid, with three 
ylinders pla
ed 
lose to the 
enter. Boundary
onditions on the sour
e and dete
tor planes are Robin type 
onditions and Diri
hlet
onditions are applied the sides of the box in the z − x and z − y planes. The truegeometry of the phantom is shown in Fig. 7.2. Ea
h 
ylinder in the medium has
∆µa = 0.04 
m−1 where the ba
kground has µa = 0.02 
m−1, giving absorption 
on-trast of 2:1, 
omparable to what is found in a 
lini
al setting [84℄. Di�usion 
oe�
ientis assumed to follow Mie S
attering theory and to be uniform throughout the mediumand in
lusion at µ′

s = 10.1 
m−1 at 690 nm [68℄.The alignment of sour
es and dete
tors is the same as for the experimental setupis shown in Fig. 4.6. Two di�erent 
ases are 
onsidered, to demonstrate the e�e
tof limited data for our method. In Case 1 we use two dete
tors per sour
e positionand 26 sour
e lo
ations along ea
h sli
e for a total of only 52 measurements per sli
e.In Case 2 we implement ten dete
tors for ea
h sour
e position, giving 260 sour
edete
tor pairs for ea
h sli
e. These two 
ases demonstrate the e�e
tiveness of ourmethod even when working with severely limited data su
h as in Case 1.In order to obtain a quantitative measure of 
omparison between the a
tual andestimated shapes and absorption values, we employ the Di
e 
oe�
ient as in (5.30),MSE given by (5.29) and add the Symmetri
 di�eren
e whi
h is the fra
tion of entriesin the estimated image, S, where the 
orresponding entries in the ground truth image,
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G, are not equal. Mathemati
ally, this is expressed as

dsd(S,G) =
1

Nv

∑

i

1{Gi 6=Si} (7.9)where 1{·} is the indi
ator fun
tion and S is the 0 − 1 
hara
teristi
 matrix 
orre-sponding to the estimated shape, and G the 0−1 
hara
teristi
 matrix 
orrespondingto the a
tual obje
t.The symmetri
 distan
e is an important measure of the quality of re
onstru
tionbe
ause it measures the overall quality of shape re
onstru
tion, by penalizing errorsin dete
ting obje
t voxels as ba
kground and similarly ba
kground voxels as obje
tvoxels. Symmetri
 di�eren
e assigns an equal penalty to an erroneous voxel, irre-spe
tive of whether it is dete
ted as ba
kground or obje
t. An important limitationof the symmetri
 di�eren
e measure is that it does not re�e
t well on how 
lose theestimated absorption 
on
entration value in the re
onstru
ted image is to the truevalue. The mean square error �lls this gap by providing a measure on the quantitativea

ura
y for ea
h sli
es that measures both how well the shape and value of the ∆µais re
overed.As dis
ussed in Se
tion 6.1 our method 
onstrains the image formation problemand redu
es the number of unknowns when 
ompared to a traditional pixel-basedapproa
h. To demonstrate the e�e
tiveness of our approa
h we perform pixel-basedre
onstru
tions for the simulation 
ases presented in Se
tion 7.4. We employ a pixel-based optimization method using Levenberg-Marquardt algorithm where we modify



118(7.2) so that the regularization term takes the form of traditional Tikhonov regular-ization, where L = I. Tikhonov regularization is widely used for image re
onstru
tionfor multiple imaging modalities and provides a suitable 
omparison for our method[85, 110, 56℄.
7.4 Results7.4.1 SimulationsRe
onstru
tion results from simulated data are presented in Figs. 7.5 and 7.6 using2 dete
tors and 10 dete
tors for ea
h sour
e lo
ation, respe
tively. Examining there
onstru
tions visually and with the error metri
s presented in Table 7.1 it is evidentthat the impa
t of 
orrelation regularization is very important. Espe
ially notableis where unregularized re
onstru
tion, shown in Figs. 7.5(a) and 7.6(a) re
overs astru
ture with gaps, due to the fa
t that the 
onne
ted nature of the tubular stru
tureis not being emphasized. Additionally, evident by the shape metri
s D(S,G) and dsdthe middle rod is re
overed as a separate stru
ture when the regularization is present.The pixel-based re
onstru
tion using traditional Tikhonov regularization is shownin Fig. 7.4 for both the 2 dete
tor and 10 dete
tor setup. It is evident both byvisual inspe
tion and error metri
s shown in Table 7.1 that the 
onstrained modelin PaLS and regularizing between sli
es results in a far more a

urate estimation ofthe stru
ture. It should be noted that pixel based re
onstru
tions for DOT 
an be



119very a

urate, however as mentioned above the work in this 
hapter presents resultsusing a severely limited dataset. Pixel-based methods traditionally require signi�
antnumber of data points, resulting in the errors in the re
onstru
tion shown here.As mentioned in Se
tion 7.2, to optimally sele
t the regularization parameter αwe implement the L-
urve method. In this method, we generate a plot of log(‖Lθ‖2)against log(‖W(K(θ)−Φ
s)‖2) as α is varied. Figure 7.5(a) depi
ts the re
onstru
tedobje
t when α = 0, where no regularization is being applied. From visual observationas well as examining error metri
s de�ned in Se
tion 7.3, it is 
lear that some degreeof regularization is bene�
ial. The L-
urve plot for the re
onstru
tion of the simu-lated phantom is shown in Figs. 7.3(a) and 7.3(b) for the 2 dete
tor and 10 dete
torsetups, respe
tively. Note the en
ir
led point on the 
urve denotes the �best� re
on-stru
tion given the data. The parameter α was obtained in a similar fashion in allour experiments. However, here in order to save spa
e, we have only demonstratedour results for a single 
ase.Representative sli
e image from the 10 dete
tor re
onstru
tion is shown in Fig.7.7. Along with the MSE it allows for visually judging the methods ability to re
overthe values of ∆µa. As expe
ted using the Born Approximation, the absorption valuesare underestimated, but these results are en
ouraging, 
onsidering the limited datasets being employed, and how ea
h sli
e re
onstru
tion is not modeled to in
orporatee�e
ts from the total 3D stru
ture.These results are espe
ially en
ouraging 
onsidering the method is able to estimate



120the stru
ture even with a severely limited data set, shown in Fig. 7.5, where only 2dete
tors are used for ea
h 26 sour
e lo
ations, and only a single wavelength is used.This demonstrates the ability of the sli
e based PaLS method to a

urately re
over3D tubular stru
tures even with linear approximations and limited data sets.

Figure 7.2: Ground truth image used to generate simulated data.
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Figure 7.3: (a) Example L-
urve used to sele
t optimal α for the re
onstru
tion using2 dete
tors at 30 dB SNR for simulated data. (b) Example L-
urve used to sele
toptimal α for the re
onstru
tion using 10 dete
tors at 30 dB SNR for simulated data.
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(a) Pixel-based re
onstru
tion using 2 dete
tors, α = 820

(b) Pixel-based re
onstru
tion using 10 dete
tors, α = 300Figure 7.4: Re
onstru
tion results for a simulated geometry stru
ture with realisti
opti
al 
ontrast.7.4.2 Experimental ValidationRe
onstru
tion results for relative absorption re
onstru
tions are shown in Figs. 7.8and 7.9 for in
lusions angled at 90◦ and 30◦, respe
tively. As demonstrated in simu-lations, in
luding 
orrelation between adja
ent sli
es greatly improves a

ura
y andallows for re
overy of the underlying stru
ture. Examining the images along with theerror metri
s, D(S,G), dsd and MSE shown in Table 7.2 it is 
lear that this method
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(a) PaLS image re
onstru
tion using 2 dete
tors, α = 0

(b) PaLS image re
onstru
tion using 2 dete
tors, α = 1.5Figure 7.5: Re
onstru
tion results from simulated data with realisti
 opti
al 
ontrast,using 2 dete
tors for ea
h sour
e lo
ationallows for re
overy of tubular stru
tures in a realisti
 breast phantom. It is notablethat the 10× absorbing in
lusion is re
overed as a larger stru
ture, whereas the 3×
uboid is re
overed 
lose to its true shape with more a

urate absorption value. Thisis demonstrated in an example sli
e image for the ϕ = 90◦ 
ase in Fig. 7.10. This isexpe
ted due to the aforementioned limitations of the Born Approximation [11℄ butit is interesting to see, that the higher absorbing stru
ture does not dominate the
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(a) PaLS image re
onstru
tion using 10 dete
tors, α = 0

(b) PaLS image re
onstru
tion using 10 dete
tors, α = 0.5Figure 7.6: Re
onstru
tion results from simulated data with realisti
 opti
al 
ontrast,using 10 dete
tors for ea
h sour
e lo
ationoptimization and our method 
orre
tly lo
ates and re
overs the 3× 
uboid. Althoughthe re
overed absorption 
ontrast does not improve greatly for the ϕ = 30◦ 
ase, theshape is re
overed mu
h better when regularization is introdu
ed. For the 30◦ 
aseimprovements in both absorption values and shape are evident and examining Fig.7.9 shows 
learly that we are able to re
over stru
tures even though they are angled
lose to the s
anning dire
tion.
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(a) Ground truth image (b) Re
onstru
ted sli
e imagefor sli
e re
onstru
tion. for 10 dete
tor setup.Figure 7.7: Sli
e re
onstru
tion from y = 5 
m, demonstrating absorption 
ontrast.3D re
onstru
ted using 10 dete
tors shown in Fig. 7.6.Table 7.1: Error metri
s used to judge image re
onstru
tions for simulated re
on-stru
tions. Fig. # dete
tors α D(S,G) dsd [%℄ MSE7.4(a) 2(pixel-based) 820 0.07 76 9.57.4(b) 10(pixel-based) 300 0.08 74 8.37.5(a) 2 0 0.43 11 1.27.5(b) 2 1.5 0.83 10 0.97.6(a) 10 0 0.57 12 1.17.6(b) 10 19 0.82 9 0.89The 
orrelation term in (7.2) is shown to be as important for experimental re
on-stru
tions as in simulations, both in error metri
s in Table 7.2 and visually, in Fig.7.9(a). For both experimental sets, the primitive 3D PaLS method resolves the lo
a-tion and the shape of the in
lusion more a

urately, whi
h is veri�ed by all metri
s.It should be noted in Table 7.2 that D(S,G) is 
omputed stri
tly for regions wherethe in
lusions are present. This is due to the Di
e 
oe�
ient not being a useful metri
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Figure 7.8: Re
onstru
tion results using experimental data and 3 dete
tors. In
lusionsare angled 90◦ relative to s
anning dire
tion, α = 12.to judge re
onstru
tions when the ground truth is an empty set image.Table 7.2: Error metri
s used to judge image re
onstru
tions for experimental re
on-stru
tions. Fig. ϕ α D(S,G) dsd [%℄ MSE7.8(a) 90◦ 0 0.23 8.6 0.997.8(b) 90◦ 0.5 0.55 6 0.977.9(a) 30◦ 0 0.31 13.6 1.107.9(b) 30◦ 0.1 0.65 10 0.98
7.5 Dis
ussionUsing both simulations and experimental measurements we have shown that 3D tubu-lar stru
tures 
an be re
overed by implementing a parametri
 primitive PaLS methodby taking advantage of 
orrelation of adja
ent sli
es. Using an augmented 
ost fun
-tion and optimizing regularization results in better performan
e 
ompared to pixel
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Figure 7.9: Re
onstru
tion results using experimental data and 3 dete
tors. In
lusionsare angled 30◦ relative to s
anning dire
tion, α = 80.based and unregularized shape based approa
h measured in terms of MSE and spatiallo
alization as measured using the Di
e 
oe�
ient and Symmetri
 di�eren
e. Thisshows that even with implementing linear approximation and using severely limiteddata sets, the underlying stru
tures 
an be re
overed with a

ura
y.These results demonstrated that this approa
h has signi�
ant promise to re
overdepth and shape estimation along with opti
al properties in realisti
 phantoms. Withsome improvements it would be espe
ially interesting to advan
e this method by
ombining it with an opti
al mammography devi
e, and expanding on the 
urrentapproa
h. This 
onsideration is dis
ussed further in Chapter 8
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(a) Ground truth image (b) Re
onstru
ted sli
e imagefor ϕ = 0◦ dete
tor setup. for ϕ = 0◦ dete
tor setup.Figure 7.10: Sli
e re
onstru
tion lo
ated at y = 3 
m in Fig. 7.8, 
ompared to groundtruth demonstrating absorption 
ontrast.



Chapter 8
Con
lusion
In this thesis, we have presented approa
hes whi
h implement parametri
 shape-based methods to improve re
onstru
tion algorithms for di�use opti
al tomography(DOT). In Chapter 1, we dis
ussed the motivation and basi
 
hallenges when workingwith opti
al imaging modalities, DOT spe
i�
ally, for the breast imaging appli
ation.Although signi�
ant advan
ements have been made, 
urrent resear
h is 
ontinuing toimprove the quality of the DOT method. Chapter 2 established the basi
 
on
epts ofthe tomography problem and presented an introdu
tion to existing work on solvingthe inverse problem for opti
al tomographi
 te
hniques.Chapter 3 detailed how the forward model was 
onstru
ted for the di�erent ge-ometries 
onsidered in this thesis. In Chapter 4 we dis
ussed the physi
al experimentsperformed for the purpose of this thesis, whi
h were used for the methods presentedin Chapters 5-7, whi
h introdu
ed the parametri
 level set method, and des
ribed128



129how we apply it to the re
overy problem of absorption, s
attering and 
hromophore
on
entration images for DOT. We presented simulated and physi
al experiments todemonstrate the advantage of implementing a low-order model over a pixel-based for-mulation for image re
onstru
tion. The PaLS method not only proved to be morea

urate in terms of error metri
s, but was demonstrated to be faster, due to the low-order model and the fa
t that no impli
it regularization was required for the imagere
onstru
tion.In Chapter 6 we expanded our method to 
onsider di�erently shaped basis fun
-tions, pla
ed at ea
h grid point, for a �xed based PaLS approa
h. This was in orderto verify that our method 
ould take advantage of a large di
tionary matrix withoutover 
ompli
ating the estimation by indu
ing a sparsity 
onstraint on the paramet-ri
 ve
tor. This method demonstrated some promising qualities for image re
overy,but for the 
ase of an ill-posed problem like DOT, optimizing the sparseness of theparametri
 ve
tor, as well as restri
ting the movement of the basis fun
tions a�e
tsthe a

ura
y of the solution. Estimating the 
enters of the basis fun
tions and theirdilation fa
tors proves to be more adaptable and straightforward rather than usinga large di
tionary matrix. Be
ause of this we moved to a more adaptable method inChapter 7.The 3D estimation using primitives presented in Chapter 7 demonstrated that ourmethod, is able to estimate the shape, depth and opti
al properties of 
ompli
ated3D stru
tures with realisti
 opti
al 
ontrast. The re
overed stru
tured proved to be
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urate, even when using extremely limited data sets, only 2-3 dete
tors for ea
hsour
e, and re
onstru
tion performed at a single wavelength. Although absorptionvalues where not re
overed exa
tly at ground truth, this method is adaptable andshould be 
onsidered for further development.Based on the results reported on in Chapter 7 we want to improve on this methodby testing it with more 
ases of sili
on phantoms, exploring how the e�e
t of lowabsorption 
ontrasts 
hanges the re
overy of stru
tures. Additionally our methodis readily expandable to a model where interpolation fun
tions 
an be applied tothe primitives between sli
es, where nth order hold fun
tions, sin
 fun
tions, or spines
ould be used to interpolate the primitives to represent the 3D stru
tures. These kindof interpolating fun
tions 
ould help re
over stru
tures that are re
overed with gaps,or other artifa
ts. In
orporating hyperspe
tral data to improve re
overy of absorptionvalues and allow for dire
t estimation of 
hromophore 
on
entrations should also be
onsidered where our approa
h in Chapter 5 showed signi�
ant improvement for thePaLS method. Re
overing 
hromophore information for a vas
ular stru
ture as is
onsidered in Chapter 5 
ould be helpful for tumor dete
tion.As dis
ussed in Se
tion 7.1 our model assumes that for ea
h sli
e the primitive isinvariant along the y-axis. This of 
ourse is signi�
antly a�e
ts the mismat
h betweenthe model and the true s
enario, but our method demonstrated that 
orrelating thesli
e images and parameterizing the re
onstru
tion allows for a

urate re
overy ofthe vessel like stru
tures. Future e�orts will examine the e�e
t of 
omputing the



131o� diagonal elements of (7.1) where it would be see how results would 
hange if a
ertain segment along the y-axis would be modeled in 3D. This would physi
allyrepresent sta
king 3D sli
es with a 
ertain thi
kness to re
over a larger 3D stru
tureand examining re
onstru
tion a

ura
y versus 
omputational intensity is a naturalprogression of our resear
h.Furthermore the plan is to advan
e the method to 
ombine with a opti
al mam-mography system that obtains depth information of vas
ular stru
tures. In the endthe method presented here, along with opti
al mammograms, 
ould serve as initialguesses for a full 3D non-linear re
onstru
tion. Providing an a

urate initial guessfor a non-linear method would not only improve a

ura
y but signi�
antly speed up
omputation time 
ommonly found in those types of re
onstru
tions.In more detail, Prof. Sergio Fantin's group in the Tufts University Biomedi
alDepartment, is 
urrently developing and testing an opti
al mammography devi
e atthe Tufts Medi
al Center. In this system broadband opti
al mammograms are usedfor breast tumor dete
tion on the basis of measured oxygen saturation of hemoglobin.The data is 
olle
ted in a 
ollinear illumination-
olle
tion s
an of the breast, whi
his exa
tly the setup that was 
onsidered for the sour
e dete
tor setup in Chapter 7.In addition to measured oxygen saturation, this system allows for depth dis
rimina-tion in opti
al mammograms by exploiting dire
tional information of spatial se
ondderivatives. With this in mind, the measurement obtained by the opti
al mammogra-phy devi
e, depth and saturation, 
ould be implemented as an initial guess for our 3D
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Figure 8.1: Hemoglobin saturation maps measured, where false-
olor representationof oxygenation values are superimposed on a gray level image. Image and data wasreported in Yu et al. [111℄.primitive re
onstru
tion presented in Chapter 7. This 
ould prove to be extremelyuseful, where a future 
lini
al system 
ould be 
onsidered a stand-alone opti
al imag-ing devi
e. Utilizing our method in 
onju
tion with mammograms, the possible work�ow for the imaging system 
ould be:1. Data 
olle
tion is performed in the 
lini
, where measurements are 
olle
ted bys
anning sour
es and dete
tors in tandem, over the breast. Limited number ofdete
tor are pla
ed on- and o�-axis, relative to the sour
e.



1332. Opti
al mammogram devi
e measures oxygen saturation, and estimates depthinformation of dete
ted tissue inhomogeneities. Typi
al opti
al mammogramimage with measured oxygen saturation is shown in Fig. 8.1.3. 3D primitive PaLS re
onstru
tion performed using depth and absorption infor-mation obtained in Step 2 as initial guess.4. Full 3D non-linear re
onstru
tion using a �nite di�eren
e model using stru
turalinformation from Step 3, saturation and absorption information from Step 2 asa initial guess.Considering a work-�ow like this is en
ouraging, espe
ially 
onsidering the advantageof the PaLS method over pixel-based method presented in Chapter 5 and a

ura
yin re
overing 3D stru
tures in Chapter 7. Steps 2-3 of this �ow are methods andalgorithms that have already been tested and implemented, where step 3, the 3Dprimitive method, 
an be improved by the items dis
ussed earlier in this se
tion. Thedevelopment of step 4, where implementation of the �nite di�eren
e model used inChapter 8 will be developed to take the prior information as an initial guess andrender a estimation of the underlying vas
ular stru
tures and opti
al properties.It is also important to integrate the PaLS method with a 
lini
al devi
e su
h as theopti
al mammogram, to analyze and provide a rigid framework regarding the basisand stopping 
riteria for the Levenberg Marquardt algorithm. The rigid frameworkshould take into a

ount how many basis fun
tions are �dea
tivated� in the estimation,i.e. when the 
orresponding weight element κ is estimated as zero, the basis fun
tion



134is 
onsidered as dea
tivated. Running the algorithm repeatedly with analysis 
ouldresult in an optimal 
hoi
e of basis fun
tions for ea
h data set. Furthermore, relatingto the development of a framework for di�erent basis fun
tions, we will develop theLevenberg Marquardt algorithm to have optimally 
hosen stopping 
riteria and stepsize 
hanges. This should in
rease robustness of our method and ensure a

ura
y ofestimation for di�erent situations and settings in di�use opti
al tomography.Additionally, in
orporating texture fun
tions to estimate variable 
on
entrationsand inhomogeneous ba
kgrounds needs to be 
onsidered. In that setting, estimatingmultiple level sets for di�erent geometries 
ould prove useful, espe
ially to estimatedi�erent regions of the heterogeneous ba
kground su
h as adipose and �broglandulartissue. However, a simple approa
h is to simply multiply the 
hara
teristi
 fun
tion χwith a 2D polynomial that results in a re
overy varied 
on
entration of 
hromophoresand absorption. This would allow the method to deal with areas that are not stri
tlypie
ewise 
onstant.



Appendix A
Ja
obian for Levenberg Marquardtoptimization
As dis
ussed in Chapters 5 and 7 in order to employ the Levenberg Marquardt algo-rithm, we need to 
al
ulate the Ja
obians. The size J depends on if we are 
onsideringa �xed basis grid as in Chapter 5 or movable basis fun
tions as in Chapter 7. As the�xed grid is a simpli�ed version of the movable basis, for this appendix we derive ageneral 
ase for the error fun
tion, ǫ, as it is de�ned in Chapter 7 as ǫ in Chapter 5
an be 
onsidered a simpli�ed 
ase of Chapter 7.As before we de�ne the 
ost fun
tion in terms of ǫ as

M(θ) = ǫTǫ (A.1)
135



136where ǫ is de�ned as
ǫ =



ǫ1

ǫ2


 =



W(K(θ)−Φ

s)

√
αLθ


 (A.2)We begin by 
onsidering the derivative term 
ontributed by ǫ2. Clearly taking thederivative with respe
t to θ leaves us with

δǫ2(θ)

δθ
=

√
αL. (A.3)This provides the 
omplete 
hara
terization of the elements of the Ja
obian matrix
orresponding to the regularization term. Now 
onsidering the derivative term 
on-tributed by ǫ1

δǫ1
δθk

=
δ(Wk(Kk,ick,i(r)−Φ

s
k))

δθ

= WkKk,i

δck,i(r)
δθ

(A.4)where we generalize for simpli
ity sake to 
onsider the ith 
hromophore and the kthsli
e.Considering the parameters 
ontained in θ we start with by 
omputing the deriva-tive with respe
t to the 
on
entration values of the region of interest and ba
kground,
cak,i and cbk,i, respe
tively, de�ned as

δǫ1
δcak,i

= WKχk,i(r)
δǫ1
δcbk,i

= WK(1− χk,i(r)) (A.5)Now we 
onsider the derivative with regards of the weighting values of ea
h of theCSRBFS, κ, where for simpli�
ation we 
onsider the lth basis fun
tion and rede�ne



137the image formulation in (5.2) as
ck,i(r) = (cak,i − cbk,i)χk,i(r) + cbk,i

= (cak,i − cbk,i)H(κk,lψ(βk,l‖r− rk,l‖) + cbk,i

(A.6)To simplify the notation further, we 
onsider the derivatives with respe
t to theremaining parameters in θ by writing
δǫ1

δ{κk,l, βk,l, rk,l} =
WKc(r)

δ{κk,l, βk,l, rk,l}
= (cak,i − cbk,i)WK

ck(r)
δ{κ, β, rk,l} . (A.7)Using this we express the derivative with respe
t to the weighting element κk,l as

δck(r)
δκk,l

= ψ(βk,l‖r− rk,l‖). (A.8)Next we 
onsider the derivative with respe
t to βk,l where we write
δck(r)
δβk,l

=
δH2,ǫ(κk,lψ(βk,l‖r− rk,l‖)

δβk,l

= κk,lβk,l
‖r− rk,l‖2

‖β2
k,l(r− rk,l)‖⋆ δ2,ǫ(κk,lψ(βi‖r− rk,l‖)ψ′(βk,l‖r− rk,l‖) (A.9)Now 
onsidering derivatives with respe
t to the 
enter lo
ations of the CSRBFs, rk,lwhi
h we split up into the x and z lo
ation by rk,l = (Xk,l, Zk,l), and 
onsidering their

hth 
omponent so that {x, z} ∈ R
n we write

δck(r)
δX

(h)
k,l

= κk,lβ
2
k,l

X
(h)
k,l − x(h)

‖βk,l(x−Xk,l)‖⋆
δ2,ǫ(κk,lψ(βk,l‖r− rk,l‖)ψ′(βk,l‖r− rk,l‖) (A.10)and

δck(r)
δZ

(h)
k,l

= κiβ
2
i

Z
(h)
k,l − z(h)

‖β2
k,l(z − Zk,l)‖⋆

δ2,ǫ(κk,lψ(βk,l‖r− rk,l‖)ψ′(βk,l‖r− rk,l‖) (A.11)



138In (A.9)-(A.11) the term ψ′(.) represents the derivative of the CSRBF.For the simple 
ase of the �xed grid, the Ja
obian matrix 
ontains simply theterms relating to (A.5) and (A.8), as noted in (5.18), where the more 
ompli
atedsituation with movable basis the Ja
obian 
ontains the terms (A.8)-(A.11) along with(A.3) for the regularization term, as shown in (7.7) and (7.8).
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