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Abstrat of �Shape-based image reonstrution methods for hyperspetral di�use op-tial tomography�, by Fridrik Larusson, Ph.D., Tufts University, Otober 2012.
Di�use optial tomography (DOT) is an optial imaging modality that uses nearinfrared light to reover funtional information of tissue. In this thesis we fous onbreast imaging where estimation of the optial properties of the breast an assist indeteting anerous tumors and in judging overall breast health.To this end we explore the appliation of a parametri level set method (PaLS)for image reonstrution for hyperspetral DOT. Chromophore onentrations anddi�usion amplitude are reovered using a linearized Born approximation model andemploying data from over 100 wavelengths. The images to be reovered are takento be pieewise onstant and a newly introdued, shape-based model is used as thefoundation for reonstrution. The PaLS method signi�antly redues the number ofunknowns relative to more traditional level-set reonstrution methods and has beenshown to be partiularly well suited for ill-posed inverse problems suh as the oneof interest here. We extend the PaLS method to imaging problems by onsidering aredundant ditionary matrix for basis funtions allowing for reovery of a wide arrayof shapes.Additionally we explore the ability of di�use optial tomography (DOT) to re-over 3D tubular shapes representing vasular strutures in breast tissue. Using the



PaLS method, we inorporate the onnetedness of vasular strutures in breast tis-sue to reonstrut shape and absorption values from severely limited data sets. Theapproah is based on a deomposition of the unknown struture into a series of twodimensional slies. Using a simpli�ed physial model that ignores 3D e�ets of theomplete struture, we develop a novel inter-slie regularization strategy to obtainglobal regularity. We report on simulated and experimental reonstrutions usingrealisti optial ontrasts where our method provides a more aurate estimationompared to an unregularized approah and a pixel based reonstrution.
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Chapter 1
Introdution
Non-invasive imaging modalities are beoming inreasingly important to monitor fe-male breast health in the 21st entury. The Caner Prevention and Control divisionof the Centers for Disease Control and Prevention (CDC) states that breast aneris the most ommon aner among women of all raes in the United States [53℄, andthe World Health Organization (WHO) lists it as the top aner in women in boththe developed and developing world [25℄. Among the leading auses of aner deathamong women, breast aner ranks seond outnumbered only by deaths due to lunganer. In the prevention and ontrol protool published by WHO great signi�aneis plaed on early detetion. Although some risk redution is ahieved by prevention,i.e. promoting healthy diet and physial ativity, these strategies annot eliminatethe majority of breast aners that develop in low- and middle inome ountries. Be-ause of this, early detetion is the ornerstone of ahieving suessful breast aner1



2ontrol [2℄.To this end sreening methods need to inorporate detetion systems and imag-ing modalities that are low-ost, portable and as we disuss in greater detail shortlysensitive to funtional information of the breast tissue. Keeping detetion systemslow-ost is a signi�ant fator, espeially onsidering breast aner mortality rates inthe developing world. The ratio of mortality to inidene is below 0.2 in North Amer-ia, where it is 0.35 in Latin Ameria and the Caribbean and 0.7 in Afria [87℄. Thereis a lear positive gradient between level of eonomi development and probability ofsurvivorship aross and within regions, whih is losely related to inequities in aessto knowledge, early detetion and treatment.Breast imaging researhers have for a long time been dependent on informationfrom 3D imaging modalities, suh as X-ray omputed tomography (CT) and mag-neti resonane imaging (MRI). Still, there are some drawbaks that hamper theseimaging methods. MRI remains a large and fairly expensive system and an entail aonsiderable maintenane ost. CT on the other hand exposes the patient to ionizingradiation whih an be non-ideal, spei�ally for patients in treatment. Reently theidea of deteting breast aner has shifted from anatomial information, obtainedfrom CT and MRI, and towards modalities that obtain funtional information suhas the onsumption of oxygen in tissue, whih is relevant to proesses suh as tumorgrowth [83℄.Considering the onstraints at hand; a system whih needs to be low ost, portable,



3sensitive to funtional information, useful for early detetion and monitoring overallbreast health, it has beome lear that promising andidates are optial imagingmodalities, mirowave tomography, eletri impedane tomography and ultrasound,whih are expeted to ful�ll all of the onditions stated [104, 23, 13, 63℄. The fousof this thesis will be optial imaging tomography for this purpose.
1.1 Non-tomographi optial modalitiesResearh on optial imaging started in the 1920's with a pioneering artile from MaxCutler on optial transillumination images of the breast [32℄. Spei�ally, light hasbeen used to detet ertain information suh as the blood oxygenation level using pulseoximeters sine the 1930's. While these methods did not generate images diretly,it illustrates one way where light arries information about the material throughwhih it travels. Cutler proposed using ontinuous light to detet breast lesionsbut this idea was quikly dropped sine the intensity of light required aused thepatient's skin to overheat. In the 1970's and the early 1980's signi�ant developmentswere made that led to ommerially available equipment for optial tomography ofthe breast. Gros et al. [52℄ introdued a onept named diaphanography, in whihthe breast was positioned between a visible or near-infrared light soure and thephysiian. From this setup the dotor pereived images using his eyes alone. Theseadvanes led to the development of pulse oxymetry, laser Doppler blood-�owmetryand near infrared spetrosopy (NIRS) whih then led to development of various



4optial breast imaging instruments utilizing ontinuous-wave, frequeny domain ortime-domain light soures.Pulse oxymetry originated in the 1930's and is widely used to monitor bloodoxygenation, an important physiologial parameter that is related to the well beingof the patient. Pulse oxymeters provide aurate information on arterial blood oxygensaturation. The advantage of optial oxymeters over oxygen tension monitors, whihneed to be a part of the irulation or have a blood sample, is that they provide arapid response to hanges in blood oxygenation and yet are non-invasive [13℄.The invention of the laser quikly gave rise to its use in medial appliations. Asearly as the 1970's the laser was being used for laser Doppler studies of blood �ow[13℄. When a beam of oherent light with uniform intensity is inident on a roughsurfae, the re�etion of the beam will not be ompletely uniform but will inludesome dark and light spots [101℄. These dark spots, alled spekles, are aused bylight re�eted many di�erent times whih auses interferene at the detetor. This isexatly what ours when oherent light travels though a highly sattering sample.Additionally, if the sattering partiles are moving the spekle pattern will �utuatewith a time sale whih depends on the motion. This was the basis for Laser DopplerBlood Flowmetry in the 1960's [101℄.Attempts at applying pulse oxymetry and laser Doppler blood �owmetry to mea-sure hemodynamis in the brain were hindered by photodetetor bandwidth limitsand photon limits. In the 1970's NIRS was developed to monitor baseline hanges



5in total oxygenation in the brain, as revealed by the average intensity of di�uselyre�eted light [28, 64, 27℄. Brie�y, NIRS quanti�es hanges in hromophore onen-tration within highly sattering tissue by measuring the hange in the photon densityof light whih is di�usely transported through it. The onentration hange of eahhromophore is then omputed by relating them to the measured hange in photondensity. The measured hange in photon density is diretly related to the onen-tration hange by the extintion oe�ient of the hromophores and the e�etivepathlength of the tissue. The extintion oe�ient is an intrinsi property of eahhromophore, but the e�etive pathlength must be estimated for eah measurementas it is heavily dependent upon the measurement setup and the optial properties ofthe tissue [13℄.In the late 1980's and early 1990's it was soon realized that photon migration spe-trosopy measurements ould be extended to imaging by solving the inverse problemas is done with X-Ray omputed tomography. Researh investigating this possibilitybegan in the late 1980's and is reviewed in [8, 9℄.In optial imaging three measurement shemes are typially used for measuringthe light transmitted through tissue. They are:1. Time domain systems that produe illumination by short pulses of light. Thispulse allows detetion of the temporal distribution of photons as they exit thetissue. The shape obtained from this distribution provides information aboutthe optial properties of tissue, espeially the pathlengths and sattering of



6photons.2. Frequeny-domain systems that utilize radio-frequeny light intensity modu-lation signals. For these systems the light is on onstantly but is amplitude-modulated at frequenies on the order of tens to hundreds of megahertz. Thisallows the absorption and sattering properties of tissue to be obtained byreording amplitude deay and phase delay of the deteted signal [13℄.3. Continuous wave (CW) systems emit light at a onstant amplitude or are mod-ulated at a ertain frequeny. These systems measure the amplitude deay ofthe inident light.Out of these shemes the CW method is the simplest, least expensive, and providesthe fastest data olletion, however the inverse problem assoiated with CW does nothave unique solutions, where multiple sets of optial parameters an yield identialdata [29℄.Due to the overall low absorption of breast tissue, it is possible to measure trans-mitted light through a breast, either ompressed or unompressed. In other aseswhere optial absorption is too strong, re�etane an be measured, suh as the asefor brain imaging [30℄, where in some situations measuring both transmission andre�etion ould be useful. Using the measurements shemes desribed above, one anestimate the absorption or di�erent hromophore onentrations based on the mea-sured photons transmitted through tissue. Depending on the wavelength observed bythe detetors di�erent sattering and absorption an be alulated from the measured



7data.These developments disussed in previous paragraphs led to optial imagingmodal-ities beoming more relevant for linial appliations. This thesis will fous on CWand its usefulness for breast imaging using tomographi methods whih use multiplesoure detetor pairs that an render aurate images of the underlying struturein tissue. Aurate spatial maps of optial properties prove useful ompared to thenon-tomographi spetrosopy methods disussed above.
1.2 Di�use optial tomographyIn the past 15 years there has been inreasing researh into the use of near-infraredlight to image inside the human body with tomographi approahes. Reent e�ortshave demonstrated that these methods an provide useful information for tumor lo-ation and optial parameters. In this setting tissue is illuminated with spatially dis-tributed soures and measurement taken with an array of soures where tomographialgorithms an be used to reonstrut slie images of the medium. These methodsan provide better loalization of abnormalities in tissue and optial properties byrendering aurate maps of the imaging domain and in some ases, spatial-temporalpro�les of hromophore onentrations (oxy- and deoxy-hemoglobin, water and lipidset.) whih onvey funtional information about the body [72℄. One of the teh-niques of interest is di�use optial tomography (DOT) [48℄. DOT uses infrared lightwhih is, as was disussed above, sensitive to the funtional state of tissue suh as the



8onsumption of oxygen whih is possibly relevant to proesses suh as the growth oftumors, vasular strutures as well as the state of brain ativity. Spei�ally, existinglinial studies have related onentrations of total hemoglobin with tumor loations,whih is promising for using light to loate tumors. Although many appliations havebeen shown for the DOT method the most promising ones are for brain imaging andbreast imaging. For the ase of brain the dominant method is still topography, whihmonitors haemodynami and oxygenation hanges, while breast imaging serves as ourfous in this thesis [42, 92℄.Throughout this work we onsider a standalone DOT devie [44℄. Although astandalone devie is onsidered, it is interesting to ompare DOT to X-ray espeiallysine DOT o�ers funtional information whih an be hard to obtain with X-raymammography, whereas the later gives highly detailed anatomial information. Tu-mor detetion in X-ray is for example done by the identi�ation of miroali�ationharateristi of malignant lesions, while optial mammography measures hanges inblood perfusion of the tissue surrounding the tumor. These hanges our early ina tumor's growth and an a�et a relatively large area [95℄. Some reasearhes haveproposed that DOT be ombined with other modalities, for example Li et al. [71℄proposed that the ontrast seen in X-ray images should be assumed to be propor-tional to the DOT ontrast. A linear least-squares type of DOT image formationproblem was then posed to use the information from the X-ray measurements. Theimage reonstrution was regularized using the Tikhonov method whih is similar to



9

Figure 1.1: The proess of photons passing through tissue [13℄. Blak line representslight injeted into the medium, where part of it is re�eted right at the surfae, rep-resented by the brown arrow. Purple line represents di�use re�etane, where light issattered out the same side as the injeted light. Blue line represent sattered and ab-sorbed photons, where the green arrow is sattered photons that travel to the detetor.Finally, red line represent ballisti photons that undergo no sattering events.what is tested in Chapter 5. The regularization in general was based on regions ofinterest, mainly the tumor regions and bakground regions. Additionally, throughsimulation they were able to show that their method improved the ontrast-to-noiseratio and resolution in the reonstruted image. Although, pairing DOT with otherimaging modalities is promising, the work in this thesis fouses on DOT as a stan-dalone modality, serving as an independent tool to estimate female breast health,without information gathered from X-ray imaging or other modalities. Additionally,as has been disussed, mobility, ost and patient omfort are issues that are easier tosolve when onsidering a standalone DOT devie.



10As disussed above, the funtional information aessible by DOT shows signi�-ant promise to apply it to breast aner imaging. The use of near-infrared light isessentially eletromagneti radiation but is at a signi�antly lower energy than CT,making this method less harmful. Operating in the infrared spetrum, 650-950nm,gives us a range whih is sometime alled the window of transpareny [95℄. In thiswindow light propagates relatively far into the tissue (on the order of entimeters)before being absorbed, thereby allowing us to probe quite deeply. Additionally, lightis also sattered within the tissue as it interats with subsurfae inhomogeneities.This proess is illustrated in Fig. 1.1. Within the window, light is absorbed and sat-tered di�erently at di�erent wavelengths depending on the spae-varying oxygenationstate of the tissue. This relation gives us a way to use multiple wavelengths whenestimating hromophore onentrations, the reovery of whih is the main interestof this thesis. Using di�erent wavelengths, performing multispetral measurementsor using a higher number of wavelength (i.e., olleting a �hyperspetral� dataset) ,more information is added to the imaging problem thereby improving our ability todetermine the onentrations of hromophores and ultimately detet aners usingthe methods disussed in the later part of this thesis. With this method it is possibleto inrease the e�etiveness and auray of the DOT method.Reovering funtional information with DOT is extremely useful if framed in theearly detetion framework disussed above. Although our researh initially onsideredthe ase of tumor anomalies in breast tissue, it is lear that overall vasular strutures



11need to be onsidered. Traditional imaging modalities, suh as X-ray and CT, whihrely on anatomial information are insensitive to tumors in early stages of growth dueto smaller sizes and lower attenuation of X-rays, whih fouses early detetion on thereovery of funtional information of the breast suh as oxygenation and vasularityusing optial modalities [23℄. This drives the need to be able to disriminate and es-timate strutures embedded in breast tissue, inluding major vasular struture. Tothis end, work in this thesis will involve how we are able to estimate three-dimensional(3D) tubular strutures, relating to vasular shapes deteted in breast tissue, by ex-tending the method we have developed for image reonstrution for DOT. To estimatethese strutures and parameters the light propagation through tissue must be mod-eled. Although the interation of light and tissue is a highly omplex problem, therehave been signi�ant advanes in reent years to solve the problem e�iently, both interms of theoretially modeling the physis and developing useful odes for simulatingthe proess.Due to these advanes, the DOT method has beome the prime andidate forfuture breast aner detetion systems. X-ray radiation in CT travels generally in astraight line, exluding Compton and Rayleigh sattering, resulting in a muh simplerproblem than what is found for optial modalities. In the ase of di�use optialtomography the photon's mean free path of travel between two sattering events isvery short due to high sattering, most often only a fration of a millimeter. Beause ofthis, most photons travelling through a human breast undergoes numerous sattering



12events. Thus, unlike CT where the physis of the problem is basially straight linepropagation and yields a linear relationship between the quantity of interest tissuedensity and the observed data, for DOT a more omplex model is required [95℄.More spei�ally, the physis of light interation with the tissue is well modeled usingthe di�usion approximation to the radiative transport equation(RTE) whih yields anonlinear relationship between the hromophore onentrations and the observationsof sattered light [95℄. This is alled the di�usion equation whih expresses the photondensity as a funtion of absorption oe�ient and sattering oe�ient and solvingit will provides the forward model needed to solve the inverse problem [48, 13℄.The signi�ant omputational hallenge of DOT is that it is a ill-posed inversesattering problem due to the physis of the di�usion proess just desribed andin some ases the limited ability to ollet quantities of data. Additionally, anotherhallenge is the fat that the measurement is related non-linearly to the parameters ofinterest, whih is often addressed with linear approximations [13℄. The ill-posednessposes a more substantive problem than the non-linearity sine it leads to large hangesin parameters when fairly small hanges our in the data. In some sense this is aphysis-based phenomenon, whih means there is a lak of sensitivity in the data to theparameters. It also means that in the image formation proess (if done naively), smallhanges in the data from noise and unmodeled e�ets an ause very large hanges tothe estimated pro�les. In other words the reonstrution proess is highly sensitive tosmall perturbations in the data. Adding to these di�ulties is the fat that in many



13ases one seeks to reover more degrees of freedom (voxel values times number ofhromophores) than one has data points [13℄. Taken together, the physis-based ill-posedness oupled with non-linearity pose a signi�ant hallenge for reovering optialproperties in DOT. Additionally, this thesis onsiders limited aquisition geometriesthat result in underdetermined systems that dramatially ompliates our ability tostably reover useful information about the state of the tissue from DOT data. Whilethere do exist amera based systems whih are overdetermined, where a signi�antamount of soure-detetor pairs are plaed around the medium, our work fousesaround a spei� soure detetor setup desribed in Chapter 4 [86℄.Considering anomalous strutures like tumors or simply regions of interest, likevessels, the imaging problem an be formed as a segmentation problem, deteting onelass of objets from the bakground [7℄. This approah an help to onstrain theproblem, dereasing the need for expliit regularization for the inverse problem. Sim-ilarly, shape-based methods that utilize segmentation methods are promising for per-forming image reonstrution by taking advantage of information from other imagingmodalities suh as optial or X-ray mammography, where prior information regardingtumor loation, vessel struture or adipose tissue an be implemented [38℄.Researhers have developed several instrumentation types for optial mammog-raphy, some are similar to X-ray by ompressing the breast but others use one likearrangement of soures and detetors whih do not require ompression [24, 113℄.When the ompression tehnique is used a laser soure illuminates on one plate,



14whih is transparent while a detetor on the opposite plate measures over severalmeasurement loations for eah soure position [95℄. This arrangement redues thethikness of the transilluminated tissue. This tehnique has of ourse been used forseveral years in X-ray mammography and has been proven to improve the detetabil-ity of deeply embedded objets. One down side of the ompression method is that itan ause blood to drain from the breast, thereby unpreditably altering the optialproperties [19℄.The other method, with soures and detetors situated in a plane around anunompressed breast, has the patient lying prone on a table with the unsupportedbreast suspended in a avity [86℄. The data aquisition might onsist of a set of �xedsoures and detetors or a rotating system that sans the breast's surfae. This setupan provide a more omplete sampling data over the boundary, but makes de�ningthe problem's geometry more di�ult and requires higher sensitivity of detetors, dueto the longer photon path. This results in higher sensitivity near the skin but muhlower near the enter of the breast. This also has the advantage that it should be muhmore omfortable for the patient sine numerous patients have felt the ompressionmethod to be unomfortable and sometimes painful.



151.3 The purpose of this workThe key ontribution of this work is developing a method to perform shape-basedimage reonstrution for DOT, both in terms of tumor detetion through reover-ing hromophore onentrations utilizing hyperspetral data, and estimating vasularstrutures of breast tissue. For reonstruting hromophore onentrations we fo-us on two-dimensional (2D) images, based on its simpliity and usefulness to judgethe performane of our method using both simulated data and experimental mea-surements. Considering the vasular strutures we extend our method of generating2D images to estimate tubular objets representing vessels in breast tissue, using asimpli�ed model with extremely limited data.In traditional inversion methods for DOT image regions are disretized into largeolletions of voxels over whih absorption, sattering or hromophore onentrationsare assumed onstant. In this framework inversion needs to be arried out for a largenumber of unknowns to estimate the image representing optial properties of thebreast. Due to the previously disussed ill-posedness of the problem pixel based re-onstrution an pose signi�ant hallenges for image reovery. Instead of developingmethods to improve a pixel or voxel based reonstrutions we utilize a shape-basedmethod whih assumes that areas of interest in breast tissue an be divided into twodistint piee-wise onstant regions: bakground breast tissue, and strutures of in-terest, either anomalous areas or tubular strutures, representing blood vessels. Wethen aim to reover a low order aurate estimation of the underlying strutures for



16senarios where the optial absorption ontrast between the bakground and strutureof interest is within a range ommonly found in realisti situations [44℄.Our method emphasizes the use of simpli�ed models desribing the photon migra-tion through tissue, where aurate representation of areas of interest an be ahievedby reduing the dimensionality of the problem. This renders the inversion ompu-tationally feasible and easily expandable for other aurate models alulated for avariety of geometries.
1.4 Thesis OutlineThe thesis is strutured as follows. In Chapter 2 we disuss the fundamental oneptsof DOT, for image reonstrution and review previous e�orts to reover images of thefemale breast using DOT. In Chapter 3 the forward models used to ompute thephoton migration in several di�erent senarios onsidered in this thesis are detailed.Chapter 4 disusses experimental methods employed in this thesis to verify our laims.In Chapter 5 the low order shape based method is desribed and ompared to a pixelbased method. Chapter 6 ontains brief disussion regarding a ditionary methodfor the low order method followed by our method for reovering 3D strutures with2D primitives in Chapter 7. Finally, Chapter 8 ontains disussion regarding futuree�orts for this projet.



Chapter 2
Bakground
This setion will brie�y disuss the formulation and onepts to be used in this thesis.The main problem of reovering images will be disussed in general to be followedwith more detailed disussion in Chapters 5, 6 and 7. Throughout we referene majorworks in the �eld of image reonstrution for DOT, whih allows the reader to furtherexplore the topi.
2.1 Image reonstrution for DOTThe proess of reovering images for DOT involves de�ning the forward problem,whih models the transport of photons through the relevant medium, as well as ad-dressing the hallenges of the inverse problem mentioned in Chapter 1.Lets assume that the domain to be imaged is de�ned by F , a ompat domainin R

n, n ≥ 2, where a physial model K ats on its properties. In the ase of our17



18Soure
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Area ofInterest
∆c

Bakground
c0

F

Figure 2.1: Basi setup of the imaging problem in this thesis. It demonstrates whereoptial properties c are separated into foreground and bakground. The model K atson the entire domain, F , to generate Φappliation these properties inlude optial absorption or hromophore onentrationsand sattering de�ned by a vetor of parameters, c, where the e�et of K on Fgenerates a set of observations, or a measurement, Φ. As disussed in Chapter 1the measurement an be CW, time-domain or frequeny domain data, where for thisthesis we onsider the CW ase. We de�ne a non-linear forward model representedby
Φ = K(c) (2.1)where c itself belongs to a Hilbert spae Sc. We de�ne the inverse problem� theproess of reovering an estimate ĉ of c from the measurement Φ� as a variationalapproah where we set up the estimation of ĉ as an optimization problem de�ning



19the inverse problem as
ĉ = argmin

c
G(c)where

G(c) = 1

2
‖K(c)−Φ‖22.

(2.2)
The data mismath term in (2.2) is in a least square form whih assumes that theestimate, ĉ, is mathematially onsistent with the data, Φ. However, the underlyingphysis of photon migration, and limited data generally aquired in a traditional DOTmeasurement setup, result in a solution that is highly sensitive to noise and systemerrors. Beause of this hallenge, and the fat that the basi forward model in (2.1)is non-linear, signi�ant are is required when performing the reonstrution.As detailed by Arridge [3℄ researhers have taken established solution methodsfrom other appliations and extended them to the optial tomography problem. Meth-ods adapted from omputed tomography have used the assumption that the Radontransform ould be applied to the DOT problem, where losed form solutions andbakprojetion shemes are proposed [49℄. Methods using linear matrix formulationthat are analogous to transfer funtions in single photon emission omputed tomog-raphy have also been onsidered [49℄.Essentially there are two types of image reonstrution shemes for DOT; linearmethods, where approximations are applied to linearize (2.1) and non-linear methodsthat an be more aurate, but more omputationally intensive. The remainder ofthis hapter will disuss these di�erent methods and regularization tehniques applied



20to the optimization problem in (2.2).
2.2 Linear approximationsThe non-linear problem in (2.1) an be linearized if ertain assumptions are madeof the imaging medium. Detailed by Gibson et al. [49℄ the model an be linearizedif the atual optial properties are lose to an initial estimate ĉ0 and the measureddata Φ are lose to the simulated data Φ0 = K(c0), generated by the forward model.This approah is frequently used in di�erene imaging where data is olleted beforeand after an event that hanges the optial properties, for example the injetion ofa ontrast agent or breathing exerise [49℄. The linear approximation is de�ned byTaylor series as

Φ = Φ0 +K
′(ĉ0)(c− ĉ0) +K

′′(ĉ0)(c− ĉ0)
2 + . . . (2.3)where K

′ and K
′′ are the �rst- and seond-order Fréhet derivatives of K [4℄. TheFréhet derivative an be onsidered a linear integral operator that maps funtions inimage spae to measurement spae. The kernel of this integral an be omputed byanalytial Green's funtions, an approah used by Boas et al [14℄.By negleting higher order terms and stritly onsidering hanges in optial prop-erties ∆c = c−c0 and data ∆Φ = Φ−Φ0 the linear problem in (2.3) an be expressedas

∆Φ = K∆c (2.4)



21where K is now the linear forward model. Ignoring the higher order terms this waygives way to implementing two di�erent linear approximations, the Born and Rytovapproximations, respetively.2.2.1 Born ApproximationSometimes referred to as single satter method, the Born approximation onsists oftaking the inident �eld in plae of the total �eld as the driving �eld at eah point inthe satterer. This is equal to writing the total �eld as a sum of an inident �eld, Φiand a sattered �eld Φ
s given by

Φ = Φ
i +Φ

s. (2.5)Physially it amounts to treating eah point in an inhomogeneity as if it existed inisolation from the rest of the inhomogeneity ignoring the ontributions of perturba-tions of the sattered �eld from one part of an inhomogeneity on the �eld inident onanother part [48℄. It is well established that the Born approximation deviates fromthe true result when the perturbation ∆c exeeds a ertain limit [91℄ where extensiveanalysis has been performed on the error in optial absorption images due to theapproximation [54℄ and error modeling has been used to perform orretions for theBorn approximation [103℄. However, taking these limitations into aount, the Bornapproximation an be a useful tool to simplify the inverse problem and has been ex-tensively used in DOT, both for simulations and linial setting [48, 105℄. It providesa straightforward method to ompute and linearize the forward model, whih an be



22used to test reonstrution algorithms. Additionally, as noted by [91℄ the method anbe extended into higher orders, rendering more aurate results. For the purpose ofthis thesis the Born approximation is used, and is disussed further in Chapter 3.2.2.2 Rytov ApproximationAnother approah is the Rytov Approximation whih is omputed by linearizing thelog intensity whih redues the dynami range of Φ, whih assumes that the total�eld an be omputed as
Φ = Φ

i exp (Φs). (2.6)It has been reported that Rytov approximation is better suited for experimental data,in that it is less ill-posed than the Born Approximation [3℄, where it aounts for somenon-linear saturation due to inreasing perturbation in the absorption oe�ient.However, where the Born approximation is only suitable for lower optial ontrasts,the Rytov approximation assumes that the sattered wave varies slowly, thus beingmore suitable for larger perturbations [81℄. Boas [11℄ reported that the Rytov approx-imation has a disrepany of about four times greater than the Born approximation,but suggested that the Rytov approximation ould be empirially modi�ed. Reentlythe Rytov approximation has suessfully been employed for image reonstrution forexperimental and linial measurements [79℄.Using either of these linear approximations allows for diretly inverting the K



23matrix in (2.4). To this end a variety of ommon tehniques are available inlud-ing singular value deomposition, trunated singular value deomposition, Tikhonovregularization or algebrai reonstrution tehnique (ART) [48℄.
2.3 Regularization tehniquesBefore applying regularization tehniques, prior anatomial information an be on-sidered for the purpose of regularizing the solution of the inverse problem that animprove estimation of hromophore onentrations. Suh prior information an be in-luded in the forward model, whih usually involves implementing omplex geometrieswith numerial models. To this end various methods an be applied, inluding the�nite di�erene method disussed in Chapter 3. Inluding this kind of information inthe forward model allows for taking advantage of anatomial prior information whileusing various forward models, as it has been shown that it is bene�ial for both linearand non-linear reonstrutions [12℄. Notably, prior information from X-ray images hasproven to be useful to de�ne the segmentation between adipose and �broglandulartissue in the breast. Fang et al [38℄ demonstrated that onstruting a regularizationmatrix that inorporated strutural priors from X-ray data into a �nite element DOTinversion resulted in aurate estimation for linial data.When prior strutural information is not available, various tehniques exist toregularize the inverse solution. Throughout this thesis, we onsider standalone DOTdevie, and as suh strutural prior information is hard to ome by. This requires



24implementing other methods for regularizing the inverse solution.2.3.1 Reonstrution using the singular value deompositionFor K a m×p matrix with m > p, the singular value deomposition (SVD) takes theform K = UΣVT =

p∑

i=1

uiσiv
T
i (2.7)where U is an m × m unitary matrix, the matrix Σ is m × p diagonal matrix withnonnegative real numbers on the diagonal, and V is an p× p unitary matrix.The ommon onvention is to order the diagonal entries Σi,j in non-inreasingfashion. The diagonal entries of Σ are known as the singular values of K. Thenumber of non-zero singular values, r, is the rank of K. Then Σ is written as:

Σ = diag(σ1, σ2, . . . , σr) (2.8)The pseudo inverse of K, K+, is de�ned asK+ = VΣ
+UT (2.9)where Σ+ is formed by

Σ
+ = diag(σ−1

1 , σ−1
2 , . . . , σ−1

r ) (2.10)This pseudo inverse is then used to obtain ∆̂c = K+∆Φ

∆̂c =

r∑

i=1

1

σi
vi〈ui,∆φi〉 = VΣ

+UT∆Φ (2.11)



25When dealing with a matrix, K, where the singular values deay over many orders ofmagnitude towards zero, like in the DOT ase, the problem beomes more ompliateddue to the evaluation of σ−1.To see how the SVD gives insight into the ill-onditioning of K, onsider thefollowing relations [57℄: Kvi = σiui, ‖Kvi‖2 = σiKTui = σivi, ‖KTui‖2 = σi

(2.12)where ui, vi are left and right singular vetors, basis for the row and olumn spaesof K, respetively and represent the i th elements in the V and U matries. It an beseen that a small singular value σi, relative to σ1 = ‖K‖2, means that there exists aertain linear ombination of the olumns of K, haraterized by the elements of theright singular vetor vi, suh that ‖Kvi‖2 = σi is small. The same holds for ui andthe rows of K. In other words, a situation with one or more small σi implies that
K is nearly rank de�ient, and the vetors ui and vi assoiated with the small σiare the numerial null vetors of KT and K respetively. From this property it anbe onluded that the matrix orresponding to a disrete ill-posed problem is alwayshighly ill-onditioned.The SVD is an invaluable tool for analysis of problems with ill-onditioned ma-tries and the trunated SVD (desribed below) has been used suessfully to solvea variety of ill-posed problems of the form 2.4. When ∆Φ in (2.4) is perturbed byerrors then the solution to the perturbed problem is very likely to be dominated by



26large amplitude, high frequeny errors with struture of singular vetors orrelatedto small singular values [56℄. It is therefore neessary to use some sort of regulariza-tion to ompute a solution that is less sensitive to the perturbations. The Tikhonovmethod is ommonly used in this respet and will be disussed in detail in Setion2.3. An alternative method for regularization of (2.2) is the Trunated SVD. TSVDuses a redued rank approximation to K that is obtained by setting all but the �rstl largest singular values equal to zero and using only the �rst olumns of U and V.Thus the TSVD solution, ∆̂cl, is de�ned by
∆̂cl ≈

l∑

i=1

vi〈ui, g〉 = VΣ
+
l UT∆Φ where

Σ
+
l = diag(σ−1

1 , σ−1
2 , . . . , σ−1

l , 0, . . . , 0)The integer l is alled the trunation parameter. The TSVD beomes espeially usefulwhen dealing with ill-posed problems suh as the forward model matries for the DOTproblem whih are often poorly onditioned with a very wide range of singular values.The singular value spetrum for the DOT problem an have a range of seven ordersof magnitude in the singular values [48℄.2.3.2 Tikhonov RegularizationConsidering the objetive funtion in (2.2) the ill-posed inverse problem poses an in-stability in the solution with respet to small variations. This results in non-uniqenessof solutions where large hanges in optial properties result in small hanges in the



27estimated solution to (2.2) whih suggests the importane of augmenting the obje-tive funtion by inluding regularization terms whih modi�es the objetive funtion.This approah allows for more aurate reonstrution ompared to TSVD whereregularization terms an be spei�ally de�ned to inorporate prior information orsuppress edge artifats. The objetive funtion is then de�ned by
G(c) = ‖K(c)−Φ‖22 + α‖Lc‖2. (2.13)The seond term inludes the regularization matrix L weighted by the regularizationparameter α. Considering the linearized form of the forward model in (2.4) theobjetive funtion in (2.13) an be expressed by

G = (K∆̂c−∆Φ)T (K∆̂c−∆Φ) + α∆̂c
T
L

T
L∆̂c. (2.14)Optimizing this equation is done by taking the partial derivative with respet to ∆̂cand setting equal to zero

δG
δ∆̂c

= 2KT
K∆̂c− 2KT∆Φ + 2αLT

L∆̂c

0 = 2KT
K∆̂c− 2KT∆Φ + 2αLT

L∆̂c

∆̂c = (KT
K+ αLT

L)−1
K

TΦ

(2.15)
There are multiple options for hoie of the regularization matrix, L, whih servesthe purpose of regularizing the solution to inrease the quality of the reonstrutedimage. In essene its hoie requires taking into aount a priori information regard-ing the imaging medium at hand, whih for our appliation, is breast tissue. Whenit is hosen to be identity the impliit prior assumption is that the onentrations of



28hromophores are small, when α is hosen to be su�iently large. When the imagingmedium is disretized on a relatively oarse grid the optial properties in the breastan be onsidered being slowly varying, so the system an be assumed to be smooth.This prior information leading to a reasonable hoie of a spatial di�erential operatoras L.The hallenge in hoosing the α parameter is of even greater importane whenimplementing regularization in (2.13). Formal methods exist and are widely employed,suh as generalized ross-validation (GCV) or the L-urve method, whih usuallyveri�ed with other error metris and visual inspetion. In the L-urve method a plotof log(‖Lĉ‖2) is generated against log(‖W(K(ĉ) − Φ)‖2) as α is varied. Larger αmakes the system better onditioned, but this new augmented system is farther awayfrom the original system, without regularization. Assuming no noise, any su�ientlysmall value of α will produe the same result, but with inreasing noise the need oflarger α grows. Gradient like regularization matrix and the L-urve method is appliedfor multiple hromophores for pixel based reonstrution as in Chapter 5, while anadjusted regularization matrix is utilized for estimating 3D shapes in Chapter 7.
2.4 Non-linear reonstrutionThe aim of non-linear image reonstrution is to alulate optial properties at eahpoint within the model using measurements of light �uene from the tissue surfae.This is performed if the inverse problem annot be assumed to be a reovery of



29values relative to a known bakground or a di�erene measurement, but a reoveryof absolute values of the optial properties. Solving the non-linear problem involvesiterating the objetive funtion G in (2.2) whih minimizes the mismath betweenmodeled data from K(ĉ) and measured data Φ. As before in the ase of breastimaging ĉ is the images of optial properties. Finding the best estimate of c tominimize the data mismath term requires an iterative reonstrution, whih an beseperated into two distint approahes; gradient-based reonstrution, whih has beenextensively studied by Arridge & Shwieger [6, 3℄ and Hielser et al [60℄, or Newton-likemethods [93℄.Gradient based methods avoid the problem of Newton methods whih involve thealgorithm beoming intratable as the size of the problem domain inreases [6℄. Ingradient based algorithms suh as onjugate gradient, a set of onjugate searh dire-tions is generated to �nd the minimum of the objetive funtion. At eah iterationstep a one-dimensional line minimization along the urrent searh diretion is per-formed. The update in gradient methods is omputed from initial value c(0) to obtainthe estimate ĉ
ĉ
(i+1) = ĉ

(i) − ρ(i)G ′(ĉ) (2.16)where i represents the number of iteration, where eah step is taken along the minusderivative diretion of G, ρ is the step size whih needs to redue ost and be largeenough to redue number of iterations and G ′ represents the Fréhet derivative of
G. It should be noted that the gradient based method an be sensitive to variable



30saling, whih an e�et problems where estimation is performed for di�erent typesof unknowns with di�erent orders of intensity [49℄. This problem is enountered inshape-based methods, where estimation is performed for both value of absorption andshape, detailed in Chapter 5. This sensitivity an also be enountered when invertingmultiple hromophores, and sattering amplitude, where the parameters with largersensitivities are updated faster ompared to low sensitivity unknowns, whih does notiterate some hromophore images from initial guess.Newton methods seek to to �nd a zero of the gradient of G by expanding theestimate at eah iteration with Taylor expansion. This leads to an update at eahiteration omputed by
(JTJ+ ρH)h = −JTǫ with ρ ≥ 0 (2.17)where J = K

′ is the Jaobian of the data mismath term and H is a Hessian matrix.Commonly employed algorithm used to to solve the non-linear reonstrution withNewton methods is the Levenberg Marquardt algorithm whih involves de�ning alarge initial ρ and reduing it dynamially through iterations [3℄. Reonstrutions forthe shape-based method in this thesis are performed implementing the Levenberg-Marquardt algorithm, detailed in Chapter 5.What these two approahes share is that great are has to be taken when de�ningwhen the optimal solution ĉ has been ahieved. This usually involves stopping theiteration when the update to ĉ is below a ertain threshold, or a de�ned noise levelhas been reahed. Working with the Levenberg-Marquardt algorithm in this thesis



31we hose the seond stopping riteria, detailed in Chapter 5.
2.5 Shape Based MethodsWide variety of applied imaging problems involve determining a two dimensional (2D)area or three-dimensional (3D) volume in a larger �eld of regard. In the ontext ofthis thesis, this area of interest an be a anerous tumor or a tubular like struturerepresenting vessels in breast tissue. One way to approah these problems and es-timation of these strutures is to reonstrut regions of interest without onstraintsof the shapes of anomalous loations [59, 48, 33℄. These reonstrutions require postproessing where the segments of the reovered images are identi�ed in terms ofbakground and area of interest. An alternative way is to diretly estimate areas ofinterest and the values of optial properties assoiated with eah. These approahesare known as shape-based methods and have been gaining interest for optial imagingmethods [1, 112, 16, 67, 7℄.Shape-based methods involve separating the estimation of c in (2.1) into reoveryof two distint lasses, foreground and bakground. This approah then estimatesthe boundary of the area of interest, or foreground, and assigns a value for optialproperties inside this region and outside for bakground. The formulation presentedin this thesis assumes that values in the two separate areas are pieewise onstant,however adding texture funtions to estimate variable onentrations in these areasis straightforward [1℄. Throughout this thesis we separate c by de�ning it over the



32domain F as
c = caχ(x, y) + cb[1− χ(x, y)] (2.18)Here the funtion χ is de�ned as a harateristi funtion de�ned as 1 inside of theboundary of c de�ned as Ω and 0 outside of it. Reovering the boundary of Ω is themain goal in shape-based estimation, and is shown within the imaging domain F inFig. 2.2. Estimating this boundary an be done by evaluating a dense olletion ofpixels, as is done in traditional image reonstrution for optial imaging. Anotherapproah is to parametrize the boundary of Ω and generate an estimate of c by esti-mating derivatives of the domain mapping the measurement to the optial parametersof interest. Constraining the image formation with this segmentation approah anda parametri urve lessens the need of added regularization terms in the objetivefuntion (2.2) sine the estimate is impliitly regularized through the formulation [1℄.A signi�ant drawbak to this method is that a priori information is required tode�ne the number of areas of interest whih is a signi�ant issue onerning medialimaging modalities where the ground truth is hard to ome by.
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Figure 2.2: De�nition of anomalous region Ω within the imaging domain F used forshape-based methods.



33The need of prior information to estimate the urve an be irumvented by esti-mating the boundary of Ω using a level-set representation of the unknown parameters[114℄. This is the primary approah onsidered in this thesis. In [34℄ level sets wereused in a two-step method for shape estimation assuming that prior information ofthe absorption parameter was known. Shweiger et al. [94℄ and Kilmer et al. [67℄employed level sets for the DOT problem estimating parameter distributions using apieewise basis. Arridge et al. [7℄ investigated shape based methods by estimatinglevel-sets, spei�ally investigating an expliit method using basis funtions and animpliit shape reonstrution to reover absorption and di�usion oe�ients assum-ing a known bakground [7℄. For a detailed review of the use of level sets in inversesattering problems we point the reader to [35℄.The approah we onsider in this thesis is signi�antly di�erent from those in[94, 34, 7℄. In addition to the fat that none of these papers have onsidered the fullyhyperspetral ase, some of these methods [94, 34, 67℄ require the reovery of unknownquantities de�ned on a �ne sale pixelated disretization of the region of interest. Morespei�ally in [7℄ absorption and sattering are estimated using level sets assumingthose of the bakground are known. With the Born approximation we assume theabsorption and di�usion oe�ients are known in the bakground but here we estimatehromophore onentrations and sattering amplitude of the objet of interest as wellas hromophore onentration in the bakground. Traditional image reonstrutionsmethods use a pixel-based grid, estimating eah pixel unonstrained by segmentation,



34while traditional level set methods work with a level set funtion de�ned on a pixel-based grid. In both ases, regularization is required to obtain adequate results andone is faed with the orresponding hallenge of hoosing regularization parameters[85, 94℄.In this thesis we onsider the use of a shape-based approah to the hyperspetralDOT problem based on a newly-developed parametri level set (PaLS) formulation.In [1℄, a basis funtion expansion was used to provide a low order representation ofthe level set funtion and yielded more aurate results for a number of highly ill-posed inverse problems inluding a restrited form of the DOT problem where a singlewavelength was employed to determine only optial absorption. The method requiredno expliit regularization and, due to the low-order nature of the model (number ofparameters signi�antly less than number of pixels) was amenable to Newton-typeinversion algorithms known to onverge more rapidly than gradient-based shemes.Moreover, in [1℄ it was demonstrated that experiments indiated a roubstness to theseletion of initial guess for the inversion algorithm.Considering the ase of DOT, the breast is a highly heterogeneous medium,whereas in the level set method we assume the images to be reovered to be pieewiseonstant. This assumption is supported in the literature. For example Shweiger etal. assumed anatomial prior information to derive a pieewise onstant region basis[92℄. In this thesis the hoie of the piee-wise approximation is su�ient due to the



35underdetermined nature of our setup, where data is aquired with limited soure-detetor pairs. This results in a high ill-posedness where high resolution informationis di�ult to reover, making the piee-wise approximation useful.Considering the heterogeneous medium enountered in this appliation, we ex-plore the appliation of implementing the low-order model by taking advantage ofredundant ditionaries. This entails essentially reating a large matrix, ontaining alibrary of shapes that an be be used to estimate the underlying struture. In thisontext, a sparse representation means reovering the unknown optial properties byinluding only few elements from the ditionary matrix.2.5.1 Primitives for 3D shape estimationConsidering the ase of estimating vasular strutures of the breast, whih as disussedin Chapter 1 is important for breast imaging, the reovery of 3D strutures is vital. Tothis end researhers have implemented aurate numerial models whih disretize theimaging medium into voxels and reover 3D strutures by assigning values to eahelement [31℄, or reonstruted ross-setions of 3D objets to estimate their totalvolume and loation [33℄. In the ase of the ill-posed DOT problem, this an beomputationally intensive and hard to generate voxel meshes for di�erent geometrieswithout prior information.An alternative approah to reonstrution of 3D shapes is presented in [18℄. Inthis paper the authors represent this 3D objet by a olletion of vertially staked



36unit height ylinders, whih they refer to as primitives. The ross setional densityof eah primitive is represented as a funtion, f(r, γ), of a position vetor r and avetor of shape parameters γ. Spei�ally, in [18℄ the funtion f(r, γ) is the indiatorfuntion for an ellipse where the shape of eah primitive is de�ned by a parametervetor that holds the enter and radius of the ellipse, the ratio of its semi-axes andthe orientation angle between its semi-axes. Under this model, eah objet primitiveis entered at a point, whih orresponds to the vertial positioning of the enter axisfor that primitive. However, sine this model was developed for generalized ylinders,where a known training set or prior information would optimize the seletion of themodel parameters it is most e�etive when the objets are modeled as suh [18℄.Additionally, the approah in [18℄ restrited strutures to not interset in 3D spaeand implemented a statistial method to determine if primitives in adjaent sliesshould be onneted.Inspired by [18℄, we introdue a new, �exible approah to the modeling and es-timation of 3D shapes. We de�ne a 3D objet using a set of 2D shapes, whih wealso refer to as primitives [18℄. Our model de�nes eah primitive as a ross-setion,an in�nitesimally thin area, whose struture is de�ned by a vetor of parameters thatonsists of a olletion of basis funtions de�ned by their enter loations, weightingfators and axis length, or dilation. This formulation allows for implementation ofthe shape-based method to handle the estimation for eah slie, and orrelate them.The overall 3D objet struture is de�ned by �staking� the primitive images together,



37reating a parametrized approximation to a 3D objet. Spei�ally, in 3D Cartesianoordinates (denoted by x − y − z), if z is assumed to orrespond to the �vertial�,then eah primitive resides in an x − z plane. This takes advantage of the tubularnature of vessels ommonly found in parallel plate breast imaging (where the breastis ompressed) and the fat that major vessels in breast tissue generally travel per-pendiular to the hest wall [62℄. The reonstrution algorithm is apable of �deati-vating� any unneessary basis funtions and thereby disovering the required numberof ative and passive primitives to e�etively reonstrut the objet's shape stru-ture. As suh, the model an e�etively image multiple spatially separate anomaliesagainst a bakground of potentially unknown struture. Correlating adjaent slieswe implement a regularization approah to augment the optimization method witha ost term assoiated with the assumed linear relationship between adjaent primi-tives. The soure detetor setup used for the purpose of this thesis, where soure anddetetor is sanned in tandem, relates our method to an optial mammography de-vie urrently being designed by Prof. Sergio Fantini's group at the Tufts UniversityBiomedial engineering department. Our method of reovering shape, volume andabsorption estimates an utilize depth and oxygen saturation information aquiredby Prof. Fantini's system as well as advaning the modality towards a standalonedevie. This onsideration is disussed further in Chapter 7.



382.6 Hyperspetral informationResearh for DOT has shown that inluding multiple wavelengths in measurementsan inrease the auray of the measurement. Multispetral measurements made itpossible for Boverman et al. [15, 99℄ to obtain hemoglobin images of the onentrationand the hemoglobin oxygen saturation. Corlu et al. [30℄ showed that using multiplewavelengths are the key for obtaining physiologially relevant tissue parameters withCW light. Indeed, a fator in deteting breast aner is the disrimination of atualaner and benign lesions or normal tissue inhomogeneities in the breast. Multi-wavelength information has been shown to be useful to make this distintion [42℄,whih is due to the fat that determining the level of blood oxygenation in the breastan show the loal supply and demand of oxygen. Sine aner tumors were suspetedto have low-oxygen levels this information an be linially useful in making thedi�erene between tumors and benign artifats [42℄.Multispetral data has also potential to redue the non-uniqness of the solutionto the DOT problem. This onept is not new and has been researhed extensivelyfor the past 20 years [5℄. In the ase of CW measurements, it has been shown thatdi�erent sets of absorption and sattering parameters an yield idential data. Also,inversions an su�er from ross-talk between absorption and sattering [5℄. Cross-talkhappens when a reonstruted image of a hromophore shows traes of onentrationsfrom other hromophores. These "ghost" images greatly redue auray of the over-all reonstrution. Corlu et al. [30℄ showed how this nonuniqueness problem ould
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Figure 2.3: Example of hyperspetral ube onsidered for multi wavelength imaging.Eah pixel in eah image on the spetral axis orresponds to an absorption value inthe near-infrared spetrum.be solved by using multispetral data, provided that it is used with the orret wave-lengths.Implementing multispetral information for DOT requires an informed hoie ofwavelengths to reover spei� hromophore onentrations. Inreasing the amountof data used eliminates this hoie and opens the option of generalizing the model tosimultaneously reovering multiple hromophores. Considering this it is imperativeto disuss how many wavelengths should be inluded in the measurement, and howto optimally hoose the added wavelengths. This is where hyperspetral measure-ments ome into play, whih involves using a great number of wavelengths for themeasurement. However there is no set number of wavelengths that de�nes hyperspe-tral imaging from multispetral imaging. Comparing hyperspetral vs. multispetral
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Figure 2.4: Molar extintion oe�ients for oxy-hemoglobin (HbO2) deoxy-hemoglobin(HbR) shown as a funtion of wavelength.imaging, the wavelengths available for a reonstrution is on the sale of ∼100 in thehyperspetral ase and that for the multispetral ase is less than ∼10 spetral bins[22℄.Hyperspetral imaging has been used extensively in the �elds of remote sensingand geology of natural and man-made materials that are indistinguishable using stan-dard olor imagery [69, 96℄. The fundamental basis for spae-based remote sensing isthat information is potentially available from the eletromagneti energy �eld arisingfrom the earth's surfae and, in partiular, from the spatial, spetral and temporalvariations in that �eld. This information is often represented by a 3D ube, where thetwo fae axes represent spatial loations, and the depth axis of the ube representsspetral variations. This is referred to as a hyperspetral ube, shown in Fig. 2.6.Researhers have moved on to look at how the spetral variations might be used inases where imaging modalities work with data with low spatial resolution. In the



41ase of DOT, these spetral variations are represented by the extintion oe�ients ofthe di�erent hromophores being estimated, where the extintion oe�ient spetrumfor oxyheomoglobin and deoxyhemoglobin are shown in Fig. 2.6.When reonstruting images for onentrations of hromophores in DOT thereare generally two ways of using spetral information. In this projet these two meth-ods will be referred to as the diret method and the indiret method. The indiretmethod generally requires three steps to obtain the onentration images. First,measurements are taken at two or more wavelengths. Seond, images of the absorp-tion and redued sattering oe�ients at the di�erent wavelengths are reonstrutedseparately. Last, the onentration of the separate hromophores are derived fromthe optial properties. On the other hand the diret method skips the step of on-struting the spetral absorption images and diretly reonstruts the hromophoreimages from measured data [73℄. For this thesis we implement the diret method forreovering hromophore images.In this thesis, we will explore the value of hyperspetral data for addressing themany issues assoiated with ill-posedness enountered with DOT. It will be exam-ined how hyperspetral data an inrease resolution and redue ross-talk. In otherwords, the ability to loalize small perturbations from individual speies and abilityto separate multiple speies.



Chapter 3
Forward Models
In this hapter we onsider the forward models used to model photon migration forthe methods in this thesis. We onsider the physis of mass transport as it is appliedto photon migration.
3.1 Di�usion approximationFor the purpose of this thesis we onsider the di�usion approximation of the radia-tive transport equation (RTE), an integro-di�erential equation, onsidered the mostgeneral model for photon migration. Due to its omplexity and high dimensional-ity its solutions are generally solved using Monte Carlo or numerial methods like�nite element, �nite di�erene or spherial harmonis method [77℄. The di�usionapproximation assumes that the spei� intensity develops a nearly isotropi angular42



43distribution due to the multiple sattering e�ets. Additionally the di�usion approxi-mation replaes the use of the RTE sattering phase funtion with a single parameter,the redued sattering oe�ient, de�ned by
µ′
s = µs(1− g) (3.1)where g is de�ned as the osine of the sattering angle and the sattering oe�ient

µs is equal to the reiproal of the transport sattering length. This length is de�nedby the distane when a ollimated beam beomes e�etively di�use, whih is about1 mm for near-infrared light in biologial tissue. It should be noted that the RTEan be derived by �rst priniples by applying Maxwell's equations to the problem ofmultiple eletromagneti sattering in disrete random media [78℄.In the time dependent ase, the di�usion approximation assumes that the photonurrent is onstant in time, where in general terms the assumption is that the absorp-tion oe�ient, µa, is dominated by sattering, stated by µa ≪ µ′
s, suh that the ratio

µ′
s/(µs + µa) is lose to unity. From this, the di�usive assumption an be justi�edwhen sattering e�ets are predominant over absorption. Lastly the soure-detetorseparation must be greater that 1/µ′

s whih is in the range of 1 mm. Considering ourappliation of breast imaging in transmission geometry, this onstraint is upheld.A model of light propagation in a highly sattering medium is neessary both toompute the simulated �uene at the detetors and to map the �uene bak to thehromophore onentrations. Utilizing the di�usion approximation to the RTE weobtain a useful and ommonly employed model for the photon �uene in a highly



44sattering medium, whih is often referred to as the Helmholtz frequeny domaindi�usion equation
∇ ·D0(r, λ)∇Φ(r, λ) + (jω − vµ0

a(r, λ))Φ(r, λ) = −vS(r, λ) (3.2)where Φ(r, λ) is the photon �uene rate at position r due to light of wavelength
λ injeted into the medium, v is the eletromagneti propagation veloity in themedium, µ0

a(r, λ) is the spatially varying absorption oe�ient, and S(r, λ) is thephoton soure with units of optial energy per unit time per unit volume. For thework in this thesis the soure is onsidered to be delta soures in spae and an bewritten as S(r, λ) = S0(λ)δ(r− rs) with S0(λ) the soure power at wavelength λ. Wenote that (3.2) inludes the term jω where ω is the modulation frequeny of the lightintensity [108℄. Throughout this thesis we onsider exlusively problems for whih
ω = 0, representing CW measurements. For spatially varying sattering we assumethat the di�usion oe�ient D0(r, λ) follows Mie sattering theory where a satteringprefator Ψ depends on the size and density of satterers while a sattering exponent
b depends on the size of the satterers. Using this, we write the di�usion oe�ientas

D0(r, λ) = v

3Ψ

( λ
λ0

)b

= vΨ′d(λ). (3.3)The arbitrarily hosen referene wavelength λ0 is introdued to ahieve a form of theMie model where Ψ has the units of mm−1 and Ψ′ has units of mm.



453.2 Disrete model and integral equationNow as disussed in Chapter 2 we deompose the di�usion and absorption oe�ientas
D0(r, λ) = D(λ) + ∆D(r, λ)
µ0
a(r, λ) = µa(λ) + ∆µa(r, λ). (3.4)By this we an show that the perturbation in ∆µa and ∆D are related by an integraltransformation to the data whih an be de�ned as

Φ(r, λ) = Φ
i(r, λ) +Φ

s(r, λ) (3.5)where Φ
i and Φ

s are the inident and sattered �eld, respetively, as disussed inChapter 2. Using this we an rewrite (3.2) as
∇ · (D(λ) + ∆D(r, λ))∇Φ(r, λ) + (jω − v(µa(λ) + ∆µa(r, λ)))Φ(r, λ) = −vS(r, λ).(3.6)The solution to (3.6) obeys the integral equation

Φ(r, λ) = Φ
i(r, λ) + ∫

V

G(r, r′, λ)[∇ ·∆D(r′, λ)∇− v∆µa]Φ(r′, λ)dr′ (3.7)where Φ
i is the inident �eld and G(r, r′, λ) is the Green's funtion that satis�es thedi�usion equation de�ned as

[
∇2 +

vµa(r, λ)− jω

D(λ)

]
G(r, r′, λ) = δ(r− r′). (3.8)In general the Green's funtion G must satisfy boundary onditions on the boundarieswhere soures and detetors are loated as well as (3.8). The Green's funtions di�er



46in terms of what geometry is onsidered, where throughout this thesis we onsidertransmission geometry. In this kind of setup, demonstrated in Fig. 2.1, where a soureand detetor are on opposite sides of the medium to be imaged, light is injeted intothe medium from the soure, whih migrates through it and absorbs or satters andresulting signal is piked up by the detetor.
3.3 Green's FuntionsAnalytial solutions exist that diretly ompute the value of the Green's funtions re-lating to eah geometry. Working with Green's funtions require a hoie of geometrythat is best suitable for the experimental setup at hand [77℄ where they are omputedwhen the soure is onsidered to be a spatial and temporal delta funtion. Green'sfuntions are ommonly employed to ompute the forward problem in image reon-strution, espeially when the medium an be approximated as a slab or an in�nitehalf-spae, whih is often onsidered for re�etane measurements. As noted by Gib-son [49℄ some researhes have extended this approah by implementing the Kirho�approximation, whih models the Green's funtion between two points in a mediumof arbitrary geometry by summing together Green's funtions in in�nite spae andGreen's funtions omputed for waves re�eted multiple times o� the boundary [90℄.Various geometries an be onsidered for this situation, and here we onsider threeases, the in�nite medium, slab medium with boundary onditions on soure anddetetor planes, and a box with boundary onditions on all sides.



47For the ase of an in�nite medium, free-spae Green's funtions are used to om-pute G(r, r′, λ) in (3.20) and 3.17 [48℄. Physially this amounts to embedding thesoure and detetor in the medium and no boundary onditions are onsidered forthe photon �uene, although �elds are required to obey asymptoti deay onditions.As disussed by Fabrizio et. al [77℄ the geometry of the in�nite medium is mainlyuseful for understanding the intrinsi harateristis of photon migration, sine thisgeometry allows for studying only the e�ets due to optial properties, not bound-aries. Obviously this setup is not realisti for a non-invasive imaging modality likeDOT, however, onsidering in�nite boundaries allows for relatively simple omputa-tions and is a good starting point to test algorithms. Expanding eah method to amore ompliated geometry, inorporating boundaries is relatively straightforward.For the in�nite medium, the free-spae Green's funtion is omputed by
G(r, r′, λ) = −1

4πD(λ) | r− r′ |ejk0(λ)|r−r′| (3.9)As disussed above, throughout this thesis a transmission geometry is onsidered,shown in Fig. 2.1 , as it is most ommonly used for the female breast imagingsenario. A natural progression from in�nite boundary is to onsider in�nite slabgeometry, where boundary onditions on the plane of the soure and detetor aretaken into aount. In other settings we onsider a in�nite slab geometry whereboundaries are applied to the planes where soures and detetors reside. For the aseof onstant sattering and where the estimation of absorption values is the goal the
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Figure 3.1: Setup of the slab geometry with example mirror soures used for alulatingthe slab geometry Green's funtion. Figure is not to sale.Green's funtion is [77℄
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and µeff is
µeff(r, λ) = √

µa(r, λ)/D(λ) =
√

3µa(r, λ)µ′
s(λ) (3.11)where ρ =

√
x2 + y2. This solution is obtained by the method of images, sometimesalled �mirror images.� The method makes use of boundary onditions that assumethe �uene equal to zero on the physial boundary of the di�usive medium or onan extrapolated surfae at a ertain distane from the physial boundary [58℄. Themethod of images allows for a solution of the photon �uene in the slab geometry as



49a superposition of solutions for the in�nite medium. In this formulation, z+m and z−mrepresent real positive and negative soure loations, respetively. As shown in Fig.3.1 these soures are plaed along the z-axis at
z+m = 2m(s+ 2ze) + zs

z−m = 2m(s+ 2ze)− 2ze − zs

(3.12)where m are the summation terms in (3.10), s denotes the thikness of the slab, and
ze denotes the extrapolated boundary. This simpli�es omputations somewhat, whenthe solution for the in�nite medium has already been established, and provides a usefulmodel when experiments are performed for a phantom with boundary onditions.
3.4 Born ApproximationTo formulate the integral equation whih is used for our inversion methods, we em-ploy the Born approximation, whih as disussed in Chapter 2 onsists of taking theinident �eld Φ

i, shown in (3.5), in plae of the total �eld Φ in the satterer.Now onsidering the perturbation theory for ∆D and ∆µa and the assumptionthat Φi(r, λ) ≫ Φ
s(r, λ), whih gives us a approximated solution of (3.2) as

Φ
s(r, λ) ≈ −

( ∫
∆µ(r′, λ)G(rd, r′, λ)Φi(r′, rs, λ)dr′

+

∫
∆D(r′, λ)∇G(rd, r′, λ) · ∇Φ

i(r′, rs, λ)dr′) (3.13)where rd is the loation of the detetor and Φ
i(r, rs, λ) is used here to denote theinident �eld at position r and wavelength λ due to a delta-soure loated at rs.



50Examining (3.13) provides a linear relationship between the sattered �uene and theabsorption perturbation.This equation an be disretized by onsidering only voxel points in the medium.Then the value ri is de�ned as the position vetor, denoting loation in the mediumwith ri denoting the loation of the ith suh point within F . More formally, we expand
∆µa(r′, λ) and ∆D(r′, λ) using Dira delta funtions

∆µa(r′, λ) = a

Nv∑ri ∆µa(ri, λ)δ(r′ − ri)
∆D(r′, λ) = a

Nv∑ri ∆D(ri, λ)δ(r′ − ri) (3.14)where a represents the area of a pixel and Nv number of �eld points, or pixels on-sidered. Inserting (3.14) into equation (3.13) allows for disretization, by
Φ

s(r, λ) ≈ −
( ∫

a
Nv∑ri ∆µa(ri, λ)δ(r′ − ri)G(rd, r′, λ)Φi(r′, rs, λ)dr′

+

∫
a

Nv∑ri ∆D(ri, λ)δ(r′ − ri)∇G(rd, r′, λ) · ∇Φ
i(r′, rs, λ)dr′)

≈ −
(
a

Nv∑ri ∆µa(ri, λ) ∫ δ(r′ − ri)G(rd, r′, λ)Φi(r′, rs, λ)dr′
+a

Nv∑ri ∆D(ri, λ) ∫ δ(r′ − ri)∇G(rd, r′, λ) · ∇Φ
i(r′, rs, λ)dr′)

≈ −
(
a

Nv∑ri ∆µa(ri, λ)G(rd, ri, λ)Φi(ri, rs, λ)
+a

Nv∑ri ∆D(ri, λ)∇G(rd, ri, λ) · ∇Φ
i(ri, rs, λ))

(3.15)
Considering (3.15) a linear relationship between absorption, di�usion oe�ient andmeasurement data has been established.



51As disussed in Chaper 1 some reonstrution results and methods stritly onsiderreonstruting absorption values or hromophore onentrations. In this senario thedi�usion oe�ient in (3.3) is assumed to be spatially invariant as
D(λ) =

v

3µ′
s

. (3.16)This hanges (3.2) signi�antly and simpli�es omputations somewhat. We utilizethe same approah as before with the Born approximation, resulting in the linearizeddisretized model is omputed by
Φ

s(rd, λ) = −a
Nv∑

j=1

G(rd, rj, λ)Φi(rj, rs, λ)∆µa(rj , λ). (3.17)Now as mentioned in Chapter 1, DOT is often used to image the onentration ofoxyhemoglobin and deoxy-hemoglobin along with other hromophores in tissue. Thetehnique exploits the fat that oxyhemoglobin, HbO2, and deoxy-hemoglobin, HbR,are dominant absorbers in the infrared region [72℄. It an be assumed that the ab-sorption oe�ient is dominated by the hemoglobin, then for these two hromophoresthe absorption oe�ient would be written as
∆µa(r, λ) = εHbO2

(λ)∆cHbO2
(r) + εHbR(λ)∆cHbR(r). (3.18)where εX are the extintion oe�ient of hromophore X and ∆cX represents theonentration of the Xth hromophore. The dependene of r in (3.18) omes fromthe onentration of eah hromophore. Even though the DOT method bene�ts fromthe reations of hemoglobin to infrared light, it an be extended to image other



52hromophores, like water or lipids for example. For the ase of Nc hromophores(3.18) would beome,
∆µa(r, λ) = Nc∑

k=1

εk(λ)∆ck(r) (3.19)Using (3.19), we write (3.15) as
Φ

s(λ) = −a
Nc,NV∑

k,j=1

(
G(rd, rj, λ)Φi(rj, rs, λ)εi(λ)∆ck,j

+ ∇G(rd, rj , λ) · ∇Φ
i(rj , rs, λ)∆Dj(r, λ)). (3.20)Similarly, (3.19) an be used with (3.17) to relate hromophore onentrations tomeasurement data, with uniform spatial sattering.The omputational tratability of the inversion sheme we implement in this the-sis arises from the linear algebrai struture assoiated with (3.20). We start byde�ning ck ∈ R

Nv as the vetor obtained by lexiographially ordering the unknownonentrations assoiated with the kth hromophore and Φ
s(rj , rs, λ) to be the vetorof observed sattered �uene rate assoiated with all soure-detetor pairs olletingdata at wavelength λ. Now, with Nλ the number of wavelengths used in a givenexperiment, (3.20) is written in matrix-vetor notation as




Φ
s(λ1)

Φ
s(λ2)...

Φ
s(λNλ

)




=




ε1(λ1)K
a
1 ε2(λ1)K

a
1 . . . εNc

(λ1)K
a
1 K

d
1

ε1(λ2)K
a
2 ε2(λ2)K

a
2 . . . εNc

(λ2)K
a
2 K

d
2... ... ... ... ...

ε1(λNλ
)Ka

Nλ
ε2(λNλ

)Ka
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. . . εNc
(λNλ

)Ka
Nλ

K
d
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∆c1

∆c2...
∆cNc

∆Ψ′


(3.21)



53where K
a
l represents the �rst term in the sum of (3.20) relating to hromophoreonentrations and K

d
l is the seond term relating to the sattering amplitude. Forthe ase of a onstant di�usion oe�ient as in (3.17) the formulation in (3.21) omitsthe K

d
l terms and ∆Ψ′, whih represents the perturbation in di�usion amplitude.It should be noted in (3.21) that the matrix has elements whih are also thematries Ka

l and K
d
l . The (m, j)th element of them both represents the mth soure-detetor pair and as before j represents the jth voxel. Assuming that for a givenexperiment Nsd soure detetor pairs operate at all Nλ wavelengths, then eah Kl has

Nsd rows and Nv olumns so that the whole matrix K is of size NsdNλ × NvNc. If,for example, in an experimental setup where Nsd = 57, Nc = 2 hromophores, andimage reonstrution is done for 1800 pixels, Nv = 1800, and Nλ = 126 results in a
K matrix of size 7182 × 3600. Combining the matrix elements in (3.21) we write itin a more simple way as

Φ
s = K∆c. (3.22)



Chapter 4
Experimental methods
4.1 MeasurementsMeasurements are performed in ollaboration with Prof. Sergio Fantin's group in theBiomedial Engineering Department at Tufts University. Two groups of experimentswere onduted. The �rst group involved a liquid phantom made to have realistioptial properties omparable to the female breast. The purpose of these experimentswas to test the improvements of inluding hyperspetral information to solve theinverse problem disussed in Chapter 2. The seond group of experiments involved asolid phantom made of ured silion. These experiments were performed to provideexperimental validation of our method to reover 3D tubular strutures, detailed inChapter 7.
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554.2 Milk and Water phantomExperiments were performed to simulate a problem in an unbounded domain. Tothat end, a lear �sh tank was �lled with a milk and water solution in whih souresand detetors were submerged in the enter away from edges in order to simulatedin�nite boundaries. An example image of this experimental setup is shown in Fig.4.4.4.2.1 Liquid phantomThe bakground medium onsists of water and milk in the ratio of 2:1, respetively.Milk, with 2% fat, is used due to the similarities of the optial properties to humanbreast tissue. Blak India ink and blue food dye were added to mimi tissue hro-mophores. The ink and dye are mixed into the bakground of milk and water toahieve µa = 0.029 m−1, at 600 nm, whih is in the range of optial absorption ofthe female breast [36, 98℄. The absorption spetra for the ink and dye inlusions,shown in Fig. 4.1(b), have the most signi�ant e�et in the 450-700 nm range. Thesehromophores are hosen beause the spetral shapes of their absorption are similarto those of HbO2 and HbR and have been widely used in literature [31, 75℄.In order to obtain multi- and hyperspetral reonstrution values for µa(λ) and
D(λ) the bakground has to be known and in the experimental measurements weassume uniform sattering. Therefore we have the unperturbed representation of theredued sattering oe�ient, µ′

s, whih is given by
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Figure 4.1: Absorption spetra of the ink and dye solutions hromophores used inexperimental measurements. Spei�ally hosen wavelengths are marked with an as-terisk.
µ′
s = Ψ

( λ
λ0

)−b

. (4.1)This relates to the di�usion oe�ient, D(λ), as it is de�ned in (3.16). Phase, ampli-tude and average intensity data are obtained at two wavelengths using a frequeny-domain tissue spetrometer to estimate the Ψ and b parameters in (4.1). This allowsus to extrapolate values for µ′
s at any wavelength [51℄.The measurement to obtain values for the µ′

s alulation and to verify that µa islose to the values used from literature is performed at two wavelengths, 690 nm and830 nm. The measurement give AC, DC and phase data for a signal travelling in themedium whih an be used to alulated µ′
s and µa for the medium. In greater detail,



57this information is obtained by moving a detetor away from a light soure inside ofthe medium. The hange in AC amplitude, DC amplitude and phase is plotted asa funtion of the position. Then Sϕ, Sα and Sδ are de�ned as the slopes when thephase, ln(DC · r) and ln(AC · r) are plotted respetively as a funtion of position of
r the soure-detetor separation, respetively. As shown by Fantini et al. [39℄ theabsorption oe�ient and sattering oe�ient an then be alulated from Sα byusing

µa =
ω

2υ

(Sϕ

Sα

− Sα

Sϕ

)
µ′
s =

S2
α − S2

ϕ

3µa

.where ω is the modulation frequeny set at 110 MHz, υ is the speed of light dividedby the index of refration set as n = 1.4 [40℄. To verify these values, a separateomputation are made with, Sδ, by using these relations
µa = − ω

2υ

(S2
ϕ

S2
δ

+ 1
)− 1

2

µ′
s =

S2
δ

3µa

− µaUsing this method the values in (4.1) were omputed to be Ψ = 6.5 m−1 and b = 0.4.Sine µa does not follow a de�ned law like µ′
s, another approah has to be usedby estimating values by estimating extintion oe�ient data for ink, dye, milk andwater. These extintion oe�ient are measured in a standard spetrophotometer.In our experiments, two phantom inlusions, named set 1 and set 2, are reatedfor di�erent absorption ontrasts relative to the bakground in the range of 3:1 to1:1. The inlusion in set 1 ontains 10% ink and 90% dye and the inlusion for set2 ontains 70% dye and 30% ink. This ontrast range is omparable to traditionaltumour ontrasts reported in literature, whih have been lose to 3:1 and lower [84℄.
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Figure 4.2: (a) Absorption spetra for the bakground, µa, and the inlusion, µa+∆µa,in experimental set 1, ontaining 10% ink and 90% dye. (b) Contrast between thebakground and the inlusion for experimental set 1.The reonstrutions in Chapter 5 are done for 176 wavelengths equally spaed overthe whole spetrum and six spei�ally hosen wavelengths as λ = [480, 550, 610, 630,650, 690℄ nm. The wavelengths are hosen around the isosbesti point, at 610 nm inFig. 4.1, where the ontrast between the hromophores is the highest and where eahhromophore has highest absorption. The absorption spetra and the ontrast overthe spetrum for set 1 and set 2 are shown in Fig. 4.2 and Fig. 4.3, respetively.4.2.2 Measurement setupIn experimental sets 1 and 2 one ylindrial inlusion ontaining ink and dye solutionsare plaed in the bakground medium. These inlusions are 25 m long transparenttubes so that optial properties are assumed onstant along the z-axis. The light
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Figure 4.3: (a) Absorption spetra for the bakground, µa, and the inlusion, µa+∆µa,in experimental set 2, ontaining 70% ink and 30% dye. (b) Contrast between thebakground and the inlusion for experimental set 2.soure is an ar lamp (Model No.6258, Oriel Instrument, Stratford, CT) whose emis-sion is �rst spetrally �ltered (400 -1000 nm) to rejet ultraviolet and infrared light,and then foused onto a 3-mm-diameter illumination optial glass �ber bundle, whihdelivers light with an average illumination power of 280 mW, whih translates into apower density of 3.96 W/m2. A 5 mm diameter olletion optial glass �ber bundleis loated at three positions on the x axis, at xd = {−1, 0, 1} where the soure loa-tion is de�ned as xs = 0. As disussed above, we onsider transmission geometry, sosoures are on the opposite side of the inlusions at a y-axis separation of 5 m andlinearly sanned.Experiments are made with the light soure plaed in suession at 8 positions with1 m inrements for a total of 24 soure-detetor pairs. The olletion optial �berdelivers light to a spetrograph (Model No. SP-150, Aton Researh Corp., Aton,
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zFigure 4.4: The setup of soures and detetors for in�nite geometry using liquid milkand water phantom.MA), whih disperses the light onto the detetor array of a harge oupled devie(CCD) amera (Model No. DU420A-BR-DD, Andor Tehnology, South Windsor,CT). Two exposure times are used for the CCD amera to ensure that approximatelythe same number of photons are olleted for reonstrutions using 6 wavelengthsand for 176 wavelengths. Longer exposure time of 10 s is used for the 6 wavelengthase and 500 ms for the 176 wavelength ase. In Chapter 5, we will demonstrate theimprovement of inluding hyperspetral information, therefore, we setup the stage bypresenting an ideal ase where the signal to noise ratio is large, thereby providing abest-ase senario for the few-wavelength reonstrution against whih we ompareour approah as well as using realisti absorption ontrasts for the inlusions. Thespetrograph features a grating blazed at 700 nm with 350 g/mm, resulting in adispersion of 20 nm/mm at the exit port. The size of the CCD amera pixels of 26



61
5 m 3× uboid10× uboid 3× uboid

10× uboid
1.6 mFigure 4.5: Silion phantom used for experimental measurements. Homogeneous ylin-drial slab, with two absorbing inlusions.

µm×26 µm results in a spetral sampling rate of two data points per nanometer,even though the spetral resolution is not as high beause of the size of the entraneslit (2 mm) used to aommodate the large olletion optial �ber bundle. From thedata we only retain the wavelength band 650-900 nm where the signal-to-noise ratiois adequate.In our experiments the inident �eld is a data set taken before the perturbationis put into the medium. The sattered �eld is then omputed as a dataset that hasthe original unperturbed dataset subtrated from it.



624.3 Silion phantomThis experimental set was taken to validate our method to reover 3D tubular stru-tures by reonstruting multiple 2D slies. To that end a silion phantom was on-struted by Elizabeth Rosenberg, undergraduate student in the Biomedial Engineer-ing Department, and sans were aquired by Pamela G. Anderson, a dotoral studentin Prof. Fantini's lab at the Tufts Medial Center.4.3.1 Constrution of CylinderThe struture of the silion phantom is shown in Fig. 4.5. It is made of two ylindrialslabs, both made of idential homogeneous solutions, where one of them ontains twohigher absorbing inlusions. The two slabs are ured independently, where the oneontaining inlusions is �tted with uvettes to reate gaps where they are plaed.The homogeneous bakground slabs were made with 360 mL of PDMS (Silione In,P-4). The proedure begins by mixing 36 mL of uring agent (Silione In, P-4) with0.288 g TiO2 powder for 30 minutes, and the PDMS is mixed with 0.1008 g of Indiaink and ured for 15 minutes. The PDMS/INK mixture is then plaed into a vauumhamber to remove air bubbles. The two mixtures are then poured into a ylindrialmold to form eah half of the ylinder, whih is then plaed into a vauum hamberagain for 15 minutes, after whih eah ylindrial slab whih make up the phantomtake 24 hours to ure.The two halves ombined together form a 5 m thik homogeneous slab, with



63measured µa = 0.16 m−1 and µ′
s = 10.1 m−1 at 690 nm. The two absorbinginlusions are eah a uboid with height and width of 1 m and length of 4.5, separatedby 1.6 m.The uboid inlusions have the same µ′

s as the slab and the uboids have 10and 3 times the absorption of the bakground, respetively. The 10× absorptionresults in a highly absorbing rod, where we de�ne ∆µa = 1.28 m−1 for groundtruth omparison, whereas the 3× uboid has ∆µa = 0.33 m−1. Although the 10×absorbing rod has high absorption, the 3× rod is loset to realisti values found forbreast tumours. This experimental setup allows us to test our algorithm to reoverrealisti tubular strutures aurately even when highly absorbing areas, exeedingthe Born approximation limit, are present in the medium [84, 43℄.4.3.2 Sanning measurmentsTwo di�erent measurements are performed to test the robustness of the approahwhen inlusions are angled with respet to sanning diretion. The angle ϕ is de�nedas the angle between the diretion of the uboids and the sanning diretion, as shownin Fig. 4.6. The �rst set is obtained where the inlusions are exatly perpendiularto the sanning diretion, ϕ = 90◦, and a seond set where ϕ = 30◦. These souredetetor plaement is shown in Fig. 4.6 where the ground truth used for error metrifor eah ase is shown in Fig. 4.7. Both of these experiments are performed at theTufts Medial Center. The instrument in the lini performs a two dimensional planar



64
Source

Detectors
Slice 1

Slice k

Homogeneous
Medium

Inclusion

x

z

y Axis ofinlusionSanningdiretionϕ

Figure 4.6: The setup of soures and detetors for simulation reonstrutions. Sameorientation of axes is used for experimental data. The angle ϕ represents the anglebetween the axis of the inlusion, along y in the �gure, and the sanning diretion,along x in the �gure.san, with an illumination and detetion �ber operating in transmission geometry. Forthree di�erent detetor positions at xd = {±1, 0} m a 4 mm diameter �ber is plaedon the opposite side of the phantom. For eah san 32 light soures are onsideredwith 0.2 inrements resulting in 96 soure-detetor pairs for eah slie, where slies arespaed 0.2 m along the y-axis. Using a Xenon ar lamp light soure emitting 13 mW,optial data is then found by spatially sampling 25 points/m2 at wavelengths from650-900 nm. The light is olleted by the �ber attahed to a spetrograph (ModelNo. SP-150, Aton Researh Corp., Aton, MA) with a 2 mm wide slit entrane. Thewavelengths are resolved by a ooled CCD Camera (Model No. DU420A-BR-DD,Andor Tehnology, South Windsor, CT) giving a spetral sampling rate of 0.5 nm−1.Reonstrutions are performed for wavelength 690 nm.



65As in Setion 4.2 the inident �eld needs to be estimated in order to apply the Bornapproximation. To ahieve this an extra homogeneous slab was ured, to generate asolid 5 m thik ylinder with the bakground absorption oe�ient and satteringdetailed in Setion 4.3.1. As with the atual phantom, it was ensured that no air gapformed between the slabs. As disussed in Setion 3.3, image reonstrutions in thisexperimental setup we utilize analytial Green's funtions for the forward model in3.22, where we onsider slab geometry Green's funtion given by (3.10).
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Figure 4.7: Calulated ground truth images for phantom angled at ϕ = 90◦ and ϕ =

30◦ relative to sanning diretion along the x-axis.



Chapter 5
Hyperspetral PaLS BasedReonstrution
5.1 Parametri level-set methodTo ounter the ill-posedness of the DOT problem we employ a Parametri Level-SetMethod (PaLS) [1℄. For the purpose of this thesis we assume that all hromophoreonentrations and di�usion oe�ient perturbations are o-loated. This hoie issupported by reports in literature, where inrease in hemoglobin and water onen-tration along with sattering power are loated at the aner loation and the lipidonentrations inrease at the same loation [20, 97, 115℄. This means that the ge-ometry of the anomaly in the medium is the same for all hromophores and di�usionamplitude. The domain Ω ⊂ F represents the support of the objets of interest, and66
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F represents the homogeneous bakground within whih the abnormality is loated,shown in Fig. 5.1(a).
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()Figure 5.1: (a) De�nition of domains used for the parametri level-set methods asshown in Chapter 2. (b) Cirles represent example basis funtions plaed on a �xedgrid in the imaging medium. The iteration proess evolves κi to the estimated anomalystruture. () Example of movable basis funtions plaed in the imaging medium. Theiteration proess evolves κi and ψi towards the estimated anomaly strutureSine the same support is used for eah hromophore onentration the hara-teristi funtion desribing the shape is de�ned as

χ(r) = 



1 if (r) ∈ Ω,
0 if (r) ∈ F\Ω. (5.1)



68Then eah image to be reonstruted an be written as
ck(r) = χ(r)cak + [1− χ(r)]cbk (5.2)where i = 1, 2, ..., Nc + 1. In this formulation the unknown values are the onstantonentration values of the anomaly and bakground, cai and cbi respetively.The harateristi funtion χ(r) is de�ned to be the τ -level set of a Lipshitzontinuous objet funtion O : F −→ R suh that





O(r) > τ ∀r ∈ Ω

O(r) = τ ∀r ∈ δΩ

O(r) < τ ∀r ∈ F\ΩWe assume that the general form of O(r) is known, so that the evolution of O isrequired to solve the inverse problem at hand, whih we ahieve by expanding Owith known basis funtions and evolving parameters that govern them.Using O(r), χ(r) is written as
χ(r) = H(O(r)− τ) (5.3)where H is the Heaviside step funtion. Shape-based reonstrution, as is presentedhere, requires a smooth version of H(.). One ommon approximation of H(.) is alledthe C∞ regularization and is omputed as [1℄

H1,ǫ =
1

2

(
1 +

2

π
arctan

(πx
ǫ

))
. (5.4)



69This version has been ommonly used in shape based appliations, and is disussed indetail by [1℄. Chan et al.[21℄ demonstrated that an alternative hoie of the regularizedHeaviside funtion is the C2 regularization omputed as
H2,ǫ(x) =





1 if x > ǫ,

0 if x < −ǫ.

1
2

[
1 + x

ǫ
+ 1

π
sin(πx

ǫ
)
] if |x| ≤ ǫ.and its derivative, δ2,ǫ, is derived from Hǫ [21, 114℄. By using H2,ǫ the orrespondingdelta funtion δ2,ǫ is ompatly supported so δ2,ǫ is only non zero for τ−ǫ < ψ < τ+ǫ.This hoie of implementing the τ -level set is similar to a �narrow-banding� approahdisussed in [1℄, where the values of the level set funtion are only updated on anarrow band around the zero level set and hene reduing the omputational load.For the ase of using τ level sets, this band is moved to τ−ǫ < ψ < τ+ǫ and the basisfuntions whih do not interset with this band do not evolve at the orrespondingiteration. To ahieve this τ is hosen to be lose to zero, while maintaining |τ | ≥ ǫ.As will be disussed in Setion 6.1 we represent the objet funtion O(x, y) para-metrially, so instead of using a dense olletion of pixel or voxel values [80℄, weexpand O and represent it by using basis funtions.

O(r) = L∑

l=1

κlψl(r) (5.5)where κl's are the weight oe�ients of eah basis funtion and L is the number ofbasis funtions used. The hoie of basis funtions is inherently an important part of



70the algorithm when working with PaLS. Basis funtions, belonging to the set
P = {ψ1,ψ2, ...,ψL} (5.6)are used to represent O(x, y), and an be hosen from a variety of options inludingpolynomial or radial basis funtions. For the purpose of this thesis we use ompatlysupported radial basis funtions (CSRBFs) where we hoose τ to be lose to zero.These funtions beome exatly zero after a ertain radius, while still retaining variousorders of smoothness, whih redues omputational ost through the sparsity thatthey provide. In the DOT ase, where the physis in the forward model will onlyallow for a oarse reonstrution of the underlying struture, the use of CSRBFs issu�ient, espeially for the relatively simple geometries and onentrations presentedin this hapter. Letting ψ ≥ 0 be a smooth CSRBF we denote eah basis funtion in(5.5) as
ψl = ψ(βl‖r− rl‖) (5.7)where βl de�nes the dilation fator of the CSRBF. Here ‖.‖ denotes the Eulideannorm and rl are the enters of the lth CSRBF. In order to make the PaLS funtion (5.5)globally di�erentiable with respet to β and rl we implement a smooth approximationof the Eulidean norm given by
‖x‖⋆ = √

‖x‖2 + n2 (5.8)where n 6= 0 is a small real number. Assembling our model we have
O(r) = L∑

l=1

κlψl(‖r− rl‖) (5.9)



71For the ase of �xed basis grid, shown in Fig. 5.1(b) the enters and sizes of the
ψ's in (5.9) are �xed so that the evolution of O stritly involves estimating κl. Inthe ase of DOT it an be useful to redue the number of unknowns by �xing thebasis funtions in this away. An example of a grid like this is shown in Fig. 5.1(b).When optimizing with basis funtions on a �xed grid, the width and number of theCSRBFs determines how oarse or �ne the reonstrution will be. A hoie of fewbasis funtions will, on the one hand, result in a redued number of unknowns. It willon the other hand, give a oarser estimation of the shape, whih an be a problemfor imaging �ner more omplex strutures. This framework restrits the adaptabilityof the method to di�erent shapes, where if a basis funtion is �xed to a grid point,o� enter relative to a enter of an anomaly, will result in a reonstrution error.A more general approah an be used where eah basis funtion is allowed to�roam� within the imaging medium. This allows the PaLS funtion to pik moredetails, and estimating the dilation fator β allows the evolution to sale the CSRBFswhere it is required. Removing the �xed grid, and instead estimating the entersof the basis funtions allows for greater auray and adaptability for the method.Additionally, �xing the basis funtions to a grid requires are along the edges of themedium, due to singularities and edge artifats that an be enountered in DOT, aswas disussed in 3. Using this approah we estimate the enters, rl, of the CSRBFsin (5.7) along with the weighting fator κl and the dilation fator βl whih togetherontrol the size of the basis funtion. For the ase of a movable basis funtions all



72the parameters of the model would be gathered in one vetor
θT = [ca1, c

a
2, ..., c

b
Nc
,κT ,βT , rT ] (5.10)where

κ = [κ1, ..., κL]
T

β = [β1, ..., βL]
Tr = [r1, ..., rL]T . (5.11)For the ase of a �xed grid, the parameter vetor θ does not inlude β and r so

θT = [c1a, c
2
a, ..., c

l
b,κ

T ]. Now our linear forward model in (3.22)an be expressed as
Φ

s = K(θ) = K(θ) (5.12)The forward model has now been parametrized with a vetor ontaining all of theunknowns, whih are far fewer then what a pixel based method would attempt toestimate.
5.2 Inversion using PaLSThe inverse problem, that of usingΦs to reover the value of c, is solved with the PaLSalgorithm by implementing it with a Levenberg-Marquardt optimization problem ofthe form

ĉ = argmin
c

‖W(K(θ)−Φ
s)‖22 (5.13)The W matrix re�ets the struture of the noise orrupting the data, ontainingthe reiproal of the ovariane of the measurement [48℄. While a Poisson model is



73tehnially the most appropriate for DOT data, as is frequently done [55℄ for largephoton ounts we employ a Gaussian approximation in whih independent, zero meanGaussian noise is added to eah simulated datum. The reason for this is that with asu�iently large number of deteted photons, the Poisson statistis an be approxi-mated by a Gaussian distribution [85℄. Letting σ2
m denote the variane of the noiseorrupting the mth elements of Φs, W is onstruted as a diagonal matrix with 1/σmthe mth element along the diagonal. For the experimental and simulated data thevariane is alulated from

σ2
m = Ω(m)10−

SNRm

10 . (5.14)where Ω(m) orresponds to the photon ount for eah soure-detetor pair. The SNRfor eah element of Φs is then alulated from
SNRm = 10log10(Ω(m)/

√
Ω(m)). (5.15)In experimental data √

Ω(m) is the standard deviation of the Poisson noise distribu-tion.The minimization of the ost funtion is then ahieved by the Levenberg-Marquardtalgorithm. For that purpose an error vetor is introdued
ǫ = W(K(θ)−Φ

s). (5.16)whih an be used to write the ost funtion in term of ǫ as
M(θ) = ǫTǫ (5.17)



74In order to employ the Levenberg-Marquardt algorithm, the alulation of theJaobian matrix J is required. The Jaobian ontains derivatives of ǫ with respet toeah element in the parameter vetor θJ =

[
∂ǫ(θ)

∂{c1a, ...clb,κ}

] (5.18)where details on alulating J are given in Appendix A. The solution is then obtainedby updating θ at eah iteration as θn+1 = θn + h where h is the solution to thefollowing linear system, previously disussed in Setion 2.4,
(JTJ+ ρI)h = −JTǫ with ρ ≥ 0 (5.19)where I is the identity matrix, ρ is the damping parameter a�eting the size anddiretion of h and found via and appropriate line searh algorithm [76℄.The damping parameter ρ in (5.19) is noted to have several e�ets, most notable,for all ρ > 0 the oe�ient matrix is positive de�nite, whih ensures that h is adesent diretion. The damping parameter in�uenes both the diretion and the sizeof the step, whih leads to a method without a spei� line searh. The hoie ofinitial ρ value is related to the size of elements in A0 = J(x0)

TJ(x0), by letting
ρ0 = η ·max

j
(a

(0)
jj ) (5.20)where η is manually hosen to be η = 10−3. This value an be dereased to 10−6 ifthere is on�dene that the initial guess is lose to a good estimation.To judge when the Levenberg-Marquardt algorithm has reahed an optimal solu-tion we employ the disrepany priniple [106℄ as a stopping riteria when iterating



75(5.19). In that the iterations are stopped when the norm of the residual has reahedthe noise level within a ertain tolerane, given by
‖K(θu)−Φ

s‖2 < δ. (5.21)When estimating the parametri vetor, we employ a yli oordinate deentstrategy [109℄ Essentially this is equivalent to estimating the shape only at eveniterations and the onentration values at odd iterations. This is repeated untilstopping riteria is reahed. This proess is expressed in pseudo-ode in Algorithm 1,where Jv and Js denote the Jaobian stritly for the onentration value and shape,respetively, and τi represents a tolerane for the stopping ritera.Algorithm 1 Matlab-like pseudo-ode for estimating shape and onentration valuesimultaneouslywhile ǫ ≤ τ1 dowhile ǫ ≤ τ2 do
(JTv Jv + ρnI)hvalues = −JT

v ǫend whilewhile ǫ ≤ τ3 do
(JTs Js + ρnI)hshape = −JT

s ǫend while
θn+1 = θn + [hvalues;hshape]end while



765.3 Comparing to a Pixel-based reonstrutionTo judge the improvement of moving to a low-order parametri model, we performpixel-based reonstrutions to ompare with the results obtained with the PaLS al-gorithm. Pixel based reonstrution for DOT involves a signi�antly rank-de�ientproblem, where the number of pixels far out number the number of measurements. Forthe pixel-based image formation the reonstrution method presented as the solutionto a non-negative least squares optimization problem of the form
ĉ = argmin

c≥0
‖W(Φs −Kc)‖22 + ‖Lc‖22 (5.22)where for any vetor x, ‖x‖22 ≡ x

T
x is the squared two-norm of x. The �rst term in(5.22) requires that the reonstruted onentration images yield simulated data thatare onsistent with the observations Φs. Following [48℄, the weight matrix W re�etsthe struture of the noise orrupting the data.The seond term on the right-hand side in (5.22) represents the regularization.As disussed in the Chapter 2, in this work we use a smoothness-type regularizer inwhih the amount of regularization is allowed to vary for eah hromophore. Due tosensitivity of the reonstrution to the regularization parameters the optimal param-eter for one hromophore is not neessarily the optimal value for another. Separatingthe parameters for eah hromophore allows the reonstrution to optimize it for eahhromophore and easily inlude many di�erent speies of hromophores.The non-negative least squares (NNLS) problem is solved by using the lsqnonlinalgorithm in MATLAB. This algorithm uses a trust-region re�etive algorithm that



77employs matrix-vetor produts instead of having to ompute the value of the sumof squares from (5.22) [26℄. The K matrix is the Jaobian matrix of the measure-ments used in our reonstrution sheme. For the ase of DOT NNLS beomes highlyattrative for its omputational e�ieny when ompared to a diret solution of tradi-tional least squares. This is due in part to the fat that omputing K
T
K an requirelarge amounts of omputational overhead. The number of voxels in a given solutionbeomes somewhat limited by the neessity of solving the system de�ned by K

T
Kor some regularized version thereof. Beause of the design of K when the number ofvoxels inreases, the size of KT

K and the omputation required for elimination bothinrease muh more rapidly than with NNLS [82℄.As disussed in the introdution a good initial guess is important to obtain a goodresults. The approah we use here is as follows. We start by solving (3.2) ignoringthe positivity onstraint in (5.22) with lsqnonlin and using the the method disussedin Setion 5.3.1 below for determining the optimal regularization parameters. Set-ting all negative values in the c vetor to zero then provides the initial guess forthe onstrained form of the problem. This initialization proess allows us to obtaingood results from both simulation and experimental data. Like the unonstrainedproblem the onstrained problem is solved with lsqnonlin and optimal regularizationparameters are hosen independently in eah ase.



785.3.1 Seleting optimal regularization for multiple hromophoresThe hallenge lies in how to hoose the α parameter embedded in L in (5.22). Thereexist formal methods for hoosing the parameter, suh as generalized ross-validation(GCV) or the L-urve, but it is not neessary to use them in all ases [61℄. Theappropriate value may be seleted by trial and error and visual inspetion. Larger αmakes the system better onditioned, but this new system is farther away from theoriginal system, the system without regularization. Under the noise-free assumption,the algorithm is insensitive to the hoie of α, making it straightforward to seletsmall values for α to generate results with high auray. When noise is enountered,however, α may need to be made muh larger. Furthermore the e�et of having twoseparate regularization parameters α1 and α2 is explored. It is shown how the meansquare error behaves for reonstrution of two hromophores and how having separateparameters for eah hemoglobin inreases the quality of the reonstrution. For thatase the regularization parameters are inorporated into the matrix and then L takesthe form
L =




α1




∇x

∇y


 0

0 α2




∇x

∇y







(5.23)



79To generalize this to n hromophores, one might want to have di�erent regularizationparameters for eah hromophore. Given the struture of the vetor c de�ned in(3.21), the regularization matrix takes the form
L = D(ααα)⊗



∇x

∇y


 (5.24)where αααT = [α1 α2 . . . αNc

] is a vetor of Nc regularization parameters, D(x) is adiagonal matrix with the elements of the vetor x on the main diagonal, ∇x and ∇yare matries representing �rst di�erene approximations to the gradient operators[50℄ in the horizontal and vertial diretions respetively, and for matries A and B,
A⊗B is the Kroneker produt [70℄ of A and B.The hoie of the optimal regularization parameters is done by inspeting the L-hypersurfae, whih are plotted in Fig. 5.4 for the onentrations images shown inFig. 5.3 [10℄. To onstrut the L-hypersurfae we introdue the following quantityz(ααα) = ‖Φs −Kĉ(ααα)‖22 (5.25)For a single onstraint the L-hypersurfae redues to the onventional L-urve whihis simply a plot of the residual norm versus the norm of the regularized solution drawnin an appropriate sale for a set of admissible regularization parameters. This allowsus to optimize the regularization to ompromise between the minimization of thesetwo quantities. For a hypersurfae the optimal regularization parameters then shouldappear where the urvature is greatest in the surfae, in other words in the ornerof the surfae. This orner in the hypersurfae whih should orrespond to a point



80where the error estimation is minimal. This urvature is omputed as a speial aseof Gaussian urvature [46℄ from H =
rt− s2w4

(5.26)where we have w2 = 1 + p2 + q2.In (5.26) eah element is a partial derivative of the surfae whih we write asp =
∂z
∂α1

, q =
∂z
∂α2

, r = ∂2z
∂α2

1

, t = ∂2z
∂α2

2

, s = ∂2z
∂α1∂α2

. (5.27)Using this, an optimal regularization parameter an be hosen for the pixel basedreonstrutions, as demonstrated in Setion 5.6.1.
5.4 Implementing Hyperspetral informationDue to omputational load, hyperspetral information has to be implemented e�-iently when onstruting the forward model. Even though omputational powerinreases year to year, the amount of data that an be inluded with hyperspetralinformation is signi�ant. This is espeially important when performing pixel basedreonstrutions where for realistially sized problems, it is di�ult to store the full Kmatrix in memory. The proessing methods developed in this thesis require only theresult of multiplying K or K

T (the transpose of K) by appropriately sized vetors.Hene, we need only ompute and store the Nλ matries Kl as well as the Nλ × Nc



81array of extintion oe�ients. Then omputation of the produt Kc an be ar-ried out using the Matlab-like pseudo-ode in Algorithm 2 with a similar approahpossible for evaluating K
T
Φ

s.Algorithm 2 Matlab-like ode for omputing Kc produtfor l = 1 to Nλ dofor k = 1 to Nc do
Φ

s
c = Φc + εk(λl)Kk;end for

Φ
s = [Φs;Φs

c];end for
5.5 Simulation analysisTo best understand the utility of a hyperspetral data set, we employ the Born modelto generate simulated data. Though this may not be realisti, it allows us to avoidthe onfounding fator of model mismath in evaluating the inversion method beingonsidered in this hapter. Moreover, the shortomings of this approah will bemitigated in Setion 5.6.2, where we onsider the proessing of experimental datawhih, obviously, are not the produt of the Born model. Spei�ally, the data weuse for our simulation analysis are omputed as

Φ
s = Kc+ n (5.28)where c represents the simulated onentration images for all hromophores and dif-fusion amplitude, whereas n represents additive noise. Spei�ally, as in [48℄ n is



82a vetor of zero mean, independent Gaussian random variables with varianes σ2
m,de�ned in (2.8), hosen suh that a pre-determined signal-to-noise ratio (SNR) isahieved. This SNR is alulated from (5.15).The reonstruted images are evaluated in three ways: 1) through visual inspe-tion, 2) using mean square error (MSE) as a measure of overall quantitative aurayfor eah hromophore, and 3) examining the Die oe�ient to judge how well theonentrations are loalized [65, 107℄. For the kth hromophore, the MSE is omputedby using the following equation

MSEk =
‖ck − ĉk‖2

‖ck‖2
(5.29)If S is the reonstruted image and G is the ground truth reated for eah set,the Die oe�ient between S and G is

D(S,G) =
2|S ∩G|
|S|+ |G| . (5.30)Sine |S ∩ G| ontains all pixels that belong to the deteted segment as well as theground truth segment, if S and G are equal the Die oe�ient is 1, indiating anaurate reonstrution. To ompute the D(S,G) we use the harateristi funtion,

χ, whih essentially works as a binary map of the reonstruted anomaly where theobjet of interest is represented by 1's.The simulated data was generated in in�nite geometry where separations wereset to 5 m. In simulations, we reonstrut onentration images of oxygenated anddeoxygenated hemoglobin, HbO2 and HbR respetively, along with lipid and water



83onentration and sattering amplitude. These hromophores are hosen sine theymainly ause near-infrared absorption in the breast [17℄, and breast aner tumourshave been found to have higher HbO2 and HbR onentrations than normal tissue[100℄.The onentration in the simulated images are de�ned in units of millimolars ormillimoles per liter, mM, for HbO2 and HbR. Values for Ψ and b used to generatedata are obtained from [102℄ for the female breast. Values for µa are alulated fromthe extintion oe�ients, in the unit of m−1/mM, obtained from data tabulated bySott Prahl [88℄. For water and lipid the onentrations are in perent by volume andthe di�usion amplitude is measured in units of millimeter. The bakground has HbRonentration of 0.01 mM, HbO2 onentration of 0.01 mM, lipid onentration of32%, water onentration of 13% and Ψ′ is set to 1.6 mm. The target onentrationof the objet of interest is set to 0.015 mM, 0.012 mM, 50 %, 20 % and 0.25 mm forHb02, HbR, lipid, water and ∆Ψ′, respetively.The simulation set is reated with all hromophore onentrations and di�usionperturbations in the same loation with di�erent target values. The ground truthimages for simulations are shown in Fig. 5.3. Reonstrution is done for these im-ages to explore e�ets of adding hyperspetral information to the problem, i.e. theimprovement in quantitative auray and the redution of rosstalk where a on-entration of one hromophore reates a false onentration in an image for anotherhromophore as well as the performane of the shape based approah. The proess



84is initialized with 21 Gaussian basis funtions with width of approximately 8 pixelsplaed uniformly on a grid over the whole medium to be imaged. A representativeimage of the order of the basis funtions is shown in Fig. 5.1(b). For all experimentspresented in this hapter, the κl's weight oe�ients are initialized to 1.
5.6 Results5.6.1 SimulationsTable 5.1: The MSE is ompared for eah hromophore for multiple wavelengthhoies. For the 8 wavelength ase optimal wavelengths are used, where 176 wave-lengths are equally spaed. Pixel based method

# λ MSE HbO2 MSE HbR MSE Lipid MSE H2O MSE D8 0.075 0.030 0.048 0.010 0.052176 0.062 0.021 0.034 0.015 0.030PaLS method
# λ MSE HbO2 MSE HbR MSE Lipid MSE H2O MSE D8 0.070 0.030 0.120 0.060 0.080176 0.019 0.008 0.010 0.020 0.010In Fig. 5.2 reonstrution results using the pixel based method are shown for8 wavelengths, λ = [660, 734, 760, 808, 826, 850, 930, 980℄ nm and hyperspetralreonstrution using 176 wavelengths, whih are equally spaed over the 650-1000 nmrange. In the 8 wavelength ase the 6 �rst wavelengths are optimally hosen aording
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Figure 5.2: Reonstrution using a pixel based method. Leftmost olumn are groundtruth images, middle olumn of images are generated with 8 wavelengths and rightmostimages are generated with 176 wavelengths. From top to bottom the rows show HbO2,HbR, lipid, water and di�usion amplitude, respetively. Conentration units are inmM.to [37℄ with two wavelengths added where water and lipids have peak absorption.Reonstruted images reated with the PaLS method are shown in Fig. 5.3. Insimulations the SNR is set to 30 dB, as it is de�ned by (5.14) and (5.15). Whenomparing the pixel based reonstrution in Fig. 5.2 to the PaLS reonstrutionin Fig. 5.3, it is evident that the PaLS method provides superior reonstrutions.Examining the PaLS results, the 8 wavelength ase shows reasonable auray along



86Table 5.2: D(S,G) is ompared for eah hromophore for multiple wavelength hoies.In eah ase the reonstrutions are done with equally spaed wavelengths over thespetrum exept for the 8 wavelength ase. D(S,G) is alulated omparing 80% ofthe target peak to the reonstruion.Pixel based method
# λ D(S,G) HbO2 D(S,G) HbR D(S,G) Lipid D(S,G) H2O D(S,G) D8 0.12 0.088 0.089 0.65 0.8176 0.554 0.1085 0.043 0.41 0.09PaLS method

# λ D(S,G)8 0.60176 0.99the x axis but rather di�use results in y. We also see notieable artifats in thereonstrutions. Considering the onentration values, the values for HbO2, HbRand water onentration ome lose to the atual value. Moving to hyperspetralinformation, the reonstrution beomes more aurate, estimating the shape loseto the ground truth. It should also be noted that the runtime for eah reonstrutionfor the PaLS method is signi�antly shorter ompared to the pixel-based method.A PaLS reonstrution takes around 30 seonds, whih is 3-4 times faster than apixel-based method. Additionally, we do not employ any regularization parameters,removing the omputational load of seleting the optimal regularization parameters.This is a major improvement in moving from a pixel-based approah to the PaLSmethod.
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Figure 5.3: Reonstrution using the PaLS method. Leftmost olumn are ground truthimages, middle olumn of images are generated with 8 wavelengths and rightmostimages are generated with 176 wavelengths. From top to bottom the rows show HbO2,HbR, lipid, water and di�usion amplitude, respetively. Conentration units are inmM.The omparison of the Die oe�ient between the PaLS method and pixel-basedis triky, sine for the pixel-based method the Die oe�ient is plotted as a funtionof a threshold. This threshold is required to reate a binary map of the loation on theanomaly. If the threshold is hosen to only leave extreme peak onentration values ineah image, the Die oe�ient would be low due to edge artifats as in Fig. 5.6(b).Therefore, in simulations we ompare D(S,G) for the pixel based reonstrutions



88using a threshold of 80% to D(S,G) of the PaLS reonstrutions. The improvementof the PaLS method is on�rmed quantitatively through D(S,G) and MSE displayedin Table 5.2 and Table 5.1, respetively. The Die oe�ient, shown in Table 5.2,gives a lear view of how the shape estimation improves by added wavelengths, where
D(S,G) approahes 1 for the hyperspetral ase and the PaLS method shows superiorperformane in the MSE values.Beause we know the ground truth for these simulations, it is possible to determineoptimal values (i.e., the one that minimized the MSE) for α1 and α2. For a simplehromophore onentrations as shown here, hoosing the regularization parametersis an easy problem. The reason for separating the regularization parameters in thisase is that the MSE for HbR reahes a lower value for a slightly di�erent parameterthan HbO2.The importane of separating the regularization parameters beomes even moreevident when regularizing more omplex onentration sets. When doing reonstru-tion for more ompliated sets the lowest MSE values for HbO2 and HbR our attwo very di�erent values. For this set the separation of the regularization parametersis very important. Using only one regularization parameter in this set and more om-pliated ones, would result in a trade o� between reonstrutions of hromophores.To redue that trade o� the separation of the hromophores beomes very important.This separation beomes even more important when dealing with data sets with low
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90is omputed by
e = ‖c− ĉ‖22 (5.31)Demonstrating the hoie of the ααα parameters, example reonstrution for HbO2and HbR with orresponding hypersurfae is shown in Fig. 5.5 and 5.4, respetively.
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Figure 5.5: Reonstrution for HbO2 and HbR using a pixel based method. Upper rowis for the HbO2 hromophore and the lower for HbR. Conentration units are in mM.Reonstrution performed for 176 equally spaed wavelengths.By examining hypersurfae and urvature in Fig. 5.4 it is evident that this methodis useful when di�erent levels of regularization is needed. In pixel-based reonstru-tions that are presented in Setion 5.4 the hoie of α for HbO2, HbR and ∆Ψ wereperformed using the hypersurfae method, while it was unneessary for the regular-ization for water and lipid whih were less sensitive to regularization.5.6.2 Experimental validationPixel based reonstrutions of absolute onentrations for both experimental sets areshown in Fig. 5.6 and PaLS approah reonstrutions in Fig. 5.7.



91A omparison of the absolute onentrations, ĉi and relative onentration, ĉri totarget onentration values is done to test the auray of the reonstrutions. Therelative onentrations for ink are alulated as
ĉrink = ĉink/(ĉink + ĉdye) (5.32)and similarly for dye [41, 47℄. The relative onentration is alulated from the peakonentration value in eah reonstrution. This allows us to inspet how well ourapproah manages to separate and estimate eah speies of hromophores in theproess.As expeted, the hyperspetral information provides improved reonstrution forboth the pixel-based and PaLS methods. Fousing on the PaLS methods, it is evidentthat forming the reonstrution with shape-based onstraints yields improved results.The estimation of relative onentrations and MSE of the absolute values are exam-ined in Table 5.4 and Table 5.5 for the pixel-based and PaLS method, respetively.The relative onentration values are better estimated in both ases using the PaLSmethod, although the hyperspetral method does not show signi�ant improvementfor experimental set 2, whih was also the ase for the pixel based method. Examin-ing the images along with the MSE values for experimental set 1, Fig. 5.6-5.7(a) and(), it is notieable how the reonstrution does not resolve the struture partiularlywell along the x axis. This is somewhat unexpeted sine in DOT resolving depthinformation, on the y axis, is usually the more di�ult problem. This is notieablefor both the pixel based and PaLS methods, although the PaLS method outperforms



92the pixel based method, espeially in removing edge artifats. This smear in the xdiretion is most likely a ombination of how the Gaussian basis are plaed within theimaging medium, and measurement error in plaing the soure and detetors whentaking the referene measurement.For both experimental sets, the PaLS method resolves the loation and the shapeof the inlusion more aurately, whih is veri�ed by the alulation of the Dieoe�ient shown in Table 5.3. The improvement is notable when ompared to thepixel-based reonstrution. As disussed in Setion 5.6.1 a hoie of a threshold isneeded to ompareD(S,G) between pixel based reonstrutins and the PaLS method.For the experimental reonstrutions we use a threshold of 50% to ompareD(S,G) ofthe PaLS reonstrutions. This demonstrates the usefulness of the PaLS method fororretly and aurately loalizing the anomaly. The PaLS method does very well witheliminating edge artifats that were severe when doing pixel-based reonstrutions forthe same data set. These e�ets are very notieable in Fig. 5.6(b) and (d), where,espeially in the multispetral ase, the edge artifats were signi�ant. Comparingthat to the same data in Fig. 5.7(b) and (d) it is obvious that the improvementis signi�ant. It is notable in Fig. 5.7(b) and (d) that the reonstruted inlusionappears a little bit o� enter from where the atual loation is entered. This is dueto the �xed grid of basis funtions, where the losest grid point is o� enter from thetrue loation.



93Table 5.3: D(S,G) is ompared for eah hromophore for multiple wavelength hoies.In eah ase the reonstrutions are done with equally spaed wavelengths over thespetrum exept for the 6 wavelength ase where we use optimally hosen wavelengths.
D(S,G) is alulated omparing the half maximum of the target peak to the reonstru-ion. Pixel based method

D(S,G) Set 1 D(S,G) Set 2
# λ Ink Dye Ink Dye6 0.143 0.113 0.139 0.145126 0.142 0.114 0.145 0.140

PaLS method
# λ D(S,G) Set 1 D(S,G) Set 26 0.27 0.33126 0.37 0.805.7 DisussionIn this hapter, using simulations and experimental measurements we have shownthat the PaLS method provides more aurate estimation of hromophore onen-trations than a regularized pixel-based inversion sheme. Hyperspetral informationresults in improved performane in terms of both MSE and spatial loalization asmeasured using the Die oe�ient. The parametri approah is shown to give sig-ni�ant improvements to image reonstrution, dereasing run time of the iterativeproess and inreasing the quality of reonstruted images. The PaLS method is alsoeasily expandable to more ompliated problems where multiple geometries need tobe onsidered.Physial measurements were also performed to demonstrate these advantages foratual measurement data. Although exat onentration values were not ahieved,



94Table 5.4: Comparison of ĉi and ĉri to target onentration values for experimentalresults, for the pixel-based method. Best performane is highlighted in bold.Experimental set 1, 10% ink and 90% dyeFig. # λ Speies ĉi [%℄ ĉri [%℄ MSE5.6(a) 6 Ink 1 4 1.85.6(a) 6 Dye 27 96 1.35.6() 126 Ink 17 16 2.85.6() 126 Dye 88 84 1.2Experimental set 2, 70% ink and 30% dyeFig. # λ Speies ĉi [%℄ ĉri [%℄ MSE5.6(b) 6 Ink 56 82 1.85.6(b) 6 Dye 12 18 1.05.6(d) 126 Ink 65 61 1.45.6(d) 126 Dye 41 39 2.0there is a notable improvement assoiated with hyperspetral information in on-juntion with the PaLS method. Additionally, improved loalization of inlusionswas observed for both sets when using hyperspetral information. This emphasizesthe advantage of hyperspetral information when doing reonstrutions for more thanone hromophore.Based on the results in this hapter, we want to extend the work to address morerealisti, linial onditions. The results here show signi�ant promise, and are en-ouraging to move to a more realisti situations onsidering more ompliated shapereonstrutions and plaing boundary onditions on the medium. We ahieve this



95Table 5.5: Comparison of ĉi and ĉri to target onentration values for experimentalresults, for the PaLS method. Best performane is highlighted in bold.Experimental set 1, 10% ink and 90% dyeFig. # λ Speies ĉi [%℄ ĉri [%℄ MSE5.7(a) 6 Ink 4.8 21.0 1.25.7(a) 6 Dye 17.9 79.0 0.95.7() 126 Ink 5.8 7.7 1.15.7() 126 Dye 69.0 92.3 0.8Experimental set 2, 70% ink and 30% dyeFig. # λ Speies ĉi [%℄ ĉri [%℄ MSE5.7(b) 6 Ink 38.3 80.0 1.15.7(b) 6 Dye 9.6 20.0 0.85.7(d) 126 Ink 27.6 81.0 0.65.7(d) 126 Dye 6.4 19.0 0.7by �rst onsidering how we an expand the �xed grid basis to ensure reovery ofvarious di�erent shapes of hromophore onentrations, disussed in Chapter 6. Tobe able to estimate all shapes possible, we aim to inrease the number of basis fun-tions to inlude di�erent types. To avoid over ompliating the image reonstrutionwith a high number of basis funtions we aim to pose the image reonstrution in aompressed sensing framework where few optimal basis funtions estimate a omplexshape. Additionally we expand the method to the estimation of 3D strutures withadaptable basis funtions in Chapter 7.
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(a) 10% ink and 90% dye, (b) 70% ink and 30% dye,6 wavelengths used. 6 wavelengths used.
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Chapter 6
Ditionary Approah
6.1 Introdution
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Figure 6.1: Example basis funtions plaed on a �xed grid in the imaging medium,where eah grid point, f , has a set of di�erent shaped basis funtions,denoted by {l}.As disussed in Chapter 1 the ability to reover a varied array of shapes is of greatimportane for DOT, so image reovery methods need to be adaptable and able to98



99reonstrut a wide range of shapes with auray. To ahieve this, we onsider a asewhere our set of basis funtions P is a large olletion of a variety of shapes. Thiskind of approah has been onsidered extensively in ompressed sensing problemswhere an array of known funtions in a ditionary is used to reover sparse signals[45, 89℄. Although our problem is not a ompressed sensing problem, we onsiderthe framework presented in [45℄, whih is diretly appliable to our problem wherewe onsider the ase of the �xed basis set, desribed in Setion 5.1. Rauhut et al.[89℄ noted that most works with ompressed sensing that assume sparsity, take theassumption with respet to an orthonormal basis. This an be a strit limitationin pratie, and for some appliations, it is more appliable to assume sparsity withrespet to a de�ned frame or ditionary. Essentially, the method ould be appliedto a wide range of basis funtions, to inlude polynomials, wavelets and Gaussians,but for our appliation we aim to inlude di�erently dilated CSRBFs to reover smalldetails of the underlying struture, with seletively hosen basis funtions.For the �xed grid shown in 5.1(b) eah grid point is the enter for a spei� ψl basisfuntion. To reate a redundant ditionary for our problem we amend our basis set Pso it ontains a set of di�erent basis funtions, ψf
l , at eah grid point f . An exampleof this setup is shown in Fig. 6.1. The method from Chapter 5 is modi�ed so thatthe objetive funtion O desribed by (5.5) is reated by using a ditionary matrix

B whih ontains the dense olletion of basis funtions at a total of F gridpoints,



100de�ned by
B =

[
ψ1

1 ψ1
2 . . . ψF

L

] (6.1)by this we de�ne the objet funtion using, B, the redundant ditionary matrix
O = Bκ (6.2)With this formulation our parametri vetor is θT = [c1a, c

2
a, ..., c

l
b,κ

T ] where κ =

[κ11, ..., κ
F
L ]

T is the weighting vetor, and the c values denote the hromophore on-entration values for eah hromophore. Now for the set of model parameters θ, theforward model is onsidered to be of the linear form as written in (3.22).In this framework we strive to ahieve a sparse estimate of κ sine B ontainsmultiple ψ's at eah grid point. This direts the estimate of the shape to only seletshapes from the redundant ditionary matrix B that best estimate the problem. Intraditional minimization problems the sparseness is indued on the solution using a
ℓ1 regularization as an added term in the ost funtion. Instead of employing thiskind of soft onstraint we restrit the κ to be sparse by projeting it to the ℓ1-normball at eah iteration.Visual representation of this relation is shown in Fig. 6.2.This makes the method somewhat robust to the di�erent shapes enountered aswell as using far fewer unknowns than traditional pixel based methods. To providean aurate and simple reonstrution we implemented a hard ℓ1-norm onstraint,desribed below, to improve the estimation and generate aurate images with thefewest possible basis funtions. The development of this method improves on para-metri shape based methods for the DOT appliation, espeially when paired with
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Objet vetor
O

Dense ditionary matrix BEah row is a basis funtion, ψf
lWeight κ410Basis funtion ψ2

1

Weight vetor
κ

Figure 6.2: Example of the objet funtion O as de�ned by (6.2). The aim is toestimate a κ weighting vetor with indued sparsity to pik out optimal basis funtionsfrom a dense ditionary matrix B where ψf
l represent the lth funtion at gridpoint f .optial mammograms whih an be used to provide prior spatial information of themedium. For the purpose of this setion we onsidered the in�nite geometry disussedin Setion 3.3 as it serves as a good testing point for this approah.

6.2 Projeted Levenberg-MarquardtAs before we onsider the inverse problem, that of using Φ
s to reover the value of θ,but now add a extra onstraint. We seek the solution to the following optimizationproblem.

arg min
θ

‖W(K(θ)−Φ
s)‖22 subjet to ‖κ‖1 ≤ q (6.3)
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q

κ

π(κ)

x

y

Figure 6.3: Projetion, π(κ) of the weight vetor κ to the ℓ1 norm ball to induesparsness. This results in seleting the optimal olletion of basis funtions represent-ing the shape.The W matrix re�ets the struture of the noise orrupting the data and q representsthe radius of the ℓ1 norm ball. This onstraint ensures sparsity of the solution, whihis dependent on the hoie of q. The minimization of the ost funtion is ahievedby a projeted Levenberg-Marquardt algorithm, where the minimization of (6.3) isaomplished using a variant of the approah in [66℄.As before we employ the Levenberg-Marquardt algorithm, the alulation of theJaobian matrix J is required whih is omputed from the derivative of ǫ with respetto eah element in the parameter vetor θ, as is shown in (5.19). When estimating theparametri vetor, we employ a yli oordinate deent strategy whih is equivalentto estimating the shape only at even iterations and the onentration values at odditerations.



103To sparsify the κi values we we want to ensure that the lowest number of basisfuntions is being added to the reovery of the unknown shape. This is done byenforing the ℓ1-norm onstraint by projeting the guess of the weights at eah iter-ation, κn+1, to the ℓ1-norm ball. This is done through Eulidean projetion whih isformally de�ned by
π(κ) = arg minx:‖x‖1≤q

‖x− κ‖22. (6.4)This is represented visually in Fig. 6.3. We solve (6.4) by asting the projetionas a root �nding problem as desribed in [74℄. This is ahieved by introduing aLagrangian variable ξ for the onstraint ‖x‖1 ≤ q so that the Lagrangian of (6.4) anbe expressed as
L(x, ξ) = 1

2
‖x− κ‖2 + ξ(‖x‖1 − q). (6.5)If the x⋆ is the primal optimal point, and ξ⋆ the dual optimal point, they shouldsatisfy ‖x⋆‖1 ≤ q and ξ⋆ ≥ 0. Liu et al. [74℄ showed that the x⋆ an be omputed if

ξ⋆ is de�ned as known. So x⋆ is the optimal solution to the problem de�ned asx⋆ = argmin
x
L(x, ξ⋆) (6.6)whih has a unique solution sine L(., .) is stritly onvex in the �rst argument. Bydeoupling the variables in (6.6) we have

x⋆i = argmin
xi

=
1

2
(xi − κi)

2 + ξ⋆(|xi| − q) (6.7)



104where xi and κi are the ith elements of x and κ, respetively. This equation an beexpressed as
x⋆i = sgn(κi)max(|κi| − ξ⋆, 0) (6.8)where sgn(.) is the signum funtion. Through this methodology, the problem in (6.4)an be solved by �rst solving for the dual optimal point ξ⋆, whih is then used toobtain x⋆ using (6.8). This turns the Eulidean projetion into a root �nding problemusing auxiliary funtion whih an be omputed though a bisetion algorithm whihis omputationally e�ient. We diret the reader to [74℄ for further details on thisapproah.Our approah uses a large ditionary (L = 220) to ensure that many di�erentshapes an be reovered. These funtions are on a 11 by 5 grid over the imagingdomain where at eah point there are 4 CRBFs at di�erent dilations and rotations,ensuring di�erent angles an be reovered at eah point.To test the the approah we onsider simulated data for three di�erent ases.Case I only ontains a small elliptial shaped perturbation, whih is expeted to onlyneed very few basis funtions to reover, resulting in a very sparse κ vetor. ForCase II and III, we onsider the perturbation in the shape of two ellipses overlap-ping and a olletion of blob like strutures, respetively. For these two ases the κvetor is expeted to stay sparse, although the larger areas with more ompliatedstrutures will reover the inlusion of more basis funtions. In all ases we onsidera realisti optial perturbation, using the same onentration values for HbO2 and
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Figure 6.4: Reonstrutions for Case I of low omplexity. Top row shows HbO2,middle is HbR and bottom row displays weights used in the reonstrution. Signal tonoise ratio is set to 50 dB.HbR as in Chapter 5. Simulated data is generated with 40 soure-detetor pairs for100 wavelengths. The soure-detetor pairs are aligned along the x-axis with 5 mseparation. As before, we verify our shape reovery by alulate the Die oe�ientfor the estimated harateristi funtions.
6.3 Results and DisussionFigures 6.4-6.6 show reonstrution results for Case I, II and III, respetively. Asdisussed in Setion 6.2 all reonstrution use the same ditionary matrix of 220 basis
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Figure 6.5: Reonstrutions for Case II of medium omplexity. Top row shows HbO2,middle is HbR and bottom row displays weights used in the reonstrution. Signal tonoise ratio is set to 50 dB.funtions. It is lear that implementing the sparsity onstraint ensures that methoduses few funtions to represent the shape. It is notable for the more ompliatedshapes that over a larger area, the weight vetor remains sparse, utilizing less thana third of all the CRBFs in the ditionary. As is expeted in simulations the onen-tration values of both HbO2 and HbR are reovered lose to the ground truth values.The Die oe�ient varies from D(S,G) = 0.86 for Case III, D(S,G) = 0.90 for CaseII and D(S,G) = 0.95 for Case I. For the reonstrution results shown here, q washosen by visual inspetion and veri�ed by error metris.Although these preliminary results are enouraging, the redundant ditionary
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Figure 6.6: Reonstrutions for Case III of high omplexity. Top row shows HbO2,middle is HbR and bottom row displays weights used in the reonstrution. Signal tonoise ratio is set to 50 dB.method still has notieable drawbaks. Considering a basis set P as it is appliedhere, it does not show promise for a large improvement over a regular �xed grid. Dueto the low spatial resolution of DOT the disrimination between the di�erent basisfuntions at eah grid point, beomes a hallenging problem involving seleting theoptimal radius of the ℓ1 norm ball. Examining the properties of the modality andelements of P we observe the the DOT modality is best suitable for reovering �blob�like strutures, as well it is well established that reonstruted images are generallymore di�use along the axis of soure detetor separation, onsidered as the z axis here.This redues the impat of this method, where the limitation of di�usion negates the



108approah. Additionally as is noted in the results disussion in Chapter 5, the loationof the �xed points beomes an issue, where strutures o� enter relative to the gridpoints are reonstruted with less auray. With this in mind and onsidering thetwo main limitations, the limited data enountered in the DOT ase and low spatialresolution, we onsider a move to a more adaptable and elegant method where theneed of a redundant ditionary is less, by inorporating movable basis funtions whihare entirely made of uniform CSRBFs. This is disussed in detail in Chapter 7.Although we do not extend the ditionary approah further, it is enouraging toonsider this approah for the PaLS method for appliations that deal with well-posedproblems.



Chapter 7
Parametri estimation of 3D tubularstrutures using primitives
Expanding on the methods developed in Chapters 5 and 6, we aim to reover thedepth, volume and absorption values of fully 3D strutures using �oupled� 2D reon-strutions within the PaLS framework. As disussed in Chapter 6 the adaptability ofthe basis funtions is imperative, so in this hapter we onsider the ase of movablebasis funtions, as was detailed in Chapter 5, and shown in 5.1(). Additionally, allresults disussed here onsider bounded (at least partially bounded) domains, a morerealisti ase than the in�nite geometry setup studied in previous hapters.In this hapter we onsider a data limited problem as in Chapter 5 but reoveroptial absorption images with only single wavelength data. This limits the datafurther, where we annot take advantage of multi- or hyperspetral information. This109
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Slice 1
Slice 2
Slice K − 1
Slice K

Primitive in slie Kwith θK
Primitive in slie 1with θ1

3D tubular strutureEstimated by 2D slies

Eah θk orrelated for onnetednessFigure 7.1: Example of how 2D slies are used to esitamte 3D struture with datafrom measurements olleted as in Fig. 4.6. Eah 2D primitive is estimated withvetor θk. Regularization term in the objetive funtion, (7.2), orrelates eah slieprimitive together, to generate a onneted strutureis done for onveniene sine omputing a hyperspetral data set using the �nitedi�erene model would be signi�antly omputationally intensive. In spite of theselimitations we demonstrate aurate reonstrution of 3D strutures by using thePaLS method to reonstrut images for eah slie along the y axis in Fig. 4.6. Theseindividual slies are then ombined by �staking� them together in order to estimatethe underlying struture along with optial properties, demonstrated in Fig. 7.1.To this end, we setup our model to perform independent 2D image reonstrutionfrom the data olleted in eah slie, but impose a regularizing term on the low-order parametri vetor, to orrelate the slies together. This takes advantage of theonneted nature of the tubular strutures and improves the reonstrution.



1117.1 Forward Model for 2D sliesIn order to approximate a 3D tubular struture using the model desribed in Eq.(3.17) we aim to reonstrut slies of a 3D medium and ombine them together toestimate the underlying geometry. The physial setup is desribed in Fig 4.6, wherethe soure and detetor are moved in tandem along the x axis, yielding K sans alongthe y axis. Using our forward model we de�ne ck ∈ R
Nv as the vetor of disretized

µa assoiated with the kth slie in the retangular region and Φ
s
k the data olletedfrom the orresponding slie. Using this notation we an write the forward modelused for inverse proessing for the whole retangular region in matrix vetor notationas 



Φ
s
1

Φ
s
2...

Φ
s
K




=




K1 0 . . . 0

0 K2 . . . 0... ... ... ...
0 0 . . . KK







c1

c2...
cK




⇔ Φ
s = Kc (7.1)

where the (m, j)th element of the Kk represents the mth soure-detetor pair and jthpixel in the kth slie of the 3D medium. Assuming that for a given experiment Nsdsoure-detetor pairs are used for all K slies then if Np is the number of pixels ineah slie the dimensions of the whole matrix K is NsdK ×NpK.It should be noted that the blok diagonal nature of the model in 7.1 is a re�etionof the approximation we are making in whih we ignore the e�ets of �out of plane�physis in eah slie of the reonstrution. Our method, detailed in Setions 5.1 and



1127.2, of parameterizing the shape and regularization is able to reover aurate 3Dstrutures in spite of this severe physial model mismath, even with limited datasets. Additionally this approah is easily expandable, by �lling in the o�-diagonalbloks of K whih will be onsidered in future developments disussed in Chapter 8.
7.2 Image reonstrutionThe image reonstrution method, reovering c from Φ

s, is formed as an regularizedoptimization problem of the form
θ̂ = argmin ‖W(Φs −Kc(θ)‖22 + α‖Lθ‖2 (7.2)where W represents the struture of the noise orrupting the data. The �rst termin (7.2) requires that the estimated value of c is onsistent with the observed mea-surement of Φs. The seond term of (7.2) is a regularization term that orrelates theparameter vetor between slies. Considering the prior information of tubular stru-ture anatomy of breast tissues, it enourages orrelating reonstrutions between sliesin the ost funtional. Therefore the seond term (7.2) ensures that a reonstrutionbetween slies will result in onneted strutures, whih provides better approxima-tion of the struture than a unregularized funtion. We struture L to penalize thedi�erene between similar parameters on adjaent primitives. That is to say, we im-pose a penalty for the di�erene between enters, ri and ri+1 for i = 1, ..., N − 1, the



113value of absorption, caK and weight κK so that L is given by.
L = Ld ⊗ I (7.3)Where I is a diagonal matrix where number of diagonal elements are the same asnumber of elements in θi, and A⊗B is the Kroneker produt [70℄ of A and B and

Ld is written as
Ld =




1 −1 0 . . . 0 0

0 1 −1 . . . 0 0... . . . . . . . . . . . . ...
0 . . . 0 1 −1 0

0 . . . 0 0 1 −1




(7.4)
In order to demonstrate the e�etiveness of our regularization method, we evaluatea tomographi reonstrution over a range of values for the regularization parameter
α. As α is varied the algorithm trades o� the ost assoiated with the regularizationpenalty against the ost assoiated with the data. To selet the optimal regularizationparameter we employ the ommonly used L-urve method, detailed in Setion 7.4 [10℄.The W matrix re�ets the struture of the noise orrupting the data [48℄. Weemploy a Gaussian noise in whih independent, zero mean Gaussian noise is assumedto orrupt eah datum where, as in Chapter 5, σ2

m and the SNRm are omputedby (5.14) and (5.15), respetively. In experimental data √
Ω(m) is the standarddeviation of the Poisson noise distribution.The minimization of the ost funtion is then ahieved by the Levenberg-Marquardt



114algorithm. For that purpose an error vetor,
ǫ = [ǫT1 , ǫ

T
2 ] (7.5)is introdued where eah term relates to the orresponding term in (7.2) given as

ǫ1 = W(K(θ)−Φ
s) (7.6)

ǫ2 =
√
αLθ. (7.7)We denote by K the total number of primitives, and the plane in whih the ithprimitive resides as y = yi, i = 1, ..., K and the number of basis funtions by Lin eah plane where l = 1, ..., L. For simpliity, we assume that the primitives areequally spaed, though this assumption an be easily relaxed. Thus far, our modelonly de�nes the objet at K points on the y-axis, as shown in Fig. 7.1, where inessene the primitives may be interpreted as ross setion of the overall 3D objet.The objet desription at all other points on the y axis is reovered independently,and then ombined to represent the 3D struture.In order to employ the Levenberg-Marquardt algorithm, the alulation of theJaobian matrix J is required, where details are given in Appendix A. The Jaobianontains derivatives of ǫ with respet to eah element in the parameter vetor θJ =

[
∂ǫ(θ)

∂{ca1, ..., caNc
, (κT

1 , ...,κ
T
K)

T , (βT
1 , ...,β

T
K)

T , (rT1 , ..., rTK)T}] (7.8)The solution is then obtained by updating θ at eah iteration as θn+1 = θn+h whereh is the solution to a linear system analogous to (5.19).



115To summarize, in our method we model the shape struture of the anomaly usinga set of 2D shape primitives representing the ross-setion of the objet in arbitrarilyoriented (but parallel) planes. As shown in Fig. 7.1, where the planes are perpendi-ular to the y-axis, eah primitive is itself a 2D shape, spei�ally a olletion of radialbasis funtions for this hapter, whose struture is de�ned by its enter loations,dilation and weighting fators. In this setion we detail the objet desription whenthe primitives are staked along the y-axis. Under our model, the ith primitive is�xed to exist on the plane y = yi. The following parameters are used to represent theprimitive.
• A 2·L ×1 vetor ri = [x0,i, z0,i]T , denoting the (x, z)-oordinates of the enterloation of the basis funtions forming the primitive on the plane y = yi

• The dilation fators βl,i of the underlying basis funtions.
• The weighting fator of κl,i of eah basis funtion. A weighting fator of κl,i = 0deativates a basis funtion from the reonstrution.

7.3 Simulation AnalysisSimulations are done to demonstrate the bene�t of ombining simple 2D reonstru-tions of more than one slie to approximate 3D struture. In this hapter, simulateddata are generated using a standard �nite di�erene forward solution provided byProf. Misha Kilmer in the Tufts University Math Department. Simulated data are



116generated for a retangular box with dimensions 7 m × 7 m × 6.3 m disretizedinto a 71 × 71 × 64 grid, with three ylinders plaed lose to the enter. Boundaryonditions on the soure and detetor planes are Robin type onditions and Dirihletonditions are applied the sides of the box in the z − x and z − y planes. The truegeometry of the phantom is shown in Fig. 7.2. Eah ylinder in the medium has
∆µa = 0.04 m−1 where the bakground has µa = 0.02 m−1, giving absorption on-trast of 2:1, omparable to what is found in a linial setting [84℄. Di�usion oe�ientis assumed to follow Mie Sattering theory and to be uniform throughout the mediumand inlusion at µ′

s = 10.1 m−1 at 690 nm [68℄.The alignment of soures and detetors is the same as for the experimental setupis shown in Fig. 4.6. Two di�erent ases are onsidered, to demonstrate the e�etof limited data for our method. In Case 1 we use two detetors per soure positionand 26 soure loations along eah slie for a total of only 52 measurements per slie.In Case 2 we implement ten detetors for eah soure position, giving 260 souredetetor pairs for eah slie. These two ases demonstrate the e�etiveness of ourmethod even when working with severely limited data suh as in Case 1.In order to obtain a quantitative measure of omparison between the atual andestimated shapes and absorption values, we employ the Die oe�ient as in (5.30),MSE given by (5.29) and add the Symmetri di�erene whih is the fration of entriesin the estimated image, S, where the orresponding entries in the ground truth image,
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G, are not equal. Mathematially, this is expressed as

dsd(S,G) =
1

Nv

∑

i

1{Gi 6=Si} (7.9)where 1{·} is the indiator funtion and S is the 0 − 1 harateristi matrix orre-sponding to the estimated shape, and G the 0−1 harateristi matrix orrespondingto the atual objet.The symmetri distane is an important measure of the quality of reonstrutionbeause it measures the overall quality of shape reonstrution, by penalizing errorsin deteting objet voxels as bakground and similarly bakground voxels as objetvoxels. Symmetri di�erene assigns an equal penalty to an erroneous voxel, irre-spetive of whether it is deteted as bakground or objet. An important limitationof the symmetri di�erene measure is that it does not re�et well on how lose theestimated absorption onentration value in the reonstruted image is to the truevalue. The mean square error �lls this gap by providing a measure on the quantitativeauray for eah slies that measures both how well the shape and value of the ∆µais reovered.As disussed in Setion 6.1 our method onstrains the image formation problemand redues the number of unknowns when ompared to a traditional pixel-basedapproah. To demonstrate the e�etiveness of our approah we perform pixel-basedreonstrutions for the simulation ases presented in Setion 7.4. We employ a pixel-based optimization method using Levenberg-Marquardt algorithm where we modify



118(7.2) so that the regularization term takes the form of traditional Tikhonov regular-ization, where L = I. Tikhonov regularization is widely used for image reonstrutionfor multiple imaging modalities and provides a suitable omparison for our method[85, 110, 56℄.
7.4 Results7.4.1 SimulationsReonstrution results from simulated data are presented in Figs. 7.5 and 7.6 using2 detetors and 10 detetors for eah soure loation, respetively. Examining thereonstrutions visually and with the error metris presented in Table 7.1 it is evidentthat the impat of orrelation regularization is very important. Espeially notableis where unregularized reonstrution, shown in Figs. 7.5(a) and 7.6(a) reovers astruture with gaps, due to the fat that the onneted nature of the tubular strutureis not being emphasized. Additionally, evident by the shape metris D(S,G) and dsdthe middle rod is reovered as a separate struture when the regularization is present.The pixel-based reonstrution using traditional Tikhonov regularization is shownin Fig. 7.4 for both the 2 detetor and 10 detetor setup. It is evident both byvisual inspetion and error metris shown in Table 7.1 that the onstrained modelin PaLS and regularizing between slies results in a far more aurate estimation ofthe struture. It should be noted that pixel based reonstrutions for DOT an be



119very aurate, however as mentioned above the work in this hapter presents resultsusing a severely limited dataset. Pixel-based methods traditionally require signi�antnumber of data points, resulting in the errors in the reonstrution shown here.As mentioned in Setion 7.2, to optimally selet the regularization parameter αwe implement the L-urve method. In this method, we generate a plot of log(‖Lθ‖2)against log(‖W(K(θ)−Φ
s)‖2) as α is varied. Figure 7.5(a) depits the reonstrutedobjet when α = 0, where no regularization is being applied. From visual observationas well as examining error metris de�ned in Setion 7.3, it is lear that some degreeof regularization is bene�ial. The L-urve plot for the reonstrution of the simu-lated phantom is shown in Figs. 7.3(a) and 7.3(b) for the 2 detetor and 10 detetorsetups, respetively. Note the enirled point on the urve denotes the �best� reon-strution given the data. The parameter α was obtained in a similar fashion in allour experiments. However, here in order to save spae, we have only demonstratedour results for a single ase.Representative slie image from the 10 detetor reonstrution is shown in Fig.7.7. Along with the MSE it allows for visually judging the methods ability to reoverthe values of ∆µa. As expeted using the Born Approximation, the absorption valuesare underestimated, but these results are enouraging, onsidering the limited datasets being employed, and how eah slie reonstrution is not modeled to inorporatee�ets from the total 3D struture.These results are espeially enouraging onsidering the method is able to estimate



120the struture even with a severely limited data set, shown in Fig. 7.5, where only 2detetors are used for eah 26 soure loations, and only a single wavelength is used.This demonstrates the ability of the slie based PaLS method to aurately reover3D tubular strutures even with linear approximations and limited data sets.

Figure 7.2: Ground truth image used to generate simulated data.
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Figure 7.3: (a) Example L-urve used to selet optimal α for the reonstrution using2 detetors at 30 dB SNR for simulated data. (b) Example L-urve used to seletoptimal α for the reonstrution using 10 detetors at 30 dB SNR for simulated data.
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(a) Pixel-based reonstrution using 2 detetors, α = 820

(b) Pixel-based reonstrution using 10 detetors, α = 300Figure 7.4: Reonstrution results for a simulated geometry struture with realistioptial ontrast.7.4.2 Experimental ValidationReonstrution results for relative absorption reonstrutions are shown in Figs. 7.8and 7.9 for inlusions angled at 90◦ and 30◦, respetively. As demonstrated in simu-lations, inluding orrelation between adjaent slies greatly improves auray andallows for reovery of the underlying struture. Examining the images along with theerror metris, D(S,G), dsd and MSE shown in Table 7.2 it is lear that this method
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(a) PaLS image reonstrution using 2 detetors, α = 0

(b) PaLS image reonstrution using 2 detetors, α = 1.5Figure 7.5: Reonstrution results from simulated data with realisti optial ontrast,using 2 detetors for eah soure loationallows for reovery of tubular strutures in a realisti breast phantom. It is notablethat the 10× absorbing inlusion is reovered as a larger struture, whereas the 3×uboid is reovered lose to its true shape with more aurate absorption value. Thisis demonstrated in an example slie image for the ϕ = 90◦ ase in Fig. 7.10. This isexpeted due to the aforementioned limitations of the Born Approximation [11℄ butit is interesting to see, that the higher absorbing struture does not dominate the
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(a) PaLS image reonstrution using 10 detetors, α = 0

(b) PaLS image reonstrution using 10 detetors, α = 0.5Figure 7.6: Reonstrution results from simulated data with realisti optial ontrast,using 10 detetors for eah soure loationoptimization and our method orretly loates and reovers the 3× uboid. Althoughthe reovered absorption ontrast does not improve greatly for the ϕ = 30◦ ase, theshape is reovered muh better when regularization is introdued. For the 30◦ aseimprovements in both absorption values and shape are evident and examining Fig.7.9 shows learly that we are able to reover strutures even though they are angledlose to the sanning diretion.
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(a) Ground truth image (b) Reonstruted slie imagefor slie reonstrution. for 10 detetor setup.Figure 7.7: Slie reonstrution from y = 5 m, demonstrating absorption ontrast.3D reonstruted using 10 detetors shown in Fig. 7.6.Table 7.1: Error metris used to judge image reonstrutions for simulated reon-strutions. Fig. # detetors α D(S,G) dsd [%℄ MSE7.4(a) 2(pixel-based) 820 0.07 76 9.57.4(b) 10(pixel-based) 300 0.08 74 8.37.5(a) 2 0 0.43 11 1.27.5(b) 2 1.5 0.83 10 0.97.6(a) 10 0 0.57 12 1.17.6(b) 10 19 0.82 9 0.89The orrelation term in (7.2) is shown to be as important for experimental reon-strutions as in simulations, both in error metris in Table 7.2 and visually, in Fig.7.9(a). For both experimental sets, the primitive 3D PaLS method resolves the loa-tion and the shape of the inlusion more aurately, whih is veri�ed by all metris.It should be noted in Table 7.2 that D(S,G) is omputed stritly for regions wherethe inlusions are present. This is due to the Die oe�ient not being a useful metri



125
10× uboid

3× uboid 10× uboid
3× uboid

x

y

z

x

y

Figure 7.8: Reonstrution results using experimental data and 3 detetors. Inlusionsare angled 90◦ relative to sanning diretion, α = 12.to judge reonstrutions when the ground truth is an empty set image.Table 7.2: Error metris used to judge image reonstrutions for experimental reon-strutions. Fig. ϕ α D(S,G) dsd [%℄ MSE7.8(a) 90◦ 0 0.23 8.6 0.997.8(b) 90◦ 0.5 0.55 6 0.977.9(a) 30◦ 0 0.31 13.6 1.107.9(b) 30◦ 0.1 0.65 10 0.98
7.5 DisussionUsing both simulations and experimental measurements we have shown that 3D tubu-lar strutures an be reovered by implementing a parametri primitive PaLS methodby taking advantage of orrelation of adjaent slies. Using an augmented ost fun-tion and optimizing regularization results in better performane ompared to pixel
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Figure 7.9: Reonstrution results using experimental data and 3 detetors. Inlusionsare angled 30◦ relative to sanning diretion, α = 80.based and unregularized shape based approah measured in terms of MSE and spatialloalization as measured using the Die oe�ient and Symmetri di�erene. Thisshows that even with implementing linear approximation and using severely limiteddata sets, the underlying strutures an be reovered with auray.These results demonstrated that this approah has signi�ant promise to reoverdepth and shape estimation along with optial properties in realisti phantoms. Withsome improvements it would be espeially interesting to advane this method byombining it with an optial mammography devie, and expanding on the urrentapproah. This onsideration is disussed further in Chapter 8
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(a) Ground truth image (b) Reonstruted slie imagefor ϕ = 0◦ detetor setup. for ϕ = 0◦ detetor setup.Figure 7.10: Slie reonstrution loated at y = 3 m in Fig. 7.8, ompared to groundtruth demonstrating absorption ontrast.



Chapter 8
Conlusion
In this thesis, we have presented approahes whih implement parametri shape-based methods to improve reonstrution algorithms for di�use optial tomography(DOT). In Chapter 1, we disussed the motivation and basi hallenges when workingwith optial imaging modalities, DOT spei�ally, for the breast imaging appliation.Although signi�ant advanements have been made, urrent researh is ontinuing toimprove the quality of the DOT method. Chapter 2 established the basi onepts ofthe tomography problem and presented an introdution to existing work on solvingthe inverse problem for optial tomographi tehniques.Chapter 3 detailed how the forward model was onstruted for the di�erent ge-ometries onsidered in this thesis. In Chapter 4 we disussed the physial experimentsperformed for the purpose of this thesis, whih were used for the methods presentedin Chapters 5-7, whih introdued the parametri level set method, and desribed128



129how we apply it to the reovery problem of absorption, sattering and hromophoreonentration images for DOT. We presented simulated and physial experiments todemonstrate the advantage of implementing a low-order model over a pixel-based for-mulation for image reonstrution. The PaLS method not only proved to be moreaurate in terms of error metris, but was demonstrated to be faster, due to the low-order model and the fat that no impliit regularization was required for the imagereonstrution.In Chapter 6 we expanded our method to onsider di�erently shaped basis fun-tions, plaed at eah grid point, for a �xed based PaLS approah. This was in orderto verify that our method ould take advantage of a large ditionary matrix withoutover ompliating the estimation by induing a sparsity onstraint on the paramet-ri vetor. This method demonstrated some promising qualities for image reovery,but for the ase of an ill-posed problem like DOT, optimizing the sparseness of theparametri vetor, as well as restriting the movement of the basis funtions a�etsthe auray of the solution. Estimating the enters of the basis funtions and theirdilation fators proves to be more adaptable and straightforward rather than usinga large ditionary matrix. Beause of this we moved to a more adaptable method inChapter 7.The 3D estimation using primitives presented in Chapter 7 demonstrated that ourmethod, is able to estimate the shape, depth and optial properties of ompliated3D strutures with realisti optial ontrast. The reovered strutured proved to be



130aurate, even when using extremely limited data sets, only 2-3 detetors for eahsoure, and reonstrution performed at a single wavelength. Although absorptionvalues where not reovered exatly at ground truth, this method is adaptable andshould be onsidered for further development.Based on the results reported on in Chapter 7 we want to improve on this methodby testing it with more ases of silion phantoms, exploring how the e�et of lowabsorption ontrasts hanges the reovery of strutures. Additionally our methodis readily expandable to a model where interpolation funtions an be applied tothe primitives between slies, where nth order hold funtions, sin funtions, or spinesould be used to interpolate the primitives to represent the 3D strutures. These kindof interpolating funtions ould help reover strutures that are reovered with gaps,or other artifats. Inorporating hyperspetral data to improve reovery of absorptionvalues and allow for diret estimation of hromophore onentrations should also beonsidered where our approah in Chapter 5 showed signi�ant improvement for thePaLS method. Reovering hromophore information for a vasular struture as isonsidered in Chapter 5 ould be helpful for tumor detetion.As disussed in Setion 7.1 our model assumes that for eah slie the primitive isinvariant along the y-axis. This of ourse is signi�antly a�ets the mismath betweenthe model and the true senario, but our method demonstrated that orrelating theslie images and parameterizing the reonstrution allows for aurate reovery ofthe vessel like strutures. Future e�orts will examine the e�et of omputing the



131o� diagonal elements of (7.1) where it would be see how results would hange if aertain segment along the y-axis would be modeled in 3D. This would physiallyrepresent staking 3D slies with a ertain thikness to reover a larger 3D strutureand examining reonstrution auray versus omputational intensity is a naturalprogression of our researh.Furthermore the plan is to advane the method to ombine with a optial mam-mography system that obtains depth information of vasular strutures. In the endthe method presented here, along with optial mammograms, ould serve as initialguesses for a full 3D non-linear reonstrution. Providing an aurate initial guessfor a non-linear method would not only improve auray but signi�antly speed upomputation time ommonly found in those types of reonstrutions.In more detail, Prof. Sergio Fantin's group in the Tufts University BiomedialDepartment, is urrently developing and testing an optial mammography devie atthe Tufts Medial Center. In this system broadband optial mammograms are usedfor breast tumor detetion on the basis of measured oxygen saturation of hemoglobin.The data is olleted in a ollinear illumination-olletion san of the breast, whihis exatly the setup that was onsidered for the soure detetor setup in Chapter 7.In addition to measured oxygen saturation, this system allows for depth disrimina-tion in optial mammograms by exploiting diretional information of spatial seondderivatives. With this in mind, the measurement obtained by the optial mammogra-phy devie, depth and saturation, ould be implemented as an initial guess for our 3D



132

Figure 8.1: Hemoglobin saturation maps measured, where false-olor representationof oxygenation values are superimposed on a gray level image. Image and data wasreported in Yu et al. [111℄.primitive reonstrution presented in Chapter 7. This ould prove to be extremelyuseful, where a future linial system ould be onsidered a stand-alone optial imag-ing devie. Utilizing our method in onjution with mammograms, the possible work�ow for the imaging system ould be:1. Data olletion is performed in the lini, where measurements are olleted bysanning soures and detetors in tandem, over the breast. Limited number ofdetetor are plaed on- and o�-axis, relative to the soure.



1332. Optial mammogram devie measures oxygen saturation, and estimates depthinformation of deteted tissue inhomogeneities. Typial optial mammogramimage with measured oxygen saturation is shown in Fig. 8.1.3. 3D primitive PaLS reonstrution performed using depth and absorption infor-mation obtained in Step 2 as initial guess.4. Full 3D non-linear reonstrution using a �nite di�erene model using struturalinformation from Step 3, saturation and absorption information from Step 2 asa initial guess.Considering a work-�ow like this is enouraging, espeially onsidering the advantageof the PaLS method over pixel-based method presented in Chapter 5 and aurayin reovering 3D strutures in Chapter 7. Steps 2-3 of this �ow are methods andalgorithms that have already been tested and implemented, where step 3, the 3Dprimitive method, an be improved by the items disussed earlier in this setion. Thedevelopment of step 4, where implementation of the �nite di�erene model used inChapter 8 will be developed to take the prior information as an initial guess andrender a estimation of the underlying vasular strutures and optial properties.It is also important to integrate the PaLS method with a linial devie suh as theoptial mammogram, to analyze and provide a rigid framework regarding the basisand stopping riteria for the Levenberg Marquardt algorithm. The rigid frameworkshould take into aount how many basis funtions are �deativated� in the estimation,i.e. when the orresponding weight element κ is estimated as zero, the basis funtion



134is onsidered as deativated. Running the algorithm repeatedly with analysis ouldresult in an optimal hoie of basis funtions for eah data set. Furthermore, relatingto the development of a framework for di�erent basis funtions, we will develop theLevenberg Marquardt algorithm to have optimally hosen stopping riteria and stepsize hanges. This should inrease robustness of our method and ensure auray ofestimation for di�erent situations and settings in di�use optial tomography.Additionally, inorporating texture funtions to estimate variable onentrationsand inhomogeneous bakgrounds needs to be onsidered. In that setting, estimatingmultiple level sets for di�erent geometries ould prove useful, espeially to estimatedi�erent regions of the heterogeneous bakground suh as adipose and �broglandulartissue. However, a simple approah is to simply multiply the harateristi funtion χwith a 2D polynomial that results in a reovery varied onentration of hromophoresand absorption. This would allow the method to deal with areas that are not stritlypieewise onstant.



Appendix A
Jaobian for Levenberg Marquardtoptimization
As disussed in Chapters 5 and 7 in order to employ the Levenberg Marquardt algo-rithm, we need to alulate the Jaobians. The size J depends on if we are onsideringa �xed basis grid as in Chapter 5 or movable basis funtions as in Chapter 7. As the�xed grid is a simpli�ed version of the movable basis, for this appendix we derive ageneral ase for the error funtion, ǫ, as it is de�ned in Chapter 7 as ǫ in Chapter 5an be onsidered a simpli�ed ase of Chapter 7.As before we de�ne the ost funtion in terms of ǫ as

M(θ) = ǫTǫ (A.1)
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136where ǫ is de�ned as
ǫ =



ǫ1

ǫ2


 =



W(K(θ)−Φ

s)

√
αLθ


 (A.2)We begin by onsidering the derivative term ontributed by ǫ2. Clearly taking thederivative with respet to θ leaves us with

δǫ2(θ)

δθ
=

√
αL. (A.3)This provides the omplete haraterization of the elements of the Jaobian matrixorresponding to the regularization term. Now onsidering the derivative term on-tributed by ǫ1

δǫ1
δθk

=
δ(Wk(Kk,ick,i(r)−Φ

s
k))

δθ

= WkKk,i

δck,i(r)
δθ

(A.4)where we generalize for simpliity sake to onsider the ith hromophore and the kthslie.Considering the parameters ontained in θ we start with by omputing the deriva-tive with respet to the onentration values of the region of interest and bakground,
cak,i and cbk,i, respetively, de�ned as

δǫ1
δcak,i

= WKχk,i(r)
δǫ1
δcbk,i

= WK(1− χk,i(r)) (A.5)Now we onsider the derivative with regards of the weighting values of eah of theCSRBFS, κ, where for simpli�ation we onsider the lth basis funtion and rede�ne



137the image formulation in (5.2) as
ck,i(r) = (cak,i − cbk,i)χk,i(r) + cbk,i

= (cak,i − cbk,i)H(κk,lψ(βk,l‖r− rk,l‖) + cbk,i

(A.6)To simplify the notation further, we onsider the derivatives with respet to theremaining parameters in θ by writing
δǫ1

δ{κk,l, βk,l, rk,l} =
WKc(r)

δ{κk,l, βk,l, rk,l}
= (cak,i − cbk,i)WK

ck(r)
δ{κ, β, rk,l} . (A.7)Using this we express the derivative with respet to the weighting element κk,l as

δck(r)
δκk,l

= ψ(βk,l‖r− rk,l‖). (A.8)Next we onsider the derivative with respet to βk,l where we write
δck(r)
δβk,l

=
δH2,ǫ(κk,lψ(βk,l‖r− rk,l‖)

δβk,l

= κk,lβk,l
‖r− rk,l‖2

‖β2
k,l(r− rk,l)‖⋆ δ2,ǫ(κk,lψ(βi‖r− rk,l‖)ψ′(βk,l‖r− rk,l‖) (A.9)Now onsidering derivatives with respet to the enter loations of the CSRBFs, rk,lwhih we split up into the x and z loation by rk,l = (Xk,l, Zk,l), and onsidering their

hth omponent so that {x, z} ∈ R
n we write

δck(r)
δX

(h)
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= κk,lβ
2
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X
(h)
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δ2,ǫ(κk,lψ(βk,l‖r− rk,l‖)ψ′(βk,l‖r− rk,l‖) (A.10)and
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= κiβ
2
i

Z
(h)
k,l − z(h)

‖β2
k,l(z − Zk,l)‖⋆

δ2,ǫ(κk,lψ(βk,l‖r− rk,l‖)ψ′(βk,l‖r− rk,l‖) (A.11)



138In (A.9)-(A.11) the term ψ′(.) represents the derivative of the CSRBF.For the simple ase of the �xed grid, the Jaobian matrix ontains simply theterms relating to (A.5) and (A.8), as noted in (5.18), where the more ompliatedsituation with movable basis the Jaobian ontains the terms (A.8)-(A.11) along with(A.3) for the regularization term, as shown in (7.7) and (7.8).
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