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Abstract  

Tuberculosis remains the world’s second deadliest infectious disease after 

HIV/AIDS, and poses a major threat to public health in many parts of the world. 

It has previously been demonstrated that mycobacterial colonies exhibit distinct 

heterogeneous phenotypes, and that this functional variation creates sub-

populations of cells with differential susceptibility to antibiotics. In this thesis, we 

investigated the effects of functional variability of M. smegmatis bacteria on 

antibiotic tolerance. With the use of live-cell microscopy system that combines 

imaging, microfluidics, and computational image processing we separated an M. 

smegmatis bulk population into sub-populations with distinct phenotypic 

characteristics. We then evaluated the response of these sub-populations to 

rifampicin. We found that there was a correlation between rifampicin tolerance 

and cell size, cell age, and cell cycle stage. We then conducted PLSR analysis to 

determine the relative importance of various functional parameters to the 

rifampicin tolerance. Finally, we created a compartmentalized model framework 

that is capable of describing the pharmacodynamics of distinct bacterial sub-

populations, and could be used to quantitatively resolve single-cell and 

population-level measurements. 
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Chapter 1. Introduction 

The goal of this project was to investigate various mycobacterial phenotypes, and to 

determine combined contributions of phenotypic characteristics of mycobacteria to 

transient insensitivity to antibiotic rifampicin. The work was done by gathering live-cell 

microscopy data, and analyzing that data with the aid of various software tools (ImageJ, 

MATLAB, and SIMCA). Furthermore, a compartmentalized model framework was 

created for describing the pharmacodynamics of distinct bacterial sub-populations. 

Chapter 2 provides the background information that explains the biological significance 

of this study, as well as an overview of bacterial drug tolerance and pharmacodynamic 

modeling.  

Chapter 3 provides a brief review of the current state of knowledge on the functional  

variability of mycobacteria and its phenotypic-driven drug tolerance. 

Chapter 4 describes the main hypothesis that is to be addressed in this thesis and lays out 

as the various goals of this work. 

Chapter 5 describes the materials and methods that were used in this study. 

Chapter 6 constitutes the bulk of this thesis. It describes the dataset which was generated 

and used for analyzing the mycobacterial drug tolerance, and describes the various 

functional characteristics which were examined: the size and age of the cell during drug 

treatment start, the size of the cell at birth, the growth rate of the cell, and the cell cycle 

stages. 

Chapter 7 describes the use of partial least-squares regression analysis to investigate the 
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relationship between the aforementioned functional parameters, and bacterial antibiotic 

survival outcomes. 

Chapter 8 describes the compartmentalized model framework which was created for 

describing the pharmacodynamics of distinct bacterial sub-population s, and that could be 

used to quantitatively resolve single-cell and population-level measurements. It also 

provided a test case which demonstrated the functionality of the model. 

Chapter 9 provides the description of a constant flow device that was created for 

measuring the responses of bulk bacterial populations to antibiotics. 

Chapter 10 provides the summary of this thesis. 

Chapter 11 describes the future directions of this work, such as further quantifying the 

contribution of chosen phenotypic parameters to antibiotic tolerance, populating the PD 

model with single-cell derived data, and creating a reporter for registering the drug-

induced death. 
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Chapter 2. Background  

2.1 Clinical Significance 

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which 

normally affects the lungs. The disease is spread when people sick with pulmonary TB 

discharge pathogenic microbes into the air, for example, by coughing or sneezing. 

Overall, a fairly small percentage of people who are infected with M. tuberculosis will 

ever develop active TB. However, once the disease is active, without treatment mortality 

rates tend to be very high, around 70% of sputum smear-positive cases of pulmonary TB 

(WHO, 2014).  

It is estimated that in the early 1800s, almost all western Europeans were infected with 

M. tuberculosis and approximately one in four deaths were due to TB (Jackson, Mcneil, 

& Brennan, 2014). Antibiotic TB treatments were first developed in the 1940s, and the 

most effective first-line antibiotic, rifampicin, was developed by 1960. Antibiotic 

treatments were hugely successful in drastically reducing TB incidence and mortality 

rates. Nevertheless, TB remains the world’s second deadliest infectious disease, after 

HIV/AIDS, and still poses a major threat to public health in many parts of the world. 
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Figure 1: Estimated Incidence of TB Cases Worldwide  

TB is most prevalent in Sub-Saharan Africa. Countries in Eastern Europe and Asia also experience high 

burden of the disease. (WHO, 2014) 

In 2013, approximately 9.0 million people developed TB worldwide and 1.5 million died 

from the disease. An estimated 1.1 million (13%) of the 9 million people who developed 

TB in 2013 were HIV-positive, of them approximately 360 thousand died (WHO, 2014). 

The global community is slowly making progress in the fight against the illness: TB 

incidence rates have slowly been declining in the recent years, and World Health 

Organization (WHO) estimates that 37 million lives were saved between 2000 and 2013 

through effective diagnosis and treatment. 

However, drug-resistant TB (DR-TB) poses a new major threat to the control of the 

disease. In 2013, 3.5% of new and 20.5% of previously treated TB cases were estimated 

to have had multidrug-resistant TB (MDR TB). In MDR TB the pathogen is resistant to at 

least isoniazid and rifampicin, the two most potent TB drugs.  Current regimens 

recommended by WHO for treating MDR TB last 20 months, require more expensive and 
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more toxic therapeutics, and have much lower success rates. At the global level, the 

MDR TB incidence rate has remained constant in the recent years. However, some areas 

of the world (especially eastern Europe and the Russian Federation) are experiencing 

serious MDR-TB epidemics. Additionally, an estimated  9.0% of MDR TB cases had 

extensively drug resistant TB (XDR-TB), in which in addition to resistance to isoniazid 

and rifampicin, the pathogen is also resistant to at least one of three injectable second-line 

drugs (i.e., amikacin, capreomycin, or kanamycin) (WHO, 2014). 

Therefore, there exists a clinical need for better understanding of the determinants of 

antibiotic tolerance. That understanding would allow clinicians to use shorter and more 

effective treatment regimens, thus leading to improved outcomes. 

2.2 TB Drug Resistance 

Fundamental challenge in the treatment of TB and in the management of DR-TB is the 

length of the therapy. For new cases of TB, WHO currently recommends a six-month 

administration of four first-line drugs: isoniazid, rifampicin, ethambutol, and 

pyrazinamide. In contrast, the treatment period for bacterium Staphylococcus aureus is on 

the order of weeks, and for E. coli it is on the order of days (Connolly, Edelstein, & 

Ramakrishnan, 2007). 

The need for multidrug and long-term TB treatment therapy stems from two different 

drug resistance mechanisms. The first mechanism is the genetic resistance to the drug in 

the preexisting randomly occurring mutants, a resistance which is heritable and fixed. 

Simultaneous use of multiple anti-TB drugs makes it less likely that a mutant resistant to 

a single therapeutic agent will survive the treatment (David, 1970).  
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The second mechanism of M. tuberculosis drug resistance is phenotypic: in patients who 

relapse early after an appropriate antibiotic therapy, the bacteria remain genetically 

susceptible to the initial antibiotics and cure is achieved by additional treatment with the 

same regimen. Since virtually all classes of antibacterial therapeutics require cell 

replication for their action, the non-replicating bacterial state is thought to render certain 

sub-population s of genetically homogeneous, antibiotic-susceptible populations of M. 

tuberculosis transiently insensitive to an otherwise effective drug. Therefore, the 

treatment regiment is required to be long-term, so that all bacteria within the general 

population eventually leave the antibiotic-resistant phenotypic state (Connolly et al., 

2007). 

2.3 Pharmacodynamic Modeling 

Pharmacodynamics (PD) describes the functional relationship between the drug  

concentration and some measurable therapeutic effect. In case of antibiotics, that effect is 

the rate of growth or death of the target bacteria population. PD models of various 

complexity are an essential tool for drug development and drug usage in the clinical 

practice. 

The simplest PD models describe the effectiveness of a drug treatment with the use of a 

single parameter, the Minimal Inhibitory Concentration (MIC). It is a point estimate of 

drug concentration value at which the rate of bacterial population growth is equal to zero. 

MIC is widely used in the clinical setting, and is the basis for most currently used drug 

dosing regimens. In the MIC approach, the drugs are normally divided into two broad 

categories. Antibiotics in the first category, such as vancomycin and macrolides, exhibit 

mostly time-dependent killing behavior. Their effect is mostly dependant on the amount 
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of time that the antibiotic is in contact with the bacteria; increasing concentration of the 

drug past a certain point (generally no more than 4-5 MIC) does not produce an increase 

in effect. Antibiotics in the second category, such as the amino-glycosides and 

fluoroquinolones, exhibit mostly concentration-dependant killing behavior. In that case, 

the bacterial rate of killing increases with an increase in the concentration of the 

antibiotic, and the effect persists for very high concentrations of the drug (Müller, Dela 

Peña, & Derendorf, 2004).  

However, the MIC is not an optimal marker for developing drug regimens, since it 

provides very little insight into the kinetics of the therapeutic action. MIC provides 

information on the change in the number of bacteria at one time point, and because of 

that, many different combinations of bacterial growth and death rates can have a similar 

MIC. Furthermore, MIC does not provide adequate information on the bacterial drug 

resistance, both genetic and phenotype-dependent. Finally, the MIC is essentially an all-

or-nothing approach, in which no quantitative distinction is made for various drug 

concentrations below the MIC. 

A far more sophisticated approach to the PD modeling involves the estimation of time-

dependent kill curves by exposing target bacteria to a range of antibiotic concentrations, 

and monitoring the changes in the number of viable cells over time. 
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Figure 2: Bacterial Time-Kill Curve 

The relationship between the bacterial growth rate and drug concentration. Three curves depict three 

hypothetical bacterial populations with a varying response function to the change in drug concentration 

(Regoes et al., 2004) 

In this case, the time-dependent relationship between the rate of change in viable 

bacterial population and drug concentration can be approximated by using mass-action 

kinetics. The concentration-response relationship is provided by the Hill function: 

      
     

 

       
  

Where DRUG is the antibiotic effect on the growth rate of bacteria (   ),      is the 

maximum drug-mediated death rate (   ), C is the antibiotic concentration (µg/ml),      

is the drug concentration at which the death rate is at half of its maximum value (µg/ml), 

and   is the Hill coefficient, which is an empirical estimation of the sigmoid relationship 

between the death rate and the drug concentration (Nielsen et al., 2007; Regoes et al., 

2004). 
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This PD model is a far better predictor of the microbiological efficacy of antibiotics than 

a single PD parameter, such as the MIC, and is a step forward for the development of 

more robust and effective drug treatment protocols. 
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Chapter 3. Functional Heterogeneity of Mycobacteria 

It has previously been demonstrated that genetically homogeneous mycobacteria colonies 

exhibit distinct heterogeneous phenotypes. Mycobacteria cells have significantly less 

symmetrical division than other rod-shaped bacteria. This asymmetry seems to be caused 

by the fact that mycobacteria cells lack the molecular rulers that ensure symmetric 

division (Hett & Rubin, 2008).  

Furthermore, the available experimental data seem to suggest that two mycobacteria 

daughter cells that appear after a parent cell division have different elongation rates. 

Mycobacteria elongate at the cell pole rather than along the lateral axis of the cell, and 

have one fast growing and one slow growing pole. Therefore, one daughter cell inherits 

the growing pole, whereas the other cell must synthesize new growth machinery after 

every division event (Aldridge et al., 2012).  

 

Figure 3: Growth Over One Cell Cycle at New Versus Old Poles  

Polar growth rate was assessed using a pulse-chase experiment where cell wall was labeled with amine-

reactive dye green dye. The old pole growth rate over one cell cycle is greater than that of the new pole. 

(From Aldridge et al., 2012. Reprinted with permission from AAAS) 
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This division pattern creates daughter cells with different growth properties: a larger and 

faster-growing accelerator (Acc) cell which inherits the old growth pole, and a smaller 

and slower-growing alternator (Alt) cell which inherits the new pole. Furthermore, 

successive generations of accelerator cells inherit growth poles of varying ages: some 

inherit growth poles created in the previous generation, and others inherit growth poles 

that were created several divisions ago. As the growth pole matures, cells elongate faster 

and are have a larger birth size (Aldridge et al., 2012). 

 

Figure 4: Asymmetric Division Pattern in Mycobacteria 

Schematic representation of mycobacterial growth. The elongation rate is much greater at one pole (labeled 

with a red arrow). Each division event creates two cells: an accelerator (Acc) which inherits the old pole, 

and an alternator (Alt), which inherits the new pole. The growth pole age is labeled in purple. (Image 

courtesy of B. Aldridge) 
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These growth pattern creates rapid functional diversification of closely related cells with 

variations in elongation rates and sizes. Aldridge et al. showed that this functional 

variation creates sub-populations of cells with differential susceptibility to antibiotics. 

The following figure demonstrates the distribution in M. smegmatis survival for 

accelerator and alternator cell microcolonies after the application of meropenem, 

cycloserine, isoniazid, and rifampicin at their MICs (2.3 mM, 0.04 mg/ml, 25 µM, and 50 

µM, respectively). This data seems to suggest that there is a differential antibiotic 

tolerance for the accelerator and alternator cell phenotypes. 

 

Figure 5: Difference in Bacterial Survival for Acc and Alt Phenotypes  

Differential tolerance of antibiotic between Acc and Alt cells. Survival was determining by evaluating the 

percentage of cells that grew after antibiotic treatment was stopped. (From Aldridge et al., 2012. Reprinted 

with permission from AAAS) 

Furthermore, mycobacterial division cycle seems to be regulated by time rather than by 

cell size, as in the E. coli. Cell divisions are fairly synchronized in mycobacterial 

microcolonies, with closely related cells dividing at similar times. The status of cell cycle 

timing may be assessed with the use of single-stranded binding green fluorescent protein 

(SSB-GFP), which binds to single-stranded DNA and serves as a replication fork position 

marker. 



13 
 

 

Figure 6: Mycobacterial Cell Cycle 

Stages of the mycobacterial cell cycle. The period after the division and before the start of DNA replication 

is marked as B (G1). The period of DNA replication is marked as C (S). The period between the end of 

DNA replication and cell division is marked as D (G2). In certain cells DNA replication was again initiated 

after D, but before division; this stage is labeled as ‘‘pre-division replication." Gray values inside the circle 

indicate the number of GFP foci, visible in the cell at each cell cycle stage. The average cell cycle stage 

length is provided. Not all observed cells experienced all cell cycle stages: some lacked B, some lacked D, 

some lacked E.  (Sukumar, Tan, Aldridge, & Russell, 2014)  

If certain cell cycle stages are susceptible or tolerant to the drug action, the cell cycle 

synchronization within individual microcolonies might make most of cells in these 

microcolonies functionally susceptible or tolerant to drug respectively.   
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Chapter 4. Designing an Improved Pharmacodynamic Model  

Identifying, characterizing, and targeting drug-sensitive and drug-tolerant mycobacteria 

requires a better understanding of the determinants of antibiotic tolerance. The goal of 

this project was to investigate phenotypic-dependent antibiotic resistance of 

mycobacteria, and determine combined contributions of functional characteristics of 

mycobacteria to transient insensitivity to antibiotic killing.  

 

Figure 7: Dividing Bulk Mycobacterial Population into Sub-Populations with 

Distinct Drug Responses 

Let us consider a genetically homogeneous mycobacteria cell population. We hypothesize that based on 

certain functional parameters, this population can be divided into sub-populations with varying antibiotic 

kill-curves. 

Due to the variable nature of this interaction, we focused on a quantitative, single-cell 

approach. With the use of live-cell microscopy system that combines imaging, 

microfluidics, and computational image processing we separated a mycobacteria 
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population into sub-populations with distinct phenotypic characteristics, and evaluate the 

antibiotic response of these sub-populations. Furthermore, we created a 

compartmentalized model framework that is capable of describing the 

pharmacodynamics of distinct bacterial sub-population s and could be used to 

quantitatively resolve single-cell and population-level measurements.  

The model drug chosen for this project was rifampicin. The mechanism of action of 

rifampicin is the inhibition of DNA transcription. In the previous work by Adlridge et al. 

(2012), the plot of functional response to rifampicin had two distinct peaks, which 

suggests that the phenotypically-derived tolerance to that drug cannot be adequately 

described by the relatively simple accelerator-alternator model. 
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Chapter 5. Materials and Methods 

5.1 Strains and Cell Culture 

Mycobacterium smegmatis was chosen as the model organism for this study. M. 

smegmatis organism is a close nonpathogenic relative of Mycobacterium tuberculosis. It 

is generally accepted that growth and division machinery is conserved between 

pathogenic and nonpathogenic mycobacteria. The three hour doubling time of M. 

smegmatis is advantageous comparing to the twenty four hour doubling time of M. 

tuberculosis, due to the shortened time required for the experiments. 

M. smegmatis strain        was transformed with a SSB-GFP replicating plasmid, and 

augmented with a hygromycin resistance vector, as described previously (Sukumar et al., 

2014).  

10ml of rich growth medium containing M. smegmatis was placed in baffled flasks on a 

shaker which aerated the culture. Cells were grown at 37°C for 24 hours, allowing them 

to reach the logarithm growth phase. The culture was then spun down at 2000RPM for 

six minutes. The resulting cell clump was re-suspended in 200 to 500µl of 7H9 media, 

depending on the cell pellet size. The cells were then filtered through a 10µm filter to 

achieve single cell suspension prior to being loaded into the viewing device. 

5.2 Medium and Drug Preparation 

Rich growth medium (7H9) consisted of 2.35g Difco Middlebrook 7H9 Broth in 450ml 

of distilled water, which was supplemented with 2ml 50% glycerol, 1.25ml 20% Tween-

80, 5ml 10X ADC (albumin, dextrose, catalase), and .5ml Amresco hygromycin B (50 

mg/ml).  
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TCI rifampicin was dissolved in dimethyl sulfoxide to achieve 2mg/ml concentration, and 

then frozen in 100ml aliquots. Aliquots were stored in a freezer to prevent drug 

degradation, and were only unfrozen once, immediately prior to the experiment.  

To visualize septal membranes, prior to the experiment, an 1.25µg aliquot of Invitrogen 

FM4-64 FX dye was reconstituted in 400µl of dimethyl sulfoxide (DMSO), and added to 

20ml of 7H9 media. Frozen aliquot of TCI Rifampicin (2mg/µl) were thawed and diluted 

with 7H9 to achieve a pre-determined drug concentration necessary for the experiment. 

5.3 Microfluidic Device 

A microfluidic viewing device was used to measure the growth and antibiotic 

susceptibility of mycobacteria at a single-cell level. It allowed cell movement in two 

dimensions while constraining bacteria to a single focal plane. The polydimethylsiloxane 

(PDMS) device was cast using molds and then bonded to glass substrates with soft 

lithography techniques, as described previously (Aldridge et al., 2012; Xia & Whitesides, 

1998). 

Briefly, the desired pattern was photolithographically defined by using a Mylar mask and 

used to create masters with a two-layer structure. PDMS prepolymer was mixed with 

crosslinker at 10:1 weight ratio, stirred, degassed, poured and then cured for a period of 

24 hours. Media input and output holes were punched with a 19Ga. flat-tip needle. 
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Figure 8: Microfluidics Device 

Two syringes (left), controlled by microfluidic pumps, were connected to a mixing device. The media 

syringe pump ran for the entire duration of the experiment (26 hours); the drug syringe pump was activated 

ten hours after the start of the experiment, and ran for six hours. The solution from the mixing device 

flowed through the main channel of the viewing device and into a waste container. 

The serpentine mixing device had two inlets, one for 7H9 media, and one for the 

rifampicin-containing solution. Fluid delivery into the mixing device was accomplished 

with two microfluidic syringe pumps (Chemyx Fusion 100). The approximate length of 

the two tubes connecting drug and media syringes to the mixing device was 60cm each. 

The inner diameter of the tubing was 0.26mm. Both tubes were pre-filled with 7H9 

media. 

The viewing device contained a main microfluidic media feeding channel, with a height 

of approximately 10-17µm. Viewing chambers with a diameter of 60 µm were connected 

to the main channel via side channels 100-200µm long. The height of the side channels 

and the viewing chambers was approximately 0.8−0.9µm. The heights of these features 

on the masters mold were determined with a surface profilometer (Dektak ST System 

Profilometer, Veeco Instruments Inc.). 

The solution with suspended mycobacteria cells was loaded into the viewing device with 

a 1ml syringe. The viewing chambers which contained mycobacteria (ideally just one 

cell) were selected for the imaging. 
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5.4 Microscopy 

Time-lapse images were acquired using a widefield DeltaVision PersonalDV (Applied 

Precision, Inc),  a modified Olympus IX71 inverted microscope. An automated stage was 

enclosed in a heated environmental chamber, which was set at a temperature of  37°C. 

Images were acquired with a 60x- (Plan APO NA 1.42) oil immersion objective. The 

cells were illuminated with the 461-489 nm InsightSSI Solid State Illumination system 

(Applied Precision, Inc.) and recorded with a CoolSnap HQ2 camera (Photometric). 

Images were acquired every fifteen minutes, for a duration of 26 hours. Automated focus 

correction was performed every five minutes, during imaging time-lapse. Focus was 

maintained using the hardware-based Ultimate Focus System (Applied Precision, Inc.). 

5.5 Antibiotic Treatment 

The media syringe delivered 7H9 at the rate of 5µl/min throughout the entire duration of 

the experiment. M. smegmatis were grown in a viewing device for ten hours to establish 

microcolonies. Cells were then subjected to rifampicin treatment for six hours that 

achieved a pre-determined drug concentration in the viewing device (refer to Section 6.1 

for drug concentrations). When activated, the media syringe delivered the antibiotic 

solution at the rate of 1µl/min. The minimal inhibitory concentration of rifampicin was 

determined prior to the experiment by using an alamarBlue assay (Franzblau et al., 1998). 

Since the tubing was pre-filled with normal growth media, the antibiotic did not reach the 

viewing device instantaneously. It was empirically determined that from the time of the 

drug syringe pump activation it took the drug solution approximately half an hour to get 

to the main channel of the viewing device. Following the drug treatment, the cells were 

allowed to recover in the normal 7H9 media for ten hours. This technique enabled 
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imaging of mycobacterial growth for up to five to six generations, at which point the 

images tended to become too crowded for analysis. 

5.6 Image Processing 

Images were saved in the Softworx format (Applied Precision, Inc.) and annotated in 

ImageJ (version 1.47v) with an ObjectJ plug-in (Rasband, n.d.; Vischer, Norbert, 

Nastase, n.d.). Thirty four microcolonies of M. smegmatis (totaling 1020 cells) were 

analyzed for this study.  

For each cell, the cell body length was annotated for each frame, whenever possible. If 

the cell displayed a visible GFP foci, these were tagged as well, as displayed both in the 

diagram and live-cell image below: 

 

Figure 9: Cell Annotation Workflow 

The cell length was marked with a four-point line, from old pole to the new pole. If GFP foci were present, 

they were annotated with additional points. Up to four GFP foci could be annotated. 
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Figure 10: Cell Annotation Example 

This brightfield/FITC image shows an M. smegmatis cell. The length is annotated by a four-point line (red), 

a fifth point marks the SSB-GFP focus (marked with a white arrow). 

Cell division events were defined as visible "v-snapping" or "pinching" of the cell: 

 

Figure 11: V-snap Division Event 

These two images show an annotation transition from a single parent cell (left) to two daughter cells (right), 

with a V-snap division event. 

 

Figure 12: Pinching Division Event 

These two images show an annotation transition from a single parent cell (left) to two daughter cells (right), 

with a pinching division event. 
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5.7 Data Collation and Analysis 

Custom scripts were written in MATLAB (version R2013a) for the purpose of data 

collation and analysis. The code can be provided upon request. Custom graphic user 

interface (GUI) was used to assign the following metadata to each cell: 

 Microcolony number 

 Individual cell number 

 Alternator/accelerator status 

 Growth pole age (accelerators only) 

 Pedigree relationships between cells (i.e. parent/daughter relations) 

 Drug treatment outcome 

 

Figure 13: Data Collating GUI 

This GUI is based on a paper pedigree chart, courtesy of Owen Bennion.  

Drug treatment outcome was defined as follows: 
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 Dead cells
1
. Existed at the time when the drug reached the viewing device, or 

were born when drug was present in the viewing device. Did not grow or divide 

after the application of drug until the end of the recording. 

 Live cells. Existed at the time when the drug reached the viewing device, or were 

born when drug was present in the viewing device. Grew or produced at least one 

viable offspring cell before the end of recording. 

 Zombie cells. Existed at the time when the drug reached the viewing device, or 

were born when drug was present in the viewing device after the application of 

drug. Both daughter cells did not grow or divide until the end of the recording. 

Please refer to the diagram below for the visual representation of these three sub-

populations of cells. 

                                                           
1
 This sub-population of cells does not necessarily include only non-viable cells. It is quite probable that 

some cells that didn't start growing until the end of the recording were simply dormant. 
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Figure 14: Graphic Representation of Three Drug Treatment Sub-Populations 
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Besides assigning metadata information to each cell, the script also imported the 

ImageJ/ObjectJ data, and for each frame where a given cell existed (i.e. between its birth 

and division or end of recording) it also calculated and assigned the following: 

 Cell length (pixels, converted to µm) 

 Cell length change from the previous frame (pixels, converted to µm) 

 SSB foci presence and position (converted to distance from the cell body poles) 

If a certain frame was not annotated for a given cell, the script approximated the length 

change based on the before- and after- cell length values. 

An additional script created graphs with the positions of the SSB foci versus time for 

each individual cell that had these foci. These graphs were hand-annotated, and the 

following cell cycle stage data was assigned for each frame: 

 B: No SSB-GFP foci after division 

 C: 1-2 SSB-GFP foci 

 D: period after C with no SSB-GFP foci 

 E: 2-4 SSBGFP foci after D and before division 

Collated and transformed data was automatically exported into a master file Microsoft 

Excel spreadsheet; there was a single table for every drug concentration.  
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Figure 15: Master File Layout 

Columns A-G will repeated for every single individual cell, and contained cell's metadata: 

 A - microcolony identifier. 

 B - cell number 

 C - parent cell number 

 D, E - daughter cell numbers 

 F - pole age. 0 is alternator, 1 is accelerator with a pole age of 1, 2 is accelerator with a 

pole age of 2, etc. 

 G - drug treatment outcome. 0 is live, 1 is dead, 2 is zombie. 

Columns H-P contained data for each annotated frame: 

 H - frame number 

 I - length of the cell at the given frame number (in pixels) 

 J - absolute length change of the cell from the previous annotated frame number (in 

pixels). 

 K - relative length change of the cell from the previous annotated frame number (i.e. 

current length in pixels divided by the previous length in pixels). 

 L - The difference between the present frame and the previously annotated frame. 

 M-T - foci distance to new and old poles.  

Additional MATLAB scripts were used to further analyze this data. 

PLSR analysis was performed with a demo-version of SIMCA (version 14). 
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Chapter 6. Results of Data Analysis 

6.1 Dataset Size 

The following table provides the experimental sample size which was used for data 

analysis: 

Rifampicin Concentration (µg/ml) xMIC Microcolonies (n) Cells (n) 

20 0.5 6 138 

40 1 7 270 

80 2 7 216 

120 3 14 396 

Table 1: Total Sample Size 

6.2 Characterizing M. smegmatis in the Absence of Drug 

Data analysis was conducted for all cells that existed strictly prior to the application of 

rifampicin, as a method of control. If the cell existed after ten hours since the beginning 

of the recording (thus being subjected to drug action), it was not included into this data 

set. 

The majority of M. smegmatis cells divided about 2:15 - 3:30 hours after the cell birth. 

The average time of division was just under three hours. 
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Figure 16: M. smegmatis Division Times (No Drug) 

The following table provides data on the average birth and division sizes of M. smegmatis 

cells. As expected, the accelerator cells tended to be larger at birth and larger still at the 

division when compared to the alternator cells. 

 All Cells Accelerators Alternators 

Mean Birth Size (µm) 3.5±0.77 3.9±0.73 3.2±0.61 

Mean Division Size 

(µm) 

6.3±1.25 6.9±1.19 5.7±0.97 

Sample Size (n) 249 125 124 

Table 2: M. smegmatis Birth and Division Sizes 

The following figure provides time-corresponding data  for an average M. smegmatis cell 

from time of birth. The recorded data for all available cells was "stacked" and began at 

0:00 hours, i.e. the data below represents an average size of the cell from the time of 

birth. The drop in size after four hours can be contributed to the fact that most cell have 

undergone division by that point (refer to Fig. 15), and the remaining "lagging" cells 

skewed the average size downward. 
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Figure 17: Birth and Division Sizes (No Drug) 

The following figure provides the average growth rate for an M. smegmatis cell, i.e. 

average rate of cell elongation at 15 minute intervals. The accelerator cells tended to 

grow at a faster rate when compared to the alternator cells. Additionally, a polynomial 

curve with one degree of freedom (i.e. a linear plot) was fitted for the period of 0:00-3:00 

hours, in order to capture data for most cells within the sample. The average rate of 

growth increased as the cells aged. 

 

Figure 18: Growth Rate (No Drug) 
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The following figure provides the average length of accelerator cells with various growth 

pole ages. The average size of the accelerator cell seemed to be greater for older pole 

ages. 

 

Figure 19: Average Size for Various Accelerator Growth Pole Ages (No Drug) 

The following figure provides the average growth rate of accelerator cells with pole age 

of one, and a combined population of accelerator cells with pole ages of two and three. 

The accelerators with older pole ages tended to growth faster. 

 

Figure 20: Accelerator Average Growth Rate for Pole Ages (No Drug) 
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6.3 Accelerator and Alternator Cells Exhibit Variable Tolerance of Rifampicin 

The following data analysis examines the relationship between the accelerator and 

alternator phenotypes, and tolerance of rifampicin at four different concentrations of the 

drug.  

Rif [C] 

(µg/ml) 

Acc Cells 

(n) 

Live (n) Dead (n) Zombie 

(n) 

% Tolerant 

20 42 18 19 5 42.9% 

40 67 20 40 7 29.9% 

80 51 26 19 6 51.0% 

120 127 29 77 21 22.8% 

Table 3: Drug Tolerance in Accelerator Cells 

Rif [C] 

(µg/ml) 

Alt Cells (n) Live (n) Dead (n) Zombie 

(n) 

% Tolerant 

20 40 14 20 6 35.0% 

40 68 5 52 11 7.4% 

80 51 13 31 7 25.5% 

120 120 9 95 16 7.5% 

Table 4: Drug Tolerance in Alternator Cells 

At each drug concentration, a majority of the live cells sub-population are accelerators. 

This difference is statistically significant
2
 at p<0.05 for three drug concentrations (40, 80, 

and 120 µg/ml), with p-values of 0.0027, 0.0374, and 0.0012 respectively.  

The following figure examines what percentage of tolerant cells were accelerators and 

alternators, and what percentage of susceptible cells were accelerators and alternators at 

the drug concentration of 120 µg/ml. Accelerators tended to be much more tolerant of 

rifampicin. 

                                                           
2
 Due to the bi-modal state of live cells (i.e. accelerator vs. alternator), a "fair-coin" χ² test was used, with 

a null hypothesis that a live cell has an equal probability of being either an accelerator or an alternator. 
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Figure 21: Accelerator and Alternator Drug Tolerance 

The susceptible population pictured in the top plot includes only the cells that were defined as dead.  The 

susceptible population pictured in the bottom plot includes both the cells that were defined as dead, and 

cells that were defined as zombies. The second plot was created to see, whether expanding the definition of 

susceptible cells to both dead and zombie sub-populations would alter the accelerator to alternator ratio. No 

discernible difference can be seen between the two definitions of susceptible populations.. 

6.4 Cell Size at Drug Treatment Start Strongly Correlates with Tolerance 

The following data visualization depicts the averaged lengths of six bacterial sub-

populations at each recorded time point. Judging from the graph, at the time of drug 

treatment start (t=10.5 hours), the average size of the dead cell sub-population was 

smaller than that of the live cell sub-population. The zombie cell sub-population was on 

average larger than both dead and live cells. 
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Figure 22: Sub-Population Average Size at Each Frame
3
 

The sub-populations were grouped by outcome (live/dead/zombie), as discussed in Section 5.7. 

Additionally, these three sub-populations were further divided into accelerators and alternators. The start 

and end time of drug treatment (120µg/ml) is designated by the vertical red lines. 

Next figure shows the box plot of the average sizes of aforementioned sub-populations at 

the time of drug treatment start, for cells that were treated with rifampicin at 120µg/ml. 

There is a statistically significant difference between the mean size of live and dead cells 

at the time of drug treatment start. Wilcoxon signed rank sum was used instead of a 

paired samples t-test due to a relatively small sample size for the live cell cohort. 

                                                           
3
 This figure includes data for cells that were born after the drug treatment ended. These cells are 

grouped together with live cell sub-population in order to make the graph easier to read. 
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Figure 23: Sub-Population Mean Size at Rifampicin Treatment Start
4
 

For rifampicin concentration of 120µg/ml. Central red lines show medians for the given sub-population. 

The edges of the box are the 25th and 75th percentile values. The whiskers extend to the most extreme 

values not considered outliers by the MATLAB boxplot algorithm. The outliers are plotted individually, as 

red crosses. The notches signify the 95% significance level (based on a normal distribution assumption). 

A similar relationship between dead, live, and zombie cell sizes can be observed at 

smaller drug concentrations. However, the difference between live and dead sub-

populations is no longer statistically significant at p=0.05 for a Wilcoxon signed rank 

sum test. 

                                                           
4
 For this graph, sub-populations of live, dead, and zombie cells had to be limited only to cells that existed 

at the start of drug treatment. 
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Figure 24: Box Plot of Sub-Population Mean Sizes at Rifampicin Treatment Start 
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The following graph provides the additional information on the sizes of various cell sub-

populations at the time of the drug treatment start. It is a histogram distribution of cell 

sizes for six aforementioned sub-populations, along with two control histograms (all 

accelerator and all alternator cells sizes 1.5 hours before the beginning of drug treatment).  

 

Figure 25: Histogram of Sub-Population Mean Size During Treatment Start 

The histogram fit was created with the MATLAB histfit function (one hundred bins, kernel smoothing 

function fit). Y-axis depicts the relative occurrence of a certain bacterium size value at the beginning of 

drug treatment, i.e. the number of cells sizes at that particular bin. The vertical lines represent the mean 

sizes for each sub-population. 

The data seems to suggest that M. smegmatis size at the start of drug treatment correlates 

with tolerance outcome. Cells that tended to not grow during the recovery period were on 

average small at the time of antibiotic treatment start; cells which had non-viable 

offspring were on average large. The average size of cells that grew during the recovery 

period was somewhere between the two aforementioned extremes. 

 There could be multiple underlying functional factors that lead to this size difference, for 

example: different growth rate, different birth size, or different birth timing. The next 
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three sections will examine the possible connection of these three factors to drug 

tolerance. 

6.5 No Apparent Relationship Between Growth Rate and Drug Tolerance 

The following data visualization depicts the averaged growth rates of six bacterial sub-

populations at each available time point. 

 

Figure 26: Average Sub-Population Growth at Each Frame
5
 

The sub-populations were grouped by outcome (live/dead/zombie), as discussed in Section 5.7. 

Additionally, these three sub-populations were further divided into accelerators and alternators. The start 

and end time of drug treatment (120µg/ml) is designated by the vertical red lines. 

There is no discernible difference in the growth rates of the six sub-populations of M. 

smegmatis cells. It is interesting to note, that live cells started growing again about 3-4 

hours after the drug syringe was stopped. 

6.6 Cell Birth Size Weakly Correlates with Tolerance 

The graph below depicts individual cell data for the aforementioned six sub-populations, 

for cells that were treated with rifampicin at 120µg/ml.  

                                                           
5
 This figure includes data for cells that were born after the drug treatment ended. These cells are 

grouped together with live cell sub-population in order to make the graph easier to read. 



38 
 

 

Figure 27: Individual Cell Birth Times and Birth Sizes 

The Y-axis corresponds to the birth size of individual bacteria. Bolded markers provide averages for each 

of the six sub-populations; thicker bold marker in the mean, and thinner bold marker in the median of the 

corresponding sub-population. The start and end time of drug treatment (120µg/ml) is designated by the 

vertical red lines. 

Next figure shows the box plot of average birth times of the aforementioned sub-

populations. 
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Figure 28: Sub-Population Mean Sizes at Birth 
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There is no strong pattern of size at birth differences between the various functional sub-

populations, although cells that ended up not growing during the drug recovery time did 

tend to have smaller birth size. In one case, the rank-sum test did show statistical 

significance at p<0.05 between the birth size of live accelerators and dead accelerators, 

but the p-value was a relatively modest 0.038. 

The following graph provides the histogram distribution of birth sizes for various sub-

populations, along with two control histograms, birth sizes of all accelerator and 

alternator cells that existed only between 4 and 10 hours since the start of the experiment.  

 

Figure 29: Histogram of Sub-Population Mean Sizes at Birth
6
 

The histogram fit was created with the MATLAB histfit function (one hundred bins, kernel smoothing 

function fit). Y-axis depicts the relative occurrence of a certain bacterium size value at the beginning of 

drug treatment, i.e. the number of cells sizes at that particular bin. The vertical lines represent the mean 

sizes for each sub-population. 

6.7 Cell Birth Time Strongly Correlates with Tolerance 

The graph below depicts individual cell data for the aforementioned six sub-populations, 

for cells that were treated with 120µg/ml Rifampicin. 

                                                           
6
 The histograms do not include cells that were born after the beginning of drug treatment, since the drug 

stress affected their birth size, thus skewing the birth size distributions. 
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Figure 30: Individual Cell Birth Times and Birth Sizes 

The X-axis corresponds to the birth time of individual bacteria. Bolded markers provide averages for each 

of the six sub-populations; thicker bold marker in the mean, and thinner bold marker in the median of the 

corresponding sub-population. The start and end time of drug treatment (120µg/ml) is designated by the 

vertical red lines. 

Next figure shows the box plot of average birth times of the aforementioned sub-

populations, relative to the drug treatment start. The dead cells tended to be born a short 

time before the drug treatment start; zombie cells tended to be born a long time before 

drug treatment start; live cells' birth times fell somewhere in-between the dead and 

zombie birth times. The rank-sum test shows significant difference between live and dead 

accelerator cells for 80µg/ml treatment (p<0.05), and significant difference between live 

and dead alternator cells for 120µg/ml treatment (p<0.05). 
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Figure 31: Sub-Population Mean Birth Times Relative to Treatment Start 
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The following graph provides the histogram distribution of birth times for various sub-

populations, relative to the drug treatment start. There is no independent control; however 

there is a histogram of all combined birth times for accelerators and alternators prior to 

their division into dead, live, and zombie populations. 

 

Figure 32: Histogram of Sub-Population Mean Birth Times Relative to Drug 

Treatment Start 

The histogram fit was created with the MATLAB histfit function (one hundred bins, kernel smoothing 

function fit). Y-axis depicts the relative occurrence of a certain bacterium size value at the beginning of 

drug treatment, i.e. the number of cells sizes at that particular bin. The vertical lines represent the mean 

sizes for each sub-population. 

 6.8 Cell Cycle Stage Strongly Correlates with Tolerance 

Since cell age during the start of drug treatment seemed to be an important factor, and 

since the cell cycle in mycobacteria seems to be time-dependent, we decided to 

investigate whether the stage of cell cycle at the start of drug treatment would correlate 

with rifampicin tolerance.  

The following plot depicts the cell cycle stage for three M. smegmatis sub-populations 

(live, dead, zombies), for 120µg/ml drug treatment. Cells that did not display any foci at 
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any time were not included, since it is impossible to determine what stage of cell cycle 

they were in at t = 10.5 hours.  

 

Figure 33: Sub-Population Cell Cycle at the Time of Drug Treatment
7
 

The dead cell sub-population  (n=91) tended to be in the early stages of the cell cycle, while the zombie cell 

sub-population  (n=29) tended to be in the late stages of the cell cycle. The live cell population (n=30) 

tended to have a distribution close to the distribution of a normal cell cycle. The "all cell" population is the 

cell cycle distribution of all the cells that were present at the time of drug treatment start.  

The following plot depicts the C cycle stage for three M. smegmatis sub-populations 

(live, dead, zombies), at the time of 120µg/ml rifampicin drug treatment start. Cells that 

did not display any foci were not included, since it is impossible to determine what stage 

of cell cycle they were in at t=10.5 hours.  

                                                           
7
 The graph depicts the cells that existed at the time of the drug treatment start. 
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Figure 34: Sub-Population C Cell Cycle at the Time of Drug Treatment 

The graph depicts the cells that were in C cell cycle. Early C was defined as 0-30 minutes, mid C was 

defined as 45-75 minutes, late C was defined as anything over 90 minutes (the images were taken every 15 

minutes). Sample size: n=11 for live cells, n=56 for dead cells, n=12 for zombie cells. The zombie cell sub-

population  tended to be in the later stages of the C cell cycle.  
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Chapter 7. Analyzing the Impact of Various Mycobacterial Functional 

Characteristics on Drug Tolerance with Partial Least-Squares Regression 

The data in the previous chapter suggests that there is a correlation between functional M. 

smegmatis differences, and rifampicin tolerance. In particular, size of the cell and the 

stage of cell cycle at the time of drug treatment start seems to be a good predictor of 

rifampicin tolerance. Birth timing seems to correlate with drug tolerance as well, though 

to a slightly lesser degree. Naturally, these functional parameters aren't independent of 

one another, e.g. if the cell is born shortly before the drug treatment, it will have less time 

to grow, and will likely have a smaller size when the drug reaches the viewing device. 

We utilized partial least-squares regression (PLSR) to analyze the relations between these 

functional parameters, as well as their contribution to the ultimate tolerance outcomes. 

PLSR is an analytical method that bears close resemblance to principal component 

analysis. In short, PLSR projects the predictor variables (in our case the quantitative and 

qualitative characteristics of M. smegmatis) and a response variable (in our case, the 

qualitative drug tolerance outcome) to a new space, creating a linear combination of 

loading coefficients that approximate the original variables. 

The following predictor (X) variables were analyzed: 

 Accelerator / Alternator status (qualitative, 1 for Acc, 0 for Alt) 

 Length at birth 

 Length at drug treatment start 

 Birth time relative to drug treatment start, i.e. cell age 

 Instantaneous cell growth (from the previous recorded frame) 

 Average growth rate since birth 
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 Cell cycle at drug treatment start (qualitative, 2 for B, 3 for C, 4 for D, 5 for E) 

 Start of C cycle relative to drug treatment start 

 Concentration of the drug 

There was only one qualitative response (Y) variable, treatment outcome (0 - live, 1 - 

death, 2 - zombie). 

Around 28% of variation within the observed variable (training set Y) was explained by 

the two-component model, and around 25% of variation was predicted by the model 

according to cross-validation. Adding more components to the model did not improve the 

fit. The poor fit is most likely a result of noise in the data, and the presence of other 

unaccounted factors that affected the drug tolerance. However, if one considers the 

relative simplicity of measured functional parameters (cell length, division timing, and 

GFP foci presence), even this result can be considered a good first step to deterministic 

predictions of the drug tolerance outcome. 
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Figure 35: Goodness of Model Fit 

Bearing in mind that our model explains slightly more than a quarter of observed drug 

tolerance response, let us examine it more closely. The score scatter plot showed good 

clustering of observations with no extreme outliers, and with just three observations 

outside the tolerance ellipse. 

 

Figure 36: Scores Scatter Plot 

The score plot is a map of the observations. It is a window into predictor variable space, which displays 

how the observations are situated relative to each other.  
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The model permutation plot indicates that the original model is not spurious, i.e. it doesn't 

just fits the training set without predicting Y for new observations. 

 

 

Figure 37: Model Permutation Plots 

Three Y-variables were evaluated (from left to right): live, dead, zombie. The values of components for the 

original model are shown on the right part of each plot, and 20 the Y-permuted models are on the left. 

According to the SIMCA manual, these graph indicate a valid model: all blue Q2-values to the left are 

below the original component on the right, and the regression line of the blue Q2 permuted values 

intersects the vertical axis below zero.  

The next plot examines similarity in behavior between variables. 

 

Figure 38: Loadings Weights Plot 

To interpret this plot, look at the line that goes through the origin from a Y-variable, and project other X- 

and Y- variables onto this line at a right angle. Variables that are on the opposite sides of the line are 
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negatively correlated; values on the same side of the line are positively correlated. The distance between 

variables represents the strength of correlation. 

The next plot presents the correlations between various drug treatment outcomes and the 

predictor variables from the loadings plot in a clearer format.  

 

Figure 39: Coefficients Overview Plot 

The coefficients are normalized (divided by the standard deviation of their respective observed variable).  

As expected, the length and age of the cell at drug hit and certain cell cycle stages 

correlated heavily with the zombie and dead outcome. Based on the loadings plot, for 

zombies the age at drug hit and the size at drug hit were weakly negatively correlated, 

while for the dead cells they were weakly positively correlated. Curiously, the live cell 

outcome didn't correlate as much with these three functional variables, and was most 

dependent on the accelerator/alternator status, and the length at birth. 

Finally, the variable importance for the projection (VIP) plot summarizes the importance 

of variables both to explain X and to correlate Y.  
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Figure 40: Variable Importance for the Projection 

The error bars indicate 95% level confidence interval. Values larger than 1 are considered important, values 

smaller than 0.5 are considered unimportant, values between 0.5 and 1 are in the "grey zone" 

Based on the VIP values, the birth time relative to drug treatment start and cell length at 

drug treatment start are most important to the rifampicin treatment outcome. Length at 

birth, D and C cell cycle states at time of drug treatment start, and the 

accelerator/alternator status also seem important, however the lower boundary of the 

confidence interval for these values is below the value of one. The instantaneous growth 

rate right before the drug treatment start, on the other hand, was the least important value 

in the PLSR model. 
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Chapter 8. PD Model 

8.1 Model Framework 

The various functional sub-populations of mycobacteria may be described by using a 

compartmentalized model. Each compartment represents one distinct sub-populations; all 

cells within that compartment are assumed to be homogeneous. The rate of change of the 

number of cells within the compartment is assumed to be either constant, or proportional 

to the remaining relative cell number in that compartment; in other words it follows zero-

order or first-order kinetics, which makes it possible to describe the system with ordinary 

differential equations (ODEs). The following figure provides the compartmentalized 

framework example for modeling the drug tolerance within the mycobacteria population. 

 

Figure 41: Compartmentalized PD Model 

Boxes represent the number of bacteria for each defined phenotype. Arrows represent the first-order 

transfer rate into and out of particular phenotypic states (such as accelerator/alternator). The model's 

predictive power should be validated against bulk kill-curve measurements (right). 
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The PD model
8
 consists of the following elements: 

1. A set of n bacterial sub-populations denoted by σ = {1, 2, . . . , n}. 

2. State vectors S, R ∈ Rn. For i ∈ σ, Si represents the number of drug-susceptible, 

replicating bacteria in sub-population i as a function of time. Ri represents the number of 

drug-resistant, non-replicating bacteria in sub-population i as a function of time. 

3. Rate constants k, c, kds, kdr ∈ R+, with units of        . kc represents the rate of cell 

division of replicating cells in the population. kds and kdr represent the rates of cell death 

among cells in S and R in the absence of drug. 

4. A transition matrix A ∈ Rn×n. The ijth entry aij represents the number of cells in sub-

population i produced per division of a cell in sub-population  j. ai denotes the ith row of 

A. Any aij need not be an integer but each column of A should sum to 2, since two new 

cells are produced every division. The rate of change of each Si due to cell growth alone 

(no S-R switching or cell death) is given by kc(ai − ei) ∗ S, where ei is the ith standard 

basis vector in Rn. The ei term represents the “loss” of the parent cell in Si each cell 

division. 

5. A vector DRUG ∈ Rn. For i ∈ σ, DRUGi represents the rate (       ) at which a 

particular concentration of antibiotic kills cells in Si according to an Emax model, which 

was discussed in Section 2.3 

6. A constant Bmax that represents the upper bound for the overall cell population size B 

= Pi∈σ Si+Ri, and functions Zsr and Zrs that map R+ → R+. Without loss of generality, 

the rate at which cells in Si become cells in Ri is given by ZsrSi, and the rate at which 

                                                           
8
 My initial PD model was based on the (Nielsen, Cars, & Friberg, 2011) paper. I would like to thank Robert 

Crutcher for improving my first model, and for formalizing its description in a mathematically rigorous 
way. 
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cells in Si become cells in Ri is given by ZrsRi. Both Zsr and Zrs are functions of B and 

Bmax. The functions used in this model are 

             
 

    
  

and 

           
 

    
   

 

where αsr,αrs < 0. These functions are chosen for their property that as B → Bmax, Zsr 

→ ∞ and Zrs → 0, and as B → 0, Zsr → 0 and Zrs → ∞. 

For any i ∈ σ, the pharmacodynamic differential equations for Si and Ri are given by: 

   

  
          ∗                            

   

  
                   

A brief word about vector notation: bolded font (a) denotes a vector, and ai denotes its ith 

element. For a, b ∈ Rn, a ∗ b denotes the dot product Pn i=1 ai ∗ bi. For i ∈ {1, 2, . . . , 

n}, ei ∈ Rn denotes the ith standard basis vector i.e. e 

ij = 1 if i = j and 0 otherwise. 

 

8.2 PD Test Case 

Let σ = {1,2,3,4}, where each sub-population has the following characteristics: 
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 i = 1: short, slow-growing cells 

 i = 2: long, slow-growing cells 

 i = 3: short, fast-growing cells 

 i = 4: long, fast-growing cells 

Suppose that the daughters of all slow-growing cells are short cells, and the daughters of 

all fast-growing cells are long cells. Also, every cell gives rise to one slow-growing cell 

and one fast-growing cell. The transition matrix A for this scenario is: 

1 1 0 0 

0 0 1 1 

1 1 0 0 

0 0 1 1 

 

Let us set the rate of cell division (Kc) to 1.46        , and rates of cell death for both 

populations (Kds, Kdr) to 0.187        . For drug action, let us use the following 

parameters: 

i 1 2 3 4 

Emax 2.7 3.82 4.38 5.5 

EC50 0.00531 .0033 0.0045 0.0025 

  1.06 1.06 1.06 1.06 

Table 5: Training Set Drug Action Parameters 

 

The custom MATLAB code written to implement this PD model produces the following time-kill 

curve:  
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Figure 42: PD Model Training Set, Drug Treatment Outcome 

The top plot depicts the MIC curve for bacteria exhibiting asymmetric growth, with each Si compartment 

depicted, along with the sum of the Ri compartments. The bottom plot compares the total asymmetric cell 

population to homogenous cell populations with an equal number of initial cells and the same Emax 

parameters as an individual sub-population . 

  



57 
 

Chapter 9. Bulk Measurements 

In order to assess the usefulness of the PD model framework discussed in the previous 

chapter, there must be a way to collect bulk M. smegmatis population response data. 

Normally the time-kill curves are collected by exposing bacteria in the exponential 

growth phase to a certain drug concentrations and monitoring the changes in CFU counts 

of viable cells over time. 

However, in our case the bulk bacterial population must undergo the same treatment 

protocol as in the live-cell experiments: be grown for ten hours, be subjected to a certain 

drug concentration for six hours, and then be allowed to recover in drug-free 7H9 media 

for ten more hours. 

We could not find an appropriate commercial-off-the-shelf solution, which would allow 

us to run this drug protocol in a bulk bacterial population. Therefore, we designed and 

produced a custom PDMS constant flow device for population measurements.  

 

Figure 43: Constant Flow Device for Population Measurements 

This device is placed on top of a regular 96-well plate. A strip of filter paper is placed 

between the device and the wells, to prevent the bacteria from floating out of the wells, 



58 
 

thus lessening the CFU count values. Two media syringe pump feel into one end of the 

constant flow device via a serpentine mixing device, which allows the user to vary the 

composition of the media flowing along the main channel of the device, adding and 

removing the drug. The waste is eliminated out of the other end of the channel, through a 

plastic tube with 6mm inner diameter. Cells can be kept in a suspended state by placing 

the 96-well plate with the device on top of a planetary shaker. 

Bulk CFU measurements can be taken by carefully piercing the filter paper above a 

specific well, collecting the cell sample out of that well, and then diluting and culturing it 

on a 7H10 plate. The device allows up to 12 separate CFU measurements to be taken at 

various times, before all the wells are exhausted.  

A prototype device was created and tested with a .45µm Millipore cellulose filter. 

Despite some yet unresolved problems with media leakage, the prototype confirmed the 

feasibility of using a constant flow device for CFU bulk measurements. 

 

Figure 44: Prototype Constant Flow Device, Top View 
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Figure 45: Prototype Constant Flow Device, Side View 
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Chapter 10. Summary and Discussion 

In this thesis we investigated the effects of functional variability of M. smegmatis on 

rifampicin tolerance. It has previously been demonstrated that mycobacteria colonies 

exhibit distinct heterogeneous phenotypes (namely, accelerator and alternator), and that 

this functional variation creates sub-populations of cells with differential susceptibility to 

antibiotics.  

With the use of live-cell microscopy system that combines imaging, microfluidics, and 

computational image processing we separated a M. smegmatis population into sub-

populations with distinct phenotypic characteristics, and evaluated their response to 

rifampicin. We first confirmed that there was differential tolerance of accelerators and 

alternators to rifampicin. We then analyzed the following functional characteristics of 

mycobacteria: length, age and cell cycle stage of the cell at the start of drug treatment, 

cell birth size, and growth rate. 

Our analysis indicates that a genetically homogeneous M. smegmatis populations can be 

split into sub-populations with significantly different functional characteristics, and 

varying antibiotic susceptibility. The cells that died tended to be small at birth, and were 

generally small, young, and in early stages of their cell cycle when the drug treatment 

began. The cells that had non-viable offspring (i.e. zombie) tended to be medium-sized at 

birth, and were generally large, old, and in the late stages of their cell cycle during the 

beginning of drug treatment. The drug-tolerant cells tended to be large at birth, and at the 

beginning of drug treatment their population's age and size tended to be in-between that 

of dead and zombie cells. Incidentally, these results suggest that combining dead and 

zombie cell population into a single catch-all category would produce a susceptible 
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population which would have more similar characteristics to the tolerant population that 

either the dead or the zombie sub-populations, and would thus produce less significant 

results. 

 We then conducted PLSR analysis to determine the relative importance of various 

functional parameters to the rifampicin tolerance. The model fit was rather poor, only 

around 28% of variation within the observed variable (training set Y) was explained by 

the two-component model, and around 25% of variation was predicted by the model 

according to cross-validation. Therefore, out data suggests there are other significant 

parameters that are not being measured yet. However, given the relative simplicity of 

measured functional parameters (cell length, division timing, and GFP foci presence), 

even capturing 28% of variation can be considered a good first step towards achieving 

deterministic predictions of the drug tolerance outcome based on functional mycobacteria 

characteristics. As expected, the length and age of the cell at drug treatment start and 

certain cell cycle stages correlated heavily with the zombie and dead outcome. However, 

the live cell outcome didn't correlate as much with these three functional variables, and 

was most dependent on the accelerator/alternator status, and the length of the cell at birth. 

When the importance of predictor values was evaluated for all three possible treatment 

outcomes, the birth time relative to drug treatment start and cell length at drug treatment 

were most important to the rifampicin treatment outcome. The instantaneous growth rate 

right before the drug treatment start, on the other hand, was the least important value in 

the PLSR model. 



62 
 

Finally, we created a compartmentalized model framework that is capable of describing 

the pharmacodynamics of distinct bacterial sub-populations, and which could be used to 

quantitatively resolve single-cell and population-level measurements. 
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Chapter 11. Future Directions 

11. 1 Further Quantifying the Contribution of Chosen Phenotypic Parameters to 

Antibiotic Tolerance 

Additional data should be collected for better quantification of the contribution of 

phenotypic parameters to rifampicin tolerance. Ideally, more than 20 microcolonies 

should be analyzed for each drug concentration, and more rifampicin concentrations 

should be added (e.g. 4xMIC). 

Further sub-population delineation might prove useful, for instance live cells can be split 

into a sub-population with two live daughter cells, and one live and one dead daughter 

cell.  

Since microcolonies are genetically homogeneous, cross-reference analysis of the 

difference between microcolonies might help to tease out more details on the contribution 

of functional parameters to drug resistance. 

Drugs other than rifampicin should be investigated, in particular isoniazid. 

11.2 Populating the PD Model 

The improved single-cell data should be used to populate the PD model (defined in 

Chapter 8). The model parameters can be estimated using linear regression fitting 

methods. The output of the model should be compared to the bulk CFU measurements, 

thus further investigating the influence of the single cell-driven functional mycobacteria 

variability on antibiotic tolerance.   

11.3 Creating a Better Determinant of Drug-Induced Death 
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As mentioned in Section 5.7, the current method of assigning cells to the "dead" category 

is far from perfect: absence of growth after the ten hour recovery time does not per se 

indicate cell death. 

Fluorocine diacetate (FDA) could be used as a mycobacteria vitality reporter. At the end 

of the drug recovery time period, nonpolar (and thus non-fluorescing) FDA could be 

introduced into the viewing device. Once it is taken up by mycobacteria, it will be 

hydrolyzed by an enzyme acetylesterase. Live cells will accumulate the polar fluorescein, 

thus becoming fluorescent (Lawn & Nicol, 2014). However, with FDA vitality reporting 

the SSB-GFP reporter cannot be used. Additionally, prior to running live-cell FDA 

images a bulk OD study should be conducted. 

Inducible gene expression based upon Tet repressor might provide another possible way 

for creating a live-death reporting M. smegmatis model (Bertram & Hillen, 2008). As 

with FDA, tetracyclin could be introduced into the viewing device towards the end of the 

drug recovery period. After tetracyclin is taken up by the mycobacteria, it will inducibly 

express GFP using a TetON (tetracycline-inducible) promoter, therefore making live cells 

fluoresce (Martin, 2013). 
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