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Abstract

Nonlinear parametric inverse problems whose forward model is described by a par-
tial differential equation (PDE) arise in many applications, such as diffuse optical
tomography (DOT). The main computational bottleneck in solving these types of
inverse problems is the need to repeatedly solve the forward model, which requires
solves of large-scale discretized parametrized PDEs. The main focus of this thesis is
developing methods to reduce this cost.

In the context of absorption imaging in DOT), interpolatory model reduction can
be employed to reduce the computational cost associated with the forward model
solves. We use surrogate models to approximate both the function evaluations and
the Jacobian evaluations, which significantly reduces the cost while maintaining ac-
curacy.

We consider two methods for construction of the global basis required for the
reduced model. Both methods require several full order model solves. The first
method solves the fully discretized PDE for multiple right-hand sides and then uses
a rank-revealing factorization to compress the basis. The second method reduces
the cost of the construction of the global basis in two ways. First, we show how we
exploit the structure of the matrix to rewrite the full order transfer function and
corresponding derivatives in terms of a symmetric matrix. We then apply model
order reduction to the new symmetric formulation of the problem. Second, we give
an inner-outer Krylov approach to dynamically build the global basis while the full
order systems are solved. This means that we only update the global basis with
the incrementally new, relevant information eliminating the need to do an expen-
sive rank-revealing factorization. Next, we extend the inner-outer Krylov recycling
approach to solving sequences of shifted linear systems.

We show the value of the above approaches with 2-dimensional and 3-dimensional
examples from DOT, however, we believe our methods have the potential to be useful

for other applications as well.
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In the final chapter, we explore different approaches to constructing the recycle
spaces for shifted systems. We show how the use of generalized eigenvectors has the

potential to be extremely useful for large shifts.
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Advanced Techniques in the Computation of Reduced Order Models and Krylov

Recycling for Diffuse Optical Tomography



Chapter 1

Introduction

Inverse problems arise in many important applications such as medical image re-
construction [14, 24,48, 78], geophysics [66, 82|, and groundwater imaging [69, 79|.
The goal of solving an inverse problem is to reconstruct an unknown input, given
measured output data and a forward model. A forward model is a mathematical
model that relates the unknown input to the known output data. The model can be
linear, such as in X-ray tomography, image deblurring, and geophysics, or nonlinear,
such as in electrical impedance tomography (EIT). In either case, solving the inverse
problem requires the solution to an optimization problem for the unknown values
that define the unknown quantity of interest. To solve the optimization problem
requires possibly repeated calls to the forward model. Executing a forward model
solve usually means solving a large-scale linear system.

The forward model solve of large-scale nonlinear inverse problems, which needs
to be solved many times, can therefore be the computational bottleneck for solving
the inverse problem. Reducing this cost by developing efficient methods to solve the
forward problem and ultimately the inverse problem is the focus of this work.

One specific application in medical image reconstruction is diffuse optical tomog-
raphy (DOT). DOT exemplifies the type of nonlinear inverse problem we want to
consider, but other imaging problems such as EIT or electrical resistivity tomogra-
phy (ERT) have a similar structure, and the methods developed in this thesis can
be extended to those as well. In this work, we focus on developing a class of model
reduction and Krylov subspace methods to address the computational bottleneck

outlined above.



1.1 Thesis Outline

The structure of this thesis is as follows. In Chapter 2 background on inverse prob-
lems is given. This includes background on inverse problems in general, the problem
setup for DOT, and the parametric level set method that is adopted in the context
of the DOT problem to reduce the search space and offer implicit regularization.
More background is provided in Chapter 3, specifically on Krylov Methods. We give
the definition of a Krylov subspace, provide the details of the generalized minimal
residual method as an example of a Krylov method, and also explain the basics of
Krylov recycling.

In Chapter 4 we explain model order reduction in the context of the DOT prob-
lem. We begin by providing background on interpolatory parametric model reduction
and explain how this is adopted for the DOT problem. We give a method for the
construction of the global basis, which involves solving several full order systems
and using a rank-revealing factorization. Analysis and numerical results conclude
the chapter.

Next, in Chapter 5 we continue to study the construction of the global basis for
reduced order modeling in DOT. We begin by showing how to restate the problem
in terms of a symmetric positive definite matrix. Then, we give an algorithm for
inner-outer Krylov recycling that not only solves the required full order model solves,
but also constructs the global basis for the reduced model eliminating the need for
a rank-revealing factorization. Algorithm analysis and numerical results are also
given.

We further extend our inner-outer recycling method to shifted systems in Chap-
ter 6. First, we consider shifted systems with a single right-hand side and then
we consider shifted systems with multiple right-hand sides. The inner-outer Krylov
recycling algorithm for shifted systems with multiple right-hand sides again allows
us to construct the global basis during the full order model solves. Analysis and
numerical results are also provided.

In Chapter 7, we explore different ways of constructing the recycle spaces used



for inner-outer Krylov recycling for shifted systems. We consider different invariant
subspaces that improve convergence.
Finally, concluding remarks are given in Chapter 8 and future work is provided

in Chapter 9.



Chapter 2
Inverse Problems Background

2.1 Inverse Problems

The two main components of an inverse problem are the measured output data and
the forward model. The forward model, M, is a mathematical model that takes the

unknown input, f, and generates an observation vector, u, as
u = M(f). (2.1)

In general, u € C*, where k is the number of measurements. The inverse problem

refers to finding f given M and the observed data, u, according to
minfu - M(£). 2:2)

The forward model, M, can be linear, but it is often nonlinear. When M is nonlinear
that means that solving (2.2) requires solving a nonlinear least squares problem. In
particular, updating the estimate of f requires executing M(f) many times.

It is well known that inverse problems are ill-posed, which means that a solution
to the problem either does not exist, is not unique, or is not a continuous function
of the data [39]. Thus, inverse problems are highly sensitive to noise in the data and
are often underdetermined. Regularization is used to stabilize the inverse problem
by damping the noise and/or forcing a unique solution. This is accomplished by
using prior knowledge about the data or the problem. If explicit regularization is

used, the problem becomes
min{fu—M(£)]2 + L(£)}. (2.3)

Tikhonov and total variation regularization are widely used choices for £(f). For



more details and other methods of regularization the reader is encouraged to see
[2,30,70,76]. The parametric level set (PaLS) [3] approach, described in Section 2.3,
for the DOT problem does not require the additional regularization term because the
regularization is provided directly through the PaLS image model. In the following

sections, we will describe DOT and PaLS in more detail.

2.2 Diffuse Optical Tomography

One specific example of a nonlinear inverse problem is diffuse optical tomography
(DOT) [14]. A main application of DOT is breast tissue imaging. The inverse prob-
lem involves using the data captured at the detectors by illuminating the tissue with
signal sources to determine optical properties of the tissue. The tissue is illuminated
with near-infrared light, which is less harmful than standard imaging with X-rays.
The light is transmitted and detected in arrays on each side of the tissue. Since
tumors have different optical properties than normal tissue, we recover images of
optical properties, such as absorption or diffusion. Figure 2.1 shows the basic set-up
for DOT imaging.

The forward model for DOT is now discussed, which follows from [14]. We con-
sider the region to be imaged as a rectangular slab, Q = [a1,b1] x [ag, b2] x [as, bs3].
The top surface, denoted 0€2,, is where sources and detectors are located, while
the bottom surface, denoted 02—, only has detectors. We assume that both the
sources and detectors are stationary and that we have ng.. number of sources and
nger number of detectors. The spatial location will be denoted by x = (1‘1,1‘2,$3)T.
The input source, g(x,t), is defined by functions b;(x), which describe the transmit-
tance field, and u;(t), which gives the pulse profile, such that g(x,t) = b;(x)u;(t) for
j=1,..., ngc. The observations made at the detectors, m;(t), are defined by func-
tions, ¢;(x), which describe the response of the sensors, and n(x,t), which describes
the photon flux/fluence, such that m;(t) = [y, ci(x)n(x,t)dx for i = 1, ..., nge.
Additionally, we let D(x) and p(x) denote diffusion and absorption coefficients, A

denote a constant related to diffusive boundary reflection (see [14, p. R50]), £ denote



Sources

Detectors

Figure 2.1: Schematic of the DOT problem.



the outward unit normal, and v be the speed of light in the medium. We then model

the photon flux/fluence, n(x,t) with a time-domain diffusion model,

%%n(x,t) = V- (D)W1)~ p(On(x. 1) + bi(x)us (1), forxeQ,  (2.4)

0=n(x,t)+2AD(x) ({%n(x,t), for x € 09, (2.5)
0=n(x,t), for x;=aqorx =byorxy=ayorxzs=by, (2.6)
m;(t) = /8(2 ci(x)n(x,t)ydx fori=1,..., nge (2.7)

(see [14, p. R56]). It should be noted that while this PDE is linear, the forward
model is nonlinear since it takes the absorption, p(x), and maps it to output.

While we could recover images of D(x) and p(x), we assume that D(x) is known
and attempt to recover u(x). Therefore, the inverse problem involves using the
data, m(t), captured at the detectors by illuminating the tissue with signal sources,
u(t), to determine p(x). In order to reduce our search space, we will adopt the
PaLs approach, as in [3], to parametrize the absorption field, p(:). This means
that we assume that we can express u(-) in terms of a finite set of parameters, p =
[p1,---, pnp]T, giving us pu(+) = u(-,p). More on the specifics of the PaLs approach
is found in Section 2.3.

The discretization of (2.4)-(2.7) and problem setup will be discussed in more
detail in Section 4.2. The optimization problem we ultimately want to solve is

oo, |M(p) - D (2.8)

where M(p) is the synthetic data generated by the forward model for parameter
vector p and D is the acquired data. We solve the optimization problem using the
trust region algorithm with regularized model solution (TREGS) as in [44], although

other nonlinear least squares methods could also be used.



2.3 Parametric Level Set Methods

Parametric level set methods fall under the umbrella of shape-based approaches. For
many inverse problems, it makes sense to think about the property you are inverting
being comprised of two (or a small number of) classes [3,30,45,51,63]. In the DOT
setting, this means we can think about breast tissue as regions of tumor and regions
of non-tumor having constant absorption within those regions. Then the goal is
to find the boundary between the two regions. We will first discuss shape-based

approaches in general and then parametric level set methods.

2.3.1 Shape-based Approaches

Many methods for traditional level set approaches have been developed , see [23,30,
54,63, 72-74]. While these methods have proved useful, they still require regulariza-
tion of the inverse problem to handle the ill-posedness of noise in the problem. If
the image we reconstruct only has two types of classes, then we can use character-
istic functions in the following way. Given a closed domain D ¢ €2, we define the

characteristic function yp as

1 xeD
xXp(x) = (2.9)
0 xeQ\D.

Now, we define the unknown image f over {2 as

f(x) = fi(x)xp(x) + fo(x)(1 = xp(x)) (2.10)

where f; indicates the property values inside D and f, indicates the values outside.

The boundary between the classes, 0D, is represented as a level set of a Lipschitz



continuous function, ¢ : 2 > R. If we consider the zero level set, we get

¢(x)>0 VxeD
#(x)=0 VxedD (2.11)

p(x)<0 VxeQND.

Figure 2.2 shows an example of the different images one can get when ¢ is sliced

using different level sets, in particular, the ¢ level set. We then use a Heaviside

¢ ¢ ¢

[ B R

Figure 2.2: An example of the different images one can get when using different
heights for the level set. Figure from https://en.wikipedia.org/wiki/Level_
set_method.

function, H(r) = %(1 + sign(r)), to redefine our image, f(x):

f(x) = fi(x)H(p(x) =) + fo(x)(1 - H(¢(x) - ¢)) (2.12)
_ fix) o(x)zc (2.13)
fo(x)  o(x) <c,

which maps the space of unknown regions D into the space of unknown smooth

functions ¢.

10
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2.3.2 PaLS

As was shown in [3|, parametric level set methods have proved beneficial for many
inverse problems. While traditional level methods require additional regularization,
PaLS provides implicit regularization in addition to reducing the search space. PaL.S
follows the same approach as traditional level set methods, but we define the contin-

uous Lipschitz function, ¢ : 2 x R™ — R, as a function of x and a parameter vector

P= (plap27'”)pm) € Rma
o(x,p)>c VxeD

o(x,p)=c VxedD (2.14)
o(x,p)<c YxeQND

for c € R. Specifically, we let
mo
P(x,p) = ) i (2.15)
j=1

where ;= (|| (x - Xj)||T) and the unknown parameter vector, p, is comprised of
scalars oy, dilation factors 3;, and center locations x;. A smooth approximation of

the Euclidean norm is used ||x||T := \/||x|[3 + 2 where v # 0 is a small real number.

Now, the image is described as

f(x,p) = fix)He(o(x,p) - ) + fo(x)(1 - H(¢(x,p) —¢)), (2.16)

where H.(r) denotes a continuous approximation to the Heaviside function, e.g. see
[81], and c is the height of the level set. We then have to solve for the parameter vector
p. Figure 2.3 shows plots of the Heaviside function as well as smooth approximations
to the Heaviside function.

The ¢(x,p) functions should be a linear combination of ¢; functions, where the
1 functions have compact support, are in C?, have radial symmetry, and create
"bumps". As in [3], we use compactly supported radial basis functions (CSRBFs).
Figure 2.4 shows an example of a CSRBF with t(r) = {(max(0,1-7))%(2r + 1)}
with r = \/5627+y2 . An advantage of the PaLS approach is that we get high curvature

geometries with a limited number of bumps since the interaction of bumps with

11
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Figure 2.3: Plot of the Heaviside function and two graphical representations of H,(r),
where the width of the transition is defined by e.

Figure 2.4: The CSRBF given by ¢(r) = {(max(0,1-7))?(2r+1)} with r = /22 + y2.
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Figure 2.5: CSRBF example with opposite sign ¢ functions and the image recovered
with the zero level set.

opposite signs create edges. The compact support can imply that we also have
sparse updates in the optimization problem. Figure 2.5 shows another example of a

CSRBF and the image created with the zero level set.
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Chapter 3

Solver Background

The need to solve large scale sequences of shifted linear systems with multiple right-
hand sides arises in many important applications, nonlinear inverse problems among

them. These systems have the following form,
(A®) +E)X*0 - B, (3.1)

The expense of solving these systems can be the computational bottleneck of the
larger problem in which they are involved. Many approaches have been developed to
address the computational cost associated with solving sequences of shifted systems.
Some methods use Lanczos recurrences or Arnoldi iterations, see e.g., [26,43,49,61,
64]. The work presented in this thesis focuses on designing new iterative approaches
based on Krylov subspaces to solve large scale sequences of shifted linear systems with
multiple right-hand sides, therefore we now provide the reader with a background
on Krylov subspace methods. In this section, we explore ways to solve systems of
the form

Ax=Db, (3.2)

for A e C™"™ and b € C" via Krylov subspace methods.

3.1 Krylov Subspaces

The k™ Krylov subspace generated by square A and b is
Kir(A,b) = span{b, Ab, A%b, ..., AF"'b}. (3.3)

This has dimension less than or equal to k. Krylov subspaces have the property

that they are shift invariant, meaning K;(A,b) = I;(A +~I,b). Many iterative
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methods for solving large systems of linear systems utilize Krylov subspaces, such as
the conjugate gradient method and GMRES or MINRES. At iteration k of a Krylov
method, we get an approximate solution, xj, from the Krylov space Kr(A,b). In
the next section, a brief introduction to GMRES is given as an example of a Krylov

method.

3.2 GMRES

The generalized minimal residual method (GMRES) [60] is given as a Krylov sub-
space method example. As stated above, at the k™ iteration, GMRES looks for the
solution xj, in Kr(A,b) that minimizes the residual. This means GMRES looks for
the x; that solves the following least squares problem

i b- Azls. 3.4
. I z|2 (3.4)

We assume here that xg = 0, although non-zero initial guesses are possible. To
solve (3.4), we need a basis for the Krylov subspace. This is accomplished by using
the Arnoldi method [13] to construct an orthonormal basis for (A, b), which will
be represented by {vi,va,...,vi}. To start, define v = ﬁ Arnoldi proceeds in a
Gram-Schmidt fashion by letting V.1 = Av;—(hy;vi+-+h;;v;), where h;; = v Av;,
and * denotes the conjugate transpose. The vector is then normalized to get the final
new basis vector, v = ﬁ Define V; = [vq,--,v;]. Arnoldi gives the following

relation,

AV, =V, H;, (3.5)

where H; is a (j + 1) x j upper Hessenberg matrix.

Turning our attention back to the least squares problem in (3.4), if we want
z € Kr(A,b), this is equivalent to z = Vy for some y. Plugging z in for x we
get Az = AV,y = Vi, Hiyy and b = vy = 8V 1€, where e; denotes the first

Cartesian basis vector in R¥*! and 3 = |b|s. The least squares problem in (3.4) then
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becomes

i b - Az|, = mi “H.yls. 3.6
. I z)2 mylnllﬁel kY |l2 (3.6)

In theory, if the (k+1)* column A*b is dependent on {A7b}*2], then GMRES stops

iterating because v;,1 = 0. In practice, GMRES is usually stopped much earlier, say

[b-Axy|

B is sufficiently small.

when

3.3 Convergence of GMRES

In this section, we discuss how quickly GMRES converges. First, we show how
GMRES solves a polynomial approximation problem. The iterate x; of GMRES is
written X = qx(A)b, where g is a polynomial of degree k — 1. The residual then
becomes, ry = b — Axy = pp(A)b, where pp(A) = I - Agr(A) and therefore py is
a polynomial in Py = {polynomials p of degree < k with p(0) = 1}. Theorem 35.2

from [71]| provides a convergence bound for GMRES as described next.

Theorem 3.3.1 ( [71]) At step k of the GMRES iteration, the residual rj satisfies

Irell . .
——= < inf A)| <&k(V) inf ,
o] ~ prepy Ik (A)]| ( )pk€Pk Dk ”A(A)

where A(A) is the set of eigenvalues of A, V is a nonsingular matrixz of eigenvectors

(assuming A is diagonalizable), and ||px|aa) is defined by sup,cp(ay |pe(2)]-

This upper bound will be small if V is well conditioned and if one can find polyno-
mials whose size on the spectrum of A decreases rapidly with k.

Now, consider the case where A is symmetric and positive definite (SPD). For
these types of matrices, we use the minimal residual method (MINRES) [55], which
is a variant of GMRES designed for symmetric matrices. For this case, (V) =1, the
polynomials have real coefficients, and the eigenvalues are real and positive. Clearly,
this is beneficial for convergence since the upper bound of Theorem 3.3.1 is now
only infy, ep, [pr|aca). For example, an identity matrix of dimension n x n has one

eigenvalue, 1, with multiplicity n. Therefore, MINRES will converge in 1 iteration.
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Another example is the following matrix which has 2 distinct eigenvalues,

A0 0
0 p O
0 0 pu

We would expect MINRES to converge in 2 iterations in this case. For more details

and for the singular matrix case, see [42,71].

3.4 Krylov Recycling

We will now provide a brief discussion of Krylov recycling as explained in [27]. We
once again consider the linear system Ax = b, now with symmetric A € R™" and
b € R™. More on recycling is found in the literature, see [5,43,57,77].

Let Range(fJ), where U € R be given as the space over which we, initially,
look for solutions. Next, compute AU = K. Set K to be the Q factor in the skinny
QR factorization of K and U = UR™, where R is the R factor. Now KTK =T and
note Range(U) = Range(U). Next, we assume that the solution of Ax = b is in

Range(U) and find the approximate solution
xg = UK”b, (3.7)

giving an initial residual of r = b—KK7b. If this solution is not sufficiently accurate

(as estimated by H), then we expand U as follows. We use a Lanczos recurrence [47|

with (I-KK”')A and v; = (I- KK?)b/|(I-KK)b|; to generate

(I-KKAV,, VT, <

AV,, KK'AV,, + V.1 T, (3.8)

where T, is an (m + 1) x m tridiagonal matrix.* The Lanczos method is analogous

*The matrix recurrence in (3.8) is unchanged if (I-KK™)A is replaced by (I-KK”)A (I-KK™)

since A is symmetric.



to Arnoldi, but for Hermitian matrices. We then compute the approximate solution
in Range([V,, U]) by looking for the solution that minimizes [b—-A(V,,y +Uz)|2,

as follows from [43]:

z
min |b-A[UV,,]
y7z
AN
I KTAV,, Z
=min |b-[K V,,41]
Y,z 0 Im y
ALl
Kb I KT'AV,, || z
= min - ) (3.9)
v el o T, AN

where e; denotes the first Cartesian basis vector in R™*! and ¢ = (I - KK )b|».

The solution is then found by finding the solution to the projected problem
min [T,y - e

then computing the z that satisfies (3.9), and finally, with y,, := V,,y, setting
x =ym + Uz. Since V,,y is computed via short term recurrences (MINRES), we do
not have to explicitly store V,, [50,77].

We now discuss why Krylov recycling is beneficial in terms of convergence.
Cauchy’s interlacing theorem [68] ensures that no matter what K is used, the spec-
trum of (I - KKT)A(I - KK7) is within the spectrum of A, therefore recycling
is not making the convergence worse for the symmetric and positive definite case.
Obviously, the goal is to converge much faster to offset the overhead cost associated
with this method. If an exact invariant subspace is included in U, then MINRES
would converge as if part of the spectrum has been deflated. The right-hand side

(I-KK”)b is made small across spectral components as well.
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Chapter 4

Interpolatory Parametric Model

Reduction for DOT-PaLS

In this chapter, we show how we use interpolatory parametric model reduction for
the DOT problem. First, we provide the reader with background on model order re-
duction. Next, we explain how we can view the forward model in the DOT problem
as a transfer function and show how the computational bottleneck of the problem
is repeatedly solving the forward problem. We then show how to use interpolatory
parametric model reduction to find a surrogate transfer function to reduce this com-
putational cost. The global basis used to form the reduced order model (ROM)
is constructed by solving several full order models and using a rank-revealing fac-
torization. An analysis and numerical results for 2-dimensional and 3-dimensional
problems are also given. For the use of model reduction in other optimization and
inverse problem applications, we refer the reader to [8,9,12,15,31,41,46,80| and the

references therein.

4.1 Model Order Reduction Background

Another way to reduce the computational cost of solving large-scale systems is model
order reduction (MOR), where the goal is to find a lower order model that nearly
replicates the input-output behavior of the original model. There are many different
parametric model order reduction methods, see [17,21,22, 37,40, 53, 58,59, 75]. We
adopt a specific type of model reduction called interpolatory model reduction [11,
16,20,25,32,36]. As with other model reduction methods, the goal of interpolatory
model reduction is to find lower order models, but interpolatory model reduction
also requires that the lower order models transfer function interpolates the original

systems transfer function at selected interpolation points.



We follow the interpolatory model reduction method as explained in [11, 16].
Consider the following input-output map, S:u -y,
Ex(t) = Ax(t) + Bu(t)
withx(0) =0 (4.1)
y(t) = Cx(t) + Du(t)
where A E € R™" B € R™ C € RP*" and D € RP*™. The reduced input-output
map, S, :u - y,, is then defined as,
E.x,(t) = A;x,.(t) + Byu(t)
Sy withx(0) =0 (4.2)
yr(t) = C,x,(t) + D,u(t)
where A, E, ¢ R”" B, € R™™ C, € RP*" and D, € RP*™. The goal is to find S,
such that it is close to S and that ||y —y,|| is small. Taking the Laplace transform
we get,

y(s) = (C(sE-A)'B +D)u(s) (4.3)
S’T(S) = (CT‘(SET’_AT)ilBT—i_DT)ﬁ(S) (4‘4)

where ~ denotes Laplace transformed quantities. The transfer functions are then
defined as follows,

H(s)=C(sE-A)'B+D, (4.5)
H,(s) = C,(sE, - A,)'B, +D,. (4.6)

Given left and right interpolation points, {x;}_; € C and {o;}]_; € C, with corre-
sponding left and right tangent directions, {¢;}7; € C? and {b;}7_, € C™, we seck to
find H,(s), such that it is a tangential interpolant to H(s). This means we want
the following to hold, & H,(11;) = & H(u;), for i = 1,---,q and H,(c;)b; = H(o;)b;,
for j=1,-,7.

Next, we discuss how to construct H,.(s) via Petrov-Galerkin projective approx-

imation. First, choose r-dimensional right and left modeling subspaces, V,, ¢ C" and
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W, c C" and rewrite the problem as follows,

Ev(t) - Av(t) - Bu(t) L W,
with v(t) € V;. (4.7)
yvr(t) = Cv(t) + Du(t)

Next, let V,., W, € C" be matrices such that V, = Range(V,) and W, = Range(W,.).
Then, v(t) = V,.x,.(t) with x,, € C" and we rewrite the problem as follows,
Wz(EVrXT(t) - Avrxr(t) - Bu(t)) =0,

(4.8)
yr(t) = CV,x,(t) + Du(t).

The reduced matrices are then given by, E, = W;:FEVT, B, = W;F B, A, = Wg’ AV,
C, =CV,, and D, = D. It should be noted that since D is of modest size, letting
D, =D is common practice.

We now explore how to construct V,. and W,..

Theorem 4.1.1 (U. Baur, C. Beattie, P. Benner, and S. Gugercin) Leto, €
C be such that sE-A and sE,.— A, are invertible for s = o, u. Also, let V., W, e C™"

have full-rank. If b e C™ and c € C* are fized nontrivial vectors then

(a) if (0E - A)"'Bb € Range(V,), then H(c)b = H,(c)b;

(b) if (c"C(LE - A)™') € Range(W,), then c"H(p) = ¢"H, (p); and

(c) if both (a) and (b) hold, and o = p, then cI'H'(0)b = ¢ H.(0)b as well.
Theorem 4.1.1 tells us that given left and right interpolation points, {Mj}§=1 and
{o:}i_, as well as left and right tangential directions, {cy}}_; € C? and {b;};_, € C",

the solution of the tangential interpolation problem is found by simply constructing

V., and W,. as follows,

V,=[(1E-A)"'Bby, -, (6,E-A)"'Bb,]

A C(mE-A)"!
wl =

T

CZC(MTE -A)



4.2 A Systems Theoretic Perspective on Parametric In-

version

Many spatial discretizations can be applied to (2.4)-(2.7), including finite difference
and finite element methods. Discretization gives the following differential algebraic

equation,

CBy(t.p) = -A(p)y(t,p) + Bu(t) with m(1p)=CTy(tp)  (49)

where y denotes the discretized photon flux and m = [my, ..., my,,.,]7 is the vector
of outputs. The columns of B and C are discretizations of the sources and detectors,
respectively. We also have that A(p) only changes on the diagonal for each different
set of parameters. The matrix E is generally singular because of the Robin boundary

conditions. Following 28|, we rewrite (4.9) as
T [W -1
m(w,p) = ¥(w,p) t(w) where ¥(w,p)=C (—E + A(p)) B, (4.10)
v

where y(w,p), U(w), and m(w,p) denote the Fourier transforms of y(¢,p), u(t),
m(t,p), w € R is the frequency, and ¥(w,p) is known as the frequency response or
the transfer function.

For the i*" input source, j* frequency, and absorption field, u(-, p), m;(wj,p) €
C™det denotes the vector of predicted observations as given by the forward model
in the frequency domain. If we stack these vectors for all ng.. sources and n,

frequencies, we obtain

M(p) = [fﬁl(wla p)T7 ceey 1/’fll (wnva)Ta fﬁ?(wlv p)T) s 7r’fln57c(wnw)p)T]T’ (411)

which is a vector of dimension nge; « Ngre - Nw,. We let D be the corresponding vector
from acquired data. This leads us to the optimization problem we ultimately want
to solve,

pain, |M(p) - D (4.12)
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At each step of the optimization problem we must evaluate M(p) — D, which

means that we must compute the following for all 4 and 7,
m;(wj, p) = ¥ (w;)u(w)), (4.13)

where ¥(w,p) is the frequency response found in (4.10), W;(w;) = €;, and e; is the
ith column of the identity matrix. Therefore, a function evaluation at parameter

vector p;, requires solving the following linear systems
(] NXNgre .
—E +A(p,))Y,; =B B e R Mere j=1,... 0y, (4.14)
v

where

Yk,j = [371((*}]'7 pk)? s 73’\715 (Wj,Pk)].

In DOT, the columns of B are multiples of the i*" columns of the identity matrix,
which correspond to the " source location.

In order to solve the nonlinear inverse problem (4.12) for the parameters, the
Jacobian is also required and we make similar observations. The adjoint-type (or
co-state) approach as in [38,76| is adopted to construct the Jacobian. To construct
the Jacobian, we use (4.10) and (4.13) and differentiate m;(w;,p) with respect to

the k'™ component of p to get

0 0 T 0
—my(w;,p) =—[P(w;, U;(w;) = —Z(wj, —A(p)Vi(w;,p), 4.15
O (wj,P) 3pk[ (wj, p)] Ti(w;) (wj, P) O (P)¥i(wj,p) ( )

where Z(wj, p) is found by solving
1wy T
(— B+ A(p)) Z(w;,p)=C,  CeR™nere, (4.16)
v

As with matrix B, the columns of C are columns of the identity matrix, which
correspond to the 5 detector location. The main computational cost of evaluating
the Jacobian at a parameter vector is the cost of solving ng.; x n,, linear systems

in (4.16) of order equal to the number of degrees of freedom. This is because the
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matrices %A(p) only have to be computed once for all parameters. Also, ¥;(w;, p)
has already been computed for the function evaluation.

The critical bottleneck in solving the inverse problem is associated with repeat-
edly solving (4.14) and (4.16). Therefore, we seek a surrogate function ¥, (w,p)
that is not only easy to evaluate, but provides a good approximation to ¥(w,p)
over parameters and frequencies of interest. Our goal fits nicely within the context
of model reduction [10,11]. In our application, the frequencies are given to us by
the experimental set-up. The parameters of interest are those that the optimization
routine would chose when run using the full order model. In addition, we require
that VpW,(w,p) is easy to evaluate and that VpW¥(w,p) ~ VpW,(w,p) over the

same frequencies and parameters.

4.3 Surrogate Forward Model

The surrogate forward model for the DOT problem, found via parametric model
reduction, follows the method explained in Section 4.1. We seek a reduced input-

output map that is able to replicate (4.9),

1 . .
;Er yr(t,p) ==Ar(p)y-(t,p) + Bru(t) with m.(t,p)= CZYT(ta P) (4.17)

where y,.(t,p) € R"A,(p),E, € R™" B, ¢ R CI' ¢ R™*” and r « n. The
reduced input-output map is constructed such that m(t,p) » m,(¢,p) for p of

interest. The reduced transfer function then becomes
T (2% -1
w, - ! (—Er . Ar(p)) B,. (4.18)
v

Since B, and B have the same number of columns and CI and C” have the same
number of rows, ¥,. and ¥ are of the same dimension. However, one needs to solve

n dimensional linear systems to evaluate W, while only r dimensional linear systems
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are solved to evaluate W,. Similarly, (4.16) is reduced as follows,
1Wj T
(7 E, + Ar(p)) Z,(w;,p) = Cy. (4.19)

This means that VpW¥(w,p) is evaluated by solving n dimensional linear systems,
while VpW¥, (w,p) is evaluated by solving r dimensional linear systems. Since r < n,
these reduced solves will drastically reduce the cost of the forward problem.
Projection is used to obtain the surrogate parametric model [19]. Suppose full
rank matrices V € C™" and W € C™" are given. If we assume y(t,p) evolves near
the r-dimensional subspace Range(V), then y(¢,p) » Vy(¢,p) and we enforce a

Petrov-Galerkin condition to obtain the reduced matrices given by

E.=W'EV, A.(p)=WTA(p)V, B,=W'B, and C,=V'C. (4.20)

4.4 Interpolatory Parametric Model Reduction for DOT

In this section, we explain how we use interpolatory model reduction as in Section 4.1
in the context of DOT. Through parametric model reduction for DOT, we are trying
to match the original transfer function and derivatives with the reduced transfer
function and derivatives, therefore, interpolatory parametric model reduction suits
this goal perfectly. This means that for a parameter vector p € R and a frequency
w € R, we want to use the reduced model found in (4.17) where the reduced transfer

function, ¥, (w,p), satisfies
¥(w,p) =¥, (0,p) and Vp¥(©,p)=Vp¥.(v,p). (4.21)

The following theorem was originally stated in [11,16], also given in Theorem 4.1.1,
and presented in [28] in the context of DOT. We present the DOT version of the

theorem, which shows how to construct the projection matrices, V and W.

Theorem 4.4.1 Suppose A(p) is continuously differentiable in a neighborhood of
peR’. Let & eC, and both %E +A(p) and %E,« + A, (p) be invertible.
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N n—1 - -1\
If (%E + A(p)) B € Range(V) and (C (ZE+A(p)) ) € Range(W) then,
the reduced parametric model of (4.20) satisfies
U(0,p) = ¥, (0,p), VpP(,p) = Vp¥,(0,p), and ¥'(©,p) = ¥, (©,p),

where ' denotes the derivative with respect to w.

Theorem 4.4.1 tells us that if the Range(V') and Range(W) contain certain vec-
tors, the function and gradient values of the full order model and the reduced model
will match exactly. This means that for the frequency and parameter interpolation
points chosen to construct V and W, the optimization approach will produce identi-
cal values for the reduced forward model as for the full order forward model. That is,
if we were able to choose parameters vectors that the optimization algorithm would
choose and use those parameters vectors as the interpolation points to construct V
and W, there would be no difference between using the full order forward model and

the reduced forward model in the optimization algorithm.

4.5 Projection via Global Basis Matrices

For the DOT problem, we adopt a global basis approach in the construction of V
and W. This means we only construct V and W once and reuse the bases at each
optimization step. Therefore, we need to construct V. and W with a sample of
parameters such that V and W capture information about the range of parameters
values the optimization routine will encounter. An alternative method to the global
basis approach is the local basis method where the basis is updated as the parameters
vary. For more details on these methods see, e.g., [6,7,29,56].

Following Theorem 4.4.1 and referring to (4.14), we let
Y = [Yl,h e ,Yl’nw,YgJ, e ,ngw, e 7YK,nw:|7 (422)

are the frequency

w

, -1 .
where Y, ; = (%E +A(pi)) Bfori=1,...,K and wq,...,wy
interpolation points. For the DOT problem, the frequency interpolation points are

given by experimental set-up. This is not the case in all model reduction applications
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and usually the optimal frequency interpolation also needs to be found, as in [16,35].
It is reasonable to assume that Y will have repetitive information and therefore
we define V to be the left singular vectors corresponding to the non-zero singular
values of Y. Similar steps are taken to construct W from Z;; via (4.16) for i =
1,...,K and j = 1,...,n,. Constructing V and W in this way ensures that the
corresponding reduced transfer function formed using (4.20) will match the transfer
function evaluation at every (w,p) = (w;,p;) for j=1,...,n, andi=1,..., K. A
similar result holds for the derivative computations.

In addition, one-sided global basis construction is employed. This means that
we let V<« [V, W] and W « [V, W] in (4.20). This is done to preserve symmetry,
if A(p),E are symmetric (Hermitian), the reduced counterparts are also symmetric

(Hermitian).

4.6 Analysis of Global Basis Projection

In this section, we give some intuition about why the approach discussed in the
previous section is effective for the DOT problem. Notably, for the DOT problem,
V and W are not are expected to change much from one set of parameters to the
next. Therefore, V and W are constructed from a small number of interpolation
points and still give a good approximation to the full order forward model. Also, we
might be able to reuse V and W for different image reconstructions.

We demonstrate that V does not change significantly from one parameter set
to the next with two numerical examples. Let V. be the right projection space for

parameter vector p, obtained in the Eth optimization step,

V, = [(%E +A(pk))_1B,...,(wZL“ E +A(pk))_1B:|.

V. is the concatenation of the solutions to the k"

system for all frequencies. Fig-
ure 4.1 shows how close these projection spaces remain to the initial space Vy for
two numerical examples. We give the cosine of the largest canonical angle at each

optimization step. The cosine of the largest canonical angle tells us how close two
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Figure 4.1: Evolution of the subspace gap (cosine of the largest canonical angle 0)
between the initial and subsequent projection spaces over the course of the optimiza-
tion.

subspaces are to one another. If the cosine is 1, then the subspaces intersect one
another, while if the cosine is 0 the subspaces are orthogonal. In both test problems,
the cosine of the largest canonical angles remains close to 1, meaning the subspaces
are quite close.

Next, we provide the reader with some intuition about how changing the param-
eters affects the reconstruction. We refer the reader to (2.15) for a description of the
parameters discussed here. For the experiments below each set of parameters, «;,
Bj, Xjz» and Xy, are shifted by the amount given. In each experiment, the shifting
is repeated ten times. Figures 4.2, 4.3, 4.4, and 4.5 show the images at each step of
the shifting.

In Figure 4.6 we show that the evolution of the absorption image over the first six
distinct reconstructions corresponding to approximate solutions, p;, for one example.
Figure 4.7 shows the evolution of absorption images for another example. The initial
guess, i.e. the image for parameter vector p;, is shown in the first image. While
the reconstructions can change drastically from the initial guess, the corresponding
changes in the projection spaces are quite small. Similar results are found for W as
well.

The experiments presented here suggest that a good choice for parameter vectors

for use in constructing the global basis would be parameter vectors from the first
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Figure 4.2: Images with all «; changed by 0.025.

few steps of the optimization. Since these initial parameter vectors would be close
to the initial guess, global bases constructed in this way will likely be effective for

distinct image reconstructions as well.

4.7 Cost

The computational cost of this method can be split into an offline phase, where
the model reduction bases are constructed and an online phase, where the reduced
order model is used for the function and Jacobian evaluations. First in the offline
phase, the parameter space needs to be sampled. In the numerical examples below,
the leading K < 3 iterations of the full optimization problem are used to obtain
the sample parameter points since in the previous section we saw that subsequent
projection spaces remain close to the initial guess. However, any sampling technique
may be used. Once the sample parameters have been selected, Y is found as in

(4.22). Since Y likely has linearly dependent columns, V is constructed as the
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Figure 4.3: Images with all 3; changed by 0.1.

leading left singular vectors of Y corresponding to the singular values greater than
a given tolerance. To conclude the offline phase, we construct W in the same way
from concatenating solutions to (4.16) as in (4.22) and using the leading left singular
vectors corresponding to singular values greater than a given tolerance.

The online phase consists of using the parametric reduced model in place of
the expensive function and Jacobian evaluations. At each step in the optimization
algorithm, that is for each pj, we need to find E, = WIEV, A.(p) = WTA(p)V,
B, = W'B, and C, = VI'C. E,, B,, and C, are constant and only need to be
computed once. A,(p) must be computed for each pj, although in our setting
this can be done cheaply. As stated above, A(p) only changes on the diagonal for
different sets of parameters, so we let A(p) = A, + Ai(p), where A, is constant and

A (p) is diagonal. Therefore,

A (p)=WTA.V+ W AL(p)V
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Figure 4.4: Images with all x;, changed by 0.05.

and WTA,V are precomputed. Computing WTAk(p)V and then solving with
A, (p) will be very cheap compared to the alternative of solving many large, sparse
linear systems for the full order model. Once these matrices are computed, the
optimization algorithm proceeds with the reduced function and Jacobian evaluations,
which are now r x r linear systems.

Therefore, the main computational cost comes from forming V and W. Assume
we have n,, frequency interpolation points, ng.. = nget sources and detectors, and K
parameters samples, then in order to construct V.and W we must solve 2K n,,n4.c
large, sparse, nxn linear systems. If we were to use full order model solves throughout
the optimization, we would solve K fy,nwnsre + K jacnunder large, sparse n x n linear
systems, where Ky, is the number of function evaluations and Kj,. is the number
of Jacobian evaluations. Since the ratio (K fun + Kjoc)/2K has been found to always
be greater than 3 in our numerical experiments, the offline costs are amortized. In

addition, since we are able to reuse V and W for different images, there are no

31



50 50 50 50 50
100 100 100 100 100
150 150 150 150 150
200 200 200 200 200
50 150 50 150 50 150 50 150 50 150

50 50

100 100

150 150

50 50 50
100 100 100
150 150 150
200 200 200

50 150 50 150 50 150 50 150 50 150

200 200

Figure 4.5: Images with all x;, changed by 0.05.

additional offline costs for the subsequent inversions.

4.8 Numerical Experiments

In this section, we provide four numerical experiments, two 2-dimensional examples
and two 3-dimensional examples. For each set of examples only one set of projection
bases are used, therefore no additional large systems solves are required for the second
experiment. These proof of concept examples strongly suggest that the projection
bases might only need to be computed once for many different reconstructions.

All of the experiments are set up in the following way. First, we need to generate
synthetic data for use in computing the measured values. We construct a 0 — 1 image,
where 0 represents healthy tissue and 1 represents anomalous tissue. Each pixel is
then assigned an absorption value, which has a small normally distributed random
variation, based on whether the pixel corresponds to healthy tissue or anomalous

tissue. We also add 0.1% white noise to the image. The PaLS approach, as described

32



Cup: Iteration 1 Iteration 2 Iteration 3

50 50 50
100 100 100
150 150 150
200 200 200
50 100 150 200 50 100 150 200 50 100 150 200
Iteration 4 Iteration 7 Iteration 9

50 50 50

100 100 100

150 150 150

200 200 200
50 100 150 200 50 100 150 200 50 100 150 200

Figure 4.6: Initial image and the first five distinct reconstructions for Cup example.

in Section 2.3, is used to reconstruct the shape of the images and the optimization
problems are solved using the TREGS algorithm [44]. The stopping criterion for the
optimization, known as the discrepancy principle [52], is when the residual norm falls
below 1.1 times the noise level. Results are reported for both using the full order
model and the ROM to compute the function and Jacobian evaluations for each
experiment. For each experiment, the first 3 iterations of the optimization using the
full order model are used as the interpolation points for the reduced order model.
All of the experiments were run using a laptop with a 3.20 GHz processor and 16.0

GB RAM using MATLAB R2015b.

4.8.1 2D Experiments

The first two experiments were solved on a 201 x 201 mesh, which gives us 40,401
degrees of freedom for the forward problem. We use 32 sources and 32 detectors.

Following the PaLs approach, we use 25 compactly supported radial basis functions,
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Figure 4.7: Initial image and the first five distinct reconstructions for Amoeba ex-
ample.
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Figure 4.8: Initial absorption image with a 5x 5 grid of 25 CSRBFs with alternating
signs of a;.

which results in 100 parameters for the optimization problem (4.12). Figure 4.8
shows the absorption image using the initial set of parameters. The projection
bases that are used for Experiments 1 and 2 were created with the first 3 iterations
of the optimization using the full order model for Experiment 1. Therefore, 192
large, sparse systems need to be solved in order to form the projection bases. After
computing the SVD, the reduced bases have 100 vectors giving the reduced model
order 100. Plots of the singular values of V and W before truncation are given
in Figure 4.9. We decided to truncate at 50 for both V and W. In this chapter,
where to truncate is based on numerical experimentation that balances the number
of function evaluations and quality of the image. We have found that we need to
include some of the singular vectors corresponding to the singular values after the
drop off to get a good reconstruction. Therefore, the reduced models require the
solutions to linear systems of size 100 x 100, while the full order model requires

solutions to linear systems of size 40,401 x 40, 401.
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Figure 4.9: Plots of the singular values of V and W before truncation for Experiment
1.

For Experiment 1, the optimization using the full order model required 26 func-
tion evaluations and 14 Jacobian evaluations. Meanwhile, the optimization using
the reduced order model for Experiment 1 required 31 function evaluations and 16
Jacobian evaluations, indicating that the use of the ROM instead of the FOM does
not greatly impact the convergence rate of the optimization. Figure 4.10 shows the
reconstructions for Experiment 1. Arguably, the reconstruction using the ROM is
not as good as the FOM here. This observation brings up the question of how do we
know when we are done building the reduced basis. If we had included more systems
in the basis, then we could achieve a better reconstruction, but under the current
scheme we have no way of knowing when we have constructed a sufficient basis. The
method presented in Chapter 5 addresses this issue, but this is also the subject of
future work.

The optimization using the full order model for Experiment 2 required 72 func-
tion evaluations and 47 Jacobian evaluations. Meanwhile, the optimization using
the reduced order model for Experiment 2 required 28 function evaluations and 16
Jacobian evaluations, indicating that the ROM in this case actually speeds up the
convergence of the optimization. Figure 4.11 shows the reconstructions for Exper-
iment 2. Remember that for the reduced order model here, the same projection

bases were used as in Experiment 1, so no full order model solves are required for
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Figure 4.10: Results for Experiment 1. Reconstruction on a 201 x201 mesh, resulting
in 40,401 degrees of freedom in the forward model and 100 degrees of freedom in the
reduced order model. 32 sources, 32 detectors, and 25 basis functions were used.
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Figure 4.11: Results for Experiment 2. Reconstruction on a 201 x201 mesh, resulting
in 40,401 degrees of freedom in the forward model and 100 degrees of freedom in
the reduced order model. 32 sources, 32 detectors, and 25 basis functions were used.
This reconstruction used the same projection bases as in Experiment 1.

this experiment.

4.8.2 3D Experiments

The next two experiments were solved on a 32 x 32 x 32 mesh, which gives us 32, 768
degrees of freedom for the forward problem. We use 225 sources and 225 detectors.
Following the Palis approach, we use 27 compactly supported radial basis functions,
which results in 135 parameters for the optimization problem (4.12). Figure 4.12
shows 16 slices of the absorption image using the initial set of parameters. The
projection bases that are used for Experiments 3 and 4 were created with the first 3
iterations of the optimization using the full order model for Experiment 3. Therefore,

1,350 large, sparse systems need to be solved in order to form the projection bases.
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Figure 4.12: Slices of the initial absorption image with 27 CSRBFs.
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Figure 4.13: Plots of the singular values of V. and W before truncation for Experi-
ment 3.

After computing the SVD, the reduced bases have 500 vectors giving the reduced
model order 500. Plots of the singular values of V and W before truncation are
given in Figure 4.13. We decided to truncate at 250 for both V and W. Again,

250 was chosen based on numerical experimentation. Therefore, the reduced models
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(c) Slices of the reconstruction using the reduced
order model.

Figure 4.14: Results for Experiment 3. Reconstruction on a 32x32x 32 mesh, result-
ing in 32,768 degrees of freedom in the forward model and 500 degrees of freedom
in the reduced order model. 225 sources, 225 detectors, and 27 basis functions were
used.

require the solutions to linear systems of size 500 x 500, while the full order model
requires solutions to linear systems of size 32,768 x 32, 768.

The optimization using the full order model for Experiment 3 required 28 func-
tion evaluations and 15 Jacobian evaluations. Meanwhile, the optimization using the
reduced order model for Experiment 3 required 31 function evaluations and 21 Jaco-
bian evaluations. Once again indicating that the ROM does not greatly impact the

convergence rate of the optimization. Figure 4.14 shows slices of the reconstructions

for Experiment 3.
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For Experiment 4, the optimization using the full order model required 51 func-
tion evaluations and 29 Jacobian evaluations. Meanwhile, the optimization using
the reduced order model for Experiment 4 required 44 function evaluations and 31
Jacobian evaluations. Figure 4.15 shows the reconstructions for Experiment 4. Re-
member that for the reduced order model here, the same projection bases were used
as in Experiment 3, so no full order model solves are required for this experiment.
If we use a more refined mesh or more compactly supported radial basis functions,
then we potentially recover images with sharper edges. While we might be able to
recover images with shaper edges, we have to weigh this benefit with the additional

cost incurred.
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(a) Slices of the ground truth absorption image. (b) Slices of the reconstruction using the full order

model.
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(c) Slices of the reconstruction using the reduced
order model.

Figure 4.15: Results for Experiment 4. Reconstruction on a 32x32x 32 mesh, result-
ing in 32,768 degrees of freedom in the forward model and 500 degrees of freedom
in the reduced order model. 225 sources, 225 detectors, and 27 basis functions were
used. This reconstruction used the same projection bases as in Experiment 3.



Chapter 5

Efficient Computation of Reduced Order
Models in DOT

In this chapter, we once again look at solving the DOT problem with ROM. As
was shown in the previous chapter, in order to form the basis used in the ROM,
several large-scale forward problems need to be solved. These solves are typically
done iteratively due to the structure and size of the systems [18]. We show how one
can use Krylov recycling techniques to solve these systems while dynamically build-
ing the reduced basis without redundant information. In the previous chapter, we
explained how the construction of the reduced basis was sensitive to the truncation
parameter, which was chosen in an ad hoc manner. The method presented in this
chapter eliminates the need to perform an expensive SVD by constructing the basis
as we go with only new information. The Krylov recycling method presented here
also provides some insight into when we have built a basis sufficient for producing
a good reduced order model. In addition, this method provides the potential for
computational savings, since we solve fewer systems with fewer total matrix-vector
products and eliminate the SVD computation. In recent work [4,33,34], the use
of Krylov subspace recycling to construct the MOR basis was investigated. In [43],
Krylov recycling for DOT was investigated with the goal of solving the sequence of
systems throughout the inversion process. In Section 5.1, we show that the transfer
function in the DOT problem can be reformulated as a transfer function of a slightly
smaller symmetric problem given a particular geometry and discretization. Then,
in Section 5.2 we use this property to develop an efficient algorithm to generate
the reduced basis and give an analysis. Numerical results for 2-dimensional and

3-dimensional problems are shown in Section 5.3.



5.1 Rewriting the Transfer Function and Derivatives

In this section, we show how we express the transfer function and derivatives in
terms of a symmetric positive definite matrix. This is useful in creating an efficient
method for constructing the global basis.

Following the discretization scheme in [43], we use second-order centered differ-
ences away from the boundary and first-order differences to implement the Robin
boundary condition. Looking back at the original definition of the full order transfer
function in (4.10) for the 2D case, the matrix “*E + A(p), has the following block

structure:
G D,
) (5.1)
D, (F(p)+ 1)
This matrix is lexicographically ordered with the boundary nodes first followed by

the internal nodes. In addition, we know the following about the blocks in (5.1),
e G is an invertible diagonal matrix,

e D; has at most one nonzero per row, and these occur only in the first N, N,

and last N, N, columns,
e Dy, although it has different entries, has the same sparsity pattern as DF{.

While the matrix A(p) is not symmetric, it was shown in [43] that the Schur com-
plement (for the w = 0 case), given by F(p) - DoG™'Dy, is symmetric and positive

definite. We now exploit this fact to rewrite the transfer function and derivatives.

5.1.1 Transfer Function

Recall that the columns of B and C are scaled columns of an NN, x N, N, iden-
tity matrix. The sources and detectors are only found on the boundary, therefore

partitioning B and C with “*E + A(p) as in (5.1) we obtain
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It should also be noted that the sources and detectors are not co-located and therefore
CIB,; =0.

For ease of exposition, we assume that w = 0 in (5.1). For the w = 0 case, the
inverse of A(p) appears in the definition of the transfer function. We also assume

the matrix A(p)~! has the following block structure:

H S
S N

Using A(p)A(p)~! =1, we obtain the following three expressions that are helpful in

rewriting the transfer function and derivatives:

H=[G-D/F'Dy]", (5.2)
S| =-G'D|[F-D,G'D]}, (5.3)
Sy =-[F-D,G'D]"'D,G™. (5.4)

From these expressions, it is straightforward to show that
w(0,p)=CT(A(p))'B=CTHB,.

We know that F(p) is SPD since F(p) = L + diag(u(p)), where L is the discretiza-
tion of the Laplacian at the internal nodes multiplied by the (constant) diffusion
coefficient, and diag(u(p)) is a non-negative diagonal matrix. Therefore, we express

F(p) in terms of its eigendecomposition, F = QAQ7”, so that

H = [G-D{QAA2QTD,] ™

G'+G 'D[F-Dy,G 'D{]'DyG ™,

by the Sherman-Morrison-Woodbury formula.

Using the above, the fact that the sources and detectors are not co-located, as

44



well as the fact that G is diagonal, it follows that

¥(0,p) =CTG'D] [F-D,G'D,] ' D,G'B;. (5.5)
—_———
cT A(p)! B

It is important to note that due to the structure of the matrices, C and B maintain
the same structure as C; and Bi. Meaning their columns are multiples of the
columns of the N, N, identity matrix, therefore they are considered ‘effective’ sources
and receivers.

A similar argument is made for the w # 0 case to obtain,
N -1
W(w,p) = C (—1 + A(p)) B. (5.6)
v

Therefore, the transfer function for the 0 frequency case is expressed in terms of an

SPD matrix, and complex symmetric if w is non-zero.

5.1.2 Derivative Computation

We once again use w = 0 for simplicity and therefore we define (4.11) for this case,

which is an ng.c X nge; matrix,

M(Ov p) = [fﬁl (07 p)a LR >fﬁndet(07 p)]

Note that the “vec” command vectorizes a matrix, meaning it maps a matrix in
R™1>™M2 t6 a vector in R"™2 by unstacking the columns of the argument from left
to right. Therefore, the vector Vec(%M ) € R™srendet gives the k™ column of the

Jacobian matrix. Now, using (4.14 - 4.16), we write

M (p)=-C"A(P) - A(B)A(P) B
Pk Pk

We now show how we rewrite this in terms of A(p).

Using the same finite-difference discretization scheme and ordering of unknowns
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as before and the fact that the boundary terms have no absorption, we write

9 0 0
a_A(p) = )
Pk 0 A

for a diagonal matrix A := %A(p) Therefore,

P H s |[ool[u s |]B

Opy

ot o]
S, N[|lo Al]ls N 0
-CT's,|AS,B;.

Using (5.3) and (5.4), we have

8iM(o, p)=-C{G'D|[F-D,G'D|]'A[F-D,G'D;] ' D,G'B;.
Pk

cT A(p)! A(p)! B
(5.7)

This means that for the 0 frequency case the required derivatives are computed from
the same SPD matrix, A(p), as the transfer function.

A similar argument is made for the w # 0 case to obtain,

o ~ ~ -1 _ -1 _
— M (w,p) = —CT(Z—wI+A(p)) A(EMA(p)) B. (5.8)
Opk v v
Therefore, the derivatives for the 0 frequency case are expressed in terms of an SPD

matrix and complex symmetric if w is non-zero.

5.1.3 Rewriting ROM

The original transfer function and derivatives, for the 0 frequency case, are now
computed using an SPD matrix of size (N, —2) N, x (N, - 2)N,. Therefore, we now
look for a ROM for this slightly smaller problem.

As in Section 4.5, we use the one-sided global basis approach and for V € C™*"
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we define*
E.=VIV, A.(p)=VT'A(p)V, B,=VIB, C,=VTC. (5.9)

The reduced transfer function is therefore, ®, = Cz(%ﬁ)r +A,(p))'B,.
We use the fact that A is SPD in order to solve the forward and adjoint problems

at the same time to generate V,

(Ao + “21) %0 - [B.€ (5.10)

for appropriate choices of parameters py, k = 1,..., K and frequencies w;,j = 1,...,n,.

For the remainder of this chapter, we only consider the w = 0 case. The non-trivial
extension to the non-zero w case is explained in the next chapter.

As in Section 4.2, we are seeking a surrogate transfer function, \ilr(w,p) that
approximates W (w,p) as well as ensuring Vp\il(w, p)~ Vp‘i’r(w,p). The following
theorem, which follows from [16], is Theorem 4.4.1 rewritten for the symmetric DOT-

PaLs problem in the zero frequency case, shows how to construct V.

Theorem 5.1.1 Suppose A(p) 18 continuously differentiable in a neighborhood of
p e RL. Let both A(p) and A,(p) be invertible. If A(p)™'B and (CA(ﬁ)‘l)T are
in Range(V), then the reduced parametric model satisfies ®(0,p) = ¥,(0,p) and

If we follow the approach in the previous chapter to construct V, it would consist
of the steps outlined in Algorithm 1. While we need to compute each X, o, because
we need this to compute function and Jacobian evaluations at steps 1 through K,
of the optimization problem, some of the information that we generate and put
into the concatenated matrix is redundant. This was shown in Section 4.6 with
the rapid decay of the singular values of the concatenated matrix. Meaning that
while generating V we are computing information that we do not really need and

increasing the cost by requiring an expensive postprocessing rank-revealing SVD.

R *The V as we generate it will typically not have orthonormal columns, hence the need to specify
E,.
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Algorithm 1: Generate One-Sided Global Basis via Truncated SVD

1. Solve the systems (5.10) for k =1,..., K, for the first p; parameter vectors
produced by the optimization;

2. Concatenate the block solutions into a large block matrix
[X1,0,X2,0,- -, XK, 0]

3. Set V to be the matrix of the first r left singular vectors of the above matrix.
This gives a reduced order model, (5.9), of dimension 7.

Since we are solving large and sparse systems with SPD matrices, it makes sense
to use a Krylov subspace algorithm to solve the individual systems. In the next
section, we provide an iterative Krylov subspace method which not only minimizes
the work for computing only what we need for approximating the Xy, o(:, j) where it
is needed for the optimization, but also generates an approximate global basis matrix
by updating an initial estimate with only non-redundant information. This method
eliminates the need for step 3 above in computing V. This is because we build V to
have r columns as we go, rather than overbuilding V and then compressing it to r

columns.

5.2 Inner-Outer Krylov Recycling

In an attempt to keep the notation as simple as possible, we let A := A(pk),
X = X},0, and B := [B, é] Note that the matrices A and B have new definitions

from earlier in this chapter. Therefore, we will be solving,
A Xy =B, (5.11)

for several values of k£ in order to determine the global basis via Krylov recycling.
We also know that A(p) only changes on the diagonal from one system to the next
since

A(p) = (L - DyG'Dy) +diag(u(p)). (5.12)
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We remind the reader that Krylov recycling basics are given in Section 3.4.
In [43], the authors showed that for systems of the form (5.11), recycling was efficient
in the context of optimization for shape parameters in DOT. In that work, they
used recycling, with a different recycle space for each right-hand side, to solve for
all parameters selected throughout the optimization. We extend from their work to
not only use recycling to solve our shorter sequence of full order problems efficiently,
but also to build the global basis without redundant information. We now introduce
our inner-outer recycling method. The idea is that if we have an estimate of the
global basis matrix V, it makes sense to consider using V as a recycling space as
well. If the global basis is not a sufficient recycle space and we need to expand it,
we clearly need to solve more full order model systems, which we do with recycling.
The problem is that V might have too many columns to use it as a recycle space, so

in the next sections we explain how to get around this issue.

5.2.1 Recycling on Updated ROM Equations

To keep consistent with Section 3.4, let k be fixed and set A := A(py), b; = B(:,4),
and x; = Xj(:,7). We begin by assuming AV = K, finding the QR factorization
K = KR, and then setting’ U= VR, so that AU = K.

As was shown in Section 3.4, the optimal solution in Range(U) = Range(V) is
z=UK"b; = V(R'KTb,), and the initial residual is (I- KK”)b,. If the relative
initial residual is small, then we are done and have the approximate solution. If
the relative initial residual is not small enough, then we need to expand U. This
is done by using Lanczos to form a basis, V,, for the Krylov subspace generated
by the projected matrix (I - KK”)A and projected right-hand side (I - KK”)b;.
An approximate solution is then found in Range([U,V,,]). This would be the
ideal way to expand our search space, but in general we cannot afford to do this
since the number of columns in V, hence K, is not expected to be small and the
reorthogonalization would be too expensive. In addition, we may not need to find

an approximation to x directly, which is the case for updating the global basis

In practice, U is formed without inverting R explicitly.
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approximation since we only need information that is not already reconstructable
from Range(V) = Range(U).
If we decompose b; using the orthogonal projector KK” we discover something

important:

Ax; = (I-KK”")b; +KK'b;
Ax;-KK'b; = (I-KK")b,

AXj—AUKTbj = I‘j

A(Xj—UKTbj) = I'j. (513)
——— e
gj

Notice that the vector g; is the correction to the initial guess UKTbj. Therefore, if
we want to obtain the information not already in Range(V) = Range(U) to construct
the global basis matrix, we should consider an iterative solution to (5.13). We have
one such system for each right-hand side, j = 1,...,ngc + Nger, and we also have a
sequence of systems. We can adopt a recycling approach if we choose our recycle
space carefully.

Suppose r; is not already small and we want to solve (5.13), or alternatively, we
want to find

min [r; - Ag;|2,
g;€S

for suitable subspace S*. Tt is too expensive to use all the columns of V as a recycle
space to generate V,, because of the required orthogonalization against Range(K).
Due to this cost, we will instead use a subset of the columns of V for right-hand side
7 to be the recycle space, which we will expand immediately.

This means that we find U; e RV where U, ¢ Range(U) and such that AU; =
K;, where K;‘.FKj =I. We now have our suitable subspace S = Range([Uj,fo;)]),

*Note that S should not be Range(U), as then the solution is zero.
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where the V) are the Lanczos vectors for Ky, ((I - KjK]T)A, (I- KjK?)rj) (com-

pare to (3.8)) to look for a solution. That is, we want to solve

min rj—A[V%),Uj] Y .

z7y Z
An important consequence of this choice for Uj; is that if we apply the projector
(I-K; K;F) to both sides of (5.13), the right-hand side r; remains unchanged because
of the relationship between K; and K, meaning (I — KjK?)rj = r; Therefore, we
()
1

have v/ = r;/|r;|. Next, we use the Lanczos recurrence with (I - KjK;fF)A and

vij ) to generate the recurrence relation

I-KKDHAVY = v 10 o

m+l=m

AVY) = KKIAVY + v (), (5.14)

Then y,z are found by (compare to (3.9)) solving

o I K'AVY) || 2
min - )
YL gen 0o TP y

2

Therefore, we have g; = Vﬁr{)y +Ujz, where z = —K]TAV%)y and y,(q{) = V%)y

is generated by a short term recurrence. We recover x; by
x; =y - U;KT Ay + UK D, (5.15)

Because we have set it up so that Range(U;) ¢ Range(U) = Range(V), the infor-
mation about x; that cannot already be expressed using the columns of V is Vg)y.
Therefore, it would make sense to only use this information to update the global
basis. This process is repeated for any right-hand side for which the initial residual

r; is not already small enough®. For each k, the maximum number of columns we

$The integer m for which the solution estimate is good enough will vary depending on the system,
that is, m = m; — but for ease in notation we have omitted the subscript on m.
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add to V is ngpe + nget, but in theory, we may add substantially fewer columns.
In the next subsections we discuss the stopping criterion and how to construct
the initial global basis V and specify U; from the columns of U when we do need

to solve (5.13).

5.2.2 Stopping Criterion

We now explain the tolerance used as a stopping criterion for solving the projected

problem. Define the residual of the projected problem as
r, = (I-KK")b; - (I- K;K7)Ay$). (5.16)

The goal is to have the following,

llb; — Ax;l|

< tol, (5.17)
b

where x; € Range([Uj, Vg)]) and tol is the desired tolerance. Using (5.15), we have
that r; = r,, where r; is the updated residual for the original problem. Therefore,

to ensure (5.17) we let the stopping criterion for the projected problem be ||r,|| <

tol * ||b]||

5.2.3 Identifying Recycle Spaces

As stated earlier, the authors in [43] use a different recycle space for each right-hand
side, but each recycle space contains a common subspace. This common subspace is
an approximate invariant subspace corresponding to the smallest eigenvalues because
the authors observed that that subspace remained relatively unchanged throughout
the optimization. Even though in [43] they work on a different parametric inverse
problem for DOT, we observe the same for our problem. For our DOT problem, we
also observe that the invariant subspace due to the smallest several eigenvalues for
the A( p;,) remains unchanged. Figure 5.1 shows how close the subspaces correspond-

ing to the 10 smallest eigenvalues remain to the initial subspace for two numerical
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Figure 5.1: Evolution of the subspace gap (cosine of the largest canonical angle 6)
between the initial and subsequent eigenvectors corresponding to the 10 smallest
eigenvalues over the course of the optimization.

examples. We give the cosine of the largest canonical angle at each optimization
step. In both test problems, the cosine of the largest canonical angles remains close
to 1, meaning the subspaces are quite close. Therefore, we adopt the same approach
here. We use a different recycle space U; for each right-hand side, but seed each
with the same invariant subspace, plus right-hand-side specific information.

In order to obtain our invariant subspace, we compute (approximate) eigenvec-
tors of Ay that correspond to the smallest eigenvalues. Since the small eigenvalues
of the A matrices remain close from one system to the next, this suggests that the
corresponding invariant subspaces also remain close. We refer the reader to [43| for
more details and theory on the invariant subspace. We have found experimentally
that 10 eigenvectors is sufficient for the invariant subspace, while keeping the recycle
space small. We set Uy € R™1? to contain (estimates of) those 10 vectors. This tech-
nique of finding an accurate invariant subspace, even though it might be expensive
to find, so it can be deflated from the right-hand side has proven to be worthwhile
in other large-scale applications, such as QCD [1,67].

We set the initial global basis and recycle space to be V = ([Up, Xg]) and U; =
[Up,Xo(:,7)]. 'V has the invariant subspace and initial solutions to all the right-
hand sides, while U; has the invariant subspace and only the solution from the 4t

right-hand side. If we need to perform recycling as outlined above, meaning r; is not
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suitably small, then we update both V and U; with yﬁ,{). The y%) is appended to V
every time we need to do recycling, while it is only appended to Uj if we are working
on the j* right-hand side. This ensures that V contains information pertinent to

the entire system, while U; is kept small.

5.2.4 Inner-Outer Krylov Recycling Algorithm

Algorithm 2 describes our dynamic inner-outer recycling process. Details on efficient

implementation will be addressed in the next subsection.

Algorithm 2: Recycling and Global Basis Construction

1 Ugy < 10 eigenvectors of Ao, X solves AgX, =B

2 V <« basis for Range([Uy, Xo])

3 Uj < [Ug, Xo(:,7)]

4 for i =1: K % for each interpolation point i do

5 for j=1:nrhs do

6 % Check if V is a good enough space

7 K = AZV

8 [K,R] = ¢r(K,0)

9 V = V/R %implicit only; now U,V same
10 rj = B(:j) - KKTB(:, )
11 if b > tol then
12 % MINRES recycling using U;
13 Kj = Ain % have already done this product
14 [K;,R] = qr(Kj,O) % need not be done from scratch
15 Uj = U]/R
16 Solve (I-K;KT)A;y) = r; with MINRES
17 V<[V, y,(g)]

18 Uj <~ [U],y,(ﬂb)]

19 end
20 end
21 end

5.2.5 Algorithm Analysis

In this subsection, we give an analysis of Algorithm 2. Our approach is able to
solve the sequence of systems efficiently while generating the global basis with only

non-redundant information. We explain how this approach is an improvement to the
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approach given in Section 4.5 as we eliminate unnecessary solves, no longer need to
find the expensive SVD, and eliminate the need to truncate the singular values and
vectors in an ad hoc manner. We also explain how this approach is different from
using recycling as in [43] to solve the systems and then doing an SVD to get the
global basis. Additionally, we show how the cost is kept down by only updating V

and U; one column at a time.

5.2.5.1 System Solves

In Step 1 of Algorithm 1, we need to find the Xj. Two ways this could be done are
to simply use MINRES directly for each right-hand side or we could use recycling
with the Uj; for the respective right-hand side, across all the systems. This type of
recycling approach is essentially what the authors did in [43], with recycle spaces
having common invariant subspace information but tailored to the particular right-
hand side. But they do further tuning of the recycle spaces to account for where one
is in the optimization process. Recycling with just U; consists of generating v%) as
a basis for K, ((I - KjKJT)A, (I- KjKjT)bj), with the intent of approximating x;
over Range([Uj, \A/'S,Jl)]) In contrast, the recycling approach presented in this chapter
solves (5.13) and v is generated as a basis for K, ((I- KjK;F)A, (I-KK")b,).
This Krylov space differs from the previous one by the right-hand side. We also
approximate X; — Xq j, with X ; = UKTbj rather than x;. We argue that the new
approach is an improvement over both of these alternatives. A numerical comparison
of these methods is provided in Subsection 5.2.5.3.

It should be clear that recycling using U; must have some advantage over using
MINRES without recycling. Since U; contains an approximate invariant subspace,
MINRES on the projected system would converge as if part of the spectrum has
been deflated. Additionally, the right-hand sides of (5.13) are residuals that are b;’s
orthogonalized against the entire K, not just the (much smaller) K;. This means
that the residuals have been made small across spectral components other than just
those included in the invariant subspace. We refer the reader to Section 5.2 in [43] for

an argument for why r; is small in norm. The argument assumes that the difference
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Ay - A; is small over the invariant subspace of A corresponding to the smallest
eigenvalues, which are the smooth modes, and uses the fact that the columns of X
are relatively smooth. In our setting, if we assume that the values of absorption
in the object and in the background are known and optimize only for the shape
parameters, Ag-A; is diagonal, possibly low rank, with smooth modes made small

by the operator.

5.2.5.2 Global Basis

It is natural to ask why V is a good global basis for the ROM problem. The global
basis includes solution information and an approximate invariant subspace corre-
sponding to the smoothest modes for Ag. Following Theorem 4.1 in [43], we expect
the invariant subspace consisting of eigenvectors corresponding to the smallest eigen-
values remain close, if the changes to Ay are concentrated over the high frequency
modes. Since the X}, are expected to be smooth, it would be helpful to include this
information in V for ROM. Looking at this numerically, Figure 5.2 shows, in log
scale, the absolute values of the coefficients of the solutions X5 in the directions of
V for Experiment 1 in Section 5.3. Note that these solutions were not used to build
V. We see that the solutions have large components in the directions of the invariant

subspace of Ay, as well as the corresponding column of Xj.

5.2.5.3 Implementation Issues

In the final subsection of analysis, we discuss the cost of Algorithm 2 and how we
keep the cost down by adding one column at a time to V and Uj.

As defined above, Uy is a matrix of k,, columns containing a basis for the invariant
subspace of Ay corresponding to the smallest eigenvalues and Xy is the solution to
the initial system. Since the initial guess is used for many experiments, Xy and Uy
are precomputed off-line and reused for other experiments. Referring to (5.12) we
let Ay = A, + Ay, where A, is fixed and Ay, = diag(u(py,)).

We now consider the cost of solving System 1 using Algorithm 2. In Algorithm 2

line 7, K = (A* + A1)[Up, Xg]. Since A, is fixed, we precompute and save the
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Figure 5.2: Logarithmically scaled image of the absolute values of the coefficients of
solutions X5 in the directions of V, where V has 197 columns. Recall that X5 has
32 columns to source positions, and 32 columns corresponding to receiver positions.
The first 10 columns of V contain the invariant subspace of Ag corresponding to its
smallest 10 eigenvalues, the next 64 columns correspond to Xy, and the remaining
columns have been constructed using the update procedure in Algorithm 2 for K, = 3.

products A, X, and A,,UO, so we only have to compute A;Ug and A1 Xj.

Next, we need to compute the QR factorization of K in line 8. This is computed
such that full re-orthogonalization is not required each time it is repeated. First,
partition K = [Ka, Kb], where the first block corresponds to the number of columns of
Uy. Then, compute QR = K,. Next, compute (I—QlQr{)f{b = Kb—Ql(Qr{f{b) =
Q2Rs. So, K, = Q2R + Ql(fo(b). It follows that a QR factorization is

(Ko K3] = [QiR1,Q1(Q] Kb) + Q2R
R: Q'K,
= [Qla QZ]
0 R
We let V = [Ug, Xo]R ™!, noting that R™! need not be applied explicitly. We now
have the required factorization, (A>9 +A1)V =K, where K has orthonormal columns.

Suppose we do need to do recycling for System 1 and right-hand side 1. This
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means that in Algorithm 2 line 13, we need to find K; = (A, +A;)[Ug, Xo(:,1)]. We
have already formed this product above, so we just have to select the right columns
of K. Moreover, the QR factorization of K; is computed from Q; and R;. All
we need to compute is Ki(:,ky +1) = Q1(QTK,(:,ky + 1)) and then normalize it.
The normalization constant becomes the lower right corner component of the upper
triangular matrix.

We then solve the projected problem with MINRES and append the solution,
y,(,%), to V and U;. Now, we move to the second right-hand side and check to see if

the newly enlarged V is sufficient to represent the solution. In order to do this, we

compute

(A, + AD[V,ym] = [(A. + AV, (A, + A))yn] = [K,z].

Since K already has orthogonal columns, we need only to compute

[K,z] = [K,q] :

where z - K(K”z) = pq, so we have K « [K,q],V < [V,y,]R".
If recycling is required for the second right-hand side, we follow the same pro-
cedure above. Therefore, for any additional right-hand sides, only incremental new

calculations are needed.

5.3 Numerical Experiments

In this section, we provide four numerical experiments, three 2-dimensional examples
and one 3-dimensional example. For the 2D examples, we show two experiments
where the global basis is created for each problem in order to show the MINRES
iteration counts. We also provide a 2D experiment where the global basis is reused,

in order to show that with this new method, we can still reuse the global basis. The
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set-up for the experiments is the same as in Section 4.8. Results are reported for
both using the full order model and the ROM to compute the function and Jacobian
evaluations for each experiment. We used K, = 3 systems for each experiment to
create the reduced order model space. The tolerance in line 11 of Algorithm 1 was
set to be 1077. All of the experiments were run using a laptop with a 3.20 GHz
processor and 16.0 GB RAM using MATLAB R2015b.

5.3.1 2D Experiments

The first three experiments were solved on a 201 x 201 mesh, which gives us 40,401
degrees of freedom for the forward problem. We use 32 sources and 32 detectors.
Following the Palis approach, we use 25 compactly supported radial basis functions,
which results in 100 parameters for the optimization problem (2.8). Figure 4.8 shows
the absorption image using the initial set of parameters. The projection bases that
are used for Experiments 1 and 2 were created with the first 3 iterations of the
optimization using the full order model for Experiment 1.

In Experiment 1, we needed to solve 187 large, single right-hand side systems
to generate what we needed to construct the global basis matrix (note that the 64
of these corresponding to X could have been pre-computed off-line). Including the
additional 10 eigenvectors of A that were used as the first 10 columns of V, V
has 197 columns and thus the reduced model has order 197. Therefore, the reduced
models require solutions to linear systems of size 197x197 rather than 40, 401x40, 401
for the full order model.

The optimization using the full order model for Experiment 1 required 30 func-
tion evaluations and 15 Jacobian evaluations. In comparison, the optimization run
using the reduced order model, once it has been generated, required 28 function
evaluations and 14 Jacobian evaluations, indicating that using a ROM in place of
FOM does not greatly impact convergence rate of the optimization. Figure 5.3
shows the reconstructions for Experiment 1. The bottom line is that solving the
optimization using the full order model requires the solution of 1,440 systems of size

40,401 x 40,401. On the other hand, solving using our approach requires solution
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Figure 5.3: Results for Experiment 1. Reconstruction on a 201 x 201 mesh, resulting
in 40,401 degrees of freedom in the forward model and 197 degrees of freedom in
the reduced model for the forward model. 32 sources, 32 detectors, and 25 basis
functions were used.

of 187 systems of size 40,401 x 40,401, which are used to construct V during the
first few optimization steps. The remainder of the work is in solving systems of size
197 x 197 until the convergence tolerance for the optimization is achieved.

Table 5.1 also includes the number of (unpreconditioned) MINRES iterations
for each experiment with and without recycling. Although the tables only show a
sample of results, it is clear that the iterations decrease from one right-hand side
to the next, and system to system, using our approach. The jump in number of
iterations for right-hand-side 33 comes from the fact that we concatenated B and C
to form one right-hand-side for the symmetric transfer function, so the 334 right-
hand side corresponds to the first column in C.

In Experiment 2, a total 188, 40,401 x 40,401 single-right-hand side systems
were solved to compute our global basis. The reduced order model has order 198.
Therefore, the reduced models require solutions to linear systems of size 198 x 198
rather than 40,401 x 40,401 for the full order model. The optimization using the
full order model required 126 function evaluations and 78 Jacobian evaluations. The
optimization run using our reduced order model took 123 function evaluations and
76 Jacobian evaluations to converge to our stopping criterion, so again, there is no
negative impact on convergence rate by replacing the FOM with the ROM. The dif-
ference in the total number of large (40,401 x 40,401) single-right-hand side systems

that need to be solved, though, is even more pronounced in this example than in
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Experiment 1 Experiment 2
System | RHS | MINRES Its | MINRES Its | MINRES Its | MINRES Its
with Recycling with Recycling
1 463 140 470 127
20 541 52 506 53
1 32 487 0 493 0
33 467 124 470 120
53 528 57 514 48
64 489 0 494 0
1 474 118 501 124
20 513 35 545 38
9 32 497 0 526 5
33 474 105 500 132
53 526 37 567 127
64 497 0 532 0

Table 5.1: Number of MINRES iterations for Experiments 1 and 2. Zero iterations
in the table indicates that the recycle space V was a good enough space to look for
the solution and MINRES recycling using U; did not need to be performed.

the last: 6,528 are needed for the FOM approach vs. only 188 for the ROM ap-
proach. Moreover, the work involved in solving for the latter systems is reduced,
since MINRES requires fewer iterations due to the recycling.

Figure 5.4 shows the reconstructions for Experiment 2. Again, Figure 5.1 shows
the number of unpreconditioned MINRES iterations for each experiment with and
without our inner-outer recycling approach.

In Experiment 3, we used the same problem as in Experiment 2, but with the

ROM formed from the basis made in Experiment 1. Therefore, for this experiment
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(a) Ground truth absorption im- (b) Reconstruction using the full (¢) Reconstruction using the re-
age. order model. duced order model.

Figure 5.4: Results for Experiment 2. Reconstruction on a 201 x 201 mesh, resulting
in 40,401 degrees of freedom in the forward model and 198 degrees of freedom in the
reduced order model. 32 sources, 32 detectors, and 25 basis functions were used.
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Figure 5.5: Results for Experiment 3. Reconstruction on a 201 x 201 mesh, resulting
in 40,401 degrees of freedom in the forward model and 198 degrees of freedom in the
reduced order model. 32 sources, 32 detectors, and 25 basis functions were used.

no additional full order model solves were required. The optimization using the full
order model required 126 function evaluations and 78 Jacobian evaluations. The
optimization run using our reduced order model took 32 function evaluations and
15 Jacobian evaluations to converge to our stopping criterion. For this particular
experiment the reduced basis significantly reduced the number of function and Ja-
cobian evaluations required. A possible explanation is that the full order model was
getting stuck in the optimization and this basis eliminated this problem. Figure 5.5

shows the reconstructions for Experiment 3.

5.3.2 Value of Inner-Outer Recycling

There is a significant benefit to using two levels of recycling information. To see
this, consider Algorithm 1 to construct the global basis. We could solve the full
order model systems in Step 1 (e.g. systems in 5.11) with the unpreconditioned
MINRES recycling approach in [43]. It is important to note that the recycle spaces
would be different than those used in our new method. Furthermore, in the new
method we solve the correction equations (5.13) as opposed to solving (5.11). For
j > 1, the recycle spaces for the [43| approach do not incorporate information from
other systems corresponding to other right-hand sides. In contrast, since we augment
V from information about right-hand side j, we update K. The update in K then

causes updates to rji1,...,Tp,, +n,.,, Which are the right-hand sides in (5.13).
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Table 5.2 compares the recycling of [43] with our new approach. The results
show that with our approach, the number of iterations and the relative residuals
decrease as you move from one right-hand side to the next and also as you move
from system to system. The jump at right-hand side 33 is due to the fact that you are
moving to the second half of the concatenated right-hand sides, so these correspond
to solving the adjoint problem. Using the approach in [43], however, does not speed
up convergence across right-hand sides. In our approach, the reduced global basis,
V, is already constructed when we are done with the full order model solves. We
note there is a big difference in total number of MINRES iterations to squeeze all
information from systems 1 and 2. It took our approach 5,006 iterations, while it

took 22,659 iterations for the recycling method in [43].

Our Approach Recycling from [43]
System | RHS | Its | Initial Relative Residual | Its | Initial Relative Residual

1 140 7.523115e-05 140 7.523329¢-05

20 52 1.077645e-06 185 6.584893e-04

1 32 0 8.866398e-08 152 1.164802¢-04
33 | 124 4.776975e-05 127 5.213653e-05

53 57 1.692149¢-06 191 6.114295e-04

64 0 9.960690e-08 151 1.450962¢-04

1 118 4.673235e-05 131 5.091877e-05

20 35 6.653493e-07 190 6.171251e-04

9 32 0 8.754708e-08 153 1.051619e-04
33 | 105 2.588292¢-05 129 3.388392¢-05

53 37 8.454303e-07 188 6.405050e-04

64 0 7.960101e-08 151 9.958796e-05

Table 5.2: Comparison of MINRES recycling using U; as described in [43] vs. the
inner-outer approach using both V and Uj; as described in Algorithm 2. Note that
the two approaches lead to different choices for U; as well as different systems to
solve.

5.3.3 3D Experiments

The next experiment was solved on a 32x32x32 mesh, which gives us 32, 768 degrees
of freedom for the forward problem. We use 225 sources and 225 detectors. Following
the PalLs approach, we use 27 compactly supported radial basis functions, which

results in 135 parameters for the optimization problem. Figure 4.12 shows 16 slices
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of the absorption image using the initial set of parameters. The projection bases that
are used for Experiment 3 were created with the first 3 iterations of the optimization
using the full order model for Experiment 3. Due to the large number of right-hand
sides in the 3D problem, we had to modify how to construct the reduced basis.
The basis includes the approximate invariant subspace, the solution to the initial
system, and the new information to solutions from every 8 sources and detectors
from systems 2 and 3 found via recycling. We also had to solve the forward and
adjoint problems separately, therefore we orthogonalized the concatenated solutions
at the end. Ultimately, the reduced basis had 572 columns giving the reduced model
order 572. Therefore, the reduced models require the solutions to linear systems of
size 572 x 572, while the full order model requires solutions to linear systems of size
32,768 x 32, 768.

The optimization using the full order model for Experiment 3 required 51 func-
tion evaluations and 29 Jacobian evaluations. Meanwhile, the optimization using the
reduced order model for Experiment 3 required 57 function evaluations and 34 Jaco-
bian evaluations. Once again indicating that the ROM does not greatly impact the
convergence rate of the optimization. Figure 5.6 shows slices of the reconstructions

for Experiment 3.
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(a) Slices of the ground truth absorption image. (b) Slices of the reconstruction using the full order

model.
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(c) Slices of the reconstruction using the reduced
order model.

Figure 5.6: Results for Experiment 3. Reconstruction on a 32x32x32 mesh, resulting
in 32,768 degrees of freedom in the forward model and 572 degrees of freedom in the
reduced order model. 225 sources, 225 detectors, and 27 basis functions were used.



Chapter 6

Inner-Outer Krylov Recycling for Shifted

Systems

The need to solve large scale sequences of shifted linear systems with multiple right-
hand sides arises in many important applications. As demonstrated in Section 4.2,
this arises, for example, in DOT if the data is collected for multiple frequencies. The
expense of solving these systems is the computational bottleneck of the larger prob-
lem in which they are involved. Many approaches have been developed to address
the computational cost associated with solving sequences of shifted systems. Some
methods use Lanczos recurrences or Arnoldi iterations, see e.g., [26,43,49,61,64|.

Imagine solving an optimization problem where the function evaluation requires
the solution of a linear shifted system with multiple right-hand sides over the course
of the optimization. These system solves become the dominant computational cost
of the optimization. We were first motivated to develop the method presented in
this chapter by solving the optimization problem that arises in the nonlinear inverse
problem in the context of diffuse optical tomography (DOT) [14,28]. The goal of
solving an inverse problem is to find an image of an unknown quantity. In order to
find this image when the forward problem is nonlinear in the unknowns describing
the desired quantity, we must solve an optimization problem, which in turn requires
solving the forward problem multiple times. The forward model valuation, which
requires the solution of a sequence of shifted systems, links the measured data to the
unknown image we seek. These forward model solves are the main computational
bottleneck of these image reconstruction problems.

In this chapter, we extend the 2-level Krylov recycling method found in Chapter 5
to systems with shifts in order to reduce this computational cost. First, we only

consider a single right-hand side and then develop a method for multiple right-hand
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sides.

We are looking to solve shifted systems of the form
(A(k) + wE) xF0 = p, (6.1)

for symmetric A®) and E and several values of k and ¢ via recycling. The method
we describe works for more general applications, but we will demonstrate on two
examples from DOT.

Next, we are looking to solve shifted systems of the form
(A 4 1q1) X0 - B, (6.2)

for symmetric A®) and several values of k and ¢ via recycling for multiple right-hand
sides. This is the form of system that arises in the DOT setting for the complex
symmetric problem (5.6) and in this setting, we once again have two goals for the
new method: solve the shifted systems efficiently, while constructing the global basis
for use in ROM.

Both methods described in this chapter are used as efficient solvers and also to
construct reduced order models from the output of the solvers. We remind the reader
that Krylov recycling basics are given in Section 3.4 and inner-outer recycling is

explained in Section 5.2. More on recycling is found in the literature, see [5,43,57,77|.

6.1 Inner-Outer Recycling for Shifted Systems with a
Single Right-Hand Side

The extension to shifted systems needs to address the following: how to recover the
solution to the shifted problem and what information from the shifted solution to

include in the recycle spaces. We consider solving
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with a variant of inner-outer recycling, as we now describe.

6.1.1 The Method

Without loss of generality, we assume that the first value of v, we wish to solve for
is 0, and we need to solve (6.3) for L values of vy, between y; = 0 and . This is due
to the fact we can always create a “zero shift” by letting AR = (A®) 4 4 E) for the
smallest shift, v, we want to solve, and then we write the remaining shifts relative
to y1: Y = 1 + s, and solve the remaining systems by rewriting the matrices as
(A®) + 3E).

As before, assume U € RN*"e ig generated from the recycle space U such that
AMU = K and K'K = I. Select Uy, € RV*™ from among the columns of U.
Generate Uy from Uy, such that (A(k) +vE)Uy; = Ky and KgKg =1I. For the shifted
system, Uy is a shift specific recycle space instead of a right-hand side specific recycle
space as in Section 5.2.

First, we estimate that the solution is in Range(U) (i.e. it is Uq for some q),

r(0 = b—(A(k)-i-’)/gE) Uq

b- (Kq+vEUq).
Using Petrov-Galerkin projection, we put KTr(*:0 = 0, and find the estimate
x50~ U (1+K"EU) " Kb. (6.4)

When 7 = 0, this gives the same initial solution as (3.7)

As in (5.13), we would like to solve for the incremental change from this initial
guess, if the initial residual r(*%) is not small enough. Using x**) = g + x;, where
x; is the initial guess found on the right of (6.4), the goal is to recover g. Therefore,

the problem we want to solve is

(A(k) + WE) g = b- (A<k> + WE) x;
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T -1 .7
b-(K+vEU)(I+yK"EU) K'b

(I-KKT) (b - (EU)(lI + KTEU)‘lKTb) . (6.5)
Ve

The last line comes from the fact that K'r(* = (0 and is of value in terms of
illustrating the relationship to the residual for the ~, = 0 system.
If the initial relative residual norm is not small enough, we solve

in e FO _ ( AR
min 19 - (A®) 4 /B) g,

over an appropriate S. We want S to contain Range(U,) and to generate the
space with which to augment Uy, we use the Krylov subspace generated by (I -

K/K!)(A® +4E) and
vi= ((I - KK rW>) /(1=K K] e®EO,.

We call the reader’s attention to the following important fact, which makes this

inner-outer recycling approach different than the approach in Chapter 5: K is in

Range(A ), while K, is in Range(A®*) + v,E). We obtain

(I-K,K7) (A(’“) + WE) Vi = VT, <

(A(’“) + WE) V., = KK/ (A(k) + WE) Vo + Vi T, .

We then find y, z by solving

. Kl r(k0) I KI' (AW +yE)V, z
min - ) (6.6)
v ey 0 T y

m 2

where £ = | (I—KZKZT) r(#0|,. Therefore, g = y,, + Upz, where y,, = V,y, 2 =

Kgr(u) - K;;F (A(k) + wE) V.,.y and we estimate the solution as

X(k’,é) =Ym+ UgKgr(kvé) — UgI(%1 (A(k) + ')’EE) Ym +X;. (67)



The y,, is used in a special way, described in the next subsection.

We have described how we use this method as an efficient solver to recover the
desired estimate of the solution. If we wanted to also construct the reduced order
model using this method, we could solve the necessary systems using this method
and use U as the reduced basis. If the problem has multiple right-hand sides, then
we could use this method for each right-hand side or use the method described in

Section 6.2 to construct the reduced basis.

6.1.2 Identifying and Updating Recycle Spaces

Now that we have found the solution to the shifted problem via recycling, we discuss
how to construct the recycle spaces. In Chapter 5, the initial recycle spaces included
an invariant subspace consisting of 10 eigenvectors corresponding to the smallest
eigenvalues and solutions to the initial system. This was because the corresponding
subspace was found to be nearly invariant across all A®). In addition, U was seeded
with solutions to the initial system for all right-hand sides, while U; contained only
the approximate invariant subspace and the solution to the j** right-hand side. We
adopt an analogous strategy here, but U has solutions to the initial system for all
shifts and Uy, has only the initial solution to the system corresponding to the shift
Ye-

If the initial residual for shift £ is such that we need to perform the inner recycling,
we append information from y,, to both U and U,. This ensures that U contains
information pertinent to the entire set of shifted systems, while Uy is kept small.
This is important for keeping computational costs down.

Note that appending a column to U means that K must also be increased by
one column. We must (a) compute A®y, . and (b) orthogonalize the result against
the previous columns of K to get our new K. We then (¢) update the initial residual
estimate for any shifted systems we have not yet solved to reflect the projection onto
the space as increased in dimension by 1. In this way, new information about the
systems that are “close by” in terms of neighboring y is used to improve the current

solution space.
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The overhead involved in appending information to Uy is the cost of comput-
ing (A(k) +vE)ym (but note that A®)y has already been computed) and then
orthogonalizing the result against the previous columns of K,. Note again that we
only append columns when there is a system for which the inner Krylov recycling
became necessary to reduce the residual.

The next subsection outlines our algorithm (but note that the sequential up-
dating approaches noted here have been replaced by more expensive calls to QR
factorizations to keep the algorithm looking more tidy and make the general idea

easier to follow).

6.1.3 The Algorithm

Algorithm 3 describes our inner-outer recycling process for shifted systems with one

right-hand side.

6.1.4 Complex Identity Shift

We will now consider the special case of a complex identity shift, that is, E =1 and

the shift is +7y,. Therefore, the problem is
(A% + 1y (0 = b, (6.8)

The algorithm provided in the previous subsection works for this special case, but we
need to be careful about how we construct and update U and U,. We initialize and
update U and Uy just as in Algorithm 2, but if we are dealing with a complex shift,
we only append the imaginary component of x(®9 and y,,. This means that U and
K remain real. Let Uy = U(:,4;:42), and [Ky, R] = (A®) +4~,1) Uy, so Uy = UR L.
It is clear that Ky, Uy, and V,,, are complex. In the case when many shifts are used,
it may be necessary to add information from the real component of some x(%% to
the initial U. This is because as you move farther away from the “zero shift” the
solutions can change significantly and only adding the complex component is not

sufficient. We also note that letting E = I provides some savings in (6.5) and (6.6)
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Algorithm 3: Krylov Recycling for Shifted Systems

U, < 10 eigenvectors of A(©)

1
2 X0 < solutions to (A(O) + fygE) X () = b for all ~,
3 U < basis for Range([Ug, X(9])
4 Uy < [Ug, X0 0)]
5 for k=1: K do
6 for /=1:L do
7 % Check if U is a good enough space
8 K=AMU
9 [K,R]= qr(K,0)
10 U=U/R
1 r(0) = b - (K + yEU) (I+vK'EU) " K’b
12 if Im70 > ol then
13 % MINRES recycling using U,
14 Kg = (A(k) + 'YZE) Ug
15 [K., R] = qr(Ky,0)
16 Ug = Ug/R
17 Solve (6.6)
18 Find x*) by solving (6.7)
19 r(b0 = (1-KK])(r*0 - (A(k) +%E) ym)
20 U< [U,yn]
21 Uy <= [Up,ym]
22 end
23 end
24 end

since we no longer need to find EU or Ey,,.

6.1.5 Algorithm Analysis

We now discuss the computational costs associated with Algorithm 3. We include
an invariant subspace in U and Uy formed from eigenvectors corresponding to the
smallest eigenvalues from our initial non-shifted system. While Krylov solvers can
usually take advantage of the shift invariant property [65], our method of recycling
cannot take advantage of this property since the presence of the shift changes the
space where U, gets mapped. Even though the invariant subspace may not deflate
the spectrum for the shifted systems, it will deflate part of the spectrum for the

non-shifted problem. Additionally, the right-hand side of (6.5) for the non-shifted
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and shifted problem is made small across spectral components in the K direction.
This is the large K and not the smaller, shift specific K.

There is a cost associated with the QR factorizations done to compute both K
and K;. However, the initial work is done up front and saved for many inverse
problems if the same E is used. Once inside the loop over shifts, we are only adding
one column at a time to both U and U;. As was shown in Chapter 5, we compute
K and K, such that we do not need to do a full re-orthogonalization every time
they are computed. An efficient alternative for computing the initial K, is given in
Section 3.2 of [62], but there is a potential trade off in accuracy.

For problems with many shifts, the overhead cost associated with our method is
offset by the decreasing number of iterations. The overhead cost in the initialization
is computed off-line for the DOT problem, since A(?) is the same across many images.
Therefore, the eigenvectors are precomputed and reused for many problems. If the
same shifts are used across problems as well, the basis for the Range([Ug, X(?]) is
also precomputed. The overhead costs for the main loop of the algorithm include,
updating K and finding the initial residual and solution. If we have to do recycling,
we have to update Ky, solve (6.6), and update the solution and residual. We argue

that the small number of MINRES iterations required offsets these costs.

6.1.6 Numerical Experiments

In this section, we look at how we use the inner-outer recycling for shifted systems
in the DOT setting for two different shifts. Although this application requires that
we solve each system for both multiple shifts and multiple right-hand sides, we
can use the approach outlined above for each right-hand side. An extension of our
method to handle multiple right-hand sides is considered in Section 6.2. All of the
experiments were run using a laptop with a 3.20 GHz processor and 16.0 GB RAM
using MATLAB R2015b.
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6.1.6.1 Experiment 1

For the DOT problem, we discretize the diffusion equation in the frequency domain.
A single function evaluation amounts to solving (A(k) + z'ygI) X*0 = B for all £ at
which we have collected data, then computing CTX®*4  where C represents the
detectors and B the sources. Though this application requires we solve each system
for both multiple shifts and multiple right-hand sides, we compute the solution for
each across all right-hand sides, independently, using our new approach.

In this numerical experiment we consider a 201 x 201 mesh, and discretize with
finite differences as in [28|, which gives us 40,401 degrees of freedom for the forward
problem. We adopt the technique in Chapter 5 to identify A*) with a SPD matrix,
which now has 39,999 degrees of freedom. We use one right-hand side from the DOT

problem, which is a multiple of a column of the identity matrix. The shift in this

2710%w,

_—+, where wy is the frequency and v is the speed of light in

application is, vy, =1
the medium.

We solve the problem for 21 frequencies, 0 : 10 : 200 MHz, and 10 systems.
As was stated above, since we are using many shifts we add the real component,
as well as the imaginary component, of the initial solution for ¢ = 6, 11, and 16
to the initial U. This is because as you move farther away from the “zero shift”
the solutions can change drastically and only including the real component of the
“zero shift” is not sufficient. We include the real component from every fifth shift
because we found that to be sufficient experimentally. Table 6.1 shows the number
of (unpreconditioned) MINRES iterations for a sample of systems and shifts for this
experiment with and without recycling. It also shows the initial relative residuals
and the number of columns of U and U,. We used a tolerance of 10~7. Figure
6.1 shows the number of MINRES iterations for each shift and all systems. It is
clear that the iterations generally decrease from one shift to the next, and system to
system, using our approach. Obviously at some point U will get very large if there

are many systems and right-hand sides to solve and the overhead associated with

this method will become too large. This is the subject of ongoing research. One idea
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to overcome this issue is binning the shifts into groups and having a U associated

with each bin.

Our Approach MINRES

System | Shift | Initial Relative Residual | Cols U | Cols U, | Its Its
1 6.997652e-05 34 11 138 463

1 5 1.488217e-07 38 11 11 463
13 1.249818e-07 46 11 6 460

21 1.703870e-07 54 11 12 455

1 3.110010e-05 76 13 117 491

3 5 1.273549e-07 80 13 8 490
13 1.388263e-07 88 13 7 487

21 1.185384e-07 96 13 4 480

1 1.903012e-05 118 15 92 480

5 5 1.228727e-07 122 15 5 479
13 1.555352¢e-07 130 15 8 476

21 1.192817e-07 138 15 4 471

1 4.306398e-06 160 17 49 481

. 5 1.130465e-07 163 17 3 481
13 1.089243e-07 171 17 2 478

21 1.210036e-07 179 17 4 473

1 2.146463e-06 200 19 29 481

9 5 1.063270e-07 201 19 1 481
13 1.020278e-07 208 19 1 478

21 1.236055e-07 216 19 4 473

Table 6.1: Comparison of the inner-outer approach for shifted systems as described
in Algorithm 2 vs. MINRES for Experiment 1.

6.1.6.2 Experiment 2

In Experiment 2, we use the same A(*) matrices and the same right-hand side as
in Experiment 1. E will be a real valued, positive, diagonal matrix representing a
random perturbation of the background of the image of the absorption coefficient.
The shifts will be 0, .01, .02, .03, .04. We might encounter this scenario if we
were to try to gather statistical or sensitivity information during the optimization
process. Table 6.2 shows the number of (unpreconditioned) MINRES iterations for
Experiment 2 with and without recycling. We used a tolerance of 10~7. Once again,
the iterations generally decrease from one shift to the next, and system to system,

using our approach.



Number of MINRES lterations for Experiment 1

140

21

Number of MINRES lIterations

Figure 6.1: The number of MINRES iterations for Experiment 1 for all 21 shifts,
which are represented in the colorbar. The iteration counts for the “zero shift" are
found in the red curve above the rest. Shifts 2 and 3 are the next two largest curves
for the earlier systems, while shift 21 is the next largest by system 9.

6.2 Inner-Outer Recycling for Shifted Systems with Mul-

tiple Right-Hand Sides

We now give our extension of inner-outer recycling for shifted systems with multiple
right-hand sides. This extension to multiple right-hand sides needs to address how
to recover the solution to the shifted problem while keeping the recycle spaces rea-
sonable sizes. For the multiple right-hand side case, we only consider E = I, therefore

we consider solving

(A(k) + WI) x*0 - B, (6.9)

with a variant of inner-outer recycling. In addition to using it as an efficient solver, we
would like to use this method to construct the basis used in the ROM for DOT. This
was done in Chapter 5 for the 0 frequency case and we now extend that method
to the multiple frequency case. We first discuss ROM for DOT for the multiple

frequency case and then explain the method.
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Our Approach MINRES

System | Shift | Initial Relative Residual | Cols U | Cols Uy | Its Its
1 7.451061e-05 15 11 140 463

2 8.910013e-07 16 11 45 458

1 3 1.816563e-07 17 11 17 452
4 1.429132e-07 18 11 14 447

5 1.104739¢-07 19 11 3 443

1 4.933852e-05 20 12 128 474

2 6.396233e-07 21 12 42 469

2 3 1.951564e-07 22 12 19 464
4 1.477872e-07 23 12 16 460

5 1.176433e-07 24 12 8 455

1 3.723381e-05 25 13 128 491

2 4.602222e-07 26 13 36 484

3 3 2.086688e-07 27 13 25 477
4 1.347959e-07 28 13 9 471

5 1.173205e-07 29 13 6 465

1 2.747551e-05 30 14 115 485

2 3.213505e-07 31 14 22 479

4 3 1.722536e-07 32 14 17 473
4 1.285942e-07 33 14 8 468

5 1.207813e-07 34 14 8 463

Table 6.2: Comparison of the inner-outer approach for shifted systems as described
in Algorithm 2 vs. MINRES for Experiment 2.

6.2.1 Rewriting ROM

Adopting the technique from Section 5.1 to rewrite the DOT transfer function and
derivatives in terms of a complex symmetric matrix gives us a shifted problem of the
form being considered in this section. As was shown in Subsection 5.1.3, we use the

one-sided global basis approach and for V € C™*" define
E. =VI'v, AW =vIA®yv  B,=-Vv'B, c,=viC. (6.10)

-1
The reduced transfer function is therefore, ¥, = CZ (%ET + Aﬁk)) B,.
We once again use the fact that A is SPD in order to solve the forward and
adjoint problems at the same time to generate V,

(A(k) " %I) x40 = [B, C] (6.11)

14
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for appropriate choices of parameters p;, k = 1,..., K and frequencies wy, £ = 1,...,n,,.

As in Subsection 5.1.3, we are seeking a surrogate transfer function, ¥,(w;p)
that approximates W(w;p) as well as ensuring Vp¥(w;p) ~ Vp¥,(w;p). The fol-
lowing theorem, which follows from [16], is Theorem 5.1.1 rewritten for the multiple

frequency DOT-PaLs problem shows how to construct V.

Theorem 6.2.1 Suppose A(p) is continuously differentiable in a neighborhood of
peRl. Let & € C, and both I+ A(p) and “E, + A, (p) be invertible.

If (%I + A(f)))_1 B € Range(V) and (C (%I + A(ﬁ))_l)T € Range(V) then,

the reduced parametric model of (6.10) satisfies

B(5,5) = By (@,B), VpP(&,p) = VpWr(&,p), and W'(@,p) = BL(,5),

where ' denotes the derivative with respect to w.

We would like to use the method presented in this subsection to construct the global

basis, V, for DOT.

6.2.2 The Method

As in Subsection 6.1.1, we assume the first value of v, we wish to solve for is 0.
Once again we assume U € RV*" is generated from the recycle space U such that
AMU = K and K'K = I. Select ij e RV*" from among the columns of U.
Generate U, from ij, such that A(k)Uj = K; and K?Kj =1 Uj is once again a
right-hand side specific space as in Section 5.2, but now also contains information
about the shifted system as described below.

To keep notation consistent, we let b; = B(:,j) and X§k’€) = X®O(:, §). First, we
estimate that our solution is in Range(U) for all shifts. When ~, = 0, the optimal
solution in Range(U) is X§k’é) = UK”b; and the initial residual is (I - KK”)b;
as in Section 3.4. When ~, # 0, we follow Subsection 6.1.1 and get XJ(.k’E) =U[I+
17/ KTU) Kb, as the optimal solution in Range(U) with initial residual r§k’£) =
b; - (K +17,U) (I+1,K"U) ' KTb;.

(k,0)

If the initial residual r; is not small enough, we once again solve for the

incremental change from the initial guess. When ~, = 0, we follow Section 5.2 to
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expand the recycle space and find the solution. When ~, £ 0 we proceed as follows.

Using x*9 =g + X;, where x; is the initial guess, the problem we want to solve is
g X; g g

. (k0) (k) ]
min |r; (A + zwI) gile,

over an appropriate S. We want S to contain Range(U;) and to generate the space
with which to augment U, we use the Krylov subspace generated by

(I-K;KT) (A® +17,I) and
k4 k.
v =80 f[elE0,

We note that K and K; are both in Range(A*)). We obtain

(I—KjK]T)(A(k)HwI)Vm = Vpal, <

(A(k) + WI) V., = KK (A(k) + WI) Vo + Vit T,

K,KIAWV,, + V1T,

Therefore, we want to solve

min r;k,f) - (A(k) + z'ygI) [V, Uj] Y
y?z Z

Following [43], we observe that,

(AN 1y D) [V, Uj] = [Vm+1Im +KKIAWV, K+ WUJ]

T

m

0
:[Vm+1 K, U;||KITAWV, 1

0 1yl



1o vioull T, o
=[Vm+1 K; Uj] 0 I KI'u; ||KFA®Wv,, 1 |,
0 0 N 0 1yl

(6.12)

where the last line orthogonalizes U ; against [Vm+1 Kj], so that [Vm+1 K; [jj]
has orthonormal columns. This is done with a reduced QR decomposition, therefore
N is a diagonal scaling matrix involving the norms of the columns of U;. Therefore,

we write the least squares problem as

e T, eV U

. y

min| | 0 - KI'A®V,, T+yKIU; ] , (6.13)
0 0 1y IN

2

where e; denotes the first Cartesian basis vector in R™*! and ¢ = Hrj(.k’g) |2. We have
g; = Viy +Ujz and we reconstruct the solution estimate by setting,

——
Ym

(&0

G =g X, (6.14)

In addition to solving the full order systems, we also use this method to construct
the basis used in the ROM for DOT. Several steps of the optimization problem would
be solved with this method and we would let the basis, V, be defined as the large
recycle space, U. This is because U contains information from all shifts and all

right-hand sides.

6.2.3 Identifying and Updating Recycle Spaces

We now discuss how to construct the recycle spaces. As stated above, U contains
information from all right-hand sides and all shifts and, if desired, ultimately becomes
the global basis for ROM, while Uj; is right-hand side specific but still contains

information about all shifts. As before, we include an invariant subspace consisting

80



of 10 eigenvectors corresponding to the smallest eigenvalues of A© to both U and
U;. In addition, U is seeded with solutions to the initial system for all right-hand
sides and all shifts, while U} is seeded with only the solution to the 7' right-hand
side for all shifts. Therefore, U has (10 + nj * ng) columns and U; has (10 + ny)
columns, where n; is the number of right-hand sides and ny is the number of shifts.
Since we are dealing with a complex shift, we only use the imaginary component of
the solutions for the shifted systems as described in Subsection 6.1.4. If there are
not many shifts, this ensures that U; is kept small.

If the initial residual is such that we need to perform the inner recycling, we
append information from y,, to both U and U;. Again, we only add the imaginary
component of y,, for the shifted systems. This ensures that U contains information
pertinent to the entire set of shifted systems, while U is kept small. We only update
the recycle spaces after we have found the solutions to all shifts for a given right-hand
side, which means that we add a maximum of the number of shifts columns to our

recycle spaces.

6.2.4 The Algorithm

Algorithm 4 describes our inner-outer recycling process for shifted systems with

multiple right-hand sides.

6.2.5 Algorithm Analysis

We now discuss the computational costs associated with Algorithm 4. Once again,
including an invariant subspace in U and U; formed from eigenvectors corresponding
to the smallest eigenvalues from our initial non-shifted system deflates the spectrum.
Additionally, the right-hand side is made small across spectral components in the K
direction. This is the large K and not smaller, right-hand side specific K;.

We use the techniques mentioned in Subsection 5.2.5.3 and Subsection 6.1.5 to
reduce the cost of the initial QR factorization and the updates. Also, since we only
recalculate K and K after we have computed all the shifts, we store KJTA(’“) and

K;‘-FUj for use in (6.13) for all shifts.
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Algorithm 4: Recycling and Global Basis Construction

Uy < 10 eigenvectors of A

1

2 X/ < solutions to (A(O) + WI) X0 = B for all v,
3 U <« basis for Range([Ug, Xo])

14 U; < [Ug, Xo(5,7)]

5 for k=1:nsys do

6 for j=1:nrhs do

7 % Form K and K; to use for all shifts K=A®U
8 [K,R] = ¢r(K,0)

9 U=U/R
10 K]’ = A(k)U]
11 [K;,R] = ¢r(K;,0)
12 Uj = Uj/R
13 for £ =1:nshifts do
14 % Check if U is a good enough space
15 r(:0 = b — (K +7U) (1+K'U) ' K’b
16 if Im 0> fol then
17 % MINRES recycling using Uj
18 Solve (6.13)
19 Find Xg.k’é) by solving (6.14)
20 U< [U,ynm]
21 U; < [Uj,ym]
22 end
23 end
24 end
25 end

Since we reuse A9 for many reconstructions, the initial recycle spaces are com-
puted off-line for the DOT problem. The overhead costs for the main loop of the
algorithm include updating K and finding the initial residual and solution. If we
have to do recycling, we must update K; and solve (6.13) for all shifts. We argue

that the small number of MINRES iterations required offsets these costs.

6.2.6 Numerical Experiments

In this section, we provide two 2-dimensional numerical experiments in the DOT
setting. The goal in this setting is to solve the sequence of shifted systems efficiently
while constructing the global basis for reduced order modeling. We show two exper-

iments where the global basis is reused, in order to show that with this new method,
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we can still reuse the global basis. The set-up for the experiments is the same as
in Section 5.3, except now we are using two frequencies. In this application we are

6 .
2mi0%wr ), is the
v

to solving systems of the form (A(k) + ng) X*6) = B, where Yo =
frequency and v is the speed of light in the medium. For both experiments we use
two frequencies, 0 and 10 MHz. Results are reported for both using the full order
model and the ROM to compute the function and Jacobian evaluations for each
experiment. The tolerance in line 16 of Algorithm 4 was set to be 1077. All of the
experiments were run using a laptop with a 3.20 GHz processor and 16.0 GB RAM
using MATLAB R2015b.

The experiments were solved on a 201x201 mesh, which gives us 40,401 degrees of
freedom for the forward problem. We use 32 sources and 32 detectors. Following the
PaLs approach, we use 25 compactly supported radial basis functions, which results
in 100 parameters for the optimization problem. Figure 4.8 shows the absorption
image using the initial set of parameters. The projection basis that are used for
Experiments 1 and 2 were created with the first 3 iterations of the optimization
using the full order model for Experiment 1.

In Experiment 1, we needed to solve 373 large, single right-hand side systems to
generate what we needed to construct the global basis matrix (note that the 128 of
these corresponding to X (09 ¢ould have been pre-computed off-line). Including the
additional 10 eigenvectors of A(®) that were used as the first 10 columns of V, V
has 383 columns and thus the reduced model has order 383.

The optimization using the full order model for Experiment 1 required 82 func-
tion evaluations and 49 Jacobian evaluations. In comparison, the optimization run
using the reduced order model, once it has been generated, required 36 function
evaluations and 18 Jacobian evaluations, indicating that using a ROM in place of
FOM does not impact the convergence rate of the optimization. Figure 6.2 shows
the reconstructions for Experiment 1. The bottom line is that solving the opti-
mization using the full order model requires the solution of 8,384 systems of size
40,401 x 40,401. On the other hand, solving using our approach requires solution

of 373 systems of size 40,401 x 40,401, which are used to construct V during the
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Figure 6.2: Results for Experiment 1. Reconstruction on a 201 x 201 mesh, resulting
in 40,401 degrees of freedom in the forward model and 383 degrees of freedom in
the reduced model for the forward model. 32 sources, 32 detectors, and 25 basis
functions were used.

first few optimization steps. The remainder of the work is in solving systems of size
383 x 383 until the convergence tolerance for the optimization is achieved.

Table 6.3 also includes the number of (unpreconditioned) MINRES iterations
with and without recycling. Although the table only shows a sample of results, it is
clear that the iterations decrease from one right-hand side to the next, and system
to system, using our approach. The jump in number of iterations for right-hand-side
33 comes from the fact that we concatenated B and C to form one right-hand-side
for the symmetric transfer function, so the 33' right-hand side corresponds to the
first column in C.

In Experiment 2, we used a different problem than in Experiment 1, but with the
ROM formed from the basis made in Experiment 1. Therefore, for this experiment
no additional full order model solves were required. The optimization using the
full order model required 29 function evaluations and 16 Jacobian evaluations. The
optimization run using our reduced order model took 32 function evaluations and
22 Jacobian evaluations to converge to our stopping criterion. Figure 6.3 shows the

reconstructions for Experiment 2.
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Our Approach MINRES

System | Shift | RHS | Initial Rel. Res. | Cols U | Cols U; | Its Its
1 1 7.394391e-05 138 12 140 463

2 1 7.393480e-05 138 12 140 463

1 20 7.717954e-07 176 12 45 541

2 20 7.770250e-07 176 12 46 541

1 32 8.564147e-08 200 12 0 487

9 2 32 8.993545e-08 200 12 0 487
1 33 2.618185e-05 200 12 105 467

2 33 2.617891e-05 200 12 105 467

1 53 1.014723e-06 240 12 38 528

2 53 1.017215e-06 240 12 38 528

1 64 9.980185e-08 260 12 0 489

2 64 1.002432e-07 260 12 1 488

1 1 4.164954e-05 261 14 112 474

2 1 4.164502e-05 261 14 112 474

1 20 4.591432e-07 299 14 22 513

2 20 4.666139¢-07 299 14 22 513

1 32 7.825542e-08 321 12 0 497

3 2 32 8.248123e-08 321 12 0 497
1 33 1.163491e-05 321 14 81 474

2 33 1.163392e-05 321 14 81 474

1 53 4.317199e-07 361 14 18 526

2 53 4.322702e-07 361 14 18 526

1 64 8.008862¢-08 383 13 0 497

2 64 8.136813e-08 383 13 0 497

Table 6.3: Comparison of the inner-outer approach for shifted systems as described

in Algorithm 4 with ~, = 0, M where wy = 10 MHz is the frequency and v is the

speed of light in the medium vs MINRES

20
a0
E
120
140
160
180
200

) Ground truth absorption im- (b) Reconstruction using the full (¢) Reconstruction using the re-
age order model. duced order model.

Figure 6.3: Results for Experiment 2. Reconstruction on a 201 x 201 mesh, resulting
in 40,401 degrees of freedom in the forward model and 383 degrees of freedom in the
reduced order model. 32 sources, 32 detectors, and 25 basis functions were used.
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Chapter 7

Recycle Spaces for Inner-Outer Recycling

In this chapter we explore the recycle spaces used in inner-outer recycling for shifted
systems in more detail. Once again, we are looking to solve shifted systems of the

form

(A®) + E)x ™0 = b, (7.1)

for symmetric A®) and E and several values of k and ¢ via recycling. In the previous
chapter, we used eigenvectors that correspond to the smallest eigenvalues of the
initial system, A a5 an invariant subspace for the recycle space. As the shift
increases and the shifted system gets further away from A(®) we should consider if
this invariant subspace is still relevant. In this chapter we explore the idea of using
generalized eigenvectors of A(9) and E as an invariant subspace for the recycle space

used in inner-outer recycling.

7.1 Generalized Eigenvalue Problem

The generalized eigenvalue problem is the problem of finding a vector w # 0 that
satisfies,

Aw = \Ew, (7.2)

where A and E are matrices. The vector w is called the generalized eigenvector of
A and E and X is called the generalized eigenvalue of A and E. The generalized

eigenvalue problem can be written as a standard eigenvalue problem if E is invertible,
E'Aw = \w. (7.3)

If A and E are both Hermitian matrices, in most cases performing this inversion will

destroy that structure, that is, E"'A is not necessarily Hermitian.
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From (7.2) we observe the following property,

(A+7vE)w = Aw+~vEW

AEw + yEw

(A+7v)Ew.

Therefore, the generalized eigenvectors have a “shift invariance” property. This prop-
erty is our motivation to use them as an invariant subspace in the recycle spaces.

Additionally, perturbation to A would give the following generalized eigenvalue
problem,

(A +F)w = A\Ew. (7.4)
Again, if E is invertible we rewrite this as follows,

E (A +F)w=\w. (7.5)

We are interested in the relationship between w and w.

7.2 Invariant Subspaces

In this section we explore the generalized eigenspaces of A® and E given a small
perturbation to A. For the DOT problem, the eigenvalues are not nicely clustered.
Theorem 4.1 in [43], says that for an SPD matrix, A, under certain conditions for
perturbation matrix, F, the invariant subspace of A that is associated with the
smallest eigenvalues stays nearly an invariant subspace for the perturbed problem,
even if those smallest eigenvalues are not well separated from the next largest ones.

We rewrite our generalized eigenvalue problem using a similarity transform as

follows,
1 1 1 1
E z2AE z2E2w=)\Ezw. (7.6)
| S N —
q q

We note that this symmetrized eigenvalue problem has the same eigenvalues as
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the original eigenvalue problem, E"'Aw = Aw. Therefore, we apply Theorem 4.1
from [43] to get a bound on the eigenvalues. Let us establish some notation first.

Let E2AE"2 have the following eigendecomposition,

AE"? = [Q; Q2 Qs]diag (A1, As, A3) [Q1 Q2 Q3]7, (7.7)

N

E-

where Q = [Q1 Q2 Q3] is an orthogonal matrix and A; = diag()\gi), e ,)\](c?). The
eigenvalues have also been ordered from smallest to largest. We consider the pertur-
bation matrix E_%FE_%, where the projection of E :FE 2 into the Range([Q1Qz2])
is small, therefore ||E_%FE_%Q1 Q2]||r < e. It does not need to be assumed that

sep(A1,A2) is large. It is also assumed that
d= mz’n(/\?) — €, )\53) -n)—2€e- ()‘12311) +€)>e€, (7.8)

2
5:5(1—2i)+x,§11)+e. (7.9)

Applying the theorem means that for each eigenvalue 5\51) of B3 (A + F)E_% corre-
sponding to the invariant subspace Range(Ql), there exists an eigenvalue )\51) such
that |5\§.1) - )\51)| <e+ %. Since the eigenvalues for this symmetric problem are the
same for our original problem, this bound on the eigenvalues holds in that case as

well. The theorem also provides the following bound,

tan 6q (Range(Ql),Range(Ql)) < (7.10)

S|

Since W = E_%Q it is not clear that we can use this bound to develop a bound for
the relationship between W1 and Wl.

We look at the one column of Q, E’%ql = E’%ql + E’%C, where ( represents the
difference between the invariant subspaces. If E_%C does not magnify the difference,
then we would assume that wy is close to wj.

Next, we look at the invariant subspaces numerically. For both examples, we

looked at the generalized eigenvector corresponding to the 8 smallest generalized
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Figures 7.1 and 7.2 show how close the generalized eigenvectors of

A®) and E remain to the generalized eigenvectors of A(®) and E for two numerical

examples. We give the cosine of the largest canonical angle at each optimization step

in Figure 7.1 and the cosine of the smallest canonical angle at each optimization step

in Figure 7.2. In both test problems, the cosine of the largest and smallest canonical

angles remain close to 1, meaning 6 is quite small and entire generalized eigenspace

corresponding to the smallest 8 generalized eigenvalues remains close.
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7.3 Numerical Experiments

We would like the invariant subspace associated with the generalized eigenvectors
to improve the convergence of MINRES when used as a recycle space in Algo-
rithm 3. The interlacing theorem [68] says that the nonzero eigenvalues of (I -
KK?) (A® + 4E) (I-KK7') are bounded by those of (A*) +4/E). Therefore, we
know that we will not make the convergence worse, but ultimately we would like to
make the convergence better.

Two numerical experiments show that this is indeed the case. Table 7.1 compares
three methods for solving (A(k) + 'ygE) x(0) = b, MINRES and Algorithm 3 with
two different initial recycle spaces. We initialize U and Uy with 8 generalized eigen-
vectors corresponding to the smallest eigenvalues and 8 eigenvectors corresponding
to the smallest eigenvalues of A(®). The recycle spaces are updated as usual. E
is a random diagonal matrix with positive entries, A®) is from the DOT problem,
and v = 0 : 0.01 : 0.04. The reader will notice that for both method of forming
the recycle spaces, there is a decrease in number of MINRES iterations required for
inner-outer recycling versus MINRES. However, the number of MINRES iterations
is similar across both recycle spaces. This is not unexpected since this is a small
shift.

Next, we increase the shift. Table 7.2 compares three methods for solving
(A(k) +'ygE) x(#0) = b, MINRES and Algorithm 3 with two different initial recy-
cle spaces. We initialize U and U, with 8 generalized eigenvectors corresponding to
the smallest eigenvalues and 8 eigenvectors corresponding to the smallest eigenvalues
of A(®. The recycle spaces are updated as usual. E is a random diagonal matrix,
A®) is from the DOT problem, and ~, = 0 : 0.02 : 0.08. For this slight increase in
shift, the 8 eigenvectors corresponding to the smallest eigenvalues of A© are no
longer a sufficient recycle space for this problem. In fact, the maximum number of
MINRES iterations is achieved for the first shift of the initial system. Based on the
results we have seen so far, we argue that for large shift, the generalized eigenvectors

are beneficial.
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Our Approach MINRES

System | Shift | Cols U | Cols Uy | Gen. Evec. Its | Evec. Its Its
1 8 8 274 274 467

2 9 8 138 152 461

0 3 10 8 29 27 455
4 11 8 33 32 450

5 12 8 29 27 444

1 13 9 155 153 467

2 14 9 53 54 461

1 3 15 9 24 25 455
4 16 9 23 25 450

5 17 9 16 12 444

1 18 10 140 142 467

2 19 10 52 53 461

2 3 20 10 25 22 455
4 21 10 16 18 450

5 22 10 11 6 444

1 23 11 135 135 467

2 24 11 45 45 461

3 3 25 11 17 17 455
4 26 11 14 15 450

5 27 11 7 9 444

1 28 12 117 117 467

2 29 12 31 31 461

4 3 30 12 17 18 455
4 31 12 15 14 450

5 32 12 5 8 444

Table 7.1: Comparison of the inner-outer approach for shifted systems as described
in Algorithm 2 with 4, = 0 : 0.01 : 0.04 and only generalized eigenvectors of A(?)
and E as initial recycle space vs. inner-outer approach for shifted systems with only
eigenvectors of A as initial recycle space vs. MINRES.



Our Approach MINRES

System | Shift | Cols U | Cols Uy | Gen. Evec. Its | Evec. Its Its
1 8 8 274 274 467

2 9 8 152 1000 455

0 3 10 8 49 60 444
4 11 8 41 666 434

5 12 8 30 23 425

1 13 9 153 153 463

2 14 9 76 88 451

1 3 15 9 17 16 441
4 16 9 21 22 431

5 17 9 17 13 423

1 18 10 142 143 474

2 19 10 71 72 463

2 3 20 10 18 18 453
4 21 10 14 16 443

5 22 10 15 11 434

1 23 11 132 133 491

2 24 11 59 59 475

3 3 25 11 17 21 462
4 26 11 12 14 450

5 27 11 9 12 440

1 28 12 120 120 485

2 29 12 43 49 472

4 3 30 12 16 19 459
4 31 12 15 13 448

5 32 12 6 11 439

Table 7.2: Comparison of the inner-outer approach for shifted systems as described
in Algorithm 2 with 4, = 0 : 0.02 : 0.08 and only generalized eigenvectors of A(?)
and E as initial recycle space vs. inner-outer approach for shifted systems with only
eigenvectors of A as initial recycle space vs. MINRES.



Chapter 8

Conclusions

In this thesis we investigated methods of reducing the computational cost of forward
model solves that arise in nonlinear parametric inverse problems. Specifically, we
looked at reducing this computational cost in the context of diffuse optical tomogra-
phy. First, we showed how we reduced the computational cost of the forward model
by using interpolatory parametric model reduction. This means that we create a
surrogate function to use instead of the full order model. The surrogate model is
constructed using a global basis. The global basis was originally constructed by
solving several full order model solves and then using a rank-revealing factorization.
While this proved an effective method for reducing the computational cost while
producing negligible degradation in the quality of the images, the global basis was
still expensive to construct.

Next, we developed a method of inner-outer recycling to not only solve the re-
quired full order model solves efficiently, but also to build the global basis for model
order reduction. We established that the transfer function and derivatives could be
written in terms of a SPD matrix for the zero frequency case. This new structure
was then used to develop an inner-outer Krylov recycling method that was able to
build the global basis on the fly, updating with only new information.

In the DOT problem, more than one frequency is typically used, therefore we
extended the inner-outer Krylov recycling to the shifted system case. We showed
an approach for solving sequences of shifted systems with a single right-hand side.
Also, we developed an approach for solving sequences of shifted systems with multiple
right-hand sides while building the global basis for ROM.

Finally, we explored different ways of constructing the recycle spaces for se-
quences of shifted systems with a single right-hand side. If the shifts are large, then

an invariant subspace of the initial system may no longer be helpful. Therefore, we
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looked at using generalized eigenvectors as an invariant subspace.
Many numerical experiments for DOT were provided to illustrate the success of
all of the above methods. However, we believe our methods have the potential to be

useful in other similar applications as well, such as EIT or ERT.
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Chapter 9

Future Work

There are many new directions of this research we would like to investigate further.
First, the performance of our recycling methods that construct the global basis de-
pends on the residual tolerance chosen and the number of full order model systems
solved. If we drop the tolerance slightly, we have found that the number of system
solves, and therefore the reduced model order, was even further reduced, without
too much degradation in the reconstruction. Similarly, solving more full order model
systems gave slightly larger reduced order models, but with no improvement in the
quality of the reconstruction. We would like to investigate the trade-offs in per-
formance due to these selections. We have also found that solving the systems
corresponding to different right-hand sides in a different ordering may also reduce
model order and we would like to investigate this phenomenon further.

In addition, we are currently investigating different ways to construct our recycle
spaces. We continue to investigate the generalized eigenvectors and their impact
on convergence. For the complex identity shift, we are looking at better selection
strategies for adding the real component from the initial solution to U. Since our
recycle spaces could get very large for multiple right-hand sides with multiple shifts,
we are looking at ways to identify when we might need to purge or refresh the
information in our recycle spaces. An alternative to purging information that we are

considering is binning information for shifts that are close.
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