Visualizing the Allocation and Death of Objects

Raoul L. Veroy, Nathan P. Ricci, Samuel Z. Guyer
Tufts University
Medford, MA
{rveroy, nricciOl, sguyer} @cs.tufts.edu

Abstract—We present memory allocation and death plots, a
visualization technique for showing both which method an object
is allocated in a Java program, and in which method that object
eventually dies. This relates the place in a program’s execution
where memory is first used to the place it is no longer used,
thus helping the programmer to better understand the memory
behavior of a program.

I. INTRODUCTION

“How does my program use memory?” is a question pro-
grammers often have to answer. There are many tools available
to answer at least part of this question; there are a plethora
of ways to understand where objects are allocated, or what
objects are resident in the heap at a particular point in time.
However, there are few tools that can show the programmer
where objects die.

To answer this last question, we present a system which
determines the context in which objects die using a memory
tracing tool, and presents this information to the programmer
using a hive plot visualization [1]. We term such a visual-
ization a memory allocation and death plot. The memory
allocation and death plot of a program lets a programmer
identify both the hot sites of object allocation and death, and
quickly relate them.

II. OUR DESIGN
A. Data

We use data from Elephant Tracks, a dynamic program
analysis tool for Java which produces detailed traces of
garbage collection-related events [2]. The traces produced by
Elephant Tracks have a record of all of the object allocations
and deaths that occurred during execution of a program. An
object is considered dead when it is no longer reachable
from the roots (local and global variables) which is often
different from when the object is actually collected. Elephant
Tracks is able to place object allocation and death with
sufficient precision to determine in what calling context (i.e.,
in what thread, and what methods were on the stack of that
thread) those events occurred. The context information was
not previously available, and thus its presentation will require
novel visualization strategies which we will discuss in the next
section.

Understanding some of the interesting cases of memory be-
havior requires a brief digression into garbage collection. Most
modern JVM garbage collectors are generational garbage
collectors. Generational collectors exploit the observation that
most objects die young. New objects are allocated in a small

(on order of megabytes), frequently collected, space called the
nursery. Objects that survive a nursery collection are promoted
to a larger, less frequently collected space.

For a generational collector, one problematic case is the
object that survives the nursery, but then dies soon after. Such
objects will remain resident in memory until a full heap collec-
tion occurs, even though they are dead. Objects in the eclipse
benchmark from the DaCapo suite [3] frequently exhibit this
behavior. Therefore we traced eclipse with Elephant Tracks
to see if we could determine anything about these nursery
escapees through visualization.

The Elephant Tracks trace includes a large amount of
information; over 65000000 objects are allocated during the
execution of the program, and the trace itself is roughly 30 GiB
without compression. In order to cope with this data, we
took several steps to reduce it. First, since we are primarily
interested in objects that live long enough to escape the
nursery, we filtered out short lived objects; for our purposes
short lived objects are those that survived less than 8 MiB of
allocation.

Second, we reduce the size of our contexts. Although we
have the complete calling context for each object’s death
and allocation, the number of such contexts for eclipse is
approximately 40000. To reduce their number, we trim them
to a single method (the method in which the event occurred).
Furthermore, we group these methods based on their class.
Thus, the allocation context of an object refers to the class
that contains the method where the object was allocated, and
the death context refers to the class containing the method
where it died. This reduces the number from 40000 contexts
to approximately 2800 classes.

After taking these steps, our raw data consists of pairs of
allocation and death contexts, one for each object allocated
during our run of the eclipse benchmark.

B. Visual Encoding

The relationship of the object’s allocation context to the
death context can be represented as a graph. We propose
to use hive plots, a layout algorithm for network diagrams
developed by Krzywinski [1]. Nodes represent allocation and
death contexts. Edges start with allocation contexts as the
source and are connected to the death context where the object
dies. Nodes are arranged radially on linear axes according to
user defined rules. The rules determine assignment of nodes
to axes, position and orientation of axes, and edge rendering.

By applying the same rules to the trace data, our visualization
representation becomes repeatable and comparable.

We place axes similar to a 2D Cartesian layout. We shall call
the axes north, south, east and west. The node corresponding
to a context is assigned to an axis depending on whether the
context is allocation only, death only or both. Allocation only
nodes are assigned to the north axis. Death only nodes are
assigned to the west axis. Nodes which serve as both allocation
and death contexts are then placed on the south axis. The
south axis is then cloned as the east axis. This enables the
visualization to better handle edges that loop back to the south
axis as well as self-edges.

As a result of our axes assignment rules, both vertical axes
contain allocation sites and both horizontal axes contain death
sites. This also means that we are able to represent direction
as the edge endpoint incident to the vertical axes will always
be the source and the edge endpoint incident to the horizontal
axes will always be the target.

Given our axes assignment rules, edges can now be rendered
as simple curves without losing direction information. Self
edges only exist from the south to east axis quadrant. We
color these edges green in our implementation to be able to
distinguish self edges from regular edges which are colored
gray. Classes (recall that each context is a single Java class)
that belong to the same package are then grouped together and
given the same color.

Even with the data reduction already described, the resulting
memory plot for eclipse is still too cluttered. Therefore, we
further decompose the hive plot into a group of hive plots. We
group the edges into 4 sets based on the in degree of the death
context nodes (0 to 200, 201 to 400, 401 to 600, everything
greater than 600), and assign each grouping to a plot within
the panel. Figures 2, 3, 4 show the hive plots for degrees 1 to
600. Figure 1 shows only the edges adjacent to death context
nodes with in degree greater than 600.

We rendered the hive plots using the HiveR package [4]
for the R programming language [S5]. The data was processed
using a combination of programs written in C and Python.

C. Results

Using our design, we are able to identify which classes
are hot spots for object death. In Figure 1, we are able to
identify six different classes where a lot of objects die, the
largest of which is the CharOperation class. The majority of
edges here are not self-edges which means that objects were
allocated in a different class. Prompted by the visualization, we
can explore the data and find that, within the CharOperation
class, the plurality of objects die within the splitOn method.
This method takes a character array, and breaks it into tokens
based on a delimiting character passed as a parameter. The fact
that significant numbers of objects die here indicates that the
last act preformed on many of these character arrays is to be
divided into pieces. Whether it would be possible to use this
information to improve the memory performance of eclipse
is unclear, and something we would like to explore in future
work.

In contrast to Figure 1, Figure 2 has a higher number of self-
edges. There is an interesting difference in structure in Figure
2 as compared to the other object flow diagrams, as evidenced
by the distribution of edges. Our design limits us though in
how we can relate this information to the program structure.
We propose alternative designs in the following section that
will further help the programmer in understanding memory
flow and death.

III. DESIGN ALTERNATIVES

Our node placement rules used class and package infor-
mation to arrange the nodes along the axes. Although this
rule allows us to somewhat minimize the visual clutter, the
position along the axes does not provide us any interesting
insight regarding the death behavior of objects. We propose to
use some form of program time as the parameter to determine
node position along the axis. Some chronological arrangement
of the nodes is more likely to be a better use of the axial
dimension.

In our design, the color of a node is associated with
the package of the class where the context can be found.
While it allows us to differentiate nodes according to package
membership, this may not be the best use of this visual
dimension. One possible alternative is to use color to represent
node degree.

Our current implementation is non-interactive as we initially
sought to develop and evaluate ideas for the visualization.
Interactivity is necessary if the visualization is to be useful
to programmers. An interactive implementation of the visual-
ization would at least include the ability to identify contexts
by interacting with the visual representation and the ability to
modify the design parameters.

The large number of edges in the resulting visualization
makes the flow trends virtually impossible to discern in for
non-trivial traces. Applying edge-bundling is one possible way
to reduce the visual clutter [6].

IV. RELATED WORK

Although to our knowledge there are no existing visualiza-
tion tools which relate the allocation and death contexts of an
objects, there are numerous tools for visualizing the heaps of
programs to provide other information.

De Pauw et al. present a tool focused on finding references
which cause memory leaks [7]. Although our visualization is
aimed at understanding object lifetimes (not memory leaks),
memory leaks are inherently related to object lifetimes, in
that they are one or more objects that remain reachable
well past the time of their last use. De Pauw’s technique
aggregated objects with similar reference patterns, as well as
interactive navigation and contraction/expansion of aggregates.
Their technique, however, does not identify the contexts in
which objects become unreachable, instead relying on the
programmer to specify points where they expect certain objects
to die, and calling their attention to the references causing
violation of these programmer expectations.

600

A

In degree d | d

Fig. 1.

Fig. 2. In degree d | 1 <d <200

Reiss [8] presents a visualization of the memory usage of
Java programs. The visualization employs a summary of the
Java heap based on object ownership, and is intended to help
programmers diagnose errors involving excessive or incorrect
usage of memory. It does not, however, provide information
about when or where the involved objects eventually cease to
be used.

In a similar vein, Mitchel et al. [9]’s work attempts to
expose the runtime costs of design decisions. In order to do so,
they created a visualization of the Java heap which aggregates
nodes based on type and object ownership, and produces a
graph of the resulting aggregation with nodes displaying the
total size of the objects that underlies them. Taking advantage
of ownership (and some edge pruning heuristics) allows the
programmer to see the sizes of not just individual objects, or
even the amount of memory used by a certain type, but the
amount of memory used by whole data structures. By itself,
however, it does not offer any guidance as to when the runtime
might be done with that memory.

Printezis and Jones [10] GCSpy framework provides a way
for visualizing the memory behavior of a program. It can
connect to multiple VMs and work with data from traces.
However, it is primarily focused on providing information
about the memory management system. Memory management
is of course, closely related to object death, since uncollected
dead objects will continue to occupy memory. While one could
use GC Spy to visualize, for example, which objects were dead
after a garbage collection, it would not be simple to determine
in what context they had died.

V. CONCLUSIONS

We have presented a technique, memory allocation and
death plots, for visualizing the flow of objects from their
allocation context to the context in which they eventually die.
We are able to see intriguing patterns of the memory usage of a
program using this technique. Nevertheless, many significant
questions about how to best visualize and make use of this
information remain. Can we further reduce visual clutter? Can

Fig. 3. In degree d | 201 < d <400

Fig. 4. In degree d | 401 < d <600

we integrate more information about the memory properties
of a program into our visualization? Are there other potential
use cases? How can we make use of interactivity? These are
questions we hope to explore further in the future.

REFERENCES

[1] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra, “Hive
plots-rational approach to visualizing networks,” Briefings in
Bioinformatics, vol. 13, no. 5, pp. 627-644, 2012.

[2] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss, “Elephant tracks: portable
production of complete and precise gc traces,” in Proceedings of the
2013 international symposium on International symposium on memory
management, ser. ISMM ’13. New York, NY, USA: ACM, 2013, pp.
109-118.

[3] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,

A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The dacapo benchmarks: java benchmarking
development and analysis,” SIGPLAN Not., vol. 41, no. 10, pp.
169-190, Oct. 2006.

[4] B. A. Hanson, HiveR: 2D and 3D Hive Plots for R, 2013, r package
version 0.2-10.

[5] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013.

[6] D. Holten and J. J. Van Wijk, “Force-directed edge bundling for graph
visualization,” Computer Graphics Forum, vol. 28, no. 3, pp. 983-990,
2009.

[71 W. D. Pauw and G. Sevitsky, “Visualizing reference patterns for
solving memory leaks in java,” in in Proceedings of the ECOOP 99
European Conference on Object-oriented Programming.
Springer-Verlag, 1999, pp. 116-134.

[8] S. P. Reiss, “Visualizing the java heap to detect memory problems,” in
In VISSOFT 09: Proceedings of the 5th IEEE International Workshop
on Visualizing Software for Understanding and Analysis, 2009, pp.
73-80.

[9]1 N. Mitchell, E. Schonberg, and G. Sevitsky, “Making sense of large

heaps,” in Proceedings of the 23rd European Conference on ECOOP

2009 — Object-Oriented Programming, ser. Genoa. Berlin,

Heidelberg: Springer-Verlag, 2009, pp. 77-97.

T. Printezis and R. Jones, “Gespy: an adaptable heap visualisation

framework,” in Proceedings of the 17th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications,

ser. OOPSLA 02. New York, NY, USA: ACM, 2002, pp. 343-358.

(10]

