

A Saturation Approach to Delay Time Estimation

During the Solidification of Ferrous Alloys

A thesis submitted by

Brian F. Stanford

in partial fulfillment of the requirements for the degree of

MASTER of SCIENCE

in

Mechanical Engineering

Tufts University

February 2024

© 2024, Brian F. Stanford

Adviser: Douglas Matson

 ii

Abstract

This work is motivated by a desire to enhance the control of microstructural evolution during

casting and welding processes in both ground and space-based environments for undercooled

ferrous alloys. Of appreciable interest is the influence of stirring on phase selection during rapid

solidification. The microgravity electromagnetic levitation (ISS-EML) platform provides the

unique ability to select a wide range of melt convection conditions while observing transformation

kinetics in a containerless manner using high speed video and radiation pyrometry. Undercooling

and stirring promotes nucleation of two phases separated by a short delay, the duration of which

influences bulk material properties. This thesis compares the predictive capability of two damage-

based models (Read-Shockley and Saturation) for delays in FeCo and FeCrNi alloys. Both

provided comparable estimations across a range of convective conditions as validated by an

analysis of the relation between independent dimensionless parameters which yield a slope of -4

when approximations are accurate.

 iii

Acknowledgements

I would like to acknowledge the constant support and encouragement from my parents Jim and

Sandra Stanford and from my brother James, without which I would not have been able to complete

this paper. I would also like to thank Douglas Matson who has been a source of inspiration

throughout the writing process. Special thanks to my colleagues Peace Muusha, Jannatun Nawer,

Colby Azersky, Dorothy Waskow, Muneeba Fakhrul, and Brian Fu who I could always look to for

advice during my studies. And to Evan Baker for guidance in navigating my first experience with

solidification experiments at Bray Labs. I would also like to thank William Liu for his invaluable

knowledge and assistance in the development of the MATLAB delay time code, without which

this research would not be possible. I must offer my deep gratitude for contributions of the team

of scientists from the German Space Agency Microgravity User Support Center (DLR-MUSC)

and for access to the ISS-EML, which is a joint undertaking of the European Space Agency (ESA)

and the DLR Space Administration. Thanks to the team at NASA MSFC including Brandon S.

Phillips, Glenn Fountain, Trudy Lynn Allen, and Michael P. Sansoucie for countless hours of

levitation test support during my frequent visits to Alabama, with special mention of Trudy for arc

melting and massing the ESL samples used in this research. Finally, thanks to my innumerable

friends, relatives, and teachers for their support in my education over the years. I would like to

acknowledge funding from NASA grants: 80NSSC19K0256 and NNX17AH41G at Tufts

University, and from the Tufts Graduate Student Research Committee for their contribution of

funding for baseline ESL data collection at MSFC.

 iv

Table of Contents

1 Introduction 1

2 Background 4

 2.1 Overview 4

 2.2 Rapid Solidification Studies 4

 2.3 Pyrometry Theory 8

 2.4 High-Speed Imaging 12

 2.5 Geometry-Based Solidification Model 13

 2.6 Retained Damage Model 19

 2.7 Thermophysical Properties 23

3 Methodology 26

 3.1 Overview 26

 3.2 Experimental Setup 27

 3.3 Sample Preparation 30

 3.4 Data Collection Procedure 32

 3.5 Computing Delay Time 35

4 Modeling 39

 4.1 Overview 39

 4.2 Surrogate Modeling (MHD) 39

 4.3 Modeling the Influence of Convection by a Saturation Approach 49

 4.4 Model Validation by Dimensionless Predictions 52

5 Discussion 60

 5.1 Overview 60

 v

 5.2 Convection Model Comparison 60

 5.3 Alloy Behavior Comparison 62

 5.4 Comments on Model Validity 64

6 Conclusions and Future Work 66

 6.1 Utility of MHD Modeling Approach 66

 6.2 Damage Model Comparison 66

 6.3 Alloy Comparison 67

 6.4 Model Validation 68

 6.5 Future Work 69

7 References 71

 Appendices 75

 vi

List of Tables

TABLE I Thermophysical Properties of FeCrNi 23

TABLE II Thermophysical Properties of FeCo 24

TABLE III Turbulent Shear Rate Secondary Coefficients 40

TABLE IV Model Curve Fit Parameters 45

TABLE V Slopes of Nondimensional Delay Time and Driving Force 57

TABLE VI Comparison of Secondary Phase Growth Velocities 58

 vii

List of Figures

Figure 1 Common Crystal Structures 5

Figure 2 MUSC at DLR-Köln 29

Figure 3 View of a Post EML Run Sample Surface Through EDX 31

Figure 4 Mosaic of Radial Camera Generated Video Frame Images 36

Figure 5 Growth Velocity Plot Showing Two Linear Regressions 38

Figure 6 FeCo Turbulent Velocity as a Function of HCV 41

Figure 7 FeCo Shear Rate vs. Velocity (Turbulent) 42

Figure 8 FeCrNi Shear Rate vs. Velocity (Turbulent) 43

Figure 9 FeCo Plot of Convective Free Energy vs. Shear Rate 47

Figure 10 FeCrNi Plot of Convective Free Energy vs. Shear Rate 47

Figure 11 FeCo Plot of Convective Free Energy Normalized by Shear Rate 48

Figure 12 FeCrNi Plot of Convective Free Energy Normalized by Shear Rate 49

Figure 13 FeCo Saturation Predictions for Delay Time vs. Undercooling 51

Figure 14 FeCrNi Saturation Predictions for Delay Time vs. Undercooling 51

Figure 15 FeCo Read Shockley Dimensionless Driving Force Plot 54

Figure 16 FeCo Saturation Dimensionless Driving Force Plot 54

Figure 17 FeCrNi Read Shockley Dimensionless Driving Force Plot 55

Figure 18 FeCrNi Saturation Dimensionless Driving Force Plot 55

Figure 19 FeCo and FeCrNi Dimensionless Driving Force Plot 56

Figure 20 FeCo Metastable and Stable Phase Growth Rates 58

 viii

Nomenclature

Acronyms:

ISS-EML International Space Station Electro Magnetic Levitation Facility

RDM Retained Damage Model

EML Electro Magnetic Levitation

EM Electro Magnetic

MHD Magnetohydrodynamic Modeling

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. (German Space Agency)

MUSC Multigravity User Support Center

ACP Axial Camera and Pyrometer

CNT Classical Nucleation Theory

LKT Lipton-Kurz-Triveldi Model

BCT Boettinger-Coriell-Triveldi Model

Free Energy Terms:

ΔGT (J/m3) Total Retained Free Energy from Undercooling Stable + Metastable +
Convection.

ΔGS (J/m3) Retained Free Energy from Stable (γ) Phase Undercooling

ΔGM (J/m3) Retained Free Energy from Metastable (δ) Phase Undercooling

ΔGC (J/m3) Retained Free Energy from Convection

f(�̇�) Function of shear rate (�̇�) and other thermophysical properties

 ix

RDM Thermophysical Properties:

Ωs (m3/mol) Stable (γ) Phase Atomic Volume

Ωm (m3/mol) Metastable (δ) Phase Atomic Volume

ΔHs (J/mol) Stable (γ) Phase Enthalpy of Fusion

ΔHm (J/mol) Metastable Phase (δ) Enthalpy of Fusion

TLs (K) Stable (γ) Phase Liquidus

TLm (K) Metastable (δ) Phase Liquidus

γm/s (J/m2) Grain Boundary Energy (δ γ)

γm/m (J/m2) Grain Boundary Energy (δ δ)

ΔT (K) Total Observed Undercooling Stable + Metastable.

ΔTm/m (K) Metastable (δ) Phase Undercooling

ΔTm/s (K) Stable (γ) Phase Undercooling

T (K) Sample Phase Temperature Prior to Metastable Recalescence

Shear Rate Thermophysical Properties:

ρ (kg/m3) Liquid Density

μ (Pa⸱s) Liquid Viscosity

σel (S/m) Liquid Electrical Conductivity

RDM Constants:

fx (- -) Fraction of Free Energy Retained

τ (s) Calculated Incubation Delay Time

θ (radian) Heterogeneous Nucleation Wetting Angle

f(θ) (- -) Function of Wetting Angle

Cext (- -) External Constant (RDM parameter)

β (atom/s) Cluster Atomic Attachment Rate

NA (- -) Avogadro’s Number

kB (- -) Boltzmann Constant

 x

Read-Shockley Modeling Parameters:

Δm (J∙s/m2) Empirical Slope Constant Relating Shear and Damage

Δb (J∙s/m2) Empirical Intercept Constant Relating Shear and Damage

Saturation Modeling Parameters:

‘b’ (- -) Empirical Slope Constant Relating Shear and Damage

‘a’ (- -) Empirical Initial Incline Constant Relating Shear and Damage

Shear Rater Modeling Parameters:

variable V (m/s) Flow Velocity

variable y (degrees) Hold Temperature measured in Degrees Above or Below Stable Phase
Liquidus

HCV (V) Heater Control Voltage

�̇� (s-1) Maximum Shear Rate

A, B, C (- -) Primary Master Coefficients in Shear Rate Equation

d, e, f, g (- -) Secondary Third-order Temperature Coefficients in Shear Rate Equation

 1

Chapter 1. Introduction

In an industrial setting, operations such as casting and additive manufacturing rely on an accurate

understanding of a wide array of materials and their varied reactions to the thermal environment

in which they are processed. While plastics have retained a firm foothold in consumer industries

for their adaptability to nearly any form and their light weight, there are numerous applications

where low strength polymers simply cannot withstand the large stresses or strains that their product

will be subjected to. This is especially true in the aerospace industry where tools and components

must be equally as strong as they are formable, light, and inexpensive. For these purposes, there is

no better material than steels or iron based alloys. While many of the key thermophysical properties

for these materials have been well reported in literature [1], fine control of their reactions on a

molecular level at specific stages during the manufacturing process is typically gleaned from years

of experimentation and is often a closely guarded trade secret of the select few manufacturing

firms responsible for their production.

In steel and iron alloys, material composition and structure must be carefully controlled during

solidification to ensure that the final product meets specific requirements. In bulk, a material might

exhibit no signs of failure, but on the atomic scale, a collection of minor defects could significantly

compromise the strength or durability of the final product. It is well known that these properties

may be easily influenced by externally applied forces, fields, or thermal loads. External factors

such as gravitational forces can occur whether the manufacturer intends for them to be present or

not and can have a significant impact on the strength and quality of a resulting product, tool, or

component. The specifics of interactions between applied and unintentional influences on the

solidification process is currently a matter of debate which is the driving question intended to be

 2

answered by this thesis. It is important that scientists better understand controllable effects of

solidification in an effort to make publicly available information that is capable of greatly

improving the strength of manufactured products for both consumer and aerospace purposes.

In pursuit of this endeavor, emphasis must be placed on the specifics of phase selection, growth,

and microstructural evolution throughout the course of solidification. It has been well documented

in the literature that the duration of a phase transformation is heavily reliant on the quantity of total

available Gibbs free energy contained to the system [2-12]. One of the largest components of this

free energy can be tied directly to the amount of internal convective stirring within the material at

a given time. If precision control of convective stirring can be achieved, it becomes possible to

influence the duration of phase growth, effectively altering the microstructure and resulting

materials properties. Unfortunately, while stirring can be applied intentionally in ferrous alloys

through the application of a magnetic field, it can also be driven by uncontrollable gravitational

effects or flows produced by kinetic motion around the surfaces of a mold.

Space-based research offers investigators the chance to isolate and observe convective influence

on a solidifying sample in the absence of gravitational or external forces thanks to a zero-gravity

levitation environment. Therein, the manual adjustment of input control voltages to an

electromagnetic levitation (EML) coil can apply a quantifiable amount of stirring. The effects of

which are directly comparable to ground based levitation facilities where the only effects on a

sample are due to gravitational effects. The motivation for this thesis is to reinforce the connection

between convective forces within a sample and its effects on phase growth by first linking ISS-

EML sample behavior to the Retained Damage Model (RDM) [13] and then developing optimized

 3

parameters for two convection damage models: the Read-Shockley Dislocation Energy and the

Damage Saturation Model approaches. These models will be compared against collected

experimental data and adjusted to highlight key changes between different ferrous alloy

compositions. The final data set considered in this analysis spans a wide range of both convective

conditions and undercoolings, lending itself to a great many applications.

 4

Chapter 2. Background

2.1 Overview

The information detailed in the following section will provide a literature review around the key

concepts critical to the microstructural evolution of ferrous alloys. Specifically, the equipment

used by researchers to capture these events will be covered, along with a presentation of common

thermophysical properties of common manufacturing alloys. Two models that attempt to quantify

the driving factors behind material transformations during solidification will be discussed, and

their grounding equations derived. The first method, the Classical Nucleation Theory (CNT)

applies growth kinetics approximated by the Lipton-Kurz-Triveldi/ Boettinger-Coriell-Triveldi

(LKT/BCT) Model to develop a geometry-based prediction of solidification rates, while the second

method, the Retained Damage Model (RDM) follows a thermodynamic approach to investigate

the application of controllable parameters such as stirring and its impact on transformation delay

times. The RDM method alone is able to leverage predictions as a tool for enhancing

microstructural development and material properties in everyday products by selectively adding

or removing stirring to achieve a desired result.

2.2 Rapid Solidification Studies

The transformation from solid to liquid in ferrous alloys is notably reversible, with the steel

reverting to a solid state when enough thermal energy is extracted from the environment to lower

internal temperature below the liquidus. The re-solidification is once again gradual, with crystals

nucleating in small pockets of low temperature alloy and then growing outward into the

surrounding liquid by picking up loose atoms and adding them to a branching dendritic structure.

Typically, the initial nucleation will occur around a defect or oxide. There are several unique

 5

crystal structures which can nucleate independently of one another. Among the most common are

face centered cubic (FCC), base centered cubic (BCC), and hexagonal close packed (HCP)

pictured in Figure 1 [1, 14].

Figure 1 – Common Crystal Structures

During solidification within the liquid there is phase competition between these structures for

control over the final material composition. The internal energy requirement for a given phase

structure to form, along with its ease of retaining atoms, and accepting new atoms at a given

temperature each play a role in which phase will overtake the others. The phase that is ultimately

selected is dependent on the material composition [13, 14]. When the primary phase growth occurs,

it will often appear as a pyramidal structure with its peak growing along preferred crystallographic

directions dictated by anisotropic surface energies along the boundary between the metal and its

external environment. The intersection of this geometry with a curved surface will yield a

diamond-like shape that will grow larger as the temperature is lowered. The growth rate of the

preferred directions appear as corners of a polygon as this phase grows across the surface. This

growth is known to be a function of the temperature at which the sample was cooled to at the

instant of nucleation relative to the liquidus temperature [14]. This temperature difference is

known as undercooling and is an uncontrollable aspect of solidification. Eventually the primary

phase growth morphology will proceed to envelop the entire metal surface. The duration from

 6

when nucleation initiates to when the metal is consumed by a given phase is characterized by a

rise in temperature that is known as recalescence. During liquid recalescence the temperature rise

results from conversion of atomic translational kinetic energy in the liquid to vibrational energy in

the solid crystal lattice. During solid recalescence the rise is generated by a release of free energy

stored in the metastable solid as atoms rearrange to their stable phase crystal structure. Additional

energy contributions may come from free energy stored in defects within the crystal structure that

are put under pressure and locked in place during cooling of the liquid region as it solidifies [14].

In ferrous alloys, whichever phase occurs first is known as the ‘metastable’ phase because the

recalescence temperature rise partially remelts the metal allowing for further secondary phase

transformations to take root.

Once the temperature has sufficiently risen, a secondary ‘stable’ phase quickly nucleates and

emerges from within the metastable phase. It will begin to grow outward into the pre-existing

metastable mushy zone with a growth independent of the primary phase growth rate. The

secondary recalescence process initiated by this growth will release less internal energy than the

phase preceding it, resulting in a much smaller temperature rise than that of the primary phase.

The crystal structure of the secondary phase is often dense, with fine grains. The temperature at

the end of the formation will be nearly at the liquidus, beyond which no further heat will be

generated, and cooling will resume until the entire metal has reached a thermal equilibrium with

the surrounding environment, effectively locking the final crystal structure in place and

characterizing bulk material properties such as strength and toughness. In the immediate aftermath

of secondary phase nucleation, there will be a brief period where the primary phase has not yet

completed its growth into the surrounding liquid. During this time, the growth rates of the primary

 7

phase growing into the liquid region and secondary phase growing into the metastable mushy zone

of the liquified primary phase are in direct competition during a process known as phase selection.

If the secondary stable phase can grow faster than the metastable phase it will overtake it and

break-out into the undercooled liquid to form a very different microstructure [15]. The timing

between primary and secondary phase nucleation is known as a “delay time”. It is influenced by

the available free energy within the sample at the point of nucleation which is in turn a function of

undercooled temperature relative to the liquidus at the time of the primary phase nucleation. It has

been found that any additional energy added to the metal by external means can also affect the

timing of nucleation events.

According to the Retained Damage Model, deeper undercoolings invariably lead to more available

free energy being stored within defects in the lattice as pressure mounts on these singular regions

[1, 8]. With more energy available to drive nucleation and subsequent growth, growth rates for

both primary and secondary phases are accelerated, and secondary nucleation can occur much

sooner than in a shallow undercooled metal. The result is a smaller delay time, which will yield a

finer grain structure thereby influencing bulk material properties and the overall quality of a

product’s surface. Undercooling is an uncontrollable aspect of solidification, so it provides little

benefit when attempting to actively influence microstructure. However, the process of

solidification can be controlled by adding an externally applied energy source. One example of

this would be stirring the molten liquid during solidification which imparts kinetic energy directly

to a metal through flows resulting from internal convection. The more forceful the stirring, the

more energy that will be imparted, leading to significantly faster growth of a stable phase and

hence shorter delay times. The effect of convection on delay time overshadows the influence of

 8

both primary and secondary phase formation energy, making it an ideal means to directly influence

microstructure.

2.3 Pyrometry Theory

The cooling of a material during solidification can be recorded using high frequency pyrometry

measurements which are capable of characterizing surface temperature at any given point in time.

It is known that temperatures vary throughout a material and across the surface due to unequal

application of heating. One previous study which modeled temperature gradients through a finite

element analysis has shown that the surface of a spherical FeCrNi sample during solidification can

expect a variation of 0.1 degrees when the sample is not actively heated during solidification, and

3.2 degrees when the sample is held at a constant temperature of 1500 Kelvin during the simulation

to represent worst case heating during solidification [16]. It was concluded that in both cases the

temperature distribution across the surface was negligible and that it would not influence phase

growth or selection during solidification [16].

A typical pyrometer will sample measurements at a rate of 100 Hz [17]. Such is the case for the

International Space Station’s Axial Camera and Pyrometer mounted to the electromagnetic

levitator Columbus module [17]. Sampling at high frequency allows for clear resolution of key

temperatures during recalescence events. At 100 Hz the undercooled temperature at the instant of

primary phase nucleation can be clearly seen. In some steels such as the ones that will be discussed

in this work, the timing between primary and secondary phase transformations during

solidification is so short and temperature differences so insignificant that pyrometry is unable to

distinguish between them. Thus, in these cases only the final temperature of the material at the end

 9

of the secondary phase transformation will be recorded, displaying as a single peak at the end of a

linear rise from the undercooled temperature over the span of two temperature readings. In other

materials where delay is longer than the pyrometry refresh rate, temperature differences will be

more pronounced between the two phases. In these cases, the end of the first phase will present as

a peak, followed by a slight dip as the sample begins to cool, then a second peak at a higher

temperature for the second phase.

The output of a pyrometer is a raw temperature measure that is typically recorded in degrees

Celsius. Each measurement is associated with a time stamp when it was taken which allows for

easy calculation of cumulative time. Temperature can be plotted against time to better visualize

changes over the course of any solidification experiment. This requires the time stamp output of a

pyrometer to be converted into a measure of time. To obtain a time reading in seconds, the time

stamp can be multiplied by a series of conversion factors starting with 24 hours/day, then 60

minutes/hour, and finally 60 seconds/minute. The result will display seconds in the day up until

that measurement was taken. Subtracting the time in seconds of the first measurement from all

subsequent measurement time stamps will then yield the time of a measurement relative to the start

of any experimentation. For cases where the time when a solidification was triggered is known,

temperatures relative to that event will be easier to locate.

One source of error in temperature readings from pyrometry is known as an emissivity shift. These

increases in emitted radiative energy closely follow rises in temperature, and lead to inflated

temperature readings at specific points along a thermal profile, they can disrupt the accuracy of

critical temperature measures and thereby impact experimental results. Pyrometry results affected

 10

by emissivity shifts or similar errors can be easily corrected by comparing the recorded temperature

at the instant of a known phase transformation to the value reported in literature for the specific

material composition being studied. The liquidus temperature lends itself well to this approach as

it is commonly reported for a wide range of material compositions. The point at which a material

reaches the liquidus is also visible on a temperature – time plot by a transition from a shallow

temperature rise to a steeper one when the sample has become fully liquid under constant heating.

The entire temperature plot can be compressed by the difference between the observed and

reported literature value of this point. Temperature correction relies on an assumed emissivity ελ

relative to the surrounding atmosphere which is required to compute the black body temperature

Tb through implementation of Equation 1 for a gray body. Here, C2 is Planck’s second radiation

constant, λ is the working wavelength of the pyrometer, and T is the true temperature [18]. It should

be noted that emissivity is inversely proportional to the blackbody temperature, so a hotter region

on a solidifying metal with higher emissivity will yield a similarly lower blackbody temperature.

= − 𝑙𝑛 𝜀 (1)

When λ Tb is much smaller than C2, the materials radiance I can be computed from Wein’s

approximation to Planck’s radiation equation as shown in Equation 2 [19]. Here k is a constant

parameter, and C1, is Planck’s first radiation constant.

𝐼 = 𝑘 = 𝑘  exp − (2)

In the event that the pyrometer is not providing a true reading of temperature, the observed

temperature at a key point such as the liquidus TPL will differ from the known liquidus temperature

TL for that alloy taken from literature. Using the liquidus temperature in Equation 1 and Equation

2 will yield a reference radiance IL which differs from the radiance IPL calculated instead from the

observed liquidus temperature. Similarly, at any observed temperature above or below the liquidus,

 11

the observed temperature TP will produce a radiance IP which will differ from the true radiance I.

Forming a ratio between any two radiances mentioned above and taking the natural log of both

sides as has been done in Equation 3 for the true radiance and the true radiance at the liquidus

using the temperature from literature. The relationship between their respective temperatures is

dependent on emissivity associated with each of the temperatures used [19].

ln = − − + ln (3)

If two radiances are compared using temperatures which have been obtained by the same

measurement method at the same location, then their emissivity’s will be equivalent and the final

term on the right-hand side of Equation 3 can be eliminated. Such is the case with the ratio between

I , IL and for the ratio between IP , IPL. These two ratios between a given temperature and a liquidus

temperature can be set equal, yielding the following expression Equation 4. The constants C2 and

λ are equivalent on both sides, leaving a relationship between four temperatures, all of which are

known except for the true temperature T representing the correction of TP such that at the liquidus

TPL equals the true liquidus from literature TL [19].

− − = − − (4)

Rearranging to solve for that unknown true temperature T yields the temperature correction

Equation 5 [18].

= + − (5)

This equation can be applied to every temperature reading TP in a pyrometry feed where the

liquidus point TPL can be identified on a plot of uncorrected temperature vs. time. For this point to

be found, there must be a relatively clean pyrometry feed with little noise that would otherwise

obfuscate this critical temperature. Plotting the calculated true temperature against time will

 12

provide more accurate measures of key temperatures and undercooling temperature differences

required for solidification analysis.

2.4 High-Speed Imaging

In addition to measurements taken with pyrometry, solidification can also be captured using high-

speed imagery. At high frame rates, changes in brightness of a material around nucleation events

can be associated with temperature rises driven by phase growth. This allows for the stages of

primary and secondary phase growth to be directly observed. Velocities can be recorded by

tracking points of interest as they translate between frames. To capture something as fast as a

secondary phase transformation in steel alloys, frame rates around 30,000 or 50,000 FPS are

required depending on the alloy [1].

The necessity for the high-speed camera to capture phase transformation at the instant of nucleation

when the phase is merely a small cluster of atoms requires image detail sufficient to differentiate

phase growth of at least one pixel per frame. This requires a frame resolution of at least 2502 pixels.

The more pixels available, the closer to nucleation a phase can be recognized and the more accurate

its initial growth velocity can be recorded. The high-speed camera must also be placed sufficiently

close to the sample subject. In the case of the ISS-EML facility, the radial camera is mounted at a

distance of about 256mm between the camera lens and the sample’s center, while a secondary axial

camera is mounted at an approximate distance of 266mm to 269mm. The radial camera operates

at a higher frame rate and is thus best suited for the capture of high-speed video for solidification

experiments.

 13

As accurate as pyrometers can be when properly calibrated, they are still subject to sources of error.

One potential impact to the accuracy of pyrometry readings is transmissivity of the optical path

where evaporated particles from the material come between the sensor and its target. Just as sample

evaporation can influence the accuracy of pyrometry readings, it can also impact the clarity with

which a camera can capture surface events. This must be considered in the design of a facility used

to conduct solidification experiments.

2.5 Geometry-Based Solidification Model

Solidification studies directed at the identification of microstructural evolution through use of

pyrometry and high-speed imagery are scarce in the literature with only a handful of theories being

put forward as to the true influences on phase selection, growth, and secondary transformation

timing. One study has suggested that timing of phase transformations can be inferred by first

considering the Lipton-Kurz-Triveldi (LKT) Model which characterizes the geometry of dendritic

structures and approximates their microscopic growth kinetics through the identification of atom

attachment rates which can in turn be modeled through a comparison with experimental data of

dendrite tip formation rates [20,21]. Once geometric and kinetic approximations are made, the

Classical Nucleation Theory (CNT) then allows for delay times to be produced as a function of

geometric parameters [22]. This model provides a theoretical approach to understanding the

development of secondary phase transformations and a means to calculate the exact timing of

secondary phase transformations when solidification temperature is known [22]. The CNT model

also accounts for non-equilibrium effects and can be further modified to include dendrite growth

kinetics using the Boettinger-Coriell-Triveldi (BCT) Model [21]. One key limitation of the CNT

 14

model is an absence of controllable parameters such as the influences of convection which would

allow for direct influence of behavior.

The LKT/BCT Model for evaluation of the velocity associated with growth of dendrites into

undercooled liquids as required for the CNT can be derived starting with the development of

Equation 6 for the ratio of enthalpy change relative to temperature change [20]. It is a function of

thermophysical properties for heat of fusion of the metastable phase ΔHf,M , the difference in

liquidus temperatures between the two phases ΔTSM and the heat capacity of the liquid CPL.

Energy absorption into the dendrite tip from the surrounding liquid taken per unit volume

qabs is also required as it is a key driver of growth, along with the ratio of volume solid to

volume liquid VR of the fluid into which the dendrite growth occurs. qabs and VR can each be

approximated in Equation 7 as functions of ΔHf,M, ΔTSM, CPL, in addition to the heat of fusion

of the stable phase ΔHf,M , the growth velocity V and the parameter JS representing heat flux

away from the dendrite tip perpendicular to dendritic growth. [20].

= = 𝐶 +
, (6)

Where 𝑉 =
 ,

,
 and 𝑞 = 𝐶 𝛥𝑇 + 𝛥𝐻 , (7)

An estimation of undercooling is necessary for the LKT Model. It can be computed as the sum of

undercooling components each associated with a unique driving force. The three initial

components are due to thermal effects, curvature effects, and solutal effects (ΔTt, ΔTr, ΔTc)

respectively. The LKT Model for undercooling can be supplemented with an additional

undercooling component influenced by growth kinetics ΔTk as taken from the BCT Model.

The final Sum is given in Equation 8 where each component is a function of dendrite growth

 15

velocity which can be solved for at a given undercooling. From dendrite growth velocity, a

relationship for delay time can be obtained. [21]

𝛥𝑇 = 𝛥𝑇 + 𝛥𝑇 + 𝛥𝑇 + 𝛥𝑇 (8)

The first component ΔTt can be modeled by Equation 9. It is a function of the Ivantsov

function IV as expanded in Equation 10 to include the thermal Peclet number Pt which is the

ratio of dendrite growth in the form of velocity times dendrite tip radius V * R to thermal

diffusivity (2αL). [20].

𝛥𝑇 = 𝐼𝑣 (𝑃𝑡) 𝛥𝐻 − (9)

Where 𝐼𝑣(𝑃) = 𝑒

𝐸 (10)

The second term considering curvature effects is calculated in Equation 11. It is a function of

the Gibbs-Thompson coefficient Γ which is in turn dependent on the quantity of energy at

the interface between solid and liquid volumes σ and the thermophysical property, entropy

of fusion ΔSf . [20]. R can be approximated using Equation 12. [22].

𝛥𝑇 = 2 where 𝛤 = (11)

𝑅 =
/ ∗

() ()
 (12)

The third term deals with solutal effects and is expanded in Equation 13. Where mv can be

expanded in Equation 14 to be a function of concentration of the solute Co and the solutal

Peclet number which is nearly identical to the thermal Peclet number except for the solutal

diffusivity Do being used instead of thermal diffusivity. Two additional factors reliant on the

phase diagram are required to compute solutal undercooling. Checking the slope of the

liquidus line provides a measure of mL , which must be adjusted to compensate for changes

 16

in slope mv due to growth kinetics. mv can be calculated from the partitioning coefficient k

which is in turn a function of the equilibrium partition coefficient Ke, the initial solute atom

fraction Xo, and the ratio of solutal diffusivity to atomic spacing Vd = Do / ao . [20].

𝛥𝑇 = 𝑚 𝐶 1 −
[()

 (13)

Where 𝑚 = 1 +

 and 𝑘 =

()
 (14)

The final undercooling component dictated by BCT is the growth kinetics term which is

expanded in Equation 15 . It is a function of the universal gas constant 𝑅 and dendrite growth

velocity V, and the kinetic rate vo along with previously mentioned thermophysical

properties. Two variations of this equation exist; the first assumes that there is some

quantity of Js previously defined as heat flux perpendicular to dendrite growth influencing

growth kinetics. In this case, Js must be included in the calculation for ΔTk . Otherwise, if Js is

assumed to not be present, then the second equation where it is absent can be implemented.

[20].

𝛥𝑇 =
,

 or 𝛥𝑇 =

 without 𝐽𝑠 (15)

With all undercooling terms having now been defined as functions of velocity, the total

undercooling Equation 8 can be obtained for any given growth velocity. Velocity must now

be obtained using an iterative solution for Equation 16.

−𝛤𝜔 − [𝐾 𝐺 𝜉 + 𝐾 𝐺 𝜉] + 𝑚 𝐺 𝜉 = 0 (16)

Which is a function of the following 3 stability parameters in Equations 17, 18, 19 and

includes the velocity dependent Peclet numbers, a stability parameter σ* , ratio of thermal

 17

diffusivity 𝛼 and the weighted solid and liquid conductivities 𝑘 𝑎𝑛𝑑 𝑘 shown in Equation

20 [20].

𝜉 =
()

∗

∗ ∗

 (17)

𝜉 =
()

∗

∗ ∗

 (18)

𝜉 = 1 +
∗

 (19)

Where 𝑘 = and 𝑘 = (20)

in addition to the wavenumber ω2 shown in Equation 21, and thermal concentration

gradients GL, GS and GC in Equation 22, Equation 23, and Equation 24 which are also

functions of the Peclet numbers and the Ivantsov function [20].

𝜔 =
∗

 (21)

𝐺 = 𝛥𝐻 − (22)

𝐺 = (23)

𝐺 =
()

(() ()
 (24)

Using these quantities and isolating for V in Equations 15 allows a relationship for phase

growth velocity to be approximated by an iterative solution to the quadratic equation shown

in Equation 25 [20].

𝐴𝑉 − 𝐵𝑉 + 𝐶 = 0 (25)

Where the Terms A, B, and C can be defined as Equation 26, Equation 27, and Equation 28.

 18

𝐴 =
∗

 (26)

𝐵 =
()

 𝜉 +
()

(() ()
𝜉 (27)

𝐵 =

()
(𝜉 + 𝜉) (28)

The velocity produced by the LKT Model in Equation 25 and undercooling from Equation 8 can

finally be applied to the CNT to produce a delay time Δt between the primary and secondary phases.

In Equation 29, the CNT specifies that the number of nucleations occurring during solidification

can be determined from the integral with respect to time of the rate of steady state nucleation JSS.

The secondary stable phase is said to have initiated when the number of nucleations N(Δt) is equal

to 1. If the nucleation rate is known at a given velocity, then the upper bound of the integral Δt

required to produce a N(Δt) of 1 can be solved for [22].

𝑁(𝛥𝑡) = ∫ 𝐽 ∗ 𝑑𝑡 = 1 (29)

The term Δt can be expanded to include velocity and undercooling from LKT in addition to

thermophysical properties previously mentioned and the catalytic potency f, Boltzmann constant

kb, dendrite radius R, the Zeldovich factor Γz, and the phase activation energy ΔG* homogeneous.

The resulting Equation 30 thereby serves as an estimate of delay time when only growth kinematics

and material properties are known [22].

𝛥𝑡 =
,

∗ ∗

/

/

exp
∗ ∗

∗
 (30)

While delays for the compositions listed above were accurately modeled by CNT with the input

of LKT based parameters in previous studies, this model fails to account for the effects of

convective stirring or any other adjustable parameters. By excluding these parameters, it is inferred

that delay time is an uncontrollable process and by extension that microstructure cannot be

influenced by external factors.

 19

2.6 Retained Damage Model

An alternative theory into microstructural evolution put forward around the same time as geometric

based solidification modeling such as the CNT is known as the Retained Damage Model (RDM).

The RDM relies on the thermodynamics of a phase transformation rather than growth geometries

or kinematics. It serves as a formalization for how delay time may be calculated from the total

available Gibbs free energy ΔGT required to drive the transformation from metastable to stable

phase. Under static fluid flow conditions, this energy quantity can be computed as a sum of Gibbs

free energy components each with a known driving force. These can be calculated using

parameters and material-specific thermophysical properties. In Equation 31 total free energy ΔGT

can be split into three separate components: ΔGS, ΔGM, and ΔGC. Refer to the nomenclature section

for definition of key variables [1].

Δ𝐺 = Δ𝐺 + Δ𝐺 + Δ𝐺 (31)

The first term, ΔGS in Equation 32, is an expression of the classical thermodynamic driving force

due to undercooling between metastable and stable phases [1]. This quantity is defined by stable

phase properties from the phase diagram as it relates to stable phase transformation kinetics. The

parameters used in this equation will be detailed in Section 2.7.

Δ𝐺 =
/ ∆

 (32)

The second term, ΔGM modeled by Equation 33, accounts for energy retained in the metastable

protostructure due to primary phase undercooling; the higher the original undercooling, the more

damage that is retained and the higher the thermodynamic driving force that promotes subsequent

transformation kinetics [1]. This quantity is defined by metastable phase properties (See Section

2.7).

Δ𝐺 = 𝑓
/ ∆

 (33)

 20

One notable capability of the retained damage model is its adaptability to the inclusion of any

additional thermodynamic driving force which might impact phase delay. These additional drivers

can include any form of controllable energy sources. The final term of the Gibbs Free Energy

equation, ΔGC shown in Equation 34, accounts for the adjustable quantity of retained damage

energy due to convection. The functional relationship is based on the concept that the higher the

level of convection in the sample, the higher the driving force that promotes subsequent

transformation kinetics. This quantity is defined based on melt shear �̇� during primary

recalescence [1].

Δ𝐺 = 𝑓(�̇�) (34)

 To obtain an estimate of this convective component, Magnetohydrodynamic (MHD) modeling of

internal fluid shear rates based on convection due to internal flow velocities and temperatures is

required as will be discussed in further detail in Chapter 4.

A general expression for convective energy as a function of shear rate can be modeled by

comparing trends in experimental data obtained from solidification experiments under varying

convective conditions. One such tool known as the Read Shockley Model, was inspired by

dislocations, a type of defect within a material as it solidifies under induced convection and has

been used for interpreting the convective retained damage energy of a material[13]. By following

a Read Shockley modeling approach [23], changes in dislocation array tilt angles can be recorded,

which reflect the increase in microstructural damage as shear rate is increased with stirring. The

form of the Read-Shockley approach shown in Equation 35 dictates that if the free energy added

to the system by convection ΔGC is normalized to material shear rates and plotted against the

natural log of those shear rates, a linear trend with a signature slope Δm and y-intercept Δb unique

 21

to a given material composition can be produced. When ΔGC is plotted as a function of the imposed

convective shear rate, the resulting curvature has been shown in literature to closely follow a Read-

Shockley fit in stainless steel alloys under low stirring Marangoni-flow conditions common to

ground based ESL [13].

∆𝐺 = 𝛥 �̇� [𝛥 𝛥⁄ − 𝑙𝑛�̇�] (35)

From this model, convective damage free energy can be shown to increase as shear rate is increased

with added stirring. Comparison of high-shear ground-based data to low shear space data suggests

that the effect of stirring on convective damage free energy decreases significantly at higher shear

values. While the application of a Read-Shockley Model suggests that convective energy reaches

its peak during maximum HCV space EML stirring conditions, ground-based EML with greater

stirring tends to have lower levels of retained damage free energy than this maximum value. The

discrepancy between these data sets is modeled by Read-Shockley as a continuous decrease in free

energy as shear rate is increased beyond space-EML conditions. In previous testing of space EML

data sets the decrease has been so slight that average convective energy at higher shear rates

remains nearly constant.

The Retained Damage Model (RDM) allows for the calculation of the energy quantity in Equation

31 by including the internal convective energy from Equation 35. This total energy quantity

approximates the driving force behind a phase transformation when internal stirring is present.

Using this quantity allows for a predicted of the delay time between the phases through the

implementation of classical nucleation theory [22, 24-36] which states that the delay also known

as an incubation time τ between formation of the metastable phase and subsequent transformation

to the stable phase, can be evaluated by Equation 36 and Equation 37:

 22

𝜏 = [∆𝐺] (36)

𝐶 = 128 𝜋 𝑘 𝑇 𝛾 / 𝑓(𝜃) (37)

For the ferrous alloys studied, nucleation of the stable phase occurs along the metastable phase

subgrain boundaries where the grain boundary energy penalty is minimized. As used in Equation

37, this defines the wetting angle θ (in degrees) from Equation 38 and the geometric function f(θ)

from Equation 39.

𝜃 = cos
/

∗ /
 (38)

𝑓(𝜃) = (1 − cos(𝜃)) (2 + cos(𝜃)) (39)

Using these relationships, previous work defined the wetting angle θ as 20.4º and 33.9º [37], and

Cext as 2.20x1037 and 3.94x1037 atom⸱J4/m12, based on a β of 4x107 and 2x108 atoms/sec, for

FeCrNi and FeCo [1], respectively.

The utility of the Retained Damage Model in the calculation of delay time for solidification over

classical nucleation theory [22] lies in its ability to not only produce estimates of delay behavior

for a given set of experimental conditions, but to then provide a means of estimating how the

addition or removal of convective energy can influence those predicted delays. Predictions can be

attained for a variety of convective conditions, allowing for a selection of the convective condition

that provides an ideal delay time for given experimental conditions. In industry This translates to

the ability to directly alter microstructure by introducing a magnetic field of quantifiable strength

if the predicted delays and known microstructure associated with those delays are undesirable.

 23

2.7 Thermophysical Properties

Thermophysical properties required for the temperature dependent energy properties ΔGS and ΔGM

can be found in the literature. In later chapters, an investigation into the convective effects on

solidification for two alloys, FeCrNi and FeCo will be performed. Their respective properties have

been identified and are displayed in TABLE I [37], and TABLE II [1, 38]. Applied heater pulses

of varying duration and magnitude taken during ISS-EML testing can be used to generate

thermophysical property data where it is absent in the literature.

TABLE I: Thermophysical Properties of FeCrNi

Variable Property Units Fe60-Cr21-Ni19 at%
𝜴𝒔

γ Molar volume [m3/mol] 7.48⸱10-6 [37]

𝜟𝑯𝒔

γ Heat of fusion [J/mol] 11235 [37]

𝑻𝑳 𝒔

γ Liquidus [K] 1713 [37]

𝜸𝒎/𝒔 Surface Energy (δ γ) [J/m2] 0.40 [37]

𝜴𝒎

δ Molar volume [m3/mol] 7.61⸱10-6 [37]

𝜟𝑯𝒎

δ Heat of fusion [J/mol] 10629 [37]

𝑻𝑳 𝒎

δ Liquidus [K] 1668 [37]

𝜸𝒎/𝒎 Surface Energy (δ δ) [J/m2] 0.75 [37]

𝜟𝑻𝒎/𝒔

Undercooling (δ γ) [K] 44.2 [37]

 24

TABLE II: Thermophysical Properties of FeCo

Variable Property Units Fe60-Co40 at%
𝜴𝒔

γ Molar volume [m3/mol] 7.40⸱10-6 [1]

𝜟𝑯𝒔

γ Heat of fusion [J/mol] 14083 [1]

𝑻𝑳 𝒔

γ Liquidus [K] 1757 [1,38]

𝜸𝒎/𝒔 Surface Energy (δ γ) [J/m2] 0.206 [38]

𝜴𝒎

δ Molar volume [m3/mol] 7.40⸱10-6 [1]

𝜟𝑯𝒎

δ Heat of fusion [J/mol] 10767 [1]

𝑻𝑳 𝒎

δ Liquidus [K] 1733 [1,38]

𝜸𝒎/𝒎 Surface Energy (δ δ) [J/m2] 0.319 [38]

𝜟𝑻𝒎/𝒔

Undercooling (δ γ) [K] 24 [1,38]

In Equation 33, the metastable Gibbs Free Energy was multiplied by a scalar fx. This represents

the fraction of metastable driving force which is retained within the material and used to drive the

metastable phase transformation. This parameter is derived in Equation 40, from a dimensionless

undercooling parameter relating metastable and stable phase thermophysical properties.

Characteristic fx values for the alloy compositions of FeCrNi and FeCo discussed are 0.897 and

0.40 respectively [1,39].

𝑓 = 𝑁 =
/

/
 (40)

Properties required for the computation of ΔGC for these alloys must also be obtained. Convective

shear rates can be varied over a wide range during microgravity testing and induced flow and melt

shear may be evaluated based on a knowledge of the temperature and applied electromagnetic

(EM) power [40,41]. The applied EM power will be represented in shorthand fashion as a function

of the applied heater control voltage setting (HCV) as outlined in the references which summarize

modeling of the convection conditions within the droplet using MHD modeling. This requires an

 25

understanding of the variation of thermophysical properties with temperature and for this work the

following properties displayed in Equations 41 Through Equation 45 were used with relationships

for density ρ (in kg/m3), viscosity μ (in Pa⸱s) and conductivity σel (in S/m) as a function of

temperature T (in K) identified.

Density

FeCo [42] 𝜌 = (9.44 − 0.00115 𝑇) × 10 (41)

FeCrNi [40] 𝜌 = (8.209 − 0.00071 𝑇) × 10 (42)

Viscosity

FeCo [43] 𝜇 = 10 . × (43)

FeCrNi [40] 𝜇 = 10 . . × (44)

Conductivity

FeCo [44] 𝜎 = 0.0495 ∗ (𝑇 − 273.15) + 56.08 × 10 (45)

FeCrNi [40] 𝜎 = 6.63 × 10 + 380(𝑇 − 1713) (46)

Using the properties listed in this section allows for modeling of internal convection through

MHD modeling which can then be applied to convection based RDM grounded theoretical

applications.

 26

Chapter 3. Methodology

3.1 Overview

In addition to a verified set of thermodynamic parameters and the well-supported grounding theory

of the RDM, an experimental procedure is required to obtain conclusive results on the nature of

solidifying alloys and the influence that convection may have over their behavior. It is critical that

any experimentation conducted to this end occurs in a facility which is isolated from external

forces or factors that may impact results. Such a facility must also be equipped to allow for the

manipulation of controllable experimental parameters, and the capture of data streams such as

pyrometry and high-speed video discussed in Chapter 2. Real-time decision making over direct

experimental control should be performed by an experienced staff at a remote location that is

equipped with proper communication tools between the control room and experimentation facility.

Safety of personnel during the experiment must be held as an utmost priority with preventative

measures in place. For solidification studies, there are two known experimental setups which meet

these requirements. They are the Electrostatic Levitator (ESL) and the Electromagnetic Levitator

(EML) and they each allow for the direct isolation of a small spherical metal sample from its

external environment by levitating it in place inside of a small enclosure. Both EML and ESL

equipment can be used either in space or on the ground with varying success. Ground-based

methods subject the sample to gravitational forces resisting levitation which must be accounted

for through the analysis of internal convective flows as will be discussed in Chapter 4. Conversely

space-based methods have a zero-gravity environment where convection is easier to control. This

chapter will discuss the experimental setups that were selected for the creation of a data set against

which RDM based models could be compared. Sample selection and preparation for two unique

ferrous alloy compositions FeCo and FeCrNi will be highlighted, in addition to experimental

 27

procedures that have been put in place for operational control of the sample during experimentation.

Finally, methods for data analysis will be discussed.

3.2 Experimental Setup

Of the two experimental setups, ESL is commonly used to obtain thermophysical properties such

as the ones referenced in Chapter 2. In a typical ESL facility, levitation is achieved by placing a

small, light sample between pairs of opposing electrodes. Coulomb forces then act on the sample,

pulling it away from one electrode and toward the other [45]. In ground-based setups, only two

electrodes are required, with the attracting electrode positioned such that it’s pull is against gravity

[45]. When all forces are balanced, the sample will levitate in place. Minor lateral instabilities in

the sample can disrupt levitation, resulting in an ejection. If this occurs while the sample is molten

as is often the case in solidification studies, the sample may fuse to the walls of the experiment

chamber. This is to be avoided as the sample will immediately be contaminated by evaporated

particles from previous experiments, many of which would come from different alloy

compositions being studied. The importance of maintaining compositional integrity of the samples

has led to the addition of advanced multi-axis positional monitoring systems which can detect

minor instabilities in the sample and alert the operating technician or system that an adjustment in

forces is required [45]. In space-based setups such as the Electrostatic Levitation Furnace (ELF)

which was installed to the International Space Station in 2016, additional electrodes are required

to keep the sample in place. For both ground and space variations of ESL, the sample can be melted

with a high-powered laser [45].

 28

EML is preferred for cases where experimental data is collected with the intent of quantifying

convection. To study the full range of convective conditions that a material might experience

during manufacturing processes, experiments run using both ground and space setups are required.

Ground based facilities taking advantage of gravitational stirring are ideal for creating a baseline

data set at maximum convection conditions, while space-based facilities operate with only minor

convection unless it is manually added. EML systems rely on layered electromagnetic coils

channeling electric current of up to 10A at a known control voltage to generate magnetic fields

[17, 46]. Samples placed between two EML coils will become fixed in position. A sample pulled

by electromagnetic fields with enough force will eventually melt, allowing groups of coils to

selectively heat or levitate samples. Alternatively, lasers can be used in the same manner as ESL.

The experimental data set obtained for this thesis was collected using both the DLR ground-based

EML, and the space-based ISS EML which was installed to the Columbus module in 2014 [46].

The ISS EML system operates with a state-of-the-art super positioning (SUPOS) coil which was

specifically designed by the German Space Agency (DLR) to handle simultaneous heating and

positioning requirements that are independently adjustable [46]. It imposes a weak multi-

directional (quadrupole) field at 140 kHz to lock the sample in place between two horizontally

aligned coil loops with currents traveling opposite to one another [17]. The fields approach the

vertical central axis from all directions in the horizontal plane, then diverge at the exact center

between the coils to loop up and over the top coil or down and below the lower coil [46]. A sample

caught in the center of the SUPOS coils will be centered by equivalent forces on all sides aligned

at 45-degree angles to the horizontal plane. The coils simultaneously produce a much stronger

singular direction (dipole) field at 30 kHz along the vertical axis which applies equal force along

 29

the equator of the sample perpendicular to the direction of the field capable of heating the sample

up to a rate of 100 K/s [46, 17]. The strength of either field can be augmented by adjusting the

voltage supply to the coils. These voltages are relayed through remote tele-science to the ISS EML

module by operators based on the ground at DLR-Köln in the control room of the Microgravity

User Support Center (MUSC) in the form of a parameter set [46]. A Picture of the MUSC control

room is shown in Figure 2

Figure 2 – MUSC at DLR-Köln

The transmitted file includes specifications for the duration that the voltage will be supplied to

each coil. The utility of this system lies in its ability to rapidly turn heating on or off as desired

without affecting sample position.

Any changes in state during the experiment are monitored in real-time by the axial camera and

pyrometer package (ACP) which is aligned along the vertical axis of the SUPOS coil. The

pyrometer has a sampling frequency of 100 Hz and a wavelength of 1.45 to 1.80 μm and the axial

camera presents a top-down view of the experiment with a maximum resolution of 1280x1024

 30

pixels at 15Hz and can reach a maximum of 200Hz at the cost of resolution which is lowered to

2802 pixels [17]. For solidification studies, 200Hz is not sufficient to capture recalescence events

so a secondary high-speed camera (HSC) is required. This camera is mounted along the horizontal

plane and reaches a maximum frame rate of 30 kHz with a resolution of 2562 pixels [17]. Video

data from this camera is temporarily stored on the ISS during the experiment and can be

downloaded to the control room servers for review once processing has completed for a given

experiment [17].

3.3 Sample Preparation

Two ferrous alloys, FeCo and FeCrNi were selected and processed for delay and undercooling

data using the ISS-EML facility [17, 47] onboard the International Space Station. These alloys

were selected based on their common use in aerospace applications. Atomic compositions of 60-

40 for FeCo and 60-20-19 for FeCrNi were chosen based on availability of ESL collected

thermophysical properties in literature. Samples matching the desired atomic compositions for

each alloy were ultimately manufactured with tight tolerances alongside several spares. The first

sample, Fe60Co40 (at%), was prepared at the German Space Agency (DLR) in collaboration with

Thomas Volkmann and Olga Shuleshova with tolerance requirements of ± 1 at%. Composition of

the stock material (99.995% Fe rods, and 99.99% Co rods) was validated by energy dispersive X-

ray spectroscopy (EDX) prior to manufacture. An example of an EDX view of a sample is shown

below in Figure 3

 31

Figure 3 – View of a Post EML Run Sample Surface Through EDX

The desired sample diameter required for ISS EML is 6.0 ± 0.3 mm. Samples were produced in

bulk, and any that did not meet this requirement were discarded. To manufacture an EML sample,

stock materials are first cut into chunks of relative size then cleaned of debris with ethyl alcohol

and dried before they are measured on a microbalance for correct composition. Individual

components must be joined into a single sample through the process of arc melting, whereby two

electrodes are positioned over measured components under vacuum conditions of under 10-5 mbar

with 5N Argon gas backfill. A getter material is placed alongside the components to attract any

oxygen which might remain in the chamber after it has been vacuum pumped, making sure that

excess oxygen does not enter the sample during forming. The electrodes were activated three times

on each sample around the seam between the components to ensure proper melting. This process

is followed by sample massing to confirm that evaporation loss during arc melting was

insignificant enough to change the atomic composition. Sample candidates were then cast to a

roughly spherical shape inside of a vacuum sealed furnace (also filled with 5N Argon gas) by

raising their temp above the liquidus and causing the sample to melt into a mold. To smooth the

sample surface, the cast samples were finally placed in a ground based EML chamber (filled with

 32

6N Helium gas) where it the sample is melted several times under the power of the EML field

where an even distribution of forces make the sample spherical. The finalized FeCo samples were

measured for compositional correctness using inductively coupled plasma with optical emission

spectrometry (ICP-OES) and dimensions can be measured with an ASTRIUM gauge to confirm

compliance with desired tolerances. Successful samples were stored in Isopropanol until they can

be placed in individual sample cages (inside of which they will be transported to the ISS EML and

processed). The sample cages are necessary to prevent the sample from floating away from the

EML coil when it is deactivated in zero gravity and also allow for safer transport.

The second sample was a stainless-steel Fe60Cr21Ni19 (at%) alloy that was prepared at Ulm

University in collaboration with Hans-Jörg Fecht, Rainer Wunderlich, and Markus Mohr [48]. The

same process outlined above for the manufacture of FeCo samples was used in the creation of

FeCrNi samples with the exception that for this material, a 6.5 ± 0.3mm diameter was selected

instead of 6.0mm. The resulting component % weights of the selected EML sample were Fe 60.3%,

Cr 19.8%, Ni 19.9% which meets the 1% deviation from composition requirement for flight

samples.

3.4 Data Collection Procedure

With the prepared samples successfully loaded into their cages and housed on the sample carousel

inside the ISS EML, experimentation can commence. Scheduling is coordinated closely between

astronauts and the MUSC ground team to ensure that vibrations from work done on the station will

not influence the testing. In preparation for the experiments, the HSC is set to recalescence mode,

with a frame rate of 30kHz. The sample chamber where the EML SUPOS coils are contained is

 33

then pressurized over an extended period using an inert gas of either Helium or Argon to prevent

oxidation of the sample during processing. Delayed video feed from the ISS EML ACP unit is

next loaded onto a MUSC control center monitor and the pyrometer is initialized to the current

time (GMT). A running plot of temperature at 100Hz is transmitted from the ISS EML ACP to the

MUSC experiment display.

Researchers next began by selecting one of the alloy compositions outlined in the previous section.

The expected liquidus (melt) temperature for that alloy is then recorded for comparison against the

pyrometry feed. This will assist with estimation of the point in time when the metal sample has

become fully molten. It is desirable to keep the sample at peak temperatures for only short periods

of time because the longer the alloy remains at high temperature, the more likely it will be to

evaporate excessively and change compositions. Evaporation is accompanied by the buildup of

toxic chemicals on the surface of the sample chamber, the maximum quantity of which is known

as the toxicity limit which is strictly limited by NASA to provide safety for the astronauts if the

sample chamber is breached and the fumes released. Simulations are performed in advance to

estimate both the quantity of evaporation and sample toxicity. Experiment run time is limited to

an available dust budget which is split up among the samples within a given batch. The total

number of allowable sample tests is determined in advance from the available dust budget and

expected toxicity.

Researchers have a choice in the applied heater control voltages and the duration of heating for

each run. Care is taken to limit heating duration between from the time when the heater is activated

to when it is disabled such that the sample is fully molten at heater shutoff as viewed from the

 34

pyrometry feed. The heater can be set to an automatic shutoff at either preset temperatures or preset

times. Typically, the desired superheating to some temperature above the expected liquidus is used

as the shutoff. However, this temperature must be raised to account for any emissivity shifts, the

presence of which will be evident after the first test run if the pyrometry feed at liquidus does not

match the expected liquidus. In this case the superheat temperature setting is defined based on

observed liquidus.

Researchers must plan whether to pulse the heater with a step function of voltage at some point

after heater shutoff while the molten sample is solidifying. Such a pulse must be specified from

0.1V to 5.0V dictating the amount of stirring that will be induced within the sample for that test

run. 5.0V is associated with maximum induced stirring while 0.1V is the minimum representing

no stirring. Tests are split into groups such that they cover this full range of voltages to ensure

adequate coverage of convective shear rates required for the RDM. At least 2 unique voltages must

be represented in the final data to produce a trend. The duration of each pulse is independently

determined based on the expected time from heater shutoff to recalescence as observed in previous

test runs. Leaving a gap between pulse shutoff and recalescence ensures that the temperature

decrease will not directly impact the temperature rises produced by recalescence.

With stirring voltages planned for each test run, the sample is loaded into the sample chamber and

observed on the ACP video feed. MUSC technicians then remotely upload parameter sets with

voltage pulse settings for the first test to the ISS EML. The test is initiated on command. First the

positioner coil is activated, pulling the sample off its resting pedestal. Then heating commences

until the predefined superheat temperature limit is reached when the sample is fully molten. Upon

 35

heater shutoff the sample will begin to free cool, at which point the heater will pulse on to the

predefined voltage and stay on throughout the cooling process to induce stirring. The pulse will be

disabled automatically prior to recalescence. The sample will finally be allowed to free cool having

attained the crystal structure of the final phase transformation that it underwent during

recalescence. The positioner remains on while Researchers wait for the facility to download the

HSC video transmitted from the ISS EML. Upon video review, it is observed whether the phase

transformation initiated on the side of the sample facing the HSC. Data can only be collected if the

transformation is visible. If the transformation is not apparent on the HSC, the test will be repeated

until successful. Each successful run will yield a single data point for delay time and undercooling.

3.5 Computing Delay Time

Investigating video footage downloaded from the ISS EML HSC allows for frame-by-frame

observations of phase transformation events occurring on the surface of the FeCo sample. As the

primary or secondary phase grows across the sample surface, selections of key edge points were

made using a MATLAB program (See Appendix A). In the mosaic of Figure 4, sequential high

speed video frames of a FeCo sample processed at low undercooling and without stirring depict

primary and secondary phase progression. In each frame, colored point selections along the phase

edge have been superimposed onto the sample image. They mark a clear color change between the

lighter phase growth and the darker surrounding fluid. The first four frames show the primary

metastable phase growing into undercooled liquid, while the second set of four frames represent

the formation of a secondary stable phase growing into the metastable mushy zone. In the second

set, visible white dots represent oxide tracer particles (higher emissivity than the liquid) floating

on the surface of the droplet.

 36

Frame 1 Frame 2 Frame 3 Frame 4

Frame 7 Frame 8 Frame 9 Frame 10

Figure 4 - Mosaic of Radial Camera Generated Video Frame Images

X-Y coordinates for each point selection relative to the upper left-hand corner of the frame are

recorded. An approximation of the initiation point for both the primary and secondary phases can

be triangulated from the selected points in a given frame close to the time of nucleation. Then, by

assuming a stationary ellipsoidal shape with a known radius and center coordinate from the

observed sample profile, the Euclidean distances between each edge point in the first frame of a

phase and phase center can be calculated. The distances between all points in a given frame are

averaged to obtain an average growth distance between nucleation and that frame [39, 49]. Average

growth distances between any two subsequent frames can similarly be calculated from the average

Euclidean distances between each point’s original and final positions.

For each phase edge, the cumulative distance from the phase center at any given frame in the video

can be taken as the sum of that points Euclidean distances in all previous frame steps. For each

frame in the video, the average cumulative distance from phase center of each edge point is

 37

recorded. Growth rates are attained by dividing the average cumulative distance by the timestep

between video frames. Performing a linear regression on the average phase growth rate yields a

prediction of the intraframe phase initiation time. Using this technique, nucleation times occurring

between successive frames may be evaluated to obtain continuous resolution during acquisition

instead of relying on a discrete frame-by-frame rough approximation. If two phases form during

the same cooling cycle, the duration between their phase initiation points produces a delay time in

units of a fractional portion of a frame. This is the same delay time which can be predicted by CNT

or RDM methods. An example is shown in Figure 5, where two intersection points with the time-

axis have been identified from linear regression of the cumulative distances at each video frame.

The growth rates of the primary metastable phase (Blue line) and secondary stable phase (Red

line) are measured in pixels per second. The points in this plot represent the cumulative Euclidean

distance of each tracked edge point on a given video frame from the identifiable phase center point

on an assumed spherical sample. The delay time for this cycle, recorded as the distance between

these intra-frame intercepts, was determined to be 1.096x10-4 seconds. When repeated for multiple

cycles, a generalized trend can be produced. Tracking delay time as a function of undercooling

collected from pyrometry can provide additional insights into material behavior.

 38

Figure 5 - Growth Velocity Plot Showing Two Linear Regressions

Using the methods outlined above, critical data for sample transformation kinetics was obtained

from the high-speed video for both FeCo and FeCrNi, thus defining their experimental delay times.

The produced delays are notably independent of undercoolings determined by performing the

process outlined in Chapter 2 on temperature data collected from the ACP. Delay times and

undercoolings could now be compared to previously collected ground-based data from the DLR

EML allowing for functional relationships to be modeled using RDM based methods.

0

10

20

30

40

50

60

70

80

0.E+00 1.E-04 2.E-04 3.E-04

T
ot

al
 D

is
ta

nc
e

T
ra

ve
le

d
[P

ix
el

s]

Time [s]

 39

Chapter 4. Modeling

4.1 Overview

Modeling of convective influences on solidification behavior as mentioned in Chapter 2 is

dependent on an accurate understanding of internal convective flows occurring at the instant when

recalescence is captured on high-speed video and pyrometry. Combining MHD surrogate

modeling with RDM theory allows for a better understanding of experimentally obtained

observations which is why this is a critical step in any solidification analysis. The functional

relationship between flow velocity, shear rate and fluid temperature can be better understood as

well. This chapter will cover the MHD surrogate model created for the unique FeCo and FeCrNi

compositions discussed in Chapter 3. The resulting estimates for internal convection will then be

applied to Read Shockley and Saturation Model approaches to the RDM to compare the effects of

temperature on convection. Then in Section 4.3, an optimized saturation approach will be applied

to predict delay times for a wide range of undercooling and convective conditions.

4.2 Surrogate Modeling (MHD)

Shear rates within the material must be estimated to provide a model for convective behavior that

can complement the delay times collected in a manner outlined in Chapter 3. For these rates to be

accurately generated, flow modeling is required over the range of conditions accessible during

space testing. MHD simulations for applied heater control voltage HCV driven flows were run for

a series of thermal hold conditions both above and below the stable phase liquidus temperature

with variable applied HCV from 0.1 V to 5.5 V [40]. Maximum flow velocity and maximum shear

rates as a function of temperature and control setting were obtained for a representative nominal

space sample size of 6.5 millimeters diameter. A double linear regression was performed on the

 40

resulting plot of shear rate as a function of flow velocity and correlated to temperature ΔT above

(positive and superheated) or below (negative and undercooled) the stable phase liquidus

temperature and simultaneously correlated to the applied HCV. This produces a three-term master

equation linking behavior for both FeCo and FeCrNi models. The three master coefficients A, B,

and C in a third-order secondary polynomial fit are shown in Equation 47 Through Equation 49

with secondary temperature coefficients d, e, f, and g used to quantify the influence of temperature

on the shear coefficient. Equation 50 presents the format for display of the results as a function of

velocity (V) and the master coefficients to describe the influence of the heater setting on melt shear

coefficients through velocity.

A = 𝑑 ∆𝑇 + 𝑒 ∆𝑇 + 𝑓 ∆𝑇 + 𝑔 (47)

B = 𝑑 ∆𝑇 + 𝑒 ∆𝑇 + 𝑓 ∆𝑇 + 𝑔 (48)

C = 𝑑 ∆𝑇 + 𝑒 ∆𝑇 + 𝑓 ∆𝑇 + 𝑔 (49)

�̇� = A 𝑉 + B 𝑉 + 𝐶 (50)

The secondary coefficients are displayed in TABLE III for this equation for both FeCo and FeCrNi.

Using Equation 50 with appropriate coefficients for the selected material and hold temperature

allows for the calculation of a maximum shear rate to match against delay times when only applied

HCV (in volts) and superheat/undercooled melt temperature ΔT (in K) are known.

TABLE III: Turbulent Shear Rate Secondary Coefficients

Coefficient d (ΔT 3) e (ΔT 2) f (ΔT 1) g (ΔT 0)

AFeCrNi 3E-5 0.013 1.911 150.36

BFeCrNi -7E-6 -0.0033 -0.7371 1849.8

CFeCrNi -3E-8 2E-5 0.0151 -6.2478

AFeCo 0 0 0 0

BFeCo -3E-7 -0.0002 0.0243 1922.6

CFeCo 0 5E-6 -0.0046 -7.8367

 41

4.2.1 Velocity Change with HCV - Observed stirring Effect on Internal Flow.

In Figure 6 MHD modeling using the thermophysical properties of FeCo was conducted for a

series of incremental thermal holds spanning the range of experimentally observed sample

undercoolings reaching down to Tm-300 (and sample superheat conditions up to Tm+300) [40]. For

each thermal hold represented by a colored line, the HCV responsible for stirring was adjusted from

a minimum 0.10 V, representing no induced stirring, through to a maximum 5.50 V representing

maximum EML space stirring condition. Maximum turbulent velocity for each simulated HCV

stirring setting at a given thermal hold has been recorded. The resulting plot may be readily

compared to similar representations in the literature as performed on FeCrNi [40]; the older results

and the newly presented results are virtually indistinguishable leading to confidence in the master

equation approach.

Figure 6 - FeCo Turbulent Velocity as a Function of HCV

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

M
ax

im
um

 T
ur

bu
le

nt
 V

el
oc

it
y

[m
/s

]

Heater control voltage Hcv [V]

Tm + 300

Tm + 200

Tm + 100

Tm

Tm - 100

Tm - 200

Tm - 300

+T

+T

 42

4.2.2 Shear Rate Change with Velocity

Next, to identify variation between FeCo and FeCrNi, expected internal fluid shear rates of the

sample were obtained from the same MHD simulation used to sample velocities. Correlations were

then made to three key master-equation dependencies: temperature, HCV, and maximum flow

velocity. This was done for both FeCo in Figure 7, and FeCrNi in Figure 8 assuming turbulent

conditions. Experimentally, lower HCV settings yielded laminar flows, which were also modeled.

Laminar correlations are of similar composition and as such are not represented in the figures

below. Each thermal hold is shown to span a variable range of maximum velocities. Colored lines

for each thermal hold initiate at a low HCV (0.10 V) marked by a blue dot and terminate at high

HCV (5.50 V) marked by a red dot. As hold temperature is progressively increased, conditions at

maximum and minimum HCV migrate toward higher shear rates as represented by blue and red

arrows.

Figure 7 - FeCo Shear Rate vs. Velocity (Turbulent)

0

50

100

150

200

250

300

350

400

450

500

0 0.05 0.1 0.15 0.2 0.25 0.3

M
ax

im
um

 T
ur

bu
le

nt
 S

he
ar

 R
at

e
γ-

do
t [

s-1
]

Maximum Turbulent Velocity [m/s]

Tm + 300

Tm + 200

Tm + 100

Tm

Tm - 100

Tm - 200

Tm - 300

Hcv = 0.1 V

Hcv = 5.5 V

+T

+T

 43

Figure 8 - FeCrNi Shear Rate vs. Velocity (Turbulent)

0

50

100

150

200

250

300

350

400

450

500

0 0.05 0.1 0.15 0.2 0.25 0.3

M
ax

im
um

 T
ur

bu
le

nt
 S

he
ar

 R
at

e
γ-

do
t [

s-1
]

Maximum Turbulent Velocity [m/s]

Tm + 300

Tm + 200

Tm + 100

Tm

Tm - 100

Tm - 200

Tm - 300

Hcv = 0.1 V

Hcv = 5.5 V

+T

+T

 44

4.2.3 Convective Free Energy Change with Shear Rate

Using MHD modeling, shear rates were produced for the known undercooling and flow velocity

conditions of the experimental data set. Normalizing the experimental ΔGC data to shear rate and

plotting as a function of the natural log of shear rate produced an approximately linear trend which

was defined by parameters for slope Δm and y-intercept Δb [2]. A Read-Shockley Model using

these input parameters could be implemented and has been recorded as a green curve on all

subsequent plots in this chapter. It will serve as a reference for the new model which will be

developed in this section.

An alternative approach to the Read Shockley Model based on a saturation approach [50], was

selected for comparison to approximate the average convective energy as a limit such that the

effect of shear rate has a positive effect on convective energy across the entire range of possible

shear rates. The resulting Saturation Model is shown in Equation 51 to have a slightly different

structure than the Read Shockley Model presented in Chapter 2.

∆𝐺 = 𝑎 {1 − exp[−𝑏 �̇�]} (51)

At low shear rates typical of low-HCV space-EML testing, the Saturation Model begins by

increasing convective energy at a constant rate. Increasing parameter ‘b’ will produce a steeper

slope. Slopes created through least-square fitting are similar to those of the Read-Shockley Model

under similar conditions. Increases in convective energy then gradually taper off toward a clear

limit at higher shears, characterized by parameter ‘a’. The parameter ‘a’ may be defined such that

it asymptotically approaches the average convective energy at moderately high shear modeled by

Read-Shockley. However, unlike the Read-Shockley Model, there is no subsequent decrease in

convective energy at high shear using this model.

 45

Accuracy of the two models can be evaluated based on the deviation of experimental results from

model predictions. The magnitude of this deviation was significant between the two ferrous alloys

studied. For this model, fit parameters ‘a’ and ‘b’ were obtained through least-square fitting to

experimental data yielding constants for initial incline and plateau behavior for the saturation curve

model for both FeCo and FeCrNi alloys as shown in TABLE IV. The slope and y-intercept of

Read-Shockley curves were also obtained and are likewise included.

TABLE IV: Model Curve Fit Parameters

 Read Shockley Model Saturation Model

Composition Slope (Δm) Y-intercept (Δb) Initial Incline (b) Plateau (a)
FeCrNi -250321 1681683 0.0149096 70125700 ± 1.44e7
FeCo -571290 3677220 0.0565790 90651200 ± 2.28e7

With shear rates from MHD modeling recorded for each observed instance of space and ground

EML data, ΔGC can be computed using either Read-Shockley or Saturation Models using the

parameters in TABLE IV along with Equation 35 and Equation 51 then plotted as a function of

calculated shear rate. Several plots have been constructed to highlight the dependency of shear rate

on flow conditions during phase transformation events. This is a necessary addition to the study

as convective energy within the sample, and thus solidification behavior as a whole, is largely

dependent on the properties and material response of shear flows to the addition of stirring.

Leveraging shear rates obtained from MHD surrogate modeling for known temperatures and HCV

induced velocities of the experimental FeCrNi and FeCo data sets, RDM-enabled convective free

energy models provide access to trends in convective energy relative to induced sample stirring.

In both Figure 9 and Figure 10, Saturation and Read-Shockley Model-generated predictions for

the available quantity of ΔGC at a given �̇� are shown by Blue and Green lines respectively. Each

 46

models’ predictions have been superimposed onto a scatter plot of experimental space data

collected over the full range of space-based stirring conditions, with HCV levels ranging from 0.10

V through to 5.5 V. Data collected from ISS-EML testing with applied stirring is represented by

color-filled symbols specific to the applied HCV setting, while ground based EML data without

applied stirring is shown by open symbols. As the heater control voltage is increased to induce

more stirring, convective free energy and shear rate both steadily increase. EML space data of this

form is characterized by shear rates less than �̇� = 350 𝑠 . Each model is grounded by tight

clusters of experimental ground based EML datapoints (in gray) centered- in bulk on �̇� = 450 𝑠 .

In both FeCo and FeCrNi, the magnitude of the Saturation Model’s (Blue line) limiting parameter

‘a’ is evident as it reaches a plateau in convective free energy in the region populated by data

above an applied HCV = 2.00 V. In Figure 9 the Read-Shockley curve (Green Line), also fit to the

FeCo data set overshoots the limit set by the Saturation Model for that alloy, then curves back

down indicating an unnatural reduction in convective free energy at higher shear rates. Yet in

Figure 10, the bulk of ground-based data (open symbols) have a similar convective free energy to

space EML data with the highest amount of stirring at HCV = 4.40 V. Because there is no notable

decrease in convective free energy with increases in shear rate, both the saturation curve and Read-

Shockley curve more closely match one another in FeCrNi than the same plot for FeCo.

 47

Figure 9 - FeCo Plot of Convective Free Energy vs. Shear Rate

Figure 10 - FeCrNi Plot of Convective Free Energy vs. Shear Rate

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

0 50 100 150 200 250 300 350 400 450 500 550

Δ
G

C
[J

/m
3]

Shear Rate γ-dot [s-1]

Hcv = 0.10 V
Hcv = 0.75 V
Hcv = 1.00 V
Hcv = 1.50 V
Hcv = 2.00 V
Hcv = 3.00 V
Hcv = 4.50 V
EML Ground
Saturation
Read Shockley

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

0 50 100 150 200 250 300 350 400 450 500 550

Δ
G

C
[J

/m
3]

Shear Rate γ-dot [s-1]

Hcv = 0.40 V
Hcv = 0.70 V
Hcv = 1.00 V
Hcv = 1.50 V
Hcv = 2.00 V
Hcv = 2.93 V
Hcv = 4.40 V
EML Ground
Saturation
Read Shockley

 48

Normalization of ΔGC by �̇� and plotting against the natural log of �̇� for the same set of

experimental space and ground EML data, as done in Figure 11 and Figure 12 for FeCo and FeCrNi

respectively allows for better visualization of the Read-Shockley (Green line) linear slope and y-

intercept parameters. For FeCo the Read-Shockley curve is shown to be linear in nature, with an

anchoring point in the center of the gray ground-based data point cluster. The space EML data

(colored points) have a wide spread to either side of the linear trend. In general, data at higher

stirring HCV (1.00 V to 4.50 V) was below Read-Shockley curve, while data collected at less than

(1.00 V) is above the Read Shockley curve. The saturation curve (Blue Line) more closely follows

this observed curvature while still anchoring to the ground-based data. For FeCrNi all data closely

follows the linear path of the Read-Shockley trend line, over the range HCV = 0.40 V to 4.40 V,

with each stirring level differentiated by symbol color, and high stirring gravity driven EML

ground data (open symbol). The closeness of fit forces the normalized saturation curve to follow

a near linear path.

Figure 11 - FeCo Plot of Convective Free Energy Normalized by Shear Rate

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

3.5 4.5 5.5 6.5

Δ
G

C
/(

γ-
D

ot
)

 [
J⸱

s/
m

3]

Ln(γ-dot)

Hcv = 0.10 V
Hcv = 0.75 V
Hcv = 1.00 V
Hcv = 1.50 V
Hcv = 2.00 V
Hcv = 3.00 V
Hcv = 4.50 V
EML Ground
Saturation
Read Shockley

 49

Figure 12 - FeCrNi Plot of Convective Free Energy Normalized by Shear Rate

4.3 Modeling the Influence of Convection by a Saturation Approach

Following the theory outlined by the RDM, a saturation approach to convective energy

approximation was ultimately selected for the prediction of delay times across a range of

undercooling and convective conditions using Equation 36. This is contrary to previous work

where a Read Shockley approach was favored [1, 13, 37]. Delay predictions computed from a

Saturation Model could be plotted as a function of undercooling against the delay times for newly

attained FeCo ISS-EML experimental data and ground-based data taken for the same alloy

composition at peak shear conditions.

4.3.1 Saturation Delay Prediction

Solidification delay time predictions were computed for both FeCo and FeCrNi. The results of

these predictions can be found in Figures 13 and 14. In each plot, the same experimental EML data

set used in Figure 9, Figure 10, Figure 11, and Figure 12 has been represented by delay time τ and

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

3.5 4.5 5.5 6.5

Δ
G

C
/(

γ-
D

ot
)

 [
J⸱

s/
m

3]

Ln(γ-dot)

Hcv = 0.40 V
Hcv = 0.70 V
Hcv = 1.00 V
Hcv = 1.50 V
Hcv = 2.00 V
Hcv = 2.93 V
Hcv = 4.40 V
EML Ground
Saturation
Read Shockley

 50

observed undercooling ΔT (instead of the previous ΔGC and �̇�). Once again, data covers a range

from HCV = 0.10 V to 4.50 V with each stirring level differentiated by symbol color. In this

representation, ground based EML data points (still Gray) were not manually stirred, yet the

gravitational forces present induced a level of stirring greater than the HCV = 4.50 V space test.

They are no longer clustered together and span the entire range of possible delay times. Delay time

is shown to decrease with increasing undercooling and stirring. For two samples with equivalent

undercooling, yet different stirring conditions, the sample with higher stirring will have a lower

delay time. Data therefore approximates a range of delays for any undercooling. To estimate this

range, values of shear rates at both high and low stirring conditions were substituted into the

saturation curve predicting delay time at a given undercooling.

For FeCo, experimental shear rates are characterized by 50 𝑠 < �̇� < 400 𝑠 These predictions

diverge from the data set at low undercooling. FeCrNi has a range 50 𝑠 < �̇� < 500 𝑠 .

Saturation Model prediction lines are created by solving for the reference delay time in Equation

36 while varying ΔTm/m in the ΔGM term and using a substitution of ΔGC at a constant �̇� from

Equation 51. A saturation line was constructed for both minimum (Blue) and maximum (Red)

shear rate conditions for the specified material. Each line predicts τ for a given ΔT at the specified

shear rate. For FeCo, data is clustered around the saturation predictions but is not bounded by

either upper or lower predictions. FeCrNi data has a better fit to the saturation curve during

modeling and mostly bounded within the prediction ranges. In that alloy, Low HCV data (orange,

yellow points) accurately follow the Blue prediction, while higher HCV (Light Blue, Blue, Brown)

data follows the Red prediction as expected.

 51

Figure 13 - FeCo Saturation Predictions for Delay Time vs. Undercooling

Figure 14 - FeCrNi Saturation Predictions for Delay Time vs. Undercooling

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

10 100 1000

D
el

ay
 T

im
e

 τ
 [

s]

Undercooling ΔT [K]

Hcv = 0.10 V
Hcv = 0.75 V
Hcv = 1.00 V
Hcv = 1.50 V
Hcv = 2.00 V
Hcv = 3.00 V
Hcv = 4.50 V
EML Ground
Trend 1 - γ-dot = 50
Trend 2 - γ-dot = 400

+�̇�

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

10 100 1000

D
el

ay
 T

im
e

 τ
 [

s]

Undercooling ΔT [K]

Hcv = 0.40 V
Hcv = 0.70 V
Hcv = 1.00 V
Hcv = 1.50 V
Hcv = 2.00 V
Hcv = 2.93 V
Hcv = 4.40 V
EML Ground
Trend 1 - γ-dot = 50
Trend 2 - γ-dot = 500

+�̇�

 52

4.4 Model Validation by Dimensionless Predictions

The performance of model predictions for delay time can be evaluated by checking if the

relationship between independent dimensionless parameters adhere to the expected behavior of the

RDM [1, 14]. For Saturation and Read Shockley Models, two such parameters exist. The first

parameter is that of the nondimensional thermal driving force NM which can be evaluated by

comparing calculated ΔGT (Obtained using experimental undercooling data for ΔGM in conjunction

with Saturation or Read Shockley approach for ΔGC) against the smallest possible available free

energy in the system required to drive the transformation during solidification. In the case of

solidification, he minimum energy quantity occurs when there is no primary phase undercooling

ΔGM = 0, and the sample is quiescent with no internal flow velocity ΔGC = 0. Under these

conditions only ΔGS is present as computed in Equation 32 using thermophysical properties of the

stable phase. It can be referred to as the reference state ΔGR, where ΔGR = ΔGS. The relation NM

between total energy under experimental conditions ΔGT and the energy at the reference state ΔGR

is dependent only on the experimental undercooling as collected from radiation pyrometry and on

the convective properties of melt shear at that undercooling. As such, ΔGR is independent of delay

data collected from the high-speed camera [1, 14]. The Equation for NM has been presented below

in Equation (52).

𝑁 = . = (52)

The second dimensionless parameter is conversely independent of undercooling and dependent

only on delay times under experimental conditions as captured on high-speed video. The selected

reference state required for this parameter matches the conditions of ΔGR, where the shortest

possible driving energy quantity produces the longest possible delay [1, 14]. This reference delay

 53

τR can be computed by Equation 9 where ΔGT = ΔGR = ΔGS. The ratio between experimental delay

and reference delay produces the quantity ND which is defined by Equation (53).

𝑁 =
.
=

.

[∆]
=

.

[∆]
 (53)

Because dimensionless delay is a function of the reference state energy, ΔGR, it can be said to vary

with dimensionless driving force. Evaluating NM vs. ND on a Log-Log plot will produce a linear

trend where delay decreases as driving force is increased as shown in Figure 15 for the FeCrNi

alloy using a Read Shockley approach to computing ΔGT [14]. Points are separated into three

groups including 0-volt ISS EML space data in Blue, stirred ISS EML space data in Orange, and

gravity stirred EML Ground data as Hollow data points. If the slope obtained by linear regression

is sufficiently close to m = -4, mirroring the relationship between NM and ΔGR shown in Equation

53, then the independent measures of delay and undercooling agree with one another. Any

agreement also will indicate that the Saturation or Read Shockley Model for delay time created

using an estimate of thermodynamic driving force ΔGT from this data set will accurately predict

the delays based on RDM theory. In Figure 15 the identified slope for FeCrNi using the Read

Shockley method is -4.00508 which is in close agreement with previous results of -3.938 obtained

from Read Shockley modeling of ESL ground data in the literature [1]. Figure 16 represents the

same experimental data in a Saturation Model. It has a similarly good fit that is close to m = -4.

Read Shockley and Saturation modeling was also performed on the FeCrNi alloy in Figure 17 and

Figure 18 respectively. Each adheres closely to the expected slope shown as a black line.

 54

Figure 15 – FeCo Read Schockley Dimensionless Driving Force Plot

Figure 16 – FeCo Saturation Dimensionless Driving Force Plot

0.00001

0.0001

0.001

0.01

0.1

1

1 10

D
im

en
si

on
le

ss
 D

el
ay

 T
im

e
(N

D
)

Dimensionless Driving Force (NM)

FeCo Read Shockley

0V Space EML

Stirred Space EML

Ground EML

0.00001

0.0001

0.001

0.01

0.1

1

1 10

Di
m

en
si

on
le

ss
 D

el
ay

 T
im

e
(N

D)

Dimensionless Driving Force (NM)

FeCo Saturation

0V Space EML

Stirred Space EML

Ground EML

 55

Figure 17 - FeCrNi Read Schockley Dimensionless Driving Force Plot

Figure 18 - FeCrNi Saturation Dimensionless Driving Force Plot

0.0001

0.001

0.01

0.1

1

1 10

D
im

en
si

on
le

ss
 D

el
ay

 T
im

e
(N

D
)

Dimensionless Driving Force (NM)

FeCrNi Read Schockley

0V Space EML

Stirred Space EML

Ground EML

0.0001

0.001

0.01

0.1

1

1 10

Di
m

en
si

on
le

ss
 D

el
ay

 T
im

e
(N

D)

Dimensionless Driving Force (NM)

FeCrNi Saturation

0V Space EML

Stirred Space EML

Ground EML

 56

This process was repeated for FeCo and the resulting data for NM and ND was added to the plot in

Figure 19. A reference line in black was added to represent a slope of -4 going through the origin

representing 0 delay when no driving force is present. Stirred ISS EML space and stirred EML

Ground data sets have been combined for both alloys to provide clearer distinction between stirred

(dark colored) and unstirred (bright colored) data. FeCo is in Orange while FeCrNi is in Blue.

Figure 19 - FeCo and FeCrNi Dimensionless Driving Force Plot

For the stirred data sets obtained using the Saturation Model (dark colored points) a linear

regression grounded in point (1,1) was performed. The resulting values for slope are shown in

TABLE V. The slope using Read Shockley Methods was similarly obtained and recorded in the

0.00001

0.0001

0.001

0.01

0.1

1

1 10

Di
m

en
si

on
le

ss
 D

el
ay

 T
im

e
(N

D)

Dimensionless Driving Force (NM)

FeCo and FeCrNi

FeCo

FeCrNi

FeCo 0V

FeCrNi 0V

 57

table. Uncertainty was calculated for all estimates. A comparison between previously published

FeCo results using Read Shockley methods on an ESL dataset collected from Marshall Space

Flight Center (MSFC) shows good agreement.

TABLE V: Slopes of Nondimensional Delay Time and Driving Force

Composition & Model Literature Nt/Nm Calculated Results Nt/Nm

FeCo Read Shockley -3.938 ± 0.123 [1] -4.00508 ± 0.033667
FeCo Saturation - -3.97953 ± 0.032794

FeCrNi Read Shockley - -3.99769 ± 0.031139
FeCrNi Saturation - -3.98688 ± 0.031081

4.4.1 Phase Growth Velocity Comparison Against Prior Data

Another form of validation can be achieved through a comparison of growth rate data, which was

collected during the experimental calculation of delay times, against similar data recorded and

validated in past experiments. Looking back to Chapter 2 where the calculation of delay time was

first discussed, the nucleation time of each phase was determined by tracking the visible phase

front position and extrapolating their growth back in time to when nucleation must have been

initiated. The slope of the regression lines that were generated represent the growth velocity for a

specific phase. Knowledge of the delay time and the growth rates allows predictions on phase

selection under conditions of growth competition as described in the literature. [15, 38, 51, 52]

In the case of the current space data for FeCo, we observe growth of ferrite into the undercooled

liquid followed by the growth of austenite into the mushy-zone following primary metastable

recalescence. These space electromagnetic levitation results can be compared to values obtained

using ground-based electrostatic levitation as presented in Figure 20 which is adapted from the

literature [38]. The new space EML growth velocities (solid symbols) as a function of

undercooling for two phases are compared to ground-EML results (open symbols) [7]. The growth

 58

of metastable ferrite into the liquid (solid squares) agrees quite well with the Rodriguez result

(open squares) but the new results for growth into the mushy-zone (solid circles) are seen to

indicate a constant velocity of 5.39 ± 0.39 m/s which is significantly higher than that previously

measured value of 2.40 ± 0.23 m/s (open circles) [38]. A statistical comparison showing standard

deviations is expanded on in TABLE VI.

Figure 20 – FeCo Metastable and Stable Phase Growth Rates

TABLE VI: Comparison of Secondary Phase Growth Velocities

Properties Fe60Co40 Rodriguez Fe60Co40 Stanford
Vγδ (m/s) 2.40 ± 0.23 [54] 5.39 ± 0.39
Standard Deviation (m/s) 0.64 [54] 1.67
Num Vγδ Data Points 29 [54] 16

Hypothesis testing in the form of an unequal variance T-test was performed on the two data sets

provided in this table. A null hypothesis H0 was first defined such that the means of the two

experiments are set equal with H0: Vγδ Stanford = Vγδ Rodriguez. An alternative hypothesis where the

 59

means of the two experiments are taken to be unequal was likewise defined as H1. The required T-

score was computed as t0 = 6.898 with 15 degrees of freedom. At a 5% level of significance, the

table returns a value of tα/2 = 2.131 which is lower than t0. Because t0 > tα/2 the null hypothesis H0

can be rejected with 5% uncertainty in favor of the alternative hypothesis H1. This result suggests

that the two populations of collected secondary phase data are significantly different.

4.4.2 Chapter Review

FeCrNi and FeCo EML data sets for ground and space cover a wide range of undercoolings.

Ground EML data had the highest levels of stirring although that stirring was driven by

gravitational forces inherent in the levitation process. Shear rates required for RDM based model

predictions can be produced through MHD modeling of internal fluid flows using known

properties collected using ESL methods. Experimental delay times decrease with increasing

undercooling and stirring in both alloys as shown in Figure 13 and Figure 14. For a given

undercooling condition, experimental data fell within the range of delay time predictions where

the upper limit is produced by low stirring and lower limit by high stirring conditions. To predict

this range, high and low shear rates (indicative of high and low stirring respectively) were

substituted into a Saturation Model for delay time. Model validity can be checked through an

analysis of dimensionless parameters, while the validity of experimental delay times can be

achieved through comparison of primary and secondary phase growth rates against values obtained

from the literature.

 60

Chapter 5. Discussion

5.1 Overview

Analysis of the figures presented in Chapter 4 allows for a better understanding of the solidification

behavior of FeCo and FeCrNi alloys. Their differences are deeply rooted in internal melt shear

present during solidification which is dependent on flow velocities that can be predicted by MHD

modeling and are strongly influenced by externally applied stirring forces that can be generated

from induced magnetic fields. The different reactions between alloys to applied convective forces

can have a large impact on the material structure produced by comparatively long or short delay

times. This chapter will first compare differences between the two RDM based convection models

discussed in Chapter 3. This will be followed by a comparison of material differences between

FeCo and FeCrNi identified through convection modeling.

5.2 Convection Model Comparison

One of the key purposes of this paper was to select an ideal model that can accurately predict delay

time as a function of undercooling for a specified alloy composition across the ferrous alloy family.

For each alloy mentioned above, two models were identified to closely match experimental data

obtained from space and ground EML. Read-Shockley and optimized Saturation Models were both

matched to the data sets for retained convective energy as a function of shear rate in FeCo and

FeCrNi as shown in Figure 9. The Read-Shockley Model reaches a peak toward the median shear

rate, then arches back down to fit the ground-based data at higher shear rates. This behavior is only

possible if relaxation of recrystallization were to occur and the timeframe for these processes is

orders of magnitude greater than observed for the metastable-stable transition. Thus, the prediction

that a reduction in retained damage occurs at high convective conditions seems aphysical as the

 61

amount of retained convective energy stored in the system is known to scale with the defect energy

i.e., the number of grain boundaries and with dislocation density, both of which should not

decrease with increasing convection [13]. The wide spread of the space data in terms of retained

convective energy for a given shear rate suggests that many of the higher data points might be

outliers. This is more noticeable when observing the large concentration of ground-based data at a

lower ΔGC that is of equivalent value to the lower band of space-based data and aligned with the

saturation curve.

In general, the Read-Shockley Model can be used to identify a local maximum ΔGC at median

shear rates whereas the Saturation Model more accurately predicts overall expected behavior

across the entire range of �̇�. Unlike FeCo, the FeCrNi data conforms to either model as seen in

Figure 10. While the curve’s peak was still fixed at the median shear rate, it was significantly

shallower resulting in a near constant ΔGC for values above �̇� = 250 s-1. The aphysical nature of

the Read-Shockley curve was determinably less pronounced in FeCrNi. The saturation curve thus

reflects a more intuitive data fit by providing a prediction for the limit of retained convective

energy as shear rate is increased.

Normalizing the data set to examine Read-Shockley behavior from another perspective, we see in

Figure 11 for FeCo the spread of data points is evenly distributed on either side of the Read-

Shockley linear fit. Closer examination of the data points suggests that aside from two visible

outliers, they follow a generally curved path which is more closely approximated by the saturation

curve. Both Read-Shockley and saturation curves are also notably anchored about the ground data

which thus represents critical data. Both ground and space data are required to characterize

 62

behavior. A normalized view of FeCrNi in Figure 12 again shows nearly identical curves, with the

Saturation Model assuming a slightly more linear form which has an equal distribution of data

points on both sides on the curve. The two models do not differ significantly and thus the FeCo

data helps us to understand extremum behavior to a greater extent.

In all cases the Saturation Model has a marginally better fit than the Read-Shockley Model and

provides a better physical perspective on retained damage energy behavior. As such it was selected

for use as a predictor of delay times for the two alloys discussed. Assuming that experimental data

follows the saturation curve closely, delay times computed from ΔGC for FeCo are shown in Figure

13. The resulting plot displays predicted delay times for the range of shear conditions as calculated

from experimental observation. For data points above 70 degrees undercooling, most of the data

is either contained within or close to the bounds of the prediction. Doing the same for FeCrNi in

Figure 14 suggests a similarly close prediction with a larger percentage of the points lying along

the predicted trend lines, particularly at shallow undercooling. The closer the fit of the saturation

curve to the data set, the better the predictor will be in determining delay time ranges.

5.3 Alloy Behavior Comparison

The secondary purpose for conducting the testing was to identify differences in convection driven

solidification behavior between two unique alloys. Because convective damage models are largely

dependent on internal shear rates as defined by MHD simulations, the root of any observed

behavioral differences may lie in the thermophysical properties of density, viscosity, and electrical

conductivity used to generate these simulations.

 63

While density and viscosity are comparable between FeCrNi and FeCo, the slope of conductivity

with temperature is notably inverted. This means that at deep undercoolings, the conductivity of

FeCrNi is low and increases with increasing temperature, while conductivity for FeCo starts out

significantly higher at deep undercoolings then is reduced with increasing temperature. The

resultantly large difference in conductivities between FeCo and FeCrNi at deep undercoolings

explains why the FeCrNi master equation for shear rate as a function of temperature (Equation 50)

predicts a significant deviation from linearity at low temperature in Figure 8 when HCV is set to

maximum stirring conditions of 5.5 V, then becomes more linear as temperature is increased at

constant voltage. Conversely, an equivalent plot of the simulation for FeCo in Figure 7, also at 5.5

V, shows shear rates increasing linearly across high and low temperatures alike. At higher

temperatures (shallow undercooling) when conductivity converges between the two alloys, shear

rates in Figure 7 and Figure 8 are likewise closer in magnitude and occur at similar velocities. But

at deeper undercooling, FeCo has considerably larger shear rates than FeCrNi as exemplified by

Figure 9 and Figure 10 where high stirring experimental data (Brown dots) are located further

down the x-axis (�̇�) for FeCo. Increased shear rates can be directly correlated to higher ΔGC seen

in Figure 9 4.50 V FeCo, compared to lower ΔGC 4.50 V FeCrNi in Figure 10.

Differences in shear rates and convection between the two alloys can be further highlighted by

novel optimized model parameters identified in Table 3 where FeCo was characterized by a steeper

slope and maintained a greater y-intercept than FeCrNi using the Read-Shockley Model. The initial

slope of the Saturation Model was similarly steeper for FeCo and reached a plateau at a 29.26%

increased value for ΔGC compared to FeCrNi. This suggests that by both model predictions, FeCo

 64

generally has more convective energy retained under equivalent undercooling conditions

compared to FeCrNi.

5.4 Comments on Model Validity

Dimensionless analysis of delay times and driving force highlights the capability of Read Shockley

and Saturation methods to accurately model convective damage in a manner that agrees with RDM

theory for a slope of -4. The dependency of delay time on thermodynamic driving force is key to

understanding material behavior as it provides a direct linkage between added energy due to

convection and resulting material microstructure. Surprisingly, the Read Shockley generated slope

between dimensionless parameters was within standard deviation of the slope for saturation in both

alloys. Statistically, both models are accurate predictors of delay time for this reason. That being

said, there is a clear benefit to the saturation approach in approximating a limit to convective free

energy at higher shear rates.

Validity of experimental delays was reviewed through an investigation of growth velocities at the

end of Chapter 4. Looking Back to Figure 20, there was a clear increase from experimental growth

velocity of the secondary phase at 5.39 ± 0.39 as compared to the 2.40 ± 0.23 of experimental data.

However, the predictions on lateral heat flux for the FeCo alloy come more in line with the positive

deviation observed for other FeCo alloys [53]. Of particular importance in Figure 20 is the

observation that growth of the stable austenite into the ferrite mushy zone is constant and

independent of the original undercooling. This happens because following primary recalescence,

and in the absence of significant partitioning, the mushy zone exists at the metastable liquidus no

 65

matter the observed original undercooling and thus subsequent growth occurs in all cases into

liquid of the same temperature.

 66

Chapter 6. Conclusions and Future Work

6.1 Utility of MHD Modeling Approach

One key utility of this work lies in the simplification of the procedure required to model shear

rates for fluid flow conditions when only minimal information about the alloy such as the

amount of stirring (inferred from HCV) and temperature during solidification are known. Previous

works have suggested that when processing solidification data, MHD surrogate models should be

re-run for each set of test conditions present.

 It has been shown in Section 4.2 that a better approach to generating this shear data for

experimental results would be to first run MHD simulations over a wide range of

conditions for each test alloy. Then, by tracking dependencies of shear rate on key

parameters such as temperature, flow velocity and HCV, generate a set of alloy parameters

for use with an alloy specific master equation like the one shown in Equation 50.

 Following this approach, the fluid flow conditions for novel experimental data can be

quickly generated by simply entering the two experimental conditions of undercooling and

HCV into the master equation rather than waiting for a lengthy simulation to run its course.

 When a different alloy composition is tested, the parameters in the master equation need

only be swapped out, allowing for significantly faster processing times.

6.2 Damage Model Comparison

A Saturation Model was contrasted against the Read-Shockley Model in terms of its ability to

predict delay behavior in solidifying FeCo and FeCrNi.

 At low shear rates, the Saturation Model prediction closely matches the prediction of the

Read Shockley Model.

 67

 The Read Shockley Model exhibited prominent A-Physical Behavior when compared

against the FeCo alloy dataset, with its parabolic trend in the ΔGC vs. �̇� plot suggests a

declining retained free energy function beginning at �̇� = 225 s-1. Shear rates declination

is only possible if the material undergoes relaxation or recrystallization and the timeframe

for this to occur seems too short. With these mechanisms becoming improbable, in this

region as incrementally increased microstructural damage must yield progressively higher

shear rates.

 The Saturation Model compensates for Read Shockley A-Physical Behavior at High Shear

Rates, providing a closer prediction of delay behavior by gradually approaching but not

exceeding a ΔGC plateau of 9×107 J/m3 for FeCo. This represents the maximum damage

energy that may be stored in this material.

6.3 Alloy Comparison

Two Unique alloy compositions were examined using the Saturation Model. 3 unique differences

in delay behavior between these alloys were noted.

 Differences in laminar flow velocity for FeCrNi and FeCo at equivalent undercooling

conditions were observed through MHD modeling. The most significant of which being

that FeCo has a 92% larger flow velocity than FeCrNi at deep undercoolings and high HCV

induced stirring.

 Available convective damage free energy in FeCo increased by 29.26% from FeCrNi. This

effect is likely a byproduct of the increased flow velocity in FeCo.

 68

 The Limit to available free energy in the Saturation Model for FeCrNi is 7 ± 1.44 ×107 J/m3

which is lower than the limit of FeCo at 9 ± 2.28 ×107 J/m3 but within the same order of

magnitude. The standard deviations suggest that both materials yield a comparable fit.

6.4 Model Validation

To validate findings, a dimensionless quantity of delay time was produced for the data set using

only high-speed video. A second dimensionless parameter of driving force was calculated the

undercoolings recorded for the same data set using only pyrometry. These two parameters were

plotted on a log log curve to verify their relationship. Dimensionless delay time is independent of

dimensionless driving force.

 For FeCrNi the Saturation Model, a power curve fit to experimental data yielded an

exponent of n which was close to the expected relation of -4 defined by RDM theory.

Fitting the curve through the origin of the Log-Log plot yielded a linear slope of -3.98688

± 0.031081 for the Saturation Model and -3.99769 ± 0.031139 for the Read Shockley

Model. This is an indicator of a good fit in both high-speed camera generated data and

delay data to the RDM theory for both models. Since the Read-Shockley model ties the

Retained Damage Model to a physical effect related to dislocation damage, it is preferred

for FeCrNi analysis.

 For FeCo the Saturation Model also yielded a power curve exponent n while the read

Shockley model produced a power curve with slightly steeper slope. Fitting the curve

through the origin of the Log-Log plot yielded a linear slope of -3.97953 ± 0.032794 for

the Saturation Model and -4.00508 ± 0.033667 for the Read Shockley Model. Since both

 69

models return equally good agreement with theory, there is no strong evidence to support

one or the other model and further work is required.

To validate experimental delay data, growth velocity was calculated for the primary and secondary

phase in FeCo for the range of undercoolings present in the FeCo EML data set and compared to

literature.

 Metastable phase velocities from our FeCo alloy are in close agreement with previous

results across all tested undercoolings.

 Stable phase velocities from our FeCo alloy were significantly higher at 5.39 m/s compared

to literature at 2.40 m/s. T-testing conducted on these two sample populations resulted in a

clear rejection of the null hypothesis at 5% significance that the sample means are

equivalent. This difference in the distribution of growth velocities for the two stable phase

populations suggests that more data is needed to verify the correct growth velocity of FeCo.

6.5 Future Work

Ferrous alloys are key materials used in the manufacture of aerospace components and consumer

goods. While thermophysical property measures attained using ESL methods have been widely

distributed for the most used compositions of these alloys, not enough emphasis is being placed

on fully understanding the mechanisms behind their solidification. Further development of RDM

convective modeling such as the Saturation and Read Shockley approaches detailed in this thesis

could allow for the microstructural evolution of ferrous alloys to not only be predicted but also

influenced and enhanced through the targeted application of stirring to areas of interest during

solidification. It is possible that combining predictions of solidification time as a function of

 70

internal convection could greatly enhance the process of mold design for casting processes. For

example, fluid flows around the edges of a mold could be paired with estimates of solidification

time leading to enhanced identification of miniscule areas of weakness in a cast product that could

lead to failure of the part as a whole. A more achievable goal for the near term would be to apply

the Saturation and Read Shockley Models to a wider experimental data set to both enhance current

predictions, and expand the insights gained to other material compositions.

 71

Chapter 7. References

[1] D.M. Matson, X. Liu, J.E. Rodriguez, S. Jeon, and O. Shuleshova, "Retained free energy
with enhanced nucleation during electrostatic levitation of undercooled Fe-Co alloys",
Crystals 11 (2021) 1-10.

[2] M. Volmer and A. Weber, “Nuclei formation in supersaturated systems”, Z. Phys.

Chem.119 (1926) 227-301

[3] R. Becker, “Nuclear formation in the separation of metallic mixed crystals” Anal. Phys.

32[1-2] (1938) 128-140

[4] J. C. Fisher, J. H. Hollomon, D. Turnbull, “Nucleation” J. Appl. Phys. 19 (1948) 775-784.

[5] D. Turnbull, J.C. Fisher, “Rate of nucleation in condensed systems”, J. Chem. Phys. 17

(1949) 71-73.

[6] D. Turnbull, “Formation of crystal nuclei in liquid metals”, J. Appl. Phys. 21 (1960)

1022-1028.

[7] D. R. H. Jones and G. A. Chadwick, “An expression for the free energy of fusion in the

homogeneous nucleation of solid from pure melts”, Phil. Mag. 24 (1971) 995-998.

[8] J. W. Christian, The theory of transformation in Metals and Alloys, (Oxford: Pergamon,

1975) 418.

[9] C. V. Thompson and F. Spaepen, “On approximation of the free energy change on

crystallization”, Acta Metall. 27 (1979) 1855-1858.

[10] D. E. Temkin and V. V. Shevelev, “On the theory of nucleation in two-component

systems”, J. Cryst. Growth 52 (1981) 104-110.

[11] W. J. Boettinger and M. J. Aziz, “Theory for the trapping of disorder and solute in

intermetallic phases by rapid solidification”, Acta Metall. 37[12] (1989) 3379-3391.

[12] M. Hillert, “Solute drag, solute trapping, and diffusional dissipation of Gibbs Energy”

Acta mater. 47[18] (1999) 4481-4505.

[13] D.M. Matson, “Retained free energy as a driving force for phase transformation during

rapid solidification of stainless steel alloys in microgravity”, npj Microgravity 4:22
(2018) 1-6.

[14] D.M. Matson, “Chapter 14 Influence of Convection on Phase Selection” H-J. Fecht, M.

Mohr (eds.), Metallurgy in Space Recent, The Minerals, Metals & Materials Series.

 72

[15] R. Hermann, W. Löser, G. Lindenkreuz, A. Diefenbach, W. Zahnow, W. Dreier, T.
Volkmann, D. Herlach, “Metastable phase formation in undercooled Fe-Co melts”, Mat.
Sci. Engr. A375-377 (2004) 507-511.

[16] R.W. Hyers, D.M. Matson, K.F. Kelton, and J.R. Rogers, “Convection in Containerless

Processing”, Ann N.Y. Acad. Sci. 1027 (2004) 474-494.

[17] A. Seidel, W. Soellner, and C. Stenzel, ‘EML - An electromagnetic levitator for the

International Space Station’, Journal of Physics: Conference Series 327 [1] (2011)
012057 1-14.

[18] J.Brillo, and I. Egry, “Density Determination of Liquid Copper, Nickel, and Their

Alloys”, International Journal of Thermophysics. 24 (2003), 1155-1170

[19] P.B. Coates “Multi Wavelength Pyrometry”, Meterologia, 17 (1981), 103

[20] J.E. Rodriguez, and D.M. Matson, “Lateral heat flux and remelting during growth into

the mushy-zone”, Acta Mater. (2017).

[21] M. Barth, D. Holland-Moritz, and D.M. Herlach, “Dendrite growth velocity

measurements in undercooled Ni and Ni-C melts in space”, The Minerals Metals &
Materials Society Solidification (1999).

[22] C. Kreischer, and T. Volkmann, “Transformation kinetics of the metastable bcc phase

during rapid solidification of undercooled Fe-Co alloy melts”, Materialia. 20 (2021)
101211

[23] W. T. Read and W. Shockley, “Dislocation models of crystal grain boundaries”, Phys.

Rev. 78 (1950) 275-289.

[24] J. Feder, K.C. Russell, J. Lothe, G.M. Pound, “Homogeneous nucleation and growth of

droplets in vapours”, Adv. Phys. 15 (1966) 111–178.

[25] A. Kantrowitz, “Nucleation in very rapid vapor expansions”, J. Chem. Phys. 19 (1951)

1097-1100.

[26] H. Wakeshima, “Time lag in the self-nucleation”, J. Chem. Phys. 22 (1954) 1614-15.

[27] F. C. Collins, “Time lag in spontaneous nucleation due to non-steady state effects”, Z.

Elektrochem. 59 (1955) 404-407.

[28] S. Toschev and I. Gutzow, “Time lag in heterogeneous nucleation due to nonstationary

effects”, Phys. Stat. Sol. 21[2] (1967) 683-691.

[29] K. C. Russell, “Linked flux analysis of nucleation in condensed phases” Acta Metall. 16,

(1968) 761-769.

 73

[30] D. Kaschiev, “Solution of the non-steady state problem in nucleation kinetics”, Surface
Science 14 (1969) 209-220.

[31] D. Kaschiev, “Nucleation at existing cluster size distributions”, Surface Science 18

(1969) 389-397.

[32] F. F. Abraham, “Multistate kinetics in nonsteady-state nucleation: a numerical solution”,

J. Chem. Phys. 51[14] (1969) 1632-1638.

[33] K. C. Russell, “Nucleation in solids: the induction and steady state effects”, Adv. Colloid

and Interface Sci. 13 (1980) 205-318.

[34] K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed

systems”, J. Chem. Phys. 79 (1983) 6261-6276.

[35] G. Shao and P. Tsakiropoulos, “Prediction of phase selection in rapid solidification using

time dependent nucleation theory”, Acta Metall. Mat. 42[9] (1994) 2937-2942.

[36] C. Yang, F. Liu, G. Yang, Y. Chen, N. Liu, J. Li, and Y Zhou, “Non-equilibrium

transformation in hypercooled Fe83B17 alloy”, Mat Sci. Engr. A 458 (2007) 1-6.

[37] D.M. Matson, "Influence of induced convection on transformation kinetics during rapid

solidification of steel alloys: The Retained Damage Model", JOM 72 [11] (2020) 4109-
4116.

[38] J. Rodriguez, C. Kreischer, T. Volkmann and D.M. Matson, “Solidification velocity of

Undercooled Fe-Co Alloys”, Acta Mater. 122 (2017) 431-437.

[39] J.E. Rodriguez and D.M. Matson, “Thermodynamic Modeling of the Solidification Path

of Levitated Fe-Co Alloys”, CALPHAD 49[6] (2015), 87-100.

[40] X. Xiao, J. Lee, R.W. Hyers, and D.M. Matson, "Numerical representations for flow

velocity and shear rate inside electromagnetically levitated droplets in microgravity", npj
Microgravity 5:7 (2019), 1-7.

[41] X. Xiao, R.W. Hyers and D.M. Matson, Surrogate model for convective flow inside

electromagnetically levitated molten metal droplet using magnetohydrodynamic
simulation and feature analysis”, Int. J. Heat and Mass Transfer 136 (2019) pp. 532-542.

[42] J. Lee, J.E. Rodriguez, R.H. Hyers, and D.M. Matson, “Measurement of Density of Fe-

Co Alloys using Electrostatic Levitation”, Metallurgical and Materials Transactions B,
46[6] (2015) 2470-2475.

[43] Y. Sato, K. Sugisawa, D. Aoki, and T. Yamamura, ‘Viscosities of Fe-Ni, Fe-Co and Ni-

Co binary melts’, Meas Sci Technol, 16 [2] (2005) 363-371.

 74

[44] Y. Oichi Ono, T. Yagi, ‘Electric Resistivity of Molten Fe-Ni and Fe-Co Alloys’,
Transactions of the Iron and Steel Institute of Japan, 12 [4] (1972) 314-316.

[45] H. Tamaru, C. Koyama, H. Saruwatari, Y. Nakamura, T. Ishikawa, and T. Takada,

“Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO”, Microgravity
Science and Technology. (2018), 30:643-651

[46] A. Diefenbach, S. Schneider, and T. Volkmann, “Experiment Preparation and

Performance for the Electromagnetic Levitator (EML) Onboard the International Space
Station

[47] I. Egry, A. Diefenbach, W. Dreier, J. Piller, “Containerless processing in space -

Thermophsical property measurements using electromagnetic levitation”, Int. J.
Thermophys. 22 (2001) 569-578.

[48] D.M. Matson, X. Xiao , J. Rodriguez and R.K. Wunderlich, “Preliminary Experiments

Using Electromagnetic Levitation On the International Space Station”, International
Journal of Microgravity Science and Application, 33[2] (2016), 330206 1-11.

[49] D. M. Matson, "The Measurement of Dendrite Tip Propagation Velocity During Growth

into Undercooled Metallic Melts", in Solidification 1998, S. P. Marsh, J. A. Dantzig, R.
Trivedi, W. Hofmeister, M. G. Chu, E. J. Lavernia, and J.-H. Chun, eds., TMS
Warrendale PA, (1998), pp. 233-244.

[50] D. Kirk, ‘Saturation Curve Analysis and Quality Control’, The Shot Peener magazine 20

[3] (2006) 24-30.

[51] J. Zhang, H. Wang, W Kuang, Y. Zhang, S. Li, Y. Zhao, D. M. Herlach, “Rapid

solidification of non-stoichiometric intermetallic compounds: modeling and experimental
verification” Acta Mater. 148 (2018) 86-99.

[52] T. Volkmann, W. Loser, and D. M. Herlach, “Nucleation and phase selection in

undercooled Fe-Cr-Ni melts: Part I theoretical analysis of nucleation behavior”, Met.
Trans. 28A (1997) 435-460.

[53] J.E. Rodriguez and D.M. Matson, “Lateral Heat Flux during Remelt Growth into the
Mushy-zone”, Acta Mater. 129 (2017) 408-414.

[54] J.E. Rodriguez, C. Kreischer, T. Volkmann, and D.M. Matson, “Solidification velocity of

undercooled Fe-Co alloys”, Acta Mater. (2016).

 75

Appendices

Delay Time Code V4.8 – MATLAB R2021A

% This program opens a ISS-EML.avi sample video file and computes delay time between two phases
% Author: Brian Stanford

% The included script is an overhaul of the code originally designed by Willium Liu, and bug tested by Brian Stanford.
% Major Changes in this version include the assumption that the sample Sphere does not translate between frames
% To enact this change, the translationOfPOI function written by william has been removed and replaced with a series of nested for loops
% All cells have been replaced with matrices to allow for the easy printing of results to excel.
% This code has also been updated to include a skip feature which can reduce wasted time between attempts if a backup file has been generated
in the past containing information.

% Main Script: Offers the user a chance to load information from a backup and skip any or all of the following parts
% Setup (Prompts 01, 02, 03): Load a video file, ask user for key frame information
% Part1 (Prompt 04): Identifies the outer edge of the sample, finds center, radius for each frame, then takes the average across all frames
% Part2 (Prompt 05): Allows the user to pick the origin of a phase
% Part3 (Prompt 06): Allows the user to Track points on the edge of a phase as they
% Part4 (calculations): Computes the 3-D Euclidean Distance between each x,y tracker point (from Part 06) and the x,y phase 1 or phase 2
centerpoint (from Part05) assuming a sphere with x,y center points and radius (from Part 04). Then computes the average Euclidean distance for
each frame.
% Part5 (Plot): Plot the Euclidean distances (y) vs. frame Number (x) for phase 1 and 2, and determine a trendline. the distance between the x
intercept of both trendlines is finaly computed in terms of frame numbers, then the frame number is converted to a time using the known video
frame rate.
% Part6 (Adjustments): Experimental section to remove or adjust tracker locations,(Currently Incomplete)
% Part7 (Advanced Import): Planned feature to import and convert williams data file for comparison

%useful commands
%save('BackupFile', 'A', 'B') % Saves Matrices A and B to Backupfile.mat
%load('BackupFile', 'A', 'B') % loads matrices A and B from Backupfile.mat
%fprintf('message \n') % prints a "message" to the command window then creates a new line with the \n command
%close all % closes all open windows

%list of counters used in "for" loops, the prompt where they are located, and what variable the count
% (Name) - (Prompt) (Variable) (Description)
%counter01 - (prompt 1) (Frame Number) counts up from 1 until it reaches the current frame number (note to self- find a way to create a
matrix that lists the start frame in the first row)
%counter02 - (prompt 1) (????????????) unknown use... from williams code, maybe useful in later steps
%counter03 - (prompt 4) (Frame Number) counts up starting with the start frame of phase 1 to the end frame of phase 2 - used to obtain
circle center information for all frames; dfependant on phase start, end information
%counter04 - (prompt 4) (Frame Number) same use as counter 01, starts at 1 and increments to save circle center information to a new row
for each frame looked at (assumes row 1 = phase1 start frame)
%counter05 - (prompt 6) (Tracker Number) counts up from 1 to the maximum number of trackers in phase 1 and 2. If phase 1 has more
tracker than phase 2, then the number of trackers for phase 1 is used.... and vice versa. each time the counter loops, a new tracker variable will be
saved, such that there is one matrix for each tracker containing information from that tracker from both phases
%counter05 old description: starts at 1 and increments up to the number of tracker locations specified by the maximum of prompt_06_A and
prompt_06_B, also relies on counter01 to determine the number of video frames
%counter06 - (prompt 6) (Frame Number) counts up from the video frame number when phase 1 starts to the video frame number when
phase 1 ends. It is used in a for loop which opens up a new video frame as specified by this counter, then proceeds with a second loop to fill in
tracker (06_A, 06_B)
%counter06_A - (Prompt 6) (Tracker Number) counts up from 1 to the number of trackers in a for loop. This is paired with an if loop which
makes use of this counter as the current tracker, and saves ginput data to that trackers matrix
%counter06_B - (Prompt 6) (Frame Number) counts up from 1, recording the first frame in the phase as frame 1, then incrementing for each
subsequent frame. data is saved to a row number specified by this counter in the tracker matrix
%counter07 - (prompt 6) (Frame Number) counts up from the video frame number when phase 2 starts to the video frame number when
phase 2 ends. It is used in a for loop which opens up a new video frame as specified by this counter, then proceeds with a second loop to fill in
tracker (06_A, 06_B)
%counter07_A - (Prompt 6) (Tracker Number) counts up from 1 to the number of trackers in a for loop. This is paired with an if loop which
makes use of this counter as the current tracker, and saves ginput data to that trackers matrix
%counter07_B - (Prompt 6) (Frame Number) counts up from 1, recording the first frame in the phase as frame 1, then incrementing for each
subsequent frame. data is saved to a row number specified by this counter in the tracker matrix
%counter08 - (Calculations) (Tracker Number) Starts at 1 and increments up to the number of tracker locations specified by the maximum of
prompt_06_A and prompt_06_B to run a calcualtion on each set of trackers

 76

%Counter08_A.. (Calculations) (frame Number) Each of these counters represents current frame number and counts up from either 1 or 2 until
it reaches the maximum frame in a given phase. Used in for loops, the counter can be referenced to read the specidied row of a matrix with each
row being a different frame numnber.
%counter09
%counter10
%counter11
%counter12
%counter13
%counter14
%counter15

%Brian Stanford 05/13/2022
%% Close figures, Clear Workspace, Clear Command Window

close all;
clear;
clc;

%% General Code - Data Import or Create New Project

%Prompt 01
cd 'C:\Users\Name\Desktop'; %change directory to users desktop (change 'user' based on computer being used)
prompt_01_FileName = 'Input the name of "ISS_EML.avi" file to be used in analysis: \n'; %creates the label for the dialogue box
fileName = inputdlg(prompt_01_FileName); %asks user to identify their video file on the desktop

% Initialize Variables
prompt_06_A = 0; % placeholder for a variable used in an else loop later on --> if data import fails the loop wont work.

%Prompt 02
prompt_02_DataImport = 'Would you like to import data? Y/N '; %creates the label for the dialogue box
dataImport = inputdlg(prompt_02_DataImport); %asks the user if they would like to import data respond with a y for yes or n for no
dataImportMat = cell2mat(dataImport);

 if dataImportMat == 'Y' %if user wants to import, Ask for data import file name "data.m"
 prompt_02_A = 'Input the name of the "Data.mat" file saved to your desktop that you would like to import: '; %creates the label for the
dialogue box
 importFileName = inputdlg(prompt_02_A); %save users response (file name)
 importFileNameMat = cell2mat(importFileName);
 end

if dataImportMat == 'Y' % The following prompts are only needed if user elected to import data from a file (user can select which data to
import and which data to rerun)

%Prompt 03
prompt_03_FrameImport = 'Import phase start, End frame Information? Y/N '; %creates the label for the dialogue box
frameImport = inputdlg(prompt_03_FrameImport);
frameImportMat = cell2mat(frameImport);

 if frameImportMat == 'Y' %if user wants to import frame details
 load(importFileNameMat, 'phase1Start', 'phase1End', 'phase2Start', 'phase2End', 'frameTotPhase1', 'frameTotPhase2', 'maxFrames') %load
frame details from their backup file selected in prompt 02
 end

%Prompt 04
prompt_04_CenterImport = 'Import circle center data file? Y/N '; %creates the label for the dialogue box
centerImport = inputdlg(prompt_04_CenterImport);
centerImportMat = cell2mat(centerImport);

 if centerImportMat == 'Y' %if user wants to import circle center details
 load(importFileNameMat, 'Rmin', 'Rmax', 'sThresh', 'segmentI', 'IThresh', 'centerI', 'radius', 'frameLength', 'centers', 'frameCenterAverage',
'frameradiusAverage', 'AdjustC1', 'AdjustC1Mat', 'newCenter', 'centersAverage') %load circle center details from their backup file selected in
prompt 02
 end

%Prompt 05
prompt_05_PhaseImport = 'Import phase center data file? Y/N '; %creates the label for the dialogue box
phaseImport = inputdlg(prompt_05_PhaseImport);

 77

phaseImportMat = cell2mat(phaseImport);

 if phaseImportMat == 'Y' %if user wants to import phase center details
 load(importFileNameMat, 'j', 'frame1', 'numEdgePointsP2', 'numEdgePointsP2Mat', 'centerP2Edge', 'sumXYP2', 'sumXP2', 'sumYP2',
'AvgXP2', 'AvgYP2', 'pointImage05', 'pointImage06', 'AdjustP2', 'AdjustP2Mat', 'satisfied02', 'AdjustP2_A', 'AdjustP2_A_Mat', 'pointImage07',
'pointImage08') %load phase2 center details from their backup file selected in prompt 02
 load(importFileNameMat, 'i' , 'numEdgePointsP1', 'numEdgePointsP1Mat', 'centerP1Edge', 'sumXYP1', 'sumXP1', 'sumYP1',
'AvgXP1', 'AvgYP1', 'pointImage01', 'pointImage02', 'AdjustP1', 'AdjustP1Mat', 'satisfied01', 'AdjustP1_A', 'AdjustP1_A_Mat', 'pointImage03',
'pointImage04') %load phase1 center details from theri backup file
 end

%Prompt 06
prompt_06_TrackerImport = 'Import tracker point data file? Y/N '; %creates the label for the dialogue box
trackerImport = inputdlg(prompt_06_TrackerImport);
trackerImportMat = cell2mat(trackerImport);

 if trackerImportMat == 'Y' %if user wants to import tracker details
 load(importFileNameMat, 'figure', 'prompt_06_A', 'prompt_06_AMat', 'objectFrame2', 'prompt_06_B', 'prompt_06_BMat',
'maxNumTrackers', 'maxNumTrackersMat', 'currentFrameImageP1', 'baseFileName', 'fullFileName', 'baseFileName2', 'fullFileName2') %load
tracker details from their backup file selected in prompt 02
 load(importFileNameMat, 'tracker1Loc', 'tracker2Loc', 'tracker3Loc', 'tracker4Loc', 'tracker5Loc', 'tracker6Loc', 'tracker7Loc', 'tracker8Loc',
'tracker9Loc', 'tracker10Loc') %load matrices storing x,y coordinates for each tracker as it moves from frame to frame
 load(importFileNameMat, 'point1A', 'point1B', 'point1C', 'point1D', 'point1E', 'point1F', 'point1G', 'point1H', 'point1I', 'point1J', 'point2A',
'point2B', 'point2C', 'point2D', 'point2E', 'point2F', 'point2G', 'point2H', 'point2I', 'point2J') %loads plotted points
 end

%Prompt 07 (extra options - only if successful data import of entire data file can the video be safely ignored)
 if dataImportMat == 'Y' && frameImportMat == 'Y' && centerImportMat == 'Y' && phaseImportMat == 'Y' && trackerImportMat == 'Y' %
only show this option if all data has been imported successfully
 prompt_07_SkipVid = 'Would you like to skip loading the video file? Y/N '; %gives user the option of skipping to result calculations using
their input data
 skipVid = inputdlg(prompt_07_SkipVid); %saves your response
 skipVidMat = cell2mat(skipVid);
 load(importFileNameMat, 'videoReader', 'videoPlayer', 'videoFrame', 'click') %'delXYZCenter', 'phaseInitialCoord', 'delXP1', 'delYP1',
'delXP2', 'delYP2', 'delZP1', 'delZP2', 'delT01', 'delT02', 'delT03', 'delT04', 'delT05', 'delT06', 'delT07', 'delT08', 'delT09', 'delT10',
'euclideanDistP1', 'euclideanDistP2', 'euclideanSumP1', 'euclideanSumP2')
 counter01 = 0;
 else
 skipVidMat = 'N';

 end

%prompt 08 (extra options - only applies if tracker data file was imported, and user wants to overwrite a portion of that file regarding phase 2)
% add this to overwrite phase 2 center data when user reaches that section (only save phase 1 import)
 if trackerImportMat == 'Y' % only show this option if all data has been imported successfully
 prompt_08_SkipPhase1 = 'Would you like to rerun your imported phase 2? Y/N '; %gives user the option of skipping to result calculations
using their input data
 skipPhase1 = inputdlg(prompt_08_SkipPhase1); %saves your response
 skipPhase1Mat = cell2mat(skipPhase1);
 else
 skipPhase1Mat = 'N';

 end

%prompt 09 (extra options - only applies if tracker data file was imported, and user wants to overwrite a portion of that file regarding phase 2)
% add this to overwrite phase 2 tracker data when user reaches that section (only save phase 1 import)
 if trackerImportMat == 'Y' % only show this option if all data has been imported successfully
 prompt_09_SkipPhase1 = 'Would you like to re-run your imported phase 2 Trackers (skip phase 1 tracker selection)? Y/N '; %gives user the
option of skipping to result calculations using their input data
 skipPhase1T = inputdlg(prompt_09_SkipPhase1); %saves your response
 skipPhase1TMat = cell2mat(skipPhase1T);

 if skipPhase1TMat == 'Y'
 trackerImportMat = 'N'; %if user opts to skip phase 1 but rerun phase 2, change prompt 6 to allow for a point rerun (phase 1 tracker
selection will only be run if skipPhase1TMat is 'N'. note that if prompt 6 was originally 'N' (data not imported), skipPhase1TMat will
automatically be set to 'N' allowing both phases to be run.
 end

 else

 78

 skipPhase1TMat = 'N';
 end

else
 frameImportMat = 'N';
 centerImportMat = 'N';
 phaseImportMat = 'N';
 trackerImportMat = 'N';
 skipVidMat = 'N';
 skipPhase1Mat = 'N';
 skipPhase1TMat = 'N';

end %uncomment this to place everything in a loop, causes errors with undefined variables

%% Alternative menu (change all answers to 1 for yes, 2 for no (experimental code adds radial boxes instead of text entry to reduce user error)

%prompt_02_DataImport = menu('Would you like to import data?','Yes','No');
%prompt_03_FrameImport = menu('Enter phase start, end frame Information?','Yes','No');
%prompt_04_CenterImport = menu('Enter circle center data file?','Yes','No');
%prompt_05_PhaseImport = menu('Enter phase center data file?','Yes','No');
%prompt_06_TrackerImport = menu('Enter tracker point data file?','Yes','No');
%prompt_07_SkipVid = menu('Would you like to skip loading the video file?','Yes','No');
%prompt_08_SkipPhase1 = menu('Would you like to overwrite phase 2 data?','Yes','No');

%% Load video file and check for total number of frames (prompt 01)

if skipVidMat == 'Y' %check if video was skipped
 fprintf('You have skipped the video! \n')

else %continue loading file if video was not skipped

 % code for video reading provided by William

 % initialize variables
 videoReader = VideoReader(fileName{1,1}); %reads the video file selected
 videoPlayer = vision.VideoPlayer; %opens video player
 videoFrame = struct('cdata', zeros(videoReader.Height,videoReader.Width,3, 'uint8'));
 counter01 = 1; %current frame number counts up until it reaches the total number of frames in the video
 counter02 = 0;
 click = 0; %detects a user click when scrolling through frames

 % Count the number of frames in the video file
 while hasFrame(videoReader)
 videoFrame(counter01).cdata = readFrame(videoReader);
 videoPlayer(videoFrame(counter01).cdata)
 counter01 = 0;
 click = waitforbuttonpress; % detect mouse click
 if click == 0 % on detect make y=1
 counter02 = 1;
 counter01 = counter01 + 1; %increment counter
 end
 end

 %close out of video viewer
 close all;

end

%% Prompt 01 results

 fprintf('you have successfully Loaded a Video with the following number of frames! \n')
 disp(counter01) %number of frames

 fprintf('Prompt 01 Complete! \n')

%% Notify User of Data Import (prompt 02)

 79

if dataImportMat == 'Y'
 fprintf('you have successfully Selected a file for data transfer! \n')
else
 fprintf('you have decided not to import data! \n')
end

 fprintf('Prompt 02 Complete! \n')

%% Enter Start and End Frames For Each Phase (prompt 03) --> The results of this section will be used in section 6

if frameImportMat == 'Y' %check if user imported data from general code section
 fprintf('you have successfully imported frame data! \n') %notify user of successful import, \n skips to new line
 %add line to print data variables
else %else begins Frame Number code up until the end function
 %code to allow user to enter frame info goes here (could turn everything inside the else loop into a called function for use in other scripts)

 %ask user which frames to select
 prompt_03_A = 'Input the frame# when the first phase starts: \n';
 prompt_03_B = 'Input the frame# when the fist phase ends: \n';
 prompt_03_C = 'Input the frame# when the second phase starts: \n';
 prompt_03_D = 'Input the frame# when the second phase ends: \n';

 %save critical frame information %might need to convert cell2 mat and update everywhere
 phase1Start = input(prompt_03_A);
 phase1End = input(prompt_03_B);
 phase2Start = input(prompt_03_C);
 phase2End = input(prompt_03_D);

 %determine the Total number of frames in phase 1
 frameTotPhase1 = (phase1End - phase1Start + 1); %eg. start frame 5, end frame 10 --> (frame10-frame5) = 5rows so starting with
frame5... frame5 = row1, frame6 = row2, frame7 = row3, frame8 = row4, frame9 = row5 but frame 10 is the last frame so need one extra
row... frame10 = row6 therefore the actual calculation is #rows required = {(frame end - frame start) + 1row}
 %determine the Total number of frames in phase 2
 frameTotPhase2 = (phase2End - phase2Start + 1);
 %determine the maximum number of rows (whichever has more frames phase 1 or phase 2
 if frameTotPhase1 > frameTotPhase2 %if more frames in phase 1 than in phase 2
 maxFrames = frameTotPhase1; % then choose number of frames in phase 1 to be the max number of frames
 elseif frameTotPhase1 == frameTotPhase2
 maxFrames = frameTotPhase1;
 elseif frameTotPhase1 < frameTotPhase2
 maxFrames = frameTotPhase2;
 end

end

%% Prompt 03 results

 fprintf('you have successfully Generated frame data! \n')
 fprintf('Phase 1 Start \n')
 disp(phase1Start)
 fprintf('Phase 1 End \n')
 disp(phase1End)
 fprintf('Total Frames in Phase 1 \n')
 disp(frameTotPhase1)
 fprintf('Phase 2 Start \n')
 disp(phase2Start)
 fprintf('Phase 2 End \n')
 disp(phase2End)
 fprintf('Total Frames in Phase 2 \n')
 disp(frameTotPhase2)

 fprintf('Max Number of Frames in Phase 1 and 2 \n')
 disp(maxFrames)

 fprintf('Prompt 03 Complete! \n')

%% Enter Circle Center Information (prompt 04)

 80

if centerImportMat == 'Y'
 fprintf('you have successfully imported circle center data! \n')
 %add line to print data variables
else
 %code opens video file and picks out circle centers for each frame

 %Initialize Variables
 Rmin = 75;
 Rmax = 900;
 sThresh = 0.1;
 segmentI = 0;
 IThresh = 0;
 centerI = zeros(10, 2); %matrix with 10 rows and 2 columns (10 being arbitrarily large enough to hold all identified circles in a single video
frame and 2 representing x,y.
 radius = zeros(10,1); %same as centerI but with onlu 1 column representing radius

 % New Prompt Version 4.8
 promptCutVid = 'Would you like to only analyze the first 10 frames of phase 1 for sample center? Y/N '; %User can now choose whether to
average the center points for all frames in the video (could be up to 200 frames in helium) which must each be checked manually, or only obtain
sample centers for the first 10 frames as an approximate
 cutVid = inputdlg(promptCutVid); %store users response in a cell(Y or N)
 cutVidMat = cell2mat(cutVid); %converts the user response to a matrix so it can be used in if/then statements
 if cutVidMat == 'Y' %new to version 4.8,
 frameLength = (9 + 1); % 9 frames plus the first frame of phase 1 = 10 frames. this will set the length of the centers matrix to 10 rows
 trimmedVidEnd = phase1Start + 9 ; %counter 03 will now cycle from phase 1 start through to 9 frames after that frame (calculating 10
total)
 else %the else here used to be the only possible response prior to version 4.8
 frameLength = (phase2End - phase1Start + 1); %the length of the centers matrix will be set to the total numbers of frames from the start
of the first phase to the end of the second phase
 trimmedVidEnd = phase2End ; %counter 03 will now cycle from phase 1 start through to phase 2 end when calculating center
coordinates
 end

 centers = zeros(frameLength, 3); %contains a row for each frame, and columns for x, y, radius center coordinates
 %counter03 = 0; % dont need to initialize variables used as a for loop condition
 counter04 = 1; % used to save the final matrix of center coordinates

 for counter03 = phase1Start : trimmedVidEnd %used to be "phase1Start : phase2End" but for helium cycles where there are hundreds of
frames, time can be saved by running only the first X frames after the start of the first phase, in this case "Phase1Start : Phase1Start + 10"

 %isolate one frame of video
 segmentI = read(videoReader, counter03); %read current frame from counter 03 which is incremented from the start of phase 1 to end of
phase 2
 figure; %calculate figure
 imshow(segmentI); %display figure
 fprintf('Isolated Frame \n'); %let user know frame isolation was successful.
 %segment frame
 Ithresh = im2bw(segmentI, sThresh); %convert image to black and white
 figure;
 imshow(Ithresh);

 %find centroid using imfindcircles
 [centerI, radius] = imfindcircles(Ithresh, [Rmin Rmax], 'Sensitivity', 0.95); %circle center information will be saved with one row in the
centerI and radius matrices for each circle identified.
 viscircles(centerI,radius); %display circles
 hold on;
 plot(centerI(:,1),centerI(:,2),'yx','LineWidth',2); %add text to the plot for circle center coordinates and radius

 %compute average for the frame
 %frameCenterAverage = mean(centerI); %this code doesnt work because it includes cells with zeros in the average... fix below%calculates
the average of all values in each column (column 1= x coord) (column2 = y coord) across all rows which represent detected circles. The result
will be a single row matrix with one x and one y coordinate
 %frameradiusAverage = mean(radius); %this line is also broken ... same reason as above, fix below
 frameCenterAverage = sum(centerI,1) ./ sum(centerI~=0,1); %need to check to make sure this works --> should include zeros in the average
 frameradiusAverage = sum(radius,1) ./ sum(radius~=0,1); %need to check to make sure this works

 %save averaged center and radius data to a new matrix with a row for each frame

 81

 centers (counter04,1) = frameCenterAverage (1,1);
 centers (counter04,2) = frameCenterAverage (1,2);
 centers (counter04,3) = frameradiusAverage (1,1);

 %Plot averaged center result
 viscircles(centerI,radius); %display circles
 plot(centers(counter04,1),centers(counter04,2),'yx','LineWidth',2);

 %make manual adjustment to the average?
 prompt_04_A = 'Adjust the center point? Y/N'; %prompt user to modify circle center manually
 AdjustC1 = inputdlg(prompt_04_A);
 AdjustC1Mat = cell2mat(AdjustC1);

 %use ginput to overwrite computer generated results
 if AdjustC1Mat == 'Y'
 %isolate one frame of video %already loaded the figure so this block is redundant --> ignore
 %segmentI = read(videoReader, counter03); %read current frame from counter 03 which is incremented from the start of phase 1 to end
of phase 2
 %figure %calculate figure
 %imshow(segmentI);

 %Centers Manual update
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [centers(counter04, 1), centers(counter04, 2)] = ginput(1); %allow the user to click on a point. Save that point to centers matrix in the
same spot where the original points were
 centers(counter04, 1) = round (centers(counter04, 1)); %update the x coordinate of the tracker to a rounded value
 centers(counter04, 2) = round (centers(counter04, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 newCenter = insertMarker(segmentI, [centers(counter04, 1), centers(counter04, 2)],'+', 'Color', 'green'); %plot the now rounded
coordinates
 imshow(newCenter)
 end %end manual center adjustment for the current frame

 hold off;
 counter04 = counter04 + 1; %increment counter 04 by 1 so that the next frame saves to a new row in the centers matrix created above

 end %finished running each of the frames specified, at least one center found for each.

 %Final Averaged result with edits
 centersAverage = mean(centers); %Average together phase data
 centersAverage = round(centersAverage);

end

%% Prompt 04 Results

 % final results of prompt 4 is a single averaged center coordinate and sample radius for the applicable segment of video
 fprintf('Average Center Information (x, y, radius) for all frames in Phase 1 and 2! \n')
 disp(centersAverage)

 fprintf('Prompt 04 Complete! \n')

 %added to close all windows
 close all

%% Enter Phase Center Information (prompt 05)

if phaseImportMat == 'Y' %skip both phases if user elected to do so
 fprintf('you have successfully imported phase center data! \n')

else %continue to entry of corner points and phase center calculation for both phases

 if skipPhase1Mat == 'Y' %Secondary if statement skips phase 1 and only modifies phase 2
 fprintf('you have successfully skipped phase 1! \n') %notify user of successful import, \n skips to new line

 82

 %Phase 2 - plot corner points to find the centroid of the phase
 %code identifies a center of each phase then allows the user to correct that selection
 %load video of phase 1 start + 1
 j = (phase2Start + 1);
 frame2 = read(videoReader, j);
 imshow(frame2);
 %select the number of corner points in phase 1
 prompt_05_D = 'How many corner Points do you see?'; %prompt user for number of corner points and generate a matrix to fill with
ginput coordinates
 numEdgePointsP2 = inputdlg(prompt_05_D);
 numEdgePointsP2Mat = cell2mat(numEdgePointsP2); numEdgePointsP2Mat = str2double(numEdgePointsP2Mat);
 %generate a empty matrix with the same number of rows as corner points selected (one row for each ginput coordinate pair) and (one
ginput coordinate pair for each corner point)
 centerP2Edge = zeros(numEdgePointsP2Mat, 2);
 %ginput for cooridinates and save to the centerP1Edge matrix
 zoom on; %added this line in to allow zooming in on small images
 pause %allow for zooming in until button is pressed
 [centerP2Edge(:,1),centerP2Edge(:,2)] = ginput(numEdgePointsP1Mat); %colon represents the row changes based on current
numEdgePointsP1Mat which was taken from user prompt to identify the number of edge points to track.
 zoom out; %cancel zoom once all points have been selected to save the full image
 %round coordinate values into closest whole number (AKA Pixel)
 centerP2Edge(:, 1) = round(centerP2Edge(:, 1));
 centerP2Edge(:, 2) = round(centerP2Edge(:, 2));
 %find centroid of triangle
 sumXYP2 = sum(centerP2Edge); %check, avgXYP1 should form a row matrix with 3 columns, each containing a sum of values in said
column of centerP1Edge
 sumXP2 = sumXYP2(1,1); %extracts the x averaged value from the matrix
 sumYP2 = sumXYP2(1,2); %extracts the y averaged value from the matrix
 AvgXP2 = sumXP2 / numEdgePointsP2Mat; %takes average by dividing sum over number of points
 AvgYP2 = sumYP2 / numEdgePointsP2Mat; %takes average by dividing sum over number of points
 %plot points from ginput
 pointImage05 = insertMarker(frame2, [centerP2Edge(:,1), centerP2Edge(:,2)],'+', 'Color', 'green'); %creates coordinates to plot
 pointImage06 = insertMarker(frame2, [AvgXP2, AvgYP2],'+', 'Color', 'blue'); %creates coordinates to plot
 hold on %prepares to retain the images
 imshow(pointImage05); %plot edges
 imshow(pointImage06); %plot center
 hold off;
 %make Adjustments?
 prompt_05_E = 'Adjust X,Y? Y/N'; %prompt user to modify phase center manually
 AdjustP2 = inputdlg(prompt_05_E);
 AdjustP2Mat = cell2mat(AdjustP2);
 %loop for correction begins
 if AdjustP2Mat == 'Y' %if user responds yes, the tracker selection process is redone
 fprintf('you are unsatisfied with the computers Phase1 center selection! \n')
 satisfied02 = 'N' ; %default status of user is unsatisfied with result of averaged center
 while satisfied02 == 'N' %keep repeating prompt until user selects "N"
 prompt_05_F = 'Still unsatisfied? Select a new point! Y/N'; %prompt user to modify phase center
 AdjustP2_A = inputdlg(prompt_05_F);
 AdjustP2_A_Mat = cell2mat(AdjustP2_A);
 if AdjustP2_A_Mat == 'Y'
 %ginput to directly set a center point
 zoom on; %added this line in to allow zooming in on small images
 pause %allow for zooming in until button is pressed
 [AvgXP2,AvgYP2] = ginput(numEdgePointsP2Mat); %colon represents the row changes based on current
numEdgePointsP1Mat which was taken from user prompt to identify the number of edge points to track.
 zoom out; %cancel zoom once all points have been selected to save the full image
 %round coordinate values into closest whole number (AKA Pixel)
 AvgXP2 = round(AvgXP2);
 AvgYP2 = round(AvgYP2);
 %plot points from ginput
 pointImage07 = insertMarker(frame2, [centerP2Edge(:,1), centerP2Edge(:,2)],'+', 'Color', 'green'); %creates coordinates to plot
 pointImage08 = insertMarker(frame2, [AvgXP2, AvgYP2],'+', 'Color', 'red'); %creates coordinates to plot
 hold on %prepares to retain the images
 imshow(pointImage07); %plot edges
 imshow(pointImage08); %plot center
 hold off;
 else %if user selects "N" to the querry of whether they are still unsatisfied (or enters any key other than capital Y) the satisfaction
status will change to "Y"
 satisfied02 = 'Y'; %exit while loop once user declares "N" to

 83

 end %end of if statement, continue to repeat if while is still true
 end %end of while loop
 end % end of original if statement for adjusting Phase 2

 else %else statement requires points for both phase 1 and 2 to be entered
 fprintf('Begin Circle Center Location for Phases 1 and 2! \n') %notify user of successful import, \n skips to new line

 %Begin Phase 1 Point Tracking

 %Phase 1 - plot corner points to find the centroid of the phase
 %code identifies a center of each phase then allows the user to correct that selection
 %load video of phase 1 start + 1
 i = (phase1Start + 1);
 frame1 = read(videoReader, i);
 imshow(frame1);
 %select the number of corner points in phase 1
 prompt_05_A = 'How many corner Points do you see?'; %prompt user for number of corner points and generate a matrix to fill with
ginput coordinates
 numEdgePointsP1 = inputdlg(prompt_05_A);
 numEdgePointsP1Mat = numEdgePointsP1; numEdgePointsP1Mat = str2double(numEdgePointsP1Mat);
 %generate a empty matrix with the same number of rows as corner points selected (one row for each ginput coordinate pair) and (one
ginput coordinate pair for each corner point)
 centerP1Edge = zeros(numEdgePointsP1Mat, 2);
 %ginput for cooridinates and save to the centerP1Edge matrix
 zoom on; %added this line in to allow zooming in on small images
 pause %allow for zooming in until button is pressed
 [centerP1Edge(:,1),centerP1Edge(:,2)] = ginput(numEdgePointsP1Mat); %colon represents the row changes based on current
numEdgePointsP1Mat which was taken from user prompt to identify the number of edge points to track.
 zoom out; %cancel zoom once all points have been selected to save the full image
 %round coordinate values into closest whole number (AKA Pixel)
 centerP1Edge(:, 1) = round(centerP1Edge(:, 1));
 centerP1Edge(:, 2) = round(centerP1Edge(:, 2));
 %find centroid of triangle
 sumXYP1 = sum(centerP1Edge); %check, avgXYP1 should form a row matrix with 3 columns, each containing a sum of values in said
column of centerP1Edge
 sumXP1 = sumXYP1(1,1); %extracts the x averaged value from the matrix
 sumYP1 = sumXYP1(1,2); %extracts the y averaged value from the matrix
 AvgXP1 = sumXP1 / numEdgePointsP1Mat; %takes average by dividing sum over number of points
 AvgYP1 = sumYP1 / numEdgePointsP1Mat; %takes average by dividing sum over number of points
 %plot points from ginput
 pointImage01 = insertMarker(frame1, [centerP1Edge(:,1), centerP1Edge(:,2)],'+', 'Color', 'green'); %creates coordinates to plot
 pointImage02 = insertMarker(frame1, [AvgXP1, AvgYP1],'+', 'Color', 'blue'); %creates coordinates to plot
 hold on %prepares to retain the images
 imshow(pointImage01); %plot edges
 hold on
 imshow(pointImage02); %plot center
 hold off;
 %make Adjustments?
 prompt_05_B = 'Adjust X,Y? Y/N'; %prompt user to modify phase center manually
 AdjustP1 = inputdlg(prompt_05_B);
 AdjustP1Mat = cell2mat(AdjustP1);
 %loop for correction begins
 if AdjustP1Mat == 'Y' %if user responds yes, the tracker selection process is redone
 fprintf('you are unsatisfied with the computers Phase1 center selection! \n')
 satisfied01 = 'N' ; %default status of user is unsatisfied with result of averaged center
 while satisfied01 == 'N' %keep repating prompt until user selects "N"
 prompt_05_C = 'Still unsatisfied? Select a new point! Y/N'; %prompt user to modify phase center
 AdjustP1_A = inputdlg(prompt_05_C);
 AdjustP1_A_Mat = cell2mat(AdjustP1_A);
 if AdjustP1_A_Mat == 'Y'
 %ginput to directly set a center point
 zoom on; %added this line in to allow zooming in on small images

 84

 pause %allow for zooming in until button is pressed
 [AvgXP1,AvgYP1] = ginput(numEdgePointsP1Mat); %colon represents the row changes based on current
numEdgePointsP1Mat which was taken from user prompt to identify the number of edge points to track.
 zoom out; %cancel zoom once all points have been selected to save the full image
 %round coordinate values into closest whole number (AKA Pixel)
 AvgXP1 = round(AvgXP1);
 AvgYP1 = round(AvgYP1);
 %plot points from ginput
 pointImage03 = insertMarker(frame1, [centerP1Edge(:,1), centerP1Edge(:,2)],'+', 'Color', 'green'); %creates coordinates to plot
 pointImage04 = insertMarker(frame1, [AvgXP1, AvgYP1],'+', 'Color', 'red'); %creates coordinates to plot
 hold on %prepares to retain the images
 imshow(pointImage03); %plot edges
 hold on
 imshow(pointImage04); %plot center
 hold off;
 else %if user selects "N" to the querry of whether they are still unsatisfied (or enters any key other than capital Y) the satisfaction
status will change to "Y"
 satisfied01 = 'Y'; %exit while loop once user declares "N" to
 end %end of if statement, continue to repeat if while is still true
 end %end of while loop
 end % end of original if statement for adjusting Phase 1

 %continue on to phase 2 point tracking

 %Phase 2 - plot corner points to find the centroid of the phase
 %code identifies a center of each phase then allows the user to correct that selection
 %load video of phase 1 start + 1
 j = (phase2Start + 1);
 frame2 = read(videoReader, j);
 imshow(frame2);
 %select the number of corner points in phase 1
 prompt_05_D = 'How many corner Points do you see?'; %prompt user for number of corner points and generate a matrix to fill with
ginput coordinates
 numEdgePointsP2 = inputdlg(prompt_05_D);
 numEdgePointsP2Mat = cell2mat(numEdgePointsP2); numEdgePointsP2Mat = str2double(numEdgePointsP2Mat);
 %generate a empty matrix with the same number of rows as corner points selected (one row for each ginput coordinate pair) and (one
ginput coordinate pair for each corner point)
 centerP2Edge = zeros(numEdgePointsP2Mat, 2);
 %ginput for cooridinates and save to the centerP1Edge matrix
 zoom on; %added this line in to allow zooming in on small images
 pause %allow for zooming in until button is pressed
 [centerP2Edge(:,1),centerP2Edge(:,2)] = ginput(numEdgePointsP2Mat); %colon represents the row changes based on current
numEdgePointsP1Mat which was taken from user prompt to identify the number of edge points to track.
 zoom out; %cancel zoom once all points have been selected to save the full image
 %round coordinate values into closest whole number (AKA Pixel)
 centerP2Edge(:, 1) = round(centerP2Edge(:, 1));
 centerP2Edge(:, 2) = round(centerP2Edge(:, 2));
 %find centroid of triangle
 sumXYP2 = sum(centerP2Edge); %check, avgXYP1 should form a row matrix with 3 columns, each containing a sum of values in said
column of centerP1Edge
 sumXP2 = sumXYP2(1,1); %extracts the x averaged value from the matrix
 sumYP2 = sumXYP2(1,2); %extracts the y averaged value from the matrix
 AvgXP2 = sumXP2 / numEdgePointsP2Mat; %takes average by dividing sum over number of points
 AvgYP2 = sumYP2 / numEdgePointsP2Mat; %takes average by dividing sum over number of points
 %plot points from ginput
 pointImage05 = insertMarker(frame2, [centerP2Edge(:,1), centerP2Edge(:,2)],'+', 'Color', 'green'); %creates coordinates to plot
 pointImage06 = insertMarker(frame2, [AvgXP2, AvgYP2],'+', 'Color', 'blue'); %creates coordinates to plot
 hold on %prepares to retain the images
 imshow(pointImage05); %plot edges
 hold on
 imshow(pointImage06); %plot center
 hold off;
 %make Adjustments?
 prompt_05_E = 'Adjust X,Y? Y/N'; %prompt user to modify phase center manually

 85

 AdjustP2 = inputdlg(prompt_05_E);
 AdjustP2Mat = cell2mat(AdjustP2);
 %loop for correction begins
 if AdjustP2Mat == 'Y' %if user responds yes, the tracker selection process is redone
 fprintf('you are unsatisfied with the computers Phase1 center selection! \n')
 satisfied02 = 'N' ; %default status of user is unsatisfied with result of averaged center
 while satisfied02 == 'N' %keep repating prompt until user selects "N"
 prompt_05_F = 'Still unsatisfied? Select a new point! Y/N'; %prompt user to modify phase center
 AdjustP2_A = inputdlg(prompt_05_F);
 AdjustP2_A_Mat = cell2mat(AdjustP2_A);
 if AdjustP2_A_Mat == 'Y'
 %ginput to directly set a center point
 zoom on; %added this line in to allow zooming in on small images
 pause %allow for zooming in until button is pressed
 [AvgXP2,AvgYP2] = ginput(numEdgePointsP2Mat); %colon represents the row changes based on current
numEdgePointsP2Mat which was taken from user prompt to identify the number of edge points to track.
 zoom out; %cancel zoom once all points have been selected to save the full image
 %round coordinate values into closest whole number (AKA Pixel)
 AvgXP2 = round(AvgXP2);
 AvgYP2 = round(AvgYP2);
 %plot points from ginput
 pointImage07 = insertMarker(frame2, [centerP2Edge(:,1), centerP2Edge(:,2)],'+', 'Color', 'green'); %creates coordinates to plot
 pointImage08 = insertMarker(frame2, [AvgXP2, AvgYP2],'+', 'Color', 'red'); %creates coordinates to plot
 hold on %prepares to retain the images
 imshow(pointImage07); %plot edges
 hold on
 imshow(pointImage08); %plot center
 hold off;
 else %if user selects "N" to the querry of whether they are still unsatisfied (or enters any key other than capital Y) the satisfaction
status will change to "Y"
 satisfied02 = 'Y'; %exit while loop once user declares "N" to
 end %end of if statement, continue to repeat if while is still true
 end %end of while loop
 end % end of original if statement for adjusting Phase 2

 %completed Phase 2

 end %end if loop to skip phase 1 and else statement for when both phases 1 and 2 are entered
end %end if loop which allowed the user to skip both phases

%% Prompt 05 Results

 %load phase 1 image
 %load phase 2 image

 fprintf('Phase 1 Center X coordinate found! \n')
 disp(AvgXP1)
 fprintf('Phase 1 Center y coordinate found! \n')
 disp(AvgYP1)
 fprintf('Phase 2 Center x coordinate found! \n')
 disp(AvgXP2)
 fprintf('Phase 2 Center y coordinate found! \n')
 disp(AvgYP2)

 fprintf('Prompt 05 Complete! \n')

%% Enter Tracker Information (Prompt 06)

if trackerImportMat == 'Y'
 fprintf('you have successfully imported tracker data! \n')
 %add line to print data variables

 86

else
 %code to allow the user to slect points along the edge of the phase in each frame of the video with ginput

 %load and display a video frame of phase1 to determine number of trackers
 objectFrame1 = read(videoReader, phase1Start+2); %loads 2 frames after the phase 1 start frame
 objectRegion1 = [50, 70, 175, 175]; %loads a image window to display the desired frame
 figure; %saves as a temporary figure
 imshow(objectFrame1);
 %Select the number of trackers (up to 10) for phase1
 prompt_06_A = menu('How many trackers do you want to set for Phase 1?','1','2','3','4','5','6','7','8','9','10');
 prompt_06_AMat = prompt_06_A;

 %load and display a video frame of phase 2 to determine number of trackers
 objectFrame2 = read(videoReader, phase2Start+2); %loads 2 frames after the phase 1 start frame
 objectRegion2 = [50, 70, 175, 175]; %loads a image window to display the desired frame
 figure; %saves as a temporary figure
 imshow(objectFrame2);
 %Select the number of trackers (up to 10) for phase2
 prompt_06_B = menu('How many trackers do you want to set for Phase 2?','1','2','3','4','5','6','7','8','9','10');
 prompt_06_BMat = prompt_06_B;

 close all; %close the imageviewer frame

 %need to find a way to only perform the calculation if different numbers of trackers for phase 1 and phase 2 (otherwise if more trackers in
phase 2, not enough matrices will be saved to record responses.
 %tentative solution, use only the maximum number of trackers from phase 1 and 2
 if prompt_06_AMat > prompt_06_BMat %if phase1 (prompt 6A) has more trackers than phase 2 (prompt 6B), then calculations will
continue through to the number of trackers in pahse 1
 maxNumTrackers = prompt_06_AMat; % define the max number of trackers for use in counter 7 loop. Note, calculations will be
performed on empty cells for phase 2 which may or may not be a future problem.
 maxNumTrackersMat = maxNumTrackers;
 elseif prompt_06_AMat == prompt_06_BMat
 maxNumTrackers = prompt_06_AMat;
 maxNumTrackersMat = maxNumTrackers;
 elseif prompt_06_AMat < prompt_06_BMat
 maxNumTrackers = prompt_06_BMat;
 maxNumTrackersMat = maxNumTrackers;
 end

 %the following loops select how many tracker matrices are required
 %then create a matrix of x, y coordinates for each tracker
 %if prompt_06_A == 1 % if one tracker selected from the menu above, then only one tracker matrix required
 %sets up a matrix with a row for each video frame, and columns for xphase1,yphase1,xphase2, yphase2 of a specific tracker.

 %Define the number of required tracker matrices
 for counter05 = 1 : maxNumTrackersMat %this loop will create tracker matrices for each tracker with the number of rows specified by the
number of frames
 if counter05 == 1
 tracker1Loc= zeros(maxFrames, 4); % 4 columns (phase 1 x, phase 1 y, phase 2 x, phase 2 y) %note to self, maxFrames used to just be
counter01 which made the matrix way too big (one cell for each frame) only really need one cell for each frame in the phase in this case... cell 1
represents framestart #x
 elseif counter05 == 2
 tracker2Loc= zeros(maxFrames, 4); % create a matrix for the second tracker of both phase 1 and phase 2
 elseif counter05 == 3
 tracker3Loc= zeros(maxFrames, 4);
 elseif counter05 == 4
 tracker4Loc= zeros(maxFrames, 4);
 elseif counter05 == 5
 tracker5Loc= zeros(maxFrames, 4);
 elseif counter05 == 6
 tracker6Loc= zeros(maxFrames, 4);
 elseif counter05 == 7
 tracker7Loc= zeros(maxFrames, 4);
 elseif counter05 == 8
 tracker8Loc= zeros(maxFrames, 4);
 elseif counter05 == 9
 tracker9Loc= zeros(maxFrames, 4);
 elseif counter05 == 10
 tracker10Loc= zeros(maxFrames, 4);

 87

 end % end the if statement
 end % end the for loop

 fprintf('Begin Phase 1 Tracker Selection! \n') %notify user of begin ginput, \n skips to new line
 % Phase 1 Ginput tracker selection

if skipPhase1TMat == 'N'

 counter06_B = 1; %counter indicating the row in the matrix where trackers will be saved (starts at 1, unlike counter 06 which starts at some
frame number)

 for counter06 = phase1Start : phase1End %nested outer for loop, outer loop goes frame by frame, inner loop sets a ginuput for each tracker up
to the set number of trackers

 %load frame image based on counter06 current value
 currentFrameImageP1 = read(videoReader, counter06); %open the current frame according to counter06, and save the image to a new matrix
specifically designed to hold phase 1 data. the same frame should be called with each loop where the tracker is changed (tracker06_A). Note:
williams code relies on a while loop. This code stays consistant by using a counter instead, either way should work.
 imshow(currentFrameImageP1); %display the image
 axis on; %turn on axis to show the pixels to be selected
 hold on; %save all subsequent point images of ginput tracker locations to the current frame image until hold off is specified
 plot(AvgXP1, AvgYP1,'*', 'Color', 'red') %plot the phase center as a reference
 for counter06_A = 1 : prompt_06_AMat %inner loop performs a calculation for each tracker in phase 1 up to tracker number specified by
user in prompt_06_A

 %ginput on the image for each tracker and save x,y coordinates to the matrix of the current tracker as specified by the inner loop
 if counter06_A == 1
 plot(tracker1Loc(1:counter06_B, 1), tracker1Loc(1:counter06_B, 2),'*', 'Color', 'Blue') %display all previous point selections for the
current tracker as a reference
 %run ginput and save x,y coordinates to tracker1 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker1Loc(counter06_B, 1), tracker1Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker1Loc(counter06_B, 1) = round (tracker1Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker1Loc(counter06_B, 2) = round (tracker1Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1A = insertMarker(currentFrameImageP1, [tracker1Loc(counter06_B, 1), tracker1Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker1Loc(counter06_B, 1), tracker1Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on; %prepare to hold the next set of trackers
 elseif counter06_A == 2 %Tracker 2 --> counter06_B = 2
 plot(tracker2Loc(1:counter06_B, 1), tracker2Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker2Loc(counter06_B, 1), tracker2Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker2Loc(counter06_B, 1) = round (tracker2Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker2Loc(counter06_B, 2) = round (tracker2Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1B = insertMarker(currentFrameImageP1, [tracker2Loc(counter06_B, 1), tracker2Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker2Loc(counter06_B, 1), tracker2Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 3 %Tracker 3 --> counter06_B = 3
 plot(tracker3Loc(1:counter06_B, 1), tracker3Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker3 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker3Loc(counter06_B, 1), tracker3Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker3Loc(counter06_B, 1) = round (tracker3Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value

 88

 tracker3Loc(counter06_B, 2) = round (tracker3Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1C = insertMarker(currentFrameImageP1, [tracker3Loc(counter06_B, 1), tracker3Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker3Loc(counter06_B, 1), tracker3Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 4 %Tracker 4 --> counter06_B = 4
 plot(tracker4Loc(1:counter06_B, 1), tracker4Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker4Loc(counter06_B, 1), tracker4Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker4Loc(counter06_B, 1) = round (tracker4Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker4Loc(counter06_B, 2) = round (tracker4Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1D = insertMarker(currentFrameImageP1, [tracker4Loc(counter06_B, 1), tracker4Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker4Loc(counter06_B, 1), tracker4Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 5 %Tracker 5 --> counter06_B = 5
 plot(tracker5Loc(1:counter06_B, 1), tracker5Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker5Loc(counter06_B, 1), tracker5Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker5Loc(counter06_B, 1) = round (tracker5Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker5Loc(counter06_B, 2) = round (tracker5Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1E = insertMarker(currentFrameImageP1, [tracker5Loc(counter06_B, 1), tracker5Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker5Loc(counter06_B, 1), tracker5Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 6 %Tracker 6 --> counter06_B = 6
 plot(tracker6Loc(1:counter06_B, 1), tracker6Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker6Loc(counter06_B, 1), tracker6Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker6Loc(counter06_B, 1) = round (tracker6Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker6Loc(counter06_B, 2) = round (tracker6Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1F = insertMarker(currentFrameImageP1, [tracker6Loc(counter06_B, 1), tracker6Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker6Loc(counter06_B, 1), tracker6Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 7 %Tracker 7 --> counter06_B = 7
 plot(tracker7Loc(1:counter06_B, 1), tracker7Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker7Loc(counter06_B, 1), tracker7Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker7Loc(counter06_B, 1) = round (tracker7Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker7Loc(counter06_B, 2) = round (tracker7Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1G = insertMarker(currentFrameImageP1, [tracker7Loc(counter06_B, 1), tracker7Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker7Loc(counter06_B, 1), tracker7Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 8 %Tracker 8 --> counter06_B = 8
 plot(tracker8Loc(1:counter06_B, 1), tracker8Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop

 89

 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker8Loc(counter06_B, 1), tracker8Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker8Loc(counter06_B, 1) = round (tracker8Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker8Loc(counter06_B, 2) = round (tracker8Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1H = insertMarker(currentFrameImageP1, [tracker8Loc(counter06_B, 1), tracker8Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker8Loc(counter06_B, 1), tracker8Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 9 %Tracker 9 --> counter06_B = 9
 plot(tracker9Loc(1:counter06_B, 1), tracker9Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker9Loc(counter06_B, 1), tracker9Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker9Loc(counter06_B, 1) = round (tracker9Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker9Loc(counter06_B, 2) = round (tracker9Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1I = insertMarker(currentFrameImageP1, [tracker9Loc(counter06_B, 1), tracker9Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker9Loc(counter06_B, 1), tracker9Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 elseif counter06_A == 10 %Tracker 10 --> counter06_B = 10
 plot(tracker10Loc(1:counter06_B, 1), tracker10Loc(1:counter06_B, 2),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker10Loc(counter06_B, 1), tracker10Loc(counter06_B, 2)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker10Loc(counter06_B, 1) = round (tracker10Loc(counter06_B, 1)); %update the x coordinate of the tracker to a rounded value
 tracker10Loc(counter06_B, 2) = round (tracker10Loc(counter06_B, 2)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point1J = insertMarker(currentFrameImageP1, [tracker10Loc(counter06_B, 1), tracker10Loc(counter06_B, 2)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker10Loc(counter06_B, 1), tracker10Loc(counter06_B, 2),'*', 'Color', 'green')
 hold on;
 end %end ginput point selection for the tracker number specified by counter06_A.
 hold on; %verify that the point image for the previous tracker is saved when moving on to the next tracker in the current frame
 end %end the for loop which repeats the ginput loop (end above this one) for each tracker until all trackers in phase 1 have been defined.

 %Save the current frame image now updated to show all trackers (pointA, pointB pointI) for phase 1.
 % create a file name variably with the sprintf command
 baseFileName = sprintf('Phase1_frame_%d.jpg', counter06_B);
 % Specify some particular, specific folder:
 fullFileName = fullfile('C:\Users\Name\Desktop\Matlab\Photos', baseFileName);
 % Export the open image
 exportgraphics(gcf, fullFileName); % Using export_fig instead of saveas.
 %Close the image
 close all; %close the imageviewer frame so the next loop can start over at image 1
 hold off; %once all trackers have been saved to the current frame, allow the next frame to clear the tracker images from the previous frame
and start fresh
 counter06_B = counter06_B + 1; %counter06_B saves the current frame number starting with 1 and increments upward through all frames:
at this point the inner loop has already ended (all tracker matrices have been updated with one row (row1) of ginput coordinates), the counter
indicating current frame number in the phase is incremented so that the next set of coordinates will be saved in row 2 of each matrix
 %by incrementing the counter at this point, the for loop can be rerun covering all trackers on the next video image frame, and save the
results to the next row in each tracker matrix

 end %ends the phase 1 for loop which ensured that all frames were inspected, with each frame given its own row of data in the tracker matrices
(up to 10 tracker matrices depending on the number of trackers) (each matrix haveing the same number of rows as number of frames, +1 to
include data for the 0th frame)

end

 fprintf('Phase 1 Tracker Selection Complete! \n') %notify user of successful ginput, \n skips to new line

 90

 % Phase 2 Ginput tracker selection
 fprintf('Begin Phase 2 Tracker Selection! \n') %notify user of start ginput, \n skips to new line

 counter07_B = 1; %counter indicating the row in the matrix where trackers will be saved (starts at 1, unlike counter 06 which starts at some
frame number)

 for counter07 = phase2Start : phase2End %nested outer for loop, outer loop goes frame by frame, inner loop sets a ginuput for each tracker up
to the set number of trackers

 %load frame image based on counter06 current value
 currentFrameImageP2 = read(videoReader, counter07); %open the current frame according to counter06, and save the image to a new matrix
specifically designed to hold phase 1 data. the same frame should be called with each loop where the tracker is changed (tracker06_A). Note:
williams code relies on a while loop. This code stays consistant by using a counter instead, either way should work.
 imshow(currentFrameImageP2); %display the image
 axis on; %turn on axis to show the pixels to be selected
 hold on;
 plot(AvgXP2, AvgYP2,'*', 'Color', 'red') %plot the phase center as a reference
 for counter07_A = 1 : prompt_06_BMat %inner loop performs a calculation for each tracker in phase 1 up to tracker number specified by
user in prompt_06_B

 %ginput on the image for each tracker and save x,y coordinates to the matrix of the current tracker as specified by the inner loop
 if counter07_A == 1
 plot(tracker1Loc(1:counter07_B, 3), tracker1Loc(1:counter07_B, 4),'*', 'Color', 'Blue') %plot all previous points for tracker 1 as a
reference
 %run ginput and save x,y coordinates to tracker1 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker1Loc(counter07_B, 3), tracker1Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker1Loc(counter07_B, 3) = round (tracker1Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker1Loc(counter07_B, 4) = round (tracker1Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2A = insertMarker(currentFrameImageP2, [tracker1Loc(counter07_B, 3), tracker1Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker1Loc(counter07_B, 3), tracker1Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 2 %Tracker 2 --> counter07_B = 2
 plot(tracker2Loc(1:counter07_B, 3), tracker2Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker2Loc(counter07_B, 3), tracker2Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker2Loc(counter07_B, 3) = round (tracker2Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker2Loc(counter07_B, 4) = round (tracker2Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2B = insertMarker(currentFrameImageP2, [tracker2Loc(counter07_B, 3), tracker2Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker2Loc(counter07_B, 3), tracker2Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 3 %Tracker 3 --> counter07_B = 3
 plot(tracker3Loc(1:counter07_B, 3), tracker3Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker3 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker3Loc(counter07_B, 3), tracker3Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker3Loc(counter07_B, 3) = round (tracker3Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker3Loc(counter07_B, 4) = round (tracker3Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2C = insertMarker(currentFrameImageP2, [tracker3Loc(counter07_B, 3), tracker3Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker3Loc(counter07_B, 3), tracker3Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;

 91

 elseif counter07_A == 4 %Tracker 4 --> counter07_B = 4
 plot(tracker4Loc(1:counter07_B, 3), tracker4Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker4Loc(counter07_B, 3), tracker4Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker4Loc(counter07_B, 3) = round (tracker4Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker4Loc(counter07_B, 4) = round (tracker4Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2D = insertMarker(currentFrameImageP2, [tracker4Loc(counter07_B, 3), tracker4Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker4Loc(counter07_B, 3), tracker4Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 5 %Tracker 5 --> counter07_B = 5
 plot(tracker5Loc(1:counter07_B, 3), tracker5Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker5Loc(counter07_B, 3), tracker5Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker5Loc(counter07_B, 3) = round (tracker5Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker5Loc(counter07_B, 4) = round (tracker5Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2E = insertMarker(currentFrameImageP2, [tracker5Loc(counter07_B, 3), tracker5Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker5Loc(counter07_B, 3), tracker5Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 6 %Tracker 6 --> counter07_B = 6
 plot(tracker6Loc(1:counter07_B, 3), tracker6Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker6Loc(counter07_B, 3), tracker6Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker6Loc(counter07_B, 3) = round (tracker6Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker6Loc(counter07_B, 4) = round (tracker6Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2F = insertMarker(currentFrameImageP2, [tracker6Loc(counter07_B, 3), tracker6Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker6Loc(counter07_B, 3), tracker6Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 7 %Tracker 7 --> counter07_B = 7
 plot(tracker7Loc(1:counter07_B, 3), tracker7Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker7Loc(counter07_B, 3), tracker7Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker7Loc(counter07_B, 3) = round (tracker7Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker7Loc(counter07_B, 4) = round (tracker7Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2G = insertMarker(currentFrameImageP2, [tracker7Loc(counter07_B, 3), tracker7Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker7Loc(counter07_B, 3), tracker7Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 8 %Tracker 8 --> counter07_B = 8
 plot(tracker8Loc(1:counter07_B, 3), tracker8Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker8Loc(counter07_B, 3), tracker8Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker8Loc(counter07_B, 3) = round (tracker8Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker8Loc(counter07_B, 4) = round (tracker8Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value

 92

 zoom out; %turn off the zoom feature, return to original image
 %point2H = insertMarker(currentFrameImageP2, [tracker8Loc(counter07_B, 3), tracker8Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker8Loc(counter07_B, 3), tracker8Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 9 %Tracker 9 --> counter07_B = 9
 plot(tracker9Loc(1:counter07_B, 3), tracker9Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker9Loc(counter07_B, 3), tracker9Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker9Loc(counter07_B, 3) = round (tracker9Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker9Loc(counter07_B, 4) = round (tracker9Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2I = insertMarker(currentFrameImageP2, [tracker9Loc(counter07_B, 3), tracker9Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker9Loc(counter07_B, 3), tracker9Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 elseif counter07_A == 10 %Tracker 10 --> counter07_B = 10
 plot(tracker10Loc(1:counter07_B, 3), tracker10Loc(1:counter07_B, 4),'*', 'Color', 'Blue')
 %run ginput and save x,y coordinates to tracker2 matrix in the row specified by counter06_B which should count up from 1 to the
total frame number in that phase for each run of the outer loop
 zoom on; %turn on the zoom feature
 pause %allow for zooming in until button is pressed
 [tracker10Loc(counter07_B, 3), tracker10Loc(counter07_B, 4)] = ginput(1); %allow the user to click on a point. Save that point to
trackerLoc matrix specific to the tracker number in columns 1,2 for x,y if in phase 1, or in columns 3,4 for x,y if in phase 2.
 tracker10Loc(counter07_B, 3) = round (tracker10Loc(counter07_B, 3)); %update the x coordinate of the tracker to a rounded value
 tracker10Loc(counter07_B, 4) = round (tracker10Loc(counter07_B, 4)); %update the y coordinate of the tracker to a rounded value
 zoom out; %turn off the zoom feature, return to original image
 %point2J = insertMarker(currentFrameImageP2, [tracker10Loc(counter07_B, 3), tracker10Loc(counter07_B, 4)],'+', 'Color', 'green');
%plot the now rounded coordinates
 plot(tracker10Loc(counter07_B, 3), tracker10Loc(counter07_B, 4),'*', 'Color', 'green')
 hold on;
 end %end ginput point selection for the tracker number specified by counter06_A.
 hold on; %verify the current tracker image has been saved before moving on to the next tracker (same frame only, remove the hold to
clear all trackers before the start of the next frame)
 end %end the for loop which repeats the ginput loop (end above this one) for each tracker until all trackers in phase 1 have been defined.

 %Save the current frame image now updated to show all trackers (pointA, pointB pointI) for phase 1.
 % create a file name variably with the sprintf command
 baseFileName2 = sprintf('Phase2_frame_%d.jpg', counter07_B);
 % Specify some particular, specific folder:
 fullFileName2 = fullfile('C:\Users\Name\Desktop\Matlab\Photos', baseFileName2);
 % Export the open image
 exportgraphics(gcf, fullFileName2); % Using export_fig instead of saveas.
 %Close the image
 close all; %close the imageviewer frame so the next loop can start over at image 1
 hold off;
 counter07_B = counter07_B + 1; %counter06_B saves the current frame number starting with 1 and increments upward through all frames:
at this point the inner loop has already ended (all tracker matrices have been updated with one row (row1) of ginput coordinates), the counter
indicating current frame number in the phase is incremented so that the next set of coordinates will be saved in row 2 of each matrix
 %by incrementing the counter at this point, the for loop can be rerun covering all trackers on the next video image frame, and save the
results to the next row in each tracker matrix

 end %ends the phase 1 for loop which ensured that all frames were inspected, with each frame given its own row of data in the tracker matrices
(up to 10 tracker matrices depending on the number of trackers) (each matrix haveing the same number of rows as number of frames, +1 to
include data for the 0th frame)

 fprintf('Phase 2 Tracker Selection Complete! \n') %notify user of successful ginput, \n skips to new line
 % End Phase 1 and 2 Ginput tracker selection

 93

 close; %close the imageviewer frame
end

%% Prompt 06 Results

fprintf('Check Desktop --> Matlab --> Photos for pictures of your point selections \n');

 for counter05 = 1 : maxNumTrackersMat %this loop will create tracker matrices for each tracker with the number of rows specified by the
number of frames
 if counter05 == 1
 fprintf('Tracker 1 point selections for phases 1 and 2 \n');
 disp(tracker1Loc)
 elseif counter05 == 2
 fprintf('Tracker 2 point selections for phases 1 and 2 \n');
 disp(tracker2Loc)
 elseif counter05 == 3
 fprintf('Tracker 3 point selections for phases 1 and 2 \n');
 disp(tracker3Loc)
 elseif counter05 == 4
 fprintf('Tracker 4 point selections for phases 1 and 2 \n');
 disp(tracker4Loc)
 elseif counter05 == 5
 fprintf('Tracker 5 point selections for phases 1 and 2 \n');
 disp(tracker5Loc)
 elseif counter05 == 6
 fprintf('Tracker 6 point selections for phases 1 and 2 \n');
 disp(tracker6Loc)
 elseif counter05 == 7
 fprintf('Tracker 7 point selections for phases 1 and 2 \n');
 disp(tracker7Loc)
 elseif counter05 == 8
 fprintf('Tracker 8 point selections for phases 1 and 2 \n');
 disp(tracker8Loc)
 elseif counter05 == 9
 fprintf('Tracker 9 point selectionsfor phases 1 and 2 \n');
 disp(tracker9Loc)
 elseif counter05 == 10
 fprintf('Tracker 10 point selections for phases 1 and 2 \n');
 disp(tracker10Loc)
 end % end the if statement
 end % end the for loop

 fprintf('Prompt 06 Complete! \n')

%% Calculations

%called in variables
 %phase center--> AvgXP1, AvgYP1, AvgXP2, AvgYP2
 %circle center--> centersAverage(1,2)
 %tracker points--> tracker1Loc tracker10Loc
 %maxNumTrackersMat used in for for loop
 %number of frames in phase 1 (frameTotPhase1)
 %number of frames in phase 2 (frameTotPhase2)

%initialized variables
 %counter08 = 0; %Dont need to initialize variables found in a for loop
 %because the phase centers are only one frame their information about displacement from center can be saved in a single matrix to save space
 delXYZCenter = zeros(2,3); %matrix of displacements between the phase center and the circle center. one row for each of the two phases,
and 3 columns for x, y, z displacements.
 %create a matrix for final matrix coordinates using the z coordinate from delXYZCenter and AvgPX, AvgPY coordinates
 phaseInitialCoord = zeros(2,3);
 %displacement of x and y coordinates ofeach tracker relative to the circle center are necessary to computing the 3-D z coordinate of those
points but arent useful for much else
 delXP1 = zeros(maxFrames, 10); % x=frame number, y=tracker number. In this matrix the displacement between the circle center
coordinate and the tracker point is stored
 delYP1 = zeros(maxFrames, 10);
 delXP2 = zeros(maxFrames, 10);
 delYP2 = zeros(maxFrames, 10);

 94

 %use displacements saved to the matrices above to fill in the following z coordinate matrix
 delZP1 = zeros(maxFrames, 10); %matrix of z displacements (assuming circle center is at z=0) to be computed for phase 1 trackers. rows
being arbitrarily large enough to hold the z coordinated for up to max number of frames, and 10 columns representing the maximum of 10
trackers that the user might select.
 delZP2 = zeros(maxFrames, 10); %matrix of z displacements (assuming circle center is at z=0) to be computed for phase 2 trackers
 %displacements of x,y,z will also need to be stored between every two frames of the same tracker (phase 1 and phase 2) with the following
columns:(column1 = xP1, column2 = yP1, column3 = zP1, column4 = xP2, column5 = yP2, column6 = zP2)
 delT01 = zeros(maxFrames, 6); %x = frame number, y = coordinate type (x,y,z)p1 (x,y,z)p2
 delT02 = zeros(maxFrames, 6);
 delT03 = zeros(maxFrames, 6);
 delT04 = zeros(maxFrames, 6);
 delT05 = zeros(maxFrames, 6);
 delT06 = zeros(maxFrames, 6);
 delT07 = zeros(maxFrames, 6);
 delT08 = zeros(maxFrames, 6);
 delT09 = zeros(maxFrames, 6);
 delT10 = zeros(maxFrames, 6);
 %Finally Euclidean Distance will be stored to a matrix with rows for each frame and columns for each tracker
 euclideanDistP1 = zeros(maxFrames, 10); %records euclidean distances between frames for phase 1
 euclideanDistP2 = zeros(maxFrames, 10); %records euclidean distances between frames for phase 2
 %Then the Euclidean Distances for each tracker will be summed up for all previous frames to current providing total distance from phase
center at the current frame.
 euclideanSumP1 = zeros(frameTotPhase1,prompt_06_AMat);
 euclideanSumP2 = zeros(frameTotPhase2,prompt_06_BMat);

%Compute the Z coordinate of both phase centers
 %phase 1 Z coordinate
 delXYZCenter(1,1) = AvgXP1(1,1) - centersAverage(1,1); %subtract the phase center
 delXYZCenter(1,2) = centersAverage(1,2) - AvgYP1(1,1); %y coordinate is subtracted from the center y coordinate because of the image
scale being inverted with the 0 starting at the top for the vertical axis
 delXYZCenter(1,3) = sqrt((centersAverage(1,3).^2)-(delXYZCenter(1,1).^2)-(delXYZCenter(1,2).^2)); % trackers phase 1 z coordinate
saved to the first row, third column = square root of (radius squared - change in x squared - change in y squared)
 %phase 2 Z coordinate
 delXYZCenter(2,1) = AvgXP2(1,1) - centersAverage(1,1);
 delXYZCenter(2,2) = centersAverage(1,2) - AvgYP2(1,1); %y coordinate is subtracted from the center y coordinate because of the image
scale being inverted with the 0 starting at the top for the vertical axis
 delXYZCenter(2,3) = sqrt((centersAverage(1,3).^2)-(delXYZCenter(2,1).^2)-(delXYZCenter(2,2).^2)); % trackers phase 2 z coordinate
saved to the second row third column = square root of (radius squared - change in x squared - change in y squared)
 %Finally Compile Phase coordinates (x,y,z) now that z has been obtained
 %Phase1 Row 1 columns (x,y,z)
 phaseInitialCoord(1,1) = AvgXP1(1,1);
 phaseInitialCoord(1,2) = AvgYP1(1,1);
 phaseInitialCoord(1,3) = delXYZCenter(1,3);
 %Phase2 Row 2 columns (x,y,z)
 phaseInitialCoord(2,1) = AvgXP2(1,1);
 phaseInitialCoord(2,2) = AvgYP2(1,1);
 phaseInitialCoord(2,3) = delXYZCenter(2,3);

%now do the same for each tracker and compare the x,y,z with x,y,z of their respective phase center to obtain Euclidean Distance. (repeat for
phases 1 and 2
for counter08 = 1: maxNumTrackersMat %increment counter08 starting from 1 until it reaches the number of trackers used. run one calculation
for each tracker,and save to a different row each time.

 if counter08 == 1 %for tracker #1 run this line of code if at least one tracker was used, perform a calculation on data from the first tracker

 %find translation distance between average center and phase 1 for each frame (row) within tracker 1 matrix (x and y data saved in columns 1
and 2)
 %from williams translation of POI code, this step allows delta x, delta y, z between the point and the circle center to be determined

 %for 1 to total number of frames in phase 1, calculate the zed coordinate for tracker 1 for each frame and record as a row vector
 for counter08_A = 1: frameTotPhase1
 delXP1(counter08_A, 1) = tracker1Loc(counter08_A,1) - centersAverage(1,1);
 delYP1(counter08_A, 1) = centersAverage(1,2) - tracker1Loc(counter08_A,2);
 delZP1(counter08_A, 1) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_A, 1).^2)-(delYP1(counter08_A, 1).^2));
 end
 delT01(1,1) = tracker1Loc(1,1) - phaseInitialCoord(1,1);
 delT01(1,2) = tracker1Loc(1,2) - phaseInitialCoord(1,2);
 delT01(1,3) = delZP1(1,1) - phaseInitialCoord(1,3);

 95

 euclideanDistP1(1, 1) = sqrt((delT01(1, 1).^2) + (delT01(1, 2).^2) + (delT01(1, 3).^2)); %save the first row of eulcidean distance as the
net distance traveled by tracker 1 from the phase center in frame 1 to the tracker point in frame 1.
 for counter08_B = 2: frameTotPhase1
 delT01(counter08_B, 1) = tracker1Loc(counter08_B, 1) - tracker1Loc(counter08_B-1, 1);
 delT01(counter08_B, 2) = tracker1Loc(counter08_B, 2) - tracker1Loc(counter08_B-1, 2);
 delT01(counter08_B, 3) = delZP1(counter08_B, 1) - delZP1(counter08_B-1, 1);
 euclideanDistP1(counter08_B, 1) = sqrt((delT01(counter08_B, 1).^2) + (delT01(counter08_B, 2).^2) + (delT01(counter08_B, 3).^2));
%save the second row onward (frames) of Euclidean Distances as the distance between the tracker and the same tracker in the previous frame
 end

 for counter08_C = 1: frameTotPhase2
 delXP2(counter08_C, 1) = tracker1Loc(counter08_C,3) - centersAverage(1,1);
 delYP2(counter08_C, 1) = centersAverage(1,2) - tracker1Loc(counter08_C,4);
 delZP2(counter08_C, 1) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_C, 1).^2)-(delYP2(counter08_C, 1).^2));
 end
 delT01(1,4) = tracker1Loc(1,3) - phaseInitialCoord(2,1);
 delT01(1,5) = tracker1Loc(1,4) - phaseInitialCoord(2,2);
 delT01(1,6) = delZP2(1,1) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 1) = sqrt((delT01(1, 4).^2) + (delT01(1, 5).^2) + (delT01(1, 6).^2));
 for counter08_D = 2: frameTotPhase2
 delT01(counter08_D, 4) = tracker1Loc(counter08_D, 3) - tracker1Loc(counter08_D-1, 3);
 delT01(counter08_D, 5) = tracker1Loc(counter08_D, 4) - tracker1Loc(counter08_D-1, 4);
 delT01(counter08_D, 6) = delZP2(counter08_D, 1) - delZP2(counter08_D-1, 1);
 euclideanDistP2(counter08_D, 1) = sqrt((delT01(counter08_D, 4).^2) + (delT01(counter08_D, 5).^2) + (delT01(counter08_D, 6).^2));
 end

 elseif counter08 == 2 %in the second loop, counter 5 will be incremented if at least 2 trackers were used. run this calculation for the second
tracker if so
 for counter08_E = 1: frameTotPhase1
 delXP1(counter08_E, 2) = tracker2Loc(counter08_E,1) - centersAverage(1,1);
 delYP1(counter08_E, 2) = centersAverage(1,2) - tracker2Loc(counter08_E,2);
 delZP1(counter08_E, 2) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_E, 2).^2)-(delYP1(counter08_E, 2).^2));
 end
 delT02(1,1) = tracker2Loc(1,1) - phaseInitialCoord(1,1);
 delT02(1,2) = tracker2Loc(1,2) - phaseInitialCoord(1,2);
 delT02(1,3) = delZP1(1,2) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 2) = sqrt((delT02(1, 1).^2) + (delT02(1, 2).^2) + (delT02(1, 3).^2));
 for counter08_F = 2: frameTotPhase1
 delT02(counter08_F, 1) = tracker2Loc(counter08_F, 1) - tracker2Loc(counter08_F-1, 1);
 delT02(counter08_F, 2) = tracker2Loc(counter08_F, 2) - tracker2Loc(counter08_F-1, 2);
 delT02(counter08_F, 3) = delZP1(counter08_F, 2) - delZP1(counter08_F-1, 2);
 euclideanDistP1(counter08_F, 2) = sqrt((delT02(counter08_F, 1).^2) + (delT02(counter08_F, 2).^2) + (delT02(counter08_F, 3).^2));
 end

 for counter08_G = 1: frameTotPhase2
 delXP2(counter08_G, 2) = tracker2Loc(counter08_G,3) - centersAverage(1,1);
 delYP2(counter08_G, 2) = centersAverage(1,2) - tracker2Loc(counter08_G,4);
 delZP2(counter08_G, 2) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_G, 2).^2)-(delYP2(counter08_G, 2).^2));
 end
 delT02(1,4) = tracker2Loc(1,3) - phaseInitialCoord(2,1);
 delT02(1,5) = tracker2Loc(1,4) - phaseInitialCoord(2,2);
 delT02(1,6) = delZP2(1,2) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 2) = sqrt((delT02(1, 4).^2) + (delT02(1, 5).^2) + (delT02(1, 6).^2));
 for counter08_H = 2: frameTotPhase2
 delT02(counter08_H, 4) = tracker2Loc(counter08_H, 3) - tracker2Loc(counter08_H-1, 3);
 delT02(counter08_H, 5) = tracker2Loc(counter08_H, 4) - tracker2Loc(counter08_H-1, 4);
 delT02(counter08_H, 6) = delZP2(counter08_H, 2) - delZP2(counter08_H-1, 1);
 euclideanDistP2(counter08_H, 2) = sqrt((delT02(counter08_H, 4).^2) + (delT02(counter08_H, 5).^2) + (delT02(counter08_H, 6).^2));
 end

 elseif counter08 == 3 % run this line of code on the third loop if a third tracker was used
 for counter08_I = 1: frameTotPhase1
 delXP1(counter08_I, 3) = tracker3Loc(counter08_I,1) - centersAverage(1,1);
 delYP1(counter08_I, 3) = centersAverage(1,2) - tracker3Loc(counter08_I,2);
 delZP1(counter08_I, 3) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_I, 3).^2)-(delYP1(counter08_I, 3).^2));
 end

 96

 delT03(1,1) = tracker3Loc(1,1) - phaseInitialCoord(1,1);
 delT03(1,2) = tracker3Loc(1,2) - phaseInitialCoord(1,2);
 delT03(1,3) = delZP1(1,3) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 3) = sqrt((delT03(1, 1).^2) + (delT03(1, 2).^2) + (delT03(1, 3).^2));
 for counter08_J = 2: frameTotPhase1
 delT03(counter08_J, 1) = tracker3Loc(counter08_J, 1) - tracker3Loc(counter08_J-1, 1);
 delT03(counter08_J, 2) = tracker3Loc(counter08_J, 2) - tracker3Loc(counter08_J-1, 2);
 delT03(counter08_J, 3) = delZP1(counter08_J, 3) - delZP1(counter08_J-1, 3);
 euclideanDistP1(counter08_J, 3) = sqrt((delT03(counter08_J, 1).^2) + (delT03(counter08_J, 2).^2) + (delT03(counter08_J, 3).^2));
 end

 for counter08_K = 1: frameTotPhase2
 delXP2(counter08_K, 3) = tracker3Loc(counter08_K,3) - centersAverage(1,1);
 delYP2(counter08_K, 3) = centersAverage(1,2) - tracker3Loc(counter08_K,4);
 delZP2(counter08_K, 3) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_K, 3).^2)-(delYP2(counter08_K, 3).^2));
 end
 delT03(1,4) = tracker3Loc(1,3) - phaseInitialCoord(2,1);
 delT03(1,5) = tracker3Loc(1,4) - phaseInitialCoord(2,2);
 delT03(1,6) = delZP2(1,3) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 3) = sqrt((delT03(1, 4).^2) + (delT03(1, 5).^2) + (delT03(1, 6).^2));
 for counter08_L = 2: frameTotPhase2
 delT03(counter08_L, 4) = tracker3Loc(counter08_L, 3) - tracker3Loc(counter08_L-1, 3);
 delT03(counter08_L, 5) = tracker3Loc(counter08_L, 4) - tracker3Loc(counter08_L-1, 4);
 delT03(counter08_L, 6) = delZP2(counter08_L, 3) - delZP2(counter08_L-1, 1);
 euclideanDistP2(counter08_L, 3) = sqrt((delT03(counter08_L, 4).^2) + (delT03(counter08_L, 5).^2) + (delT03(counter08_L, 6).^2));
 end

 elseif counter08 == 4
 for counter08_M = 1: frameTotPhase1
 delXP1(counter08_M, 4) = tracker4Loc(counter08_M,1) - centersAverage(1,1);
 delYP1(counter08_M, 4) = centersAverage(1,2) - tracker4Loc(counter08_M,2);
 delZP1(counter08_M, 4) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_M, 4).^2)-(delYP1(counter08_M, 4).^2));
 end
 delT04(1,1) = tracker4Loc(1,1) - phaseInitialCoord(1,1);
 delT04(1,2) = tracker4Loc(1,2) - phaseInitialCoord(1,2);
 delT04(1,3) = delZP1(1,4) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 4) = sqrt((delT04(1, 1).^2) + (delT04(1, 2).^2) + (delT04(1, 3).^2));
 for counter08_N = 2: frameTotPhase1
 delT04(counter08_N, 1) = tracker4Loc(counter08_N, 1) - tracker4Loc(counter08_N-1, 1);
 delT04(counter08_N, 2) = tracker4Loc(counter08_N, 2) - tracker4Loc(counter08_N-1, 2);
 delT04(counter08_N, 3) = delZP1(counter08_N, 4) - delZP1(counter08_N-1, 4);
 euclideanDistP1(counter08_N, 4) = sqrt((delT04(counter08_N, 1).^2) + (delT04(counter08_N, 2).^2) + (delT04(counter08_N, 3).^2));
 end

 for counter08_O = 1: frameTotPhase2
 delXP2(counter08_O, 4) = tracker4Loc(counter08_O,3) - centersAverage(1,1);
 delYP2(counter08_O, 4) = centersAverage(1,2) - tracker4Loc(counter08_O,4);
 delZP2(counter08_O, 4) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_O, 4).^2)-(delYP2(counter08_O, 4).^2));
 end
 delT04(1,4) = tracker4Loc(1,3) - phaseInitialCoord(2,1);
 delT04(1,5) = tracker4Loc(1,4) - phaseInitialCoord(2,2);
 delT04(1,6) = delZP2(1,4) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 4) = sqrt((delT04(1, 4).^2) + (delT04(1, 5).^2) + (delT04(1, 6).^2));
 for counter08_P = 2: frameTotPhase2
 delT04(counter08_P, 4) = tracker4Loc(counter08_P, 3) - tracker4Loc(counter08_P-1, 3);
 delT04(counter08_P, 5) = tracker4Loc(counter08_P, 4) - tracker4Loc(counter08_P-1, 4);
 delT04(counter08_P, 6) = delZP2(counter08_P, 4) - delZP2(counter08_P-1, 1);
 euclideanDistP2(counter08_P, 4) = sqrt((delT04(counter08_P, 4).^2) + (delT04(counter08_P, 5).^2) + (delT04(counter08_P, 6).^2));
 end

 elseif counter08 == 5
 for counter08_Q = 1: frameTotPhase1
 delXP1(counter08_Q, 5) = tracker5Loc(counter08_Q,1) - centersAverage(1,1);
 delYP1(counter08_Q, 5) = centersAverage(1,2) - tracker5Loc(counter08_Q,2);
 delZP1(counter08_Q, 5) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_Q, 5).^2)-(delYP1(counter08_Q, 5).^2));
 end

 97

 delT05(1,1) = tracker5Loc(1,1) - phaseInitialCoord(1,1);
 delT05(1,2) = tracker5Loc(1,2) - phaseInitialCoord(1,2);
 delT05(1,3) = delZP1(1,5) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 5) = sqrt((delT05(1, 1).^2) + (delT05(1, 2).^2) + (delT05(1, 3).^2));
 for counter08_R = 2: frameTotPhase1
 delT05(counter08_R, 1) = tracker5Loc(counter08_R, 1) - tracker5Loc(counter08_R-1, 1);
 delT05(counter08_R, 2) = tracker5Loc(counter08_R, 2) - tracker5Loc(counter08_R-1, 2);
 delT05(counter08_R, 3) = delZP1(counter08_R, 5) - delZP1(counter08_R-1, 5);
 euclideanDistP1(counter08_R, 5) = sqrt((delT05(counter08_R, 1).^2) + (delT05(counter08_R, 2).^2) + (delT05(counter08_R, 3).^2));
 end

 for counter08_S = 1: frameTotPhase2
 delXP2(counter08_S, 5) = tracker5Loc(counter08_S,3) - centersAverage(1,1);
 delYP2(counter08_S, 5) = centersAverage(1,2) - tracker5Loc(counter08_S,4);
 delZP2(counter08_S, 5) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_S, 5).^2)-(delYP2(counter08_S, 5).^2));
 end
 delT05(1,4) = tracker5Loc(1,3) - phaseInitialCoord(2,1);
 delT05(1,5) = tracker5Loc(1,4) - phaseInitialCoord(2,2);
 delT05(1,6) = delZP2(1,5) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 5) = sqrt((delT05(1, 4).^2) + (delT05(1, 5).^2) + (delT05(1, 6).^2));
 for counter08_T = 2: frameTotPhase2
 delT05(counter08_T, 4) = tracker5Loc(counter08_T, 3) - tracker5Loc(counter08_T-1, 3);
 delT05(counter08_T, 5) = tracker5Loc(counter08_T, 4) - tracker5Loc(counter08_T-1, 4);
 delT05(counter08_T, 6) = delZP2(counter08_T, 5) - delZP2(counter08_T-1, 1);
 euclideanDistP2(counter08_T, 5) = sqrt((delT05(counter08_T, 4).^2) + (delT05(counter08_T, 5).^2) + (delT05(counter08_T, 6).^2));
 end

 elseif counter08 == 6
 for counter08_U = 1: frameTotPhase1
 delXP1(counter08_U, 6) = tracker6Loc(counter08_U,1) - centersAverage(1,1);
 delYP1(counter08_U, 6) = centersAverage(1,2) - tracker6Loc(counter08_U,2);
 delZP1(counter08_U, 6) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_U, 6).^2)-(delYP1(counter08_U, 6).^2));
 end
 delT06(1,1) = tracker6Loc(1,1) - phaseInitialCoord(1,1);
 delT06(1,2) = tracker6Loc(1,2) - phaseInitialCoord(1,2);
 delT06(1,3) = delZP1(1,6) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 6) = sqrt((delT06(1, 1).^2) + (delT06(1, 2).^2) + (delT06(1, 3).^2));
 for counter08_V = 2: frameTotPhase1
 delT06(counter08_V, 1) = tracker6Loc(counter08_V, 1) - tracker6Loc(counter08_V-1, 1);
 delT06(counter08_V, 2) = tracker6Loc(counter08_V, 2) - tracker6Loc(counter08_V-1, 2);
 delT06(counter08_V, 3) = delZP1(counter08_V, 6) - delZP1(counter08_V-1, 6);
 euclideanDistP1(counter08_V, 6) = sqrt((delT06(counter08_V, 1).^2) + (delT06(counter08_V, 2).^2) + (delT06(counter08_V, 3).^2));
 end

 for counter08_W = 1: frameTotPhase2
 delXP2(counter08_W, 6) = tracker6Loc(counter08_W,3) - centersAverage(1,1);
 delYP2(counter08_W, 6) = centersAverage(1,2) - tracker6Loc(counter08_W,4);
 delZP2(counter08_W, 6) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_W, 6).^2)-(delYP2(counter08_W, 6).^2));
 end
 delT06(1,4) = tracker6Loc(1,3) - phaseInitialCoord(2,1);
 delT06(1,5) = tracker6Loc(1,4) - phaseInitialCoord(2,2);
 delT06(1,6) = delZP2(1,6) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 6) = sqrt((delT06(1, 4).^2) + (delT06(1, 5).^2) + (delT06(1, 6).^2));
 for counter08_X = 2: frameTotPhase2
 delT06(counter08_X, 4) = tracker6Loc(counter08_X, 3) - tracker6Loc(counter08_X-1, 3);
 delT06(counter08_X, 5) = tracker6Loc(counter08_X, 4) - tracker6Loc(counter08_X-1, 4);
 delT06(counter08_X, 6) = delZP2(counter08_X, 6) - delZP2(counter08_X-1, 1);
 euclideanDistP2(counter08_X, 6) = sqrt((delT06(counter08_X, 4).^2) + (delT06(counter08_X, 5).^2) + (delT06(counter08_X, 6).^2));
 end

 elseif counter08 == 7
 for counter08_Y = 1: frameTotPhase1
 delXP1(counter08_Y, 7) = tracker7Loc(counter08_Y,1) - centersAverage(1,1);
 delYP1(counter08_Y, 7) = centersAverage(1,2) - tracker7Loc(counter08_Y,2);
 delZP1(counter08_Y, 7) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_Y, 7).^2)-(delYP1(counter08_Y, 7).^2));
 end

 98

 delT07(1,1) = tracker7Loc(1,1) - phaseInitialCoord(1,1);
 delT07(1,2) = tracker7Loc(1,2) - phaseInitialCoord(1,2);
 delT07(1,3) = delZP1(1,7) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 7) = sqrt((delT07(1, 1).^2) + (delT07(1, 2).^2) + (delT07(1, 3).^2));
 for counter08_Z = 2: frameTotPhase1
 delT07(counter08_Z, 1) = tracker7Loc(counter08_Z, 1) - tracker7Loc(counter08_Z-1, 1);
 delT07(counter08_Z, 2) = tracker7Loc(counter08_Z, 2) - tracker7Loc(counter08_Z-1, 2);
 delT07(counter08_Z, 3) = delZP1(counter08_Z, 7) - delZP1(counter08_Z-1, 7);
 euclideanDistP1(counter08_Z, 7) = sqrt((delT07(counter08_Z, 1).^2) + (delT07(counter08_Z, 2).^2) + (delT07(counter08_Z, 3).^2));
 end

 for counter08_AA = 1: frameTotPhase2
 delXP2(counter08_AA, 7) = tracker7Loc(counter08_AA,3) - centersAverage(1,1);
 delYP2(counter08_AA, 7) = centersAverage(1,2) - tracker7Loc(counter08_AA,4);
 delZP2(counter08_AA, 7) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_AA, 7).^2)-(delYP2(counter08_AA, 7).^2));
 end
 delT07(1,4) = tracker7Loc(1,3) - phaseInitialCoord(2,1);
 delT07(1,5) = tracker7Loc(1,4) - phaseInitialCoord(2,2);
 delT07(1,6) = delZP2(1,7) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 7) = sqrt((delT07(1, 4).^2) + (delT07(1, 5).^2) + (delT07(1, 6).^2));
 for counter08_BB = 2: frameTotPhase2
 delT07(counter08_BB, 4) = tracker7Loc(counter08_BB, 3) - tracker7Loc(counter08_BB-1, 3);
 delT07(counter08_BB, 5) = tracker7Loc(counter08_BB, 4) - tracker7Loc(counter08_BB-1, 4);
 delT07(counter08_BB, 6) = delZP2(counter08_BB, 7) - delZP2(counter08_BB-1, 1);
 euclideanDistP2(counter08_BB, 7) = sqrt((delT07(counter08_BB, 4).^2) + (delT07(counter08_BB, 5).^2) + (delT07(counter08_BB,
6).^2));
 end

 elseif counter08 == 8
 for counter08_CC = 1: frameTotPhase1
 delXP1(counter08_CC, 8) = tracker8Loc(counter08_CC,1) - centersAverage(1,1);
 delYP1(counter08_CC, 8) = centersAverage(1,2) - tracker8Loc(counter08_CC,2);
 delZP1(counter08_CC, 8) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_CC, 8).^2)-(delYP1(counter08_CC, 8).^2));
 end
 delT08(1,1) = tracker8Loc(1,1) - phaseInitialCoord(1,1);
 delT08(1,2) = tracker8Loc(1,2) - phaseInitialCoord(1,2);
 delT08(1,3) = delZP1(1,8) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 8) = sqrt((delT08(1, 1).^2) + (delT08(1, 2).^2) + (delT08(1, 3).^2));
 for counter08_DD = 2: frameTotPhase1
 delT08(counter08_DD, 1) = tracker8Loc(counter08_DD, 1) - tracker8Loc(counter08_DD-1, 1);
 delT08(counter08_DD, 2) = tracker8Loc(counter08_DD, 2) - tracker8Loc(counter08_DD-1, 2);
 delT08(counter08_DD, 3) = delZP1(counter08_DD, 8) - delZP1(counter08_DD-1, 8);
 euclideanDistP1(counter08_DD, 8) = sqrt((delT08(counter08_DD, 1).^2) + (delT08(counter08_DD, 2).^2) + (delT08(counter08_DD,
3).^2));
 end

 for counter08_EE = 1: frameTotPhase2
 delXP2(counter08_EE, 8) = tracker8Loc(counter08_EE,3) - centersAverage(1,1);
 delYP2(counter08_EE, 8) = centersAverage(1,2) - tracker8Loc(counter08_EE,4);
 delZP2(counter08_EE, 8) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_EE, 8).^2)-(delYP2(counter08_EE, 8).^2));
 end
 delT08(1,4) = tracker8Loc(1,3) - phaseInitialCoord(2,1);
 delT08(1,5) = tracker8Loc(1,4) - phaseInitialCoord(2,2);
 delT08(1,6) = delZP2(1,8) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 8) = sqrt((delT08(1, 4).^2) + (delT08(1, 5).^2) + (delT08(1, 6).^2));
 for counter08_FF = 2: frameTotPhase2
 delT08(counter08_FF, 4) = tracker8Loc(counter08_FF, 3) - tracker8Loc(counter08_FF-1, 3);
 delT08(counter08_FF, 5) = tracker8Loc(counter08_FF, 4) - tracker8Loc(counter08_FF-1, 4);
 delT08(counter08_FF, 6) = delZP2(counter08_FF, 8) - delZP2(counter08_FF-1, 1);
 euclideanDistP2(counter08_FF, 8) = sqrt((delT08(counter08_FF, 4).^2) + (delT08(counter08_FF, 5).^2) + (delT08(counter08_FF,
6).^2));
 end

 elseif counter08 == 9
 for counter08_GG = 1: frameTotPhase1
 delXP1(counter08_GG, 9) = tracker9Loc(counter08_GG,1) - centersAverage(1,1);

 99

 delYP1(counter08_GG, 9) = centersAverage(1,2) - tracker9Loc(counter08_GG,2);
 delZP1(counter08_GG, 9) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_GG, 9).^2)-(delYP1(counter08_GG, 9).^2));
 end
 delT09(1,1) = tracker9Loc(1,1) - phaseInitialCoord(1,1);
 delT09(1,2) = tracker9Loc(1,2) - phaseInitialCoord(1,2);
 delT09(1,3) = delZP1(1,9) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 9) = sqrt((delT09(1, 1).^2) + (delT09(1, 2).^2) + (delT09(1, 3).^2));
 for counter08_HH = 2: frameTotPhase1
 delT09(counter08_HH, 1) = tracker9Loc(counter08_HH, 1) - tracker9Loc(counter08_HH-1, 1);
 delT09(counter08_HH, 2) = tracker9Loc(counter08_HH, 2) - tracker9Loc(counter08_HH-1, 2);
 delT09(counter08_HH, 3) = delZP1(counter08_HH, 9) - delZP1(counter08_HH-1, 9);
 euclideanDistP1(counter08_HH, 9) = sqrt((delT09(counter08_HH, 1).^2) + (delT09(counter08_HH, 2).^2) + (delT09(counter08_HH,
3).^2));
 end

 for counter08_II = 1: frameTotPhase2
 delXP2(counter08_II, 9) = tracker9Loc(counter08_II,3) - centersAverage(1,1);
 delYP2(counter08_II, 9) = centersAverage(1,2) - tracker9Loc(counter08_II,4);
 delZP2(counter08_II, 9) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_II, 9).^2)-(delYP2(counter08_II, 9).^2));
 end
 delT09(1,4) = tracker9Loc(1,3) - phaseInitialCoord(2,1);
 delT09(1,5) = tracker9Loc(1,4) - phaseInitialCoord(2,2);
 delT09(1,6) = delZP2(1,9) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 9) = sqrt((delT09(1, 4).^2) + (delT09(1, 5).^2) + (delT09(1, 6).^2));
 for counter08_JJ = 2: frameTotPhase2
 delT09(counter08_JJ, 4) = tracker9Loc(counter08_JJ, 3) - tracker9Loc(counter08_JJ-1, 3);
 delT09(counter08_JJ, 5) = tracker9Loc(counter08_JJ, 4) - tracker9Loc(counter08_JJ-1, 4);
 delT09(counter08_JJ, 6) = delZP2(counter08_JJ, 9) - delZP2(counter08_JJ-1, 1);
 euclideanDistP2(counter08_JJ, 9) = sqrt((delT09(counter08_JJ, 4).^2) + (delT09(counter08_JJ, 5).^2) + (delT09(counter08_JJ, 6).^2));
 end

 elseif counter08 == 10
 for counter08_KK = 1: frameTotPhase1
 delXP1(counter08_KK, 10) = tracker10Loc(counter08_KK,1) - centersAverage(1,1);
 delYP1(counter08_KK, 10) = centersAverage(1,2) - tracker10Loc(counter08_KK,2);
 delZP1(counter08_KK, 10) = sqrt((centersAverage(1,3).^2)-(delXP1(counter08_KK, 10).^2)-(delYP1(counter08_KK, 10).^2));
 end
 delT10(1,1) = tracker10Loc(1,1) - phaseInitialCoord(1,1);
 delT10(1,2) = tracker10Loc(1,2) - phaseInitialCoord(1,2);
 delT10(1,3) = delZP1(1,10) - phaseInitialCoord(1,3);
 euclideanDistP1(1, 10) = sqrt((delT10(1, 1).^2) + (delT10(1, 2).^2) + (delT10(1, 3).^2));
 for counter08_LL = 2: frameTotPhase1
 delT10(counter08_LL, 1) = tracker10Loc(counter08_LL, 1) - tracker10Loc(counter08_LL-1, 1);
 delT10(counter08_LL, 2) = tracker10Loc(counter08_LL, 2) - tracker10Loc(counter08_LL-1, 2);
 delT10(counter08_LL, 3) = delZP1(counter08_LL, 10) - delZP1(counter08_LL-1, 10);
 euclideanDistP1(counter08_LL, 10) = sqrt((delT10(counter08_LL, 1).^2) + (delT10(counter08_LL, 2).^2) + (delT10(counter08_LL,
3).^2));
 end

 for counter08_MM = 1: frameTotPhase2
 delXP2(counter08_MM, 10) = tracker10Loc(counter08_MM,3) - centersAverage(1,1);
 delYP2(counter08_MM, 10) = centersAverage(1,2) - tracker10Loc(counter08_MM,4);
 delZP2(counter08_MM, 10) = sqrt((centersAverage(1,3).^2)-(delXP2(counter08_MM, 10).^2)-(delYP2(counter08_MM, 10).^2));
 end
 delT10(1,4) = tracker10Loc(1,3) - phaseInitialCoord(2,1);
 delT10(1,5) = tracker10Loc(1,4) - phaseInitialCoord(2,2);
 delT10(1,6) = delZP2(1,10) - phaseInitialCoord(2,3);
 euclideanDistP2(1, 10) = sqrt((delT10(1, 4).^2) + (delT10(1, 5).^2) + (delT10(1, 6).^2));
 for counter08_NN = 2: frameTotPhase2
 delT10(counter08_NN, 4) = tracker10Loc(counter08_NN, 3) - tracker10Loc(counter08_NN-1, 3);
 delT10(counter08_NN, 5) = tracker10Loc(counter08_NN, 4) - tracker10Loc(counter08_NN-1, 4);
 delT10(counter08_NN, 6) = delZP2(counter08_NN, 10) - delZP2(counter08_NN-1, 1);
 euclideanDistP2(counter08_NN, 10) = sqrt((delT10(counter08_NN, 4).^2) + (delT10(counter08_NN, 5).^2) + (delT10(counter08_NN,
6).^2));
 end

 100

 end %end elseif loop that performs a calculation based on the current tracker

end %end the for loop which repeats the elseif loop until calculations have been performed on all trackers

%Next step: sum up all previous rows for each tracker column

%remember euclideanSumP1 = zeros(frameTotPhase1,prompt_06_AMat);
%remember euclideanSumP2 = zeros(frameTotPhase2,prompt_06_BMat);

%sum up all previous rows (frames) for each tracker before the current frame. (Phase 1 only) --> original code in williams translation of POI
incorrectly left out the first row as zeros (which had to be fixed by hand in post processing. When comparing to original, note that williams
matrix had fliped rows and columns compared to the definition of row and column in this code. ie. his rows represented trackers and columns
frames. My code has rows as Frames and trackers as columns for consistancy with previous matrices. (His code was inconsitant)
for counter08_FinalA = 1:prompt_06_AMat %prompt a is the number of trackers in phase 1
 euclideanSumP1(1, counter08_FinalA)= euclideanDistP1(1, counter08_FinalA); %the first row of euclidean sum (representing distance from
each trackers first frame to the phase center) is identical to the euclidean distance matrix

 for counter08_FinalB = 2:frameTotPhase1 %counter B rotates through frames for the tracker specified by counterA. start with the row for
frame 2 because frame 1 is recorded by the previous line
 euclideanSumP1(counter08_FinalB, counter08_FinalA) = euclideanSumP1(counter08_FinalB - 1, counter08_FinalA) +
euclideanDistP1(counter08_FinalB, counter08_FinalA); %every value starting at the second row onward is the sum of the current and previous
rows of euclidean distance. therefore,to save time, the previous row of euclidean sum (which is in itself a sum of previous rows) simply has to be
added to the current row of euclidean distance to obtain the current row of euclidean sum.
 end %note the -1 is in the columns for this code , but in the row for williams.
end

%Repeat the above calculation for phase 2
for counter08_FinalC = 1:prompt_06_BMat %prompt b is the number of trackers in phase 2
 euclideanSumP2(1, counter08_FinalC)= euclideanDistP2(1, counter08_FinalC);

 for counter08_FinalD = 2: frameTotPhase2
 euclideanSumP2(counter08_FinalD, counter08_FinalC) = euclideanSumP2(counter08_FinalD -1, counter08_FinalC) +
euclideanDistP2(counter08_FinalD, counter08_FinalC);
 end
end

%% Calculation Results
 fprintf('x,y,z coordinates for the initiation point of phase 1 (row 1) and phase 2 (row 2) \n');
 disp(phaseInitialCoord); %phase center coordinates in 3-D space for rows phase 1 and phase 2, columns x,y,z

 fprintf('Phase 1 matrix with one column for each tracker, and rows representing distance moved since previous frame \n');
 fprintf('the first row is Euclidean Distance between the first frame and phase initiation coordinate, all other rows are distance from previous
frame \n');
 fprintf('subsequent rows compare the distance between the tracker coordinates on a given frame and its coordinates in the previous frame \n');
 disp(euclideanDistP1)

 fprintf('Phase 2 Euclidean Distance matrix with a column for each tracker \n');
 disp(euclideanDistP2)

 fprintf('Phase 1 Total Distance matrix to be plotted\n');
 fprintf('each row represents the total distance from the phase center that the tracker (column) has moved by that frame \n')
 disp(euclideanSumP1)

 fprintf('Phase 2 Total Distance matrix to be plotted\n');
 disp(euclideanSumP2)

%% Plots

%create matrix with values from start of phase 1 to phase 2
 %counter09 = 1;
 counter10 = 1;
 counter11 = phase1Start; %counter 11 will be incremented starting at the frame number where phase 1 was first seen
 %counter12 = 1;
 counter13 = 1;
 counter14 = phase2Start; %counter 11 will be incremented starting at the frame number where phase 2 was first seen

 101

 %counter15
 %counter16

%initialize variables
 FrameRefPhase1 = zeros(1000, 2); %initialize a really big matrix to represent x,y coordinate pairs (frame number of the phase 1 plot)
 FrameRefPhase2 = zeros(1000, 2); %initialize a really big matrix to represent x,y coordinate pairs (frame number of the phase 2 plot)

 %now fill the above matrices with x,y pairs taken from data in the euclidean sum matrices from the calculations step, x coordinates must be
generated using a counter to scroll through known frames in a phase nd record frame number

%phase1 x-axis coordinates (frame#) are saved to each row in the first column of frame reference phase 1
for counter09 = phase1Start : phase1End %for each frame in the phase eg. frame 99 --> frame 1000 counter08 will count up
 FrameRefPhase1(counter10, 1) = counter11; %counter09 assumes the start frame is 1 and counts up, saving the value of counter10 to a new
colmn each loop. Counter10's starting value is the phase1 start, and it also counts up with each loop until reaching phase 1 end
 counter10 = counter10 + 1; %add 1 to the current row to move to the next row (which starts at the start frame number)
 counter11 = counter11 + 1; %add 1 to the current frame , this value is to be recorded in the next row
end % result FrameRefPhase1= (phase1Start, phase1Start+1, phase1Start+2,..... phase1End) can be matched with point translations from center
to create an x,y graph.

%phase2 x-axis coordinates (frame#) are saved to each row in the first column of frame reference phase 2
for counter12 = phase2Start : phase2End %same as above
 FrameRefPhase2(counter13, 1) = counter14;
 counter13 = counter13 + 1;
 counter14 = counter14 + 1;
end

%phase1 y-axis coordinates (average distance traveled since phase 1 center - measured in pixels)
for counter15 = 1 : frameTotPhase1 %cycle through frames (rows) and fill in the second column of each row with a y coordinate
 FrameRefPhase1(counter15, 2) = mean(euclideanSumP1(counter15, :), 2); %fill in each row of the second column of the frame ref phase 1
matrix with the average of all trackers for the current row in the euclidean sum matrix. Therefore the distances of all trackers saved to any given
frame are averaged together and saved as a single value (2 indicates averaging rows not columns)
end

%phase2 y-axis coordinates (average distance traveled since phase 2 center - measured in pixels)
for counter16 = 1 : frameTotPhase2 %cycle through and fill in each row
 FrameRefPhase2(counter16, 2) = mean(euclideanSumP2(counter16, :), 2); % same as phase 1 y axis comment
end

 %now plot the x,y coordinate pairs on a graph in a new figure window

%Phase 1 Plot
for counter17 = 1:frameTotPhase1
 plot(FrameRefPhase1(counter17, 1), FrameRefPhase1(counter17, 2), 'o', 'color', rand(1,3)); %plot the x,y pair for each row as a point
 hold on
end
linearRegP1 = fitlm(FrameRefPhase1(1:frameTotPhase1, 1), FrameRefPhase1(1:frameTotPhase1, 2)); % Linear Regression to obtain the point
where the trend line crosses the x axis. Should be within 1 or two frames of phase 1 start. the x intercept indicates the true start of phase 1 and is
used to obtain delay time when compared to the same point in phase 2
plot(linearRegP1,'color', rand(1,3));

 %experimental phase 1 plot without error bars
 %x = FrameRefPhase1(1:frameTotPhase1, 1);
 %y = FrameRefPhase1(1:frameTotPhase1, 2);
 %X = [ones(length(x),1) FrameRefPhase1(:, 1)];
 %b = X\y;
 %yCalc2 = X*b;
 %hold on
 %plot(x,yCalc2)

%Phase 2 Plot
for counter18 = 1:frameTotPhase2
 plot(FrameRefPhase2(counter18, 1), FrameRefPhase2(counter18, 2), 'o', 'color', rand(1,3)); %plot the x,y pair for each row as a point
 hold on
end
linearRegP2 = fitlm(FrameRefPhase2(1:frameTotPhase2, 1), FrameRefPhase2(1:frameTotPhase2, 2)); % Linear Regression
plot(linearRegP2,'color', rand(1,3));

 102

hold off

%Calculate and display Trend Line Equation for phases 1 and 2

% Use Linear Regression 1 to calculate trend line slope and y intercept
m1 = linearRegP1.Coefficients.Estimate(2);
b1 = linearRegP1.Coefficients.Estimate(1);
fprintf('y1 = %.3f x1 + %.3f \n', m1, b1);

% Use Linear Regression 2 to calculate trend line slope and y intercept
m2 = linearRegP2.Coefficients.Estimate(2);
b2 = linearRegP2.Coefficients.Estimate(1);
fprintf('y2 = %.3f x2 + %.3f \n', m2, b2);

% Enter the Frame Rate Found in the cine viewer editior
prompt_FPS = 'input the frame rate '; %creates the label for the dialogue box
frameRate = inputdlg(prompt_FPS); %save users response (file name)
frameRateMat = cell2mat(frameRate);

% Calculate delay time by solving for x intercept (the approximate fraction of a frame when recalescence began) for phase 1 and 2
% (0=mx+b) then subtracting phase 1 from phase 2 x intercepts and dividing by the fps of the video to get time
syms t1 t2
delayTime = vpa((vpasolve(m2 * t2 + b2 == 0, t2) - vpasolve(m1 * t1 + b1 == 0, t1))/frameRateMat, 4);
fprintf('delay time between two phases is %f \n\n\n', delayTime);

%Check for correctness against actual phases
checkP1 = -1.*b1./m1 ;
fprintf('Estimated Phase 1 start is %f \n', checkP1);
fprintf('Actual Phase 1 start is %f \n', phase1Start);

checkP2 = -1.*b2./m2 ;
fprintf('Estimated Phase 2 start is %f \n', checkP2);
fprintf('Actual Phase 2 start is %f \n', phase2Start);

%% Plot results

 fprintf('Congrats on a successful run! \n')
 fprintf('You have now plotted average tracker translation distance by frame \n\n');
 fprintf('x,y coordinates for phase 1 \n')
 disp(FrameRefPhase1((1:frameTotPhase1), :))
 fprintf('x,y coordinates for phase 2 \n')
 disp(FrameRefPhase2((1:frameTotPhase2), :))

%% Don't like results? Trim data and replot? (Experimental)

%duplicate plotted matrices
%FrameRefPhase1Temp = FrameRefPhase1;
%FrameRefPhase2Temp = FrameRefPhase2;

%outer while prompt == 'Y'
%prompt - would you like to make a change?
%prompt - continue to change or restart change
 %if continue to change
 %keep frameref from previous run
 %else if restart change
 %FrameRefPhase1Temp = FrameRefPhase1;
 %FrameRefPhase2Temp = FrameRefPhase2;

 103

%inner loop to change data
 %prompt user which phase to modify
 %if phase 1
 %prompt which point would you like to modify
 %prompt which tracker would you like to remove
 %recalculate avarages (without that point)
 %FrameRefPhase1Temp =

 %if phase 2
 %prompt which point would you like to modify
 %prompt which tracker would you like to remove
 %recalculate averages (without that point)
 %FrameRefPhase1Temp =

 %plot graph

% save results when while loop finished and print updated plot

%% Print Results and save to a file

%create a new folder to store data from this run
 prompt_97_SaveFolder = 'Input the name of the "Folder" you want to save: '; %creates the label for the dialogue box that asks what name to
save the the plot as
 newFolder = inputdlg(prompt_97_SaveFolder);
 dirName = sprintf('%s', newFolder{1,1}); %automatically specifies the directory for the the new folder (%s) to the desktop
 mkdir('C:\Users\Name\Desktop', dirName);

%move all photos from the current run to the new folder
 newDir = sprintf('C:\\Users\\Name\\Desktop\\%s', dirName); %double slashes indicate directory when used with sprint f
 cd C:\Users\Name\Desktop\Matlab\Photos %open the Photos folder where photos from the current run are temporarily stored
 movefile('*.jpg', newDir); %move all current photos to the folder for the current run on the desktop (with the newDir directory)

%Save plot with phases 1 and 2 to desktop
 cd(newDir);
 prompt_98_SavePlot = 'Input the name of the "Plot" you want to save: '; %creates the label for the dialogue box that asks what name to save
the the plot as
 savePlot = inputdlg(prompt_98_SavePlot); %opens a dialogue box with the label specified above that allows the user to enter a "name"
 savePlotMat = sprintf('%s.jpg',savePlot{1,1}); % "sprintf" is a function that prints a sentance from a set of variables using %s (letter) ot %d
(number) calls. In this case the %s calls in the word saved to first variable after the comma eg.the "name" entered in the save plot matrix.
therefore "%s .jpg" = "name .jpg"
 exportgraphics(gcf, savePlotMat) %get the current figure (gcf), and save that figure (plot) to desktop with a file name identified by
savePlotMat in the line above.

%ask user what file name the backup file should be saved as
 cd(newDir);
 prompt_99_SaveFile = 'Input the name of the "ISS_EML" file you want to save: '; %creates the label for the dialogue box
 saveName = inputdlg(prompt_99_SaveFile); %saves your file name as a variable
 saveNameMat = sprintf('%s.mat',saveName{1,1}); %converts your file name to a string of text (%s) and adds the .mat ending to ensure it is
saved as a mat file
 save(saveNameMat) %backs up all variables to a new file on the desktop with the string name you created.

%return to the original directory
 cd 'C:\Users\Name\Desktop'; %change directory to users desktop (change 'user' based on computer being used)

fprintf('Thank you for running Delay_Times.mat good luck on the data processing! \n')

