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0. Abstract  
 
Schistosomiasis control in sub-Saharan Africa is enacted primarily through mass drug 

administration, where predictive modeling plays an important role in filling knowledge gaps in 

the distribution of disease burden. Remote sensing (RS) satellite imagery is used to predictively 

model infectious disease transmission in schistosomiasis, since transmission requires 

environmental conditions to sustain specific freshwater snail species. Surveys are commonly 

used to obtain health outcome data, and while they provide accurate estimates of disease in a 

specific time and place, the resources required make performing surveys at large spatiotemporal 

scales impractical. Ongoing national surveillance data in the form of reported counts from health 

centers is conceptually better suited to utilizing the full spatiotemporal capabilities of publically 

available RS data, as most open source satellite products can be utilized as global continuous 

surfaces with historical (in some cases 40-year) timespans. In addition RS data is often in the 

public domain and takes at most a few days to order. Therefore, the use of surveillance data as an 

initial descriptive  approach of mapping areas of high disease prevalence (often  with large focal 

variation present) could then be followed up with more resource intensive methods such as 

health surveys paired with commercial, high spatial resolution imagery. Utilization of datasets 

and technologies more cost effectively would lead to sustainable control, a precursor to 

eradication (Rollinson et al. 2013). 

 

In this study, environmental parameters were chosen for their historical use as proxies for 

climate. They were used as predictors and as inputs to a novel climate classification technique. 

This allowed for qualitative and quantitative analysis of broad climatic trends, and were 

regressed on 8 years of Ghanaian national surveillance health data. Mixed effect modeling was 
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used to assess the relationship between reported disease counts and remote sensing data over 

space and time. A downward trend was observed in the reported disease rates (~1% per month). 

Seasonality was present, with two peaks (March and September) in the north of the country, a 

single peak (July) in the middle of the country, and lows consistently observed in 

December/January. Trend and seasonal patterns of the environmental variables and their 

associations with reported incidence varied across the defined climate zones. Environmental 

predictors explained little of the variance and did not improve model fit significantly, unlike 

district level effects which explained most of the variance. Use of climate zones showed 

potential and should be explored further. Overall, surveillance of neglected tropical diseases in 

low-income countries often suffers from incomplete records or missing observations. However, 

with systematic improvements, these data could potentially offer opportunities to more 

comprehensively analyze disease patterns by combining wide geographic coverage and varying 

levels of spatial and temporal aggregation. The approach can serve as a decision support tool and 

offers the potential for use with other climate-sensitive diseases in low-income settings. 
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1. Introduction  
 

1.1  Schistosomiasis  
 
1.1.1 Health Impact 

Schistosomiasis is caused by parasitic blood flukes of the genus Schistosoma, and is acquired 

from skin contact with contaminated freshwater bodies.  Schistosomiasis affects over 200 million 

people worldwide, with approximately 779 million at risk of infection (Steinmann et al. 2006), 

although these numbers likely substantially underestimate the true disease burden (King 2010).  

 

Schistosomiasis is more likely to cause morbidity than mortality, and leads to the loss of around 

4.5 million disability adjusted life years of people worldwide (Danso-Appiah et al. 2004). It is 

considered second only to malaria in terms of impact of a parasitic disease, and is one of the 

WHO’s neglected tropical diseases (NTDs) (WHO 2011). Presently there is evidence to suggest 

that schistosomiasis, “is arguably the most important cofactor in Africa’s AIDS epidemic,” as 

stated by the dean of the National School of Tropical Medicine at Baylor College of Medicine, 

Dr. Peter J. Hotez (Zinyama-Gutsire et al. 2015; Ndeffo Mbah et al. 2013; Brodish and Singh 

2016). 

 

1.1.2 Schistosome Lifecycle 

Schistosomiasis is spread through contact with water. When the eggs of the parasite contact a 

water body, they hatch into miracidia. The miracidia seek out certain species of snails to act as 

intermediate hosts.  Over 350 snail species are suitable hosts for schistosomes; however, three 

genera of snails are most relevant for public health: Biomphalaria, Bulinus, and Oncomelania, 

because they serve as intermediate hosts for the three parasite species that most commonly infect 
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humans: S. haematobium, S. mansoni, and S. japonicum, respectively (Gryseels et al. 2006). The 

parasites multiply asexually inside the snail and then leave the snails in search of their final 

hosts. When the parasite comes in contact with a human host, they burrow through the skin and 

gain entry to the circulatory system. There they mature into adult worms, pair up, and then travel 

to the mesenteric veins surrounding the bladder (S. haematobium) and/or intestine (S. mansoni 

and S. japonicum). They then lay eggs, which burrow through the tissue to make their way into 

the urine or stool. If an infected person then urinates or defecates into fresh water or in soil 

proximal to bodies of surface water, the life cycle of schistosomiasis continues (CDC 2012). A 

detailed resource for learning more about the schistosome lifecycle and schistosomiasis 

pathology can be found in the review article, “Hepatobiliary Schistosomiasis” by Yehia et al. 

2014. This thesis focuses specifically on S. haematobium and the intermediate host snail, Bulinus 

spp., which is the predominant cause of schistosomiasis in Ghana (Lai et al. 2015). 

  

1.1.3 Distribution 

Schistosomiasis is endemic to locations in South America, the Middle East, and Asia, and Africa. 

However, sub-Saharan Africa has an estimated <90% of the worldwide cases (Chitsulo et al., 

2000; Gryseels et al., 2006; Hürlimann et al., 2011). Ghana is one of the most heavily affected 

countries with an estimated prevalence ≥50% (Utzinger et al. 2009), as reported by the WHO 

(Figure 1). An estimated 30-35% of the Ghanaian population requires preventative 

chemotherapy, but only 2–8% receive it annually (WHO 2010). Preventive chemotherapy with 

praziquantel is the predominant disease control strategy in Ghana. Ghana Health Service (GHS) 

currently uses a combination of limited field survey results, data from the national surveillance 
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system, and historical knowledge of endemnicity to determine which districts receive 

praziquantel.   

 
 

Figure 1: Schistosomiasis prevalence per country (WHO 2012) 

 
1.1.4 Prevalence 
 
Estimates of schistosomiasis prevalence in Africa have been made for the last 70 years, but it has 

been known to plague humans as far back as Egyptian times (Yehia et al. 2014). In 1947, Stoll’s 

paper, “This Wormy World”, summarized the state of parasitic worm diseases globally (Stoll 

1947). He provided an overview of worm-based diseases along with a set of intervention 

strategies. Advice for public health professionals on disease mitigation was broken into three 

parts: 1) proper parasitology education, so that educated decisions could be made; 2) proper 

application, so that decisions are tailored to specific situations; and 3) use of updated control 

measures. These recommendations are still useful today. Stoll’s estimates for worm prevalence 
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in sub-Saharan Africa, which was the first attempt to calculate this type of disease burden on a 

continental scale (Brooker et al., 2000).  

 

In 1965, the global estimate of infected persons was around 200 million (Mandahl-Barth 1965). 

Around the same time, the distribution of S. haematobium and S. mansoni in Ghana was 

investigated through ground surveys (Onori et al., 1963; Odei, 1964; McCullough, 1965). 

Geographically these surveys (aggregated) spanned over two thirds of the country, leaving out 

districts in the South and Southwest. It estimated a national prevalence of between 15-20% and 

1,000,000+ people having been infected with S. haematobium at one point in their lifetime 

(McCullough and Ali 1965). In the surveyed areas, S. haematobium was found to have the 

highest prevalence, 41-100%, in the north, and with small focal pockets ranging from 1-15%, 16-

40%, and 41-100%, throughout the country. The authors noted that schistosomiasis was also an 

occupational disease associated with fishing and weed clearing around the Kumasi reservoir 

(McCullough and Ali 1965). They listed the major factors responsible for the distribution of the 

disease as consisting of human population density and presence of surface water supplies, with 

the minor factors being migration, settlement type, water-body characteristics and location, water 

body behavior and location, water behaviors, and extent of the forest (McCullough and Ali 

1965). The authors also noted that snails were distributed much more widely than the disease, 

which puts large areas at risk for expansion of schistosomiasis. This work is one of the earliest to 

draw conclusions regarding the distribution of schistosomiasis within Ghana on a national scale.  

 

In 1972, global schistosomiasis estimates dropped from 200 to a more conservative 125 million 

infected and 500 million at risk, with 90 million of the infected (72%) being attributed to Africa 
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alone (Wright 1972). In 1976 the WHO conducted its own data collection activity via a 

questionnaire distributed to 121 countries. 103 replies were received, and 59 countries self-

reported as endemic with the number rising to 73 at the time of publishing these data (WHO 

1981). The questionnaire estimated that in Ghana the prevalence was around 50% primarily due 

to S. haematobium (WHO 1981). 

 

In 1987, the WHO published the “Atlas of the Global Distribution of Schistosomiasis”, which 

provided a brief overview of each country’s prevalence distribution  as derived from aggregated 

surveys, climatic and physical conditions, and human activities affecting transmission. (Atlas in 

the title implies maps) The information specific to Ghana covers the distribution of S. 

haematobium and S. mansoni infection (WHO 1987). It confirms that at that time S. 

haematobium was the most prevalent species of schistosome, based on reports dating back to 

1956. The Atlas also provided information on snail distribution, snail food/vegetation, water 

level rise in the rainy season, and that transmission occurs often during periods of flooding/heavy 

rainfall. The survey information used to create this atlas was aggregated to the district level, 

tabulated, and mapped. 30 years later, the Atlas was considered to be “the most complete global 

resource [for schistosomiasis] remains the 1987 Atlas of the Global Distribution of 

Schistosomiasis” (Brooker et al. 2010). 

 

In 2000, schistosomiasis prevalence was mapped in 76 countries with  results being tabulated 

and stored via the  dataportal, Global Atlas of Helminth Infections (GAHI), which at the time 

contained data for 33% of all global district level administration units  with a population density 

of >5 people per km2  (Brooker et al., 2000). At the time, this atlas was the most up to date 

aggregation of all the published surveys as well as derived from a substantial grey literature. 
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However, it only used surveys conducted after 1970. A map produced from the database for 

Ghana at the time of creation had 11 published references, which provided 57 surveys mapped 

by region, thus covering 30% of the 10 regions making up the country (Brooker et al., 2000). 

Prevalence was found to be >50% near Accra and the Northeast border, and 25-50% in the center 

of Ghana through the south. Masked areas due to low population density (<20 people/km2), were 

located in the Northern half of the country. No data was recorded in parts of the Northern half of 

Ghana, the Southwest corner, and a pocket along the Southeast coast. This digital global atlas 

was an improvement upon Stoll’s more static mode of display, “This Wormy World” prevalence 

estimates, and provided a glimpse of possible future dynamic digital repositories. The GAHI 

repository created in 2000, is still active and as of March, 2017 lists 250 records, 173 surveys, 

and 11 reports and publications for schistosomiasis in Ghana (GAHI 2017). 

 

Subsequently, the Global Neglected Tropical Disease (GNTD) database was created, which 

allowed for data to be accessed directly and as of 2017 has 35 survey-based datasets for 

schistosomiasis in Ghana (GNTD 2011). This database was created based on a systematic review 

of the literature from sources such as PubMed, Institute for Scientific Information (ISI) Web of 

Knowledge, and the African Journal Online. It built upon the previous database but went further 

by not putting restrictions on date or language, and expanding the scope of diseases (Hürlimann 

et al. 2011).  The data could also be manipulated through an interactive mapping software, 

HealthMapper, which was created in conjunction with the WHO (Thomson et al. 2000) 
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1.1.5 Control 

As prevalence information have been gathered and enhanced technologies created so too have 

control methods progressed.  In 1976 the previously mentioned questionnaire administered by 

WHO estimated that Ghana’s budget for healthcare was just over $100 million, making up just 

shy of 10% of the national budget, with only $200,000 or 0.2% of the national budget allocated 

to schistosomiasis (WHO 1981). In terms of manpower there were 480 governmental staff and 

60 non-governmental staff working on schistosomiasis control.  Hospital records analyzed in 

1975, showed that no hospitalizations were recorded but that almost 7,000 outpatients were 

treated. In 1976 the most commonly reported  anti-schistosomal drug was niridazole, used in 41 

of 55 (75%) of endemic countries, and the most common pesticide against mollusks 

(molluscicide) was niclosamide, applied in 28 of 55 (51%) of endemic countries (WHO 1981). 

Control methods were recorded and ordered by frequency of use, as found among the 55 

endemic countries. In order of highest to least frequency of use the list was as follows: 

chemotherapy, health education, installation of water supply, improvement of existing water 

supply, mollusciciding, provision of sanitary facilities, environmental modification by 

engineering methods, modification of agricultural environment, biological control, and the 

protection of water sites (WHO 1981). Use of more than three of these control methods was 

common in roughly half the endemic countries.  

 

Thirty years later in 2006, chemotherapy was the dominant control method (Gryseels et al. 

2006). Gryseels attributed this to a, ‘fundamental shift over the past few decades’, in the 

availability of the drug praziquantel. Praziquantel is a broad spectrum deworming drug, known 

for low toxicity and chemical stability. It was originally developed in the parasitological research 
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laboratories of Bayer AG and Merck KGaA in Germany in the mid-1970s (Greenwood 2008). 

Originally used in veterinary medicine, it was approved for use in humans in the 1980s, after 

extensive testing (Frohberg and Schulze Schencking 1981). Additional  human testing followed 

(EMEA 1996; Dollery 1999) with the results indicating an excellent therapeutic index, which led 

to praziquantel’s progressively frequent use in mass treatment campaigns (Seubert et al. 1977). 

The World Health Organization (WHO) includes it on its Model List of Essential Medicines. 

 

Established in 2002, the Schistosomiasis Control Initiative (SCI) is an organization focused on 

the control of schistosomiasis morbidity through chemotherapy. SCI funds prevalence surveys, 

thereby identifying areas requiring mass drug administration (MDA) with the deworming drug 

praziquantel (Brooker et al. 2010). It is coordinated by the Imperial College of London and 

focused on specific African countries. Within these countries, SCI promotes two major projects, 

the Integrated Control of Schistosomiasis in Sub Saharan Africa (ICOSA) and the 

Schistosomiasis Consortium for Operational Research and Evaluation (SCORE). ICOSA, began 

in 2010, focuses on schistosomiasis and soil transmitted helminths. It is active in eight countries 

split into three groups based on the status of their control programs. Group One  countries have 

little or no control organizations, Group Two nations have control programs established but not 

on a national scale, and Group Three reports  successful control programs on the national level 

and as well as the intention  to move from control of schistosomiasis towards elimination. Based 

on this classification, Ghana exhibits the characteristics of Group Two. 

 

Another area of focus for SCI is mapping. The SCI website promotes the use of mapping to 

direct disease control efforts, and on its website describes how to utilize the GAHI database. It 

recommends the use of the following environmental variables: altitude, temperature, and surface 
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water, as well as  population distribution (London 2016). When there are not already available 

datasets for particular locations, the SCI carries out their own surveys. Their mapping often has 

the focus of tracking prevalence pre- and post- mass drug administration (MDA).  

 

 The WHO media center fact sheet on schistosomiasis has a section on prevention and control 

updated on January 2017. It states that control is administered on broad scales mainly achieved 

using praziquantel, which it calls effective, safe, and low-cost. It mentions the efficacy of control 

efforts dating back 40 years (likely in reference to its 1976 questionnaire), and highlights the 

recent 10-year trend towards larger geographic scales of treatment (WHO 2017). 

1.2 Schistosomiasis and Climate 

 
Schistosomiasis transmission requires the presence humans, snails, and parasites, all of which 

have varying degrees of sensitivity to climate (Gryseels et al. 2006). Environmental variables can 

serve as a proxy to climate, and therefore are useful in modeling schistosomiasis (Brooker et al. 

2001; Walz et al. 2015a; Walz et al. 2015b). There are a number of specific parasite, snail, and 

human characteristics that affect schistosome transmission; these characteristics have been 

reviewed in detail (Walz et al. 2015a).  

 

Information on snails comes from field surveys, modeling, and laboratory testing. WHO reports 

that  roughly 350 species of snail can act as intermediate hosts for schistosomes and can survive 

from temperatures ranging from 10 ̊ C to 35 ̊ C. Snails are found in fresh water such as small 

ponds, streams, large lakes, and rivers with most found in perennial water sources (WHO 1987). 

Within water bodies the snails tend to prefer shallow waters near the shores as they feed on water 

plants. Ghana has one of the largest man-made lakes in the world. Lake Volta’s 5,000 km of 
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shoreline is an ideal habitat for snails (WHO 1987). Other parts of Ghana (e.g. Eastern Region) 

have an abundance of small rivers and streams (Kulinkina et al. 2017) that may also contribute to 

the country’s schistosomiasis burden. Bulinus is the snail species responsible for S. 

haematobium, the most prevalent Schistosoma in Ghana. There are 37 known species of Bulinus 

(Brown 1994), which are subdivided amongst B. africanus, B. forskalii, B. reticulatus, and B. 

tuncatus/tropicus (Rollinson et al. 2001; Mkize et al. 2016). A 2004 report based on 1,543 

Bulinus snail samples found that temperature followed by water body type best predicted the 

geographical distribution amongst Bulinus sub-species, taken from snail samples in the National 

Freshwater Snail Collection (NFSC) of South Africa (De Kock et al. 2004). WHO documented 

that snail reproduction is commonly associated with the temperature range of 22 ̊ C to 26 ̊ C; 

however, the range for Bulinus snails in equatorial nations such as Ghana is wider. Climate has 

been shown to have an impact on the distribution of the intermediate host for schistosomiasis 

(Appleton 1978; Brown 1994; Brooker and Michael 2000). 

 

Climate is an important factor in modeling diseases with strong links to environmental 

parameters. The predominant climate classification system for the past 100 years, the Köppen-

Geiger (KG) climate classification system, is loosely based on the assumption that vegetation is 

the best proxy for climate, and that temperature and precipitation are the best proxies for 

vegetation (Kottek et al. 2006). Later, it was realized that evapotranspiration was better suited for 

use with temperature in defining climate, due to its role in aridity and soil moisture. However, 

evapotranspiration is not always collected by ground-based climate stations and so a complex 

temperature-precipitation formula was used in its place. Ghana specifically has two climates Af 

and Aw, where Af has the criteria of having at least 60mm of precipitation in the driest month, 
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and Aw has the criteria of having less than 60 mm and 100-(r/25) precipitation in the driest 

month, where r is the average annual precipitation total (mm) (Kottek et al. 2006).   Af is 

considered a “tropical wet-dry climate” and covers most of Ghana. Aw is a “wet equatorial 

climate” and covers only a small portion of the Southwest corner of Ghana. More broadly, both 

of these subclimates Af (no dry season) and Aw (winter dry season), fall under the major climate 

division A, which is considered to be the warmest of the five major climate divisions (A, B, C, 

D, & E).  

 

In addition existing climate classification schemes have not been designed for public health 

applications (Liss et al. 2014). Their broad scales are far too large to be useful in national disease 

control campaigns. They are also dependent on terrestrial climate stations, which cannot be 

located in sufficient numbers to achieve optimal coverage due to forbidding logistics and costs. 

The interpolations used to generate the climate grids are complex when made public or 

unreproducible when proprietary. They are also often lacking in fine temporal resolutions, due to 

their resource requirements and making them better suited to static applications. These 

challenges contribute to difficultly in adapting these systems to public health needs, which are 

usually analyzed at fine spatiotemporal scales, require reproducibility, and dynamic in nature.  

1.3 Schistosomiasis and Remote Sensing (RS) 

 
Fortunately, with the introduction of satellites, there is another way to quantify climate data; 

thereby utilizing climate characteristics which are favorable for snails to serve as proxies for 

schistosomiasis transmission. 
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1.3.1 Overview 

Developed in the 1950s, remote sensing (RS) is defined as the gathering of information without 

direct contact. The ways in which this can be done are varied, but commonly are by aircraft or 

satellite. In this thesis, RS refers to satellite data.  Collecting information on the ground can often 

be time consuming and costly. RS allows for a relatively low-cost tool that can cover a large 

spatial and temporal scale, making it ideal for use in resource-constrained countries (Walz et al. 

2015a), and a more sustainable solution to ground-based data (Gryseels et al. 2006). 

 

RS applications have steadily progressed, and since the 1970s has been commonly used for 

schistosomiasis modeling and predictive mapping (Simoonga et al. 2009). A number of factors 

that influence schistosomiasis transmission lend themselves to remotely sensed environmental 

variables. Two reviews of the primary literature show that the most commonly used 

environmental variables to predict schistosomiasis transmission are temperature, vegetation, 

rainfall, water chemistry, distance to water bodies, and elevation (Simoonga et al. 2009; Walz et 

al. 2015a). The use of ecological zones as opposed to geo-political administrative units has been 

recommended and is shown to be valuable in predicting the occurrence of schistosomiasis 

(Simoonga et al. 2008; Grosse 1993; Walz et al. 2015a).  Recent papers written on the subject of 

RS applied to schistosomiasis have explored the environmental variables further so as to better 

understand their function as transmission proxies (Walz et al. 2015b). 

 

1.3.2 Review Papers 

Most studies on the application of RS to schistosomiasis take place in Africa. The use of RS with 

regards to schistosomiasis was reviewed recently (Simoonga et al. 2009; Walz et al. 2015a). 

Simoonga et al. analyzed studies from 1996-2008, while Walz et al. focused on studies from 
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2001-2014. This thesis will give priority to exploring studies included in these reviews, but effort 

has been made to investigate applicable studies (RS applications to schistosomiasis, preferably in 

Africa) since 2014 to present.  

 

Simoonga et al. (2009) reviewed studies temporally and spatially. For the temporal analysis, the 

authors used a PubMed search in which the following terms and Boolean operators were entered: 

“remote sensing” OR “mapping” OR “prediction” AND “schistosomiasis” AND “Africa”, the 

authors found 41 studies, 32 of which were deemed to be relevant. The number of studies on this 

subject has been increasing (Simoonga, Utzinger, Brooker, Vounatsou, Appleton, Stensgaard, et 

al. 2009). The spatial distribution of studies differentiated between snail- or human-applications, 

and by 2009 most African countries had RS data applied to human schistosomiasis. An adapted 

version of this search, that takes all the returned results from 1996-2015 using the PubMed input: 

((((remote sensing) OR mapping) OR prediction) AND schistosomiasis) AND Africa has been 

created (Figure 2).  
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Figure 2: Pubmed search results of publications with RS/GIS applied to schistosomiasis in 

Africa adapted from (Simoonga et al., 2009) 
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Walz et al. (2015) tabulated the characteristics of studies based on satellite sensor. Prior to 

analyzing the tabulated studies the review discusses the connection between snail habitat, RS 

technology, and disease transmission as well as the factors that govern risk in the parasite, snail, 

and human. It then devotes attention to exploring in depth the historical variables used for 

modeling schistosomiasis, honing in on differences in primary or secondary proxies of 

transmission. Walz et al. saw this review as a bridge linking knowledge of different disciplines: 

epidemiology, disease ecology, and RS risk profiling.  

 

These reviews benefitted from an extensive literature. The tabulated studies from both reviews 

totaled 41, with about 10 shared between the two reviews. The characteristics of these studies 

have been tabulated and color-coded by variable type (Table 1). The studies are presented in 

chronological order beginning in 1994 and ending in 2013. Descriptive analysis of this table 

demonstrates that up until the millennium, the main variables in use were temperature and 

vegetation. After 2000 rainfall and elevation were commonly incorporated into studies. Table 1 

references that are in bold font are described in detail in the following section.  
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Table 1:  Studies of RS applied to schistosomiasis, adapted from Simoonga et al., (2009) and 

Walz et al., (2015). 

RS Environmental Variables Reference Review 
Temperature, Vegetation Malone et. al (1994) S 
Temperature, Vegetation Mukaratirwa et al. (1999) S 
Temperature, Vegetation Brooker et al. (2000) S 
Temperature, Vegetation Abdel-Rahman et. al (2001) S, W 
Temperature, Vegetation Kristensen et. al (2001) S, W 
Temperature, Vegetation, Elevation, Rainfall Brooker et al. (2001) S, W 
Temperature, Vegetation Malone et. al (2001a, 2001b) W 
                          Vegetation Stothard et. al (2002) S 
Temperature, Vegetation,                    Rainfall Brooker et. al (2002b) S, W 
Temperature Moodley et al. (2003) S 

 
Utzinger et al. (2003) S 

Temperature, Vegetation, Elevation Kabatereine et. al (2004) W 
Temperature, Vegetation Malone et. al (2004) W 
Temperature, Vegetation, Elevation, Rainfall, Landcover Raso et. al (2005, 2006, 2007) W 
Temperature, Vegetation Stensgaard et. al (2005,2006) S, W 
Temperature, Vegetation, Elevation, Rainfall Clements et. al (2006a, 2006b, 2009) S, W 
                                                Elevation Clennon et. al (2007) W 
                                                                                  Landcover Clennon et. al (2004, 2006, 2007) S, W 
                                                Elevation Beck-Worner et. al (2007) W 
Temperature, Vegetation Simoonga et al. (2008) W 
Temperature, Vegetation, Elevation Clements et. al (2008a, 2008b) W 
Temperature, Vegetation Ekpo et. al (2008) W 
Temperature, Vegetation Brooker et. al (2009) W 
Temperature, Vegetation, Elevation, Rainfall Vounatsou et. al (2009) W 

 
Clements et. al (2009) W 

                          Vegetation Sturrock et. al (2009) W 
Temperature, Vegetation, Elevation Koroma et. al (2010) W 
Temperature, Vegetation Soares et. al (2011) W 
Temperature, Vegetation, Elevation,                Landcover Schur et. al (2011a, 2011b, 2013) W 
Temperature, Vegetation Hodges et. al 2012) W 
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1.3.3 Applications 

The Kafr El-Sheik governorate of Egypt is potentially the first  location to apply RS data to 

schistosomiasis (Malone et al. 1994; Abdel-Rahman et al. 2001). This location is ideal for 

RS/GIS work because of the high prevalence of schistosomiasis. As the research in this area 

progressed so has the understanding of the relationships between schistosomiasis and climate. 

 

In 1994, Malone et al. found a positive association between day to night temperature difference 

(dT) and the risk of schistosomiasis. The variable dT was thought to define moisture regimes, 

which was thought to be a proxy for a variety of geologic, hydrologic, and vegetative 

characteristics (Malone et al. 1994). Median dT values were calculated for 28km2  areas atop 41 

survey locations, and in terms of statistical analysis a Spearman rank correlation coefficient was 

used to assess the relationship between dT and the historical schistosomiasis prevalence survey 

data collected in 1937, 1983, and 1990 (Malone et al., 1994; Scott, 1937; Cline et al., 1989; 

Michelson et al. 1993). An inverse positive association was found between higher dT values and 

S. haematobium. This has biological plausibility because the snail species most often associated 

with S. haematobium, B. truncatus, is able to withstand drought and high temperatures for a long 

period of time (Malone et al. 1994). It was noted that persistent control measures such as 

chemotherapy, molluscicide, and education may have dampened the prevalence in such ways as 

to obscure its relationship with the environment (Malone et al. 1994).  The positive association 

with dT indicated higher disease risk with a wetter moisture regime (Malone et al. 1994). Annual 

and seasonal dT composite maps were proposed to reflect stable landform, soils, and climate-

irrigation-water table factors influencing the environmental suitability of schistosomiasis 

(Thompson et al. 1996).  Future work has been proposed  to use higher resolution satellite 
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imagery, environmental databases, snail and human data to improve control efforts on the local 

level (Malone et al. 1994).  

 

Malone et al.’s (1994) work directly potentiated a four-year study into the development of 

RS/GIS environmental risk assessment methods (Malone et al. 1997). Three years later, this 

study utilized extraction of information from the aggregation of static ground surveys, derived 

from 41 survey sites as conducted in 1935, 1983, and 1990, and compared to three thermal-

hydrological domains produced from the tasseled cap (Tcap) classification: wet, moist, and dry 

(Abdel-Rahman et al. 2001). Temporally, thermal patterns were explored individually, 

seasonally, and annually.  Spatially, the study used 25km2 buffers around the survey points, and 

looked for relationships with the environment at the local and regional levels. The local/village 

scale model used higher resolution, Landsat, reflectance data to create a Tcap classification 

(Malone et al. 1998). The regional field validation studies found 13 villages representative of the 

wet, moist, dry thermal-moisture domains and focused on these climate differences. Waterways 

within 1km of these villages had collection stations 50-100m apart for snail surveys.  

 

Results differed by spatial scale. The regional model confirmed that dT was related to risk of 

schistosomiasis (Malone et al. 1998). Snails were present more often in sites with low (wetter) 

dT values. The local model was also consistent with the observation of an inverse relationship 

between dT values and prevalence (P<0.05). A linear regression of five years of prevalence data, 

Tcap data alone and in combination with dT values, developed from 51 villages and randomly 

tested on 25, produced a model that explained 74% of the variation, suggesting that Tcap & dT 

can predict risk.  The study recommended using defined agricultural zones for Egypt 
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(Aboukhaled 1975), which reflect variations in temp (usually only a 4-6  ͦ C degree difference 

from North and South), soil type, elevation, water table, and other factors to promote the use of 

agro-ecological and climatic driven suitability on a national scale (Abdel-Rahman et al. 2001).  

 

In 2000, Brooker and Michael reviewed RS/GIS applications to soil transmitted helminths, 

particularly schistosomes, geohelminths, and lymphatic filarial worms. It found RS/GIS tools 

capable of both acquiring and analyzing data spatiotemporally, modeling, and providing results 

useful to directing control efforts. Limitations of this work ranged from the physical lack of high 

quality data to a lack of theoretical knowledge in areas such as: the impact of using different 

spatial scales, different spatial modeling techniques, and how environmental variables affect the 

lifecycle stages of the snail and parasite (Brooker & Michael, 2000).  

 

In 2002, Brooker et al. used RS data to model schistosomiasis in Cameroon. These researchers 

concluded  that the focality of schistosomiasis requires a more refined approach (Brooker et al. 

1999), and that RS can be used to “fill the gap in empirical data” (Malone et al. 2001). This study 

uses the environmental variables: minimum, mean, maximum land surface temperature (LST) 

and Normalized Difference Vegetation Index (NDVI), elevation, and interpolated rainfall. When 

using environmental variables, intercorrelation can often pose a problem (Morgenstern 1998) To 

account for this in a logic regression model, variables likely to have the highest biological 

significance were included first and the remaining variables were added in a stepwise fashion 

(Brooker & Michael, 2000). The resulting model’s residual deviance and chi squared 

distributions were compared (Venables and Ripley 1999). Regression models used (max, min, 

mean) LST, (min, max, mean) NDVI, total annual rainfall, and altitude, listed in order of 
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addition to the model. Max LST was found to have a positive effect on S. haematobium, and 

thought to be a proxy for the habitat of the snail spp. B. Senegalese (Brooker et al., 2002). The 

final model predicted the probability of prevalence >50%, and was used to estimate the number 

of school aged children requiring treatment. This was then used to calculate the cost of 

praziquantel drug regimens. These cost estimates were similar to what had been previously done 

in Ghana and Tanzania (PCD 1999).  These yielded values of US$0.67 and US$0.21 per 

treatment respectively, and were used as upper and lower bound cost estimates. The predictive 

risk map generated from the final model estimated that no districts warranted MDA at the >50% 

threshold, so the model was rerun at a >20% threshold and an estimated 1.8 million children in 9 

districts warranted treatment. The total treatment cost ranged from US$ 0.39-1.24 million, based 

on the bounds of the cost estimates.  

 

In 2003, Moodley et al. created temperature-suitability maps for schistosomiasis in South Africa.  

The authors reviewed previous studies, which demonstrated that snails are sensitive to high and 

low water temperatures (De Kock et al. 1986; Pflüger 1980; Pflüger et al. 1984; Shiff et al. 1967; 

Brown 1994; Pitchford et al. 1969). The analysis of air temperature regimes, (Pitchford 1981) 

also formed a fundamental basis of this work (Moodley et al., 2003). Three temperature indices 

were used: monthly mean daily max (Mdx), mean daily min (Mdn), and the resulting range (R). 

Temperature maps were created and tailored to the individual species of schistosomes.  They 

found that S. mansoni covers a wider area than S. haematobium, because Bi. pfeifferi’s optimal 

temp range is 22-27 °C, while Bu. africanus is 25 °C (Appleton 1977; De Kock et al. 1986). This 

study’s unique use of temperature regimes it is not directly comparable to other RS/GIS methods 

previously implemented in Egypt (Malone et al. 1994) and Brazil (Bavia et al. 1999). Moodley 
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was not able to affirm Malone et al.’s (1994) positive association with dT, because this study’s 

final models did not include elevated and fluctuating temperatures. Instead, it concluded that 

mapping on temperature alone was not sufficient to explain prevalence.  

 

In contrast to Moodley et al. (2003)’s sub-continental focus, Utzinger et al. (2003) honed in on 

the transmission dynamics occurring within a single village.  This micro scale study explored the 

focal distribution of S. mansoni within households, unlike most studies, which would explore 

prevalence and infection intensity at the district level. What they found were differences in 

prevalence and intensity of infection for students living inside and outside of the village, as well 

as random spatial patterns amongst households. Utzinger et al. (2003) found a 

random/homogenous distribution of infection intensity. This is in contrast to their other studies 

of villages in the region, which showed persistent heterogeneity. This demonstrates the marked 

spatiotemporal nature of the disease (Utzinger et al. 2003; Woolhouse 1998). Such results 

emphasize the need for uniform, community-wide control efforts, and the importance of noting 

the GPS of household locations as  used in later studies (Brooker & Michael, 2000; Brooker 

2002).  

 

In 2005, Stensgaard et al. modeled the distribution of S. mansoni and its host snails, Bi. pfeifferi 

and Bi. sudanica, in Uganda.  The specific environmental variables used were: rescaled NDVI 

(0-200), Tday, Tnight, dT, long-term normal environmental data, monthly rainfall in mm, 

monthly potential, and actual evapotranspiration for 1931-1960 (Malone et al. 2001). 

Temporally, seasonal and annual models were used and iteratively compared to parasite and snail 

distributions in order to find the specific ranges for each variable that best fit with the health 
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data. The results suggested that the strongest ecological determinants were a combination of 

remotely-sensed LST and standard environmental data (ground station) rainfall. Low nighttime 

temperature was found to be a significant factor inhibiting transmission in parts of the 

Southwestern highlands of Uganda. It also found that species-specific ecologic preferences 

existed inland. The analysis utilized NDVI as a surrogate for soil moisture (Malone et al. 2001), 

and as Uganda exhibits two principal rainy seasons, both wet and dry seasons were analyzed. 

Averages were calculated for wet, dry, and annual months of precipitation (PRE) and 

rain/potential evaporation (PPE), the latter representing availability of water in a given time 

period. For the annual composite model, the investigators defined the Tday, Tnight, and NDVI 

value ranges consistent with S. mansoni and snail endemic areas and analyzed scatter plots, and 

then used the ranges to create predictive maps.  These were then repeated iteratively using 

incremental changes in each variable to find the best fit, as well as the narrowest ranges of each 

that associated with >5% prevalence for each variable and then saw where they overlaid each 

other. This operation was repeated for the dry models (Malone et al. 2001), as well as the snail 

data aggregated both annually and seasonally. 

 

 Statistical evaluations included the Spearman rank correlation and logistic regression.   

Independent variables were tested for linearity and correlation. Multi-collinearity was seen 

between LST and NDVI, and PPE and PPE. To overcome this some models were developed 

separately, and developed using backwards elimination. This resulted in no significant 

correlation being found with NDVI composite annual and wet season, a weak negative 

association with dry, and none with wet season PPE or dT. The two final models were 1) 

elevation, Tdaywet, PREwet 2) Tnightwet, PREwet. Both models had R2 values of around 0.44 
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and 0.42 respectively. Only small differences were seen between annual and seasonal maps, 

because Uganda does not offer much climactic variation due to its equatorial location.  This 

climatic variation is even less than the Ethiopian study it based many of its analyses upon 

(Malone et al. 2001). However, some of these differences could be attributed to the use of 

different RS satellites and time periods. Despite these extreme location differences, an RS based 

approach can be used to predict risk of schistosomiasis at the regional scale (Stensgaard et al., 

2005).  It is wise to apply caution in the interpretation of results even if other countries have 

similar ecological zones because this approach might not be transferrable due to many factors 

involved in schistosomiasis transmission (Brooker et al. 2001).  

  

In 2006, Raso et al. studied co-infection of schistosomiasis and hookworm using demographic, 

socioeconomic, and environmental data via a Bayesian geostatistical models. The non-spatial 

model results showed sex, age group, socioeconomic status, land cover, elevation, slope, rainfall, 

LST, NDVI, soil type, and distance to health care facility were significant covariates, and 

distance to permanent rivers showed a significant association with infection status. The binomial 

spatial model results found that age, sex, socioeconomic status, and elevation were statistically 

significant.  The multinomial spatial model results were the same as the binomial except for 

gender, which was not found to be significant. Overall the rate of spatial correlation <5% took 

place at 4.1km, which had decreased 7.5km found in a previous study (Raso et al. 2005). Smooth 

risk maps were created using Bayesian kriging, in which 71.4% of the data was used for 

establishing the model, and 28.6% for prediction. This resulted in a sensitivity of 93.8% and a 

specificity of 87.5% (Raso et al. 2006). This work differs from that of previous investigators in 

that the spatial statistics were analyzed using Bayesian modeling instead of GIS.  
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Also in 2006, Clennon et al. studied the spatiotemporal associations of S. haematobium in 10 

villages in the Msambweni Division, Kwale District, and Coast Province, Kenya. This was a 

scaled up study from previous work describing the spatial clustering of S. haematobium infection 

around an infested pond in a single rural village in Msambweni, Kenya, in which households and 

water sources were mapped using a high resolution imagery (1m2 panchromatic, 4 m2 multi 

spectral) (Clennon et al. 2004). The 2006 work integrated historical and present spatial patterns 

of human household and snail habitat data. It found snails dispersed among ponds, a rice field, a 

river, and a stream, with the river being the least favorable habitat. Most snail shedding was 

recorded in areas near dams, with only 2% of the snail’s population shedding at any one time.  

Differences in prevalence between age groups was tested using the homogeneity chi-square test, 

correlation, and logistic regression (forward conditional). Spatial statistics were assessed on the 

global, local, focal, and directional scale using Global Ripley's K-function, point pattern analysis, 

and cluster seer. Spatial patterns were able to be classified as random, clustered, or uniformly 

dispersed with significance determined by Monte Carlo Simulations, an alternative to spatial 

analysis using GIS or Bayesian modeling.  

 

The results of this work differed according to the regression model employed. The logistic 

regression adequately fitted the data with a chi sq. of 9.7, p > 2.29, but explained only 12% of 

variance, with age as the only significant covariate among sex, distance to nearest alternative 

water source, and school attendance. The linear regression explained a greater percent of the 

variance, <10%, and also found age to be the only significant covariate.  The spatial model found 

significant clustering at different distances based on age. At one pond, high infection clustering 
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persisted up to 550m for ages 6-9, and >1,000m for ages 10+, while in another area it was 

>1,500m for ages 10+. Infection was found to be clustered as a function of spatial distribution of 

water bodies, the effects of which were significant up to 1,500m, with strong anisotropy 

(directional clustering) in some areas. Clustering was also found to have shifted over time 

(Clennon et al. 2004; Clennon et al. 2006).  

 

Clennon et al. (2006) posited that snails are not the rate limiting factor in the “habitat” of 

schistosomiasis because snails are found to be more widely distributed than the disease. It is 

instead human attributes that spread schistosomiasis based on where they go and what they do, 

with some impact from climatic and environmental changes.  El Nino likely affected the study 

area by causing soil erosion thereby decreasing some water habitats, and creating small 

temporary ponds thereby offering an increase in snail habitats. Meanwhile, conversion of sugar 

cane plots to rice fields increased surface water bodies. Overall age-related water contact 

behaviors was offered as the most probable explanation for differences among age groups, and 

the local focus of the study allowed for overall water usage to be explored. A risk map was not 

created because the model was too unstable, and the study concluded by stating that a range of 

spatiotemporal scales need to be considered to understand transmission.  

 

Around the same time Simoonga et al. (2009) published a review of RS/GIS applications 

addressing schistosomiasis, and prior to that Simoonga et al. (2008) published a small-scale 

study in Zambia. The risk factors analyzed included geographical location, elevation, NDVI, 

max LST, age, sex, and intermediate host snail abundance. Three logistic models were 

employed. The first was an ordinary logistic model, the second included random effects, and the 
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third assumed spatially correlated random effects. The results of which found elevation, NDVI, 

and snail population to be significant, with the spatial random effects outperforming the other 

models. Small-scale heterogeneity was observed and thought to be based on the dispersion of 

human settlements.   

 

In 2009, Vounatsou et al. developed a novel Bayesian geostatistical model ideal for count data 

and non-stationary spatial modeling and validated using many of the datasets to be gathered in 

Côte d’Ivoire (Beck-Wörner et al. 2007; Raso et al. 2005; Raso et al. 2006; Raso et al. 2007). It 

was only the second study to base predictions off of schistosomiasis intensity levels (Clements et 

al. 2006), and argued that man-made ecological effects often resulted in non-stationarity 

(Vounatsou et al. 2009). The author’s Bayesian geostatistical zero-inflated (ZI) regression model 

outperformed all others tested, which included negative binomial, ZI Poisson (ZIP), and ZI 

negative binomial (ZINB). This work relied on ecological zones based off of water catchment 

areas rather than administrative boundaries, which is better to use over large areas (Beck-Wörner 

et al. 2007). Vounatsou et al. (2009) recommend continued study of non-spatiality in addition to 

anisotropy and polyparasitism infection intensity.  

 

In 2011, Shur et al. compiled open access survey data and created smooth empirical prevalence 

maps in order to determine country specific prevalence estimates. This interpolation of existing 

data created prevalence estimates on a scale not before analyzed. This work predicted risk for 

West Africa, and later for East Africa (Schur et al. 2013). The environmental covariates used 

were LST, NDVI, and rainfall, all of which were found to be statistically significant covariates.  

The S. haematobium survey data available for Ghana indicated that as of 2011 there had been 8 
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unique survey locations, most of which took place in the 1980s and one in the 2000s. The results 

specific for Ghana predicted a combined prevalence of S. haematobium and S. mansoni of 

53.7%, which matched the 2012 WHO prediction of 50% (Figure 1).  

 

Also in 2011, Soares Magalhães et al. created the most up to date predictive map for Ghana on a 

national scale. The results of this study provided baseline information on national prevalence 

prior to the implementation of mass drug administration (MDA) by the schistosomiasis control 

initiative (SCI), and before a national cross-sectional school-based parasitological survey. Data 

was collected on soil transmitted helminths and schistosomiasis (S. haematobium and S. 

mansoni), from 77 schools distributed across the country. It used both environmental and human 

variables, which were LST, NDVI, distance to nearest perennial inland water body (PIWB), sex, 

and age respectively. They did not find statistical evidence for including rainfall in any of their 

models. The health data included intensity and prevalence. A fixed-effects multinomial 

regression model was used, and found distance to PIWB, LST, age, and sex to be significant. 

Bayesian geostatistical modeling was used to create a predictive risk map for the country. S. 

haematobium mono-infection was estimated to have an average prevalence around 10% with 

some lower pockets in the North and higher pockets in the South, especially near Kumasi, Accra, 

and Lake Volta.  Soares Magalhães et al. (2011) state that environmental variables may be the 

drivers of human variables, even though human variables have been shown to explain about a 

quarter of the variance (Pullan et al. 2010).  

1.4 Findings & Gaps in Literature 

 
In the two recent reviews of RS applications to schistosomiasis modeling, all 32  studies utilized 

health data that was derived from either a school, village, community, or town survey (Simoonga 
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et al. 2009; Walz et al. 2015a). Surveys provide accurate estimates of disease in a specific time 

and place but come at a cost. The resources that surveys require render performing them at large 

spatiotemporal scales impractical. The studies that do create predictions at national or continental 

scale do so using interpolated survey results (Walz et al. 2009a). Although, interpolation of 

micro-scale survey data to estimate macro-scale trends is attractive for the purpose of setting  

national control strategies, concerns persist  as to whether this is the most sustainable or cost 

effective route for resource poor countries. 

 

1.4.1 Mismatch between the spatiotemporal capabilities of dataset pairings 

Just as it is impractical to interpolate survey data to national scales it is inefficient to restrict 

publically available RS data to school, village, community, or town scales. This underutilizes the 

full spatiotemporal capabilities of RS technology, as most open source satellite products can be 

utilized as global continuous surfaces with historical (in some cases 40-year) timespans. In 

addition RS data is often available free to the public and takes at most a few days to order. Yet, 

only 25 out of the 32 studies used RS data that had been extracted from the areas immediately 

surrounding the health survey sites (at most 5km) and at the specific times of their collection 

(Malone et al. 2001; Malone et al. 2004; Walz et al. 2015b). At these micro-scales, the finest 

spatial resolution available for publically available RS data is 30m (~100ft) using the Landsat 

satellite series going back to 1982 to the launch of Landsat 4, or 20m (~66ft) using the Sentinel 

satellite launched in 2015. These spatial scales are often too large to capture the details of rivers 

or streams and around survey sites, and environmental variables are unlikely to vary over school, 

village, community, or town scales.  
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Commercial satellite imagery is well suited to the detailed spatiotemporal resolution obtained 

through health surveys. The spatial resolution commonly available using high spatial resolution 

imagery all are less than 1m for satellites operated by DigitalGlobe, GeoEye, and ImageSat 

International, but are prohibitively expensive, $10-25/km2 and date back to only 1999 (AAAS 

2016). Research grants in the form of free commercial satellite imagery are available, but are 

limited in the size of imagery and number of “scenes” requested. Due to these restrictions and 

the inherent computational price associated with processing commercial quality satellite 

imagery, high resolution RS data makes for a complementary source of environmental data for 

survey data. 

 

Resource intensive outcome data is not well suited for control of NTD’s, “diseases of poverty” 

(Gryseels et al. 2006). “In our view, strong district health systems that are nationally-owned are 

the main prerequisite for successful, cost-effective and sustainable control of neglected tropical 

diseases” (Utzinger et al. 2009). Ongoing national surveillance data in the form of reported 

counts from health centers is fundamentally better suited to utilizing the full spatiotemporal 

capabilities of publically available RS data. 

 

National surveillance systems clearly require support, and the reward for their success is 

sustainable control, the precursor to eradication (Rollinson et al. 2013). There is an obvious 

reluctance to use national surveillance data in conjunction with RS for schistosomiasis. This 

leaves a dearth of literature in its wake. This becomes a missed opportunity to make use of the 

many administrative spatial scales and the continuous weekly and monthly temporal scales, 

which can be aggregated for seasonal and annual analyses. These aspects of national surveillance 
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data make it an ideal addition to publically available RS data, where the intention in combining 

these datasets is to produce cost-effective, sustainable solutions for broad predictive mapping. 

 

There is the opportunity to combine the strengths of each health outcome and RS data type. 

National surveillance data records individual information such as gender and age, which can be 

used to correct for reporting bias among age groups through comparison with aggregated health 

surveys, which are often biased towards school age children. Using both health outcomes a 

clearer picture of the true population affected by schistosomiasis can emerge. This would also 

allow for data validation, where dynamic spatiotemporal predictive models based off 

surveillance data can be verified at finite points in space and time leading to more efficient 

predictions at larger scales.  

 

This naturally progresses into consideration about how best to use each pairing. According to a 

review of remote sensing in arthropod (e.g. mosquitoes, ticks, flies) vector-borne diseases, it is 

recommended that a combination of high and course resolution satellite data, abiotic and biotic 

factors, and both environmental and human factors be utilized (Kalluri et al. 2007). It would 

appear that outcomes modeled by publically available RS data could be used to provide broad 

predictive maps as a “front line approach”, which could highlight areas requiring more detailed 

and accurate data collection in the form of more resource intensive but more accuracy health 

surveys modeled using commercial RS datasets and human variables. This comparison in 

approaches would result in a better understanding of scale, uncertainty, environmental predictors, 

and the dynamics between disease exposure, transmission, and reporting; topics echoed 
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throughout the future direction sections of multiple literature reviews (Gryseels et al. 2006; 

Utzinger et al. 2009; Simoonga et al. 2009; Walz et al. 2015).  

1.4.2 Ghana health surveillance  

The reasons for not using surveillance data has not been previously addressed in the reviews of 

RS applications to schistosomiasis (Simoonga et al. 2009; Walz et al. 2015a). However, an 

observational study, “Evaluation of the integrated disease surveillance and response system for 

infectious diseases control in northern Ghana” sheds light on the utility of surveillance data 

(Adokiya et al. 2015). This study explains that the national surveillance system was created in 

response to major disease outbreaks in the 1990s. The Ghana Health System (GHS) began 

recording reported schistosomiasis case counts in 2008, but in 2012 there was a push towards 

improving disease surveillance in sub-Saharan Africa, and this strategy was called the Integrated 

Disease Surveillance and Response (IDSR). In 2009, GHS in conjunction with the University of 

Oslo in Norway developed a software called the district health information management system 

(DHIMS), which took the form of mailed paper submission of weekly and monthly reportable 

disease counts. On April 1st, 2012 a web-based version was implemented for the majority of 

health facilities and was called DHIMS2 (GHS 2012; Adokiya et al. 2015). In addition to 

conversion to digital reporting, in 2012 the previously 171 districts were redistributed into 216 

districts. How GHS reconciled reported counts from the previous to new administrative 

boundaries was not mentioned. The study concluded that although the surveillance system 

beneficially contributes to disease control it currently has many challenges. 

 

Most of the challenges for the surveillance system were related to a lack of resources, which 

affects every stage of data collection. For those who visit a health clinic it is possible that the 

health staff will not have sufficient training to properly identify schistosomiasis.  GHS stipulates 
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that 20 notifiable diseases are to be reported immediately with 23 other diseases that are recorded 

daily and reported in either a weekly or monthly basis (WHO-AFRO; CDC 2010). 

Schistosomiasis is not a notifiable disease but is recorded nonetheless. Diagnoses can be difficult 

for health care workers to verify when there is no sufficient medical equipment or technicians 

available. When verification is possible, the turn/around time can vary and so recorded counts 

can be forgotten or mistakenly attributed to the wrong week or even month. Assuming that a 

patients diagnosis is accurately diagnosed, and verified there are biases for reporting certain 

diseases over others due to the amount or ease with which some reimbursements occur. Even 

though DHIMS2 is online, health center reports can be either mailed, texted, or emailed to 

respective districts, which can lead to confusions especially when accounting for retroactive 

corrections. Recording and aggregation of reported counts up the administrative hierarchy from 

health clinic, community, sub-district, district, region, and finally the national level can lead to 

data input errors especially since the data is entered by hand at multiple stages. The authors of 

the observational study that focused generally on infectious diseases discussed here found 

discrepancies between weekly and monthly counts (Adokiya et al. 2015). Albeit challenging, 

these issues are understandable with the augmentation and scaling up of a national surveillance 

system.  

 

A slightly different challenge in interpreting surveillance data is found in exploring the 

differences between those who actually seek care and the general population. A study on the 

factors influencing women to seek care at health centers for labor and delivery across three 

climate zones sheds light on health seeking behavior (Enuameh et al. 2016). Aside from the 

previously known predictors associated with health facility delivery, place of residence, socio-
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economic status, and possession of valid health insurance, there was an additional factor 

identified, healthcare provider’s influence. The study also found significant differences across 

geographic locations, namely the northern, central, and southern belts of Ghana (Enuameh et al. 

2016). Another study on health seeking behavior looked at differences based on enrollment in 

health insurance, and found a significant difference among those in the lowest wealth quintiles as 

compared to the highest, “suggesting that [insurance] has not succeeded in bridging inequalities 

in health services utilization between the poor and rich” (Kuuire et al. 2015). It is all too likely 

that health care seeking behavior will likely vary greatly and thus suppress disease prevalence 

estimates. 

 

Other challenges of national surveillance systems are easier to fix and fall under the category of 

design flaws. As previously mentioned, the current reimbursement structure is leading to bias in 

the reporting of some diseases over others. If systematic, this bias can be adjusted for.  An 

additional design flaw in the DHIMS2 system is that it is unable to display zeros that have been 

input into the system, thereby creating  uncertainty as to the nature of missing values (Adokiya et 

al. 2015). It stands that if this structural error could be fixed, then the result would be an entire 

national surveillance system going from presence-only data to presence-absence data. Despite 

the fact that “challenges regarding accuracy, reliability and soundness …may lead to low 

utilization of health system data for planning and decision-making” (Adokiya et al. 2015), these 

structural shortcomings  restrict the ability to  pursue and measure the impact of  sustainable 

control measures implemented at scale.  
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Improving public health surveillance systems in low income countries can come in many forms. 

One study, proposes focusing on what the WHO considers health system building blocks: 

“service delivery, financing, governance, the health workforce, information systems, and supply 

management systems” (Nsubuga et al. 2010). The topic of the health workforce was explored in 

detail. The study suggests use of the Field Epidemiology Training Program (FETP) and the Field 

Epidemiology and Laboratory Training Program (FELTP). FETP/FELTP programs are 

effectively at the level of master’s degrees and these graduates are capable of leading sub-

/national public health surveillance and response systems. The study suggests that there be 3-5 

FETP/FELTP graduates per million inhabitants. Ghana’s current population of ~26 million 

would necessitate between 78-130  FETP/FELTP personnel (Nsubuga et al. 2010). If this many 

highly trained personnel are required, then an even greater number of health workers with basic 

training are needed to run national public health surveillance systems. 

 

An organization focused on reaching one million community health workers (1mCHW), has 

been moving forward in Ghana with an ultimate goal of having 1 CHW per 500 people in 2023 

(Kim 2014). This campaign, worth US$2.5 billion was the first standardized approach to 

recruiting CHWs in Ghana. A 2016 study on the CHWs in Ghana has found that meeting this 

goal will not be without challenges. CHWs vary in the roles they serve, services they provide, 

the funding used to support them, their connection with the larger health system, and the names 

by which they are called  (Baatiema et al. 2016). The, ”lack of clarity on the operational 

mandates of CHWs in Ghana has often undermined the effectiveness and efficiency of their roles 

in healthcare dates of CHWs in Ghana has often undermined the effectiveness and efficiency of 

their roles in healthcare delivery at the community level” (Baatiema et al. 2016). Proper 
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compensation to reduce attrition, training, recognition, structure, and oversight among other 

measures were recommended (Baatiema et al. 2016). Interest in improving public health 

surveillance systems in low and middle income countries (LMICs) is partly due to concerns 

about LMIC susceptibility and potential role in global pandemics (Nsubuga et al. 2010; Kim 

2014).   

1.5 Thesis Structure 

 
This thesis is designed with sustainability in mind. For this initial portion of the work it avoided 

“human” variables such as socio-economics and demographics, and sought instead to see what 

could be gained from looking at purely environmental RS-based data. Of particular interest was 

investigating the association of environmental variables with reported schistosomiasis. It is 

understood that even with strong   correlation between selected environmental variables with the 

distribution of schistosomiasis does not confer a clear picture of etiology. An eventual 

aspirational goal for this thesis is to contribute to yielding a “front line” predictive mapping 

capability of schistosomiasis at large spatiotemporal scales. This work was focused on 

identifying proxies for climate when deciding what environmental predictors to utilize in the 

modeling of national surveillance data. 

 

This study aimed to assess associations between monthly rates of schistosomiasis cases obtained 

from Ghana’s national surveillance and reporting system, aggregated by administrative district, 

and three RS-based environmental predictors: vegetation, temperature, and precipitation, 

arranged as time series. The analysis was stratified by three major and nine minor climate zones, 

defined according to a new classification method using multiple satellite data streams (Liss et al. 

2014). It was hypothesized that there may be spatial and temporal patterns in schistosomiasis 
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incidence that can be partially explained by environmental parameters, and that these patterns 

may vary across climate zones (Brooker et al. 2001; Walz et al. 2015a). 

 

This work has the potential to be validated and evaluated against the more typical interpolation 

approach used by Soares-Magalhães et al. (2011), where a predictive risk map was created from 

an interpolation of data from 77 individual surveys distributed across Ghana. Overall, Ghana 

having documented high schistosomiasis prevalence, ongoing national reporting of the disease, 

and historical prevalence prediction maps makes it an ideal location to test a rapid mapping 

approach.   

 

2. Data and Methods 

2.1  Health outcome: schistosomiasis cases  

 
GHS provided monthly counts of schistosomiasis cases aggregated to the level of administrative 

district (n = 216 districts) as reported into the District Health Information Management System 

(DHIMS). Data were acquired in January 2016 for an 8-year period (96 months) from January 

2008 through December 2015. District-level population estimates for 2010 were obtained from 

the population census and projected for each study year using intercensal population growth rates 

estimated for each of Ghana’s 10 administrative regions (GSS 2013). Disease counts were 

divided by the district population, expressed as rates per million people, and loge transformed to 

achieve a distribution close to normal, as tested with the coefficients of skewness and kurtosis. 

The original dataset consisted of 20,736 monthly observations (216 districts x 96 months), yet 
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due to incomplete, missing, and extreme values, monthly disease records were reduced to 

achieve reliable modeling. Data processing steps are described and summarized (Figure 3). 

 

 

Figure 3: Data processing steps and subsequent sample size reduction 

 
 
Incomplete data: Examination of the monthly time series of total disease counts (Figure 4) 

revealed that the last month had substantially lower counts due to probable delay in reporting of 

data acquired in January of 2016. Thus, data from December 2015 (216 observations) were 

excluded from the analysis.  
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Figure 4: Total monthly schistosomiasis case counts for all districts 
 

Missing data: A high percentage of observations in DHIMS were blank values, and it was 

unclear as to whether these observations represented the true absence of events or the lack of 

reporting. If the former, the blanks should be treated as zeros; if the latter, the blanks should be 

treated as missing values. Since it was not possible to determine the reasons behind the coding 

scheme, all blanks were treated as missing values. Four districts that had no reported cases and 

an additional seventeen districts that had >95% missing values (1,995 systematically missing 

observations) were removed from the dataset, and analyzed for bias using skewness and kurtosis 

statistics (Table 2). We defined “systematically missing” as belonging to districts that never or 

almost never reported cases. An additional 7,664 cells represented unsystematically missing 

observations. Missing values were visualized based on their district, month, and whether they 

occurred before/after the first/last count or in between reported counts (Figure 5). Vertical lines 

denote districts, ordered by percentage of missing values along the x-axis. Horizontal lines 

denote months, ordered from January 2008 (top) through December, 2015 (bottom). The color of 
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each observations represents its value and when it occurred. White was used for missing values 

prior to the first count or after the last count, to reflect potential differences in the start/end of 

district reporting. Grey was used to reflect all missing values between the first and last count, and 

black was used for all observations with recorded counts. The bottom row of the plot (Figure 5), 

December, 2015, shows more missing values than any other month as described previously 

(Figure 4). The pervasiveness of missing values means that how they are treated greatly 

influences the model. The decision to treat them as missing values, will likely lead to a 

conservative estimate, since models will be restricted to districts and months with at least one 

reported case of schistosomiasis.  

 

Outlier data: Exceptionally high monthly counts were explored as potential data input errors. 

To help differentiate naturally occurring vs. unlikely high count values, we reviewed the 

skewness and kurtosis of the data distributions for raw counts (Table 3 & Figure 6) and for loge 

transformed rates. Among the districts adjusted for possible outliers, the skew and kurtosis 

dropped from 5.59 to 2.91 and 36.29 to 6.78 respectively. The districts affected most by cleaning 

based on missing values were primarily in the northeast, while districts affected by cleaning 

based on outliers were primarily in the north and south.  
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Table 2: Descriptive statistics of the 21 districts removed for missing values 

 
# ID Z3 Z9 %NA Max. Med. Mean Stdev. Q1 Q3 Skew Kurt. 
1 2 1 2 100 0 NA NA NA NA NA NA NA 
2 184 1 9 100 0 NA NA NA NA NA NA NA 
3 20 3 5 100 0 NA NA NA NA NA NA NA 
4 124 3 5 100 0 NA NA NA NA NA NA NA 
5 192 2 9 99 1 1 1.000 NA NA NA NA NA 
6 143 2 7 98 1 1 1.000 0.000 NA NA NA NA 
7 170 3 5 98 3 2.5 2.500 0.707 NA NA NA NA 
8 18 3 5 98 400 297 297.000 145.664 NA NA NA NA 
9 142 2 7 97 1 1 1.000 0.000 1.500 1.500 NA NA 

10 112 2 8 97 51 2 18.333 28.290 3.000 76.500 1.732 NA 
11 190 1 3 96 29 7 11.000 13.266 1.500 37.500 1.096 -0.050 
12 105 1 3 96 9 3.5 4.250 3.594 1.875 12.000 0.889 -0.582 
13 109 1 3 96 3 1.5 1.750 0.957 1.500 4.125 0.855 -1.289 
14 111 1 8 96 4 2 2.250 1.500 1.500 5.625 0.370 -3.901 
15 191 1 9 96 7 1.5 2.750 2.872 1.500 8.625 1.846 3.412 
16 182 2 9 96 2 1 1.250 0.500 1.500 2.625 2.000 4.000 
17 203 3 7 96 5 2.5 2.750 2.062 1.500 7.125 0.200 -4.858 
18 14 1 1 95 41 1 9.800 17.527 1.500 34.500 2.184 4.797 
19 100 2 4 95 3 2 2.000 1.000 1.500 4.500 0.000 -3.000 
20 155 3 8 95 2 1 1.400 0.548 1.500 3.000 0.609 -3.333 
21 185 1 3 95 24 9.5 11.500 8.961 6.000 31.500 0.435 -1.475 

Avg NA      97 30 25 26.679 16.618 1.708 17.292 1.123 -0.467 
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Figure 5: Visualization of missing values in disease counts, with reported counts colored black, 

missing values within the timeframe of the first and last reported count colored gray, and 

missing values leading up to and after the last reported count colored white. The y-axis 

represents consecutive months; the x-axis represents individual districts, organized by the 

percentage of missing values per district 
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Table 3: Descriptive statistics of the disease counts prior to any replacements, after replacing 

the first highest value with a blank, and after replacing the second highest value with a blank. 

The descriptive statistics include the maximum, median, mean, standard deviation, skewness, and 

kurtosis. Cells with gray shading indicate a skewness >3 and/or a kurtosis >10, which were used 

to flag districts requiring further attention 
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Figure 6: Map of districts affected by data cleaning. White and crosshatched areas represent 

districts removed based on the number of missing values. The shade of gray reflects the amount 

of high values that were replaced with missing values 
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Health data cleaning resulted in a reduction in the number of observations (Figure 5). The final 

dataset consisted of 18,525 observations or month/district combinations, of which 10,817 (58%) 

had at least one reported case of schistosomiasis.  

2.2  Environmental predictors 

 
Three environmental variables were derived from publically available remote sensing data 

streams: land surface temperature (LST), normalized difference vegetation index (NDVI), and 

accumulated precipitation (AP) (Table 4). LST and NDVI were downloaded from the online 

Data Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC), 

USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. 

Their data came from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor 

aboard the Aqua and Terra satellites, which were combined to produce 8-day composites. AP 

was downloaded from Goddard Earth Sciences Data and Information Services Center (GES 

DISC)’s data visualization tool, GIOVANNI, and utilized data from the Tropical Rainfall 

Monitoring Mission (TRMM). All three datasets were mosaicked to cover the extent of Ghana, 

and aggregated to monthly mean values per district in order to match the temporal and spatial 

aggregation of the health outcome data. Spatial aggregation was performed using cell statistics 

and zonal statistics tools in ArcGIS (Version 10.4.1). Where resampling was required, the cubic 

convolution technique was used because it more realistically reflected the smooth transitions of 

environmental data across terrain. 
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Table 4: Data sources, temporal and spatial resolution of environmental parameters 

 

Parameter Source Data Product Temporal Resolution Spatial 
Resolution 

NDVI MODIS MOD/MYD13A2 Calculated 8-day composites 1 km² 
LST (ºC) MODIS MOD/MYD11A2 Calculated 8-day composites 1 km² 
AP (m) TRMM 3B43 v7 Monthly 28 km² 

 
 

2.3  Defining the climate zones 

 
Ghana has a diverse climate, ranging from hot and dry savannah in the north, tropical forest in 

the middle, and coastal savannah in the south of the country (Frenken 2005). We wanted to 

explore temporal and spatial patterns in disease counts across a range of climatic conditions. As 

an alternative to the commonly used Köppen–Geiger (KG) climate classification, which would 

have resulted in 2 distinct zones for Ghana, we used a new “Limiting, K-means, Nomination” 

(LKN) method to define climate zones. The LKN method is based on a k-means clustering 

algorithm over space and time (Liss et al. 2014). The datasets used were NDVI and LST data 

from the MODIS sensor, collected for 15 years (2000-2015). The 8-day composites were 

mosaicked to cover the extent of Ghana, and aggregated in a layered space-time series. After 

masking the water bodies, the multiple layers of 8-day composite NDVI and LST images were 

pixel-averaged and principal component decomposition was applied to reduce dimensionality of 

the time series. The first 4 and 8 principal components retained 90% and 95% of the original 

information, respectively, and composite images of these components showed high spatial 

separation and a large signal to noise ratio. Multiple k-means unsupervised classifications were 

performed using varying classes, principal components, and distance measures, which were 

analyzed using cluster validity indexes. The most compact clustering solution exhibited the 

highest degree of homogeneity within each cluster and the highest degree of heterogeneity across 
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different clusters. Out of 600 candidate partitions, 3 major zones (Z3:1 to Z3:3) and 9 minor 

(non-hierarchical) zones (Z9:1 to Z9:9) were produced that were entirely data-driven and specific 

to Ghana. We used zonal statistics tools in ArcGIS (Version 10.4.1) to determine the major and 

minor climate zones assigned to each district. 

2.4  Statistical modeling 

 
Exploratory analyses included histograms, maps, plots of trend and seasonality, and descriptive 

statistics for the outcome and environmental predictors, stratified by climate zone. The 

associations among variables were examined using Spearman’s rank correlation and regression 

models. Generalized linear mixed effects regression models with a random intercept term were 

used to assess temporal features and associations between environmental predictors and the 

outcome, accounting for district-level clustering. Temporal features included trend and two 

seasonal harmonic terms (Jagai et al. 2012; Kulinkina et al. 2016; Naumova et al. 2007). Models 

were repeated for major and minor climate zones.  

 
Equation 1: Complete mixed effects model 

 
  (1) 
 

where Ytj is the loge transformed disease rate per million for t-month and j-district; βo is the 

intercept; β1 represents the regression coefficient for trend represented by continuous value for 

the month of the study period t ranging from 1 to 95; βL represents the set of four regression 

coefficients for seasonality, S measured by four harmonic terms. 

Equation 2: Seasonality mixed effects model 

 
 . (2) 
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Seasonality in disease counts was assessed based on the significance of the four harmonic terms, 

capturing up to two annual peaks, with ω = 1/12; we considered seasonality to be present if at 

least one harmonic term was statistically significant. The effects of remotely sensed 

environmental variables on the health outcome were represented by βM. 

 
Equation 3: Remotely sensed environmental variables mixed effects model 

 
  (3) 

 

We built the model sequentially from three partial models to a complete final model. Model 1 

included only the temporal trend, Model 2 only the seasonal component (Equation 2), Model 3 

only the environmental variables (Equation 3), and Model 4 contained all components (Equation 

1). The estimates of the predicted percent change in monthly rates of reported cases (%R) per 

one unit increase for each environmental variable along with their 95% confidence interval limits 

(CI95%) were calculated by exponentiation of the regression coefficients and converting to % 

form: %R = (exp{βM} – 1)*100% and CI95% = (exp{βM ±1.96 SEβm} – 1)*100%, respectively. 

Similarly, the estimates for trend were obtained using the β1 coefficient. Predicted temporal 

curves were plotted using partial model results.  All models were fitted by the restricted 

maximum likelihood (REML) method, using the glmer function of the R package [lme4] 

(version 3.3.1). Model fit was assessed using R2, or percent variability explained. 
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3. Results 

3.1  Spatial and temporal distribution of variables  

 
Histograms showed the frequency distribution of average monthly values for the 8-years of 

reporting for all analysis variables (Figure 7). Loge transformed disease rate had a peak around 

3.5-4.0 (33-55 cases per million people). NDVI showed a bimodal distribution with a major peak 

around 0.7 and a minor peak around 0.2. LST also exhibited two peaks, one around 27 ̊ C and 

another around 37 ̊ C, which contributed to a long right skew. AP had a high frequency of low 

values and a long tail indicating frequency of high AP values during rainy seasons. 

 

To examine the temporal patterns, monthly values for all variables were plotted as aggregates 

(Figure 7, bottom row) and consecutively over the 8-year period (Figure 8). Loge transformed 

disease rates did not appear to exhibit seasonality (Figure 7, bottom row), and showed a slight 

decline over the study period (Figure 8). Environmental predictors exhibited seasonality (Figure 

7, bottom row and Figure 8), with NDVI and AP having two peaks per year and LST having one 

peak per year. Peaks in NDVI occurred in March and September (0.70), with a dip in June 

(0.55). LST peaked around February (27 ºC) with lower values in July (25 ºC). The highest AP 

values occured in June and September (20 cm), with little to no precipitation in January and 

August (Figure 7, bottom row).  
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Figure 7: Top row: histograms of health outcome and environmental parameters; Bottom row: 

annual seasonal patterns based on monthly boxplots representing distribution of health outcome 

and environmental parameters across 195 districts 
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Figure 8: Time series of monthly boxplots representing distribution of disease outcome and 

three environmental parameters across 195 districts 
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To examine the spatial distribution of values, variables were mapped based on their 8-year 

district mean values (Figure 9). Average loge transformed disease rate had a spatially 

heterogeneous pattern that ranged from 0.72 to 5.91 (2 to 369 cases per million people, 

respectively). The environmental variables showed trends along a southwest to northeast 

diagonal. NDVI decreased along this diagonal, with slightly higher values along the eastern 

shore of Lake Volta. LST increased along the diagonal, except for higher temperatures along the 

heavily urbanized Southeast coast and the peri-urban area surrounding Kumasi, the second 

largest city. AP showed trends along a diagonal that extended from the southwest corner to the 

center east portion of the country. Along this diagonal AP was high and decreased to either side, 

declining rapidly near the coast and more gradually towards the north. 
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Figure 9: Maps of health outcome (loge transformed disease rates per million) and three 

environmental predictors (8-year average aggregated at the district level). In the map of health 

outcome, districts with >95% of missing values are colored white 
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3.2  Climate zones 

 
The LKN climate regionalization method resulted in three major and nine minor climate zones 

(Figure 10). The mean monthly values for NDVI, LST, and AP on the national level were 

0.58±0.16, 28.01±4.26 ºC, and 12.47±9.22 cm, respectively (Table 5). For the major zones, the 

northern part of the country (Z3:1) had the lowest amount of rainfall, lowest vegetation index, 

and highest temperature. Moderate precipitation, vegetation, and temperature values were 

observed in the middle of the country (Z3:2). The south (Z3:3) had the highest precipitation, 

vegetation, and temperature values. The mean values along the minor zones revealed further 

North to South trends within all major zones (except for areas represented by zones Z9:8 and 

Z9:9). These coastal areas are likely to be the most urban, which resulted in less vegetation and 

higher temperatures. Minor zone Z9:9 specifically, contains the capital, Accra, and Kumasi the 

second largest city. Histograms and boxplots for all variables stratified by climate zone were also 

explored (Figure 10 & Figure 11), and demonstrate pronounced diversity of seasonal patterns for 

all three environmental parameters. The seasonal patterns of NDVI and AP exhibited a single 

annual peak in the north transitioning to two annual peaks in the southern part of the country, 

while the seasonal peaks in LST became less pronounced.                       
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Figure 10: LKN climate classification for Ghana resulted in 3 major and 9 minor zones  

Overall, the descriptive statistics for each variable were analyzed, and stratified by climate zone 

(Table 5). We present the total number of districts, total number of observations (including NA 

values), and population density per zone (per million people). 
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Table 5: Descriptive statistics of the health outcome and predictors stratified by climate zones 

Descriptive 
Statistics 

CLIMATE ZONES 

ALL 
MAJOR MINOR 

Z3:1 Z3:2 Z3:3 Z9:1 Z9:2 Z9:3 Z9:4 Z9:5 Z9:6 Z9:7 Z9:8 Z9:9 
Districts 195 50 43 102 13 18 8 13 31 15 62 18 17 
Observations 18525 4750 4085 5690 1235 1710 760 1235 2945 1425 5890 1710 1615 
Median pop. density 123 134 64 143 142 62 19 50 97 98 159 234 1775 

Lo
g e

 ra
te

 p
er

 
m

ill
io

n 

min -0.853 -0.853 0.745 0.466 1.410 0.848 1.856 1.379 0.745 1.691 1.196 0.466 -0.853 
max 8.577 8.054 8.577 7.827 8.054 6.969 6.817 8.577 8.308 7.003 7.586 7.143 6.558 
median 3.523 3.697 3.605 3.445 4.687 3.583 3.455 3.503 3.817 2.969 3.495 3.136 2.983 
mean 3.591 3.667 3.705 3.513 4.638 3.717 3.540 3.613 3.926 3.108 3.551 3.226 2.885 
std dev 1.216 1.429 1.206 1.104 1.172 1.213 1.008 1.122 1.236 0.894 1.071 1.135 1.313 

N
D

V
I 

min 0.137 0.137 0.165 0.216 0.174 0.205 0.165 0.175 0.245 0.267 0.216 0.353 0.137 
max 0.885 0.751 0.807 0.885 0.695 0.720 0.772 0.815 0.807 0.871 0.885 0.858 0.705 
median 0.622 0.400 0.591 0.691 0.345 0.429 0.522 0.580 0.627 0.698 0.700 0.664 0.402 
mean 0.584 0.417 0.567 0.674 0.386 0.439 0.504 0.560 0.603 0.675 0.681 0.655 0.407 
std dev 0.162 0.143 0.135 0.102 0.150 0.157 0.156 0.148 0.120 0.113 0.102 0.090 0.104 

LS
T 

min 15.27 15.27 20.30 19.50 23.56 21.99 21.27 20.30 21.39 19.50 20.53 21.92 15.27 
max 46.06 46.06 41.69 42.40 46.06 45.21 42.13 40.36 41.69 42.40 41.51 33.61 42.07 
median 26.73 31.59 27.95 25.63 34.90 34.25 28.60 27.16 27.62 25.43 25.56 25.78 29.80 
mean 28.01 32.35 28.26 25.78 34.06 33.61 29.91 27.70 27.92 25.66 25.69 26.16 29.50 
std dev 4.260 5.167 3.078 1.843 5.178 5.553 4.680 3.298 2.723 2.117 1.793 1.912 3.155 

A
P 

min 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.128 0.000 
max 53.39 51.49 46.87 53.39 47.94 51.49 41.85 45.95 46.87 42.66 53.39 48.47 41.36 
median 11.10 8.168 10.98 12.62 7.655 8.105 10.84 12.32 11.09 13.14 12.96 10.78 7.997 
mean 12.47 10.52 12.12 13.57 10.73 11.00 12.01 12.85 12.23 13.33 13.86 12.68 9.643 
std dev 9.218 10.10 8.810 8.753 11.27 11.22 9.915 9.402 8.231 8.582 8.855 8.798 7.320 
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Figure 11 : Histograms of loge transformed disease rate, NDVI, LST, and AP for climate zones 
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Figure 12: Annual seasonal patterns shown with boxplots of monthly values across 195 districts 

for loge transformed disease rate, NDVI, LST, and AP for major and minor climate zones 
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3.3  Associations between health outcome and environmental predictors 

 
Spearman’s rank correlation was used to analyze pairwise relationships among variables, 

stratified by climate zone (Table 6). The association between NDVI and LST was primarily 

negative; it was weak at the national level (rs = -0.13) and moderate in major zones Z3:1 and 

Z3:2 (rs ~ -0.30) and in minor zones Z9:1 through Z9:5 (rs ~ -0.35). The association was weak or 

non-existent in major zone Z3:1 and minor zones Z9:6 through Z9:8 and moderate in peri-urban 

zone Z9:9 (rs = -0.31). The association between LST and AP was consistently negative; it was 

moderate at the national level (rs = -0.37) and strong in major zones Z3:1 and Z3:2 (rs ~ -0.55) 

and minor zones Z9:1 through Z9:4 (rs ~ -0.70). The association between NDVI and AP was 

primarily positive; it was weak at the national level (rs = 0.25), moderate in major zones Z3:1 

and Z3:2 (rs ~ 0.45), and strong in minor zones Z9:1 through Z9:4 (rs ~ 0.55). Correlations 

among all environmental parameters were lowest in major zone Z3:3 and minor zones Z9:7 and 

Z9:8. Correlation coefficients between disease rates and environmental parameters were 

negligible at all levels and varied in direction and magnitude between -0.01 and 0.12.  

 

Table 6: Spearman’s rank correlation coefficients for monthly values calculated for each district 

and averaged (mean ± standard deviation) across each climate zone. 

 

Correlations  
CLIMATE  ZONES 

ALL 
MAJOR MINOR 

Z3:1 Z3:2 Z3:3 Z9:1 Z9:2 Z9:3 Z9:4 Z9:5 Z9:6 Z9:7 Z9:8 Z9:9 
Districts 195 50 43 102 13 18 8 13 31 15 62 18 17 

n 18525 4750 4085 9690 1235 1710 760 1235 2945 1425 5890 1710 1615 
NDVI -0.126 -0.278 -0.365 0.050 -0.208 -0.277 -0.472 -0.352 -0.352 0.154 0.075 0.037 -0.307 
LST ±0.253 ±0.102 ±0.175 ±0.196 ±0.085 ±0.049 ±0.123 ±0.248 ±0.136 ±0.160 ±0.170 ±0.088 ±0.114 
LST -0.367 -0.599 -0.515 -0.192 -0.747 -0.771 -0.693 -0.608 -0.452 -0.286 -0.172 -0.045 -0.282 
AP ±0.279 ±0.257 ±0.174 ±0.194 ±0.041 ±0.016 ±0.177 ±0.126 ±0.146 ±0.148 ±0.179 ±0.129 ±0.155 

NDVI 0.251 0.462 0.444 0.067 0.535 0.606 0.637 0.528 0.390 0.109 0.034 -0.021 0.218 
AP ±0.268 ±0.192 ±0.183 ±0.183 ±0.062 ±0.048 ±0.032 ±0.127 ±0.137 ±0.160 ±0.167 ±0.090 ±0.108 
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n 10873 2677 2281 5915 811 755 434 507 1811 496 3914 1090 1055 
Loge rate 0.031 0.034 0.001 0.042 0.073 0.039 -0.065 0.066 0.020 0.093 -0.005 0.096 0.030 

NDVI ±0.173 ±0.174 ±0.184 ±0.168 ±0.159 ±0.176 ±0.145 ±0.207 ±0.200 ±0.252 ±0.141 ±0.127 ±0.156 
Loge rate -0.005 -0.005 0.028 -0.018 0.000 -0.030 -0.007 0.123 -0.027 -0.028 -0.015 0.007 0.012 

LST ±0.204 ±0.218 ±0.199 ±0.198 ±0.166 ±0.299 ±0.127 ±0.292 ±0.163 ±0.339 ±0.154 ±0.190 ±0.143 
Loge rate 0.042 0.046 0.043 0.039 0.054 0.051 0.036 -0.009 0.084 -0.008 0.042 0.057 0.012 

AP ±0.160 ±0.148 ±0.165 ±0.164 ±0.132 ±0.177 ±0.121 ±0.152 ±0.156 ±0.209 ±0.151 ±0.180 ±0.156 
 
 

3.4  Modeling 

 
Following exploratory analyses, mixed effects regression models were conducted, stratified by 

major and minor zones. The first univariate model, using only trend as an explanatory variable, 

showed a significant decline in reported disease rates equivalent to approximately 1% per month 

at all levels (Table 7). District effects and trend explained 55% of the variability in the data at the 

national level, 46-70% in the major zones, and 31-65% in the minor zones (Table 8). The second 

model, using four seasonal harmonic variables revealed that seasonality in reported disease rates 

was present at the national level, in major zone Z3:1, and in minor zones Z9:1 and Z9:2. In the 

third model, using the three environmental predictors, AP showed a small in magnitude but 

statistically significant positive association with schistosomiasis rates at the national level, in 

major zones Z3:1 and Z3:2, and in minor zones Z9:3, Z9:4, Z9:5, and Z9:7. A 1-cm increase in 

rainfall was associated with a 0.3-1.6% increase in monthly disease rates (Table 7). Associations 

between disease rates and LST varied in magnitude and direction but were not significant. In 

major zone Z3:3, NDVI had a positive effect on the health outcome equivalent to a 3.4% 

increase in disease rates associated with a 0.1-unit increase in NDVI. In minor zone Z9:3, NDVI 

had a negative effect equivalent to a 7.7% decrease in disease rates corresponding to a 0.1-unit 

increase in NDVI.  
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Table 7: Estimated trend in reported rates of schistosomiasis and associations with 

environmental parameters (p<0.05 bolded) for partial mixed effects regression models, shown as 

% change in monthly rates associated with 1 unit increase in each parameter and their 95% 

confidence limits 

Model 
parameters 

CLIMATE ZONES 

ALL 
MAJOR MINOR 

Z3:1 Z3:2 Z3:3 Z9:1 Z9:2 Z9:3 Z9:4 Z9:5 Z9:6 Z9:7 Z9:8 Z9:9 

Model 1: Univariate  - trend only 

Tr
en

d 
   

   
   

 
(1

 m
on

th
) % 

change -0.987 -0.892 -0.933 -1.052 -1.119 -0.826 -0.856 -1.332 -1.059 -0.317 -1.000 -1.153 -0.798 

LCL -1.046 -1.004 -1.075 -1.131 -1.319 -1.029 -1.151 -1.641 -1.215 -0.593 -1.099 -1.321 -0.984 

UCL -0.928 -0.781 -0.791 -0.973 -0.918 -0.623 -0.559 -1.021 -0.902 -0.040 -0.902 -0.985 -0.612 

Model 3: Multivariate - environmental variables only 

N
D

V
I  

   
   

(0
.1

) 

% 
change 1.530 1.157 -3.597 3.389 2.872 1.407 -7.711 -1.579 0.218 5.334 1.750 4.855 2.035 

LCL -0.054 -1.412 -7.306 0.862 -1.467 -2.597 -13.53 -9.696 -4.297 -1.335 -1.407 -1.413 -4.778 

UCL 3.139 3.793 0.260 5.980 7.402 5.575 -1.496 7.269 4.946 12.454 5.008 11.522 9.335 

LS
T 

(1
 °C

) % 
change 0.354 0.811 0.322 -0.513 1.053 -0.841 1.449 1.401 -0.120 -0.126 0.068 -2.784 1.359 

LCL -0.277 -0.155 -1.260 -1.824 -0.905 -2.478 -1.093 -2.272 -2.025 -3.820 -1.581 -5.778 -0.659 

UCL 0.988 1.787 1.930 0.816 3.050 0.823 4.057 5.211 1.822 3.710 1.744 0.305 3.417 

A
P 

   
   

   
   

   
(1

 c
m

) 

% 
change 0.391 0.513 1.273 0.193 0.875 -0.412 1.637 1.345 0.727 -0.336 0.337 0.130 0.487 

LCL 0.183 0.046 0.700 -0.064 -0.068 -1.309 0.463 0.044 0.083 -1.139 0.018 -0.440 -0.256 

UCL 0.600 0.982 1.849 0.451 1.827 0.493 2.823 2.664 1.375 0.473 0.656 0.702 1.236 
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Table 8: Results of 3 partial mixed effects regression models with p-values <0.05 bolded 

Model 
parameters 

CLIMATE ZONES 

ALL MAJOR MINOR 
Z3:1 Z3:2 Z3:3 Z9:1 Z9:2 Z9:3 Z9:4 Z9:5 Z9:6 Z9:7 Z9:8 Z9:9 

Model 1: Trend only 

Tr
en

d ß coef. -0.010 -0.009 -0.009 -0.011 -0.011 -0.008 -0.009 -0.013 -0.011 -0.003 -0.010 -0.012 -0.008 
Std. error 0.000 0.001 0.001 0.000 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.025 <0.001 <0.001 <0.001 

R2   0.55 0.70 0.46 0.47 0.54 0.65 0.40 0.34 0.51 0.31 0.41 0.54 0.61 
Model 2: Seasonality only 

si
n(

2π
) ß coef. 0.019 0.027 0.008 0.018 -0.012 0.017 -0.042 -0.001 0.012 -0.001 0.037 -0.021 0.067 

Std. error 0.012 0.022 0.027 0.016 0.042 0.039 0.055 0.062 0.030 0.048 0.020 0.036 0.037 
p-value 0.111 0.218 0.760 0.245 0.778 0.661 0.449 0.993 0.699 0.980 0.060 0.553 0.070 

co
s(

2π
) ß coef. -0.023 -0.047 -0.044 -0.005 -0.113 -0.025 0.032 -0.072 -0.055 0.002 0.011 -0.027 -0.034 

Std. error 0.012 0.023 0.028 0.016 0.043 0.040 0.056 0.063 0.031 0.049 0.020 0.036 0.037 
p-value 0.049 0.038 0.113 0.769 0.008 0.523 0.569 0.257 0.076 0.966 0.595 0.454 0.367 

si
n(

4π
) ß coef. 0.024 0.002 0.034 0.031 -0.038 -0.005 0.061 0.042 0.025 0.014 0.032 0.043 0.019 

Std. error 0.012 0.022 0.027 0.016 0.042 0.039 0.055 0.063 0.030 0.050 0.020 0.035 0.037 
p-value 0.037 0.939 0.212 0.050 0.365 0.896 0.268 0.506 0.399 0.782 0.098 0.221 0.605 

co
s(

4π
) ß coef. -0.024 -0.092 -0.003 -0.001 -0.147 -0.084 -0.021 -0.010 0.000 0.003 -0.007 -0.005 -0.030 

Std. error 0.012 0.023 0.028 0.016 0.043 0.039 0.056 0.062 0.031 0.048 0.020 0.036 0.037 
p-value 0.045 <0.001 0.912 0.956 0.001 0.034 0.707 0.877 0.994 0.946 0.715 0.893 0.421 

R2   0.51 0.68 0.42 0.41 0.48 0.62 0.36 0.25 0.47 0.30 0.35 0.47 0.59 
Model 3: Environmental variables only 

N
D

V
I ß coef. 0.152 0.115 -0.366 0.333 0.283 0.140 -0.802 -0.159 0.022 0.520 0.173 0.474 0.201 

Std. error 0.080 0.131 0.200 0.126 0.220 0.206 0.333 0.439 0.235 0.334 0.161 0.314 0.353 
p-value 0.058 0.381 0.067 0.008 0.198 0.497 0.016 0.717 0.926 0.119 0.281 0.132 0.568 

LS
T 

ß coef. 0.004 0.008 0.003 -0.005 0.010 -0.008 0.014 0.014 -0.001 -0.001 0.001 -0.028 0.013 
Std. error 0.003 0.005 0.008 0.007 0.010 0.008 0.013 0.019 0.010 0.019 0.008 0.016 0.010 
p-value 0.272 0.100 0.692 0.447 0.294 0.320 0.267 0.460 0.903 0.948 0.936 0.077 0.188 

A
P 

ß coef. 0.004 0.005 0.013 0.002 0.009 -0.004 0.016 0.013 0.007 -0.003 0.003 0.001 0.005 
Std. error 0.001 0.002 0.003 0.001 0.005 0.005 0.006 0.007 0.003 0.004 0.002 0.003 0.004 
p-value <0.001 0.031 <0.001 0.142 0.069 0.371 0.006 0.043 0.027 0.415 0.038 0.656 0.199 

R2   0.51 0.68 0.43 0.41 0.48 0.62 0.37 0.25 0.47 0.31 0.35 0.47 0.59 

 
 

A visual representation of a model including trend and seasonality in reported schistosomiasis 

cases was created (Figure 13). At the national scale, both trend and seasonality were significant 

(p<0.05), with two relative peaks in reported disease rates observed around March and 

September with the lowest counts observed in December/January. For the major climate zones, 
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trend was significant in all zones and seasonality remained significant only in zones Z3:1 and 

Z3:2 (p<0.05). In zone Z3:1 (north), two peaks occurred in March and September and in zone 

Z3:2 (middle), a single peak occurred in July. For the minor zones, the declining trend remained; 

however, seasonality terms were only significant (p<0.05) for zones Z9:1, Z9:2 and Z9:8. Like 

the major zone Z3:1, zones Z9:1 and Z9:2 exhibited two peaks per year in March and September. 

Zones Z9:4, Z9:5 and Z9:8 resembled major zone Z3:2 and exhibited a single annual peak 

around June/July. The remaining minor zones did not show pronounced seasonality. The lowest 

counts in most zones were observed in December/January.  

 

 
 
Figure 13: Visualization of the fitted values produced by the trend and seasonality model. Line 

colors match those of Figure 9; x-axis represents months from January 2008 to November 2015 

(vertical lines coincide with the month of January) 

In the final regression models, inclusive of all predictors, downward trend remained significant 

at all levels (Table 9 & Table 10) and seasonality was significant in zones Z3:1, and Z9:1 

through Z9:3 (in the north of the country). Controlling for trend and seasonality, associations 

with environmental parameters varied substantially by climate zone. The association remained 

significant for NDVI only in zone Z9:3, exhibiting even stronger estimated percent change, and 
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for AP in zone Z3:2 at approximately the same magnitude of 1.1% increase in monthly disease 

rates for 1-cm increase in AP.  In the most hot and dry zones Z9:1 and Z9:2, the associations 

were significant for LST (in zone Z9:1) and AP (in zone Z9:2). The R2 values of the final models 

ranged between 0.32 and 0.71 (Table 10).  

 

 
Table 9: Estimated trend in reported rates of schistosomiasis and associations with 

environmental parameters (p<0.05 bolded) for complete mixed effects regression models, shown 

as % change in monthly rates associated with 1 unit increase in each parameter and their 95% 

confidence limits 

Model     
parameters 

CLIMATE ZONES 

ALL 
MAJOR MINOR 

Z3:1 Z3:2 Z3:3 Z9:1 Z9:2 Z9:3 Z9:4 Z9:5 Z9:6 Z9:7 Z9:8 Z9:9 

Tr
en

d 
   

   
   

   
   

(1
 m

on
th

) % change -0.972 -0.896 -0.896 -1.046 -1.094 -0.896 -0.896 -1.292 -1.094 -0.300 -0.995 -1.193 -0.797 

LCL -1.032 -1.090 -1.090 -1.126 -1.288 -1.090 -1.284 -1.678 -1.288 -0.495 -1.189 -1.386 -0.991 

UCL -0.913 -0.702 -0.702 -0.966 -0.900 -0.702 -0.507 -0.904 -0.900 -0.104 -0.801 -0.999 -0.602 

N
D

V
I  

   
 (0

.1
) % change 0.702 -2.107 -4.084 2.419 -1.636 -8.066 -16.47 0.692 0.713 9.111 0.341 1.633 2.655 

LCL -1.097 -6.055 -9.915 -0.665 -15.37 -19.70 -28.11 -12.29 -6.754 -0.471 -3.554 -5.328 -6.910 

UCL 2.535 2.006 2.124 5.599 14.32 5.247 -2.933 15.59 8.777 19.617 4.393 9.106 13.20 

LS
T 

   
  

   
   

(1
 °C

) % change 0.300 0.602 -0.300 0.351 2.429 -1.686 2.425 0.602 -0.100 2.840 0.300 -2.078 0.803 

LCL -0.483 -0.574 -2.426 -1.340 0.048 -4.347 -1.069 -4.584 -2.613 -2.843 -1.839 -5.842 -1.347 

UCL 1.090 1.792 1.873 2.072 4.867 1.049 6.043 6.069 2.478 8.854 2.486 1.837 3.000 

A
P 

   
   

   
  

   
(1

 c
m

) % change 0.200 0.031 1.106 0.100 -0.399 -1.193 0.702 0.501 0.501 -0.399 0.401 0.003 0.300 

LCL 0.004 -0.451 0.513 -0.292 -1.564 -2.156 -0.670 -0.868 -0.284 -1.564 0.008 -0.716 -0.678 

UCL 0.397 0.516 1.702 0.493 0.779 -0.220 2.094 1.890 1.292 0.779 0.795 0.726 1.288 
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Table 10: Results of complete mixed effects regression model with p-values <0.05 bolded 

 

Model 
parameters 

CLIMATE ZONES 

ALL MAJOR MINOR 
Z3:1 Z3:2 Z3:3 Z9:1 Z9:2 Z9:3 Z9:4 Z9:5 Z9:6 Z9:7 Z9:8 Z9:9 

Tr
en

d ß coef. -0.010 -0.009 -0.009 -0.011 -0.012 -0.009 -0.009 -0.013 -0.011 -0.003 -0.010 -0.012 -0.008 
Std. error 0.000 0.001 0.001 0.000 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.035 <0.001 <0.001 <0.001 

si
n(

2π
) ß coef. -0.013 -0.023 0.014 -0.015 -0.225 0.020 -0.130 -0.049 -0.006 -0.065 0.007 -0.040 0.032 

Std. error 0.014 0.031 0.036 0.018 0.102 0.105 0.100 0.101 0.038 0.068 0.023 0.041 0.040 
p-value 0.353 0.467 0.702 0.402 0.027 0.846 0.195 0.627 0.870 0.339 0.750 0.329 0.425 

co
s(

2π
) ß coef. -0.009 -0.090 -0.033 0.003 -0.254 -0.257 -0.341 -0.049 -0.018 -0.060 0.032 -0.013 -0.019 

Std. error 0.015 0.045 0.052 0.018 0.160 0.159 0.173 0.136 0.056 0.066 0.023 0.040 0.059 
p-value 0.567 0.044 0.530 0.851 0.113 0.108 0.048 0.719 0.743 0.363 0.153 0.740 0.750 

si
n(

4π
) ß coef. 0.017 -0.014 0.049 0.023 -0.006 -0.022 0.001 0.053 0.025 0.016 0.039 0.018 0.025 

Std. error 0.012 0.022 0.028 0.018 0.056 0.047 0.055 0.062 0.032 0.061 0.023 0.042 0.041 
p-value 0.164 0.529 0.077 0.217 0.921 0.637 0.982 0.391 0.440 0.793 0.100 0.671 0.551 

co
s(

4π
) ß coef. -0.018 -0.095 -0.016 0.019 -0.180 -0.104 -0.072 0.029 -0.001 0.094 -0.002 0.002 -0.016 

Std. error 0.013 0.022 0.036 0.020 0.052 0.042 0.073 0.084 0.042 0.071 0.025 0.043 0.043 
p-value 0.167 <0.001 0.645 0.332 0.001 0.013 0.325 0.728 0.990 0.187 0.936 0.957 0.704 

N
D

V
I ß coef. 0.070 -0.200 -0.417 0.239 -0.118 -0.841 -1.799 0.069 0.071 0.872 0.034 0.162 0.262 

Std. error 0.092 0.211 0.320 0.156 0.787 0.690 0.766 0.704 0.393 0.469 0.202 0.362 0.499 
p-value 0.447 0.344 0.192 0.125 0.881 0.223 0.019 0.922 0.856 0.063 0.865 0.654 0.600 

LS
T 

ß coef. 0.003 0.006 -0.003 0.004 0.026 -0.017 0.024 0.006 -0.001 0.028 0.003 -0.021 0.008 
Std. error 0.004 0.006 0.011 0.009 0.012 0.014 0.018 0.027 0.013 0.029 0.011 0.020 0.011 
p-value 0.476 0.288 0.753 0.686 0.032 0.208 0.176 0.831 0.914 0.334 0.764 0.291 0.456 

A
P 

ß coef. 0.002 0.000 0.011 0.001 -0.004 -0.012 0.007 0.005 0.005 -0.004 0.004 0.000 0.003 
Std. error 0.001 0.002 0.003 0.002 0.006 0.005 0.007 0.007 0.004 0.006 0.002 0.004 0.005 
p-value 0.064 0.923 <0.001 0.534 0.465 0.030 0.364 0.478 0.158 0.553 0.053 0.994 0.553 

R2   0.55 0.71 0.47 0.47 0.56 0.66 0.42 0.34 0.52 0.32 0.41 0.55 0.61 
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4. Discussion 

4.1  Innovation 

 
Our study was innovative in several ways. We used monthly records of schistosomiasis cases 

reported to a national surveillance system aggregated at the district level. We matched the health 

outcome to times series of remote sensing data. This approach allowed us to characterize the 

spatial and temporal variability of reported rates of schistosomiasis cases. Furthermore, we 

explored associations between disease incidence and environmental predictors across 

climatically homogeneous areas defined using a novel climate classification methodology.  

 

To define the climate zones in our analysis, we used the LKN classification system and applied it 

specifically to Ghana, as compared to the predominant global KG climate classification system. 

The KG system is based on the assumptions that vegetation is the best proxy for climate and 

temperature and precipitation are the best proxies for vegetation (Kottek et al. 2006). The KG 

system divides the world into 6 major zones and 31 minor zones based on temperature, 

precipitation, and their seasonal variations. The KG classification partitions Ghana into only two 

climate zones; using the LKN method, finer divisions were possible. The major zones 

approximately corresponded to the agro-ecological zones, where the northern zone Z3:1 

represents Guinea Savannah, zone Z3:2 the transitional zone, and zone Z3:3 represents a 

combination of deciduous forest and rainforest (Frenken 2005). Coastal Savannah was classified 

as a combination of zones Z3:1 and Z3:2. Using the minor zone divisions, urban areas were 

naturally separated into their own zone (Z9:9). An advantage of the LKN method is that it is 

fully automated and zone delineations can be updated over time.  
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To our knowledge, this is the first study using schistosomiasis surveillance data from a low-

income African country to conduct a spatial and temporal analysis at the national scale. Using 

surveillance data offers many advantages over field data, such as expansive geographic coverage, 

temporal continuity, relatively low cost of data collection, and ability to aggregate data over 

various temporal and spatial scales. Furthermore, all predictors were publicly available satellite-

remote sensing products, downloadable online. This methodology offers a way for public health 

officials in low-income countries to begin exploring patterns for climate-sensitive diseases using 

routinely collected data.  

4.2  Major findings 

 
There was a significant decline in reported disease rates over the study period, nationally and 

across all climate zones. Decreasing schistosomiasis reporting could be indicative of the success 

of MDA campaigns, which have increased in their frequency and geographic coverage in recent 

years. However, a limited exploration of the age distribution of cases reported between 2012 and 

2015 (Figure 14) showed that a range of age groups contributed cases for both males and 

females, whereas MDA currently targets school children with limited community-based 

treatment of children and adults. Therefore, additional factors are likely contributing to the 

steady decline in reported cases and should be explored at various spatial and temporal scales.  

 

Seasonality in reported disease rates was observed in several zones, with a consistent dip in 

December/January and varying patterns across climate zones. Two peaks in March and 

September in the dry northern areas (zones Z3:1, Z9:1 and Z9:2) correspond to periods of 

relatively low precipitation but high vegetation. The single peak in June/July in the middle of the 
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country (zones Z3:2, Z9:4, and Z9:5) correspond to the major rainy season. While the major 

reason for a winter dip is unknown, the Christmas holiday might potentially contribute to low 

reported counts around this time. It is unclear from the available data whether low reporting is a 

result of patient treatment-seeking behavior or internal reporting delays, which would be 

important to explore in future studies.  

 

Based on the partial models (Table 7), the association between precipitation and schistosomiasis 

rates was positive in several zones. This finding is in agreement with prior studies that focused 

on S. mansoni (Scholte et al. 2014) and S. haematobium (Schur et al. 2011). The results of prior 

studies on the association between LST and schistosomiasis are somewhat contradictory, with 

positive association found with S. haematobium (Soares Magalhães et al. 2011); negative 

association with S. mansoni (Scholte et al. 2014); and no association with S. haematobium 

(Clements et al. 2006b). We did not find an association with LST and the association with NDVI 

was inconsistent. Only one minor zone Z9:3 with an extended annual peak in NDVI exhibited a 

strong association with the reported disease.  After controlling for trend and seasonality, the 

associations between reported incidence and environmental variables remained for a few zones, 

yet largely not significant. Our findings suggest that the direction and strength of associations 

with remotely sensed parameters varied by climate zone; thus broad application of these 

parameters to countries or regions with heterogeneous climatic conditions should consider these 

properties.  

4.3  Limitations 

 
As previously mentioned, the dataset contained >50% of blank values, which could indicate 

either a lack of reporting or a lack of cases. During exploratory analysis, we found that the 
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majority of missing values occurred in between reported counts with fewer missing observations 

occurring prior to the first and/or after the last month with reported counts (Figure 5). In the 

present study, we assumed that the reporting started and ended at the same time (January 2008 

and December 2015, respectively). However, it is possible that some of the districts began 

reporting later than others and/or stopped reporting prior to December 2015 for unknown 

reasons. Several outliers were also removed. The possible reason behind unusually high values 

may be reporting delays causing multiple months of data to be reported in a single month. 

Investigating the reasons behind missing observations and data inconsistencies was beyond the 

scope of this analysis but can be done in the future. Our data processing methodology likely 

produced conservative estimates, as the models were restricted to districts and months with at 

least one reported case of schistosomiasis. An exploration of various techniques to address 

blanks, missing data, and outliers deserves further study. 

 

A second limitation is that the analysis used aggregated monthly disease counts recorded in the 

month they were reported and not necessarily as they occurred. Detailed information relevant to 

exposure, transmission, and reporting was not available. A third limitation is severe 

underreporting of disease counts due to limited resources and socio-economic conditions. 

Overall, the reported case numbers are extremely low, as compared to the estimated population 

at risk for Ghana. For example, in 2010, 24,996 cases were reported into DHIMS. If only 

children ≤15 years of age living in rural areas (5,128,118 individuals according to the 2010 

census) are considered (i.e. the most at risk population), at the estimated 50% infection rate, ~2.5 

million cases would be expected (Kulinkina 2017). These numbers could be used to suggest that 

DHIMS is capturing <1% of the expected cases. However thoughts along these lines must be 
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tempered with the fact that the actual schistosomiasis prevalence in Ghana expressed at the 

national level is estimated by interpolating focal health surveys. The reported schistosomiasis 

cases do however most likely represent the most serious cases from a subset of the population 

who are able to seek treatment at large government hospitals with diagnostic capability. Based 

on a visual analysis of the age distribution of average annual disease case counts reported into 

dhims2 from 2012-2015, it would appear that there is a skew towards an older patient 

subpopulation and that  children are likely under-represented in our dataset (Figure 14). This is 

not a limitation of our analysis, but rather a reflection of the healthcare system in Ghana and 

other sub-Saharan African countries, dominated by routine school-based distribution of 

praziquantel, which results in a lower likelihood that cases among children would be reported 

into the surveillance system.  

Figure 14: Age distribution of average annual disease case counts reported during 2012-2015 

(GHS, 2015) 
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4.4  Future Directions 

 
There are many options for future directions. One option is to include human parameters. 

Facebook in conjunction with the commercial satellite imagery provider, Digital Globe, the 

Center for International Earth Science Information Network (CIESIN) based at Columbia 

University, and the World Bank have produced publically available high-resolution (30m) 

population data for Ghana and a few other countries as of November, 2016. This is a byproduct 

of Facebook’s ongoing project to spread internet to rural settlements around the world (CIESIN 

2016). As stated previously the inclusion of human variables was purposefully omitted in this 

thesis to explore the utility of purely remotely-sensed environmental predictors. Moving forward 

this constraint could be relaxed so as to include both environmental and human variables. The 

additional variables that show potential for being explored are plentiful; however, sustainable 

data collection and analysis should be at the core of any methodology that intends to have the 

most impact in disease control within low income nations.  

 

Another option would be to make use of previous survey data for verification purposes. Since the 

surveillance dataset used in this thesis only extended to 2015, there is a full year’s worth of data 

from 2016 and future years that could be used to test the model’s predictive power. However, it 

has been recommended that instead of testing with presence-only data, which will always have 

geographic and ecological biases, to instead use presence-absence data or artificial data (Elith et 

al. 2017). While finding or creating this data would be difficult, if made available it would allow 

for analysis of the sensitivity and specificity of the models.  
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It would also seem practical to evaluate other methodologies such as outcome distributions, types 

of statistical analyses, and modeling frameworks. Fortunately a review of presence-only data 

modeling of 16 methods, 226 ecological species distribution, and 6 regions worldwide has been 

documented (Elith et al. 2017). The sophistication of the models utilized and detail with which 

the models were compared far exceeds what has been performed in the previous literature of RS 

applications to schistosomiasis. Thus, there is much to be gained from studying techniques and 

analyses used in other fields such as ecological modeling. 

 

In our models, the majority of the explained variability was attributed to district-level effects, 

meaning that further analysis into what is causing these differences is needed. In keeping with 

the pursuit of sustainability, there are many human variables that could be explored that do not 

require much additional resources to collect, such as could be found in census data. Incorporating 

temporal lags and spatial population patterns and migration would better inform the relationship 

of exposure, transmission, and reporting of disease. Stratifying the associations by climate zones 

remains relevant as climate zones may serve as proxies of unstudied agricultural activities and 

socio-economic events that are closely linked to the environment. 

 

Use of the full spatiotemporal capabilities of surveillance and publically available RS data is 

another target of opportunity. The GHS national surveillance data records individual information 

such as gender and age, which can be used to correct for reporting bias among age groups 

through comparison with aggregated health surveys. Reported cases are also sometimes available 

at the weekly level, which could be used in a more complete analysis of the effect of temporal 

scale on prediction and uncertainty. In terms of exploring spatial scales, if health clinic outcome 
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data can be extracted from the national surveillance system then publically available RS data 

capable of representing much smaller spatial scales can be potentially more fully utilized (Figure 

15). This study was restricted to the district level, but the MODIS satellite sensor can achieve a 

250km spatial resolution. Other publically available satellites such as the Landsat series can yield 

a 30m (~100ft) spatial resolution and has data going back 40 years, 20m (~66ft) data is available 

using the Sentinel satellite launched in 2015. This wealth of data sources and multiple 

spatiotemporal scales has great potential if combined with national surveillance and access to the 

needed computational resources. 

 
Figure 15: Hierarchal structure of the GHS national surveillance system, DHIMS2 
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5. Conclusions 
 
 
 
Our analysis demonstrates that the numbers of reported schistosomiasis cases in Ghana are 

declining, which could be an artifact of the data capture gaps  in the surveillance system or an 

actual decrease  most likely attributed to successful deworming campaigns. Only the 

environmental parameters demonstrated consistent seasonality. The interpretation of the general 

lack of seasonality in the surveillance data is complicated by the lag between transmission and 

disease reporting and remains difficult to assess. Temporal trends of schistosomiasis as well as 

for other climate-sensitive diseases contained within the Ghanaian surveillance system require 

further analysis that should be performed. The importance of improving the surveillance of 

neglected tropical diseases in low-income countries should not be underestimated. National 

surveillance systems play a significant role in ensuring availability of vital health data; our 

analysis demonstrates its utility as a decision support tool and supports the benefits of local and 

national governments investing in data quality improvements. Predictive modelling should be an 

iterative process that undergoes progressive improvements in its methodology and data inputs 

(Kabore et al. 2013). The future steps in improving the predictive capacity of surveillance data 

for diseases like schistosomiasis are to focus on the location and timing of disease exposure, 

transmission, and reporting. Additionally, more work should be done in complementing 

surveillance data with field survey data and novel data streams to offer reliable and cost-effective 

disease monitoring tools.  
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