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Abstract

We describe a search for νµ disappearance using the MicroBooNE Deep Learning

analysis’ 1µ1p selection. Presently, the unexplained MiniBooNE and LSND anoma-

lies could be explained by a sterile neutrino impacting neutrino oscillations. Our

analysis searches for the allowed parameter space that could describe such a sterile

neutrino. We determine the allowed and excluded region of a 3+1 sterile-based muon

neutrino disappearance model in MicroBooNE at 90% confidence. Our allowed re-

gion includes both the null model, and current global best fit model. Context for

the underlying Deep Learning analysis is provided and several validation studies

surrounding both the disappearance search, and originating 1µ1p selection are per-

formed to strengthen confidence in the result. In addition, a next-generation deep

learning tool for cosmic-ray-muon event discrimination is proposed and evaluated,

demonstrating a removal of 70% of the remaining event background when added to

current methods, under the cut criteria used.
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Chapter 1

Introduction

The frontiers of scientific research have a habit of falling into extremes.

Neutrinos are the lightest-massive particle known to humankind. Not counting

massless particles like photons, they’re the lightest thing out there. It was only

recently we discovered they have mass. At the time this author was born, neutrinos

were thought to be massless. Nearly-massless, without any electric charge to control

them, they live lonely lives, extremely unlikely to interact with anything, even as

they pass right through it.

If neutrinos were rare I would almost hazard a guess to say humans would never

find them.1 But they aren’t rare. Neutrinos again fall into an extreme. They are

ubiquitous. In a single second, every single second, one-hundred-billion neutrinos

passed through your thumbnail.

So it is this small little particle that winds up everywhere, but doesn’t partic-

ularly like to do anything, is an active area of research. In recent years, there has

been experimental evidence of an excess in one flavor of neutrinos, νe observed by

the MiniBooNE and LSND experiments [7] [16]. This could be explained by a new

flavor of neutrino called a sterile neutrino. But this phenomenon would be accom-

panied by muon neutrino disappearance, as muon neutrinos oscillate away through

the newly-introduced sterile mass state into the excess electron neutrinos seen by

MiniBooNE and LSND. Our work searches for muon neutrino disappearance in the

1I don’t think I would ever bet against human ingenuity with such finality.
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MicroBooNE experiment.

The work within this thesis is broken down into several different parts. Chapter

2 provides background on the Standard Model of particle physics, neutrinos, and

neutrino oscillation phenomena, whereby the type of neutrino changes as it moves.

Then Chapter 3 provides a brief background on the anomalous experimental mo-

tivation for MicroBooNE, before discussing the MicroBooNE neutrino beam and

detector apparatus.

As the analysis within this thesis contains several tools designed using combi-

nations of machine learning and deep learning, Chapter 4 provides a useful primer

of information regarding these tools. Next the MicroBooNE Deep Learning team’s

reconstruction framework is described in Chapter 5 which discusses how detector

signals are transformed into high-level particle physics interaction attributes.

Chapter 6 describes how these high-level features can be used to create highly-

pure selections of 1µ1p and 1e1p event topologies. These selections are then used

to perform the νµ disappearance analysis contained within Chapter 7. This analysis

searches for disappearance related to a 3+1 Sterile Neutrino extension to neutrino

oscillations. This search is fundamentally important as the yet-to-be-observed sterile

neutrino could provide an explanation for the anomalies that motivate the Micro-

BooNE experiment. Finally Chapter 8 evaluates a technique proposed for future

iterations of analysis hoping to further reduce the cosmic-ray-muon background us-

ing deep learning tools.

It should be noted that no one in scientific research succeeds alone. Research is

built upon the foundations provided by collaborators both past and present. Within

the confines of this thesis work performed by other MicroBooNE collaborators is of-

ten used to provide context to the analysis performed by the author. As is customary,

the author performed service work for the MicroBooNE Collaboration, including but

not limited to, late night shifts spent monitoring the detector. The author also was

personally responsible for transforming the data products produced by the Wire-Cell

Charge-Light matching algorithm into data formats useful within the Deep Learning
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analysis’ reconstruction framework.

The author claims responsibility for taking over the 1µ1p selection as the team

worked towards the LEE search performed in [14], which included improving the

selection and validating the performance as well as providing support on the LEE

project. Additionally, the author is personally responsible for the work performed

in the νµ disappearance search associated with the same 1µ1p selection. Finally, the

author was the lead on the sMask-RCNN cosmic ray muon tagging project.
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Chapter 2

Neutrinos

In this chapter we provide a primer for neutrinos, the particle of interest regard-

ing this thesis. It begins with a brief description of the proposal and subsequent

discovery of neutrinos. Then we hurtle forward to nearly-present day, with the Stan-

dard Model of particle physics. Within this model, neutrinos are massless particles,

and their place among the other fundamental particles is staked out.

Next the Standard Model is strained to its limit as we describe the solar neu-

trino problem, and ultimately discuss the solution: massive, oscillating neutrinos.

The oscillation formalism for this extension to the Standard Model is described. Fi-

nally, we note the various experimental constraints placed around the fundamental

parameters describing neutrino oscillations.

2.1 Neutrinos Background

Neutrinos were first proposed by Wolfgang Pauli in 1930 [17].1 His proposal was

made in order to account for the energy and momentum that was otherwise missing

in beta decay. While not known at the time, beta decay is a process where a nucleus

emits an electron (or positron) accompanied by an antineutrino (neutrino) and a

1Pauli actually referred to his proposed particles as ’neutrons’, as his theory predated the
discovery of neutrons. However, to avoid confusion we’ll refer to them by their modern-day name:
neutrinos.
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neutron (proton) within the nucleus. The electron case is described by

n→ p+ e− + ν̄e. (2.1)

Issues arose as the exiting electron produced a continuous spectrum of energy,

rather than a singular value, but the change in nuclear energy was expected to be

a narrow band. This produced a result that seemingly contradicted conservation of

energy. A similar issue arose as angular momentum was not conserved with a half-

spin missing. Pauli rightly theorized that beta decay also produced an electrically

neutral, spin-1/2 particle that was able carry away the missing energy and angular

momentum. Famously, he believed his proposed particle was so elusive, it could

never be detected.

It was not until 1956 that he was proven wrong. Together Clyde Cowans and

Frederick Reines set up a liquid scintillator detector a few meters from a 1000 MW

nuclear reactor, which gave them a flux of 1000 billion neutrinos per centimeter-

squared per second [17]. Then they found positrons from inverse beta decay, which

is described as

ν̄e + p→ n+ e+. (2.2)

This process is kickstarted by the antineutrino bringing enough energy to the

nucleus to change the proton to a neutron and create an electron. This antineutrino-

induced inverse beta decay gave evidence for the existence of Pauli’s neutrino par-

ticles.

2.2 The Standard Model and Neutrinos

Neutrinos are one of the fundamental particles within the Standard Model (SM)

of particle physics. In the SM, neutrinos are massless leptons with no electric charge,

and come in three flavor states as denoted by the charged lepton family the neu-
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trino is associated with. These flavor states are therefore the electron neutrino,

muon neutrino, and tau neutrino.2 As leptons, these states correspond to the three

generations of charged-leptons: the electron, muon, and tau particles.

Neutrinos are shown among all the elementary particles of the standard model

in figure 2.1. In this figure we see the different flavors of the neutrino and their

corresponding charged leptons. We also see quarks, the other fermions that come

together to form hadrons. These hadrons can be either baryons or mesons. Baryons

consist of three valence3 quarks (such as an uud proton or udd neutron). These three

quarks must combine to yield net zero color charge via quantum chromodynamics

(QCD), wherein one quark of each color charge (red, green, blue) yield net zero color

charge. In 2015, evidence for a rare five quark pentaquark state was found by the

LHCb experiment at CERN [18]. Whereas mesons are made up of a quark-antiquark

pair (such as a ud̄ π+ or a uū π0), and satisfy the QCD requirement by having a

color and anti-color pair.

Similar to the leptons, these quarks also come in three generations, each contain-

ing a pair of quarks, the up (u) and down (d) quarks, the charm (c) and strange (s)

quarks, and the top (t) and bottom (b) quarks. As a general rule, quarks in higher

generations than the up and down are not naturally occurring, are unstable, and

decay quickly into their lower generation versions.

On the right of the SM figure the bosons are shown. Bosons, as opposed to

fermions, are particles with integer spin. In red are the four gauge bosons, with spin

of 1. These gauge bosons are the force carriers within the SM. The gluon is the

force carrier for the strong force, the γ is the carrier of the electromagnetic force,

and the Z and W± bosons are the carriers of the weak force. A force carrier for

gravity, such as the theoretical graviton, has yet to be observed, and is thus outside

the SM. Unlike the vector boson force carriers, the Higgs particle is a scalar boson

with spin of 0. It should be noted that for the particles listed, there also can exist

2As well as their antiparticle forms
3In the quark model, there can exist a ’sea’ of quark and their antiquark pairs (such as uū)

effectively canceling each other out. Valence quarks can be thought of as the net quarks
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Figure 2.1: The Standard Model of Particle Physics. Own work by uploader, PBS
NOVA, Fermilab, Office of Science, United States Department of Energy, Particle
Data Group [1]

antiparticle forms, where the particle’s innate fundamental charges (such as electric

or weak-isospin) are flipped. For example in the case of the up quark u there is the

anti-up ū (u-bar), or for the electron (e−) there is the positron (e+). Similarly for

the νµ there is the ν̄µ which has opposite weak-isospin and lepton number.

Since in the SM neutrinos are chargeless, massless, leptons, they do not interact

with electromagnetism’s γ, gravity, or the strong force, they only interact with

the weak force. These interactions can broadly be categorized in one of two ways,

based on the vector boson force carrier involved. Charged-current (CC) interactions

are governed by the weak-charged W±, and neutral-current (NC) interactions are

governed by the Z0 mediator. Figure 2.2 demonstrates two Feynman diagrams, of

a CC (left) and NC (right) interaction. Within these Feynman diagrams, time runs

from left to right. This example CC interaction is of particular interest to this thesis,

as it demonstrates the principal signal sought by the selection described in section

6.4, and the disappearance analysis present in section 7, as a νµ interacts with a
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(a) CC Interaction Example (b) NC Interaction Example

Figure 2.2: Examples of the two types of weak interaction. An example of a CC
(left) interaction where a W+ is exchanged as a νµ interacts with a neutron. A NC
(right) interaction is also shown, where a νe interacts with an electron.

nucleon (neutron). Out of this interaction a down quark becomes an up quark as

the neutron turns to a proton, and the νµ becomes a muon.

Notably, CC interactions, through the exchange of the charged W±, conserve

lepton family generation number. This corresponds with the fact that experiments

have not seen evidence of a lepton-flavor violating process.4 This is to say that

a νµ will create a muon, not an electron. Conversely, for NC interactions this is

not the case, no weak-charge is exchanged as the Z boson only exchanges energy,

momentum, and spin. Thus the lepton number, among other quantum numbers,

remains unaffected (and obviously still conserved).

2.3 Neutrino Tension in the Standard Model

The Standard Model of particle physics does a great job of gathering together

the particles, and providing an involved description of physics. It is built around

the conservation of several different charges (such as weak isospin, electric charge,

color charge) associated with the different symmetry groups of quantum field theory

4Except for neutrino oscillation phenomenology, described below
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(SU(3)×SU(2)×U(1)). The resulting model facilitated the prediction of both the

top quark and the Higgs boson particle before their eventual discovery. However,

there are portions of the SM where it begins to strain and break. One of those

major breaking points involves the definition of neutrinos as ’massless’. Next, we

build toward an extended Standard Model with massive neutrinos.

2.3.1 Building to Massive Neutrinos

Historically, the flavor states (νe, νµ, and ντ ) came about because of observations

surrounding beta decay antineutrinos (neutrinos) created with an electron (positron)

in beta decay, described in equation 2.1.

These antineutrinos, created in nuclear reactor experiments, always interacted to

produce electrons when observed by detectors. Another observation was related to

neutrino beam experiments. In these instances the beam was created from charged-

pion decay (see section 3.2),

π+ → µ+ + νµ. (2.3)

These neutrinos are created alongside antimuons, then when they interact in the

detector they produced muons in CC interactions [19]. These observations led to

the concept that the neutrinos produced had a flavor associated with the charged

lepton they were associated with.

This observation began to break down as the field of particle physics began to

run into what is now referred to as ’the solar neutrino problem’. Nuclear fusion

taking place in the sun produces a large flux of νe particles, through a variety of

nuclear cycles. The highest-energy (15 MeV) electron neutrinos generated by the

sun are produced via beta decay around 8B [19]. The first experiment to measure the

flux of these neutrinos was the Homestake Mine experiment, which counted the 37Ar

argon atoms produced by νe interactions in their radiochemical C2Cl4 detector. In a

puzzling discovery, they observed the rate of neutrino interactions at slightly under

a third of their expectation [19, 20]. This neutrino deficit remained as additional
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radiochemical experiments measured lower-energy electron neutrinos produced from

the sun.

The neutrino deficit began to extend into other detector technology. Super-

Kamiokande’s Cherenkov detector found a deficit in atmospheric muon neutrinos [21]

and the Sudbury Neutrino Observatory (SNO) Cherenkov detector again observed

deficit of νe interactions. However, critically, the SNO experiment had sensitivity

to a variety of neutrino channels. Specifically, SNO was sensitive to one channel

dependent just on νe interactions, and two other channels dependent on the total

neutrino flux. This allowed the SNO experiment to show that the total neutrino flux

received by their detector was consistent with the expected solar flux, consisting of

electron neutrinos [22].

This provided strong evidence that neutrinos were changing flavor states as they

traveled from the sun to earth. These flavor transformations are known as neutrino

oscillations, and are described by attributing to the neutrino that which extends the

standard model: mass5. Thus the solar neutrino problem was solved by neutrino

oscillations.

2.3.2 Neutrino Oscillations

In order to describe the neutrino oscillations observed experimentally, neutrinos

are attributed mass. This mass remains very small, sub 1-eV scale, but crucially non-

zero. However, each of the three flavors of neutrino are not prescribed unique mass

states all their own. Instead, each flavor state is represented as a linear combination

of three different neutrino mass states, ν1, ν2, and ν3. Another way of saying this

is that the coupling associated with a Feynman diagram’s vertex between a W+, a

positron, and a νe is actual a linear combination of three vertices between the W+,

the positron, and each of the three νi mass states. This is shown for the quantum

5Massive neutrinos could potentially be described as Majorana particles, which would make
them their own antiparticle. However this discussion is beyond the scope of this thesis. A review
of Majorana neutrino study is presented in [23]. A yet-to-be-observed, but closely studied phe-
nomenological interaction; neutrino-less double beta decay, would prove that neutrinos are their
own antiparticle, and present strong evidence for Majorana neutrinos.
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state of an electron neutrino, |νe〉, as

|νe〉 = U∗e1 |ν1〉+ U∗e2 |ν2〉+ U∗e3 |ν3〉 . (2.4)

These couplings can be collected in the unitary matrix U , called the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix. In the absence of neutrino oscillations,

U is the identity matrix. However, as demonstrated by the experiments outlined

previously, this is not the case. As such, the relations between the flavor states and

the mass states can be encapsulated in


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 . (2.5)

These terms in the unitary matrix U are fundamental parameters of the extended

Standard Model of particle physics. A similar representation can be used to describe

the neutrino mass states in terms of the flavor states using the U † (conjugate trans-

pose) of the PMNS matrix,


ν1

ν2

ν3

 =


U∗1e U∗1µ U∗1τ

U∗2e U∗2µ U∗2τ

U∗3e U∗3µ U∗3τ



νe

νµ

ντ

 . (2.6)

To observe how a wavefunction describes oscillations from one flavor state to

another, we begin by time-evolving the wavefunction for a νe in eqn. 2.4. This gives

|νe(~x, t)〉 = U∗e1 |ν1〉 e−i(φ1) + U∗2e |ν2〉 e−i(φ2) + U∗3e |ν3〉 e−i(φ3). (2.7)

Here φi represents the phase of the plane wave for a given mass state. This wave-

function can then be modified by substituting the flavor state linear combinations

of |ν1〉, |ν2〉, and |ν3〉. This results in

34



|νe(~x, t)〉 = U∗1e(Ue1 |νe〉+ Uµ1 |νµ〉+ Uτ1 |ντ 〉)e−i(φ1)

U∗2e(Ue2 |νe〉+ Uµ2 |νµ〉+ Uτ2 |ντ 〉)e−i(φ2)

U∗3e(Ue3 |νe〉+ Uµ3 |νµ〉+ Uτ3 |ντ 〉)e−i(φ3).

(2.8)

We are interested in one flavor state of neutrinos oscillating to another flavor

state. Therefore, we calculate the probability by computing | 〈νµ|νe(~x, t)〉 |2. This

represents the probability that a νe oscillates to the νµ. This is shown to be

| 〈νµ|νe(~x, t)〉 |2 = |U∗e1Uµ1e
−i(φ1) + U∗e2Uµ2e

−i(φ2) + U∗e3Uµ3e
−i(φ3)|2 (2.9)

Which represents P (νe → νµ). We now adjust this formula for the general case

of a generic neutrino flavor state να oscillating to νβ . We also write the phase term

explicitly as φi = Eit [3], where E is the neutrino’s energy and we operate in the

standard convention of natural units such that c = ~ = 1. Written in summation

form this probability becomes,

P (να → νβ) = | 〈νβ|να(t)〉 |2 =

|
n∑
i=1

n∑
j=1

U∗αiUβje
−i(Eit) 〈νj|νi〉 |2. (2.10)

Here α and β represent the starting and resulting flavor states, and i and j

represent the mass states. It is now useful to make two related approximations.

Namely, that neutrinos have a small mass and are moving at relativistic speed. This

allows for the approximations both

Ei =
√
p2
i +m2

i ' p+
m2
i

2E
, (2.11)

35



and that t ' L (in natural units of c = 1). L corresponds to the path length the

neutrino has traveled, p its momentum, and m2
i its mass squared. Note that equation

2.11 has implicitly assumed that since neutrinos are relativistic pi ' pj ≡ p ' E.

Under the assumption of light, relativistic neutrinos and evaluating the magnitude

squared [3], we get

P (να → νβ) =

δαβ − 4
n∑
i<j

Re(UαiU
∗
βiU

∗
αjUβj) sin2

(
∆m2

ijL

4E

)

+ 2
n∑
i<j

Im(UαiU
∗
βiU

∗
αjUβj) sin

(
∆m2

ijL

2E

)
, (2.12)

where ∆m2
ij corresponds to the difference between the squared-masses of mass

state i and mass state j, not the squared difference between the mass states. Here we

have leveraged a transformation of the e−iφ terms via Euler’s formula e−iφ = cos(φ)−

i sin(φ). The δαβ term represents the fact that the flavor states are orthogonal to

one another. When α = β then δαβ = 1, otherwise it is 0.

In this representation, it is now clear that given different mass states, oscillation

from flavor state να to νβ becomes possible. This is witnessed via the ∆m2
ij term

in the probability equation. It is important to note that experiments probing this

fundamental parameter via oscillation studies are sensitive only to the magnitude

of the difference in the squared neutrino masses, not the masses themselves, or even

which state is larger. Two of the ∆m2
ij terms are measured, and it is known that

m2 > m1 due to the observation of matter effects in the sun for neutrinos [24].

However, the sign of ∆m31 is unknown and ∆m32 is still an open question. In figure

2.3, the two potential neutrino mass hierarchies are depicted [2]. We note that at

present the inverted mass hierarchy is disfavored at slightly more than 2σ [3].

Another important point to note is the probability’s dependence on the L/E

ratio, where L is the path length of the neutrino since its creation, and E is its energy.
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Figure 2.3: Pictorial representation of the possible neutrino mass hierarchies. Note
∆m2

atm is equivalent to ∆m2
32 and ∆m2

sol is equivalent to ∆m2
21. [2]. For up-to-date

makeups of the different flavor and mass states, see [3].

This influences the experimental design of oscillation studies as it determines where

in phase space the experiment can probe the fundamental oscillation parameters

contained within the PMNS matrix.

2.3.3 Neutrino Oscillation Experimental Limits

Now that we have described the formalism behind neutrino flavor oscillation, we

will now turn to the parameters surrounding the mechanism, and the experimental

limits placed upon them. Here it becomes beneficial to decompose the PMNS matrix

in 2.5 into three rotation matrices,

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 . (2.13)

Where cij and sij are common shorthands for cos(θij) and sin(θij). θij represent

the three mixing angles between the different mass states, θ12, θ13, and θ23, and δ
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represents a single complex which would induce CP-violation.6 Multiplying these

rotation matrices together we can better see the relation to the typical PMNS matrix,


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 .

(2.14)

The key subtlety of this change of framework is the absorption of seemingly ’free’

parameters in the originally U framework. The original PMNS matrix is composed

of nine parameters. Were it real it would only require three parameters to describe

the rotations, but as the unitary matrix is not real, six additional phases are intro-

duced. However, by defining different phases relative to one lepton family generation

(typically the electron) then freely defining that phase to be 0, the parametrization

shown in 2.14 is achieved. This essentially represents the process of absorbing these

phases into the lepton fields and is described in detail in [25]. Now the oscillations

can be described via three mixing angles and a complex term [19], alongside the two

independent ∆m2
21 and ∆m2

32 terms relating the neutrino mass states.

With our parametrization complete, we can examine the different experimental

limits set on these parameters via different oscillation experiments. Table 2.1 sum-

marizes the different experiments and their types that have placed the dominant

constraints on the different oscillation parameters. Here experiments can be catego-

rized both by their neutrino source, and in some cases, by their baseline. Specifically,

the neutrino sources are either solar neutrinos, neutrinos created from decays in nu-

clear reactors, atmospheric neutrinos, or neutrinos created via an accelerator.

In cases where the neutrino source is on earth, there exists some control over the

length of the baseline that experiments set their detectors along. Within this subset

of experiments, these dominating measurements are made at either long baselines

6CP-violation represents a break in charge conjugation parity symmetry, which is a symmetry
representing that physics functions the same if you flip a particle to its antiparticle and its parity
at the same time.
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Table 2.1: Experiments contributing to the present determination of the oscillation
parameters [3]

Experiment Dominant Important
Solar Experiments θ12 ∆m2

21, θ13

Reactor LBL (KamLAND) ∆m2
21 θ12, θ13

Reactor MBL (Daya-Bay, Reno, D-Chooz) θ13, |∆m2
31,32|

Atmospheric Experiments (SK, IC-DC) θ23, |∆m2
31,32|,

θ13, δCP
Accel LBL νµ,ν̄µ, Disapp (K2K, MINOS, T2K, NOνA) |∆m2

31,32|, θ23

Accel LBL νe,ν̄e, App (MINOS, T2K, NoνA) δCP θ13, θ23

(LBL) or medium baselines (MBL). Recall the the baseline is important due to the

presence of L in the oscillation probability in equation 2.12.

We note that in favor of following the presently determined, most-likely path

for the neutrino hierarchy, the limits proposed in this section assume a normal (not

inverted) hierarchy of neutrino mass states. Further, the constraints mentioned

below are taken from the Particle Data Group 2021 version of the 2020 review, [3],

which provides values for several global fits.

Presently, SNO [26] and Super-Kamiokande [27] provide the dominant measure-

ment of sin2(θ12) ≈ 0.31+0.013
−0.012 by way of searching for disappearance associated with

the solar νe flux. Meanwhile, the LBL reactor experiment, KamLAND [28], has the

dominant measurement of ∆m2
21 ≈ 7.39+0.21

−0.20× 10−5 eV2 [3]. The KamLAND exper-

iment is stationed about 180 km from a series of nuclear reactors and measures the

ν̄e survival rate from antineutrinos generated in nuclear reactions. Other reactor

experiments, such as Daya-Bay [29], Reno [30], and Double-Chooz [31] constrain

sin2(θ13) ≈ 2.241+0.066
−0.065 × 10−2.

Long baseline accelerator-based neutrino beam experiments, such as K2K [32],

MINOS, T2K, and NOνA [33], measuring disappearing νµ flux due to oscillation

have made the dominant measurements for ∆m2
32 ≈ 2.449+0.032

−0.030 × 10−3 eV2 as well

as for sin2(θ23) ≈ 0.56+0.020
−0.033 [3].

Our last constraint is placed by long baseline accelerator-based neutrino experi-

ments probing the CP violating term. These search for νe appearance, an increase in

the νe flux relative to expectation based on oscillations from the νµ beam. Together,
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the MINOS, T2K, and NOνA collaborations [33] constrain δCP ≈ 222+38
−28° [3].

Further measurements on neutrino oscillation parameters have been made using

atmospheric neutrinos. Super-Kamiokande has provided limits on several neutrino

oscillation parameters using atmospheric neutrino data [34]. These neutrinos are

generated due to interactions between cosmic rays and the earth’s atmosphere. As

an example, a cosmic ray hitting nucleons within the atmosphere can create mesons,

such as a π+ (π−) which then decays to a µ+ + νµ (µ−+ ν̄µ) providing a first source

of neutrinos, followed by the muon’s (anti-muon’s) own decay processes:

µ− = e− + ν̄e + νµ (2.15)

µ+ = e+ + νe + ν̄µ (2.16)

which provide additional atmospheric νe and νµ flux.
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Chapter 3

The MicroBooNE Experiment

The Micro Booster Neutrino Experiment (MicroBooNE) is based at Fermi Na-

tional Accelerator Laboratory (Fermilab) just outside Batavia, Illinois. At Fermilab,

the Short Baseline Neutrino (SBN) Program consists of three different detectors: Mi-

croBooNE, the Short Baseline Near Detector (SBND) and the far detector, ICARUS.

ICARUS was moved to Fermilab after operation at Gran Sasso Lab in Italy [4]. Each

of these detectors are placed along the same Booster Neutrino Beamline (BNB).

These three experiments all aim to study eV-scale neutrino interactions, as well as

pioneer the Liquid Argon Time Projection Chamber (LArTPC) technology for use

as a neutrino detector.

The MicroBooNE experiment, the first experiment operational on the BNB in

the SBN program, is designed with two major goals in mind. The first and fore-

most is the study of short baseline neutrino oscillations. This goal is motivated

primarily due to the observation of the low-energy-excess of electron-like events ob-

served by MiniBooNE. MicroBooNE is also furthering the development of Liquid

Argon Time Projection Chamber detector technology, which provides precise calori-

metric information as well as excellent identification. This LArTPC technology is

important for the future of neutrino physics, both through SBND, and the Deep

Underground Neutrino Experiment (DUNE) [35] which will also feature LArTPC

detectors. Through this information, MicroBooNE also is able to perform various

cross section measurements [10].
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Figure 3.1 shows the array of detectors located along the BNB at Fermilab.

MicroBooNE can be seen sitting along the middle, right beside MiniBooNE.

Figure 3.1: A diagram of the SBN Program at Fermilab, with various neutrino
detectors including MicroBooNE’s, placed along the neutrino beam. [4].

Within this chapter we will describe the MiniBooNE experiment’s observed ex-

cess and the MicroBooNE experimental setup. Then we will describe a further

extension to the SM via the introduction of a sterile neutrino, whose presence could

explain the observed excess.

3.1 Origins in MiniBooNE

MiniBooNE or the Mini Booster Neutrino Experiment was created to test an

excess of ν̄eevents observed by the Liquid Scintillator Neutrino Detector (LSND) at

Los Alamos National Lab [16]. MiniBooNE was designed at the same L/E as LSND.

This choice was made so that if neutrino oscillations along a ν̄µ → ν̄e channel explain

the LSND excess, then MiniBooNE would be sensitive to the same oscillation.

The MiniBooNE detector is a Liquid Cherenkov detector consisting of a 12.2 m

diameter sphere filled with 818 tons of mineral oil. An array of 1520 photomulti-

plier tubes (PMTs), the bulk of which were reused from the LSND experiment, are

used for light detection. Of these, most are placed looking for neutrino interaction

detection. However, 240 are placed beyond an opaque barrier in a veto region at the

edge of the sphere to detect incoming cosmic-ray muons and identify signals from
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them as background. This frees the other PMTs to search for Cherenkov and scintil-

lation light coming from charged particles produced through neutrino interactions.

This outer layer of PMTs also serves to detect through-going particles from a neu-

trino interaction. If light is detected outside the inner chamber, but coincident with

the neutrino interaction, it indicates a particle passed through the opaque barrier,

and the entire interaction cannot be reconstructed. These interactions can then be

vetoed from an analysis.

A visual representation of the MiniBooNE Cherenkov detector is shown in figure

3.2. Here we see the detector in its enclosure, and a cross section showing the

signal and veto region. Meanwhile figure 3.3 shows a photograph of the inside of

the MiniBooNE detector.

Figure 3.2: The MiniBooNE detector enclosure (left) and a cut-away drawing (right)
of the detector showing the distribution of PMT’s in the signal and veto regions [5].

The MiniBooNE collaboration performed a counting experiment to measure the

number of charged-current quasi-elastic (CCQE) νe and ν̄e candidate events ob-

served within the Cherenkov detector. In 2007 the collaboration released a result

demonstrating an excess of these events observed in their data compared to their

expectation specifically at low energies. As MiniBooNE has continued to take more

data, this low-energy-excess (LEE) continues to be present. The most up-to-date

measurement, released in 2021, is shown in figure 3.4.
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Figure 3.3: A photograph of the inside of the MiniBooNE detector [6].

The excesses observed by LSND and MiniBooNE have driven exploration into

searches for a variety of new physics phenomenology, described further in [7]. It

also exists as one of the major drivers for MicroBooNE and the SBN Program at

Fermilab. This thesis specifically performs a search for a 3+1 Sterile Neutrino model,

described in section 7, as investigated through a νµ CCQE selection.

3.2 The Booster Neutrino Beamline

The MicroBooNE LArTPC sits 468.5 m down the Booster Neutrino Beamline

(BNB) at Fermilab. The Booster Neutrino Beamline is a relatively high-purity νµ

and ν̄µ beam with a small fraction of νe impurity, and is the same beam received

by the MiniBooNE experiment 541 m down the beamline. In this section the beam

discussion focuses on two aspects of the BNB.

1. The process by which the neutrinos are created and collimated via a proton

beam.

2. A breakdown of the different components of the neutrino beam received by

MicroBooNE.
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Figure 3.4: The observed MiniBooNE low-energy-excess in νe CCQE data. [7]

3.2.1 Making Neutrinos with a Proton Beam

At Fermilab, a linear accelerator (LINAC) accelerates bunches of protons to

400MeV before these protons are injected into a 474-meter-circumference synchrotron

which further accelerates the protons to 8 GeV kinetic energy. The synchrotron then

dumps out these bunches of protons in ’spills’ that are roughly 2 ns wide and 19 ns

apart.

These spills are then directed toward a beryllium target. Beryllium was chosen

both for its ability to be replaced if necessary, and its ability to stay cool via an

air-circulating cooling system while undergoing the high-intensity proton beam [8].

If the high energy protons smash into the target, they rip protons and neutrons

apart into their constituent quarks. These quarks immediately recombine leading

to hadron production. Different hadrons decay and produce neutrinos. These sub-

sequent decay modes are described in table 3.1

While different kinds of hadrons can be produced, we focus now on the charged

pions, π±, produced. These π± and other hadrons (as well as any non-interacting

protons from the beam) enter a pulsed toroidal electromagnet, known as the horn,
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Table 3.1: Particle lifetimes, and neutrino-producing decay modes and branching
ratios considered in the simulation[8].

Particle Lifetime Decay mode Branching ratio
(ns) (%)

π+ 26.03 µ+ + νµ 99.9877
e+ + νe 0.0123

K+ 12.385 µ+ + νµ 63.44
π0 + e+ + νe 4.98
π0 + µ+ + νµ 3.32

K0
L 51.6 π− + e+ + νe 20.333

π+ + e− + ν̄e 20.197
π− + µ+ + νµ 13.551
π+ + µ− + ν̄µ 13.469

µ+ 2197.03 e+ + νe + ν̄µ 100.0

which is depicted in figure 3.5. To maintain function the horn is water-cooled during

operation. The horn can operate in two modes, neutrino-mode and antineutrino-

mode. The difference between modes is that antineutrino-mode directs current in

the reverse direct, which flips the magnetic field.

Figure 3.5: The MiniBooNE pulsed horn system. The outer conductor (gray) is
transparent to show the inner conductor components running along the center (dark
green and blue). The target assembly is inserted into the inner conductor from the
left side. In neutrino-focusing mode, the (positive) current flows from left-to-right
along the inner conductor, returning along the outer conductor. The plumbing
associated with the water cooling system is also shown [8].

As charged hadrons pass through this focusing magnetic field they are turned

either back inward toward the beam, or outward based on the sign of their electric

charge. This allows the horn to selectively focus pions toward an opening leading
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into a decay pipe. π+ or π− can be selected based on the direction of the horn

current which flips the magnetic field direction, meanwhile particles of the incorrect

charge are directed away from the beam, and into shielding.

In neutrino-mode π+ particles are then selected and sent through a collimator

that absorbs particles that will not contribute to the neutrino beam. Then the π+

enter the decay pipe, the air-filled, ∼50 m long decay pipe. These π+ mesons rapidly

decay and create neutrinos, through processes outlined in table 3.1.

The muons from these decays are stopped by the earth, while the neutrino prod-

ucts makeup the beamline. In the context of neutrino oscillations in section 2.3, the

start of a neutrino’s path length begins where its parent meson decayed in the decay

pipe.

A visual representation of the neutrino beam creation centered around the horn

is depicted in figure 3.6.

Figure 3.6: A cartoon of neutrino beam creation for the BNB. A proton beam
instigates hadron production at the target, the horn focuses the desired charged
pions, which then decay into neutrinos, while oppositely charged pions get sent
away.

3.2.2 Neutrino Beam Composition

The various decay processes outlined in table 3.1 produce both electron neutrinos

and muon neutrinos as well as their antiparticle counterparts even when running in
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π+ neutrino-mode. The BNB flux received by the MicroBooNE LArTPC is deter-

mined by the prediction determined by the MiniBooNE collaboration which uses

GEANT4 to simulate the horn, decay pipe, and resulting beam [8]. The Micro-

BooNE collaboration takes this same simulation, and modifies the detector param-

eters to apply to the setup of the LArTPC [9].

The resulting neutrino flux is broken down by energy as well as flavor in figure 3.7.

The bend in the νµ distribution at E > 2.5 GeV occurs due to contributions from

kaon decay. The νe flux shown is considered intrinsic as it arises from the beam’s

generation. This is compared to electron neutrinos that may arise somewhere along

the beam due to neutrino oscillations. The intrinsic νe contamination makes up

roughly 0.5% of the total flux, while ν̄µ contributes ∼5.9% and muon neutrinos

dominate with ∼93.6% [8].

Figure 3.7: The absolute neutrino flux prediction through the MicroBooNE detector
as calculated by the beam simulation. Shown is the flux for νµ, ν̄µ, νe, and ν̄eaveraged
through the TPC volume with dimensions 2.56m×2.33m×10.37m. [9]
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3.3 The MicroBooNE LArTPC

MicroBooNE’s detector is a Liquid Argon Time Projection Chamber (LArTPC).

LArTPC technology is advantageous because it can provide excellent spatial resolu-

tion to tell you where an interaction took place, as well as calorimetry to determine

the charge deposition in the detector. Both are used for particle identification within

an interaction. The MicroBooNE LArTPC makes use of 170 tonnes of liquid argon,

held within a cryostat. Of the 170 tonnes, 90 tonnes are held within the TPC. An

array of 32 photomultiplier tubes (PMTs) and lightguide paddles is placed behind

the anode wire-planes described below [10].

3.3.1 LArTPC Setup

The Time Projection Chamber within the LArTPC consists of a box, 2.325 m

tall, 2.560 m wide, and 10.368 m deep along the BNB direction. Facing along the

beam direction, with the y-axis pointing up to the sky, on the right side of the box

is the cathode plane held at −70 kV. On the left side of the LArTPC, within a

wire frame, exist three anode wire-planes, held near ground, at progressively higher

potentials as they get further from the cathode. In order of their progressively higher

potentials, these anode wire-planes are called the U induction plane, the V induction

plane, and the Y collection plane. Figure 3.8 shows a cross section of the detector.

When charged particles move through liquid argon they ionize electrons as well

as make prompt vacuum ultraviolet (VUV) scintillation photons, which are detected

via the light collection system. Due to the purity of the argon, the ionized electrons

are now free to drift across the detector toward the higher-potential anode wire-

planes. There, the electrons induce bipolar signals on the two induction planes

before they are collected on the collection plane and create a unipolar pulse.

This process is laid out in the diagram shown in figure 3.9. The figure shows

an example of an incoming neutrino interacting to create two charged particles that

move through the TPC and create electrons, which then drift to the wire-planes

creating signals. The V wire-plane image shown demonstrates the bipolar pulses
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Figure 3.8: Schematic of the cross section of the MicroBooNE LArTPC. In this
view, the beam would be directed out of the page (in the z direction). [10].

created, while the Y wire-plane waveforms show only unipolar pulses. These wire-

planes are sampled at a rate of 2 MHz.

Table 3.2 shows the nominal values of several key design parameters. A point to

note is that the collection plane consists of vertical wires spaced out along the beam

direction, while the other wire-planes are held at a fixed angle of 60◦ relative to the

vertical. Since the induction planes are at an angle there are fewer wires needed to

span the same area.

Within MicroBooNE, when discussing aspects of our reconstruction and analyses

and referring to our coordinate system, the z axis is defined as pointing in the

direction of the beam, with 0 at the beginning of the LArTPC. The x axis is defined

as pointing across the detector toward the cathode, with 0 at the anode wire-planes.

Finally, the y axis points up, as required by the right-hand-rule, with 0 defined

as in the middle of the detector. This Cartesian coordinate layout, as well as the

analogous cylindrical coordinate version, is depicted in figure 3.10.

Given this coordinate system, the signals received by the wire-planes can then

determine the y and z coordinates pertaining to an interaction that caused ionization

charge to drift across the LArTPC. The x coordinate can then be determined using
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Figure 3.9: A diagram of the LArTPC principle. The signal formation for the second
induction plane (V plane) and the collection plane (Y plane) are shown [10].

the drift velocity, which is set by the uniform electric field at 0.11cm/µs, and the

total drift time, which is determined using the scintillation light detected via the

light collection system.

3.3.2 PMT Light Collection System

The MicroBooNE light collection system is comprised of 32 Hamamatsu R5912-

02mod 14 stage cryogenic 8-inch hemi-spherical PMTs. This high-gain model is

chosen to counteract the decrease in gain experienced by operating in a cryogenic

environment. In addition to this PMT array, four light guide paddles are installed

for R&D purposes [36]. Figure 3.11 shows a diagram of the light collection system

as it is arrayed within the MicroBooNE LArTPC.

Argon scintillates isotropically at 128 nm, a difficult wavelength to detect us-

ing photodetectors. As such both the light paddles, and the PMTs are coated in

tetraphenyl-butadiene (TPB), which absorbs the ultraviolet light and emits in the
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Table 3.2: MicroBooNE LArTPC design parameters and nominal operating condi-
tions. [10]

Parameter Value

# Anode planes 3
Anode planes spacing 3 mm

Wire pitch 3 mm
Wire type SSm diam. 150 µm

Wire coating 2µm Cu, 0.1µm Ag
Design Wire tension 6.9N ±1.0N

# wires (total) 8256
# U Induction plane wires 2400
# V Induction plane wires 2400
# Y Collection plane wires 3456

Wire orientation (w.r.t. vertical) +60◦,−60◦,0◦ (U,V,Y)
Cathode voltage (nominal) −128 kV

Cathode voltage (operation) −70 kV
Bias voltages (U,V,Y) −200 V, 0 V, +440 V
Drift-field (nominal) 500 V/cm

Drift-field (operation) 273.4375 V/cm
Max. Drift Time, Cathode to U (at 500 V/cm) 1.6 ms
Max. Drift Time, Cathode to U (at 273 V/cm) 2.9 ms

# Field-cage steps 64
Ring-to-ring voltage step 2.0 kV

wavelengths of light that pass through borosilicate glass and activate the photo-

cathode material of the PMTs. A thin coating of platinum is applied to increase

the photocathode’s conductivity at cryogenic temperatures [10]. The emission and

absorption spectra are shown in figure 3.12.

As mentioned previously, the detection of light by the light collection system is

important in determining the x coordinate for determining where in 3D an interac-

tion took place.

3.3.3 Event Triggering and Electronics Readout

While the MicroBooNE LArTPC is active, the electronics systems are not con-

stantly reading out data for storage. This is a consequence of two major factors.

First and foremost, it would be impractical to try to readout and store all the data

taken by the LArTPC during its years-long operation at MHz sampling rates, and

secondly, during the vast majority of time the BNB is operational, no neutrinos are

52



Figure 3.10: A depiction of the coordinate systems defined by MicroBooNE when
discussing locations within the LArTPC.

being received by the detector. This creates the need for ’trigger’ mechanisms that

signal that a period of time or ’event’ surrounding an interaction should be saved

for analysis.

One such trigger comes directly from the BNB. Spills of neutrinos are sent

through the BNB to the MicroBooNE LArTPC at roughly 5 Hz, with a spill width

of 1.6 µs [37]. As such, much of the time the BNB is ’on’ no neutrino interactions

are expected, as the gaps between spills makeup the vast majority of time. The

BNB trigger is designed to save the 1.6 ms starting at the spill, as well as 1.6 ms

before and after the spill, for a total of 4.8 ms comprising an ’event’.

However, as neutrinos are extremely non-interactive, most of these events will

be devoid of a neutrino interaction, and contain only cosmic-ray muon interaction

background occurring during this time. In order to avoid saving all these cosmic-ray-

only background events, an additional requirement is made that the PMTs receive

a total of 6.5 photoelectrons during the 1.6 µs beam spill window. This fractional

amount of photoelectrons is possible as the PMTs are calibrated to convert an elec-

trical signal to photoelectrons. This should represent the scintillation light received

from particles coming from a neutrino interaction, and removes 97% of empty beam
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Figure 3.11: A schematic of the light collection system as arrayed within the Micro-
BooNE LArTPC, the 32 PMTs are shown as circles, with the 4 light guide paddles
as rectangles.

spills [38].

In order to study the cosmic-ray muon background, data is taken while the

beam is off, but the optical trigger’s conditions are still met. These off-beam events,

discussed further in section 6.1, are useful as they should be functionally the same as

an event taken during beam operation without a neutrino interaction that is saved

due to cosmic-ray muons passing the optical trigger.

Initially the signals from the wire-planes and PMTs are analog. MicroBooNE’s

LArTPC uses a custom low-noise electronic readout system to amplify these signals,

then digitize them before they are written to disk. This process is outlined in figure

3.13, and described in detail in [10], and summarized briefly below.

The signals read out by the LArTPC’s wire-planes are first sent to a CMOS

application-specific integrated circuit (ASIC) electronics located within the cryostat

surrounding the LArTPC. These ASICs need to be located within the cold environ-

ment so that the wire-signals are not lost to noise by traveling over long distances.

This allows the signals to be amplified, before they are sent out of the cryostat to

readout crates in the detector hall. Finally the signals are sent through analog-

digital-converters (ADCs) which digitize the signals, then into front-end-modules

(FEMs) which feed into a buffer. From there, based on the triggers described above,
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Figure 3.12: The scintillation spectra of Argon (red-dashed) along with the TPB
re-emission spectra (green-dashed) are shown with the absorption spectra in % of
TPB (green-solid), the borosilicate glass (black-solid), and platinum (blue-solid)
components of the PMT arrays [11].

either the data is stored, or overwritten.1

3.3.4 The MicroBooNE CRT

MicroBooNE is a surface-level detector and as such cosmic-ray muons are one of

the major backgrounds to study neutrino interactions in the LArTPC. These cosmic-

ray muons slice through the detector at a rate of 5 kHz [10]. In order to counteract

this MicroBooNE designed and constructed an external system to identify and reject

cosmic-ray muon interactions within the data. The design and construction of this

Cosmic Ray Tagger (CRT) is covered in detail in [39].

The construction and implementation of the CRT was completed for Micro-

BooNE’s Run 3 (Run periods are defined in section 6.1). This means that the CRT

was not functional for the bulk of the data available for use in this analysis. In

order to avoid dependence on the CRT for cosmic tagging then not having it for

a significant portion of the data, it was not used by the DL reconstruction, or in

this thesis. Instead, alternative cosmic-ray muon tagging methods were used, as

1A second stream of data, known as the supernova data stream exists in parallel, for physics
unrelated to the BNB and is not used in this analysis.
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Figure 3.13: MicroBooNE LArTPC and PMT signal processing and readout stages
[10].

Table 3.3: The wire counts, and unresponsive wire counts for the three different
wire-planes in the MicroBooNE LArTPC.

Plane Unresponsive Wires Total Wires % Unresponsive

U Induction Plane 427 2400 17.79
V Induction Plane 98 2400 4.08
Y Collection Plane 345 3456 9.98

Total 870 8256 10.54

described in section 5.3. In addition, a DL cosmic-ray muon tagging tool is explored

in section 8 at length, which was primarily the work of this thesis’ author.

3.3.5 Unresponsive Wire Regions

Portions of the TPC wires are unresponsive in MicroBooNE’s detector. In the

images we build to represent the wire-plane signals, discussed later, these unrespon-

sive regions manifest as vertical lines devoid of charge deposition, noticeable in the

event displays shown in section 5.

The rates at which this unresponsive wire problem occurs are described in table

3.3.

Unresponsive wires can come about from a multitude of causes, and are discussed
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in more detail in [40]. These causes involve either wires being shorted or issues

with the electronics surrounding the application-specific integrated circuits (ASICs).

However, because the MicroBooNE LArTPC is welded shut, access to the wires is

not possible, and replacement was not a viable option.

A visual representation of the unresponsive regions in our three different wire-

plane signal images is shown in figure 3.14. The process with which these images

relate to the detector is detailed in the image reconstruction section, 5.2, for the U

and V induction planes, which only contain 2400 wires, columns > 2400 are shown

in grey-white.

Notably, the U induction plane features the most unresponsive regions, many of

which are clustered together in the low wire index portion of the image, which corre-

sponds to the upstream part of the detector with respect to the beam. Meanwhile,

the V induction plane is the cleanest, with only about 4% of its wires unrespon-

sive. The Y collection plane strikes a middle-ground, with a chunk of unresponsive

wires together just below index 2500, but otherwise spread out among the image.

However, it is important to recall that having 3 wire-planes in the LArTPC design

affords a layer of redundancy in reconstructing the 3D position of an interaction, as

in an ideal case only two wire-planes are needed to give the y and z spatial coordi-

nates. This redundancy means that only ∼ 1% of 3D detector is lost despite ∼ 10%

of all the wires being unresponsive.

These unresponsive regions within the MicroBooNE detector are an obstacle to

track and shower reconstruction. They interrupt the linear and conical topologies

with artificial gaps lacking any deposited charge in our images. As such, either our

algorithmic solutions need to be robust enough to anticipate unresponsive regions, or

we could turn to machine learning tools which can learn to deal with the unresponsive

regions from their training data.

For example, section 8 outlines the usage of a neural network, sMask-RCNN,

which clusters cosmic-ray muon tracks, often across unresponsive regions, without

needing specific programming to do so. Another project in MicroBooNE aimed
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(a) U Induction Plane

(b) V Induction Plane

(c) Y Collection Plane

Figure 3.14: The unresponsive regions of the MicroBooNE wire-plane images for all
three wire-planes are shown in red against the working regions in blue. Columns
> 2400 for the U and V planes are shown in grey-white because those planes only
feature 2400 wires. The construction of these images are defined in section 5.2
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to regenerate the signal that would have been deposited in a unresponsive wires

using a Generative Adversarial Network [41], which could run at the beginning of

reconstruction, and if effective, would drastically mitigate the issue of unresponsive

wires.

3.4 Sterile Neutrinos

Now that we have outlined the MiniBooNE low-energy-excess, and how it moti-

vated the MicroBooNE experiment’s design we can explore a solution to the anoma-

lous LEE. In this section we explore a theory-driven explanation to the excess itself.

One way to account for the MB LEE, as well as other experimental phenomena,

is to add an additional neutrino mass state to our model of neutrino oscillation, ef-

fectively adding an additional mass splitting, ∆m2
41. However adding an additional

flavor state is slightly more complicated. The LEP experiment has provided evi-

dence that there are only 3 stable, weakly interacting neutrinos [42]. Therefore the

introduction of a new flavor state (and new mass state) is of a neutrino that does

not interact via the weak force. Namely, it doesn’t couple with the W± or the Z0

bosons.

This type of neutrino is termed a sterile neutrino. Sterile here is used in the

sense that it interacts only via gravity. But of course gravity does not provide a

reasonable handle to test for the sterile neutrino’s existence, so a sterile neutrino

is functionally non-interactive. This presents a problem. Neutrinos were already

famously difficult to observe, with billions and billions passing through everything

on earth constantly. Even when we find them, we only are able to observe them

from the products of their weak interactions. Sterile neutrinos, by definition, would

remove the weak interaction from our list of tools to detect their existence.

The handle that remains lies in neutrino oscillations. We can look for unexplained

disappearance effects, where we see fewer neutrinos than the SM expects. We can

also search for unexplained appearance effects, where we have an excess of neutrinos

compared to the SM prediction. In either case, the mechanism could be explained
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by a sterile mass state impacting our oscillations formalism.

3.4.1 3+1 Sterile Neutrino Model

There are an infinite number of ways to further push the already extended Stan-

dard Model described in 2.3. Many involving sterile neutrinos are discussed in terms

of global fits in [43].

Within this thesis we investigate a 3+1 Sterile Neutrino model, where the 3 ob-

served flavors of neutrino in the SM are joined by a single additional sterile neutrino

state. We dub the flavor state νS and the mass state ν4. This sterile then mixes

with the other neutrino flavor states in the same way as they mix with each other.

However due to constraints already put on the neutrino oscillation mixing parame-

ters described in section 2.3.3, the sterile flavor state is only allowed minimal mixing

with the first three mass states.

The addition of another mass state to the neutrino oscillation formalism de-

scribed in section 2.3.2 involves extending the PMNS matrix to a 4 × 4 matrix,

and following the analogous procedure outlined for three neutrinos. However, for

MicroBooNE, as shown below, an approximation can be made.

The anomalies observed by MiniBooNE, LSND, and other short-baseline neu-

trino experiments push the added mass splitting to order of 10 times larger than the

presently measured mass splittings, ∆m21, and ∆m32 [43], with the sterile neutrino

mass state sitting roughly around 1 eV [44, 45].

This significant difference between the proposed sterile-state mass splitting, and

the existing mass splittings allow for a commonly used ”short-baseline approxima-

tion” to be made when talking about sterile neutrino oscillations. The short-baseline

approximation sets

∆m2
21 ≈ ∆m2

32 ≈ 0. (3.1)

This simplification then allows sterile neutrino oscillations to be discussed in a

framework surrounding ∆m2
41, which is effectively the mass splitting between the
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newly introduced sterile neutrino’s mass state, and the SM neutrino mass states.

As shown in section 2, the neutrino oscillation probability is dependent on the path

length L, and the neutrino energy E.2 As such, the short-baseline approximation

can be made for experiments that feature similar neutrino path lengths. As an

example, the MicroBooNE detector sits next door to MiniBooNE’s detector.

By setting the other mass splittings to effectively 0 under the short-baseline

approximation the neutrino oscillation procedure now appears as the 2-neutrino case

dependent on the desired flavor, and the sterile mass splitting ∆m2
41. For neutrino

survival, the probability becomes

P (να → να) = 1− 4(1− |Uα4|2)|Uα4|2 sin2(1.27∆m2
41L/E), (3.2)

and for neutrino appearance probability in νβ from να

P (να → νβ) = 4|Uα4|2|Uβ4|2 sin2(1.27∆m2
41L/E). (3.3)

In both of these equations, the factor 1.27 comes from a factor of 1
4~c in units to

allow for the inputs of L to be in km, E to be in GeV, and ∆m2 to be in eV2. For

an example νe appearance search, the observation is compared to the expectation,

modified by the appearance probability in equation 3.3, checking to see if the fourth

mass state allows additional νe flux via a connection to the new mass state.

The neutrino survival probability is useful in performing a neutrino disappear-

ance search, wherein one compares the observation to their expectation, modified

by the survival probability. This probes whether να neutrinos are disappearing into

other flavors via oscillations with the new mass state. In section 7, we perform a νµ

disappearance search in MicroBooNE across a grid of oscillation parameters.

2As well, of course, as on the fundamental parameters of the universe, like the mass splittings,
and the mixing angles making up the PMNS matrix. But those are not controlled in experiment.
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3.5 Blinding Policy

As a brief aside, it is important to mention that MicroBooNE, as part of a

collaboration-wide agreement, blinds itself to the signal-region data in its various

analyses. Functionally, this means that data is taken by the detector, and stored for

eventual use. However, due to this blinding-agreement, members of the collaboration

agree to not run their analysis on data pertaining to their signal until such a time

as the analysis is fully-formed, and frozen. Frozen here means that the analysis

infrastructure will no longer undergo any major changes unless significant errors are

discovered. Then fixes are implemented and explicitly documented for transparency.

This blindness policy is implemented to help avoid analyses unintentionally bi-

asing themselves to some expectation of what the data ’should’ be, where ’should’

is defined by whatever preconceptions the analyzer may have. For example, it is

designed to avoid a case where some new physics is present in the data, causing

significant tension with expectation, then the analyzer mistakenly tuning the ex-

pectation to fit better. This could happen if the analyzer incorrectly assumes the

tension is due to a fault in the analysis and not an underlying physical phenomenon.

In practice, as analyses are developed sidebands are examined. These sidebands

refer to regions of data where the analysis’ signal is not expected, and agreement

between expectation and data is anticipated. This allows an analysis to test its

machinery without unblinding itself to the signal-region data.
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Chapter 4

Deep Learning

Within this chapter context is provided surrounding the moniker ”Deep Learn-

ing” used in the ”MicroBooNE Deep Learning Analysis”. We outline several tech-

niques discussed throughout this thesis, most notably Convolutional Neural Net-

works, and Boosted Decision Trees which are used in our reconstruction and selec-

tion of data in sections 5 and 6. Additional exploration into using DL-methods in

cosmic tagging is performed in section 8, a significant effort into potential future

tools in LArTPC experiments.

The field of machine learning and artificial intelligence is broad, and rapidly

expanding. This chapter will focus on topics relevant to those employed in the DL

analysis or otherwise used within this thesis.

4.1 Machine Learning Overview

Deep learning exists as a sub-field of machine learning. As a whole, machine

learning is a broad field of computer science concerned with developing algorithms

that are able to improve or ‘learn’ automatically through experience with data. Con-

sidered part of the study of artificial intelligence, machine learning algorithms are

distinct from more traditional computer algorithms in that they do not contain an

explicitly programmed method to make their predictions. Instead, machine learning

algorithms can learn their solutions by ‘training’ against a target solution. This is
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known as supervised learning. Unsupervised learning is a branch of machine learn-

ing that does not require the data to be labeled with a target ahead of time, instead

forcing the algorithm to group the data itself. Unsupervised learning is not used

within the MicroBooNE DL analysis, and is beyond the scope of this thesis.

Since supervised machine learning requires its algorithms to train with a known

target, labeled data is needed in order for a machine learning algorithm to learn its

task. In general, assembling a large dataset of training data can require significant

time and person-hours to hand-label the data. However, in the field of high energy

particle physics simulated datasets are fairly common, and often produced for more

traditional reconstruction. This removes a major burden in exploring the use of

machine learning tools for particle physicists.

4.2 Deep Learning

Deep learning exists as a methodology underneath the umbrella of machine learn-

ing [46]. Deep learning techniques attempt to solve problems by imitating neural

networks found in the brain. These artificial neural networks are designed to follow

the existing pattern in chains of neurons linked together that allow signal transmis-

sion. Each artificial neuron, or node, exists in parallel with many neurons to form

a layer. Then neurons within these layers connect to the next layer of neurons and

so on. These connections allow information to flow forward through the layers of

the network. As layer upon layer of nodes are built up the information flow and

connectivity deepens, hence the deep learning.

Figure 4.1 shows an example setup of an artificial neuron or node. Node N

receives a vector of inputs Xi each with a corresponding weight wi. The node sends

an output based on the linear combination of inputs. While the image depicts only

one branch of outputs for simplicity, it is important to note that this output can

be used as an input for many neurons in the next layer of the network. Equation

4.1 provides a mathematical depiction of an artificial neuron. The sum of a linear

combination of the inputs Xi multiplied by their weights wi is fed through some
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activation function φ to determine the node’s output O.

Figure 4.1: An example of an artificial neuron and its inputs.

O = φ(
n∑
i=0

Xiwi) (4.1)

The activation function φ is meant to imitate a neuron’s ability to output a sig-

nal. While not quite a binary switch, the activation function is typically designed

to receive input up to some threshold before it activates like a neuron firing, this

provides non-linearity to the neural network which is essential in decision making

processes which are frequently non-linear. Figure 4.2 depicts three common activa-

tion functions as well as the identity y = x. One notable aspect concerning these

functions is that they all can be characterized as having a non-firing range of output,

then transitioning into some ’ON’ state.

The leaky RELU or leaky rectified linear unit function is essentially a piece-wise

function where y = x above x = 0. Below zero a much smaller slope is used, for

example y = 0.01x. This allows the simulation of a neuron ’firing’ around the x = 0

point. This is slightly modified from the original rectified linear unit function which

defined to be 0 for all x < 0. This additional slope characterizes the ’leaky’ aspect,

and allows for later neurons to differentiate between different levels of negative input.

These activation functions allow the artificial neurons to ‘fire’. Neurons then

learn to fire when they spot a feature. This firing announces the feature’s presence

to later portions of the network. For example, a neuron deep in the network may be

trained to fire if it sees a dog. This neuron would likely connect to earlier neurons
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Figure 4.2: Several examples of activation functions.

identifying lower level features such as tail, fur, four legs and more. Then if these

input features were present the dog neuron could activate.

At the end of the network the outputs need to be collected and turned into

something meaningful. Keeping with the example of a classifier, the network may

need to take all the final neurons, containing high-level features of the image, and

classify whether the input is of one of N class categories (like dog, cat, horse, person

etc). This can be done by taking all the final neurons and connecting them to N

output ‘scores’, each relating to one of the potential classes. These scores can be

run through a softmax function

σ(~z)i =
ezi∑N
j=1 e

zj
, (4.2)

where the softmax function takes N real numbers contained in ~z and creates

a normalized probability distribution with a probability for each of the N inputs.

Now the network is outputting a probability that it thinks the input is each of the

different class categories. These output probabilities are then compared to the target

label for the given input, and a loss, or cost is computed. There are many different

forms of loss function that can be used from a linear or quadratic difference, to more

complicated options, but the essential purpose is always the same. To distinguish

how far off the network’s prediction was from the target.
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Now, finally, the learning can begin. The calculated loss is the result of a long

chain of mathematical computation flowing back through the network all the way

to the original inputs. Therefore, via gradient descent, the network can search for a

lower loss value by stepping the different model parameters comprising the neurons

in the direction dictated by the gradient. Figure 4.3 represents a simple cartoon of

this gradient descent. Here the ball, representing the network and its parameters

roll down some loss-space defined by the various network parameters towards some

minimum loss value. However, this is an incredibly simplified depiction, as loss

functions can depend on hundreds, or thousands of parameters operating in an

extremely high dimensional space.

Figure 4.3: A cartoon example depicting gradient descent in a simplified loss-space.
The ball represents the network rolling down toward a minimum loss.

One of the key factors leveraged by this gradient descent is that every com-

putation in the network leading toward the loss calculation must be differentiable.

However, discontinuity is allowed, such as in the leaky RELU shown above, so long

as the gradient is just defined1 at the points of discontinuity. This procedure for

1Here, by defined, we mean only in the sense that we can ‘cheat’ and force the gradient to be
defined as something.
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(a) Input Image (b) Labeled Image

Figure 4.4: An image of the Tufts Neutrino Group in 2018 (left) and one labeled
by a traditionally trained Mask-RCNN network (right), where objects are found,
classified, and their pixels clustered.

connecting the gradients leading to loss is known as backpropagation.

Deep learning techniques have proven particularly valuable in the field of com-

puter vision, which strives to use computer algorithms to understand images. For

example, a common computer vision task involves image classification, where the

goal is to label images based on their contents from among some pre-existing list of

categories. Among a dataset of images containing pictures of different animals, a

machine learning algorithm will attempt to classify each picture based on the animal

it contains, such as a cat or a dog. Figure 4.4 shows the Tufts Neutrino group in

2018, identified via Mask-RCNN, a combination of convolutional neural networks.

Mask-RCNN is the subject of our cosmic ray muon analysis described in 8.

4.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are one of the major network architec-

tures in computer vision tasks. CNNs utilize translation-invariant kernels (or filters)

that get applied across the image, building up features localized to where the kernel

was applied. As the depth of the network grows the ‘local’ region the kernel is being

applied to, relative to the original image, grows larger and larger. A review of CNNs

is performed in [47].

The bedrock of CNNs is their implementation of these kernals. These kernels
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can be thought of as N ×N matrices. In the same as traditional image-processing

filters, these kernels get applied to images via a dot-product mechanism whereby

the kernel is multiplied with local pixels in the input image. The outputs of these

dot-product operations become the feature maps for the next layer of convolutions,

analogous to the first layer’s input image. Essentially the procedure of applying

a kernel is analogous to the artificial neuron described above, where the output of

the kernel goes through a similar activation procedure. Many hyperparameters2 are

associated with CNNs and their kernels. These hyperparameters dictate various

aspects of CNN operation such as

• how many kernels are applied at each layer and therefore how deep each sub-

sequent feature map is.

• the dimensionality of the kernel, which is typically small, such as 3× 3

• the padding applied to the input, which corresponds to 0s padded around the

image to allow kernels to be applied to the image’s edge effectively

• the kernel’s ‘stride,’ which refers to the spacing in the image between kernel

dot-product applications.

• downsampling, such as ‘max pooling’, where the image or feature map is de-

creased in size, commonly employed to reduce the size of the information as

you go deeper in the CNN. This is to reduce memory and processing costs.

The study performed in section 8.4.2 uses a different form of convolution: sparse

submanifold convolutions. These convolutions are more fully described there. To

summarize the difference, sparse submanifold convolutions are not applied to the

input image or input feature map if centered on an input of 0. This allows the

network to save on memory by only storing non-zero parts of the input, as well as

save on processing time by skipping many computations that would output 0. There

2In the field of machine learning, hyperparameters refer to parameters describing the architec-
ture and operation of the network, distinguished from typical model parameters which refer to the
numbers that dictate the computation performed to calculate the loss and then that get updated
when the loss is minimized.
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is a minimal drop in performance as features picked up by the periphery of kernels

are missed if the kernel would be centered on a 0 input. The study examines this

change more completely.

4.2.2 The Importance of GPUs

Within the field of deep learning, graphics processing units (GPUs) are an impor-

tant tool. The first implementation of a CNN on a GPU in [48] provided a speed up

of about 3 or 4 times compared to a central processing unit (CPU) implementation.

The design and typical purpose of GPUs is to perform computations associated with

rendering graphics. This allows GPUs to perform many of the same type of task

quickly, in parallel. As such they are designed to perform many simple arithmetic

operations, quickly. In comparison, a CPU is more adept at general tasks associated

with computer processing, like opening, closing, or communicating with, or running

executables for, different programs.

A good depiction of the importance of GPUs in deep learning is given in [49],

and we will use their analogy for a GPU vs CPU comparison. A CPU is like a

sports car, taking a few people quickly from place to place, a GPU is like a truck,

moving a lot more stuff, but slower. However, as long as the stuff is all going to the

same place, its better than going back and forth time after time. Essentially, GPUs

can do lots of simple operations in parallel, whereas CPUs are more linear in their

operations.

Figure 4.5 shows a comparison of the number of floating point operations (FLOPs)

performed by CPUs vs GPUs with time. The important takeway is that GPUs can

provide orders of magnitude gain to processes that are not bottlenecked.

4.3 Boosted Decision Trees

Boosted Decision Trees (BDTs) are used in the DL analysis’ selections shown in

section 6. Boosted decision trees employ machine learning methods in the construc-
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Figure 4.5: A comparison of FLOPs between GPUs and CPUs. Courtesy of fast.ai,
[12]

tion of the decision trees. Specifically, BDTs employed in our analyses leverage an

implementation called XGBoost [50]. In order to get a reasonably full picture of

this, we first start with a simple classic decision tree. Figure 4.6 shows a pictorial

representation of a single decision tree. This example tree demonstrates a toy de-

cision trying to classify an image of a dog. The orange nodes represent conditional

questions, while the red nodes indicate output scores, these scores can then be used

in decision making by adding up the outputs of several constructed trees together,

then making a decision from the combined score. The final conditional branches of

the tree are called ‘leaves’.

Figure 4.6: A cartoon depiction of a Decision Tree.
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The Boosting aspect of BDTs comes into play in how the group of trees are built.

Individual trees are build by optimizing some ‘objective function’ which consists

of a loss function and some regularization term. The tree begins by creating a

single conditional statement and its subsequent leaves, optimizing the objective.

Then these leaves are split into additional conditional statements (and their leaves)

creating the next tree layer in order to further optimize the objective, this is known

as gradient boosting.

This gradient boosting is similar to the gradient descent described above, whereby

you move in the direction of the gradient to push your objective function in the

right direction, except your parameters describe the structure of the tree being

added. Sometimes a cost can be required of new leaf additions to ensure they pro-

vide enough improvement to justify their added complexity. The depth of the tree

in layers is also a hyperparameter of the model. Once a given tree is finished it is

locked to the model, and another tree begins construction such that only one tree

is optimized at a time. This iterative process can continue until you’ve reached the

desired number of trees (a hyperparameter), or one can stop early if the last several

number of added trees fail to increase performance on a dataset held aside from the

fit [50].

It is important to note that within this section, our discussion of ”groups of

decision trees” should be taken to mean a single BDT with the same training set.

In section 6 when discussing ensembles of BDTs we are discussing a group of BDTs

each having a unique training set.
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Chapter 5

The MicroBooNE DL

Reconstruction

5.1 Overview

Information from the MicroBooNE LArTPC comes originally in the form of

electronic signals from the wireplane outputs and pulses from PMT array. In order

to perform many of the higher-level physics analyses targeted by members of the

particle physics community these lower-level data types need to be used to form high-

level physics quantities, such as the energy and momentum of particles observed in

the detector. This task is not trivial, and requires the 2D information residing in

the three different LArTPC wire-planes to be combined into a 3D representation of

the particle interactions taking place in the detector.

Within the MicroBooNE analysis, particles interacting with our detector can be

classified into two different groups, based on the particle’s topology, or the shape of

ionization it leaves in our detector. Heavily ionizing particles (HIPs) and minimally

ionizing particles (MIPs) leave tracks of charge along the particle’s trajectory as

the HIP or MIP create ionization electrons in the argon as it moves through the

LArTPC. Meanwhile, particles like γ or electrons leave behind a showering cone of

ionization, termed ’showers’. Electron showers are created from an electron creating
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both a typical ionization trail and stochastically emitting photons. These photons

then produce an electron and positron or Compton scatter. This process then re-

peats until the energy of the original electron is all used up, or the interaction

extends beyond the detector bounds. The process for a gamma shower is effec-

tively the same without the ionization trail from the original electron. This process

produces a branching that looks like forked lightning hence the term shower. The

energies, momenta, and other physical quantities detailing these showers and tracks

are the quantities we can use to perform high-level physics analysis.

The path from the LArTPC raw signals through the deep learning analysis team’s

reconstruction, and finally onto a neutrino oscillation analysis is shown in figure 5.1.

We start by performing signal processing on the LArTPC wire signals, and then

format them into three ’wire signal images’ corresponding to the three LArTPC

wire-planes. This formatting process is described below in detail. Then the DL

analysis team uses the MicroBooNE Wire-Cell team’s charge-light matching cosmic

ray muon tagging algorithms to tag tracks of charge originating from cosmic ray

muons, which are a background to any kind of neutrino interaction analysis we

want to perform.

After this cosmic tagging, we run a deep learning semantic segmentation net-

work dubbed ’SparseSSNet’ to label individual pixels in our image based on the

type of particle the pixel’s charge originated from. These labels are then used by

our vertexing algorithm which reconstructs neutrino interaction vertices by placing

3D candidate vertices within an event. Next we run our track and reconstruction

algorithms on each of these candidate vertices. This provides us with a list of ver-

tices and their associated tracks and showers in 3D within an event with which we

can begin to perform high-level physics analysis. Using these tracks and showers, we

can reconstruct what particles were present in the interaction and various physics

quantities associated with the particles, such as their energy and momentum.

In order to perform any analysis, the first step is to define a target sample of

events. In the case of the DL analyses from MicroBooNE, we define two target final-
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states made from neutrino interactions: interactions producing exactly one electron

and one proton (1e1p) and interactions producing exactly one muon and one proton

(1µ1p). Together, these two targets can be generically called one-lepton-one-proton

(1l1p) events. With our targets now defined, we need to cut our data down to a

relative high-purity group of events, while maintaining a reasonable signal efficiency

for both interaction types to provide adequate stats. The DL analysis team does

this using ensembles of BDTs which use the particle’s physics quantities as inputs.

The DL team has two ensembles of BDTs, one targeted toward 1e1p interactions

and the other targeting 1µ1p interactions. These higher purity selections can then

be used to perform neutrino oscillation measurements.

Note that both 1e1p and 1µ1p feature an event topology that contains two par-

ticles coming out of the neutrino interaction, in our detector this consists of a 2-

pronged pattern coming from the neutrino interaction point. As such the DL recon-

struction was developed with the goal of finding 2-pronged neutrino interactions in

order to better isolate these target samples. To aid our selections described in sec-

tion 6, a particle identification network is also included in the reconstruction chain,

which informs the selections what particles are likely present in an interaction.

5.2 Image Reconstruction

The processed signals from the LArTPC wire-planes can be visualized in the for-

mat of a trio of images, one image for each wire-plane in the MicroBooNE LArTPC.

These images are formatted such that each column of pixels corresponds to a single

wire from the wire-plane, and each row refers to a bin of time corresponding to when

the signal was read out. So the processed signal read out from the wire is summed

across this unit of time, and the resulting signal is stored as the pixel value. The

pixel values are correlated to the charge deposited in the detector that then drifts

to the wire-planes, though in some arbitrary units, referred to as pixel intensity

units (PIU) and shown on the z-axis of our event displays later on in this chapter.

Movement horizontally across an image represents moving along different wires, and
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Figure 5.1: A flowchart of the workflow for the Deep Learning analysis team’s
reconstruction.

movement vertically represents movement in time that the wire signal is being read

out.

Recall that the MicroBooNE LArTPC, described in section 3.3, has three wire-

planes, the first two of which are the induction planes with 2400 wires, while the

third plane, the collection plane, contains 3456 wires. In order for our images to

be flexible for reconstruction tools, we pad the images associated with the two

induction planes with extra columns of zeros so that they contain 3456 columns as

well, though columns 2401-3456 are zeros. While the wires are sampled 6048 times

over the neutrino beam window of 1.6 ms, for a sampling rate of 2 MHz, the DL

analysis team sums these samplings by a factor of 6. This means that the wire-plane

images end up with 1008 rows.

This reduction by a factor of 6 was chosen for two reasons, first to reduce the
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image size to make deep learning applications more tractable, as they can easily

run into memory constraints when training. However, the downsampling was also

specifically chosen to have an added benefit of making vertical and horizontal move-

ment in the wire-plane images happen at the same scale. When moving across

columns horizontally, the distance moved is equivalent to the number of columns

crossed multiplied by the wire pitch, which is 0.3 cm in the MicroBooNE LArTPC.

Meanwhile, when moving across rows vertically, the distance in the detector being

moved is equivalent to the electron drift velocity multiplied by the time associated

with the bin. This amounts to 0.5µs× 6× 0.1098 cm
µs

or 0.33 cm.

Figure 5.2 shows the wire-plane images for a sample event. The event is a

simulated νe interaction overlaid atop cosmic ray muon data taken while the neutrino

beam was off. This means that the neutrino interaction and resulting daughter

particles are simulated, while the cosmic ray muons elsewhere in the event come

from data. While the pixel values correspond to the wire signal received during the

total rebinned sampling time, for ease of display the image is thresholded at 100.

Note that since the rows correspond to the time that a particular wire was reading

its signal, row i in the U induction plane represents the readouts of the wires on

the U-plane at the same time as row i for the V and Y planes. So when looking to

match an interaction across all 3 planes, one can look at the rows the interaction’s

features occur on for a single plane, then look for those same features represented

in a different projection on the same rows for the other planes.

In the different wire-planes images shown, you may notice columns of ’missing’

charge, causing breaks in tracks. This is most evident in the U induction plane image

5.2a around columns 850-900 there are breaks in several tracks. These correspond

to the unresponsive wire regions in the MicroBooNE LArTPC, described in section

3.3.5. These represent a challenge in our reconstruction.
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(a) U Induction Plane

(b) V Induction Plane

(c) Y Collection Plane

Figure 5.2: An example event’s wire image displays.
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5.3 WireCell Charge-Light Cosmic Tagging

With the event now represented in its image format the next step the DL recon-

struction takes is to flag individual pixels as representing charge originating from

cosmic ray muons. For analyses targeting any kind of neutrino interaction, these

cosmic ray muons represent background, and can interfere with later stages of the

reconstruction.

For this process, the DL reconstruction uses the MicroBooNE Wire-Cell (WC)

charge-light (Q-L) matching algorithm documented in [51]. In brief summary, the

WC Q-L algorithm makes use of the light information detected by the LArTPC

array of 32 8-inch cryogenic photomultiplier tubes which sit behind the LArTPC

wire-planes. The light information detected during the neutrino beam spill then

gets matched to clusters of charge deposited in the LArTPC during the beam spill.

We show the same event from figure 5.2 in figure 5.3, except that only pixels

flagged by the WC Q-L algorithm as originating from charge associated with cosmic-

ray muons are shown. The inverse is shown in figure 5.4, where only pixels not

flagged as belonging to cosmic ray muons are shown. In the image containing the

flagged pixels we see the many cosmic ray muon interactions cluttering the event.

In the figure containing only unflagged pixels we see the success of the WC Q-L

algorithm. All that remains is the simulated νe interaction with its two prongs. The

simulated interaction features one track and one shower. The author implemented

this tool into the DL reconstruction chain.

5.4 SSNet Pixel Labeling

The next step in the DL reconstruction is to run a sparse Semantic Segmenta-

tion pixel labeling NETwork dubbed ”Sparse SSNET” [52, 53]. Convolutions and

sparse convolutions are discussed further in sections 4.2.1 and 8.4.2. The goal of

sparse SSNET, hereafter referred to as SSNET, is to classify individual pixels in

our detector images as belonging to one of five different categories based on particle

79



(a) U Induction Plane

(b) V Induction Plane

(c) Y Collection Plane

Figure 5.3: The wire image pixels that are flagged as coming from a cosmic ray
muon.
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(a) U Induction Plane

(b) V Induction Plane

(c) Y Collection Plane

Figure 5.4: The wire image pixels that are not flagged as coming from a cosmic ray
muon.
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type and origin:

• HIPs: Highly Ionizing Particles, such as a proton

• MIPs: Minimally Ionizing Particles, such as a muon

• Michels: Electrons coming from at-rest muon decay

• Delta Rays: Secondary electrons coming off of HIP and MIP tracks

• Showering Particles: Such as gammas-produced showers, or other non-delta,

non-Michel electrons

However, in the DL reconstruction these five different categories get recombined

into two categories, track and shower, based on the topology expected to be observed

by the LArTPC. The track category is the combination of the HIP and MIP labels,

for particles that leave thin lines of ionization in our images. Meanwhile the shower

category is the combination of the original Michel, Delta, and Showering Particle

labels, and is meant to refer to particles that leave spraying bits of ionization in our

images making a cone or triangle shape.

Figure 5.5 shows the pixel labels on our event as determined by SSNET. The

track-labeled pixels are shown in red, and the shower-labeled pixels are shown in

blue. We see that across all planes the network is able to correctly identify the

electron shower coming off the simulated neutrino interaction. SSNET also correctly

labels many of the delta rays coming off the various cosmic ray muon tracks passing

through the event.

5.5 Vertexer

In order to build track and shower objects to constitute a neutrino interaction,

the DL reconstruction next turns to placing candidate vertices where a neutrino

may have interacted with the argon in the TPC. From these candidate vertices we

can start to build up tracks and showers that come from this interaction point. The
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(a) U Induction Plane

(b) V Induction Plane

(c) Y Collection Plane

Figure 5.5: The pixel labeling performed by SSNET. Shower-labeled pixels are shown
as blue, while track-labeled pixels are shown as red
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DL vertexing algorithm is described extensively in [54]. Here we provide a brief

summary of the algorithm.

Recall that the DL reconstruction is primarily interested in reconstructing 2-

pronged events, such as 1µ1p or 1e1p interactions. Under this assumption the

vertexing algorithm was built to look for ”vee-shaped” kinks or bends in the 2D

projections, before searching for 3D consistency in its points by checking the match-

ing rows in the other planes. The vertexing algorithm runs using both the SSNET

pixel labels, and the WC Q-L cosmic muon tagged image, allowing it to avoid pixels

tagged as cosmics, as well as search for vee-shapes at kinks in clusters of track pix-

els, and vee-shapes at the intersection of shower pixels and track pixels. The vertex

position as found by the vertexing algorithm is shown as a dark, open circle at the

neutrino interaction point in figures 5.6 and 5.8.

Within MicroBooNE events in general, there is often no neutrino interaction,

and sometimes a single neutrino interaction. While there exists some possibility

that two neutrinos interact within the same event time, it is exceedingly unlikely

and thus ignored. However, the vertexing algorithm is free to provide multiple

candidate vertices for a single event, though some measures are in place to ensure

the candidates are not in the same location. It is the job of downstream selection

tools described in section 6 to eliminate bad vertices.

5.6 Track Reconstruction

The track reconstruction algorithm runs across all candidate vertices placed in

an event. Tracks are built independent of the pixel clustering that is performed by

the vertexing algorithm’s prong search. This is because the vertexing algorithm is

focused on the region with a vee-shape, and our tracks will often extend beyond its

window of interest. The track reconstruction is described in detail in [55], but here

a brief summary is provided.

The tracking algorithm takes each 3D candidate vertex and the wire-plane signal

images as input, then step by step adds points to the track by throwing a stochasti-
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cally generated set of points. If operating close to the track’s origin, these points are

thrown in a sphere around the present point, if greater than 5cm from the origin,

then a forward-searching cone of points are also added. From this set of potential

points, the step is chosen by favoring points that project onto charge in all 3 planes,

and are farther from the current track point. Small allowances are made for the

unresponsive regions in our detector, which are described in section 3.3.5, however

a track cannot step to a 3D position that projects into a dead region on more than

one wire-plane, which limits the track reconstruction somewhat.

Figure 5.6 shows the output of the tracking algorithm on our example event.

Two tracks are shown in red, reconstructed from the candidate vertex, which is

represented by the black open circle. Since the algorithm works in 3D, the tracks

depicted are the 2D projections. The track and shower reconstruction operate inde-

pendently, so the tracking algorithm is free to build tracks on showers, and it is up

to our selections to determine the validity of these tracks. For this particular event,

we can see the importance of this aspect, as a track is placed on the electron shower

in our νe interaction.

Recall the targeted interaction types the DL analysis aims to reconstruct are 1e1p

and 1µ1p, both of which contain a proton. In instances where two tracks are built,

the proton is defined as the track with greater average ionization energy density,

which is to say the track with the higher PIU average when projected into 2D. With

a particle ID assigned to the track, we can then calculate the track’s energy given the

stopping power of the particle, and the 3D track length. The tracking algorithm’s

energy resolution is 2.5± 0.1% for protons and 3.4± 0.1% for muons [55].

5.7 Shower Reconstruction

The final step in the DL reconstruction package is dedicated to reconstructing

showers. As with previous tasks, the algorithm is summarized briefly here, and

explained in detail in [56]. The topology of showers is fundamentally different from

tracks, often featuring gaps between their constituent pixels. These gaps come about
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(a) U Induction Plane

(b) V Induction Plane

(c) Y Collection Plane

Figure 5.6: The tracks reconstructed by the tracking algorithm are shown in red,
stemming from the candidate vertex represented by a black open circle.
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from radiated photons spreading from the interaction before ionizing electrons seen

by the detector. While figure 5.6 shows the tracking algorithm does a decent attempt

at grabbing the shower, a line of points is a poor metric for clustering all these

radiated pixels comprising a shower.

The algorithm only uses pixels labeled as shower-like by SSNET, with at least 10

PIU. This PIU cut is typical throughout the DL analysis, as it removes wire signal

noise. To reconstruct the shower, the apex of an isosceles triangle is placed on the

candidate vertex, then the direction, opening angle, and length of the shower are

adjusted to maximize the number of nonzero PIU shower pixels contained within,

however constraints are placed on these triangle parameters.

A gap between the vertex and apex of the triangle is also allowed and optimized

to allow for showers detached from the vertex. These detached showers can happen

when an interaction produces a photon, which then travels some distance before

ionizing electrons which are observed by the LArTPC.

Where the energy of a track is determined from its 3D length, the shower energy is

determined by the PIU sum of the pixels contained within the 2D shower projection

on the Y collection plane image. Only pixels labeled as ’shower-like’ by SSNET

are used and the shower must pass some requirements indicating the shower is well

reconstructed [56]. The Y collection plane is chosen because it requires less signal

processing compared to the induction planes. Specifically, the collection plane does

not require the transformation of bipolar pulses to unipolar pulses that occur on the

induction planes as the charge drifts towards, and then past them, before ultimately

collecting on the Y plane.

The output of the shower reconstruction on the Y plane is shown in figure 5.8.

The energy resolution of our shower reconstruction is covered in detail in [56].

5.8 Multiple Particle Identification

The final part of the DL reconstruction is the Multiple Particle Identification

(MPID) network. The DL analysis makes use of our MPID network in the selections
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Figure 5.7: Y Collection Plane

Figure 5.8: The shower triangle reconstructed from the candidate vertex in our
example event.

detailed in section 6. The MPID tool is a convolutional neural network designed for

particle identification within an interaction. It is covered in more detail in [13], and

briefly described here.

The MPID network is trained to look at a 512 × 512 pixel crop around the

proposed neutrino vertex in each of the three wire planes. Then it outputs five scores

dictating the confidence that the network has that one of five different particles are

present somewhere in the interaction. The network outputs these five scores for

two different categories, the first category indicates whether the particle is observed

anywhere in the 512 × 512 pixel crop, the second indicates whether the particle is

observed and connected to the vertex at the center of the crop. For the purpose of

our analyses only the later scores are used as we are focused on particles present in

the neutrino interaction.

The particles the network is trained to identify are the muon, charged pion, pro-

ton, electron, and gamma. These scores fall in the range between 0 and 1 with higher

values indicating greater confidence the particle is present. Due to the presence of

unresponsive wires in the MicroBooNE LArTPC, the maximum MPID score from

all 3 planes is used, rather than reliance on a single plane. This helps reduce the

case where a particle cannot be connected to the vertex due to an unresponsive set

of wires.

The MPID score is used differently for particle identification requirements in

both the 1µ1p selection and 1e1p selection as outlined in sections 6.4 and 6.5. An
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example of the visualized output of the MPID network is shown in figure 5.10
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Figure 5.9: Y Collection Plane

Figure 5.10: MPID example of a 1e1p topology with a tabulated output of particle
scores. This image is generated by concatenating a p and an e− at the same vertex.
Scores indicate high probabilities of having a p and e− in the image. The image
applied to MPID has 512 × 512 pixels. A zoomed-in image of 250 × 250 pixels is
shown here for visualization. [13]
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Chapter 6

MicroBooNE DL Selections

Once the MicroBooNE DL team has finished their reconstructions, outlined in

section 5, we can use the various high-level reconstructed physics quantities, such as

tracks and showers, as well as some low-level quantities, like SSNET pixel labeling,

to build up selections for specific interactions types.

At this phase in our analysis, our deep learning tools, SSNET and MPID have

been run on our events, and we can now use their outputs to select events pertaining

to our desired signals. Machine learning techniques will also come into the selection

through our usage of Boosted Decision Trees, shown later on in this chapter.

As mentioned previously, one of the major efforts of the MicroBooNE experiment

is to search for the low-energy-excess (LEE) observed by MiniBooNE. This search

is conducted in MicroBooNE by the DL analysis using two selections targeting one-

lepton-one-proton (1`1p) charged-current quasi-elastic events (CCQE).

The first selection targets one-electron-one-proton (1e1p) events. If the MiniBooNE-

observed LEE were present in MicroBooNE from some unexplained physics in the

form of an excess of νe flux in the beam, then we would expect an excess observed

in our 1e1p data selection as compared to our expectation.

The second selection, the 1µ1p, was originally made to constrain the 1e1p LEE

search. As the BNB contains O(100) times more νµ flux, and both 1l1p topologies

share π+ decay flux parentage the νµ CCQE interactions can be used to constrain

the systematic uncertainty of the νeCCQE-based LEE measurement. This analogous
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1µ1p selection features two tracks, one muon and one proton, rather than the one-

track-one-shower events targeted by the 1e1p. The original purpose of the 1µ1p

selection as a constraint sample is evidenced in many of the design choices described

within this section, however the result is still a pure selection of 1µ1p CCQE events.

This selection is used in the analysis featured in section 7.

Both these selections are designed in very similar ways, proceeding with many of

the same cuts in order for the 1µ1p to maximize the constraint on the 1e1p. Within

this analysis the first group of cuts, termed the ’preselection’ cuts, are applied to

ensure the event has a two-pronged topology not exiting the detector, and to remove

bad quality data, as well as separate events as either potential 1e1p-like or 1µ1p-

like. Then the final selections are made using ensembles of Boosted Decision Trees

implemented with XGBoost [50], which serve to separate the desired signal from the

background remaining after the preselection cuts.

In order to assign meaning to an analysis, it is important to have a studied

and understood expectation. In this analysis we use a variety of data samples to

determine our expectation through a mixture of non-signal data, and simulated

neutrino interactions.

6.1 Data Sample Definitions

When generating neutrinos and their interactions, MicroBooNE uses the GENIE

neutrino generator [57]. Then to simulate the detector response to these particle

interactions, GEANT4 [58] is used.

Table 6.1 details the size, in protons-on-targets (POT), of different dataset, used

in the DL analysis, both data, and the different simulated datasets that comprise

our expectation. The datasets are defined later in this section. At a very high

level split, these datasets always use simulation to depict neutrino interactions, and

data taken when the beam is off to model cosmic ray muons. This is described

more specifically for each sample. The metric, POT, is a measure of the number of

protons sent to the target. Then through processes detailed in section 3.2 a neutrino
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Table 6.1: The size, in protons-on-target (POT), of the various datasets used in the
DL analysis.

Sample Run 1 POT Run 2 POT Run 3 POT

BNB Overlay 1.34× 1021 1.30× 1021 8.88× 1020

BNB Low Energy Overlay 1.63× 1021 2.03× 1021 1.51× 1021

νe Overlay 1.16× 1023 9.21× 1022 4.72× 1022

νe Low Energy Overlay 6.05× 1023 N/A 5.97× 1023

BNB NC π0 Overlay 2.91× 1021 N/A 2.49× 1021

BNB CC π0 Overlay 6.91× 1020 N/A 5.91× 1020

Dirt Overlay N/A N/A 1.88× 1020

Off-Beam Data 1.11× 1021 N/A 1.57× 1022

On-Beam Data 1.63× 1020 2.75× 1020 2.29× 1020

beam is created. As such, POT is a measurement for the amount of data for a given

sample, and a proxy for how many neutrinos the detector will have seen.

In table 6.1 the various data samples have their POT broken down by run. In

the MicroBooNE experiment, Run 1 corresponds to data taken from February to

September of 2016, Run 2 from October 2016 to October 2017, and Run 3 from

October 2017 to September 2018. Simulated data samples are made with different

parameters using calibration data taken from the LArTPC from each of these dif-

ferent run periods to account for fluctuations or changes to the detector state with

time.

In general, the samples listed in the table can be grouped into two categories,

those with simulation (often referred to as Monte Carlo (MC) samples) and those

without. The off-beam1 and on-beam samples make up our samples comprised

completely of actual data taken from the LArTPC, with no simulation. The on-

beam data is taken when the BNB is on, during a neutrino spill, and the detector

triggers to save an event. The off-beam data is taken either when the BNB is off

and the detector triggers to save an event, or in between the BNB neutrino spills,

when there will not be a neutrino interaction.

On-beam data is therefore the actual data that analyses will treat as their obser-

1The effective POT of the off-beam samples are calculated by taking the ratio of number of
off-beam triggers occurring during the sample with the number of off-beam triggers for a known
on-beam data sample, then multiplying by that data sample’s POT. This is necessary because the
external BNB sample is, by definition, taken while avoiding beam neutrino interactions
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vation, searching for neutrino interactions and phenomenology. The off-beam data is

useful because it contains events specifically lacking a neutrino interaction, but still

saved via a trigger. These events provide a useful handle on the cosmic-ray muon

background to MicroBooNE, as they essentially are comprised of only cosmic-ray

muons, and can be used to model the rate at which we would expect to select these

events from our on-beam data.

The remaining samples listed in table 6.1 contain some form of simulation. The

’overlay’ present in the sample names indicates that the event contains a simulated

neutrino interaction ’overlaid’ on top of an image containing a special set of off-beam

data cosmic ray muons. These underlying off-beam data events do not require the

detector to trigger, as the overlaid neutrino is required to pass the PMT trigger cut to

save the event. When true quantities about the cosmic ray muons are not needed it is

advantageous to use overlay samples, as they represent the exact detector response

to, and observation of, cosmic ray muons. In the cases where true information

regarding the cosmic ray muons is required, we turn to CORSIKA [59], to provide

the simulation, as in section 8 where a novel machine learning technique, sparse

submanifold convolutions, are applied to identify and cluster the cosmic ray muon

background.

When simulated events are generated, GENIE [57, 60, 61, 62] v3.00.06 and model

set G18 10a 02 11a are used as the primary model. This simulation package uses

Valencia CCQE and meson exchange current (MEC) (2p-2h) modeling [63] and the

Local Fermi Gas nuclear model. These models provide a good match with the

MiniBooNE CCQE-like data [64]. The event generation also uses a data-driven

improvement to final state interactions (FSI) as well as a tune to bubble chamber

data for pion production. In particular, these FSI account for nuclear effects where

the neutrino interaction’s outgoing hadrons can interact with the nucleus before they

exit. These final state interactions can then change the observed particles coming

out of the neutrino interaction. Therefore, these FSI cause systematic uncertainty

in our analysis as events can shift into and out of our CCQE 1µ1p signal. The
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MicroBooNE collaboration then performed a tuning procedure [65] using T2K νµ

CC, zero-pion data [66]. Finally the simulation of these generated particles is done

using Geant4 [58] V10.3.03c. In addition to these weights a reweighting is done of

simulated events containing π0 final state particles. This reweighting scheme was

designed to alleviate a slight deficit in a π0-selected sideband sample between the

data and expectation. This reweighting predominantly affects the 1e1p selection,

with minimal impact on the 1µ1p selection. The reweighting process is described

more fully in [14].

The BNB overlay samples are a sample of events overlaying simulated neutrino

interactions that are meant to represent all neutrino interaction types that could

come from the BNB. Recall that the BNB, described in section 3.2 predominantly

contains νµs and only has a small νe impurity, absent any new physics phenomenol-

ogy. This means that most of the BNB overlay sample contains simulated νµ inter-

actions across many different channels, but includes a νe contribution as well.

Since these νe interactions are so rare, MicroBooNE has generated a νe overlay

sample, which specifically contains only νe interactions in the detector to increase the

statistics of these types of interaction. This is necessary because the νe interactions

create the target signal of the 1e1p selection described in section 6.5 searching for

evidence of the MiniBooNE LEE. These νe interactions come from νe flux intrinsic

to the BNB, as opposed to νe interactions that would come about from neutrino

oscillation, and have a different energy distribution.

MicroBooNE also uses two low-energy overlay samples, one for the BNB, and one

specifically for νeinteractions. The low-energy samples are the same as the normal

samples, with the exception that only events with ν energy less than 400 MeV are

simulated. These samples are not used to build the expectation to match against

observation in the on-beam data. Instead they are just used to develop and check

our selection performance in the LEE signal region.

The next two samples specifically only include ν interactions from the BNB that

create a π0, whether through a charged current (CC) interaction or a neutral current
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(NC) interaction depending on sample. These π0s then decay to two γ particles

which then produce showers in the detector. These π0 samples are therefore useful

both in calibrating our shower reconstruction described in section 5.7, as well as

measuring the π0 background in our selections.

The dirt overlay is a special source of simulated events. It is comprised of sim-

ulated ν interactions that occur outside the detector volume, but whose daughter

particles enter the detector and leave some signal. These events would be incredibly

difficult to reconstruct, as the core of the interaction would not be seen. However,

the simulated dataset was generated to determine if these events would pose as a

significant background to our various signals. As they did not contribute a signif-

icant effect to the expectation in our selections, they are omitted from this point

onward.

Finally, notice that several samples do not have a Run 2 portion. In these cases

we use the Run 3 sample to determine the Run 2 expectation. Run 3 is chosen

because there were known issues with wire noise and PMT light collection in Run 1

that were solved from Run 2 onward.

6.2 Building an Expectation

Now that the many different samples have been defined, we can outline how the

expectation is built up to compare to the observed on-beam data. We can build a

toy example of how the expectation is crafted by scaling the various samples to the

on-beam observation. In the toy samples represented in table 6.2, it is demonstrated

how the raw number of events across our expectation samples can be scaled to the

amount of data. This toy example is just for demonstration purposes and is not

representative of any data selection, or event count. However, the POTs and POT

ratios are calculating using the POTs for the different samples in Run 1.

First the raw events get multiplied by tune weights meant to reshuffle the fre-

quency with which events are expected to happen relative to the original simulated

sample. The distributions for these weights range generally from just below 1 up
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Table 6.2: A table representing the scaling process of different expected samples to
the observation for a toy model of events. The POT ratio is calculated by dividing
the on-beam sample POT by the expectation sample’s POT.

Sample Raw Events Weighted Events POT POT Ratio Scaled Events

BNB 187 194.92 1.34× 1021 0.1216 23.71
NC π0 59 62.84 2.91× 1021 0.0560 3.52
CC π0 16 18.19 6.91× 1020 0.2359 4.29
νe 1623 1643.93 1.16× 1023 0.0014 2.31

Off-Beam 73 73.00 1.11× 1021 0.1468 10.72

(a) BNB Overlay (b) νe Overlay

Figure 6.1: The distribution of tune weights applied to the BNB (left) and νe (right)
overlay events.

to around 1.4 with a tail extending beyond that, and a major spike at 1 for events

where the simulated sample appropriately generated the interaction mode’s rate.

These distributions are shown in figure 6.1. Note that tune weights only exist for

simulated events. The off-beam data, which determines the expected cosmic ray

muon background, does not receive tune weighting. As well as getting their individ-

ual event weights, each sample then has to be scaled by some factor to match the

POT anticipated in the on-beam data observed.

In order to do this, each sample is multiplied by the ratio of the on-beam data

POT / the sample’s POT. This allows us to use a high stat simulated sample to

determine with greater accuracy the expectation at some given on-beam sample. To

avoid double counting, ν interaction modes that could appear in multiple samples are

only used from the single, higher stat, sample. For example, NC π0 interactions that
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are present in the BNB overlay are ignored if they are also simulated in the dedicated

NC π0 overlay sample. The same for νe interactions, and CC π0 interactions.

6.3 One Lepton One Proton Preselection

Before the event selections branch off into the differing 1µ1p and 1e1p selections,

a suite of requirements or ’cuts’ can be made to focus in on well-reconstructed

two-prong event topologies. These requirements, used by both the major selections

discussed later, are referred to as preselection cuts.

The preselection requirements are listed here and described below:

1. Common Optical Filter Cut

2. Beam Quality Cut

3. Good Runs Cut

4. Vertex Requirements

5. Orthogonality Shower Fraction Cut

6. Boostability Cut

7. Opening Angle Cut

8. Containment Cut

9. Particle Energy Requirements

The first cut, the Common Optical Filter, is used by all LEE analyses within

MicroBooNE, beyond just the DL team. It requires that at least 20 photo-electrons

are received by the PMTs in the beginning of an event window, right after the beam

spill, as well as requires that less than 20 photo-electrons are received right before

the beam spill. This optical system cut aims to reduce the background noise in an

event by ignoring events that already had something going on before the beam spill.
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Next the beam quality cut is in place to remove events taken during periods

where the quality of the BNB is questionable based on monitoring systems in place

surrounding the BNB generation. The Good Runs cut is in place to remove data

associated with periods of time there were known issues as determined through

manual monitoring of various detector systems. Note that these cuts only apply

to data taken by the detector. Simulation events, by construction, will pass these

requirements.

There are also several requirements placed on the interaction topology to ensure

a 1`1p-like event. These ”Vertex Cuts” include a requirement that the candidate

vertex has exactly two prongs that are greater than 5cm in length, a requirement

that the vertex is more than 10cm away from the fiducial volume2, and that the

vertex is not placed in a specific region of the detector associated with a large

density of unresponsive wires. This unresponsive region is centered around a plane

at Z = 720cm, taking up ∼3.9% of the detector.

Now the events are split into two paths, one towards the 1µ1p selection, the

other towards the 1e1p selection. The DL analysis introduces an orthogonality

requirement based on the output of SSNET as described in section 5.4. If either

of the two particles reconstructed from a given vertex have more than 20% of their

pixels labeled as ’shower’ pixels, then that vertex and interaction are considered

1e1p-like and they continue down the 1e1p selection path, otherwise it is considered

1µ1p-like and go down the 1µ1p selection path. This split serves to ensure that

the sample used for the 1e1p LEE search is orthogonal to the 1µ1p sample used to

constrain it. This is to say that no single reconstructed neutrino interaction can

exist in both final selections.

The 1l1p selections also require that the interaction be boostable. As noted in

table 6.3, several of the variables used later in the selection are calculated in the

nucleon rest frame. In order to perform a Lorentz boost, γ must be defined. However,

2Where the active volume is the volume of LAr that drift electrons can reach the wire-planes,
the fiducial volume corresponds to a volume describing the active volume with an extra 10cm buffer
on all edges
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since our interaction involves a neutrino interacting with a nucleon, Fermi motion

adds momentum due to the quantum motion of the nucleon. This nonrecoverable

momentum may ultimately yield a non-physical, undefined γ. These events are

cut from our selections as they are likely some sort of background and not a well-

reconstructed CCQE 1l1p event. The process for performing this boost is further

explained in appendix A.

Next a cut is applied to the interaction’s opening angle, requiring it to be at least

0.5 radians ( 28.6 degrees), ensuring a wide enough opening to be well-reconstructed.

A containment requirement is applied to the reconstructed tracks, ensuring that

the tracks do not get within 15 cm of the active volume. There is an additional

containment cut applied to showers, thus only affecting the 1e1p selection, that

eliminates interactions with showers in heavily unresponsive regions of the detector.

Since the energy of track-like particles comes from their length, there is a possibility

of jumping the unresponsive wires. But for showering particles, the energy comes

directly from the amount of signal detected in the shower pixels, so losing many

pixels can disrupt the energy reconstruction.

Both the lepton and the proton have an minimum energy requirement applied

to them as well. The reconstructed proton needs to have at least 50 MeV, and the

lepton needs to have at least 35 MeV. Note that the lepton’s energy calculation

is described in section 6.3.1 and is calculated differently for the 1e1p’s showering

electron than for the 1µ1p’s track-like muon. Regardless, these energy thresholds

are set to ensure the particle has enough energy to reliably produce a multi-pixel

signal in the LArTPC’s wire-signal images.

6.3.1 BDT Input Variables

Now that the events are split into pools of 1µ1p-like, and 1e1p-like events, they

are ready to be fed into the Boosted Decision Tree (BDT) Ensembles. A summary

of a BDT is given in section 4.3. In the DL selections, ensembles of BDTs are used.

Rather than selecting events from one BDT score, the average score of all BDTs in
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an ensemble are used. This is different from simply expanding the size of a single

BDT because each member of the ensemble receives its own randomly determined

training set. This serves to ensure minimal reliance on a good representative draw

to train on.

As the behavior of the LArTPC is known to undergo some changes with runtime

as the electronics readout is monitored and problems solved, different BDT Ensem-

bles are used for each Run 1, 2, and 3. This means that in total, the selections

described here use six different BDT Ensembles. This allows the BDTs to prescribe

differing levels of importance to their input variables from run to run.

Following the spirit of keeping the 1µ1p selection similar to the 1e1p, many of the

variables used by the 1e1p BDT Ensemble are also used by the 1µ1p BDTs. Table

6.3 details the breakdown of which variables are used in the two different selections.

Broadly speaking, the variables used in the BDTs can be ascribed to two different

categories.

The first, smaller category of variables are based on the ionization deposited in

the wire-plane images surrounding the interaction. There are four ionization-based

variables. Only one variable is used in both the 1µ1p and 1e1p selections, the amount

of charge deposited within 5 cm of the interaction vertex, this serves to indicate the

level of vertex activity going on in an interaction. There are then three additional

variables used in the 1e1p selection based on ionization. The fraction of charge in

shower-labeled pixels in the entire image divided by the charge in shower-labeled

pixels in the electron shower, the fraction of the proton track that is shower-labeled,

and the fraction of the electron shower that is shower-labeled. In all these cases

pixels are labeled as shower-like by SSNET.

The second, larger category of variables consists of kinematic variables such as

particle energy, angular direction, and various other quantities. These variables are

calculated under the assumption that the interaction is the type that is being se-

lected, for example, events going into the 1e1p BDTs assume the track is a proton,

and the shower is an electron. This allows the BDT to ’learn’ to check for con-
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sistency between actual 1e1p interactions’ variable distributions, and background

interactions calculated as though they were 1e1p interactions. Therefore to calcu-

late these variables, we use mµ = 105.6584 MeV, mp = 938.673 MeV, mn = 939.5654

MeV and me = 0.511 MeV.

When examining these variables, recall the coordinate system used for the Mi-

croBooNE LArTPC, defined in section 3.3.1. The z-direction points along the beam,

the x-direction points from the anode wire-planes to the cathode, and the y-direction

points up vertically. The cylindrical coordinate system has φ rotating around the

z-axis, and θ describing the angle dropped from the z-axis.

The definitions of these kinematic variables are listed in table 6.4. They begin

with the determination of the kinetic energy of the proton and the lepton. For

protons and muons, as track particles, the energy is determined via the track length

based on the known stopping power of the particle in argon. This process is described

in more detail in [55]. For showers, the kinetic energy is determined via a calibrated

conversion factor to convert the wire-image’s PIU to energy, described further in

[56]. The 3- and 4-momenta of our protons and leptons can then be determined

given the particle trajectory indicated by the tracks and/or showers, which allows

the calculation of our angular variables θ and φ. Finally, this analysis assumes a

binding energy of 40 MeV from [67].

With these basic variables determined, we move toward the higher-level variables

further down the table. Of particular interest is the energy of the neutrino, which

can be reconstructed in three different ways. Equation 6.1 outlines the default

method, termed the range-based method, because it is determined via the range-

based determination of the proton and muon’s energy (or in the case of the electron,

the ionization conversion). This Erange
ν calculation is used when our analyses place

events in reconstructed neutrino energy bins for our histograms, and is the default

energy used when discussing the interaction. However, given the assumption of a

quasi-elastic (QE) interaction containing known particles, the neutrino energy can

be determined solely using information about the lepton or proton.
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Variable Used in 1µ1p BDT Used in 1e1p BDT
Variables Used in BDTs, Based on Ionization

Charge within 5 cm of vertex Yes Yes
Shower charge in event image /
shower charge clustered as electron No Yes
Proton shower fraction No Yes
Electron shower fraction No Yes

Variables Used in BDTs, Related to Energy Measurements
Neutrino Energy Yes Yes
Energy of electromagnetic shower No Yes
Lepton length Yes Yes
Proton length No Yes
pz − Eν No Yes

Variables Used in BDTs, Related to 2-Body Scattering Consistency
Bjorken’s x Yes * Yes *
Bjorken’s y Yes * Yes *
QE Consistency Yes * Yes *
Q0 Yes Yes
Q3 Yes Yes

Variables Used in BDTs, Related to Transverse Momentum
αT Yes Yes
Event pT Yes Yes
Event pT/p (“PTrat”) Yes Yes
φT Yes No

Variables Used in BDTs, Related to Angles
Proton φ Yes Yes
Proton θ Yes Yes
Lepton φ Yes Yes
φp − φ` Yes Yes
θp + θe No Yes

Variables Useful for Comparison, Not Used in Either BDT
Opening Angle No No
x Vertex No No
y Vertex No No
z Vertex No No

Table 6.3: The variables used as inputs to the 1µ1p and 1e1p BDTs. If an ∗ appears,
the variable is used in the boosted frame of reference.

These QE-assumed energies are defined in eqn. 6.2 and 6.3 for the proton and

lepton respectively. These energies are used in the definition of of our 2-body con-

sistency variable, ∆QE. The purpose of this variable is to capture how consistent

these different energy calculation methods are. In the case of a well-reconstructed

1`1p QE interaction the energies should be similar, and ∆QE should be close to zero.
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If the interaction is not well-reconstructed, or not an actual 1`1p QE interaction,

then the equations should calculate differing neutrino energies, with ∆QE growing

as the equations indicate inconsistency with the QE 1`1p assumption.

Erange
ν = Kp + K` +M` +Mp − (Mn −B), (6.1)

EQE−p
ν =

(1

2

)2 · (Mn −B) · Ep − ((Mn −B)2 +M2
p −M2

` )

(Mn −B)− Ep +
√

(E2
p −M2

p ) · cos θp
, (6.2)

EQE−`
ν =

(1

2

)2 · (Mn −B) · E` − ((Mn −B)2 +M2
` −M2

p )

(Mn −B)− E` +
√

(E2
` −M2

` ) · cos θ`
, (6.3)

Now that both the preselection cuts and BDT variables have been defined we are

ready to split off into the two different 1l1p selections. In both selections a BDT is

defined and trained, detailed below. In events where multiple candidate vertices are

available even after these preselection cuts, the vertex with the highest BDT score

is considered, as such no event can have two selected vertices.

6.4 1µ1p Selection

With preselection cuts out of the way, the remaining expectation events pushed

toward the 1µ1p selection path can be used to train the 1µ1p BDT ensemble. Events

failing the preselection are not used in training because it is unnecessary for the

BDTs to try to learn anything related to them. Instead it is better to allow the

BDT features to focus on discriminating the background from signal in the remaining

events.

The goal of the BDT ensemble is to provide a strong handle to select the well-

reconstructed CCQE 1µ1p remaining after the preselection, while removing poorly

reconstructed events. While the signal is well defined as 1µ1p CCQE interactions,

the background the BDT is training to remove is varied, covering many different

interaction topologies. Figure 6.2 shows the expected distribution of events by

category in reconstructed neutrino energy at the preselection stage. At this stage
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the background is still very much dominant.

As a brief aside, many plots shown in this section demonstrate distributions

before the final selection is made. For these plots, systematic uncertainties and

expectation-statistical errors are not calculated. The final selection plots do include

these uncertainties. For more information concerning how systematic uncertainties

are evaluated, see section 7.1. As an additional note, many of the early-in-selection

plots omit data, as various early cuts were applied to the data samples available for

analysis at the time the plots were made.

The major categories of events can be broken down as:

• BNB νµCCQE Events: The signal events containing a 1µ1p CCQE inter-

action from the BNB that do not fall into one of the background categories.

• BNB Bad Reco: Signal events that have their energy reconstruction off by

more than 20% the simulated true neutrino energy.

• BNB 1L1P Off Vertex: Signal events where the reconstructed vertex is

more than 5 cm from the simulated neutrino interaction vertex. These events

are typically either instances where the vertex is placed partially down a track

or shower, away from the true vertex, or placed on a cosmic ray muon within

the neutrino event window.

• BNB Not 1L1P : Events that do not contain exactly one muon and one

proton, but are in the BNB simulated sample.

• Cosmic Bkg: Events in the off-beam sample, where a cosmic-ray muon has

passed the preselection, masquerading as a 1µ1p event.

• Other: A classification including all categories that individually constitute

less than 5% of the preselection, in this plot this includes νµ events with a π0

or π±, νµ meson-exchange-current (MEC) events, and νe events, as well as any

other interaction not defined by an above category, but present in the BNB

simulation.
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Figure 6.2: The reconstructed neutrino energy distribution at the preselection stage,
broken down by interaction category. Data not shown.

We see that the BDT Ensemble has its work cut out for it, with a CCQE purity

of about 6.5% and a muon neutrino purity of roughly 72.6%. Several important

neutrino background interaction modes are discussed below in section 6.4.1. How-

ever, recall that the goal of the preselection is to acquire a set of two-prong events

that are contained within the detector. The BDT input variables for all of these

events can now be calculated under the assumption that the event is a 1µ1p CCQE

interaction. Then the BDT can determine the validity of that assumption.

An important aspect of BDT training, and any sort of tool fitting, is that the

BDT can be used on data other than that which it is trained (or fit) on. This

extrapolation is necessary in order for the BDTs to reliably be used on actual data.

Otherwise the analysis risks overfitting their selection tools to the specific expecta-

tion they are using, and being unable to perform on new data.

In order to help avoid overfitting, the BDTs in our BDT ensemble are only

trained on half of the expectation, with each BDT in the ensemble splitting the

expectation randomly. This serves to decrease the reliance on the random draw,

and is the purpose for using a BDT ensemble. For the 1µ1p selection, the BDT
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ensemble consists of 10 BDTs per MicroBooNE Run period.

The expected spectra was constructed such that no BDT in the ensemble was

used to classify an event it was trained on. A BDT that was trained on a given

event has already been told the truth of the event, and could bias unfairly towards

a correct answer if deployed on that event when building an expectation, this unfair

bias could cause observation in data to not match the expectation.

In order to avoid this, when determining the average BDT score for a specific

event, only BDTs that were not trained on an event were used. This means that for

events making up our prediction, only 10 − N BDTs are used in the average score

calculation, where N is the number of BDTs that were fit on the given event.

The BDTs within the ensemble are designed such that signal events receive target

scores of 1, and all background events have target scores of 0. Figure 6.3 shows the

distribution of the BDT ensemble average scores. We can immediately see the BDT

ensemble is working properly as the background events pile up in the first bin close

to their 0-target. Meanwhile the navy blue, νµ CCQE events drift towards the right,

pushing up toward their target score of 1.

Figure 6.3: The BDT ensemble average score distribution at the preselection stage,
broken down by interaction category. Data not shown.
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The next step is to determine a cut value to further select the target 1µ1p

interactions. In the case of the 1µ1p selection, the BDT cut was chosen in order to

optimize the 1e1p selection’s sensitivity to the MiniBooNE LEE signal translated

to MicroBooNE’s expectation. Ultimately, a BDT average score of 0.5 is required

of events in the 1µ1p selection. It is easy to see in figure 6.3 how impactful this cut

will be in removing the background.

This nearly final selection is shown in figure 6.4. While there is agreement

between the expectation and the observation, there is a significant pile-up of back-

ground at the lower range of energies, specifically in the bad energy reconstruction

and off-vertex categories of BNB simulated events.

Figure 6.4: The neutrino energy distribution for the selection after the BDT cut is
applied, much of the background is removed, and data is shown.

The major issue this pile up of backgrounds represents is a specific state where

these background events are able to imitate a proton and go unnoticed by the cuts

used thus far. For example, an off-vertex event in the BNB sample may have the

vertex placed along a cosmic ray muon, breaking the track in two, with each part

representing a prong in the two-track 1µ1p assumption. Then a portion of the muon

track is able to present, incorrectly, as a proton. To clean up the background a bit

more, a few final requirements are applied to the selection. These cuts are distin-
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guished from the preselection cuts in that the are applied after the BDT ensemble,

and therefore events they remove are still included in the BDT training sample.

In order to remove this background, we invoke another deep learning tool dis-

cussed in section 5.8, the Multi-Particle-Identification network (MPID), in a limited,

but important way. As mentioned, the MPID network outputs scores indicating the

confidence that the event contains a specific particle. For example, a high ’Proton

MPID’ score indicates a high confidence that the network believes the interaction

contains a proton.

In order to tackle this pile up of low energy background events, we employ a

requirement that events with reconstructed neutrino energy below 400 MeV have a

proton score requirement of 0.9 or greater. This forces the network to be confident

that a proton exists in low energy events in the pile-up region. Figure 6.5 shows the

proton MPID scores for events in this low-energy region.

Figure 6.5: The proton MPID score distribution after the BDT cut is applied for
events with neutrino energy reconstructed less than 400 MeV.

The penultimate cut involved in the 1µ1p selection requires that cos(θp), the

cosine of the proton’s θ angle, be greater than 0, indicating that the proton is

forward going relative to the beam direction. While backward-going protons are
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possible, the forward direction is heavily favored in a QE neutrino interaction. The

distribution of events in the cut region, below 0, is shown in figure 6.6. As shown,

much of the events in this region are indeed backgrounds to the well-reconstructed

1µ1p CCQE events.

Figure 6.6: The distribution of cos(θp) after the BDT cut, specifically in the
backward-going proton region.

Now, the final cut applied to the 1µ1p selection requires that events exist in our

analysis’ energy range, from 200−1200 MeV. With this final cut applied, we produce

our final selection, as shown in [14], and used for the disappearance analysis work in

section 7. For the purpose of our final selection plots, we recombine the categorical

breakdown of different events. Specifically, the bad energy reconstruction events are

redistributed to their appropriate truth category which explains the increase in the

νµ CCQE events. All other neutrino events, except for off-vertex events, are rolled

into one ”Neutrino Background” classification. Off-vertex events remain separated

as they may be, and frequently are, caused by a vertex being placed on a cosmic ray

muon rather than a neutrino within the event window.

It should be noted that of this neutrino background expectation, only 1.26 events

are expected to be νe interactions. This is important to remember for the νµ disap-
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pearance analysis presented in 7, because it means both the νµ CCQE and neutrino

background categories are subject to νµ disappearance oscillation effects.

Figure 6.7 shows the final selection, binned in the reconstructed energy of the

neutrino. Now, the systematic and expectation-based statistical uncertainties are

incorporated into the plot. For final selection level plots for different 1µ1p variables,

see appendix B. We see within these plots that our selection has 8% more events

in data than our expectation, however our uncertainties cover this, with a normal-

ization uncertainty of 13%. Further details surrounding the validation of the 1µ1p

BDT ensemble-based selection are explored in the following subsections.

Figure 6.7: The range-based reconstructed neutrino energy distribution for the 1µ1p
final selection.

6.4.1 Background Neutrino Interaction Modes to the Mi-

croBooNE 1µ1p Selection

While we have already discussed the CCQE neutrino signal interaction targeted

by the 1µ1p selection, there exist several other neutrino background interaction
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Figure 6.8: Example of a charged-current resonant interaction. A muon neutrino
interacts with a proton to give a muon and a resonant ∆++ which then decays into
a π+ and a proton.

modes. Here we describe these different interaction channels. In order of their

relevance to the 1µ1p selection as neutrino background events, we will discuss res-

onant pion events, meson exchange current (MEC) interactions, and deep inelastic

scattering (DIS).

Our first class of neutrino background interaction are resonant pion events.

Specifically, as it relates to MicroBooNE, and our selection, these events are those

where the incoming neutrino interacts with an argon nucleon, but rather than eject

a nucleon, such as the CCQE interaction’s final state proton, instead a resonant

∆ state is created, which then decays. These decays can come in different forms,

dependent on the type of ∆ created, consisting of either a neutron or a proton and

a pion. These pions then decay, yielding additional final state particles to the in-

teraction. Figure 6.8 shows a Feynman diagram of an example resonant interaction

where an incoming neutrino interacts with a proton to create a ∆++ and a muon,

then the ∆++ decays to a π+ and a proton. This π+ can then decay to yield an

anti-muon.
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Our next class of neutrino background interaction are meson exchange current

(MEC) interactions. This interaction mode is commonly classified as a ”2 particle-2

hole” (2p-2h) effect [68]. In these interactions, the neutrino exchanges a W boson

with a pair of nucleons. This process then results in two nucleons being added to

the final state particles.

Our selection’s neutrino background also includes deep inelastic scattering (DIS)

interactions. These DIS events refer to interactions where the incoming neutrino

scatters off a quark ’deep’ within a nucleon. This results in high momentum transfer

in order to blow apart the nucleon. The quarks then hadronize into complicated final

states. The inelasticity of these interactions comes from the loss of kinetic energy

in order for this hadronization to occur. As mentioned this process is subdominant

at the energies of the MicroBooNE experiment, but scales with neutrino energy as

the neutrino becomes more able to probe at the quark level. At 20 GeV, neutrino

DIS becomes dominant [69].

The uncertainty associated with the strengths of these background neutrino in-

teraction modes contribute to our analysis’ systematic uncertainty associated with

the neutrino-argon cross section, discussed in section 7.1.2.

6.4.2 The Important Variables in the 1µ1p BDT Ensemble

The relative power of each of the variables used in the BDT training is shown in

figure 6.9, where the feature importance is a measure how frequently a variable is

used in the BDT tree. Most variables are self-explanatory, with additional definitions

in Tables 6.4 and 6.3, but a few are abbreviations that need to be clarified: Phis – the

sum of the φ; PTRat – the ratio of event transverse momentum to total momentum;

and SphB – the two-body consistency.

What you see is that one variable, the ratio of total transverse momentum to

total momentum for the 1µ1p signal, PTRat 1m1p is most helpful at distinguishing

whether an event is in the signal or background. After that, xBj and quasi-elastic

consistency are slightly more helpful than the other variables. Let us consider why
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these variables are powerful.

We are aiming to isolate two-body scatters. For the case of no Fermi motion these

events would be expected to have zero total transverse momentum for the outgoing

scattered particles, since the neutrino enters along the z axis. Another way to say

this is that the outgoing event vector will not be rotated with respect to the z axis.

The variable pT/p for the event (both particles added together) is equivalent to mea-

suring the cosine of the angle of rotation away from z. Fermi motion will introduce a

rotation with respect to the z axis at a small level. But background events will have

much larger rotation. For example, mis-reconstructed cosmic ray background will

have very large rotation, since the muons are primarily downward-going. As another

example, events with additional particles that were missed, and hence reconstructed

as 1µ1p will exhibit large expected rotations. Thus, PTRat 1m1p, the measure of

this rotation may be expected to be a good discriminator.

The xbj variable measures the level to which the event is described by elastic

scattering. In this case, most muons are correctly identified, so the strength of the

variable is not coming from assuming an incorrect mass. Instead, for 1µ1p events,

many background events will reconstruct with improbably high Q2 because the muon

energy and angle are both large compared to what is expected for CCQE scattering.

The third most important variable, called SphB 1m1p, is the QE consistency,

called ∆QE on table 6.4. This cross compares Erange
ν , EQE µ

ν and EQE p
ν , which will

all have the same value in the case of CCQE scattering. It is unsurprising that this

is a useful variable in selecting CCQE events.

Thus the variables indicated as strong in figure 6.9 make sense, and we see that

the remaining variables have similar nonzero importances, which shows the BDT

relies on the other variables roughly evenly.

6.4.3 The 1µ1p CCQE Selection Efficiency

The total efficiency of our 1µ1p CCQE Selection for our BDT Ensemble is shown

in figure 6.10. The efficiency numerator is defined as all νµ CCQE events that
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Figure 6.9: The relative importance of each input variable distribution to the train-
ing of a typical 1µ1p BDT in the Run 1 Ensemble (top left), Run 2 Ensemble (upper
right), and Run 3 Ensemble (bottom middle). This highlights how effective each
variable is for differentiating signal from background. For discussion of variables,
see tables 6.3 and 6.4.

are in our selection as defined above. The efficiency denominator is defined as

all the νµ CCQE events that occur with the simulated neutrino interaction vertex

within the active volume of our detector. Below 500 MeV, the efficiency is low

because the denominator has a significant fraction of events with muon and proton

energy too low to pass cuts. Above ∼500 MeV, the efficiency is reduced by longer

tracks hitting our containment requirement or crossing dead regions. Note that this

is the total selection efficiency, which includes inefficiencies surrounding actually

reconstructing the neutrino interaction as well as selecting them. For example,

roughly 50% of events are missed by the vertex reconstruction stage. The remaining

loss in efficiency is then distributed across track reconstruction, and the various

selection cuts, resulting in this total efficiency.

Note that because the 1µ1p simulated signal requires good energy reconstruction

if a simulated CCQE event is selected, but has bad energy reconstruction it will not

be counted in the efficiency numerator. Further, the denominator includes some
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events that are not practically possible for our analysis to reconstruct or select.

This can be due to the interaction exiting the detector, making the energy hard to

reconstruct, or if the muon or proton energies are small enough to be below the 35

and 50 MeV thresholds set at the analysis. Finally, while the 1µ1p selection has an

explicit cut on the reconstructed energy of the neutrino at 1200, the efficiency plot

is calculated without that cut applied to the selection in order to show the efficiency

at higher true neutrino energies accurately.

Figure 6.10: The efficiency of selecting CCQE 1µ1p events, annotated to explain
the major features. The integrated efficiency across this energy range is 0.0327.

6.4.4 1µ1p BDT Ensemble Run 2 / Run 3 Comparison

Here, we examine a check on the performance of selection across different run

periods. For this section, we compare the 1µ1p selection as applied to the Run 2

period with the Run 3 period. This check serves to confirm that there are no major

changes in our selection in data as we move through the data-taking time period.

Figures 6.11 and 6.12 show this data-to-data comparison for the neutrino energy,
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our analysis-bin variable, and the transverse momentum ratio, our BDT ensemble’s

most importance input variable.

The events in both samples are scaled to the POT of the Run 2 sample for better

matching and the statistical uncertainties have been scaled to compensate. In these

figures we can note that the shape and scale of the selections across the two different

run periods match well.

Figure 6.11: The data-to-data comparison across Run 2 and Run 3 in reconstructed
neutrino energy.

6.4.5 1µ1p BDT Ensemble Inter-Run Compatibility

In this cross-check, we seek to further validate the ability of our BDT to classify

events beyond its training set. Specifically, we demonstrate more clearly that our

ensembles are not overfit.

As discussed previously, the 1µ1p selection uses a different BDT ensemble for

each Run period 1-3. In this section, we apply the Run 3 BDT Ensemble to the BNB

overlay simulation for all three run periods, and compare the resulting POT-scaled

selections. We use only the BNB overlay simulation sample for ease, though stress

that as shown in figure 6.7, almost 98% of the selection comes from this sample at
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Figure 6.12: The data-to-data comparison across Run 2 and Run 3 in reconstructed
neutrino energy.

the final selection stage.

In figure 6.13, the inter-run comparison for the BNB overlay samples in Runs

1-3 when always using the Run 3 BDT ensemble. Each sample has been normalized

to the same 2.6e20 POT. Figure 6.14 shows this same test, but instead ran on data

instead of BNB overlay.

Based on these plots, we can conclude that the performance of the BDT ensemble

does not swing significantly when applied to the different Run periods, and as such,

the BDT ensemble doesn’t show signs of being overfitted, though the Run 1 sample

does stray briefly just above 400 MeV.

6.5 1e1p Selection

As the work of the author and this thesis more closely surrounds the 1µ1p se-

lection, less detail is afforded to the 1e1p selection. However, in this section, some

of the key differences between it and the 1µ1p selection are outlined. Where not

stated, the 1e1p selection mirrors the 1µ1p. However, first it is important to note
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Figure 6.13: The comparison in BNB overlay for reconstructed neutrino energy,
when using the Run 3 BDT ensemble for all run periods.

that the 1e1p selection is working with a much smaller set of potential events. As

shown in section 3.2.2, the νe component of the BNB is much smaller than the νµ

component. So not only is the 1e1p selection contending with the same backgrounds

as the 1µ1p the 1e1p selection also has to remove the 1µ1p events from the selection.

The strong handle on 1e1p events is the showering electron. At modest to higher

energies the shower topology is quite different. However as the interaction energy is

dialed down, the shower’s ’spray’ of charge begins to look more track-like.

In order to benefit from this showering aspect of the 1e1p interaction, several

additional selection requirements are introduced, as well as additional BDT variables

used.

Of the preselection cuts before the BDT ensemble is trained, one additional re-

quirement is made of the reconstructed shower. This requirement requires energy

consistency across the 3 wire-planes. Equation 6.4 defines the shower energy con-

sistency, where Eu, Ev, Ey are the shower energies as reconstructed from each plane.

Events are required to have Efrac
consist < 200%. This is a relatively loose cut that re-

moves mis-reconstructed events, and events where unresponsive regions cloud energy
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Figure 6.14: The comparison in data for reconstructed neutrino energy, when using
the Run 3 BDT ensemble for all run periods.

reconstruction in one of the planes.

Efrac
consist =

√
(Ey − Ev)2 + (Ev − Eu)2 + (Eu − Ey)2)/Ey (6.4)

Then it is on to the BDT ensemble training. The 1e1p BDT ensemble consists

of 20 BDTs per Run period, whose scores are averaged before a cut is introduced.

In the case of the 1e1p selection, which is working with a much smaller signal to

background ratio initially, a more stringent BDT score cut is used. The cut is still

chosen to maximize sensitivity to an LEE search. The result is a requirement that

all events have BDT score > 0.95.

After the BDT ensemble score cut, a few final background cuts are made to

ensure the particles within the interaction are identified properly, similar to the

1µ1p selection. However here, the purpose is to ensure that we have reconstructed

an electron shower, not showers from γs coming out of νµ CCπ0 interactions. The

first step here is to attempt to reconstruct a test mass for the π0. If this test mass

is > 50 MeV, the event is rejected from the selection. The calculation and depiction
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Figure 6.15: The constrained prediction for the νe signal and νµ background events.
The MiniBooNE LEE signal expectation is included as a blue dashed line. [14].

of Mπ0 is described in further detail in [14].

Next we turn to the MPID network once again., if the energy of the reconstructed

electron is high enough, over 100 MeV, then a cut on the MPID muon score is

invoked, removing events that the MPID network scores as having a muon at greater

than 20%. Next, it is required that the MPID γ/e score ratio be < 2, to help ensure

the shower present is from an electron not a γ.

The final 1e1p selection after these, and having undergone the 1µ1p constraint

analysis detailed in [14], is shown in figure 6.15.

122



Chapter 7

A Sterile Neutrino Search in

MicroBooNE

In this chapter we search for a sterile neutrino existing in the 3+1 extended SM

described in section 3.4.1. Our search uses the 1µ1p selection described in section

6.4, searching for muon neutrino disappearance. Recall that at the baseline of the

MicroBooNE LArTPC we can employ the short-baseline approximation which allows

us to ignore SM oscillations. This means any observed disappearance is expected to

be caused by some new physics.

We begin with a description of our analysis’ sources of systematic uncertainty,

before moving into a description of our 3+1 search. We describe how an expectation

is built under the conditions of different 3+1 models across our parameter space.

Then our analysis’ test statistic is defined and a 90% confidence level is drawn, de-

termining MicroBooNE’s sensitivity to these oscillations. Several validation studies

are shown demonstrating our analysis’ robustness, before finally a fit is performed

on MicroBooNE data corresponding to 6.67× 1020 POT taken during the first three

run periods.

123



7.1 Systematic Uncertainties

The oscillation analysis contained within this thesis is limited by systematic un-

certainties from a variety of sources. In this section we describe the methods used to

determine these systematic uncertainties. For the purpose of this discussion we will

split the different types of systematic uncertainty by whether they are reweightable

or not.

Reweightable systematics come from sources that would alter the weighting as-

signed to different events used to build our expectation. For example, the systematic

uncertainty associated with our flux represents an uncertainty associated with the

shape and distribution of neutrinos received by the detector. If we wanted to check

the effect of decreasing the muon neutrino flux in some specific energy range by

95%, we can ’reweight’ muon neutrino events in that energy range to only count as

0.95 events each. These event weights can be changed, hence ’reweighting’ the flux.

Meanwhile non-reweightable systematics are instead referencing uncertainty in

parameters that serve to either introduce, or remove entire events from our selection

in a binary way. An example here is the systematic associated with the LArTPC

optical system, where now the uncertainty is meant to capture whether or not a

specific event would have been able to pass the optical filter in our preselection

discussed in section 6.3. If the light yield in the detector were increased, an event

previously not passing our PMT requirements, could now shift into our selection. In

this analysis, our non-reweightable systematics are all associated with the detector,

and are thus termed the detector systematics.

The way systematic uncertainties are accounted for within our analysis in Micro-

BooNE is by building a covariance matrix from the various contributing systematics.

This covariance matrix then represents the correlations from bin to bin across the

analysis. The covariance matrix is defined by eq. 7.1. Mij is the ijth element of the

covariance matrix. N is the number of different systematics considered. NCV
i is the

number of events in the ith bin of the standard expectation, while Nk
i is the number
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of events in the ith bin of the k-systematically-varied expectation.

Mij =
1

N
(NCV

i −Nk
i )(NCV

j −Nk
j ), (7.1)

Then, the total systematic covariance matrix is determined by summing the

individual matrices associated with the different systematic components. However,

when visualizing this, or scaling it to a different expectation, it beneficial to represent

the covariance matrix in its fractional form. The fractional covariance matrix, F , is

defined as shown in eq. 7.2.

Fij =
Mij

NCV
i NCV

j

, (7.2)

The total fractional covariance matrix is shown below in figure 7.1, while the

scaled covariance matrix is shown later in figure 7.7. Each element in this scaled

matrix represents the covariance between the elements in energy bin i and energy bin

j. For elements along the diagonal, where i = j this then represents the variance,

which is the squared standard deviation of the events in said bin. Whereas the

fractional matrices divide out the number of events in the energy bins, per equation

7.2. This results in the scaled covariance matrix appearing very different from the

fractional forms, because when scaling the fractional terms up by our expectation,

the bins with large fractional covariance (and variance) contain a small number of

events, and ultimately do not produce large values in the scaled covariance matrix.

7.1.1 Detector Systematics

The systematic uncertainties associated with the LArTPC detector are non-

reweightable. The adjustments to these uncertainties do not adjust an event’s

weighting, they adjust the reconstruction in such a way that a given event may

shift outside of the selection. Recall the example that a decrease in the light yield

within the LArTPC could lead to an event no longer passing the optical system

cuts, causing it to fall out of a selection. This either happens or does not happen,
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Figure 7.1: The total, fractional systematic covariance matrix for the 1µ1p analysis.

there can be no partial events.

The systematic uncertainties associated with various detector properties are de-

termined by first creating a set of simulated samples where the properties of the

LArTPC are adjusted. These modifications are made to a variety of different as-

pects of the detector, such as the amplitude and width of the waveforms detected

on the wires as a function of the x-coordinate, y and z coordinates, and the de-

tector angles θXZ and θY Z of a particle’s trajectory [70]. Detector variations also

include changing the parameters associated with electron-ion recombination, chang-

ing the electric field mapping in the detector, as well as changing the light yield,

attentuation, and the Rayleigh scattering length [14].

This breadth of simulated samples can then be compared to the standard sim-

ulation for our analyses in order to estimate the various detector systematic uncer-

tainties. However, creating so many different simulated samples requires substan-

tial computational power, and as such the size of the different detector variation

samples is limited. This introduces statistical noise into the detector systematic un-

certainties. In order to counter this, we leverage a kernel-density-estimation (KDE)

algorithm [71] to smooth the expected spectrum for our different detector variation

samples.
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This assigns a ’kernel’ waveform with some width to each event, and then

smooths the spectrum by summing these waveforms for each event. The KDE

smoothing is valid because we expect the underlying distribution of events in our

variables (such as neutrino energy) to be smooth within our analysis windows. For

further details surrounding KDE smoothing, and the detector systematics used in

this analysis, see [14]. The sum of all the detector systematics is shown in fractional

form in figure 7.2.

Figure 7.2: The fractional systematic covariance matrix for all the detector system-
atics in the 1µ1p analysis.

7.1.2 Reweightable Systematics

The MicroBooNE collaboration considers the systematic uncertainty arises from

several different reweightable sources. They are the systematic uncertainty associ-

ated with the flux, the neutrino cross section on argon, and the finally those associ-

ated with hadron re-interactions. In order to determine the uncertainty associated

with these different reweightables, events in our simulation are assigned a weight

based on their truth-level information, then the parameter associated with a given

reweightable is adjusted and the event weights recalculated, the resulting shifts in

the simulated spectrum of events then provide the uncertainty.
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Our systematic uncertainty on the neutrino’s cross-section with argon is deter-

mined by tweaking parameters in GENIE [57] dictating the weights of the simulated

event spectra. These knobs refer to the strength of different interaction channels

available to the neutrino interaction with the argon nucleus. Several of these knobs

deal with the cross-section strength of our neutrino interaction backgrounds de-

scribed in section 6.4.1.

Recall the primary two neutrino interaction backgrounds are charged-current res-

onant pion interactions and meson exchange current interactions. Both of these in-

teraction modes will be better measured, and their cross-sections better constrained

as MicroBooNE as well as future experiments begin to release detailed cross-section

measurements. Our third neutrino interaction background, deep inelastic scattering

is also present in our cross-section uncertainty. This will be better constrained as

neutrino measurements are made with higher-energy neutrino scattering, such as

using the neutrino main injection (NuMI) beamline at Fermilab [72] which reaches

higher neutrino energies which correspondingly allow for better production of DIS

interactions.

The procedure for handling the cross-section reweightable is described further

in [65] and [73]. The fractional covariance matrix associated with the cross section

systematic uncertainty is shown in fractional form in figure 7.3.

The uncertainty associated with the neutrino flux is related to the hadrons that

decay in the decay pipe that create the BNB, which is described in section 3.2. Recall

that the hadrons we are concerned with are π±, K±, and K0
L. Specifically, these

flux uncertainties are tied to how these hadrons are produced by protons striking

the beryllium target, how they can re-interact within the target, and how they

maneuver about the horn before reaching the decay pipe. The process by which the

flux and its uncertainty are determined are discussed more fully by the MiniBooNE

collaboration in [8], then modified slightly for the MicroBooNE collaboration in [74].

The fractional covariance matrix associated with the flux systematic uncertainty is

shown in fractional form in figure 7.4.
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Figure 7.3: The fractional systematic covariance matrix for the cross-section uncer-
tainty in the 1µ1p analysis.

Figure 7.4: The fractional systematic covariance matrix for the flux uncertainty in
the 1µ1p analysis.

The final type of reweightable systematic considered by this analysis is that of

hadron re-interaction. This systematic considers the uncertainty associated with

proton and π± particles being created then re-interacting with argon. These un-

certainties are determined by reweighting events using Geant4 truth information

concerning the trajectories of hadrons after they leave the original argon nucleus

[75]. The hadron re-interaction systematic is of very low significance to this analysis
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when compared to the other sources of uncertainty. The fractional covariance ma-

trix associated with these re-interaction uncertainties are shown in fractional form in

figure 7.5, we note that these uncertainties are an order of magnitude less important

than the other contributions and are shown for completeness.

Figure 7.5: The fractional systematic covariance matrix for the re-interaction un-
certainty in the 1µ1p analysis.

7.1.3 Normalization Uncertainty

Now that we have our systematic uncertainties defined we can determine our

analysis’ normalization uncertainty. The fractional normalization uncertainty of the

1µ1p selection is equivalent to the square root of the one-bin fractional systematic

covariance matrix. This defined as

f 2 =

∑Bins
ij M sys

ij(∑Bins
i Ni

)2 . (7.3)

The total normalization uncertainty is shown in table 7.1. The individual com-

ponents of the systematic covariance matrix are also shown by isolating their com-

ponents of the total fractional covariance matrix. Uncertainties associated with our

classification tools, such as our BDTs, and convolutional neural networks, are as-
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sumed to be insignificant compared to these major sources of analysis uncertainty,

particularly after the individual validation procedures performed for each tool as

have been described.

Uncertainty Source Normalization Uncertainty

Flux 6.3%
Cross-Section 11.8%
Re-Interaction 1.7%

Detector Systematics 4.9%
Total Systematic 14.34%

Table 7.1: Contributions of each source of systematic uncertainty in MicroBooNE,
as used to plot the reconstructed energy distribution in Figure 6.7, to normaliza-
tion uncertainty. The shape component of each systematic is removed according to
Equation 7.3.

The contributions of each source of systematic uncertainty are also broken down

across our 19-bin 1µ1p selection. This breakdown is shown in figure 7.6. The plot

also features the statistical uncertainty, though this is not used in calculating the

total systematics curve, and is minor compared to the total systematic uncertainty.

Figure 7.6: The uncorrelated fractional systematics broken down by type. The
statistical uncertainty is also shown for comparison.
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Figure 7.7: The full, systematic covariance matrix for the 1µ1p analysis, scaled to
the null disappearance model’s expectation.

7.2 3+1 Sterile Search in MicroBooNE

In this section, we perform a search across a 3+1 Sterile Neutrino Model space

using MicroBooNE’s 1µ1p selection described in section 6.4. We compare the results

of this selection to the expected selection spectra modified by νµ disappearance

across a grid search of sterile neutrino oscillation parameters. Using the uncertainties

surrounding the selection we then outline a region of model parameters that are

allowable at a 90% confidence level.

Recall that a sterile neutrino present in a 3+1 neutrino model would not couple

to the weak interaction, and therefore could not be directly detected. However, they

could affect neutrino oscillation probabilities to such an extent that the observable

νµ flux in MicroBooNE becomes altered in a noticeable way, as described in eqn.

3.2 under the short-baseline approximation. Following the analogous manipulations

of the PMNS matrix shown in section 2.3.2, we can rewrite this survival probability

equation instead as

Pνα→να = 1− sin2 2θαα sin2(1.27∆m2
41L/E), (7.4)

where the 4(1 − |Uα4|2)|Uα4|2 has been replaced with its corresponding mixing

angle term sin2 2θαα. Within this equation we see the probability that να doesn’t

disappear starts at 1, and decreases as the sine terms increase. This means that
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the sine terms correspond to the neutrinos disappearing to other flavors. In this

equation, L is the neutrino propagation distance in km. It represents the distance

between the point in the decay pipe that created the neutrino and the neutrino

interaction vertex in the detector, as defined in the simulation. Meanwhile E is the

neutrino energy in GeV, and sin22θ and ∆m2 are the two parameters of neutrino

oscillation which define a given 3+1 sterile neutrino model. Using this equation, we

can disappear the expected neutrino flux via different 3+1 models by reweighting

the simulated νµ events by their survival probability, and then test how these new

disappeared expectations best fit the data.

While MicroBooNE lacks the statistical power that will exist in future experi-

ments such as will be achieved in the Short Baseline Neutrino program’s SBND at

Fermilab, the DL LEE analysis is sufficiently mature as to provide a highly pure

selection of muon neutrino events (∼ 98%). Note that the events need not be CCQE

1µ1p in order to disappear, they only need to be muon neutrino interactions. This

selection can be used to perform a 3+1 sterile neutrino model νµ disappearance

search across a spread of the model parameters sin22θµµ and ∆m2
41. This modifies

equation 7.4 for the survival probability of muon neutrinos to be

Pνµ→νµ = 1− sin2 2θµµ sin2(1.27∆m2
41L/E). (7.5)

We note that from this point on in this analysis, we will refer to these model

parameters as sin22θ and ∆m2 where the subscripts are implicitly referring to the

sterile neutrino oscillation parameters associated with νµ disappearance.

Further, while the excesses observed in MiniBooNE [7] and LSND [16] can be

attributed to νe appearance associated with a 3+1 sterile neutrino model, such a

phenomenon would require accompanying νµ disappearance. These disappearing

muon neutrinos would be what is turning into the νe excess. But presently, νµ

disappearance has not been observed experimentally.1 This lack of νµ disappearance

1Recall we are referring to specifically νµ disappearance as the result of a sterile, at a short-
baseline where 3-neutrino oscillations are not active.
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places tension on a 3+1 model explaining the observed excesses.

This search also provides another demonstration of analysis that can be per-

formed using LArTPC technology, and MicroBooNE’s analysis tools. However, we

stress that the 1µ1p νµ CCQE event selection was designed and implemented with

the goal of constraining the νe LEE analysis, not for this 3+1 disappearance search.

7.2.1 Method of Disappearance Search

Throughout this νµ disappearance search we will test the fitness of many different

3+1 sterile neutrino models to MicroBooNE data. We perform a 25×25 grid search

over our two parameters sin22θ and ∆m2, with points logarithmically spaced with

sin2 2θµµ ∈ [0.01, 1] and ∆m2 ∈ [0.01, 100] eV 2. Table 7.2 shows the 25 bin center

values of sin22θ and ∆m2 used in this grid search. Note that as described in eq. 7.4

the sin2 2θµµ term describes the oscillation amplitude, and the ∆m2 term corresponds

to the oscillation frequency.

We perform this disappearance search using the DL LEE selection of 1µ1p

charged-current quasi-elastic (CCQE) selection across reconstructed neutrino en-

ergy in figure 6.7. Note, that of the neutrino background category shown, only 2.3

events are expected to be νe, while the remainder are a form of νµ background to

the CCQE signal desired by the CCQE selection. For this disappearance study, that

νµ background will disappear just as the νµ CCQE events, resulting in a very pure

selection for this analysis. We also exclude the first bin, from 200 to 250 MeV which

selects no events in the 1µ1p selection.

We also wish to emphasize that while figure 6.7 includes MicroBooNE data, this

disappearance analysis has avoided running the data through its machinery until

the analysis scaffolding was vetted by the collaboration and solidified. In practice,

because the MicroBooNE collaboration unblinded its data for the 1µ1p selection in

order to complete the DLLEE analysis the authors were aware of the distribution

of the data, and the lack of any extreme peculiarities, but said data was not used

during the analysis’ formation. This is in accordance with the MicroBooNE Blinding
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Table 7.2: The bin centers for our two parameters .

Index ∆m2eV 2 sin22θ

1 0.012 0.011
2 0.017 0.013
3 0.025 0.016
4 0.036 0.019
5 0.052 0.023
6 0.076 0.028
7 0.110 0.033
8 0.158 0.040
9 0.229 0.048
10 0.331 0.058
11 0.479 0.069
12 0.692 0.083
13 1.000 0.100
14 1.445 0.120
15 2.089 0.145
16 3.020 0.174
17 4.365 0.209
18 6.310 0.251
19 9.120 0.302
20 13.183 0.363
21 19.055 0.437
22 27.542 0.525
23 39.811 0.631
24 57.544 0.759
25 83.176 0.912
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Policy outlined in section 3.5.

7.2.2 Creating an Oscillated Prediction with MicroBooNE

Simulation

In figure 6.7, we show a predicted spectrum of events selected by the 1µ1p νµ

CCQE selection. This predicted spectrum is determined through the use of a variety

of simulated neutrino event samples, as well as data taken while the neutrino beam

is off to estimate cosmic-ray-muon-only event backgrounds. Every event in the

simulated portion of our predicted spectrum has a true (as simulated) neutrino

energy Etrue and similarly a true distance from the neutrino’s creation at the BNB

source Ltrue.

Then, given a pair of oscillation parameters, Θ = (sin2 2θµµ and ∆m2) each νµ

event acquires a survival probability

Pµ→µ(Θ;Etrue, Ltrue), (7.6)

where Pµ→µ is the 3+1 νµ disappearance probability from Equation 7.4. In order

to determine the expected event spectrum for a given 3+1 model, each simulated

muon neutrino event is weighted by this survival probability, using the true, sim-

ulated neutrino path length and energy. This allows us to calculate the adjusted

expectation, under this new disappearance model.. Figure 7.8 shows a cartoon of

this disappearance effect. The black curve shows the original expectation, the red

curve shows the portion of events that disappear or Pµ→µ multiplied by the original

flux, and the blue curve shows the modified spectrum after disappearance beneath

the original spectrum. Note that the flux shown is not the BNB flux and designed

for illustrative purposes.

Similarly, figure 7.9 shows the same cartoon, with the only difference being that

the bin width is widened to 50 MeV, our analysis binning. This demonstrates the

change in coarseness of the disappearance effect placed on our spectrum.
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Figure 7.8: A cartoon of the method by which one builds a νµ disappearance spec-
trum from an initial prediction under the 3ν hypothesis.

Figure 7.9: Another cartoon of νµ disappearance, however now using 50-MeV-wide
bins for a coarser spectrum.

We emphasize that these disappearance effects are based on the simulated true

neutrino energy, and not the reconstructed neutrino energy observed by analyzers.

7.2.3 Visualizing Disappearance Model Spectra

Here we examine various different spectra resulting from our different disappear-

ance models. Figure 7.10 shows the resulting spectra from our 25 different values of

∆m2, all with our maximum value of sin22θ. These are the expected spectra from

the rightmost column of bins in our various grid plots.

It is useful to look specifically at the spectra for mass grid point indices around
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Figure 7.10: For all 25 values of ∆m2, the resulting spectra after disappearance is
shown against the null model spectrum. As sin22θ is an amplitude, the maximum
grid value is used for each plot to maximize the disappearance effect.

13-18. This is a region of very high disappearance, and the spectra become extremely

difficult to confuse with the null model when accounting for our uncertainties. When

evaluating our test statistic below, we can expect to see tension between this region

and the surrounding model phase space.

For low values of ∆m2, the disappearance effect becomes unnoticeable, even at

maximum sin22θ. It isn’t until mass grid point index of around 9, or ∆m2 ≈ 0.3

that we can visually start to notice an effect, and even then the fluctuation is almost

certainly covered by our various uncertainties.

This grouping of spectra that look almost exactly like the null model also extends

into the higher ∆m2 region if the sin22θ parameter is low enough. Figure 7.11 shows

an example of such a spectrum, with grid index coordinates of (12,19) this is one of

our middling sin22θ grid points, and higher ∆m2 grid points, but the disappearance
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effect is certainly covered by our covariance matrix.

Figure 7.11: An example of a higher ∆m2, but low sin22θ disappeared spectrum
that is still very close to the null model spectrum. .

7.2.4 Calculating Our Test Statistics

In order to determine both MicroBooNE’s sensitivity and the eventual allowed

regions for a 3+1 model fit to MicroBooNE data, we require a definition of our test

statistic. This statistic will allow us to compare the goodness-of-fit between two

different spectra, a given oscillated expectation and an observation. We begin with

a typical definition of likelihood

L(Θ) =
1

(2π)n/2
√
|M |

e−
1
2
χ2(Θ) (7.7)

.

Where Θ represents the 3+1 neutrino model we wish to test, M is the covari-

ance matrix of the predicted spectrum including statistical uncertainties, systematic

uncertainties, and bin-to-bin systematic covariances. Finally, χ2(Θ) is defined as by

χ2(Θ) =
bins∑
i

(N obs
i −N

pred
i (Θ))M−1

ij (N obs
j −N

pred
j (Θ)). (7.8)

N obs
i is the number of events in the ith bin of the observed neutrino spectrum, and

Npred(Θ) is the predicted spectrum under the sterile neutrino hypothesis described

139



by oscillation parameters Θ. Our χ2 calculation uses a combined Neyman-Pearson

chi-square term added along the diagonal of the covariance matrix. [76] . We then

take the negative-log-likelihood

−ln(L) =
1

2
χ2(Θ) +

1

2
ln(|2πM |) (7.9)

.

Note, that the 2π has moved into the determinant, and lost its power of n

accordingly. Recall that when a constant exists in a matrix, and the determinant is

taken, the result features the constant to the power of the rank of the matrix.

Now, we are free to define our test statistic as two times the difference be-

tween two negative-log-likehoods. This can also be referred to as the negative-log-

likelihood-ratio and is defined as

R ≡ −2ln(LPT/Lbf ) = χ2
PT + ln(|2πMPT |)− χ2

bf − ln(|2πMbf |). (7.10)

This test metric, R, is now the difference between two comparisons with the observed

spectrum. The two PT terms represent the comparison between the observed spec-

trum and the expected spectrum of the test grid point’s model. Meanwhile the two

bf terms represent the minimum negative-log-likelihood comparison between the

observed spectrum and all potential grid point models.

Said more explicitly, this means that given an observation, we calculate our

test metric for model ΘPT by calculating the negative-log-likelihood between the

observation and expectation at ΘPT , and then subtract the negative-log-likelihood

minimum when comparing the observation and all Θ models in our search.

We note that the ’observed’ spectrum is typically meant to represent data. How-

ever, in some instances, other generated spectrum are treated as data, such as when

universes are thrown in the Feldman Cousins method discussed later, or when a

simulated signal is injected to test our analysis machinery.

Drawing sensitivity curves at specific confidence levels using R as our test statis-
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tic is discussed in section 7.2.6

7.2.5 Theoretical Limit on νµ Disappearance Sensitivity

Now that we’ve determined the 1µ1p analysis’ normalization uncertainty we can

examine a theoretical limit on νµ disappearance at high ∆m2. If we examine equation

7.4, relabeled for explicitly νµ disappearance, it becomes

Pνµ→νµ = 1− sin2 2θµµ sin2(1.27∆m2
41L/E). (7.11)

The frequency of oscillations is driven by ∆m2, and when high enough the os-

cillations occur so quickly that they rise and fall within a single energy bin. When

this happens the sin2(1.27∆m2L/E) term averages to 1
2
, and the magnitude of the

disappearance effect is controlled solely by sin2 2θµµ which sets the amplitude.2

This allows the normalization uncertainty to constrain our analysis’ sensitivity

to νµ disappearance at high ∆m2 through the equation

Pνµ→νµ = sin2 2θµµ sin2(1.27∆m2L/E) < χ2
Cf. (7.12)

which comes from equations 4 and 5 in [43]. Here, χ2
C is defined as the χ2

for which α% of χ2 values fall below given the expected χ2 distribution. After the

elimination of the ∆m2 parameter within this limit, we expect a 1-degree-of-freedom

χ2 distribution. This affords a χ2
C at 90% confidence of 1.28 via a 1-sided normal

distribution [43]. Next we reduce the sin2(1.27∆m2L/E) term to 1
2

for the high

frequency regime, and we get

sin2 2θµµ < 2χ2
Cf. (7.13)

Recall f is the normalization uncertainty of our 1µ1p spectrum. Therefore, this

analysis loses the ability to exclude νµ disappearance for models with high ∆m2

2This comes into effect when energy resolution is no longer meaningfully finer than π
1.27∆m2L ,

given by the period of 3+1 sterile neutrino oscillation at the short baseline.
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when sin2 2θµµ < 0.367.

7.2.6 Drawing Confidence Levels

With the 1µ1p selection and its corresponding systematic covariance matrix fi-

nalized, we can outline how this analysis determines sensitivity curves at a given

confidence α using our test statistic R.

The goal of a sensitivity curve is to showcase the region of models in our 2-

parameter space (sin2 2θµµ,∆m
2) that could be excluded if the data produced by

the experiment were to present itself exactly as null model expectation. This aims

to answer the question of ‘if the 1µ1p data looks exactly as the three-neutrino

SM expects, what νµ disappearance model phase space can be excluded at 90%

confidence?’.

As stated in section 7.2.1, we search a 25 × 25 logarithmically spaced points.

Each point represents a different pair of model parameters Θ, with a different ex-

pected, disappeared, spectrum. While it should be obvious that models exist with

parameters set between the points on our grid search, this analysis will only search

with the 25× 25 granularity proposed.

Once given some observed spectrum, be it data, or a fake signal to determine

a sensitivity curve, this observed spectrum can be compared to the disappeared

expectation at each grid point model. This results in a grid of negative-log-likelihood

values from equation 7.9 for our 25× 25 models. Each value in the grid is that grid

point model: ΘPT . Sterile neutrino oscillation models with lower values indicate

better fits to the observation, and higher values indicate poorer matches.

The model with the best fit negative-log-likelihood can then be used to calculate

our test statistic R. We can determine a grid of R values by subtracting the best

fit negative-log-likelihood value for model Θbf from the grid of PT values, this is

the same as following equation 7.10. An alternative analysis could be performed

using the null model as a baseline rather than the best-fitting model. This would

effectively shift all values of R upward, including the calculations of RC via the
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Feldman Cousins method described below, whereas we use the best fitting model

from those available to be set our baseline.

Now we can determine a sensitivity at some specific confidence interval by com-

paring the grid of R values to some critical threshold RC using Wilks’ Theorem.

By taking the difference between the negative-log-likelihoods for ΘPT and Θbf we

expect the degrees of freedom associated with the bins to reduce away, leaving us

with a 2-degree-of-freedom model, for the two parameters that make up Θ. Taking

the χ2 distribution for 2 degrees of freedom, we establish a RC critical threshold at

90% confidence of 4.61.

Now, in order to create a sensitivity curve at 90% confidence using Wilks’ The-

orem, we draw a band around the region of parameter space where our grid of R

values is greater than the RC of 4.61. This region of phase space we expect to be ex-

cluded at 90% confidence if the observation were to look exactly as the null model’s

expectation.

This means that if our experiment were to be repeated many times over, we

expect this region to be excluded 90% of the time.

The resulting sensitivity from this method using Wilk’s Theorem is shown in

figure 7.12, as well as the high ∆m2 limit. In addition, a single-bin sensitivity anal-

ysis is shown, where all the energy bins of the analysis are combined. This presents

experimental evidence of what MicroBooNE’s sensitivity would be in the absence

of shape information, as the high ∆m2 limit theorizes. MiniBooNE’s sensitivity

is also overlaid [15], though the MiniBooNE analysis had use of roughly 40× the

statistics of this analysis. We also note that the MiniBooNE disappearance analysis

performed a shape-only fit, whereas our analysis uses both shape and rate informa-

tion. The difference is that a shape-only fit scales the expected spectrum to match

the observed spectrum, while subtracting the normalization component from the

covariance matrix. Our procedure for determining the shape plus rate sensitivity

curve is outlined in further detail in section 7.2.8.
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Figure 7.12: MicroBooNE’s 90% sensitivity contours for a shape-and-rate (S+R)
parameter-space scan. The contours are drawn assuming a R distribution with
2 degrees of freedom. MiniBooNE’s νµ disappearance sensitivity is overlaid [15].
Additionally a vertical line at sin2 2θµµ = 0.367, the predicted high-∆m2 sensitivity
calculated from our normalization uncertainty. Finally the sensitivity for a 1-bin,
rate-only disappearance analysis using Wilks’ theorem is also shown.

7.2.7 Feldman Cousins Derivation of RC

There are several points why Wilks’ theorem may not hold for this analysis.

Wilks’ theorem assumes a specific number of degrees of freedom. As described in

section 7.2.5, we assume a 2-degrees-of-freedom distribution, due to the two param-

eters that make up our disappearance model Θ. However, across our entire phase

space, our signal will not be sensitive to both parameters.

First, our sin2 2θµµ parameter controls the amplitude of the disappearance effect

in equation 3.2. This term has to exist somewhere between 0 and 1, but for lower

values it turns off any disappearance effect we hope to see, regardless of what value

we use for ∆m2. This means that in the low-amplitude phase space, our model

could behave more like it has 1 degree of freedom.

A different effect can be seen in very high values of ∆m2. As discussed in section
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7.2.5, at higher values of ∆m2, the frequency term of our disappearance probability

oscillates faster than the energy resolution in MicroBooNE, thus averaging to a value

of 1
2
. Therefore at high values of ∆m2, we lose dependence on the ∆m2 parameter,

and our model again could behave more like it has 1 degree of freedom.

While there may be other inconsistencies in the two degree of freedom assump-

tion, these points alone are enough to indicate that the R value distributions are

not Gaussian.3 This means that it may be beneficial to develop an alternative set of

critical R values, or RC for each grid point in our search. We can do this by exam-

ining the R distribution determined by simulating or ’throwing’ different observed

universes from the grid point model’s true oscillation parameters. This allows us to

follow the procedure described by Feldman and Cousins [77] for determining our RC

values.

For our Feldman Cousins form of the analysis, we maintain the same parame-

ter space of 25 × 25 logarithmically-spaced grid points across our two parameters

sin2 2θµµ and ∆m2.

For each grid point model, ΘPT we determine the expected disappeared spectrum

as described in section 7.2.2. Next, we can take advantage of a software package,

SBNfit [78], to simulate fake universes or ’pseudo-experiments’ coming from a specific

disappearance model ΘPT . The process for drawing pseudo-experiments is further

described in section 7.2.9, for now, it is sufficient to understand that the pseudo-

experiment spectrum is meant to represent a possible observation seen in a universe

where the expectation is the disappeared spectrum at point ΘPT .

For each grid point, we simulate 1000 pseudo-experiments to treat as our ob-

servation. Then for each observed spectrum, we can calculate our test statistic, R,

by calculating the negative-log-likelihood of its originating model, ΘPT , and sub-

tracting the negateive-log-likelihood of the best-fitting model, Θbf . Note, that the

covariance matrix at each grid point changes according to the newly determined

expected spectrum for that grid point’s disappearance model. This means that the

3However, the expected number of events in a given bin are still assumed to follow a multivariate
Gaussian.
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covariance matrix for ΘPT and Θbf are only the same if the best-fit point is the very

point the pseudo-experiment was thrown from. Now, at each grid point we have a

distribution of 1000 R values as determined via our pseudo-experiments.

An example spectrum of R for ΘT = (sin2 2θ,∆m2) = (0.01, 0.01eV 2) (the null

point in our search) is plotted on the left in figure 7.13. Note, that while technically

these parameter values are not a null-disappearance, they correspond to such a

minuscule change, that we treat it as our null model. This resulting R distribution,

shown as a blue histogram is overlaid with a theoretical χ2 distribution of 2 degrees of

freedom to illustrate the difference between the Wilks Theorem expectation and the

Feldman Cousins method. Furthermore, the positions of the 90% confidence limits

are marked with vertical lines, each one representing the point in its respective

distribution where 90% of the distribution is less than that point.

The right plot in the figure demonstrates a more extreme disappearance model,

with ΘT = (sin2 2θ,∆m2) = (0.91, 3.0eV 2). Here we see that the R spectrum is

spiked at 0, nearly all of the thrown universes’ best fit models are the same as the

model the universe was thrown from. In fact, as this happens more than 90% of the

time, the RC value for this grid point is 0.

Figure 7.13: Distribution of R across 1000 pseudo-experiments for the null, no-
disappearance, hypothesis as ΘT , shown in blue on the left. Another distribution
for 1000 pseudo-experiments for an oscillation hypothesis with a large disappearance
model, with parameters ∆m41 : 3.0, sin2(2θµµ) : 0.91 is on the right. Each plot
contains expected distributions for two degrees of freedom. Vertical lines are drawn
for the 90% CL of each distribution, such that 90% of the distribution is to the left
of the vertical line.
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We note, that for extreme disappearance effects, as shown in the right distri-

bution of R values the best-fit grid point (BF) is frequently the same as the point

the pseudo-experiment was thrown from (PT), which means our test statistic R, by

definition, is 0, this corresponds to regions with such extreme disappearance effects

that MicroBooNE is particularly sensitive to them.

Now, for each grid point in our search, we can determine the RC value in the

Feldman Cousins method by finding the value where 90% of the R distribution falls

below it, in our 1000 pseudo-experiment case this corresponds to the 900 lowest

value. The grids of these RC values, and their fractional difference with the 2-

degrees-of-freedom Wilks’ threshold of 4.61 are shown in figure 7.14.

Figure 7.14: The critical R values for 90% CL across every point in our parameter
space. The left plot displays the raw RC value, while the right shows the fractional
difference in RC from a 2-degree-of-freedom scenario.

7.2.8 Quantifying Sensitivity with Feldman Cousins Method

Before this analysis is applied to MicroBooNE’s actual data, it is valuable to

determine what region of our 3+1 sterile neutrino model’s phase space we will be

sensitive to. For our sensitivity study we will treat the null disappearance model’s

spectrum as though it were our observation exactly, then run through the analysis

to determine what part of our phase space we can exclude. This study answers the

question: If MicroBooNE were to measure exactly the null disappearance spectrum,

what oscillation parameters could we exclude to 90% confidence?
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For each grid point we treat the null disappearance spectrum as observation, and

then compare it to the expected disappearance spectrum of the corresponding grid

point, this gives us a grid of negative-log-likelihood PT values. Then we subtract

the minimum value from among this grid from each point in the grid. This gives

us a grid of test R values to compare to the grid of RC values developed via our

Feldman Cousins pseudo-experiment throws. This follows the calculation as shown

in equation 7.10. Note, that for the sensitivity determined via Wilks’ method, shown

in figure 7.12 these R test values were compared to a constant threshold of 4.61, for

the 2 degrees-of-freedom assumption.

The grid of R test values are displayed on the left in figure 7.15. The same

values are shown on the right plot, except that it uses a log scale on the Z-axis

and values under 0.1 are set to 0.1 for better visualization. Here, we see that

there are several disappearance models that have extreme tension with the null

disappearance expectation being treated as observation. As a sanity check, this

region of disagreement is in the same space where the RC values were exactly 0 in

figure 7.14. We also note the purple region of interest at high ∆m2 in the upper

right portion of the grid, notable in the log-scaled . This corresponds to the region

from which the minimum negative-log-likelihood comes from. Note that it is the

sum of χ2 term and determinant term in equation 7.9 that determines the minimum

value, not just the χ2, and in this region decreases in the determinant term offset

increases in the χ2 term. We recognize the fact that this represents the idea that

our negative-log-likelihood-ratio test statistic is a biased estimator, biasing towards

more disappearance. However, this minimum region fits squarely with the vast

majority of degenerate portions of our plot where the R values are low, indicating

little disagreement with the null, and a high degeneracy of the ’no disappearance’

case.

With both the test values of R and the Feldman Cousins grid of RC , we can now

determine the sensitivity of the analysis within our parameter space. Figure 7.16

shows this Feldman-Cousins-based sensitivity.
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Figure 7.15: The test R values across every point in our parameter space. The left
plot displays the raw R value, while the right shows the same values, with values
below 0.1 set to 0.1 and a log scale applied for better visualization.

Figure 7.16: MicroBooNE’s 90% sensitivity contour for our parameter-space scan
using the Feldman Cousins method of determining RC . MiniBooNE’s νµ disappear-
ance sensitivity is overlaid [15].

Notably, within the granularity of our 25 × 25 grid of values, we do not see a

difference between the sensitivity using Wilks’ Theorem or the Feldman Cousins

method. We emphasize that, for the reasons provided at the beginning of section

7.2.7, the Feldman Cousins method is preferred. However, it should also be noted
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that it comes with a significantly increased computational cost due to the task of

generating so many pseudo-experiments across the parameter space, and comparing

them to all potential expected models. This makes Feldman Cousins procedure hard

to scale as the model phase space grows, either by adding a free parameter to extend

the model, or by decreasing the coarseness of our grid search points.

In figure 7.16 we note a region in the upper right of our search space which

MicroBooNE is sensitive to that MiniBooNE was not. This is a region of strong

disappearance with high frequency ∆m2 values, allowing for more rapid fluctuations

in the disappeared spectrum. The MiniBooNE analysis was a shape-only analysis,

ignoring any rate (normalization) difference. This combined with the high mass

splitting limit reduces the information available to discriminate disappearance effects

in the region compared to our shape and rate analysis.

7.2.9 Drawing Pseudo-Experiments with SBNfit

In reality, experiments only get one complete set of data with which to perform

analysis. Their data is their data. It comes from the disappearance model that

describes this universe. We want to build an expectation to that data, whatever it

may be. However, our expectation exists as a result of the statistical and systematic

uncertainties associated with the experiment and our simulated datasets.

These uncertainties serve to drive the expectation away from the true underlying

physics, which create the data. We label our baseline expectation, without incor-

porating uncertainty the ’central value’ (CV). But due to these uncertainties, the

data observed from MicroBooNE will not exactly represent this CV expectation. By

simulating pseudo-experiments we can gain insight into the variation that we may

see between our single observation, and our CV expectation that is covered by our

uncertainties.

The process for generating a pseudo-experiment’s spectrum is rooted in Gaus-

sian fluctuations. For each bin in our spectrum we draw randomly from a Gaussian

centered on the CV expectation, with variance of the bin’s statistical and systematic
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uncertainty. This follows the assumption that our expected distribution is a mul-

tivariate Gaussian and results in a spectrum systematically fluctuated around the

CV expectation. But we still need to account for statistical fluctuation. In order to

do that, we then Poisson smear each of the bins of our expectation to simulate the

resulting pseudo-experiment’s observation. This pseudo-experiment now represents

what MicroBooNE could have observed in another universe due to our systematic

and statistical uncertainties.

One of the aspects of the 1µ1p selection in MicroBooNE is that it features many

bin-bin correlations in its covariance matrix. This means that when systematically

fluctuating the CV, a random Gaussian draw will not cover these bin-bin correla-

tions. Our software package, SBNfit, uses Cholesky decomposition to correctly draw

random spectra from the CV using a covariance matrix with bin-bin correlcations.

For further details about the Cholesky procedure, see [79].

7.2.10 Pseudo-Experiment Cross-Check

We can perform a visual check on our pseudo-experiment throwing procedure

to confirm that the universes are being drawn appropriately. We choose a specific,

stronger disappearance spectrum, corresponding to values of ∆m2
41 = 0.69 eV2 and

sin22θµµ = 0.76. We then generate 1000 pseudo-experiments around its disappeared

CV expectation using our covariance matrix scaled to the disappeared CV expecta-

tion.

Figure 7.17 shows the resulting 1000 distributions. The original disappeared CV

expectation is plotted as a red line at the center of the distribution. One, two, and

three σ bands are plotted around this distribution in black. These bands are calcu-

lated by taking the CV and adding (or subtracting) the square root of the diagonal

of the scaled covariance matrix including both systematic and Poisson statistical

uncertainties. Note that this means the bands ignore bin-bin effects coming from

the off-diagonal terms of the covariance matrix, but still serve as a easily-visualized

benchmark. The 1000 pseudo-experiment spectra are shown in various different
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colors.

Figure 7.17: Plot of simulated events with νµ flux oscillated away with parameters
sin22θµµ = 0.76 and ∆m2

41 = 0.69 eV2 (in red). The other colored histograms
represent 1000 pseudo-experiments drawn around this central value. Overlaid are
the 1, 2, and 3σ uncertainties from a covariance matrix scaled to the disappeared
CV (and with Poisson uncertainty) for each bin.

We note that the vast majority of thrown bins end up within the 3σ band, with

more concentration closer to the disappeared CV expectation. This is precisely what

we expect from our pseudo-experiments. Given that 3σ is expected to cover 99.7%,

and that over 1000 pseudo-experiments this test has fluctuated 19000 bins, we are

unconcerned by some parts of some spectra reaching past the final band.

7.3 Validation Studies

Here, we’ll go through a few studies performed to test different parts of the

analysis.

7.3.1 Signal Injection Tests

Our sensitivity contour in figure 7.16 tells us what MicroBooNE could say if

they observed exactly the 3-neutrino null disappearance expectation. But we can

also examine the results of this analysis if its observation were to come from some
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true disappearance model. Here, we ask the question of ‘if the 1µ1p data comes from

a pseudo-experiment, generated around some disappearance model, what

fraction of the time can we exclude the null disappearance model at 90% confidence?’

We emphasize that this is different from the sensitivity test, as now the observation

is coming from a thrown universe around an injected disappearance model, rather

than the null model exactly.

We create this injected signal to treat as observation by first choosing the two

parameters that describe our disappearance model Θ. We then apply the disappear-

ance effect to the null expectation. Finally we generate a pseudo-experiment using

the covariance matrix for this disappeared expectation. We then perform a fit, ex-

actly as though this pseudo-experiment spectrum were our data, calculating a grid

of our test statistics R to compare to the Feldman Cousins RC values to determine

allowed regions, and specifically note whether the null model is allowed.

We generate and fit 1000 pseudo-experiments to get an idea of what fraction of

the time MicroBooNE could reject the null.

We perform this signal injection test at four different disappearance model points.

Each point has ∆m2 = 2 eV2, while we vary our other parameter; sin2 2θµµ =

0.04, 0.2, 0.34, and 0.8.

Figure 7.18 shows the MicroBooNE Feldman Cousins sensitivity band, as well

as the four points in our parameter space that we perform our injection test. We

note that the points chose were not at the center of our model grid points, and are

thus different models. Further, we emphasize that the pseudo-experiment procedure

employed means that the final observed spectrum vary from the model’s expectation

as dictated by our covariance matrix.

The procedure to determine if the null model is allowed by a given pseudo-

experiment is as follows. We calculate the negative-log-likelihood between the ob-

served pseudo-experiment, and the expected null spectrum, then subtract the best fit

negative-log-likelihood between the observed pseudo-experiment and all grid point

expected spectrum. This results in an R value for the null model point, which we
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Figure 7.18: MicroBooNE’s sensitivity to νµ disappearance at 90% confidence, with
four points indicated where signal was injected for the crosschecks described in this
chapter. Interpretations of the signal injection can be found in the text.

then compare to the RC from our Feldman Cousins method. If R > RC then we

exclude the null. This procedure can be repeated for all model grid points, not just

the null thus determining all allowed regions give a specific observation.

We show the allowed regions for several pseudo-experiments in section 7.3.2.

Across our four different signal injection points, we have a variety of null model

rejection rates.

• For a signal injected at the green point, (sin2 2θ,∆m2) = (0.8, 2eV2), we ex-

clude the null model 100% of the time. This is an extremely disappeared

spectrum, deep within the our sensitive parameter space, and thus unsurpris-

ing.

• For a signal injected at the blue point, (sin2 2θ,∆m2) = (0.34, 2eV2), we are

able to exclude the null model 71.5% of the time. This is a notably less than

90%, despite the injection point being close to our 90% confidence sensitivity

contour, however recall the injection test asks a different question than our

sensitivity test.

• For a signal injected at the gold point, (sin2 2θ,∆m2) = (0.2, 2eV2) we begin

to lose serious power to exclude the null. Now we only are able to exclude the

null 33.9% of the time.
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• For a signal injected at the red point, (sin2 2θ,∆m2) = (0.04, 2eV2), we see,

and expect a significant drop in rejection rate. The disappearance effect here is

quite small, with the amplitude term at 0.04 before considering the frequency

term, effects will be slight, and more easily covered by our uncertainties. We

exclude the null 11.6% of the time.

7.3.2 Pseudo-Experiment Allowed Regions

We can also examine the different allowed regions for pseudo-experiments gen-

erated as part of our injection test in section 7.3.1. Allowed regions are determined

in the same way we determine if a given pseudo-experiment can exclude the null

model, except now we examine each grid point, and draw contours around the re-

gion of model parameter phase space that are allowed when testing against the

critical R values determined by our Feldman Cousins method.

Figure 7.19 shows the allowed regions for 20 different generated pseudo-experiments,

five from each injection point. Each of the four columns of plots in the figure show

pseudo-experiments thrown from the four different injection points. We note that

for the final injection point, all five allowed region plots are the same. The best

fit grid point is the same for each pseudo-experiment, and the allowed region is the

same singular grid point. The pseudo-experiments chosen to display were picked

at random (the first five pseudo-experiments generated at each point). In viewing

these plots it is useful to recall that the plots shown are in logarithmic scale, so that

half the visual phase space doesn’t correspond to half the parameter phase space

searched by our analysis.

We also note that the 90% threshold is not perfect, and are not surprised that

between all these throws some best fit points lie outside the allowed region.

Examining the various allowed regions gives some insight into a large degeneracy

within our two-parameter disappearance model phase space. Based on the allowed

regions, there exist potential observed spectra that can reasonably fit (allow) disap-

peared model expectations with any ∆m2 and middling to lower sin2 2θ values, as
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Figure 7.19: For various pseudo-experiments thrown from different injected signals
we show the 90% confidence limit allowed regions.

well as fit models with middling to lower ∆m2 and any sin2 2θ. We can better under-

stand this aspect of the analysis by visualizing several of the different disappearance

model spectra across different parts of our grid, which is done in the section 7.2.3.

7.3.3 Stats-Only Analysis

Due to the nature of the bin to bin correlations in our systematics matrix it can

be difficult to anticipate the behavior of different steps in the analysis to determine

if our machinery is behaving as expected.

This makes it valuable to repeat our analysis with a covariance matrix that only
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includes statistic uncertainty on the expectation, and sets all systematic uncertain-

ties to 0. This removes any bin to bin effects, and means that in both throwing

universes and our fitting procedure with the negative-log-likelihood, only statistical

fluctuation is allowed.

It should be emphasized that the material in this subsection is only representa-

tive of what this disappearance analysis would look like if our experiment had no

systematic uncertainty. Of course this is not the case, but it remains useful as a

validation of our analysis.

Figure 7.20 shows our resulting covariance matrix with only statistical uncer-

tainty. All off-diagonal elements are 0, indicating no bin-bin correlations.

Figure 7.20: The fractional covariance matrix in a statistics-only regime.

Then we can run the Feldman-Cousins analysis to determine the new RC thresh-

olds for determining sensitivity, shown in figure 7.21.

In the stats-only regime, the phase space featuring RC = 0 exactly grows, indi-

cating that without the uncertainty associated with the experiment’s systematics,

it becomes easier to fit a thrown pseudo-experiment to its original model ΘPT . Fi-

nally, we can determine the resulting sensitivity of a stats-only regime. This result

is shown in figure 7.22. MiniBooNE’s result is also shown, however it still includes

systematic errors, and is only shown as a benchmark.

We see that in a world where MicroBooNE has only statistical uncertainty it

becomes far more sensitive to νµ disappearance, able to exclude even lighter disap-
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Figure 7.21: For the stats-only regime, the critical R values for 90% CL across every
point in our parameter space. The left plot displays the raw RC value, while the
right shows the fractional difference in RC from a 2-degree-of-freedom scenario.

Figure 7.22: For the stats-only regime, MicroBooNE’s 90% sensitivity contour for
our parameter-space scan using the Feldman Cousins method of determining RC .
Both our normal Feldman-Cousins analysis, and MiniBooNE’s νµ disappearance sen-
sitivity are overlaid [15], though MiniBooNE’s limit still includes systematic errors,
and is shown only as a benchmark.

pearance effects if the observation is exactly the null model expectation.
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7.3.4 Scaling Test

The analysis can also be studied by examining its performance in a regime where

MicroBooNE has far more data that we actually anticipate. In this validation study,

we scale the null model’s expectation (from which all other spectra are derived) by

a factor of roughly 40. This puts the statistical power of MicroBooNE level with

MiniBooNE. This has the effect of reducing the statistical uncertainty associated

with the observation which comes about from our combined Neyman-Pearson χ2

term. Combined with the study in section 7.3.3, it also allows us to state whether

the analysis is more statistically limited or systematically limited.

Following through the same analysis in this scaled regime, our fractional covari-

ance matrix is the same as underlies the scaled version in figure 7.7. We use this

and our scaled expectations to throw new pseudo-experiments and generate a grid

of RC values for the scaled experiment. These values, and their fractional relation

to the threshold of 4.61 from a 2 degree-of-freedom assumption are shown in figure

7.23.

Figure 7.23: For the 40x scaled regime, the critical R values for 90% CL across every
point in our parameter space. The left plot displays the raw RC value, while the
right shows the fractional difference in RC from a 2-degree-of-freedom scenario.

Here the region of RC = 0 again grows, however the growth isn’t as strong as

the stats-only case, indicating that reducing our statistical error isn’t as significant

as eliminating our systematic uncertainty. We calculate new test R values and

compare them to these RC values to determine a sensitivity derived from the scaled
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data regime. The resulting sensitivity is shown in figure 7.24.

Figure 7.24: For the 40x scaled regime, MicroBooNE’s 90% sensitivity contour for
our parameter-space scan using the Feldman Cousins method of determining RC .
Both our standard Feldman Cousins sensitivity and MiniBooNE’s νµ disappearance
sensitivity is overlaid [15].

Now, by comparing figure 7.22 and 7.24 we can more definitively claim that the

νµ disappearance analysis presented here is more systematics limited. The anal-

ysis grows more sensitive to lesser disappearance effects when the systematics are

removed, compared to when the statistical uncertainty is reduced.

7.3.5 Fake Dataset Tests

We also perform the νµ disappearance analysis on two fake datasets generated

by the MicroBooNE collaboration, referred to as fake dataset 1 and fake dataset 2.

These datasets were explicitly generated with specific signals to test analyses.

Fake dataset 1 was generated with a low energy νe signal at 3.5× that of an

unfolded MiniBooNE signal. However, the 1µ1p selection used for this analysis will
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remain mostly indifferent to more νe events. The set also removed MicroBooNE’s

GENIE central value tune event weights, which decreases the 1µ1p selection spec-

trum as the tune is removed.

Figure 7.25 shows both the fake dataset’s spectrum and best matching disap-

pearance spectrum (left) and the resulting 3+1 νµ disappearance model allowed

regions (right) if we run the analysis on the fake dataset. This region is determined

by checking where the calculated test R values for the fake dataset are less than

the RC values at each grid point as determined by the Feldman Cousins method

described by figure 7.14.

Figure 7.25: Fake dataset 1’s spectrum (left) and the allowed regions (right) when
run through the νµ disappearance search.

This results in a fairly small allowed region, with middling values for both sin22θ

term and ∆m2 relative to our search phase space.

Fake dataset 2 was generated with increased contributions from quasi-elastic and

meson-exchange-current interaction, both of which contribute significantly to the νµ

1µ1p selection. As such, we both expect and observe an increase in our selected

spectrum. Figure 7.26 shows both the fake dataset’s spectrum and best matching

disappearance spectrum (left) and the allowed regions (right) if we run the analysis

on the fake dataset.

Here we see the selected event spectrum is indeed higher than the null model,

and the allowed region phase space is vast, covering many of our grid points. This

is unsurprising as the νµ disappearance model is not capable of increasing the spec-
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Figure 7.26: Fake dataset 2’s spectrum (left) and the allowed regions (right) when
run through the νµ disappearance search.

trum, as is easily seen in equation 7.5. Therefore the disappearance model cannot

be tweaked to explain the increase in the selected spectrum in various bins.

7.4 3+1 Sterile Neutrino MicroBooNE Data Anal-

ysis

Now we are ready to perform our 3+1 muon neutrino disappearance search using

the first three years of MicroBooNE data. This corresponds to 6.67× 1020 protons

on target (POT) worth of beam data. Recall the data selection is plotted against

the expectation in figure 6.7.

First, the test statistic, R, is calculated by inputting this data as our observation.

This is different from our sensitivity R values where we assume the observation is

exactly the null expectation. The grid of Rdata across our parameter space is shown

in figure 7.27, on the left the values are shown with a linear z-axis scale, on the

right, a log-scaled z-axis is used to shower finer features.

Here we see the best fitting model to our observation, and minimum R value,

is at model parameters sin2(θµµ) = 0.12 and ∆m2
41 = 3.02 eV2. However, we do

not attribute much strength to this minimum as it falls squarely in the degenerate

region of our search plot. More specifically, the minima falls within the bulk of

the plot where the calculated R values are low, indicating that there is not much
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Figure 7.27: The RData values across every point in our parameter space where we
use our 6.67 × 1020 POT worth of data as our observation. The left plot displays
the raw R value, while the right shows the same values, with values below 0.1 set
to 0.1 and a log scale applied for better visualization.

Table 7.3: The breakdown of components of our test statistic R for the best fit point
and the null oscillation model.

Null Oscillation Model Best Fit Model Difference

ln(|2πM |) 153.58 151.59 1.99
χ2 21.10 22.22 -1.12

Total 174.68 173.81 0.87

discriminating power between the observation and the local expectation, compared

to the observation and the best fitting expectation.

In figure 7.28 the best fit expectation (red), data (black) and null oscillation

expectation (blue) are plotted together. Our expectation’s uncertainties are plotted

around the null oscillation in blue hashes. Plotted against one another we can see

the best fit expectation is not far from the null model, particularly when considering

our analysis’ uncertainty bands.

In table 7.3 the different components of our test statistic R, the negative log

likelihood ratio, are broken down. Comparing the values, the null model has a

slightly better χ2 value, 1.12 lower than the best fit, but the term containing the

determinant of the covariance matrix is 1.99 lower for the best fit, allowing the best

fit grid point to slightly beat out the null. However, with a net difference of just

0.87, the two points are quite comparable when considering the scale of the larger

R values shown in the figure 7.27.

163



Figure 7.28: The selected neutrino interaction spectrum as a function of energy. In
blue the null model expectation, with the uncertainty band surrounding it, in black
our observation, the data, and in red the best fitting 3+1 sterile neutrino model.

Lastly we can examine the allowed and excluded regions of parameter space as

determined by MicroBooNE’s data. We compare the RData values to the RC values

as when we calculated our sensitivity. Now where RData is greater than RC we can

exclude at 90% confidence, as RC was calculated via the 90% mark. The result

of this test is shown in figure 7.29. The MicroBooNE allowed region is in green

and the excluded region the white space in the upper right of the plot. Overlaid is

the MiniBooNE experiment’s own excluded region [15], as well as the MicroBooNE

sensitivity. We see that generally, MiniBooNE’s exclusion region is wider than ours.

This is due to a mixture of our analysis being statistically, and systematically limited

as demonstrated by figures 7.24 and 7.22. A global best fit for 3+1 sterile-related

muon neutrino disappearance is performed in [43], and finds a best fit model of

sin2(θµµ) = 0.0716 and ∆m2
41 = 1.32 eV2. This global best fit remains in the

MicroBooNE allowed region.

Of note is the fact that MicroBooNE’s own exclusion region extends beyond

our expected sensitivity. This is unsurprising because the sensitivity is estimated
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by treating the observation as the null expectation, while our actual observation

is the data, which is generally in excess of the null expectation. As the only way

for our disappearance model to adjust the expectation is by decreasing it, an excess

observation places greater distance, and thus more discriminating power between the

observed data, and our suite of test model expectations. This allows us to exclude

more parameter space than anticipated.

We also see that our analysis is able to exclude phase space in the upper right

region of our search that MiniBooNE is unable to, and share a slight border with

them on the lower edge of our ∆m2
41 values searched. In the upper right, at high

values of ∆m2
41, we expect that MicroBooNE benefits from narrower energy bin

widths, which allow more shape information to be observed at the higher frequency

oscillations that high values of ∆m2
41 bring. Our analysis, using the calorimetry

of MicroBooNE’s LArTPC, features 50 MeV energy bins, whereas MiniBooNE’s

search generally uses 100 MeV bins. Regardless, the upper right region of phase

space has also been ruled out by the CCFR (Chicago-Columbia-Fermilab-Rochester)

experiment who also searched for muon neutrino oscillations in 1984 [80].

From this analysis, we conclude that muon neutrino disappearance as part of a

3+1 sterile neutrino model is generally not observed in MicroBooNE’s data within

the parameter space we search. We add our experimental power to previous exper-

iments in excluding a region of model phase space. Both the null oscillation model

as well as the global best fit point for 3+1 muon disappearance, as determined in

[43], remain within our allowed region.
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Figure 7.29: Using 6.67×1020 POT worth of MicroBooNE data we show the allowed
regions of 3+1 model phase space in green, and the excluded region in white in
the upper right of the plot, our Feldman Cousins sensitivity is overlaid in blue.
MiniBooNE’s excluded curve is also overlaid in red [15].
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Chapter 8

Next Generation Cosmic Ray

Tagging with sMask-RCNN

The material presented in this section is the same work as posted to arXiv [81],

which was written by the author of this thesis. This means the document attempts

to stand on its own, and some of the explanations present in other parts of this thesis

are repeated or simplified. The complete author list is omitted, but is available on

arXiv. This document has also been submitted to JINST.

8.1 Abstract

In this article, we describe a modified implementation of Mask Region-based

Convolutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a

liquid argon TPC and applied to MicroBooNE neutrino data. Our implementation of

this network, called sMask-RCNN, uses sparse submanifold convolutions to increase

processing speed on sparse datasets, and is compared to the original dense version in

several metrics. The networks are trained to use wire readout images from the Mi-

croBooNE liquid argon time projection chamber as input and produce individually

labeled particle interactions within the image. These outputs are identified as either

cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has

an average pixel clustering efficiency of 85.9% compared to the dense network’s aver-

167



age pixel clustering efficiency of 89.1%. We demonstrate the ability of sMask-RCNN

used in conjunction with MicroBooNE’s state-of-the-art Wire-Cell cosmic tagger to

veto events containing only cosmic ray muons. The addition of sMask-RCNN to

the Wire-Cell cosmic tagger removes 70% of the remaining cosmic ray muon back-

ground events at the same electron neutrino event signal efficiency. This event veto

can provide 99.7% rejection of cosmic ray-only background events while maintaining

an electron neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray

muon identification, sMask-RCNN could be used to extract features and identify

different particle interaction types in other 3D-tracking detectors.

8.2 Introduction

The MicroBooNE [10] experiment uses a liquid argon time projection chamber

(LArTPC) with an active volume of 85 tonnes to study neutrinos from the Fermilab

Booster Neutrino Beamline, while also receiving neutrinos from the Neutrinos at the

Main Injector (NuMI) beam. The MicroBooNE LArTPC is a near-surface detector

that does not utilize any overhead shielding for cosmic background mitigation. This,

combined with a long TPC readout time, described in section 8.3.1, results in a

high ratio of cosmic ray muons to the number of neutrinos that interact within the

detector. Techniques must be developed to reduce this cosmic ray muon background

so that different neutrino interaction channels are measured with high purity.

A cosmic ray interaction can be mistaken for a neutrino interaction regardless

of whether there is a neutrino interaction in the readout window. We consider any

cosmic ray muon depositing charge in the detector an ‘interaction’ regardless of

whether it is captured in, decays in, or traverses the detector. Background events

without a neutrino interaction present are called “cosmic-only” events. An example

of a cosmic-only event is depicted in figure 8.1c. Due to the prevalence of cosmic

rays at this near-surface location, any reconstruction tools designed to tag cosmic

ray muons should be deployed early in the reconstruction chain to filter such non-

neutrino events. This means that our solution to identifying and removing cosmic
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ray backgrounds must be deployable across the entire MicroBooNE dataset.

In this article, we present an approach to cosmic ray muon tagging using machine

learning. Within the MicroBooNE experiment, machine learning techniques have

been applied in other areas, such as particle identification, and pixel identification

[82, 52, 53, 13]. In this article, we make use of a neural network called Mask-RCNN

or ”Mask Region-based Convolutional Neural Network” [83] to locate, identify, and

cluster 2D interactions corresponding to the projections of the LArTPC wire planes.

The design of Mask-RCNN is described in section 8.3.3.

Machine learning algorithms are typically deployed on graphics processing units

(GPUs) because their ability to parallelize computations pairs well with the ma-

trix multiplications that are abundant in machine learning code. However, in or-

der to deploy on the full MicroBooNE dataset, our tools need to run on central

processing units (CPUs) because the MicroBooNE production chain has access to

large amounts of CPUs but not integrated GPUs. While running on GPUs would

speed up run time, integrating GPUs would require additional personnel and finan-

cial investment that is not presently feasible, therefore operations that use CPUs

are required. To solve this problem, we extend Mask-RCNN to use sparse sub-

manifold convolutions [84] which allow for much faster CPU running on sparse

datasets by avoiding multiplication when one term is zero. We call this modi-

fied version of the network sparse Mask-RCNN or ”sMask-RCNN”. Section 8.4.2

contains a brief description of submanifold convolutions, and sMask-RCNN’s mod-

ified state is described in 8.4.3. Several visual examples of sMask-RCNN’s perfor-

mance are provided in the form of event images in figure 8.1. For details on how

the event images underlying the sMask-RCNN labels are made, see section 8.4.1.

Code detailing our implementation of sMask-RCNN has been made available at:

https://github.com/NuTufts/Detectron.pytorch/tree/larcv1_mcc9.
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(a) An example of an input image as given to sMask-RCNN to process

(b) A simulated neutrino interaction overlaid on cosmic ray muons from data, labeled by
sMask-RCNN

(c) Cosmic-only data event, labeled by sMask-RCNN

(d) Data event containing a neutrino interaction, labeled by sMask-RCNN

Figure 8.1: Several example event images. The vertical and horizontal scales are the
same for all images. Each column of pixels along the x-axis refers to a specific wire
readout, and each row along the y-axis refers to a different bin of signal readout
time. This is described in greater detail in section 8.4.1. (a) is an example of an
input image given to sMask-RCNN to process, whereas (b) shows the network’s
subsequent labeling of the same image. (c) shows a cosmic-only data event. (d)
shows a data event containing a neutrino interaction that sMask-RCNN correctly
identifies with some confidence score, and clusters.
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8.3 Background

8.3.1 The MicroBooNE LArTPC

The LArTPC technology is designed to provide precision calorimetry and par-

ticle tracking while remaining scalable to larger sizes for future experiments. In

MicroBooNE’s LArTPC, a large volume of liquid argon is bounded on six sides

within the time-projection chamber (TPC). On one side, the cathode, is a metal

plate held at a negative potential of -70 kV. On the other side of the argon, held

near ground, is the anode: a collection of three wire planes at progressively higher

potentials. Figure 8.2 shows a diagram of the LArTPC principle.
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Figure 8.2: A diagram of the LArTPC principle. The signal formation for the second
induction plane (V plane) and the collection plane (Y plane) are shown [10].

Each wire plane consists of a series of parallel wires spaced every 0.3 cm. The

wires in each plane are oriented at an angle of 60° with respect to the wires in the

other two planes. When a charged particle passes through the detector, it creates

ionization electrons which drift toward the anode wire planes due to the nearly
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uniform electric field between the cathode and anode. As the electrons pass by the

first two wire planes they induce bipolar pulses on the wires before finally arriving

at the third and final wire plane. Here they are collected and create a unipolar

pulse. Thus this final wire plane is called the ”collection plane”. The bipolar and

unipolar pulses read out from the wires undergo noise filtering and 2D deconvolution

described in [85, 86]. This processing removes much of the noise from the wires and

transforms the bipolar pulses into unipolar pulses. These wire signals are used to

create the input images used by the neural network. The process for creating the

input images is described in section 8.4.1.

8.3.2 Existing cosmic identification tools

Cosmic ray muon tagging and background removal have previously been per-

formed in MicroBooNE using a variety of methods. One example uses deep learning

with semantic segmentation to differentiate cosmic ray muon pixels from neutrino

interaction pixels [87]. Mask-RCNN expands on semantic segmentation, further sep-

arating each instance of every individual interaction it finds using bounding boxes.

This means that each cosmic muon interaction in the detector receives its own la-

beled and clustered output.

Cosmic ray muon tagging has also been performed with more traditional al-

gorithmic approaches. In the MicroBooNE experiment, one such method is the

PandoraCosmic algorithm [88, 89]. This algorithm clusters hits in 2D and then

combines these clusters into 3D tracks. It flags a track as a cosmic ray muon if

part of the track is placed outside the detector based on timing information or if

the track trajectory begins and ends at a TPC boundary using information related

to the track’s timing. It provides an exception for through-going trajectories that

are parallel to the beam direction. This is designed to eliminate cosmic ray muons

as they will appear as tracks originating from outside of the detector, and will be

crossing perpendicular relative to the beam direction.

Another method used in MicroBooNE is the Wire-Cell (WC) cosmic tagger [90,
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91] which is made up of several event-level requirements, combined with the WC

charge-light (Q-L) matching algorithm [51]. This Q-L matching algorithm uses light

information detected during the neutrino spill by 32 8-inch cryogenic photomultiplier

tubes (PMTs) mounted behind the TPC wire planes. This light information is then

spatially matched to charge deposited in the TPC, selecting TPC pulses created

during the beam spill. Therefore, both the Q-L algorithm and the full WC cosmic

tagger use additional information beyond the wire planes, which is what sMask-

RCNN uses as input. In section 8.6.2 we show results achieved by a combination of

sMask-RCNN and WC algorithms to produce a state-of-the-art cosmic ray tagger.

Cosmic ray tagging can also be achieved with hardware solutions. An example

in MicroBooNE is the design and construction of the cosmic ray tagger system [39].

This system was introduced partway through MicroBooNE operation, and therefore

is only available for part of the MicroBooNE data. It uses plastic scintillation mod-

ules to acquire the time and location for particles traversing the TPC. Reconstructed

tracks can then be matched to this data and be flagged as pertaining to cosmic ray

muons rather than neutrino interactions. Additionally, the cosmic ray tagger system

can be used in tandem with software solutions to improve performance.

8.3.3 Object detection and Mask-RCNN

The original Mask-RCNN network is designed to perform three common tasks in

the field of computer vision: object detection, classification, and semantic segmenta-

tion. In the field of computer vision, classification is a task commonly performed to

label an image as one of some predefined list of classes, for instance an image might

be labeled a cat or a dog. Semantic segmentation refers to a labeling performed at

pixel level, for example in an image with a cat and a dog, the pixels making up the

dog are labeled ‘dog’ pixels and those making up the cat are labeled ‘cat’ pixels,

while the remaining pixels are given a background label. The network is trained to

receive some input image, place bounding boxes around objects of interest, classify

these objects within some set of user defined classes, then within each box label each
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pixel as part of the object or not.

Structurally, Mask-RCNN is comprised of four subnetworks. First is a resid-

ual network (ResNet) [92]. This network runs on the input image and creates a

feature map for the image. This feature map is then fed into a region proposal net-

work (RPN) [93], which then produces a series of bounding boxes around regions of

interest (RoIs) within the image. The bounding boxes are described by a 2D coor-

dinate, a height and a width, and are designed to produce the smallest rectangular

box containing the object. The RoIs are aligned in the feature map space via the

RoIAlign algorithm, then combined with appropriate features, scaled to a fixed size

and fed into the two final subnetworks: a classifier, and a fully convolutional network

(FCN) we refer to as the ”maskifier”. The classifier takes each bounding box and

its features and predicts which class of object it is with some confidence score. The

maskifier produces a semantic segmentation mask of all the pixels within the box,

determining which pixels correspond to the object and which are background. This

semantic segmentation mask is synonymous with a cluster of pixels within the box,

though the cluster need not be connected. Figure 8.3 shows a simplified view of the

network architecture.

Figure 8.3: Network Architecture for Mask-RCNN in MicroBooNE.
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8.4 Methods

8.4.1 Data preparation

To create images for analysis using MicroBooNE LArTPC data, we use the

charge readout from the three wire planes at the anode. The neutrino beam window

is 1.6 ms, but we record a buffer on either side providing a modified window of about

3 ms. The data taken during this 3 ms comprises an ”event”. Over the course of this

recorded beam window these wires are sampled as a rate of 2 MHz. This equates to

6048 samples per wire.

We create the event images shown in this article by placing the wire number along

the x-axis and the sampling time along the y-axis. However, we first downsample

the number of time samples per wire by a factor of six, going from 6048 samples

per wire to 1008. This downsampling is performed both to reduce image size and

to make the drift distance per pixel of an ionization electron roughly 0.3 cm. This

distance matches the wire separation within a given wire plane. The value stored

in each pixel within an image then is proportional to the charge deposited in the

detector. We will refer to this as the ”pixel intensity”. We then apply a threshold

the image by setting any pixel with pixel intensity below 10 (arbitrary units) equal

to zero to further reduce noise. In comparison, the pixel intensity distribution from

minimum ionizing particles peaks at ∼ 40 in these arbitrary units.

While there is one image made for each of the three LArTPC wire planes, for

this study we only use the collection plane. We choose the collection plane over

the other wire planes because the collection plane does not require signal processing

to turn bipolar pulses into unipolar pulses and therefore the signal is cleaner. The

event images then have a dimensionality of the number of wires on the collection

plane times the number of samplings per wire, or 3456× 1008.

Lastly, in the MicroBooNE LArTPC a portion of the wires are unresponsive [40].

In the collection plane this happens for about 10% of the wires. This creates an

artifact in the images by creating vertical lines of unresponsive pixels. In some cases
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large groups of adjacent wires are unresponsive, leading to regions of unresponsive

pixels.

8.4.2 Sparse submanifold convolutions

In the event images created from the LArTPC collection plane, about 0.7% of

the pixels are nonzero, making the data ”sparse”. This is because the pixel value

comes from the ionized electrons drifting away from the charged particles moving

in the detector. Most of the time, the wires are reading out low-level noise that is

below the threshold. The resultant low pixel occupancy means that when we apply

Mask-RCNN to the event images, there are many computations that involve multi-

plications by zero. These trivial calculations waste computing resources, particularly

if performed in sequence via a CPU and not in parallel via a GPU.

A normal convolution in a neural network takes a convolutional kernel or filter

and moves it across the image, multiplying at each location to acquire the con-

volved value. In comparison, a sparse submanifold convolution only multiplies the

kernel against positions centered on nonzero pixels, avoiding computations on ze-

roed regions of the input. Notably, a submanifold convolution is not mathematically

equivalent to a regular convolution. In normal convolutions, kernels centered on ze-

ros in the input image can output a nonzero convolved value if the edge of the filter

captures some nonzero input. An example of this is shown in figure 8.4. This blurs

the features coming out of a convolution, so that convolutions which are performed

one after another in a deep neural network, such as ResNet, spread information

outward.

8.4.3 Sparse Mask-RCNN

We utilize Mask-RCNN to locate, identify, and cluster interactions within the

2D event images described in section 8.4.1. The network places bounding boxes

around, classifies, and then clusters pixels corresponding to deposited charge for each

interaction it finds within the image. We define an interaction as all of the charge
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Figure 8.4: An example of a convolution operation that depends on use of subman-
ifold or normal convolutions. The normal convolution multiples the kernel against
the image at the given position, and outputs a convolved value of 17. Meanwhile,
the submanifold convolution does not get computed when centered on a zero. The
submanifold convolutions used in sMask-RCNN have a kernel size of 3× 3 (same as
shown in the figure), with a stride of 1.

deposited in an image coming from the same ancestor particle. For example, if an

electron neutrino interacts with the argon in the LArTPC, and yields a proton and

an electron, all of the charge deposited from the proton and electron are combined

into one ancestor ”electron neutrino” interaction and should be clustered together.

A more detailed description of network training is described in section 8.4.4.

To speed up the network when deployed on CPUs, we swap the ResNet con-

volutions with sparse submanifold convolutions while maintaining the original net-

work structure. Additional work could be done to make the later subnetworks use

sparse convolutions but examinations of the compute times for the individual parts

of sMask-RCNN made this unnecessary. For clarity, we will refer to Mask-RCNN

without submanifold convolutions as dense Mask-RCNN.

The change to sparse convolutions yields a significant gain in terms of network

speed for inference when running on CPUs. The timing information for running the

dense and sparse configurations of the network is shown in table 8.1. These timings

were performed on an Intel(R) Core(TM) i9-9820X CPU @ 3.30 GHz and measure

wall time. This allows the network to be inserted into production code on CPU

farms such as FermiGrid [94] and to scale up how quickly the network is run over

large data samples. We note that the Intel CPU we tested on is superior to what

is generally available on CPU farms. Brief testing done on available CPU farms
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Table 8.1: The average inference runtimes per 3456 × 1008 pixel image on a CPU.
The first row is the runtime for just the ResNet portion of Mask-RCNN on the
images. The second row is the time to run the entire network on the images. In the
case of sparse ResNet, the time spent making the input image into a sparse tensor
and the output features into a dense tensor is included in the sparse ResNet module
time.

Dense ResNet Sparse ResNet

ResNet Runtime 3.172 s 0.1758 s
Full Detection Runtime 8.438 s 5.79 s

shows the ResNet runtime difference is exacerbated. This means the difference

between sparse and dense implementations is even greater when older CPUs are

used. This further prioritizes shortening the ResNet runtime, as when we deploy on

CPU farms, we will use a variety of CPUs with lesser performance than an Intel(R)

Core(TM) i9-9820X CPU @ 3.30 GHz. Further, an added benefit of using CPUs is

that this technique is scalable to future experiments and studies where more data

may be analyzed, and the computing resources cannot scale to a reasonable number

of GPUs.

The implementation to sparse ResNet also introduces improvements to training

when it comes to memory. For the dense version of the network, due to memory

constraints, we could only train the network on 832× 512 crops of the event image.

We use the word crop to refer to a random cutout of the original image of this new

832 × 512 size, where the crop must contain a portion of a simulated interaction.

However, sMask-RCNN is trained on the full 3456× 1008 event images because the

memory required on the GPU to store a full image for the network is reduced by

roughly a factor of the image’s occupancy, as all zero pixels are no longer operated

on. Regardless of training size, both the dense and sparse forms of Mask-RCNN

could be deployed on the full 3456 × 1008 event images, as less memory is used if

not actively training the network.

All of the event images shown in this article use the sparse implementation of

Mask-RCNN. We examine the difference in performance between the dense and

sparse networks in section 8.5.
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8.4.4 Network training

When training, the entire network performs a forward pass on an image, and

then the backward pass updates the weights of all the subnetworks based on a com-

bined loss function built from the outputs of the maskifier, classifier, and RPN, as

described in the original Mask-RCNN article [83]. Rather than train the ResNet

from randomized initial weights, we use weights pretrained on the ImageNet dataset

[95], which is a publicly available labeled dataset of images of animals and everyday

objects. The ImageNet dataset is commonly used in the field of computer vision.

We briefly started training ResNet from scratch, with randomly initialized weights,

because the ImageNet pretraining is designed to identify animals and everyday ob-

jects, but despite this, we found that using the pretrained ResNet gave more useful

features for the other components of Mask-RCNN to utilize in this particle physics

analysis.

To train both the dense and sparse forms of Mask-RCNN, we use a sample of

simulated electron neutrino events featuring simulated cosmic background. This

means that every full 3456× 1008 image contains a single electron neutrino interac-

tion among many cosmic ray muons. While the dense network was trained on crops

containing at least part of a neutrino interaction or cosmic ray muon, they did not

always have an example of both within the same crop.

The interactions present in the training data are broken up into six different

interaction classes, detailed in table 8.2. Dense Mask-RCNN was trained on each of

these interactions, but as we determined our goal was primarily cosmic ray muon tag-

ging, we only trained the sparse implementation on cosmic ray muons and electron

neutrino interactions. Simulated interactions where the simulated ancestor particle

was one of the four other classes were still present in the data but the network was

told to ignore them. The training data uses CORSIKA [59] for cosmic ray muon

simulation. For electron neutrino interactions the GENIE neutrino interaction sim-

ulator [57] is used. In both instances, GEANT4 [58] is used to model the detector

response.
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We also note that the version of simulation used to produce the training data

for the sparse network is slightly updated as a newer version of simulation became

available. Both the dense and sparse networks have their performance evaluated on

the same set of 9400 events from the newer version of simulation, meaning there is

a slight discrepancy between the training and testing data for the dense network.

However, we expect this change to have minimal effect on the network performance.

Table 8.2: The different class types and number of occurrences in the training sets
for the dense and sparse versions of Mask-RCNN. Note that the sparse network only
trained on cosmic ray muon and electron neutrino interactions.

Dense Training Sparse Training
Interaction Class Counts Percentage Counts Percentage

Cosmic Ray Muon 2708730 92.99 786050 95.24
Electron Neutrino 97034 3.33 39296 4.76

Neutron 26072 0.90 - -
Proton 5738 0.19 - -

Electron 155 0.005 - -
Other 75026 2.58 - -

As is common practice in machine learning, we split the data into two orthogonal

subsets: a training set with 80% of the events and a validation set with 20%. When

training the network, we use events in the training set, and whenever we wish to

measure the performance of the network, such as calculating performance metrics

shown in section 8.5, we use the validation set. This is a critical part of machine

learning because it verifies that the network can generalize and perform its task on

events outside of the training set.

The dense version of the network is trained on a sample of 230,000 crops for

1.75 epochs. In the context of machine learning, an epoch is one training pass

through the data. While 1.75 is a low number of epochs, each crop features multiple

interactions seen and masked by the network. Then the network is trained on a

subset of 30,000 of these crops containing examples of high intersection-over-union

(IOU) interactions. IOU between two interactions is defined as the number of pixels

present in both interaction bounding boxes, divided by the total number of unique

pixels present in either bounding box. These crops featured multiple interactions
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with overlapping bounding boxes. This fine tuned training is performed due to poor

performance by the dense network on overlapping interactions. The training on this

subset is performed for 8 epochs so the network can focus on learning these difficult

events.

The sparse version of the network is trained on a sample of 40,000 full event im-

ages for three epochs. No fine tuning needed to be performed on highly overlapping

interactions as the sparse network did not appear to suffer from the same issue as

the dense network. It should be noted that while at first glance the training sample

sizes of the dense and sparse networks differ by a significant factor, in actuality the

dense crops were made at a factor of up to 10 crops per full image, and the training

datasets are comparable in terms of interaction sample variance. Further, all per-

formance evaluations for both networks are deployed on the same validation set of

9400 full sized images.

8.5 Comparing dense and sparse performance

In this section we define several metrics to test the performance of Mask-RCNN

at identifying and clustering interactions within MicroBooNE event images. Then

we compare the performance between the dense and sparse versions of the network.

For this evaluation, we include interactions found by the network with a class score

of 0.4 or higher. The class score is a score between 0 and 1.0 indicating how confident

the network is that the class label is correct. This threshold is chosen to provide a

balance between the purity and efficiency metrics defined and discussed below. Once

this threshold is applied, all remaining predicted interactions are treated equally for

the purpose of calculating metrics.

All analysis in this section uses the full scale 3456 × 1008 event images in the

validation set of simulated data used to train the sparse network. This refers to the

data described in the right two columns of table 8.2.
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8.5.1 Efficiency and purity

For the purpose of this section, we will refer to interactions either as ”true”

or ”predicted”. A true interaction is one that exists in the simulation, whereas a

predicted interaction is one that the network claimed it has found and labeled. We

define two metrics to measure the pixel level efficiency and purity of the network’s

ability to find and cluster interactions. The efficiency is a measure of the percentage

of pixels in a true interaction that are masked by the network’s prediction. Purity

is defined for each predicted interaction as the highest fraction of pixels belonging

to the predicted interaction and a single true interaction. For example, if 30%

of a prediction maps to true interaction A, and 50% maps to true interaction B

then the purity is 50% for that predicted interaction. In both of these definitions,

only pixels containing charge deposition above the pixel intensity threshold of 10

are considered, as we do not care about clustering empty pixels. Concretely, the

efficiency E is defined as

E =

∑
ij Tij ·Wij ·Mij∑

ij Tij ·Wij

, (8.1)

where T , W , and M are matrices representing the truth interaction, wire event

image, and predicted interaction mask, respectively, with dimensions of the event

image. Meanwhile, i and j are pixels indices. A visual representation of the efficiency

calculation is depicted in figure 8.5. Similarly, the purity P is defined as

P =

∑
ijMij ·Wij · Tij∑

ijMij ·Wij

. (8.2)

The purity calculation is depicted in figure 8.6. For each of these equations, the

values in T are 1 if the pixel belongs to the true interaction, and 0 otherwise, while

the values in M are 1 if the pixel belongs to the predicted interaction mask, and 0

otherwise. Finally, the values in W are 1 if the pixel has any deposited charge, and

0 otherwise. After the element-wise multiplication of the matrices, the summations

then run over the indices of the matrix. This corresponds to a counting of the pixels
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corresponding to the union of the given matrices.

A true interaction’s efficiency is taken as the best value as calculated for all

predicted interactions. A predicted interaction’s purity is taken as the best value

when calculated for all true interactions.

Figure 8.5: A visual representation of the definition of efficiency. Only nonzero
pixels in the event image are counted.

Figure 8.6: A visual representation of the definition of purity. Only nonzero pixels
in the event image are counted.

These definitions mean that a given event image will have one efficiency mea-

surement for each true interaction, and one purity measurement for each predicted

interaction. While we are aware that object identification customarily uses panop-

tic quality [96] or intersection-over-union as evaluation metrics, we choose to use

efficiency and purity in better keeping with particle physics analysis language.

For each event, we average the purities and efficiencies for the predicted and

true interactions. These averages are of O(20) interactions, where there is a single

neutrino interaction and many cosmic ray muon interactions. We reiterate that a

cosmic ray muon ‘interaction’ is just any cosmic ray muon and potential daughter

particles that deposit charge in the detector. These event-averaged values are plotted

in the 2D histograms shown in figure 8.7.

Perfect efficiency and purity would yield values of 1.0 for each, so these his-

tograms have targets in the upper right corners. We can see that the event-averaged
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(a) Dense Mask-RCNN (b) Sparse Mask-RCNN

Figure 8.7: The event-averaged efficiencies and purities for the dense and sparse
implementations of Mask-RCNN. The dense network has a mean event-averaged
efficiency of 0.89 and a mean event-averaged purity of 0.87. For the sparse network
these values are 0.86 and 0.85. Each of these evaluations use the same validation
dataset.

purity drops from 87% for the dense to 85% for the sparse, while the event-averaged

efficiency drops from 89% to 86%. The one-dimensional projections of figure 8.7 are

shown in figure 8.8, where the event-averaged efficiency and purity distributions are

compared between the dense and sparse networks.

It is also useful to examine the individual interaction efficiencies, rather than the

event-averaged versions. The distributions for both the dense and sparse versions of

Mask-RCNN are shown in figure 8.9. Here we can see the sparse (red) distribution

is worse than the dense (blue) distribution. Notably the size of the peak at zero

is the same for the two versions of the network. A true interaction will have zero

efficiency if the network has no prediction that masks part of it. The fact that the

two versions have the same sized peak at zero indicates that they each find the same

number of interactions, but the dense masks are somewhat more complete.

The efficiency calculation is modified slightly by weighting the pixels within an

interaction by their deposited charge. This version of the efficiency we term ”charge

efficiency” and is shown in figure 8.10. Here we see a shift to the right for each

distribution compared to their pixel-level efficiency in figure 8.9. This indicates
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(a) Event-Averaged Efficiency (b) Event-Averaged Purity

Figure 8.8: The one-dimensional distributions for the event-averaged efficiency (a)
and purity (b) shown in figure 8.7. Each plot compares the dense and sparse network
performances.

the network’s preference for clustering higher value pixels corresponding to larger

deposited charge, though this result may be due to the network being more likely to

grab the center of tracks in our image, where the higher value pixels lie, compared

to the halo of hits along a track’s edge. While not surprising, this is a useful feature

as the physics quantity we are dealing with is charge, not pixel count.

If we explore the interactions lying within the zero efficiency peaks in these plots

then we find two common failure modes. The first is made up of interactions that

lie completely or significantly in the unresponsive regions of the event image. Recall

that roughly 10% of the MicroBooNE LArTPC wires are unresponsive, correspond-

ing to vertical lines of unresponsive regions in the event images. True interactions

within these regions are in the simulation, but have little in the way of signal in the

event image for the network to detect. An example of a true interaction simulated

in an unresponsive region of the image is shown in figure 8.11. It is unreasonable to

expect the network to be able to label such interactions.

The second failure mode that contributes to the zero efficiency peak are true

interactions that tend to be smaller in spatial extent compared to a typical simulated

interaction, with less charge across fewer pixels in the event image. An example of

this is shown in figure 8.12. These interactions are reasonable to expect the network

to find as there is nothing to obscure the interaction. However, as they tend to be

smaller, they are less likely to overlap with a neutrino interaction in the image or
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Figure 8.9: The interaction-level efficiency of the dense and sparse versions of Mask-
RCNN as measured on the validation set.

confuse the network, and therefore are a less important part of the background.

8.5.2 Interaction coverage

Now that we have explored a pixel-wise efficiency, we next examine interaction

coverage within a given event. We define a true interaction as being ”covered” if its

pixel-level efficiency as defined in section 8.5.1 is greater than 80%. This means the

network has to cluster the majority of the interaction, while still leaving some room

for error. Figure 8.13 compares the fraction of true interactions that are covered

in a given event for both the dense and sparse implementations of Mask-RCNN.

The dense network has a slight edge over the sparse version, but both networks

consistently cover the majority of true interactions within a given event.

It is also useful to examine the performance of Mask-RCNN as a function of

the number of true interactions in an event. This investigates whether the perfor-

mance of the network falls off for ‘busier’ events with additional particle interactions

cluttering up the image. To examine this, we look at the number of covered true

interactions as a function of the number of true interactions in the events. Figure

8.14 shows this measurement for both the dense and sparse networks.
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Figure 8.10: The interaction-level charge efficiency of the dense and sparse versions
of Mask-RCNN as measured on the validation set.

Figure 8.11: A zero-efficiency true interaction almost entirely in a region of unre-
sponsive wires. The white box shows a zoom-in of the area of interest, and within
it, the colored box should contain true neutrino interaction. However, because this
interaction falls in an unresponsive region of the detector, no deposited charge is
seen inside the colored box.

While the ideal network would cover all of the interactions, we see that both ver-

sions of the network produce a distribution slightly below the target line y = x. The

fact that these distributions are linear demonstrates that the network performance

does not diminish as the number of true interactions in a given event increases.

8.5.3 Network comparisons discussion

In comparing the dense and sparse versions across these various metrics, we find

that the dense implementation performs better than the current version of sMask-
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Figure 8.12: Another failure mode for the zero-efficiency peak. Here the cosmic
interaction is relatively small in size compared to others in the event image. The
colored box is the true interaction, and the white box shows a zoom-in of the area
of interest.

Figure 8.13: The fraction of true interactions in events that have greater than 80%
efficiency as measured on the validation set.

RCNN. Viewing the two efficiencies of the networks, the peak at 1.0 for the dense

Mask-RCNN is larger, and narrower than the peak in the sMask-RCNN distribution.

Similarly the peak at zero-efficiency, representing interactions that are missed, is

smaller. The dense Mask-RCNN surpasses sMask-RCNN in average efficiency as

well with 89.1% compared to the slightly lower 85.9%. The dense network covers

87.1% of interactions compared to the sparse’s 82.7%, where ”covered” is defined in

section 8.5.2.

It is important to note that both versions of the network completely miss true

interactions with the same frequency. This is shown by observing the peak at 0
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(a) Dense Mask-RCNN (b) Sparse Mask-RCNN

Figure 8.14: The number of covered interactions is plotted against the number of true
interactions. A dashed line along y = x represents the absolute perfect performance,
with all true interactions being covered in each event. Out of an average of 20.8
true interactions per event, the dense network covers an average of 18.2, while the
sparse network covers 17.2.

efficiency in figure 8.9. There we see that each network misses about 4% of interac-

tions. This means that while the metrics point to worse performance for the sparse

network, it still finds the interactions themselves, and still covers them to largely

the same extent. The difference is that it builds less complete masks of the true

interactions compared to the dense network, though it still finds part of them.

We note that it is difficult to track the effects of these differences on the training

and learning of the networks. As such, we cannot distinguish whether the differ-

ence in performance of the two networks is due to the change from dense ResNet to

sparse ResNet, the training on crops versus entire event images, or a combination of

both. However, we emphasize that sMask-RCNN’s ability to cluster interactions is

sufficient for us to compare its cosmic tagging ability to current methods deployed

in MicroBooNE, particularly given the speedup acquired by moving to submanifold

convolutions. Further, while the dense network’s performance does slightly outper-

form the sparse network, MicroBooNE’s data processing prioritizes speed and the

use of CPUs in order to scale to the size of its datasets. Therefore, deploying the

dense network is not a viable option. This means that regardless of the performance
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of the dense version of the network, it is prohibitively slow to run at the scale Mi-

croBooNE’s dataset requires. Therefore for the analysis performed in section 8.6 we

will only use sMask-RCNN.

8.6 Finding electron neutrinos with sMask-RCNN

In this section, we examine using sMask-RCNN in MicroBooNE to reduce the

ratio of cosmic ray background events to electron neutrino events. There are two ap-

proaches that we explore, one designed to select neutrino interactions explicitly, and

another designed to remove cosmic ray muon interactions. The first, an ”identifica-

tion by positive” approach, would use the neutrino-class output from sMask-RCNN

and apply some threshold to select neutrino interactions. This approach is discussed

in section 8.6.1.

The other approach, ”identification by negative”, applies an event veto, which

targets cosmic-only events to flag them for removal. Then the remaining events

are those with a neutrino, as well as cosmic ray muons interacting in the detector

during the beam window. Finally, we note that while this article specifically targets

electron neutrinos, the tools discussed can be adjusted to target muon neutrinos in

the same way.

Recall that the cosmic ray background in MicroBooNE is very large, and there-

fore must be dealt with early on in any chain of reconstruction tools. To demonstrate

the scale of this problem, we define three different samples:

1. General Electron Neutrino Sample: Events containing a simulated elec-

tron neutrino interaction combined with cosmic ray muon background data.

2. Low Energy Electron Neutrino Sample: The same as sample 1 but only

for electron neutrinos with energy less than 400 MeV.

3. Off-Beam Sample: Data taken by the detector in anti-coincidence with the

neutrino beam. This means there is no beam neutrino interaction present.

This sample represents the cosmic ray-only background events.
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Table 8.3: The expected ratio of the two different neutrino sample events to off-beam
background events.

Type of event Ratio to off-beam sample events

General electron neutrino 1.52× 10−2

Low energy electron neutrino 3.85× 10−4

The expected ratios of samples 1 and 2 to sample 3 are depicted in table 8.3.

These ratios are instructive, as they indicate the initial signal to cosmic ray back-

ground event ratio for analyses that seek to remove cosmic ray-only events. These

ratios only depict events. Each event contains O(20) cosmic ray muon interactions,

and either zero or one neutrino interaction. So the true ratio of cosmic ray muon

interactions to electron neutrino interactions is roughly 20 times higher than the

ratio of event types. As the purpose of this article is to develop techniques to reduce

the significant cosmic ray muon background, we ignore other backgrounds to an

electron neutrino signal, such as muon neutrino events.

While the analysis in section 8.6.1 uses the validation data used thus far in

this article, section 8.6.2 uses the general and low energy electron neutrino samples

and cosmic ray-only sample described above. The validation data contains only

simulated interactions, including CORSIKA-simulated cosmic ray muons. However,

the three new datasets contain cosmic ray muons from data, rather than simulation.

In previous sections, where we need information about the individual cosmic ray

muon interactions for the metrics, it is necessary to use simulated cosmic ray muons.

However, this is not the case for the event veto described in section 8.6.2. Therefore

it is better to use cosmic ray interactions from data, as there is no reliance on the

simulation’s ability to properly emulate a cosmic ray muon.

8.6.1 Electron neutrino identification

We examine the electron neutrino ”identification by positive” approach by look-

ing at the efficiency and purity as defined in section 8.5.1, broken down by the

two class categories: cosmic ray muons and electron neutrinos. Figure 8.15 shows

the efficiency metric (defined in eq. 8.1) for simulated electron neutrino interac-
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tions, separated by class. The average efficiency is 76.8% for electron neutrinos,

and 86.1% for cosmic ray muons. If the network proposes no neutrino interactions,

then the efficiency of that event’s neutrino interaction is 0. Each class has a peak

at 0, but the cosmics also have a peak at 100%, whereas the neutrino interactions

peak at just over 90%. In the context of neutrino interactions, the interaction has

some number of prongs, where a ‘prong’ refers to a shower, or track coming out of

the neutrino interaction vertex. It is possible that, for neutrino interactions with

at least two prongs, the network fails to mark a shorter prong, or partially masks

the track-like portion of an electromagnetic shower with both track- and shower-

like topology. Particularly long tracks are also difficult to capture completely due

to rescaling within sMask-RCNN, which may lead to the ends of the track getting

truncated.

Figure 8.15: The efficiency of sMask-RCNN broken down by class. The average
efficiency is 76.8% for electron neutrinos, and 86.1% for cosmic ray muons. Statistical
uncertainty bars are shown.

Figure 8.16 is also separated by class, but shows the charge efficiency. The

average charge efficiency for electron neutrinos is 77.9%, and 86.8% for cosmic ray

muons. Both overall and for each class individually the network has a better charge

efficiency than standard efficiency, indicating that the interaction masking prioritizes
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clustering pixels corresponding to larger charge deposition regardless of class.

Figure 8.16: The charge efficiency of sMask-RCNN broken down by class. The
average charge efficiency for electron neutrinos is 77.9%, and 86.8% for cosmic ray
muons. Statistical uncertainty bars are shown.

We see from these two efficiency breakdowns that the network’s ability to find

an interaction is not strongly tied to the type of interaction, as the peak at zero

efficiency is the same for each class. However the masks for cosmic interactions are

more complete than those for neutrino interactions.

The purity of sMask-RCNN predicted interactions (defined in eq. 8.2) is broken

down by class in figure 8.17. The average purity is 64.9% for electron neutrinos and

84.7% for cosmic ray muons. Here we see an issue with using this version of sMask-

RCNN in an identification by positive approach. The peak at zero purity for the

neutrino class indicates that, in events that contain simulated neutrino interactions,

roughly 22% of predicted interactions labeled neutrinos are actually placed on cosmic

ray muons. This implies selecting only predicted neutrino interactions yields a ratio

of electron neutrinos to cosmic ray muons of 78:22. However, this only applies if

the identification were restricted to events that definitely contain a neutrino. When

factoring in the significant number of events in the data that contain no neutrino

interaction, as indicated by table 8.3, the number of falsely identified neutrinos grows
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much worse.

Figure 8.17: The purity of sMask-RCNN broken down by class. Predicted inter-
actions with zero purity are misclassified, for example a true neutrino labeled as a
cosmic ray. The average purity is 64.9% for electron neutrinos and 84.7% for cosmic
ray muons. Statistical uncertainty bars are shown.

We can imagine ways to improve this identification by positive approach, from

increasing the required confidence score the classifier in sMask-RCNN has in a pre-

dicted interaction, to retraining the network with increased penalties for falsely

predicting the neutrino class. However, these were set aside in favor of exploring

the identification by negative approach in the subsequent section.

8.6.2 Cosmic-only event veto

The topology of a muon interaction is much more consistent than that of elec-

tron neutrino interactions, due to an electron neutrino interaction’s variety of final

states. A muon creates a track in the detector, and then will either pass through the

detector, capture, or create a Michel electron shower at the end, whereas an electron

neutrino can interact in argon in many different ways, creating a variety of different

daughter particle scenarios. This is consistent with the improved performance of

the network labeling cosmic ray muons compared to electron neutrinos, evident in

section 8.6.1, where the network must learn to recognize the many different patterns
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and topologies that make up the electron neutrino class label. Therefore, relying on

sMask-RCNN’s cosmic ray muon clustering rather than its neutrino clustering may

be preferable. As such, the identification by negative approach, which only relies on

an understanding of the cosmic ray background, may be more effective.

To study this, we implement an event veto. The goal of this veto is to use

sMask-RCNN outputs to separate entire events into those that contain only cosmic

ray background, and those that contain an electron neutrino interaction among

cosmic rays in the beam window. This task is tested by using this event veto to

separate the cosmic ray-only data sample from the general and low energy electron

neutrino samples. If this veto were perfect, then the only cosmic ray muons left

would be the O(20) interactions per event containing a neutrino interaction. These

remaining cosmic ray muons can then be dealt with further down the reconstruction

chain.

In order to provide a comparison to current methods used in MicroBooNE, we

analyze this event veto using several different versions of cosmic ray tagging. For the

first tagger, we include all cosmic ray interaction pixels predicted by sMask-RCNN

with a confidence score greater than 0.20. Reducing the confidence score requirement

relative to earlier sections of this article allows more cosmic removal at the expense

of including multiple overlapping cosmic interaction predictions. Decreasing the

confidence score requirement does not significantly impact the electron neutrino

efficiency. For individual interaction labeling, shown earlier in the article, this would

be problematic. However, for the event veto described below, we are concerned with

removing entire events.

For the next tagger, we add the pixels tagged as cosmic ray muons by Micro-

BooNE’s Wire-Cell Q-L described in section 8.3.2. This adds information from the

PMT light collection system and the two LArTPC induction planes, none of which

is used by sMask-RCNN. Therefore by comparing sMask-RCNN alone to this com-

bined tagger, we can see the additional value provided by the light information, as

well as demonstrate the effectiveness of sMask-RCNN operating in a regime with
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(a) Cosmic tagging by sMask-RCNN alone (b) With WC Q-L matching

Figure 8.18: The size of the largest cluster found by DBScan after cosmic tagging.

less information. Recall WC Q-L matching is a piece of the full WC cosmic tagger.

We repeat the following analysis with the full WC cosmic tagger at the end of this

section, exploring two additional tagger configurations.

A perfect tagger would tag every pixel containing deposited charge associated

with cosmic ray muons. All that would remain in the event image would be pixels

holding charge corresponding to a neutrino interaction, if present. However, with

the expectation of imperfect performance, we re-cluster the untagged pixels via a

”density-based spatial clustering of applications with noise” (DBScan) algorithm

[97]. This means that first we perform our cosmic ray muon tagging, remove those

pixels from the image, then run DBScan on the resulting image.

DBScan will output clusters of remaining pixels for each event. These pertain

to portions of cosmic ray muon interactions not fully tagged, and the neutrino

interaction if present. In the case where both neutrino and cosmic ray muon clusters

are present, one large cluster will usually represent the neutrino interaction and

several smaller clusters represent the untagged parts of muons. This means the size

of the largest cluster is a metric that we can use to isolate events containing neutrino

interactions. Figure 8.18 shows the size of the largest of these clusters for sMask-

RCNN with and without the WC Q-L matching algorithm. Each figure shows the

distribution of the three key samples described above.

Examining the distributions of these three samples, we see a difference between

the off-beam sample, which represents the cosmic ray-only event background, and
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the two electron neutrino samples. Notably, the off-beam sample generally has a

smaller number of pixels in the largest cluster found by DBScan. In figure 8.18a,

we see that the sMask-RCNN tagger produces a distinctly shaped distribution for

each sample. The off-beam sample has a peak closest to zero, the low energy sample

is shifted slightly to the right, and the general electron neutrino sample is shifted

further. This reinforces the expectation, as the neutrino pixels remain in the image

untagged, allowing for DBScan to find larger clusters. Examining sMask-RCNN

with the WC Q-L matching algorithm in figure 8.18b, we see a shift to the left in

all three distributions, placing a strong peak at zero, indicating that the combined

tagger frequently labels more pixels as belonging to cosmic ray muon interactions

than the sMask-RCNN-based tagger alone. This is particularly notable in the case

of the off-beam sample, where the peak at zero accounts for almost 70% of the

sample, compared to about 16% of the low energy sample, and about 6% of the

general electron neutrino sample.

Using this metric for the size of the largest remaining cluster, we can create

a receiver operating characteristic (ROC) curve to demonstrate the efficiency and

rejection power of the different cosmic tagging methods when applied as an event

veto. A ROC curve is a measure of signal retention or signal efficiency on one axis,

and background rejection on the other. A curve is created by incrementing some

requirement, which slowly decreases retention and increases rejection. Ideally the

curve has points in the upper right region of the plot such that signal retention and

background rejection are both high.

We reiterate that we want to explore this quantity — largest remaining cluster

— as an event-level discriminant. As such, it will be the value we increment to

create ROC curves. Specifically, these curves are made by applying a requirement

to filter events that do not contain a DBScan cluster of size greater than X, where

X is incremented from no requirement, to 0, and then incremented by 10 pixels

thereafter. The resulting signal retention and background rejection rates give points

for the curves. In figure 8.19, we show the ROC curves for the signal retentions of
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(a) General electron neutrino sample (b) Low energy electron neutrino sample

Figure 8.19: ROC curves for the sMask-RCNN with and without WC Q-L matching
based on a requirement on largest cluster size. Curves are shown for the two electron
neutrino samples against the off-beam background.

the general and low energy electron neutrino samples versus the rejection of the off-

beam cosmic ray muon background sample. Curves are made for the two different

tagging methods. We observe that the combined version of a cosmic tagger using

both sMask-RCNN and WC Q-L matching yields a better combination of signal

efficiency and background rejection.

For the low energy sample each tagging method performs worse compared to

the general sample. However, this is not surprising as the lower energy electron

neutrino interactions correspond to less charge deposited in the event image and

fewer neutrino pixels in the event. This means that the remaining DBScan clusters

related to the lower energy neutrino interactions will be smaller, and harder to isolate

from the untagged off-beam cosmic ray muon sample’s distribution.

Examining the ROC curve for sMask-RCNN with WC Q-L matching in figure

8.19a, we are able to achieve a general electron neutrino signal efficiency of 90.2%

while rejecting 94.9% of the off-beam cosmic background if we remove events that do

not have a cluster of at least 130 pixels after the taggers are run. For the low energy

electron neutrino sample in figure 8.19b we can achieve a signal efficiency of 60.5%

for the same requirement, though a reduced requirement on remaining cluster size

could be applied to increase the efficiency at the cost of rejection power, as indicated

by the combined curve.

We also examine the effect of adding sMask-RCNN’s cosmic finding to the state-
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(a) Cosmic tagging by the WC cosmic tagger
alone

(b) With sMask-RCNN

Figure 8.20: The size of the largest cluster found by DBScan after cosmic tagging.
Note the logarithmic scale.

of-the-art complete WC cosmic tagger. This means that we take the event vetoes

and cosmic tagging of the WC cosmic tagger, and add the cosmic tagging of sMask-

RCNN to get a combined tagger. In figure 8.20 we show the distributions of the

largest cluster found by DBScan after running the WC cosmic tagger with and

without the cosmic ray muons found by sMask-RCNN. For the events that are

rejected by one of the WC cosmic tagger event vetos, the largest DBScan cluster is

defined to be zero.

The distributions of cluster size before and after adding sMask-RCNN to the WC

cosmic tagger show a shift to the left in the shape of the off-beam sample, indicating

the added value of sMask-RCNN in cosmic tagging. Without sMask-RCNN, there

appears to be a slight peak beyond zero that gets shifted to zero after sMask-RCNN

is added. We observe minimal shift in the two electron neutrino samples and each

distribution still has a clear second peak separate from zero.

ROC curves for the WC cosmic tagger with and without sMask-RCNN are shown

in figure 8.21. However, as the WC cosmic taggers introduces several of its own

event vetos, the point referring to the loosest cut, with the most signal passed, does

not allow all events through the veto. Instead it starts with the signal efficiency

and background rejection of the WC cosmic tagger, and adjusts as we increase the

strength of the DBScan cluster size requirement. We reiterate that the difference be-

tween figures 8.21 and 8.19 is the additional event vetos added to WC Q-L matching
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(a) General electron neutrino sample (b) Low energy electron neutrino sample

Figure 8.21: ROC curves for the WC cosmic tagger with and without sMask-RCNN
based on a requirement on largest cluster size. Curves are shown for the two electron
neutrino samples against the off-beam background. Note the suppressed y-axis
shown here demonstrates significant improvement in background removal compared
to figure 8.19.

to create the WC cosmic tagger.

Examining these ROC curves we see that including sMask-RCNN on top of the

WC cosmic tagger does yield improvement to the background rejection at equivalent

signal efficiencies. In the general electron neutrino sample, for a signal efficiency

of 80.1% the WC cosmic tagger rejects 99.0% of the background, whereas adding

sMask-RCNN rejects 99.7% of the background at the same signal efficiency. This

represents a reduction of the remaining background by 70%. For the low energy

neutrino sample, a similar effect is seen, albeit at lower signal efficiencies.

In order to evaluate the difference between these two rejection strengths, it is

important to recall the imbalance between off-beam background events and electron

neutrino signal events described in table 8.3. The 99.0% rejection provided by the

WC cosmic tagger corresponds to a general electron neutrino signal to off-beam

background ratio of 1.26, a vast improvement over the starting ratio in the table.

However, the addition of sMask-RCNN increases this signal to background ratio to

4.14 by improving the rejection power to 99.7%. For this same selection, the low

energy signal to background ratio is 0.015 with the WC cosmic tagger, and 0.56

with after the addition of sMask-RCNN.
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8.7 Conclusions

This article demonstrates a novel approach to cosmic ray muon tagging using

sMask-RCNN. We demonstrate the ability of this network to locate, identify, and

cluster particle interactions in the MicroBooNE LArTPC. We analyze the ability to

cluster both the topologically simple cosmic ray muon interactions, as well as highly

varied electron neutrino interactions.

We modify the original Mask-RCNN framework by substituting sparse submani-

fold convolutions in the ResNet portion of the network to create sMask-RCNN. Due

to the low pixel occupancy of MicroBooNE event image data this leads to a 20×

speedup in ResNet processing time on a CPU, as well as decreased runtime memory

usage. This improvement is critical in allowing sMask-RCNN to be deployed as a

reconstruction tool on CPU farms to scale to high volume data samples that particle

physics experiments typically employ.

This analysis also includes several versions of an event veto. The strongest of

these demonstrates that adding sMask-RCNN to the state-of-the-art WC cosmic

tagger which is currently used in MicroBooNE reduces the cosmic ray-only event

background by a further 70% and increases the signal to background ratio of electron

neutrino events to cosmic ray-only events by more than a factor of three. This means

that application of this technique to future measurements in MicroBooNE will result

in improvements over current MicroBooNE reconstruction.
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Chapter 9

Conclusion

Within this thesis, software and analysis I have contributed to the MicroBooNE

Collaboration has been outlined. In order to provide adequate context for this work,

the efforts and tools of many other collaborators are also described. If it were not for

the work of these collaborators, or the researchers who came before me, this thesis

would not be possible.

In the early parts of the MicroBooNE DL reconstruction chain, I developed

and implemented the code that adapts the Wire-Cell team’s charge-light matching

algorithm for use by the DL analysis. This involved taking the Wire-Cell team’s

output formats, and restructuring them to fit as a module within the existing DL

analysis framework, and validate the performance was the same.

For tagging cosmic ray muon background interactions, and discriminating events

lacking a neutrino interaction, I have developed, analyzed and implemented the

sMask-RCNN Deep Learning tool using a novel sparse submanifold convolutional

ResNet. With the help of Felix J. Yu, a then-undergraduate of Tufts University, this

work is under review by JINST as a paper, with preprint available [81]. Within it we

demonstrate that adding the network to the existing Wire-Cell Cosmic tagger, under

the selection criteria shown, reduces the remaining cosmic-ray-only background by

a further 70%.

For the 1l1p analyses leading to [14], I took over the 1µ1p selection from Davio

Cianci. The 1µ1p selection was modified as the selection was finalized in order to
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optimize our DL LEE search. I then validated the performance of the 1µ1p selection

which then provided a constraint for our LEE result.

I then took this 1µ1p work, and performed a 3+1 sterile neutrino search. Us-

ing this high-purity selection of νµ events I developed MicroBooNE’s sensitivity to

νµ disappearance using the 1µ1p selection, while performing many validation stud-

ies. This disappearance search was developed using both Wilks’ theorem, as well

as a Feldman Cousins method of developing a critical test statistic value. While

the analysis sensitivities are not world-leading, they, along with the 1µ1p selection

demonstrate a high-purity-based disappearance search using LArTPC technology

with good calorimetry and spatial reconstruction, despite being optimized for the

LEE search.

Finally, this analysis was applied to data, where we establish an excluded region

in our model parameter search space at 90% confidence. Our excluded region adds

additional power to existing experimentally excluded regions in the past. Both

the null oscillation model and the global best fit model for 3+1 sterile-based muon

neutrino disappearance remain in MicroBooNE’s allowed region. MicroBooNE’s own

best fit model is found to be in a highly degenerate set of models which describe

minimal disappearance, indistinguishable from the null oscillation model.
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Appendix A

Boosting

Here we further describe the procedure for boosting into the nucleon rest frame.

This is beneficial because, while the kinematic variables computed in the lab frame

can be useful, they ignore the Fermi motion of the nucleon struck by the neutrino

in a quasi-elastic (QE) interaction.

Fermi motion describes the quantum motion of the nucleons within the argon nu-

cleus of the LArTPC. When the neutrino strikes the nucleus additional momentum

gets added to the interaction, albeit small.

~pν + ~pfermi = ~pfinal (A.1)

In the selections described in section 6 the topology of the targeted interactions

is assumed to be 1l1p. As such, ~pfinal contains one lepton (electron or muon based

on selection) and one proton. This gives us

(0, 0, pν) + (pxf , p
y
f , p

z
f ) = (pxp , p

y
p, p

z
p) + (pxl , p

y
l , p

z
l )

→ ~pf = (pxp + pxl , p
y
p + pyl , p

z
p + pzl − pν)

→ ~pf ≈ (pxp + pxl , p
y
p + pyl , p

z
p + pzl − Eν)

(A.2)
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Here we make the easy approximation that mν is small enough that pν ≈ Eν and

that the neutrino’s momentum is completely along the z-axis, along the beam. We

then acquire the Fermi momentum.1

Now, in order to boost into the nucleon’s rest frame all we need is the energy of

the nucleon itself, En. This is defined as

En = mn − Eb − Tf

Tf << (mn − Eb)

≈ mn − Eb.

(A.3)

Here Eb is the removal energy and Tf is the final state nuclear recoil kinetic

energy, which is assumed to be small relative to the other quantities’ difference.

Now that the nucleon’s energy is reconstructed, we can calculate the boost vector β

~β =
~pf
EN

(A.4)

With the boost vector calculated we can boost our reconstructed quantities into

the nucleon’s rest frame. This has the benefit of reducing the risk associated with

assuming a stationary target nucleon and ignoring Fermi motion. Equation A.5

shows the procedure for performing this boost.
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(A.5)

Reference [98] demonstrates studies showing the improvements in the ’QE-ness’

of interactions studied in the nucleon’s rest frame rather than the lab frame. It

1The Fermi momentum coming from the struck nucleon is random, adding momentum into the
interaction isotropically
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is also worth noting that due to the imperfect nature of reconstructure it can be

possible to calculate a non-physical β value larger than 1. In these cases events fail

the ’boostability’ cut described in section 6.3.
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Appendix B

1µ1p BDT Selection Variable

Distributions

In this appendix we display the distributions of the different variables related to

the 1µ1p BDT Ensemble. These distributions represent events that are contained in

the final selection. The legends show the breakdown of events in different categories

for the stacked histograms contained within the plots. However the legends only

include events included within the x-axis range of a given plot.

Note that some of the variables, such as the x, y, and z reconstructed positions

are not used as inputs to the selection’s BDT ensemble, and are included to show

observation-expectation agreement and general sample distribution information. For

a list of the variables used in the BDT ensemble, refer to table 6.3.
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Figure B.1: The αT distribution for the 1µ1p selection.

Figure B.2: The Boosted Bjorken’s x distribution for the 1µ1p selection.
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Figure B.3: The Boosted Bjorken’s y distribution for the 1µ1p selection.

Figure B.4: The distribution for the amount of charge gathered around the interac-
tion vertex for the 1µ1p selection.
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Figure B.5: The range-based reconstructed neutrino energy distribution for the 1µ1p
selection.

Figure B.6: Via the EQE−`
ν assumption, the reconstructed neutrino energy distribu-

tion for the 1µ1p selection.
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Figure B.7: Via the EQE−p
ν assumption, the reconstructed neutrino energy distribu-

tion for the 1µ1p selection.

Figure B.8: The Cos(θ) distribution for the muon in the 1µ1p selection.
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Figure B.9: The φ distribution for the muon in the 1µ1p selection.

Figure B.10: The θ distribution for the muon in the 1µ1p selection.
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Figure B.11: The muon track length distribution for the 1µ1p selection.

Figure B.12: The MPID score distribution for an interaction containing an electron
in the 1µ1p selection.
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Figure B.13: The MPID score distribution for an interaction containing a muon in
the 1µ1p selection.

Figure B.14: The MPID score distribution for an interaction containing a proton in
the 1µ1p selection.
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Figure B.15: The muon’s reconstructed kinetic energy distribution for the 1µ1p
selection.

Figure B.16: The interaction opening angle distribution for the 1µ1p selection.
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Figure B.17: The distribution for the difference in φ variables between the proton
and muon for the 1µ1p selection.

Figure B.18: The transverse φ distribution for the 1µ1p selection.
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Figure B.19: The Cos(θ) distribution for the proton in the 1µ1p selection.

Figure B.20: The proton’s reconstructed kinetic energy distribution in the 1µ1p
selection.
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Figure B.21: The φ distribution for the proton in the 1µ1p selection.

Figure B.22: The θ distribution for the proton in the 1µ1p selection.
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Figure B.23: The proton track length distribution for the 1µ1p selection.

Figure B.24: The transverse momentum distribution for events in the 1µ1p selection.
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Figure B.25: The distribution of the ratio of transverse momentum to total momen-
tum in the 1µ1p selection.

Figure B.26: The Q0 distribution in the 1µ1p selection.
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Figure B.27: The momentum transfer squared, Q2, distribution in the 1µ1p selection.

Figure B.28: The z-component of the momentum transfer squared, Q3, distribution
in the 1µ1p selection.

229



Figure B.29: The BDT Ensemble score distribution in the 1µ1p selection.

Figure B.30: The QE consistency distribution in the 1µ1p selection.
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Figure B.31: The distribution of sum of θp and θm in the 1µ1p selection.

Figure B.32: The distribution of reconstructed x position of the interaction vertex
in the 1µ1p selection.
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Figure B.33: The distribution of reconstructed y position of the interaction vertex
in the 1µ1p selection.

Figure B.34: The distribution of reconstructed z position of the interaction vertex
in the 1µ1p selection.
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Appendix C

List of Abbreviations

1e1p — One electron one proton, sometimes written as 1e1p. An interaction

mode where an electron neutrino creates a single electron and a single proton with

nothing else.

1l1p — One lepton one proton, sometimes written as 1l1p. An interaction mode

where a neutrino creates a single lepton (muon or electron) and a single proton with

nothing else.

1µ1p — One muon one proton, sometimes written as 1m1p. An interaction mode

where a muon neutrino creates a single muon and a single proton with nothing else.

ADC — Analog to Digital Converter which digitizes the raw waveform signals

from the wires. Also can refer to the units of the subsequent digital signals.

BDT — Boosted Decision Tree, a machine learning tool used in the DL selections

to disciminate signal from background. They consist of several decision trees built

by fitting to the data via gradient boosting.

BNB — Booster Neutrino Beamline, the beam delivering mostly muon neutrinos

to MiniBooNE and MicroBooNE.

CCQE — Charged-Current Quasi-Elastic, the type of interaction targeted by

the DL selections. Charged-current interactions indicate a weak-interaction involv-

ing the W±. Quasi-elastic refers to a nearly-elastic particle scatter where the energy

transfer is small relative to that of the incoming neutrino.

CNN — Convolutional Neural Network, a Deep Learning tool where image pro-
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cessing kernels are the artificial neurons in the network. Used in the Deep Learning

reconstruction framework, and in the sMask-RCNN cosmic tagging project.

DL — Deep Learning, a subset of machine learning focused around creating

artificial neural networks. In the context of MicroBooNE, there exists a DL-analysis

framework, which this thesis uses.

EXT — External off-beam data. Data taken using the MicroBooNE detector

when the BNB is off, therefore no neutrino interactions are present. Used to analyze

the cosmic ray muon background.

LArTPC — Liquid Argon Time Projection Chamber, the detector type for the

MicroBooNE collaboration, as well as future neutrino experiments.

LEE — Low Energy Excess, typically referred to the excess in neutrino events

observed in the MiniBooNE and LSND experiments compared to their expectations.

ML — Machine Learning, a field of study whereby the tools are fit to solu-

tions via training or experiencing the data compared to traditional handcrafted

algorithms.

MPID — Multi-Particle Identification Network, a network used in the DL re-

construction to identify different particle types occurring in an interaction.

ν — A neutrino. Whether electron, muon, tau or sterile is denoted with sub-

script: νe, νµ, ντ , νs

π — A pion particle. Can be charged or neutral: π±, π0

PMT — Photomultiplier tube

SM — Standard Model of Particle Physics, where neutrinos are massless. In

the commonly accepted extension to the standard model, neutrinos have mass and

oscillations become possible.

sMask-RCNN — Sparse Mask-RCNN, or Sparse Mask-Region Proposal Con-

volutional Neural Network. A DL network using sparse convolutions to locate,

classify, and cluster different interaction types.

SSNET — Semantic Segmentation Network. A network used in the DL recon-

struction framework to label pixels as different categories of track or shower signals.
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