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Abstract 

Advanced Driver Assistance Systems (ADAS) offer safety advantages to drivers in 

many situations.  A modern Lane-Departure Warning System (LDWS), for example, can 

alert a driver when an unintended highway lane departure is imminent, preventing 

potentially deadly crashes or collisions.  Enhanced LDWS for urban environments will 

require very accurate lateral positioning information, even in environments in which 

visual features (road-lane markers) may be sparse and in which buildings may occlude or 

corrupt GPS signals. To achieve such a capability, this thesis proposes a low-cost 

automotive positioning concept for urban environments, a concept we call Registration 

using Automotive-Fixed Laser (RAFL).  The approach registers the car location on a 

reference map using data from a laser rangefinder and a dead-reckoning system.  The 

concept can estimate both longitudinal and lateral position.  A preliminary road test of 

our concept demonstrated RAFL accuracy can exceed that of conventional GPS 

processing (using WAAS-corrected L1 C/A measurements) in high multipath urban 

environments. 
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Chapter 1:  Introduction 

Advanced Driver Assistance Systems (ADAS) play an increasingly important role 

in modern transportation.  These technologies promise to enable drivers and passengers 

to travel more quickly and safely with less effort on the part of the driver.  ADAS are any 

systems that process sensor input to help guide a human driver.  They include 

technologies for navigation, lane keeping, cruise control, maintaining a safe following 

distance, and automated braking to avoid an accident.  ADAS also have the capability to 

warn drivers about unsafe situations in time for the driver to react, and further 

development of technologies used in ADAS can even be used to maneuver a vehicle 

autonomously.  Their potential benefit is enormous, as each year over 1.3 million people 

[1] die from traffic-related injuries, with tens of millions more injured but surviving [2].  

Over 90% of traffic accidents involve human error [3], the effect of which could be 

mitigated with ADAS technology. 

Nearly all ADAS, and the task of fully autonomous driving, require determination 

of vehicle location.  Collision avoidance systems, navigation systems, intelligent braking 

assistance, adaptive cruise control, and lane departure warning systems all depend on 

accurate estimates of vehicle position relative to the road, to other vehicles, and to 

other landmarks or road users.   

Lane departure warning systems (LDWS), which are already in place in some 

consumer vehicles, calculate when a vehicle is moving or about to move out of its 

current travel lane.  By alerting the driver in these situations, LDWS can prevent 

unintentional lane departures, which can lead to a crash into a roadside object, a 

collision with an oncoming vehicle, or a lateral collision with a vehicle moving in the 
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same direction in an adjacent lane.  According to a survey by Kuehn et al. of accidents 

reported to German insurers between 2002 and 2006, over 25% of all vehicle accidents 

involved unintentional lane departures [4].  An accurate, robust, and affordable LDWS 

could save many lives. In an overview of advanced driver assistance systems, Lu notes 

that a LDWS or lane-keeping assistant (which is similar to LDWS, but may involve direct 

control of steering) based on absolute positioning would need an accuracy of around 0.3 

m [5].  The next four paragraphs describe different solutions proposed for providing 

accurate estimates of position. 

Global Navigation Satellite System (GNSS) receivers, already installed in many 

cars for navigation purposes, are not generally accurate enough for LDWS.  Lu estimates 

the accuracy of the WAAS-enabled code phase at 2-4 meters, depending on the system 

used [5].  Using the carrier phase of GPS, Bajikar was able to determine location of 

various survey nails with a standard deviation of 2cm and 35cm in the lateral and 

longitudinal directions [6], respectively.  However, the carrier phase does not give an 

absolute measurement.  It needs to be supplemented with the code phase, which does 

not have the required accuracy, or by another technology that can determine absolute 

position.  Both code phase and carrier phase can be degraded by multipath errors [7], 

which are common in urban environments.  For these reasons, GNSS technologies are 

unlikely to provide a sufficiently accurate and robust LDWS position estimate. 

A system relying on road-based magnetic or RFID markers can provide the 

needed accuracy.  This system requires two components—beacons along a roadway, 

and a detector on each vehicle.  Chan has shown that a sensor can detect the position of 

magnetic tape placed along a travel lane within 5-8 cm [8], and the system is simple.  
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However, due to large upfront costs, there are no plans in place for widespread 

installation of markers, tape or beacons. 

Vision-based locating is promising, but currently unreliable, especially for urban 

applications.  Some video-based locating systems work by analyzing brightness gradient 

in an image to identify lane markers [9], which are generally brighter than the 

surrounding pavement.  This type of locating system generates estimates of lateral 

position only.  LDWS based on vision are currently available on consumer vehicles [10]; 

however, these systems are only meant for use on highways.   A method developed by 

McCall and Trivedi can detect a car’s lateral position within 9-14 cm, although the 

accuracy varies with road conditions [11].  In poor weather or on inadequately marked 

roads, the systems may not function at all.  As such, LDWS systems are not yet available 

to operate in urban and suburban environments, where lane markers are not 

ubiquitous. Moreover, considerable post-processing would be needed to make these 

algorithms robust and to account for obstacles, outliers, and other conditions that occur 

more frequently in urban environments than in more structured highway environments.   

Some systems utilize laser rangefinders to determine the location of the vehicle 

compared to known landmarks.  Unlike GNSS they work best in urban canyons, and they 

have higher accuracy [12].  Rather than detect specially installed markers, the 

rangefinders detect whatever objects are already in place, relying on a map of these 

objects.  And unlike vision systems, they function equally well in every road condition, 

with any or no visible light, and in all but the most adverse weather.  The rest of the 

thesis will focus on specific ways laser rangefinders can be used in ADAS applications, 

particularly in positioning. 
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At its simplest a laser rangefinder consists of an emitter, a detector, and a clock.  

Infrared pulses are emitted, reflect off a target object, and return to the detector.  The 

clock measures the time between when the pulse is emitted and when it is detected, 

and the distance traveled is calculated from this time and the speed of light.  Some 

applications employ one or more of these emitter-detector pairs mounted on a rotating 

turret on a vehicle roof so that they can take distance readings in multiple directions.  

Sometimes the lasers rotate in a vertical plane as well.  These types of setups are 

referred to in this thesis as Scanning Laser Rangefinders (SLRs).   

Scanning Laser Rangefinders are often used for Simultaneous Localization and 

Mapping (SLAM), where an autonomous vehicle navigates in a previously unknown 

environment.  Xu et al. [13] used a laser scanner to map an indoor environment.  After a 

series of points were collected at one vehicle location, they were arranged into line 

segments.  A robot could determine its position at a later time by looking for line 

segments of the same length.  Other demonstrations of laser-based SLAM have taken 

place in tunnels, in controlled outdoor environments, and in urban settings.  Soloviev 

[14] used a line segment comparison method to guide an autonomous vehicle in 

alleyways between buildings.  Building edges were arranged into line segments, which 

were matched to previous line segments as before, accounting for scanner tilt that 

would be more common in a less controlled environment.  Madhavan [15] and Joerger 

[16] used kalman filters to look at point landmarks instead of line segments.  Madhavan, 

rather than performing SLAM, created a map in one pass through a mining tunnel, and 

then stored the map and used it at a later time with the same laser scanner.  Also using 

a stored map, a team at Stanford and Google [17] developed an autonomous vehicle that 

could navigate city streets with traffic and pedestrians, using a suite of advanced 
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sensors.  These included a 64-beam LIDAR and two other smaller scanning LIDAR 

scanners, as well as four cameras, six radars, and a combined INS and GPS unit.   

This thesis explores the possibility of using a vehicle-fixed laser rangefinder for 

vehicle localization, rather than the SLRs more commonly employed for robotics and 

autonomous vehicle research.  We call our approach Registration using an Automotive-

Fixed Laser (RAFL).  The main motivation for RAFL is cost.  In 2011 prices, the cost of a 

low-grade scanning laser rangefinder is about a tenth of the cost of a new four-door 

sedan, making their implementation in consumer automobiles unlikely.  High-end, 

turret-based scanning laser rangefinders, such as those used by the Stanford/Google 

vehicle, may cost more than five to ten times as much as the car.  By comparison, laser 

rangefinders without the scanning mechanisms have about one-twentieth the cost of 

the lowest-end scanning-beam laser rangefinders.  In addition, fixed-beam lasers 

generate a smaller data set, requiring less computing power to process.  If a LDWS using 

a fixed-beam laser can be developed, it could be commercialized sooner and more 

widely. 

This thesis describes three contributions to this field: 

1. The development of the RAFL method, and the mathematical 

framework for it 

2. The implementation and demonstration of our method in a road test 

3. A summary of concepts for improving the method further 

We have developed a positioning system using a vehicle-fixed laser rangefinder, 

dead reckoning, and a map.  We then collected data while driving through an urban 

environment, and wrote an algorithm to provide position estimates based on the data.  

Although more work is needed to confirm the accuracy estimates and to test the 
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method on different data sets, we believe we have a capable of estimating position with 

meter-level accuracy. 

The remainder of the thesis is organized into three chapters, each divided into 

four subsections, and a brief conclusion after the second chapter.  The next chapter 

introduces our RAFL concept and the key components of it.  Then it describes the 

mathematical algorithm at the core of our method.  The third chapter builds on the first 

chapter, and explains how improvements to the reference map, to the sensor filtering, 

and to the algorithm can improve the robustness and of our method in non-ideal 

situations.  The conclusion summarizes the results from both prior chapters, and 

suggests further opportunities for research and development. 
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Chapter 2:  Registration with an 

automotive-fixed laser 

Introduction 

This chapter demonstrates the feasibility of locating a car with a fixed laser 

rangefinder and a dead-reckoning system.  Our system combines a few affordable 

elements to replicate the behavior of SLR systems.  Because it depends on a registration 

between a map created from collected data, and a reference map, we call our system 

Registration with an Automotive-Fixed Laser (RAFL). 

The first section of this chapter explores the RAFL concept in detail, and explains 

the working principles.  The second section develops a mathematical model for the 

system, and an algorithm for performing RAFL with the inputs used.  The third section 

shows how a method for collecting data and using our method to calculate the vehicle 

positions at which the data was taken.  We did not attempt to test our method in real-

time.  The fourth section analyzes the results of using our algorithm on a small stretch of 

road with a well-developed reference map.  We compared our estimates to data from a 

video and a GPS receiver for independent verification of our results. 

Section 1:  RAFL Concept 

Our concept couples the laser rangefinder with dead reckoning to estimate 

vehicle position along a path with a surveyed profile of roadside buildings.  A block 

diagram for the system is illustrated in Figure 1. By taking continual laser range 
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measurements and using the vehicle’s velocity profile to align these measurements 

along a path, we are able to construct a rough map of the roadside at the height of the 

laser rangefinder.  Comparing this profile to a satellite image of the surrounding area, 

we determine the car’s location relative to the buildings in the image.   

 

Figure 1:  Concept block diagram 

 In this thesis, the reference map was created from a satellite image of 

the area.  Building corners are manually selected in an image, and the lines between 

them are automatically drawn to represent building edges.  A reference map overlaid on 

the satellite image is shown in Figure 2.  In concept, this process for building references 

maps from satellite data could be automated.  Alternatively, an even more accurate 

roadside profile might be generated by replacing the satellite data with data collected 
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by specialized survey vehicles equipped with accurate (and expensive) positioning 

equipment. 

 

Figure 2:  Reference map overlaid on satellite image 

By driving a vehicle equipped with a RAFL system (featuring dead reckoning 

sensors and an automotive-fixed laser) along a pre-surveyed route, a measured roadside 

profile can be generated in real time and compared to the surveyed roadside profile.  

Figure 3 shows how the data are collected.  A car traveling along a road takes 

measurements of a building profile by shining a laser to the right.  Because an 

automotive-fixed laser is employed, no information is collected when the vehicle is 
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stationary.  Therefore, new laser range information can only be collected when the car 

is moving.  Given many laser data points, with their origins related by dead reckoning, 

information about objects detected from different vantage points can be assembled 

into a map. 

 

Figure 3:  Data acquisition and variables 

The raw laser range measurements are collected and stored in sequence with 

their associated time steps as shown in Figure 4.  A dead reckoning system computes 

the displacement at each time.  Figure 5 shows the data from Figure 4 rotated and 

superimposed on top of the reference map.  Aligning (or registering) the two graphs 

more precisely gives an estimate of position.  The registration algorithm for calculating a 

position estimate is presented in the next section. 
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Figure 4:  Laser measurement versus time.  Since the rangefinder points in the 

negative  ̂  direction, its value is always negative. 
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Figure 5:  Laser measurement (blue) overlaid on the reference map (green) prior to 

precise registration.  

Section 2:  RAFL Algorithm 

An optimization-based strategy is used to compute vehicle position by 

determining the position which best aligns a measured roadside profile to a reference 

roadside profile (obtained from a map database).   
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The amount of data used to construct the measured roadside profile is selected 

such that the “length” of the roadside profile (i.e. the distance traveled along the road) 

is always constant.  The length of time required to travel an arbitrary distance p along 

the road direction is T.  The following equation relates the distance p to the time 

duration T given that the vehicle velocity v and the direction of the road (described by 

the unit vector  ̂ ) may vary over time.  The equation is computed backwards from the 

present time, t*. 

 (    )  ∫    ̂   

  

    

 (1)  

 

Inverting this equation, it is possible to compute how much time T has elapsed 

for the vehicle to travel a specified distance pref.   

     (       ) (2)  

 

Because the reference length of the roadside profile pref is held constant, and 

because data are assumed to be sampled at a roughly constant rate, more data points 

are used to construct roadside profiles when a vehicle is moving slowly than when it is 

moving quickly.  (By comparison, if roadside profiles were constructed for a fixed T, a car 

stuck in traffic or at an intersection for the entire time T would have only one point in its 

roadside profile.) 

Because data are sampled discretely, equations (1) and (2) need to be converted 

into a discrete form.  In this thesis, for simplicity, we use the forward Euler 

approximation to discretize continuous integration.  The forward Euler approximation of 

(1) is given below. 
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 (    )  ∑  ( )   ̂ ( )  

  

      

( ) (3)  

 

The number of time steps used in constructing the measured roadside profile is 

K+1, where K is obtained from the following equation. 

        (|     ∑ ( )   ̂ ( )  ( )|) (4)  

 

The first step in constructing the roadside profile is to estimate the approximate 

trajectory of the vehicle during the previous K+1 time steps.  Dead-Reckoning Sensor 

(DRS) data are used to reconstruct this trajectory.  DRS alone cannot identify the 

absolute position x(k) of the vehicle as a function of time; however, the DRS data can 

provide measurements of position displacement d(k) over the time window of interest.  

Here we define position displacement as zero at the current time (k*) and negative at 

preceding time steps, according to the following formula. 

 ( )   ( )   (  ) (5)  

 

The vector x is the position of the vehicle, and its components are chosen to be 

coordinates along the  ̂       ̂  directions.  The velocity vector v, used in equations (1) 

through (4), is the time-derivative of x.  The coordinate system moves along the road 

with the car, so it is different at each time t*.  For convenience, we assume the origin of 

the coordinate system is always shifted (in the  ̂  direction) to the center of the lane, 

regardless of the vehicle’s lateral position.   

The DRS system is also assumed capable of estimating the vehicle heading at 

each time step during the window of interest, in an earth-fixed (North-East) coordinate 
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system.  Heading relative to the local-road coordinate system is denoted  ̃.  Absolute 

heading ψ relative to East can be converted to local-road coordinates by introducing an 

offset angle ψt, which accounts for the road direction.   

 ̃( )    ( )    ( )     (6)  

 

 The offset ψt can be looked up in a map database (as a function of the 

predicted car position).    

The measured roadside profile can be obtained by adding laser ranges to each 

point along the vehicle’s trajectory d(k).  If the laser is arranged at an angle ψ0 from the 

car’s front, and measures a distance L(k) to the nearest roadside object, the measured 

roadside profile r(k) can be constructed from the following formula.  

 ( )  [
 ( )    ( ̃( )    ) 

 ( )    ( ̃( )     )
]   ( ) (7)  

 

Again, the coordinates of the roadside profile vector r(k) are assumed to be 

aligned with the road coordinate system.  The first coordinate is assumed to be the 

tangential component, parallel to  ̂ ; the second is the normal component, parallel to 

 ̂ .   

The measured profile r(k) can be compared to a reference profile R(k;  ̂  ̂).  The 

reference profile is generated from the estimated absolute position  ̂ and estimated 

absolute heading  ̂.  The best estimates are those for which the reference profile R 

matches the measured profile r most closely. 

In this thesis, the reference profile R is constructed from a map database using 

ray tracing methods.  The map database is assumed to comprise the coordinates of all 

building corners along the right side of the road.  The database is assumed to list 



16 
 

building corners in terms of absolute coordinates (latitude and longitude); however, it is 

assumed trivial to convert into a local-road coordinate system (with components in the 

 ̂  and  ̂  directions).  The ray-tracing algorithm is used to determine the distance from 

the lane center to a building’s face, interpolating between building corners.  The 

reference profile R is constructed by taking the estimated position  ̂, a laser heading 

 ̃    , and uses the ray tracing function to find an expected building face position at 

the current time step.  The displacement d(k) is added to   ̂to infer the past trajectory of 

the vehicle.  In this manner, the ray tracing function f can be used to generate the 

reference profile over a window consisting of the current and K previous data points 

 (   ̂  ̂)   ( ( )   ̂  ̃( )    ) (8)  

 

The two profiles can be compared with a cost function J, with the lowest cost 

function indicating the best fit.  In this sense, we have defined an optimization problem 

with the following form.   

   
 ̂

   (  (   ̂)   ( )) 

              

 

      

  | ̂ ( )    ̂ (   )    (   )   |      

          | ̂ |     

(9)  

 

In this optimization problem, the bounds Bt and Bn refer to the half-widths of 

the search area (in directions tangential to and normal to the road path, respectively).  

The tangential search area is centered around an initial best guess, which is calculated 
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from the estimate in the previous step and a velocity term to account for the car’s 

movement between time steps.  In this thesis, the variable Bn is set to cover the full lane 

width, regardless of the car’s previous lateral position; wider search areas might be 

considered for roads with multiple lanes in the same direction. 

It should be noted that the cost function in equation (9) is a function of a time-

varying vector defined over times from k*-K to k*.  An example cost function, the 

quadratic cost function, for a vector a of dimension M, evaluated over time steps from 

k*-K to k*, has the following form. 

   ∑ ∑   
 ( )

 

   

  

      

 (10)  

Section 3:  Experimental System 

We tested the viability of our concept with a road test.  Our experiment allowed 

us to assess the accuracy of RAFL using physical equipment.  The experiment also 

allowed us to see how well our satellite-derived map corresponded to features seen 

from the ground.  Although we did not have access to ground truth substantially more 

accurate than our results, we were still able to roughly determine our positioning 

accuracy. 

We collected data using a sensor package consisting of an Opti-logic RS100 Laser 

Rangefinder and a Garmin GPS 18 receiver (shown in Figure 6).  The GPS receiver 

provided both positions and velocities.  GPS velocities were used for dead reckoning.  

GPS positions were not used in our algorithm, so we could compare our results to the 

GPS positions to estimate the accuracy of our method.  Although wheel odometry, an 

inertial measurement unit, or gyros might have provided more reliable dead-reckoning 

measurements in an urban environment, GPS velocity data were selected as the DRS 
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measurements for early-stage testing to simplify system integration.  Both the GPS 

receiver and the laser rangefinder were connected to a laptop computer in the car.  

Their outputs were synchronized with timestamps.  Data were stored and the RAFL 

algorithm was tested in post-processing. 

 

Figure 6:  Experimental setup 

The laser rangefinder was oriented at a right angle to the vehicle’s fore-aft axis; 

in our coordinate system this corresponds to ψ0 = 270°.  As a simplification, we analyzed 

only data for which the road was straight, allowing approximation of the vehicle’s 

heading ψ as equivalent to the road direction ψt.  Thus, in analyzing our experimental 

data,  ̃ was zero, as specified by equation (6).  With these assumptions, equation (7) 

became 

 ( )  [
  

  ( ))
]   ( )  (11)  

 

In other words, the laser measurement was assumed parallel to the  ̂  

direction.  Moreover, the lookup function in equation (8) was dependent only on the 

car’s position and not its orientation. 
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 (   ̂)   ( ( )   ̂) (12)  

 

The reference map that provided the basis for the lookup function was created 

using the satellite mode of Google Maps.  We were able to determine the latitudes and 

longitudes of building corners to pixel-level precision (11cm), and connect the corners to 

generate building faces.  We then transferred the latitude and longitude locations of 

each building corner to the local-road coordinate system. 

Although we processed all of our data well after collecting it, there is no reason 

it could not be analyzed in real time, as it would need to be for the method to be 

utilized.  There is room to optimize the code to make it faster, and the reference map 

could either be stored on an onboard computer, or collected on an as-needed basis 

from a centralized location with a wireless communication device.  The methods for this 

are beyond the scope of this thesis, but we are confident they are not significant 

barriers to implementation. 

Section 4:  Experiment Results and Analysis 

This section describes data collected in experimental trials conducted in 

Medford, MA in the vicinity of the Tufts University campus.  Analyses of those data sets 

are also discussed.  Ten trials were conducted, each over a 1.25-mile stretch of urban 

roads.  In our analysis we will focus on a relatively small subset of this data, a swatch of 

0.5-mile of road over which the vehicle was traveling in nearly a straight line, according 

to videos taken during the experiment.  Both our method and the GPS give position 

estimates in line with our expectations.  Figure 7 shows the positions from one of these 
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ten trials overlaid on a satellite map of the road.  The estimates in the lateral direction 

are very close.  The longitudinal coordinates agree less well.  

 

Figure 7:  GPS (red) and RAFL (blue) position estimates.  The green line is the reference 

map. 

Figure 8 shows the estimates of lateral position xn generated by both the 

algorithm and by the code phase of the GPS receiver.  It is evident that both the GPS and 

the algorithm show similar movements in lateral position at the same time.  Both show 

a rightward (negative) movement of the car between 85 and 90 seconds, followed by a 

relatively sharp leftward reversal until about 95 seconds.  Further confirmation that our 

method is effective comes from the video.  North of the intersection, there are no cars 

parked on the side of the road.  South (the direction the car is traveling) of the 

intersection, there are cars parked along the curb, and at about 88 seconds our vehicle 

moved left to allow more clearance between them and the side of our car. 
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Figure 8:  Estimates of lateral position 

Since the true position of the vehicle at any point during the trial is unknown, it 

is not possible to determine the accuracy of our method through this data alone.  The 

offset between the GPS readings and our algorithm’s lateral measurements stays 

between 0.2 and 1.4 meters for the duration of the trial, even as the values range 

between -2 and +2.5 meters from our assigned center line, as shown in Figure 9.  The 

average offset was 84 cm, and the standard deviation of the offset values was 12 cm.  

These preliminary results suggest that our method may be capable of estimating lateral 

position with meter-level accuracy.  More research will be needed to determine 

whether these trials on this stretch of road represent an unusually favorable situation, 

and to compare our algorithm’s estimates to actual positions.   
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Figure 9:  Lateral offsets 

The levels of precision of our instruments and map place a limit on the 

resolution of our method.  The reference map resolution is 11 cm per pixel, and 

latitudes and longitudes are given by Google Maps out to 6 decimal places, which is also 

11 cm.  If the colors of a building’s roof are similar to the colors on the ground nearby, it 

is often difficult to resolve the building edge to within a single pixel.  Registration errors, 

e.g. how well the coordinates given by the map tool match the feature’s true absolute 

coordinates, are unknown.  Moreover, an aerial view is not exactly the same as a slice 

taken at the exact altitude of our laser rangefinder, e.g. if the roof overhangs the 

building.  The aerial map limits our resolution to 20-30 cm at best, and unknown 

registration errors limit our method’s accuracy as well. 

We have demonstrated a method for determining vehicle position using a laser 

rangefinder fixed to the vehicle.  Along with a reference map and a dead reckoning 

sensor, we have estimate our vehicle’s position at each point in time in several trials 

over one stretch of road.  By comparing these estimates to the GPS readings during this 
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time, and to a video we took, we have confidence in the RAFL concept, and it seems 

likely that our method has achieved meter-level accuracy, at least for a representative 

roadway lined with large buildings. 

Although the algorithm described in this chapter performs well in the presence 

of buildings with flat façades close to the road, the algorithm’s performance is degraded 

for more complicated roadsides characterized by non-permanent obstacles (e.g. tall 

roadside vehicles), irregularly shaped objects (e.g. statues), and non-uniform façades 

(e.g. houses with steps and porches).  Algorithm accuracy also suffers due to occasional 

large noise events (ranging “spikes”). In order to maintain the desired meter-level 

accuracy under a wider range of conditions, the next chapter presents ideas that adapt 

the basic RAFL concept to better manage diverse roadside environments and rare, 

impulsive errors.  
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Chapter 3:  Concepts for improving our 

method 

Introduction 

Although the RAFL method can produce a quality estimate of position in ideal 

conditions, its accuracy can be compromised by noise in the laser rangefinder signal, 

obstacles in the path of the beam, irregularly shaped targets, and discrepancies 

between the aerial map and the way objects appear from the road.  The accuracy of our 

method in these non-ideal conditions can be improved by 1) increasing the accuracy of 

the reference map, 2) filtering the laser rangefinder input, and 3) replacing the cost 

function from equation (10) with a function better suited to RAFL.  Each of these three 

concepts has several elements, which are summarized in Table 1.  The first three 

sections in this chapter will introduce concepts for making these improvements, and will 

also evaluate their effectiveness on one short (400-meter) straight stretch of road.  A 

fourth section shows the effects of combining these improvements. 

Table 1:  Improvements to our method presented in Chapter 2 

Section 1: Map 
Improvements 

Section 2: Filtering the 
sensor input 

Section 3:  Improving the 
cost function 

Adjusting the map using 
ground-based 
measurements 

Median filtering of the laser 
input 

Replacing the quadratic 
cost function with a cost 
function less affected by 
outliers 

Adding confidence to 
reference map segments 

Shape matching algorithm Asymmetrical adjustments 

 Obstacle detection 
algorithm 
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Concept 1:  Map improvements 

This baseline RAFL method works very well for flat, featureless walls parallel to, 

and close to, the road, because satellite imagery provides an excellent model for 

roadside features.  This section investigates approaches that work more reliably in cases 

when satellite imagery is less useful, as in the case of the facades of houses, which are 

rarely completely planar.  Gutters, eaves, porches, steps, oriels, and other features may 

make modeling the roadside profile (at about 1.5 m height) challenging.  Irregularly 

shaped objects, and small to medium-sized objects, like street signs and telephone 

poles, can also cause problems with a map based on an aerial view.  Furthermore, the 

distinction between ground and a non-ground feature can be blurry when both are the 

same color, often a dark gray.  Ultimately, inaccurate maps lead to the wrong sample 

swath being selected, and an inaccurate estimate. 

The proposed concept for improving the roadside profile model consists of two 

steps.  Firstly, ground-based data collection can be used to adjust the segment 

endpoints.  The first subsection will discuss ways to revise the map from either video or 

from laser ranges taken from a vehicle.  It will also show the effects of the revisions to 

the map.  Secondly, the map’s utility can be increased by adding information not given 

by the map coordinates.  Each segment could have information about the type of object 

it represents, and the likelihood that the object will show up accurately during a laser 

rangefinder measurement.  The second subsection will describe the ways these 

likelihood values are assigned, and the impact of adding these likelihood values to the 

algorithm. 
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Concept 1.1:  Adjusting the map using ground-based measurements 

This subsection investigates the possibility of improving the accuracy of the map 

with data collected from a camera and a laser rangefinder fixed to a ground-based 

vehicle. The first attempt at an accurate reference map used only aerial photographs 

available from Google Maps.  It is possible that an aerial photograph does not capture 

the relevant details, or that a mapmaker (human or computer) could misinterpret the 

photo.  Revision with ground data could help make the map more accurate and useful.  

This subsection proposes a change to the map based on visual observations and laser 

measurements, and describes the change’s effect on our algorithm’s accuracy. 

A map created from laser rangefinder measurements on the ground has the 

advantage of being constructed in the same way as the sample swaths to which it is 

being compared.  The camera and rangefinder used to create the map have the same 

line of sight as the laser rangefinder used in the RAFL process.  However, this method is 

limited by the accuracy of all the equipment in use.  Uncertainties in the vehicle position 

and rangefinder mounting make accurate and absolute locating of map points difficult.  

For this reason, we used the ground-based data only for checking for errors in and 

making modifications to the aerial map. 
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Figure 10 shows the motivation for editing the map with our laser rangefinder 

data. 

 

Figure 10:  Laser rangefinder reconstruction versus satellite map 

The smooth green line shows the manual tracing of the buildings in the aerial 

view.  The red, cyan, and blue lines show the buildings as traced by the laser 

rangefinder.  We assumed that the laser rangefinder was mounted at the exact location 

of the GPS unit we mounted on the car, and that it always pointed in the direction 

perpendicular to the travel lane.  As can be seen, all three laser-constructed maps agree 

with each other better than they agree with the aerial map.  There are several possible 

explanations for this. 
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It is possible that the aerial map inadequately depicts the features at the proper 

height, in the direction they would be viewed from a passing vehicle.  Irregular shapes 

especially, and any non-prismatic shapes, will look different from a satellite compared to 

how they look from the road.  A second possibility is the inaccuracy of the positions 

created by the laser rangefinder.  The GPS unit has unknown errors, especially in a 

crowded area.  The heading of the car, the mounting angle of the laser rangefinder, and 

the reading of the laser rangefinder all limited precision, so the reconstructed scan will 

not be completely accurate.  A third possibility is obstacles.  Since these three 

measurements were all taken with 15 minutes, they will pick up the same temporary 

obstacles.  For example, it is almost certain that they are detecting the blue vans at the 

top of the image, which happen to be in slightly different positions on the day of the 

satellite photo and the day of our experiment. 

Despite the opportunities for error in reconstructing the path, the laser data 

suggested a modification was needed.  It is reasonable to conjecture that some object 

under the tree in the center of the image is blocking the laser path, and a personal 

inspection of the area confirmed that the aerial map was incorrect.  The tree near the 

center of the image is not in the center of an open area.  It is actually in the corner of 

the area, but the fence at the back of the area is partially blocked by the tree, and 

where not blocked it is too narrow to show up clearly in the satellite image.  Moreover, 

in Figure 10, part of the building roof had been mistaken for similarly-colored gravel.  

Figure 11 shows the revised map.  One can see that the reference map now agrees 

much better with the red, cyan, and blue laser measurements. 
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Figure 11:  Reference map adjusted after consideration of disparity with rangefinder 

data 

These changes take place between 272 and 302 meters from the Boston Ave 

and College Ave intersection, the origin of the local coordinate system.  The video shows 

the car passed through this area around 42 seconds, without any sudden stops or 

reversals.  We ran our RAFL algorithm in this area, with a swath length of 30 meters.  As 

can be seen in Figure 12, both maps yield similar results near when the car enters the 

area.  However, as the car travels forward, the 30-meter swatch includes more of the 

affected area, and less of the previous area where both maps agreed.  The algorithm 

based on the initial incorrect map shows increasing irregularities in this region.  If the 

length of the sample swath is increased past 35 meters, the effect diminishes 

significantly, since the affected area never accounts for the entire swath. 
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Figure 12:  Effect of revising the map with ground data 

Concept 1.2:  Adding confidence levels to reference map segments 

This subsection presents the concept of weighting areas of our reference map 

differently.  Each segment of the map is assigned a weight, so that the cost function 

becomes a weighted summation.  This subsection explains why some parts of the map 

should be weighted more, how the weighting is determined, how the weights, or 

confidence levels, can be implemented mathematically, and their impact on the results 

of the RAFL algorithm. 

Adding confidence levels to the map could improve accuracy, by reducing the 

impact of fuzzy or uncertain points on the cost function, and increasing the impact of 

well-defined points.  Since the aerial images taken from Google Maps are two-

dimensional, each x and y location on the map has only one pixel assigned to it.  From 

here the mapmaker extracts only binary information about height:  is there a permanent 

object there at least 1.5 meters high or not?  However, the reality is much more 

Comment [TF1]: Data Set SetB, 
Inverse4Norm(1,0.5,0.5), sw = 30, rw = [-37.5 to 
12.5], medfilter(5,200), no truckwatch, no 
shapewatch, t=22.79345:0.1: 74.79345. 
Map7NC vs. Map8NC 
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complex:  a single x-y location could contain a solid porch from ground level to 80cm 

high, then a lattice railing from 80 to 190cm, then plants on top of the railing, then 

empty space between the plants and the roof, and then the roof.  If the roof hangs over 

the edge of the porch, then the porch, railing, plants, and house will all be modeled as a 

solid block at the front edge of the roof.  Since the height of the laser rangefinder is 

about 1.5 m, it will likely not give the reading expecting from the solid block model. 

The three images in Figure 13 through Figure 15 are all taken from along the 

section of our route where the reference map was created.  Each location has a lateral 

distance assigned to it on the reference map, but the distance the laser rangefinder will 

actually read is increasingly difficult to determine. 

 
Figure 13:  A brick wall 

close to the road  
Figure 14:  A house 

separated by a hedge, 

driveway, road and 

parking lot 

 
Figure 15:  A statue surrounded by 

plants 

 

It is not necessary to take pictures of the area from street level to determine 

which structures have the highest confidence, although that could be helpful.  From the 

aerial map, one can determine which structures are irregular (plants, statues, etc.), 
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which structures are small or curved (mailboxes, posts, streetlamps), which are 

somewhat regularly shaped residential buildings, and which are large rectangular 

institutional buildings, with increasing levels of confidence.  For example, in Figure 16 

the long school (1), houses on St. Clement’s Rd. (2), and the tree/statue (3) can all be 

distinguished as such. 

 
Figure 16:  A satellite photo showing features of varying confidence 

Choosing a confidence level for a particularly segment is a complex decision 

involving local knowledge, feature identification, and mental recreation of common 

three-dimensional features from photographs.  For this reason, the confidence levels 

3 

2 1 
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are assigned by a human.  We used a 1-10 scale, with the value of 10 being assigned to 

the points with highest confidence.  Values were assigned according to Table 2. 

Table 2:  Confidence values assigned to landmarks 

Value assigned Landmark Description 

1-2 Building faces nearly perpendicular to the 
travel direction of the vehicle.  

3-4 Irregular objects, such as statues and plants. 

5-6 Faces of houses, sheds, and garages, or fences.  
At a moderate distance from the road, parallel 
or nearly parallel to the road. 

7-8 Faces of houses, sheds, and garages, or fences.  
Close to the road, parallel or nearly parallel to 
the road. 

9-10 Rectangular buildings very close to the road 

   

These confidence values become scaling factors assigned to each map location.  

Our previous map was a 4-column table:  each line segment on the map was stored as 2 

points, each of which has 2 coordinates.  The confidence factor for the segment was 

added as a fifth column in the table.  The ray tracing function identifies the segment 

being chosen, and scales to the confidence factor assigned to that segment.  

 

   
 ̂

   ( (   ̂)   ( )) 

becomes 

(9)  

   
 ̂

   ( ( (   ̂))  ( (   ̂)   ( ))) (13)  

Figure 17 shows a few line segments and their confidence factors traced on top 

of a satellite photo of the area. 



34 
 

 
Figure 17:  Buildings near 500-meter mark, with their confidence factors (green) and 

distance markers (blue) 

To test the effects of adding these confidence factors, we ran the algorithm 

twice on the same data set, with the same parameters and conditions.  The only change 

we made was the confidence factors:  the first time through, every line segment on the 

map had a confidence factor of 10, and the second time through, we used our own set 

of factors, some of which are shown in Figure 17.  We used a longer sample swath (80 

meters), so that at most points along the route, our reference swath would include both 

high- and low-confidence points of the reference map.  The confidence factors were 

added after the corrections from ground data described in the previous subsection.  

However, this area is 200 meters away, so the changes do not interact. 
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Figure 18:  Effect of adding a confidence factor to the reference map 

Figure 18 shows the results from the two runs of our algorithm from the same 

subset of data.  The green line, representing GPS measurements, is added for reference, 

and at least roughly tracks the true location and velocity of the vehicle, as determined 

by video.  The blue and red lines represent location estimates from the algorithm.   

Before around 500 meters, the algorithm gives the same result both times.  

However, once the car passes St. Clement High School, the algorithm with confidence 

factors shows a steady course, and the algorithm without confidence factors shows a 

reversal in direction.  Adding this confidence factor improves the robustness in this 

situation.  Without the confidence factors, the algorithm is equally weighting the part of 

the reference map including the buildings along Warner St.  Attempting to match this 

data is difficult, since the cross street is highly likely to have obstructions.  Since the 

building faces along Warner Street are perpendicular to our vehicle’s path, a small 

change in vehicle orientation creates a large change in the length of the laser path.  

With the confidence factors, the algorithm relies more heavily on the data taken while 

next to the school, which is less error-prone. 

Comment [TF2]: Data Set SetB. 
Erfnorm(b=1,c=2).  rw choices are irregularly spaced 
between -40 and 40. See “Thesis Stuff” spreadsheet.   
sw = 80 meters . n= -3:0.25:3. rfilter(5,20), no 
shapematch, no truckwatch. 
Map 8NC (red) vs. Map8C (blue) 
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Concept 2:  Analyzing the sensor input 

The second concept for making RAFL performance more robust involves 

analyzing raw measurement data to reduce sensitivity to impulsive noise and time-

varying roadside profiles (e.g. cases when cars may be parked alongside the road).  

Noise and obstructions can be partially eliminated or ignored, leaving only the more 

reliable of the laser measurements.  The first step in the analysis describes a 

conventional way of doing this, through median filtering of the laser input.  The second 

and third steps describe additional methods of input analysis.  A confidence factor, 

similar to the map confidence factor, is introduced, and its effect on the performance of 

the algorithm is evaluated. 

Concept 2.1:  Median filtering of the laser input 

Removing outliers is the simplest of the three methods of sensor input filtering, 

since it does not require any input from the DRS, but can work with the input from the 

laser rangefinder alone.  Figure 19 shows a graph of the unfiltered measurements, with 

several spikes, which represent outliers to be filtered out. 

Before applying the median filter, we removed values at the minimum and 

maximum value of the rangefinder.  Maximum or minimum values could result from a 

default value due to interference or problems in detection, from a view that looks out 

over the horizon with no obstacle, or from an object with unusual reflective properties 

such that the laser beam does not get back to the detector.  It is also possible that there 

is an object at the exact distance of the minimum or maximum value, but the frequency 

with which these values occur, and the lack of surrounding points with approximately 
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the same values, suggest that the points at the minimum or maximum value can be 

removed. 

After removing these absolute maxima and minima, we also removed some 

local extrema that are local outliers.  Local outliers are within the range of the 

rangefinder, yet well outside the range of the points around them.  The spikes shown in 

Figure 19 could be noise in the measurements, or measurements of narrow features.  

The assumption that these are not very narrow features takes into account both the 

speed of the vehicle and the frequency with which laser rangefinder measurements are 

taken. 

 
Figure 19:  Unfiltered laser measurements 

We chose to use a median filter because the median value is less distorted by 

outliers than the weighted or unweighted average of surrounding values.  Since we are 

more interested in exploring how filtering applies to our method than in developing 

Comment [TF3]: Made from List2, a simple plot 
of r vs. se 
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novel filtering techniques, we only tried the median filter.  Based on our sampling time 

and vehicle speed, we used this formula for filtering. 

          ( )  {
( ( )    ( ))      ( )

( ( )    ( ))       ( )
} (14)  

L(i) is the laser measurement at index i.  Mn(i) is the median laser measurement 

of n points centered around L(i), where n is an odd number. 

This filter replaces some of the laser measurements with the median 

measurement of the surrounding points.  Where the laser measurements are constant 

or monotonic, then L(i) = Mn(i).  Where L(i) is a local extremum, it will not be equal to 

Mn(i).  If the difference is greater than the cutoff value c, then the laser measurement at 

that point will be replaced with the median.  If the value of c is very high, almost no 

values will be replaced.  If the value of c is close to 0, nearly every local extremum will 

be replaced.   

The width n of the median filter can also be adjusted.  Increasing n will eliminate 

some 2-point or 3-point spikes, but it will not eliminate 1-point spikes if they are too 

close together.  For this application, values of n between 5 and 21 were considered.  The 

next three figures show the effects of filtering of the laser measurements over this 

range. 
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Figure 20:  This chart shows a modest level of filtering.  The filtered laser 

measurement is shown in black, with spikes removed shown in red.  The values of n 

and c are 5 and 20, respectively.  

Comment [TF4]: Data set ListA.  No shape 
matching or obstacle detection. 
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Figure 21:  This chart compares filtering with c = 10 to filtering with c = 20.  Shown in 

red are spikes removed at c = 10, but not at c = 20.  The value of n is 5. 

 
Figure 22:  This chart compares a 5-point median filter (n = 5) to a 15-point median 

filter (n=15).  The 5-point filter removes the blue spikes.  The 15-point filter removes 

the red spikes.  Spikes removed in both cases are not shown.  Both filters used a value 

of 20 for c. 
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Figure 23 shows laser rangefinder values overlaid on a map.  The red is 

unfiltered, and the magenta/white shows the laser measurements filtered using 

Equation (14) with n = 9 and c2 = 50. 

 
Figure 23:  Filtered and unfiltered range values 

Filtering the laser rangefinder input before use in the algorithm can sometimes 

make a dramatic difference in the position estimates.  Figure 24 shows the effect of 

smoothing for n = 5 and c = 5 over a 17-second stretch of data.  Blue is the GPS reading, 

red is the algorithm estimate from unfiltered laser data, and green is the algorithm 

estimate from the filtered data.  Without filtering, the algorithm never finds a high-

quality match for a sample swath, and ends up with completely erroneous result.  The 

filtered data matches the reference map better, so it is able to provide reasonable 

position estimates with the RAFL algorithm. 

Comment [TF5]: This is a close-up from List2 
mapped on top of the BARM.  Red lines are r vs. se; 
magenta lines are rf vs. se with rf=medfilter(r,9,50) 
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For the single data set considered, good results were obtained for a filter width 

n of 5 and for a filter threshold of 5.  This is among the most aggressive filters we have 

considered, and is needed due to the large amount of noise in this particular data set 

 
Figure 24: Results with (green) and without (red) filtering, compared to GPS (blue)  

Concept 2.2:  Shape matching algorithm 

The second method relies on larger grouping of points to determine which 

correspond to real-world physical objects, and which are associated with sensor noise 

and obstacles.  Points that match one of a set of predetermined shapes are given higher 

confidence, and points that do not match any of the shapes are given lower confidence, 

regardless of whether these shapes match up with anything in the reference map. 

The higher confidence for these points can be incorporated into the formula for 

the cost function much as the confidence factor for the map.  Each laser rangefinder 

point can have an associated confidence value, CL(k), where k is the time step. 

Comment [TF6]: Data set ListA, Map 8NC, 
sw=70, rw=40 (-10 to +30),no shape matching, no 
obstacle detection, Inverse4norm v1.3 [1,1,.5], n=-
3:0.25:3 
 
No filtering vs. rfilter(5,25) 
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becomes 

(9)  
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   (  ( )  ( (   ̂)   ( ))) (15)  

 

or, if combined with the confidence factor from the reference map  

 

   
 ̂

   (  ( )     ( (   ̂))( (   ̂)   ( ))) (16)  

 

CL(k) values can range from 0, at a point that does not match a shape, to 10, at a 

point that definitely matches a shape.  These points will have more impact on the cost 

function.  Low-confidence points will be relatively neglected, and the fit will be judged 

good or bad based on how well the high-confidence points fit the map.  CL values are 

assigned to a group of points that match a particular shape thought to be 

representative.    In our reference map created from an aerial view, almost all the target 

surfaces are straight building edges, so the only shape we matched was a straight line.  

To calculate whether a group of n points are part of a line, we transformed the 

coordinate system so that the origin was at the first point, and the x axis passed through 

the nth point.  The deviation from this line could be calculated from the y values.  The 

most general formula for the deviation is given below. 

  
∑|  |

 
 

(17)  

The particular equation we chose to use is given in (18). 

  
∑  

 

  
 (18)  
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Confidence is inversely proportional to D.  Based on trial and error, we 

established this equation empirically. 

  {
         
         

} (19)  

 

Sets of 5, 10, 20, and 40 points are selected for evaluation with Equation (18).  

Figure 25 shows the graph of laser data plotted against distance.  The points highlighted 

in red are parts of lines with C = 2.  If a point is in at least one line marked C = 2, the 

point’s C value is 2; otherwise it is 1.  This method is best applied after the laser data has 

been filtered, since filtering smoothes the data and makes selecting a line more likely. 

 
Figure 25:  Points identified as linear 

This method shows improvement in the overall performance of the algorithm, 

as can be seen in Figure 26.  Although both see a hiccup in the location estimate near 
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the center of the image, only the estimate with shape matching (green) continues with a 

reasonable estimate of lateral position, in keeping with video evidence that the car did 

not switch lanes at this time.  

 
Figure 26:  Effects of shape matching (green) 

Concept 2.3:  Obstacle detection algorithm 

Just as the confidence factor can be increased when points show a promising 

shape, the confidence can be decreased when the shape of the points seem to be in the 

shape of an obstacle.  For example, Figure 27 shows five features that are likely vehicles 

parked alongside a road in front of a building.  Video taken simultaneously with the 

velocity and range data confirms that there were in fact five vans parked along the side 

of the road in about this location, and that they were tall enough to block the laser 

rangefinder. 

Comment [TF7]: Data set ListA, Reference Map 
8NC, Inverse4Norm v1.3, sw=70m, rw=[-10 to +30] 
from previous estimate, n=-3:0.1:3, rfilter(5,25), no 
obstacle detection, t=72 to 89 s. 
 
No shapewatch vs. shapewatch 1.0 w/IsLine 1.0 
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Figure 27:  Laser rangefinder readings 

Many specialized algorithms could be written for various objects and locations; 

we focused on cars parked along the curb.  We defined a likely obstruction as a set of 

points meeting these criteria: 

1) Each obstruction begins at a point between 2 and 7 meters from the laser 

rangefinder, and this point is at least 1 meter closer to the rangefinder than the 

point preceding it. 

2) Each obstruction ends at a point between 2 and 7 meters from the laser 

rangefinder, and this point is at least 1 meter closer to the rangefinder than the 

point immediately following it. 

3) The distance between these two points is between 2 and 7 meters. 

4) The points are all roughly in a line parallel to the road.  That is, all the points 

have the same laser rangefinder reading.  
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This can be expressed mathematically in these equations.  Each set of points (si, 

ri) begins with i = a and end with i = b.  Recall that all r values are negative.  The number 

of points is n = b – a + 1.  The set is an obstruction if and only if all of these criteria are 

met. 

 

          (20)  

         (21)  

          (22)  

         (23)  

   ( )  ∑
(    ̅) 

 

 

   

      
(24)  

          (25)  

 

These criteria yield five obstacles in our data set, as shown in Figure 28. 
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Figure 28:  Likely obstacles detected by the rangefinder are identified in red. 

Moderate to aggressive smoothing of the laser rangefinder data can augment 

the usefulness of the obstacle detection algorithm.  The effect of the algorithm is shown 

in Figure 29.  Immediately after passing the trucks, the algorithm fails unless the 

obstacles are detected and removed from the sample swath.  Video evidence 

corroborates the assumption that the car did not make the Z-shaped motion described 

by the set of red squares. 

Comment [TF8]: Data set ListA.  
Medfilter(r,5,15) applied.  Truckwatch 3.0. 
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Figure 29:  Position estimates with (green) and without (red) obstacle detection 

Concept 3:  Improving the comparison function 

Changes to the function that compares the sample swath to the reference 

swaths can also mitigate the problems of sensor noise and obstacles.  The quadratic cost 

function used in Equation (10) is intuitive and computationally efficient, but is not 

optimized for the RAFL situation. Subsection 1 describes the shortcomings of the 

quadratic cost function, and the characteristics that a cost function optimized for our 

situation would have.  The first subsection briefly explores a few alternative cost 

functions used in the comparison, that have improved outlier rejection. 

Based on our observations of trial data, we realized that the observed laser data 

often gave smaller measurements than expected at a particular location, but rarely a 

larger measurement.  The second subsection postulates reasons for this asymmetry, and 

Comment [TF9]: Data set ListB, Map 8C, sw=70, 
rw=[-8 to +24], n=-3:0.1:3, rfilter(5,25), no shape 
matching, inverse4Norm v1.3 [1,1,0.5],t=41:0.25:50. 
 
No truckwatch vs. truckwatch 3.0 
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demonstrates an adjustment to the cost function that takes the asymmetry into 

account. 

Symmetric cost functions for error minimization 

Mathematically, the RAFL algorithm solves the optimization problem first 

presented in equation (9). 
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The cost function in the top equation could be one of several functions.  The 

quadratic cost function, presented earlier, is among the simplest: 
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(10) 

For a value of M=1 and K=0, the value of the cost function would vary like this: 
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Figure 30: The quadratic cost function for various values of a 

The quadratic cost function is easy to implement, but it has its flaws when 

incorporated as part of our model, particularly for large discrepancies between 

measured r values and reference R values.  The ideal cost function would have these 

properties: 

 Balance the advantages of summations and averages.  As mentioned earlier, the 

laser rangefinder samples at a fixed frequency, but the time length of the collection 

period varies inversely with the car velocity, as shown in Equation (4).  So some 

sample swaths will have more points than others.  A summation would tend to give 

less neutral values to larger swaths, which could be advantageous since more points 

bring more certainty.   On the other hand, if all the points in the set of swaths are 

not evenly balanced around 0, larger swaths could be given an automatic advantage 

or disadvantage.  An average would not have this bias. 
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  Ignore differences between R(k)-r(k) values that are below the accuracy of the laser 

rangefinder, or smaller than needed for the application.  A match of 1 cm should not 

have a penalty 10 or 100 times higher than a match of 1 mm. 

 Give the same penalty to all R(k)-r(k) values above a certain threshold.  A point 100 

m off is no worse than a point 10 m off; either indicates that laser target is definitely 

not the target at that map position.   

 Give increasing penalties for moderate errors.  Moderate errors (a few centimeters 

to a few meters) may indicate the n-coordinate estimate is wrong, especially if there 

are equal errors at several points within the swath.  Within this range, larger errors 

should have larger function values. 

A better curve might look something like this: 

 
Figure 31:  An improved cost function 

In the green region, closest to 0, the J values are close to flat.  In the mid-range 

red region, they start increasing, with a = 2 giving a value of J = 0.  In the blue region, 

there is a penalty associated with a poor fit between the sample swath and the 
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reference map at a particular location.  Within the blue region, the penalty is relatively 

inelastic with respect to the value of a. 

One potential drawback is that the cost function is no longer convex.  However, 

in our implementation we evaluated every possible value of  ̂  and  ̂  (with a finite step 

size) in the search space.  Since this method does not use derivatives or local minima, 

the impact of non-convexity on our results is negligible.  Additionally, the cost function 

argument a is not necessarily linear with  ̂ , so the cost function may not be convex 

with respect to the inputs in any case. 

There are several mathematical possibilities for producing the relation shown in 

Figure 31.  This subsection presents three of them: 1) the inverse quadratic cost 

function, 2) the inverse quartic cost function, and 3) the shifted error function cost 

function.  All are presented and discussed as summations; however, they could be 

turned into averages simply by dividing by the product (K+1)M.  The tradeoffs between 

summations and averages are the same for each. 

 

Inverse Quadratic  
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Figure 32:  Inverse quadratic plot with b1 = 10, b2 = 0.25, b3 = 5 

The inverse quadratic cost function mostly resembles the improved cost 

function, and is smoother.  However, it is not as flat in the green region, and the slope 

varies more in the red region.  The 1 in the denominator prevents the graph from 

approaching negative infinity at a = 0.  The coefficient b1 controls the distance between 

the maximum value (as a approaches  infinity or negative infinity) and the minimum 

value (at a = 0).  The coefficient b2 controls how stretched the graph is along the x-axis:  

the larger b2 is, the steeper and narrower the graph.  The coefficient b3 shifts the entire 

graph up and down; this can determine whether the cost function generally produces 

negative or positive values.  The inverse quartic cost function, presented next, is very 

similar. 

Inverse Quartic   
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Figure 33:  Inverse quartic plot with b1 = 10, b2 = 0.1, b3 = 5 

This cost function is like the inverse quadratic function, but the plot is flatter 

near the bottom, and has steeper sides, more like the improved function shown in 

Figure 31.  The three coefficients play the same roles as for the inverse quadratic 

function. 

Shifted error function  

The error function is defined as: 
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It can be incorporated into a cost function as shown in equation (29).  

The absolute value of a is taken to make the graph symmetric. 
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Figure 34:  Shifted error function plot with b1 = 5, b2 = 1, b3 = 2, b4 = 0 

The graph is very similar to the inverse quartic graph, but the four coefficients in 

equation (29) allow for more precise control of the function.  Rather than one 

coefficient controlling both the width of the central (green) region and the steepness of 

the curve in the red region, b3 and b2 respectively control these features.  The 

coefficient b3 adjusts the horizontal spacing of the curve, with a larger b3 producing a 

wider flat region at the bottom of the curve and x-intercepts more widely spaced.  The 

slope in the red region is proportional to b2.  The coefficient b1 again controls the 

distance between the minimum and the maxima, and b4 shifts the curve between the 

negative and positive regions. 

In order to decide which symmetric cost function is best suited to the RAFL 

application (at least for the data set considered here), we devised an objective measure 

of cost function performance.  The algorithm using the best function would ideally 

calculate a much lower function value for the correct location than for any other 

location.  If there are a large number of suggested locations, C is the cost function value 

at the correct location, m is the mean of all the function values for all the locations, and 
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s is the standard deviation of all the values, a Z score for the value at the correct 

location is given in Equation (30).  The lower the Z score, the better the function sets 

apart the correct location from the others.   

  

  
   

 
 (30)  

 

 
Figure 35:  Sample measurements (red) and reference map (green) at 55 seconds 

Figure 35 shows the laser measurement at 55 seconds, and all the 

measurements for 50 meters in back of that.  They are aligned using the DRS, with the 

location of the last measurement set at a longitudinal position of 438.7 meters, and a 

lateral position of 0.71 meter.  The green points in the plot show the reference map 

points found by the ray tracking function.  The point (438.7, 0.71) was chosen to 

maximize the overlap between the two plots.  We are certain that this is the location 

Large school building 

House walls 
(2 different houses) 

Probably tall 
vehicles 
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the algorithm should give, so we can use the cost function value at (438.7, 0.71) as C in 

equation (30). 

We ran several trials of the algorithm with this data.  Each time we used the 

exact same swath, filtering, reference map, and reference map confidence values, but a 

different cost function, or different coefficients.  The table below summarizes the best Z 

scores we obtained with each cost function.  For each function, we used several 

different sets of coefficients, and the lowest value of any of them is shown here. 

Table 3:  Z score values for different cost functions 

Cost function used Lowest Z-score obtained at t=55 seconds 

Quadratic Could not correctly locate vehicle 

Inverse quadratic -1.83 

Inverse quartic -2.01 

Shifted error function -2.17 

 

As expected, the shifted error function, which has the most flexibility, is most 

able to differentiate the correct solution from an average solution.  However, its 

advantage over the inverse quadratic and inverse quartic functions is small.  More 

research will be needed to verify the cost function quality on a larger data set. 

 Asymmetric cost functions for error minimization 

All of the cost functions presented so far use the absolute value or square of the 

difference between the reference swath range and the sample swath range.  This 

subsection explores whether a function that includes the sign of the difference can 

make any improvement in predicting vehicle location. 
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From observing Figure 35 and other superimposed comparisons of the 

reference swath and the sample swath, one can see that the laser measurements often 

fall short of the range values predicted by the reference map.  In both cases, tall vehicles 

to the side of a road or in a driveway probably account for the discrepancy.  If the 

building on the reference map is far from the RAFL vehicle, then the discrepancy can be 

large.  These large discrepancies can occur even when the hypothesized position is 

correct. 

On the other hand, an obstruction will never result in a higher than predicted 

laser reading.  These are caused by 1) reference map mistakes, such as mistaking a roof 

for a parking lot, as discussed before; 2) aerial map feature that are not at the height of 

the laser rangefinder, but either above or below; 3) laser rangefinder misalignment, 4) 

multipath errors in the laser beam, 5) laser rangefinder inaccuracy, or 6) a laser beam 

that is completely absorbed or deflected.  In case (6) the equipment returns a maximum 

value, and the data is discarded in our filtering step. 

Our hypothesis is that laser rangefinder inaccuracy is within a meter, and the 

other 4 causes are much rarer than obstructions.  Therefore, a swath that shows laser 

measurements much smaller than reference map locations is more likely the correct 

one than a swath that shows laser ranges exceeding reference map values by a large 

amount. 

Any symmetric cost function has the same value for both of these situations, 

meaning they are equally likely to be selected as the best estimate.  Increasing the 

penalty for a range past the map target, relative to the penalty for a range short of the 

map target, could result in better estimates.  We propose an asymmetrical correction to 
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the cost function, so that it varies with the difference between reference range and 

sample range as shown in Figure 36. 

 
Figure 36: Asymmetrical error function cost function 

One possible formula uses two overlapping sigmoidal curves.  Again, the error 

function with multiple coefficients provides flexibility.   This equation is derived from 

Equation (29), with a indicating the vector between a map point and the point at the 

laser rangefinder target.   For asymmetry, the equation is split into two halves, one using 

am(j) as an argument, and one using –am(j). 
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Recall that r values are all negative, so a positive value of am(j) means the 

reference value of R taken from the map is closer to the vehicle than the measured 

value of r.  Accordingly, positive values of a are given higher penalties. 

Sample range inside map range 

Sample range outside map range 

Comment [TF10]: This is two overlapping error 
functions.  5*erf(0.7*(a-2.5))+3*erf(0.7*(a-2))+5 
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In order to evaluate the potential benefit of the proposed asymmetric cost 

function, it is instructive to compare its performance to that of the symmetric cost 

functions described above (at least for the case of the single trial under consideration)..   

To compare the performance of several cost functions, we deliberately ran our 

algorithm with some non-optimal settings, i.e. minimal filtering of the laser input, no 

shape matching or obstacle detection, and a small sample swath.  This allowed for 

greater divergence between the best and worst cost functions, since optimal filtering 

can often compensate for shortcomings in the swath comparison algorithm, and vice 

versa. 

 First, we watched the video to verify that the GPS readings, which are 

completely independent from our estimates, are reasonably accurate.  Using the video, 

we could verify that the GPS matches location along the road within 15 meters, and that 

the true longitudinal velocity was relatively constant, with no abrupt stops or 

accelerations, and definitely no backtracking.  This gave us two metrics against which to 

measure our estimates:  first, that the positions are within 10-15 meters of the GPS 

positions, and second, that the longitudinal position estimates keep increasing at a 

relatively constant rate. 

After using the video to establish these performance metrics, we ran the 

algorithm 3 times, each time with the same set of laser and DRS data, the same filtering, 

and the same reference map.  The only difference between these three trials was the 

cost function used.  Each trial generated a set of position estimates for a series of 

chosen time steps.  In order to compare positions to the GPS data, we plotted the 

longitudinal positions on the vertical axis against the time steps on the horizontal axis.  
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As can be seen in Figure 37, the asymmetric error function cost function performs better 

than the inverse quadratic cost function with no asymmetrical term.  Both offer 

significant improvement over the quadratic cost function. 

We repeated these steps many times, each times with a different data set.  

Most often, all the cost functions performed similarly, except for quadratic cost 

function, which generally was worse.  A minority of data sets showed significant 

differences between the improved functions, and Figure 37 is representative of that 

group.  

 
Figure 37:  Performance comparison of cost functions.  BLUE-GPS.  RED-estimates 

using the quadratic cost function.  MAGENTA-estimates using the inverse quadratic 

cost function.  GREEN-estimates using the asymmetrical error function cost function. 
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Section 4:  Effects of combined improvements 

We have presented a number of improvements in this chapter, as summarized 

in Table 4 (a copy of Table 1 presented earlier). The effects of the improvements were 

highly dependent on the data set used, as well as the other parameters.  Sometimes an 

improvement had a large effect, and sometimes it had no effect.  None of the 

improvements presented in this thesis had a noticeable negative effect in any data set 

we studied. 

Table 4:  Improvements to our method presented in Chapter 2 

Section 1: Map 
Improvements 

Section 2: Filtering the 
sensor input 

Section 3:  Improving the 
cost function 

Adjusting the map using 
ground-based 
measurements 

Median filtering of the laser 
input 

Replacing the quadratic 
cost function with a 
function less affected by 
outliers 

Adding confidence to 
reference map segments 

Shape matching algorithm Asymmetrical adjustments 

 Obstacle detection 
algorithm 

 

 

As seen in Chapter 1, even the quadratic cost function with no filtering, on the 

original map can sometimes produce feasible estimates.  And when it does not, very 

often any one of the improvements in Table 4 is sufficient to improve the accuracy 

beyond the level that can be verified.  The effect of the combined improvements is best 

viewed by looking at the end product:  the trajectory of the car as described by the 

algorithm with all improvements made. 

The following three graphs show these trajectories.  According to the video data 

for this trial, the car stayed in the right lane (the lane farther away from the railroad 

tracks in the images) and maintained a fairly constant velocity for the entire time 
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sequence we used.  Each point represents a position estimate from the RAFL method. 

The estimates are 0.5 second apart. 

As can be seen, replacing the quadratic cost function with the inverse quadratic 

cost function yields a large improvement in performance.  Replacing that function with a 

cost function utilizing the error function with asymmetrical adjustments, as well as 

adding filtering, shape matching, obstacle detection, map corrections, and map 

confidence; produces a modest improvement over the inverse quadratic cost function. 

 
Figure 38:  The estimated trajectory using the quadratic cost function. 
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Figure 39:  The estimated trajectory using the inverse quadratic cost function. 
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Figure 40:  The estimated trajectory using the full suite of improvements. 

Table 4 lists 7 improvements to our method, and all have significant effects on 

the accuracy.  I have left out minor tweaks whose effect was difficult to ascertain.  
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However, the effects were not all equal.   Table 5 shows the relative size of the effects.  

Some comments on the effects: 

Replacing the quadratic cost function with any of the other cost functions had a 

large effect on the performance of our method, in nearly every case except the few 

where the quadratic cost function performed adequately.  Improving the cost function 

further provided only marginal gains that generally overlapped with the gains from 

other improvements.  The combined effects of all improvements is only marginally 

better than the effect of the inverse quadratic cost function with some filtering. 

Table 5:  Effects of concepts for improvement 

 Concept utilized Effect on algorithm performance 

1 Adjusting the map using ground-
based measurements 

Large near map points affected.  No effect 
elsewhere. 

2 Adding confidence to reference map 
segments 

Moderate impact 

3 Median filtering of the laser input Moderate impact 

4 Shape matching algorithm Has limited impact.  Probably not worth the 
computation needed. 

5 Obstacle detection algorithm Has impact only around obstacles, and when the 
sample swath is small.  Probably not worth the 
computation needed. 

6 Replacing the quadratic cost 
function 

Anything other than the quadratic cost function is 
a very large improvement.  Beyond that, the 
effects of improvement are moderate. 

7 Asymmetrical adjustments Moderate impact 

 

Concepts 2-7 interact with each other, so the magnitudes of these effects 

depend on which other concepts are in place.  Changes 2, 3, 4, 5, and 7 have the most 

effect when the other concepts are not introduced, that is, when there is the most room 

for improvement.  Layering the improvements onto each other provides little benefit in 

our research, though it is possible that the capability to assess accuracy within 

centimeters may refine this hypothesis.  The exceptions are the shape matching and 
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obstacle detection algorithms, which perform better when the laser input, which they 

both use, is filtered.  Similarly, moving from the inverse quadratic cost function to the 

asymmetric error function cost function provides noticeable benefits only when other 

concepts (2,3,4,5,7) are not enacted.  Concept 1 acts independently of the others.  

Replacing an erroneous part of the map with a corrected part provides similar benefits 

whether the calculations and filtering are optimized or not. 

Implementing any or all of these concepts involves tradeoffs.  The impact of 

inaccurate sections of the map can be reduced either by concept 1, which involves 

significant human effort beforehand, or by increasing the size of the sample swath, 

which uses more computing power each time our method is used.  Changing the 

quadratic cost function to one of the improved symmetric or asymmetric functions 

presented is a must, but a designer concerned about computational power may decide 

to pick only one of the several other improvements suggested in this chapter. 

Even with only the cost function change and one other concept introduced, the 

accuracy of our method increases substantially.  The improvement is not in accuracy in 

any one trial, which is difficult to quantify, but in the number of trials for which our 

method achieves moderate to high fidelity to the video.  Chapter 2 showed a trial in 

which even the quadratic cost function produced good results.  Implementing the 

changes described in this chapter gives better performance in non-ideal situations. 
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Chapter 4:  Conclusion 

This conclusion discusses our contributions to the field of ADAS, and possible 

further work based on our research.  Our major contributions include developing the 

RAFL method, designing a field test to verify our method, and adapting the inputs and 

mathematics to best suit our method.  Some areas for future research include 

calculating the error with respect to ground truth, testing our method in different areas 

and with different equipment, and incorporating our estimates into an ADAS with 

sensor fusion methods. 

Contributions 

Our first contribution is the Registration with Automotive-Fixed Laser (RAFL) 

method of position estimation.  This allows an estimate of vehicle position in both the 

lateral and longitudinal directions along mapped roads.  We have shown a way to create 

a reference map from aerial data, and how to create a swath to compare to it.  We also 

presented ways to identify and classify objects in both the reference map and the 

sample swath, in order to make our method more robust with respect to obstacles. 

Our second contribution is the demonstration of our method with a road test.  

We used equipment costing less than three hundred dollars, along with a laptop 

computer and a few mounting brackets, and showed that our method functions with 

only the information from a DRS and a single laser rangefinder.  We created a map of 

the area, and ran our algorithm after collecting a swath.  We were able to demonstrate 

that our method has potential for calculating vehicle positions in real-world 
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applications.  Additionally, we were able to adapt the cost functions and filtering to our 

method to improve its performance with more difficult data sets. 

Future Work 

Some follow-up work could increase the impact of what we have learned so far.  

We suggest five areas for further research:  better estimation of the error of the RAFL 

method, testing in other streets and neighborhoods, sensor fusion, reducing the 

computation time of the algorithms, and sharing information between vehicles. 

In order to improve the system, we intend to better calculate our error.  The 

GPS estimate is not accurate within our target range, so we will need a better estimate 

of ground truth.  A vision-based system coupled with surveyed points, similar to the 

method used by Bajikar and Gorjestani [6], could give us accuracies within a few 

centimeters.  We could then decouple the accuracy of our method from the accuracy of 

our GPS receiver. 

Testing our method with different equipment or different data sets could help 

us better understand our error.  As of now, we do not know whether our accuracy is 

limited more by the reference map resolution, or more by the accuracy of our laser 

rangefinder and our DRS.  We could also understand better whether our algorithm is 

tuned to our particular situation, or whether it could be used more widely.  We have 

used our method to come up with accurate estimates only for a 700-meter stretch of 

Boston Avenue in Medford, Massachusetts, and this is the only place we have 

developed a reference map.  Since our method’s foundation is a comparison between a 

reference map and a sample swath, changing the reference map would have a 

significant impact on our method’s performance.  Areas with buildings of different sizes, 
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shapes and distances from the road could present new challenges.  We would likely 

need significant revisions to our algorithm before it became useful in areas with winding 

roads or significant changes in elevation.  A wide body of data could also reduce 

guesswork in tuning our algorithm, since we could test proposed improvements on 

statistically significant samples. 

A third improvement could come from integrating our estimates with estimates 

from other sources, such as a GNSS receiver or an Inertial Navigation System.  To assist 

with sensor fusion, we have been able to develop a method for assessing the quality of 

our estimates, with the possibility of weighting high-quality estimates more than low-

quality estimates.  Our efforts were preliminary, and further development could lead to 

better integration with other position estimates. 

We did not focus on optimizing our computer algorithms for speed.  If they are 

to be incorporated into an onboard computer, they will need to be efficient, since the 

computer will likely have several other ADAS and non-ADAS tasks to perform 

simultaneously.  Before the RAFL method is incorporated in a non-research setting, 

work will need to be done to reduce our method’s computational demands. 

Lastly, there is a potential for collaboration between multiple vehicles.  Our 

reference map was made by hand, point by point, and revision based on laser data was 

an uncertain and time-consuming process.  It is possible that a number of vehicles 

equipped with rangefinders could streamline this process.  With the proper safeguards, 

vehicles could give inputs to map coordinates and confidence levels, either directly with 

one another or through a central server.  Multi-vehicle collaboration could increase both 

the efficiency and accuracy of our method. 
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Impact 

The fields of ADAS and autonomous navigation can benefit society through 

improving the ease and safety of transportation.  Our major contributions to these fields 

include developing the RAFL method, designing a field test to verify our method, and 

optimizing the inputs and mathematics used for our method.  Future research, such as 

verifying the method against accurate ground truth, extending the method to more 

geographic locations, and incorporating our estimates into an ADAS with sensor fusion 

methods, are needed.  With this research, the RAFL method may help bring safety 

improvements at a reasonable cost.
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