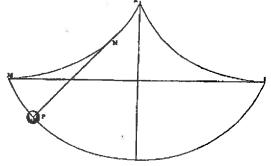

HUYGENS' METHODS OF MEASURE


Theoretically derived law of the conical pendulum:

$$P = \pi \sqrt{2h/d_g} = 2\pi \sqrt{h/g}$$

Theoretically derived law of the cycloidal pendulum:

$$T = \pi / \ell / 2d_g = \pi / \ell / g$$

Therefore, by measuring P and h, or T and ℓ , to high accuracy, can obtain a theory-mediated accurate measure of d_{ϵ} , the distance of vertical fall in the first second in the absence of air resistance.

MEASURING THE STRENGTH OF GRAVITY

	DATES	METHOD	VERTICAL FALL IN FIRST SECOND	EQUIVALENT g in cm/sec ²
MERSENNE	mid-1640s	DIRECT	12 Paris ft	788.8
RICCIOLI	late 1640s	DIRECT	15 Roman ft	935.0
HUYGENS	1659	CONICAL PENDULUM	15.6 Rhen ft	979.4*
	1659	CYCLOIDAL PENDULUM	15 Rhen ft 7 1/2 in	980.9
	1660s & 70s	SECONDS- PENDULUM	15 Paris ft 1.1 in	980.7
{NEWTON	late 1660s	CONICAL PENDULUM	195 London in	989.4}**

 $^{^{\}star}$ Without rounding, 15.625 Rhen ft and 980.9 cm/sec 2

^{**} Apparently just to check Huygens's value

NB Modern measured g at Paris = 980.970 cm/sec^2

MEASURED LENGTHS OF THE SECONDS-PENDULUM

	LOCATION	LATITUDE	LENGTH (Paris units)	IMPLIED g (cm/sec ²)
HUYGENS	Paris	48°50′	3ft 81/2 lines	(980.7)*
RICHER	Paris	48°50′	3ft 83/5lines	(980.9)*
W ₀ .	Cayenne	4°55′	$\Delta \ell = 1$ 1/4 lines	(978.1)
VARIN et al	Paris	48°50′	3ft 85/9 lines	(980.7)*
	Goree	14°40'	$\Delta \ell = 2$ lines	(976.4)
	Guadaloup e	15°00′	$\Delta \ell = 2 \text{ 1/18 lines}$	(976.3)
PICARD	Paris	48°50′	3ft 81/2lines	(980.7)*
	Uraniborg	55°54′	$\Delta \ell = 0$ lines	(980.7)
	Cape Cete	43°24′	$\Delta \ell = 0$ lines	(980.7)
MOUTON	Lyons	45°47'	3ft 63/10 lines	(975.8)

^{*} Modern measured g at Paris = 980.970 cm/sec²

Modern average g at Equator = 978.032 cm/sec²

NB Latitudes vary slightly from individual to individual