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Abstract

In this dissertation, we investigate the identification and application of geometrical

graph-based models (GGMs) of tubular structures with a focus on the vascular networks.

Our initial contribution is in the development of a method that directly extracts microvas-

culature from highly artifacted raw 3-D fluorescence microscopy images. This method

comprises two novel initialization and constrained recovery and enhancement stages. The

approach is fully automated using features derived from bi-scale statistical measures and

produces results robust to non-uniform illumination, low SNR, and local structural varia-

tions. We next introduce a GGM-based method that identifies a piece-wise linear skeletal

approximation of a microvascular network that merely requires a rough segmentation of the

structures. The nodes of the graph represent the critical points (CPs), defined as locations

of large structural deformation and detected with template and convex hull filterings that

are independent of any a priori geometric and probabilistic information such as direction,

degree, or intensity distribution. The anatomical connectivity of the CPs is derived by

solving a binary integer program whose utility function reflects both intensity profile and

structural information of the vasculature along the edges. In a “divide and conquer” man-

ner, we have designed a graph interpolation technique that extends applicability of the GGM

identification method to larger data sizes. Finally, the GGMs are employed to non-rigidly

register cranial artery networks which is formulated as a homologous landmarks guided

point correspondence problem. We have developed a novel collection of features, which we

call a “signature,” that captures geometrical attributes of nodes (location of junctions) and

edges (length and curvature of vessels) in a topologically encoded form. Using this sig-

nature, we formulate registration as a Linear Assignment Problem (LAP) rather than the

more commonly employed (and NP-hard) quadratic assignment problem. Using signatures

allows us to relax the combinatorial problem to a convex form that results in a profound

computational complexity reduction. By solving the LAP via a graduated assignment tech-

nique, nodes are first matched, and then the edge correspondences are determined using a

heuristic approach. The performance of this method is tested using clinical angiography

images and synthetic data sets. Quantitative results suggest that this method is highly

reliable under the influence of different perturbing factors that turns it into a potential

technique for inter-subject and multi-modal registration.
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Chapter 1

Introduction

Tubular networks are one of the fundamental structures in biological and medical studies.

They are found for example in the skeletal structures, nerve fibers, systems for propagating

gases (intrathoracic airway trees) and fluids (vascular and microvascular networks) or used

for describing hierarchies (phylogenic trees). When imaging, it is of crucial importance to

devise efficient methods for analyzing such structures in terms of recognition and matching.

The work in this thesis focuses on the extraction and analysis of interconnected and tree

structures from various forms of biological and medical imagery with specific application to

vascular networks.

Quantitative analysis of connectivity patterns in complex biological tubular networks

especially the cortical vasculature has recently received growing attention for a variety of

biological questions, ranging from vascular development (e.g. angiogenesis and vascular

patterning), vascular physiology (e.g. regulation of brain perfusion and blood flow), vas-

cular physiology to vascular diseases, surgical planning, and therapy [1–4]. For instance,

a correlation between microvascular and neuronal densities in the murine cortex [5] was

discovered recently: it was shown that in the range of 1 to 10 mm of the gray matter,

neuronal and vascular densities are correlated to each other in that the functional behavior

of the neurons in granular lamina detected from the brain images was consistent with and

measurable from the distribution of blood vessel densities. In addition, analysis and classi-

fication of blood vessel networks in terms of the length of vessels in a given volume and the

number of bifurcations have been shown to provide pathological insight into the biological

properties of a sample [1]. Finally, the connectivity model of vascular networks has been

used to aid in the registration of Magnetic Resonance Angiography images acquired from

the same vasculature at separate points in time or from different patients [6–8].

1
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Motivated by the above discussion, finding a well-defined mathematical and computa-

tional representation of the tubular networks that simplifies further algorithms and analysis

appears to be crucial. An object’s representation is defined by a collection of its discrim-

inating geometric features that are invariant under affine and restricted elastic transfor-

mations [9]. Common shape representations are point sets, curves, surfaces, level sets,

deformable templates, and medial representations.

Skeleton or medial axis that integrates topological and geometrical features of the object

is an important shape descriptor for object recognition. Shape similarity based on skeleton

matching usually performs better than contour or other shape descriptors in the presence of

partial occlusion and articulation of parts [10,11]. One approach to approximate the medial

axis of specific thin and elongated shape model of vascular networks is through the geomet-

ric graph-based models (GGMs). In the graph-based model of our concern, nodes represent

branching points (junctions) or points of curvature extrema (waypoints) and edges stand

for the vessel parts connecting those points. A GGM yields a compact description of both

topological and quantitative specifications of volumetric vascular systems via piece-wise lin-

ear approximation to their centerlines. These models can be applied to all the problems

mentioned above. For example, junction degree can trivially be determined from the graph

and vessel length approximated by the physical length of the edges on the shortest path

between two junctions in the graph. Also, adding the cross-sectional area information to

the edges, it will be possible to analyze the blood flow.

Graphs are particularly convenient to process and compare across diverse image ap-

pearances in different modalities, scales, and times. This universality property allows us

to combine the specific information from each modality to turn them into a strong and

effective asset in feature-based registration, statistical analysis for abnormality detection,

and image-guided surgery. They provide a relatively low dimensional representation that

our work demonstrates is robust to a wide range of imaging challenges. Also, there are is

a vast literature on the graph analysis subject and a large number of methods have been

established for that matter.

In this dissertation, we develop and test novel graph identification and registration al-

gorithms using a diverse database of vascular data obtained by fluorescence microscopy and

angiography of murine and human subjects. We start from pre-processing of the data for

binary image extraction and continue with building graph-based models for general (i.e.,

non-tree) networks. The data of interest for these parts are collected from microvascula-

ture of murine cortex via 3-D fluorescence microscopy. Finally, we have investigated the

registration problem of the graph-based models. We used magnetic resonance angiography
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(MRA) and 3d rotational angiography (3dRA) images of the arterial network of the human

cortex as a basis for graph matching purpose.

1.1 Volumetric extraction of vascular structures

As it is common in vascular detection methods, an initial stage is necessary to denoise,

enhance, and binarize the raw data [12,13]. The binary image is then used as the basis for

the rest of the GGM derivation processing. Segmentation of vasculature is also of high im-

portance for quantitative analysis and visualization purposes in diverse fields of study such

as neuroscience [14] and tumor monitoring [15]. The segmented data set provides a means

to extract crucial quantitative information about the vasculature such as surface areas, di-

ameters, tortuosities, and branching patterns of vessels. It also can serve as a platform for

performing further advanced processing [2].

Of particular interest to us is the case of cortical microvasculature determination in

murine models from 3-D fluorescence microscopy data stacks that manifest vessels of low

tortuosity. This data of interest indeed calls for pre-processing as accurate and fast seg-

mentation and volumetric reconstruction of the complex microvasculature networks from

fluorescence microscopy images faces challenges owing to the existence of numerous imaging

artifacts shown in Figure 1.1: uneven illumination, non-homogenous intensity distribution

inside the vessels, low SNR regions, high spatial density or closeness of vessels, reduced

contrast at edges, broken or faint vessels, and low frequency background variations caused

by scattered light [12,16]. The noise stems from several sources such as stochastic photon

counting, thermal and electrical fluctuation in the imaging device, biological background,

and non-uniform fluorophore distribution [16, 17]. Many of these problems are related to

the photon counting nature of the imaging system. For that matter, the image quality is

directly determined by the number of detected photons that is in turn controlled by the

exposure time which has to be limited to preserve the health of the specimen as excessive

fluorophore excitation causes cell phototoxicity and photobleaching [18]. Thus, lower num-

ber of detected photons results in an SNR reduction in the obtained images. Also, images

of poorly stained samples are likely to show structural irregularities such as vessel break-

age [19].

These issues result in two challenges: (1) identifying the smaller structures along with

their connectivity (breakages are prevalent for these cases) and (2) the recovery of larger

vessels that tend to be surrounded by heavy imaging artifacts making the boundaries more

difficult to perceive (over segmentation is an issue). Therefore, developing segmentation
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Figure 1.1: In this maximum intensity projection of 3-D fluorescence microscopy image
of murine cranial tissue, miscellaneous imaging artifacts are visible: uneven illumination
(upper vs. lower parts), non-homogenous intensity distribution inside the vessels (visible in
the larger vessels located at top right corner), low SNR regions (lower areas), high spatial
density or closeness of vessels (majorly in the center-upper parts), reduced contrast at edges
(visible as blurs mostly for the central vessels), broken or faint vessels (lower vessels), and
low frequency background variations caused by scattered light (at higher density regions).

algorithms that can overcome imaging artifacts, are robust to the imaging artifacts and

structural variations is of great importance.

Several studies have been done on the subject of vascular or in general term tubular

structures segmentation for different imaging modalities [2, 8, 20]. They include methods

such as active contours [21,22], geometric model-based techniques [23,24], or region growing

approaches [25], tracking [26], and template-based methods [27]. Tracing-based algorithms
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work by following vascular segments starting from some initial seed points. These meth-

ods fail at recovering broken vessels and are highly dependent on the seed point selection.

Matched filtering based approaches model the vessel structure as the intensity-ridges of a

multiscale vesselness function [28]. These algorithms are susceptible to outliers and are not

robust to noise [29]. Active contour approaches are flexible in terms of finding the intricate

vessel shapes. However, they are prone to leakage into the background where edges have

low contrast. This property can drastically undermine the performance of active contours

where the segmented structure is dense and leakage will lead to merging of separate vessels.

A popular region accumulation approach is the watershed transform, but this approach

can result in over segmentation and requires further processing [30]. The method proposed

in [31] that uses a combination of clustering and classification techniques to segment vas-

culature segments vasculature suffers from broken vasculature and requires a linking post

processing. Also, its parameters are selected regardless of the structures size and under-

mine the performance of segmentation in networks of varying size vasculature. Finally,

model-based methods require a prior information on the vascular structures [2]. Therefore,

developing an efficient algorithm that can jointly retrieve microvascular volume and remove

noise from data is necessary.

We have developed a new iterative algorithm that is able to provide precise segmenta-

tion of data without the requirement of denoising or performing any image quality boosting

operations. The iteration starts with a robust initialization scheme that is unbiased to the

non-uniform illumination or lower SNR conditions and is based on local statistical analy-

sis of image intensities. A full segmentation is achieved by iteratively augmenting the seed

points through clustering/voting of feature vectors formed by voxels location, local intensity

gradient, and non-linear statistical measures information such as median level. We perform

vessel segmentation with the following contributions. First, we remove a priori geometrical

assumptions such as curvature or branching pattern about the vessels except for the local

diameter. Then, the segmentation is designed in such a way that it restores the vascula-

ture while rejecting the imaging artifacts. This method is automatic and does not require

manual interaction. Collection of these features allows us to get the best segmentation

out of the 3-D fluorescence microscopy data. Experimental results obtained from synthetic

and real datasets confirm that the proposed algorithm greatly improves upon the previous

segmentation methods performed on vasculature data.
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1.2 Geometrical graph-based model identification

Typically, problems of finding graph-based models are solved in a three-step fashion. First,

a comprehensive segmentation of the image is obtained using methods such as active con-

tours [21,22], geometric model-based techniques [23,24], or region growing approaches [25].

Then, the tubular structure’s skeleton is found using methods such as thinning [32]. Finally,

a graph-type model is derived from the skeleton as a post processing step. These methods

face a number of difficulties. Perhaps most importantly, common detailed segmentation

methods are difficult to automate. Even state of the art methods require extensive human

interaction [2,8,20]. This can be a major shortcoming for large problems and when the vas-

cular network is comprised of very closely spaced structures. Also, in the presence of high

noise level, intensity contrast between the object and background decreases and boundaries

weaken resulting in a loss of accuracy in segmentations obtained by region growing and

edge detection methods [33]. Additionally, a segmentation-first approach does not neces-

sarily give rise to an accurate network graph. For example, many of the skeletonization

methods struggle when segmentation yields gaps in the vessels [2]. Establishing a graph

based on the skeleton needs a tracking step that adds to the complexity and error rate of

the process. These three-step types of methods have been developed primarily for networks

with tree-type structures such as neural, bronchial, and breast ductal networks [34–38]. For

these cases where the graph has a tree structure, different implementations of the mini-

mum spanning tree using Euclidian [7] or Mahalanobis distances [39] have been proposed

to determine the graph from the segmented images. Because vascular networks are not

always of a tree-based shape given fluorescence microscopy data of mixed image quality,

these techniques are not applicable and new methods are required.

Recently there have been some efforts in identifying centerlines directly from the data

without first performing a high-resolution segmentation. Ridge-based methods [40] and min-

imal path techniques [41] are the most common algorithms of this type. The former locates

the tubular structures’ skeleton by finding and following the image’s intensity ridges [8].

Vessel tracking algorithms start from a set of seed points and follow the centerline by max-

imizing an energy function correlating to the vessel centerlines [2]. These methods both

require the beginning and end points generally or the root point for vascular trees and

hence are most appropriate for interactive work [2]. Due to the required human interaction,

they are inefficient in manipulation of large data sets where manual selection of such points

would be burdensome. Error accumulation along the tracking routes produced by the noise

or other imaging artifacts is another drawback of these types of methods [42].
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Figure 1.2: Overall view of the proposed network modeling method. Dashed lines encompass
the detailed steps of each stage while parallelograms indicate the outputs.

Relevant to the problem of interest however are recent methods directed at recovering

loopy structures [43]. The method proposed in [43] first builds an overcomplete graph rep-

resenting the network by connecting a set of evenly spaced nodes located on the directly

connected structures. Subsequently, a globally optimal graph is computed from this initial

graph. This approach though is not able to handle cases such as those encountered in the

problem of interest here where challenges with the data are apparent including breaks or

dimness in the vasculature. In another paper [44], the centerline is found by tracing the

intensity ridge paths along a set of manually selected seed points. Additionally, as with

the work in [43], this “tracing-based” algorithm was not developed to address the issue of

broken vessels.

The specific processing chain is illustrated in Figure 1.2. Critical points that are com-

prised of both vasculature junctions and points of relatively high curvature along individual

branches are detected in the next stage.

This work contributes to the existing state-of-the-art through the development of a

novel microvascular network model identification approach using BIP that approximates a

general vasculature’s skeleton by its GGM without the need for first performing a detailed

segmentation of the data, deriving the structure’s centerline, or manually selecting the seed

points. Since the number of CPs in a network sample can be huge, manual intervention has

to be minimal. Our approach is free of prior assumptions on the degree of junctions (i.e.,

the number of connections) or orientation of the connected branches making it well suited
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for the structural variability and compactness across a given volume. Graph extraction is

accomplished in each image by solving a binary integer programming (BIP) problem [45]

where the variables represent potential edges of the graph. A binary variable is associated

with every possible edge linking pairs of CPs. Using the binary images, each such edge is

assigned a “utility” constructed to reflect both local and global features of the microvascular

structure. The BIP then determines the inclusion of edges in the final graph of each data

volume in order to maximize the associated utility.

This method eliminates the common need for feeding seed points to the algorithm while

the graph is built based on the structurally critical points found by direction and scale

invariant techniques. Since the graph’s edges are not weighted solely based on local image

attributes but rather more global measures, this method can easily overcome many common

challenges such as slight vessel breakages, faint vessels, or the presence of spurious branches.

Given all these features, graph-based post processings [2] are not required.

1.3 Geometrical graph-based model registration

To examine vasculature, assess state of a disease during diagnosis, monitoring, and treat-

ment processes, it is crucial to match different images of vascular networks [46]. Therefore,

image registration is an inevitable element of the process. It is important to develop meth-

ods that register pairs of vascular images taken at different times, scales, from different

directions, or using different modalities with minimal intervention.

The problem of tubular network registration faces challenges in different ways. These

structures do not have enough spatial texture and are structurally sparse in comparison to

other organs, thus even small variations in their location result in wrong results. Also, their

appearance varies largely between patients such that their intensity-based registration is

inefficient and prone to errors [47]. One approach to overcome these challenges is to register

vasculatures through their graph-based models. The geometrical transformation between

two vascular networks is considered to be a combination of non-rigid or global transforma-

tion and morphing that is local and rather small due to the anatomical properties. Figure

1.3 illustrates the two types of transformations for two sample graph shapes. Analyzing

the range of morphings for cranial vascular networks is the target of many fundamental

neurobiological and neuroscientific studies. Advantageously, these structures can be rep-

resented by GGMs through integrating key geometrical and topological information of the

vascular networks. Using such a model, graph matching can be used to tackle registration.

It has been shown that graph matching based registrations usually perform superior to the
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G1	
 G2	
 T(G2)	


Figure 1.3: The non-rigid transformation T of G2 that globally aligns it with G1 and the
morphing between nodes of G1 and T (G2).

ones that use contours or other shape descriptors [11].

Graph matching in general is a fundamental problem in computer vision and image

processing required for many practical problems in pattern recognition [48], object recogni-

tion [49], and bioinformatics [50,51]. Generally speaking, a matching problem seeks to find

node and edge correspondences across two graphs based on specific optimality measures.

The optimality can be in regard with graphs’ alignment or node labeling for instance [52].

The graph matching is a NP-hard combinatorial optimization with factorial complexity by

nature.

In the simplest case that graphs are of the same cardinality (equal number of nodes),

matching amounts to finding an exact one-to-one correspondence i.e. an optimal permu-

tation. This type of problem is considered as bipartite matching that can be solved with

the Hungarian method [67]. However, in real world applications, graphs are extracted from

data and through methods that are susceptible to noise and processing artifacts. Thus they

are hardly of the same cardinality, and we face an inexact graph matching problem. This

means that some nodes do not have any correspondences in the other graph. These nodes

are called outliers. Medical images usually suffer from such cases as they are affected by

noise-induced errors in segmentation, reconstruction, or modality fusion. This is even more
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intense for skeleton-representing trees that show many variations and are hardly identical

in their geometrical and topological characteristics.

Inexact graph matching searches for the optimal isomorphism between the largest pos-

sible subgraphs (Garey and Johnson, 1979). This problem is also NP-hard and there is no

known polynomial time algorithm to solve it (Garey and Johnson, 1979). A substantially

studied and used form of inexact graph matching is formulated as a quadratic assignment

problem (QAP) [52, 53]. Joint inclusion of affinity and assignment matrices in the QAP

yields simultaneous correspondence determination of nodes and edges [54]. Several meth-

ods are developed to relax the QAP and approximating the optimal matchings for tackling

computational cost and boosting its scalability.

The above discussions motivates developing new matching methods that register GGMs

robustly and additionally address the computational bottleneck.

We have developed a general method for matching 3-D tree-type structures via their

GGMs. For this purpose, the geometrical graphs are modified by removing waypoints and

their connected edges and replacing abstract edges between junctions to produce the at-

tributed graphs. Node attributes are defined to be the junctions location and edge attributes

are corresponding vessels approximated length and curvature. A novel feature termed signa-

ture is proposed for matching attributed graphs nodes, that utilizes geometrical attributes

and topological information of graphs simultaneously. Edge correspondences are derived

subsequent to node matching. We take advantage of the intuition that two nodes are cor-

respondent if their neighbors also correspond maximally to build signatures and formulate

the matching problem in a point correspondence form. As a result of encoding the local

topologies in an algebraic form, we have eliminated the need to enter the adjacency matrix

into computations. Thus, matching is converted to a linear assignment problem that is

computationally less expensive than the alternate method for QAP which is NP-hard. In-

spired by the graduated assignment method, we relax the assignment matrix to be a doubly

stochastic with continuous elements that turns the combinatorial problem into a convex

optimization. The performance is tested using synthetic and clinical data obtained from

3-D angiography images. Synthetic data are derived from clinical data through nonlinear

operations resulting in node removal and displacement. We have controlled the param-

eters contributing to these operations to evaluate the method against node displacement

and problem size factors. Quantitative results confirm the high reliability of this method

when challenged by different settings. Effectiveness of our method has also been tested for

inter-subject cases where graphs are obtained from clinical data of different patients. Both

qualitative and quantitative results confirm high performance of the method in this regard
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too. Finally, data of different modalities (MRA and 3DRA) have been matched through

the proposed method to assess its performance for scenarios where only partial structural

homogeneities exists.

1.4 Contributions

Volumetric extraction of vasculature:

To overcome the challenges imposed by the nature of fluorescence microscopy images

that are characterized by a range of imaging artifacts including space-varying signal to noise

ratio (SNR), scattered light, and non-uniform illumination, we developed a novel iterative

method that segments the 3-D microvasculature directly from the original fluorescence mi-

croscopy images instead of employing pre- and post-processing steps such as noise removal

and segmentation refinement as used with the majority of segmentation techniques. Our

algorithm achieves the goal of segmentation via design of an iterative approach that ex-

tracts the structure through clustering/voting of feature vectors formed by voxels location,

local intensity gradient, and median value. Our algorithm starts from some automatically

selected seed points found by a robust binarization scheme that is unbiased to the non-

uniform illumination or lower SNR conditions. Qualitative and quantitative analysis of the

experimental results obtained from synthetic and real data prove the efficacy of this method

in comparison to the state-of-the-art segmentation methods.

Geometrical graph-based model identification:

An automatic and novel approach to determine the global topological structure of a

vascular network that does not require the detailed segmentation of the vessel structure is

developed in this work. The method directly computes a piecewise linear approximation

to the vasculature skeleton by constructing a graph in three dimensions whose edges rep-

resent the skeletal approximation and vertices are located at Critical Points (CPs) on the

microvasculature. The CPs are defined as vessel junctions or locations of relatively large

curvature along the centerline of a vessel. Our method consists of two phases. First, we

provide an automated CP detection technique that eliminates the common need for pro-

viding seed points to the vascular identification algorithm. This method does not require

any a priori geometric information about the junctions in particular such as direction or

degree. Via using the convex hull of the local segments of vasculature we have made the

detection robust to the non-smooth boundaries.

Second, connectivity between detected nodes is determined via the solution of a Binary
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Integer Program whose variables determine whether a potential edge between nodes is or is

not included in the final graph. The utility function in this problem reflects both intensity-

based and structural information along the path connecting the two nodes. Finally, because

of variability in the data across a given volume, it proves advantageous to solve this graph

construction problem over non-overlapping blocks in the full data set. An optimization-

based graph interpolation technique is developed to allow merging of sub-images’ derived

graphs to form a global model. Qualitative and quantitative results confirm the utility and

accuracy of this method. Employing the graph concept makes this work unique and dis-

tinguished because of its ability of restoring weak structures such as dim or broken vessels

and eliminating the need for the gap filling and other post processing methods common to

use for these problematic structures.

Geometrical graph-based model registration:

The cranial artery networks show specific geometric properties in structure that has mo-

tivated us to investigate the application of graph matching as a tool for general vasculature

registration. In this dissertation, we exploit the intuition that the correspondence of two

nodes is also a function of the correspondence of their neighbors to build a novel feature

that embodies geometrical attributes of nodes (location of junctions) and edges (length and

curvature of vessels) in a topology encoded form. This feature structure is used to formulate

the matching problem as a linear assignment problem that is computationally less expensive

to solve than the alternate QAP method which is NP-hard.

Inspired by the graduated assignment method, we relaxed the combinatorial problem

into a convex optimization and developed an algorithm to solved it. Then the edge corre-

spondences are determined using a heuristic approach. The performance of this method is

tested and validated using clinical angiography images and synthetic data sets. Finally, we

have shown that nodes at higher levels from the CoW have larger spatial variation via the

proposed graph registration technique.

1.5 Thesis organization

This dissertation is organized with Chapter 2 describing the technical details of the methods

used in the remainder of the work. In Chapter 3, we present the proposed microvascula-

ture segmentation technique in two parts of initialization and vessel recovery method. This

chapter also presents the segmentation evaluation results obtained from synthetic (quanti-

tative in terms of sensitivity and specificity) and real data (qualitative). The segmentation
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performance is compared to state-of-art methods using real fluoroscopic data. Chapter

4 describes the microvasculature network identification algorithm in detail including pre-

processing, critical point detection, and graph-based connection mapping. It discusses the

empirical results that are given in both qualitative and quantitative demonstrations. In

Chapter 5, we present the proposed graph matching technique and the non-linear approach

to solve the developed formulation. The evaluation results obtained from synthetic and

clinical data are presented in this chapter. Finally, Chapter 6 concludes the dissertation

and indicates the possible future paths for continuing this study.



Chapter 2

Technical Background

In this chapter, we cover the algorithmic details of the techniques that have been exploited

in this dissertation.

2.1 Clustering Techniques

Clustering or cluster analysis refers to the act of grouping objects such that objects as-

signed to the same group are the closest given a specific distance metric. Clustering has a

wide range of applications in data analysis, image segmentation, pattern recognition, and

machine learning. Depending on the application and separation criterion, different cluster-

ing methods have been developed. In the following sub-sections, three types of the most

popular clustering methods are described comprehensively.

2.1.1 k-means Clustering

As a centroid-based clustering method, the k-means algorithm divides N data points x1, x2,

. . . , xN ∈ Rd into k ≤ N partitions S1, S2, . . . , Sk with prototypes (usually means) µ1, µ2, . . . ,

µk aiming to minimize the within cluster sum of squares or the squared-error distortion

arg min
ril ,µl

k∑
l=1

N∑
i=1

ril‖xi − µl‖. (2.1)

where ril is the assignment index defined as

ril =

{
1 if xi ∈ Sl
0 else

.
(2.2)

14
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This clustering problem is solved through iterative disjoint optimizations of ril and µl

where at each stage the other parameter is held fixed. The method starts from a set of

initial prototypes. There are two common approaches to initialize the µls: Forgy and

random partition methods. The Forgy method that is more popular in the literature first

randomly chooses k points as initial means, then assigns each data point to the closest

mean. This way, the initial means have more spread among the data points. The random

partition method however, randomly forms the partitions, and then computes the means.

This method gives means that are mainly distributed around the center of data set.

Given the initial µl, l = 1, . . . , k, determining the optimal assignment indices, ril , i =

1, . . . , N , is equivalent to finding the mean with minimum distance to each data point

formulated as

arg min
l
{‖µl − xi‖}, i = 1, . . . , N. (2.3)

In the case that a tie happens meaning that a data point is equidistant from two means,

l is set to be the smallest of the two.

Since the least-square estimator is the Euclidean mean value, solving (2.1) for µl reduces

to finding Euclidean mean values of the new clusters determined on the indices obtained

from (2.3). The new clusters’ means are updated according to

µl =
1

Rl

N∑
i=1

rilxi, l = 1, . . . , k, (2.4)

where Rl is the number of data points assigned to the lth cluster or

Rl =
N∑
i=1

ril , l = 1, . . . , k. (2.5)

The k−means clustering is investigated as a variation of the gradient descent algorithm

in [56] and it has been proved to converge. At convergence, the k-means clustering yields a

set of data points classified into Voronoi cells [57, 58] with the least error rate.

The k−means clustering is known as an NP-hard problem to solve. Since achieving the

optimal solution is not guaranteed, its approximation is commonly searched instead. A

well-known method of approximation for this purpose is Lloyd’s algorithm [57]. Through

this method, the most optimal solution is sought among the results obtained from several

clustering runs using different initializations.

One instance of the k−means algorithm is demonstrated in Figure 2.1 for a two-

dimensional data set given k = 4. Clusters are signified by presenting their associated

points with distinguishing mark styles where means are shown by red circles. Figure 2.1(a)
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Figure 2.1: (a) Initial means (red circles) and clusters, (b) updated means according to the
new partitioning, and (c) converged clustering.

shows the initial means and their clusters where Figure 2.1(b) presents the updated means

and clusters. Figure 2.1(c) demonstrates the converged means and their corresponding clus-

ters. The Voronoi diagrams that mark the clusters’ boundaries are shown with blue lines.

This method works best for data points with similar distributions. For the cases that

k is not specified in advance, the distortion is calculated for different counts of clusters. As

the number of clusters or centroids increase, the squared error distortion smoothly decreases

as a result of lowering distances [59]. After some point however, these decreases tend to

diminish as one sees a “knee” in the curve of distortion versus k. The location of this knee

then can be used to select an appropriate number of clusters [60].

2.1.2 Otsu Method

Otsu’s algorithm is an automatic (unsupervised) clustering based segmentation/

thresholding technique that is considered as a variant of the linear discriminant analysis

(LDA) methods [61]. The LDA methods generally classify a set of points or objects with a

linear combination of well-separating features especially variance-based metrics [62]. Given

a gray-level histogram, the Otsu’s method method seeks an optimal threshold yielding two

classes of C1 and C2 with the most inter-class variance. This type of variance provides a

strong measure of separability between the classes.

For an image data with L discrete intensity levels and a threshold value of k, C1 equals

to the pixels with intensities = 1, . . . , k, and C2 includes the remaining pixels, points with
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intensities = k + 1, . . . , L. Thus, the mean of C1 and C2 are

µ1 =
k∑
i=1

i Pr(i|C1) = 1
ω1

k∑
i=1

i pi

µ2 =
L∑

i=k+1

i Pr(i|C2) = 1
ω2

L∑
i=k+1

i pi (2.6)

where pi = ni/N is the probability (occurrence rate) of intensity level i with ni repetitions

in a data of size N , and ω1 and ω2 are probabilities of each class such that

ω1 = Pr(C1) =
k∑
i=1

pi

ω2 = Pr(C2) =
L∑

i=k+1

pi. (2.7)

The following relations hold between these parameters where µT is the total mean,

µT =
L∑
i=1

ipi.

ω1µ1 + ω2µ2 = µT

ω1 + ω2 = 1. (2.8)

The single class variances are

σ2
1 =

k∑
i=1

(i− µ1)2Pr(i|C1) = 1
ω1

k∑
i=1

(i− µ1)2pi

σ2
2 =

L∑
i=k+1

(i− µ2)2Pr(i|C2) = 1
ω2

L∑
i=k+1

(i− µ2)2pi (2.9)

and the inter-class variance is defined as

σ2
B = ω1(µ1 − µT )2 + ω2(µ2 − µT )2 = ω1ω2(µ2 − µ1)2. (2.10)

Letting σ2
T to be the total variance of the data, σ2

W + σ2
B = σ2

T , maximization of the σ2
B

is equivalent to minimization of the combined intra-class variance (spread) defined as the

weighted sum of clusters variances

σ2
W = ω1σ

2
1 + ω2σ

2
2 (2.11)

that yields the optimal threshold kopt. Otsu’s method iterates through all the possible k

values, from 1 to L here, and calculates σ2
W or σ2

B as a measure of intensity level spread in

C1 and C2. The kopt is the threshold value that maximizes σ2
W or minimizes σ2

B. Figures

2.2(a,b) show two images where their histograms are presented in Figures 2.2(c,d). The first

image has a rather bimodal histogram whereas the second image shows a single dominant

mode. The segmented images are shown in Figures 2.2(e,f). It is clear that the segmentation

quality is strongly correlated with the bi-modality of histograms and increases in Figure

2.2(e) compared to the Figure 2.2(f).
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Figure 2.2: (a,b) Original images, (c,d) histograms, and (e,f) clustered images obtained
using the Otsu’s method.

2.1.3 Agglomerative Clustering

Agglomerative clustering belongs to the group of hierarchical clustering algorithms (HCA)

that only require a measure of distance between the observations to operate. The HCAs

perform either from top level (total data) down or from the bottom (separate single data
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points) up [63]. The bottom-up or agglomerative clustering algorithm (ACA) counts each

data point as an independent cluster at the finest partitioning, P0, and then merges or

agglomerates pairs of clusters in hierarchies generating Pi+1 from Pi, i > 0. The ACA

continues cluster merging until when all of the clusters are merged into a single cluster

that includes the entire data points, Pf . Figure 2.3 shows a simple schematic view of the

agglomeration process. The clusters in each Pi are labeled with c1, . . . , cni . Thus, n0 = N

and nf = 1 where N is the number of data points.

Pf

Pi, 0 < i < f

P0x1 x2 xi xN

x1, x2, x3 x4 xN-5,…, xN-1, xN

.  .  . 

. . . 

.  .  . 

x1, x2, … , xi, … , xN-1, xN

Figure 2.3: The schematic view of agglomerative clustering. The agglomerated clusters,
blue regions, start from disjoint groups of data points xi, i = 1, . . . , N at zeroth level
partitioning, P0, and merge together until reaching a single cluster made by the entire data
points at the final partitioning level, Pf .

The basis on which the agglomerative clustering algorithm decides to merge the clusters

is a measure of their dissimilarity and a linkage criterion which determines dissimilarities

as a function of the pairwise distances of data points across the clusters. The choice of

dissimilarity metric and linkage criterion controls the clustering manner and depends on

the application of interest. Commonly used in the literature are the Minkowski metrics

defined as

Lp(x, y) =

(
k∑
i=1

|xi − yi|p
) 1

p

. (2.12)

Depending on the p value, different types of distances can be obtained from this family.

The Manhattan distance for which p = 1 equals to the L1 norm. The Euclidean metric or

L2 norm results from letting p = 2, and for the limit of the L∞, the Chebychev metric is

produced where L∞(x, y) = max|xi − yi| , 1 ≥ i ≤ k.
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Matrix D is formed by pair-wise distances of the clusters where D(i, j) = d(ci, cj). The

procedure through which these distances are calculated is based on the linkage criterion

type. The linkage criterion determines clusters’ distance as a function of their elements

pair-wise distances. The most common criteria are maximum (complete) linkage defined as

d(ci, cj) = max
x∈ci, y∈cj

d(x, y), (2.13)

minimum (single) linkage as

d(ci, cj) = min
x∈ci, y∈cj

d(x, y), (2.14)

and mean (average) linkage for which

d(ci, cj) =
1

|ci||cj |
∑
x∈ci

∑
y∈cj

d(x, y) (2.15)

where |c| is the cardinality of cluster c. Finally, given that c∗i and c∗j are the centroids of ci

and cj , the centroid linkage is defined as

d(ci, cj) = d(c∗i , c
∗
j ). (2.16)

At each partitioning level, the ACA searches for the closest pair of clusters. Then,

it replaces the rows and columns related to the closest clusters in D with single row and

column representing the new agglomerated cluster. The entries of matrix D will be updated

in the way that the revised elements reflect the distances of the cluster with the rest of the

clusters. The ACA iterates N−1 times to deliver a hierarchy of agglomerated clusters until

reaching Pf .

The dissimilarities grow by advancing in the agglomeration levels. Thus, one can use

distance criterion to achieve the desired clustering precision. For the same purpose, the

number criterion is an alternative if having a specific number of clusters, ni, best fits the

problem. When neither of the distance and number criteria is specified, the clustering can

be stopped when there is a relatively large difference in the similarity measure of choice

between two consecutive partitioned sets, Pi−1 and Pi.

The computational complexity of the ACAs is generally O(N3). Therefore, they perform

rather slow for larger data sets. However, they do not require a priori knowledge of the

number of clusters.
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2.2 Binary Integer Programming

A binary integer program (BIP) is of the form

max cTx

s.t. Ax ≤ b
x ∈ {0, 1} (2.17)

where c ∈ RN×1 is the utility vector and A, b,Aeq, and beq define the constraints on the

binary variables to be optimized x = (x1, x2, . . . , xN )T .

Solving an integer program in general is a difficult task. The difficulty stems from the

fact that feasible regions of integer optimization problems consists of a discrete set of points

or a lattice (red points in Figure 2.4) rather than a convex set (blue polytope region in

Figure 2.4) that is the case for linear optimization problems with continuous variables.

x1

x2

0 1

1
3x1 + 2x2 ≤ 3.5

Figure 2.4: Two types of feasible region for discrete and continuous variables are shown
for the given linear constraint: red points for BIP and blue convex region for continuous
variables, x1, x2 ∈ [0, 1] .

The convexity of feasible region guarantees the global optimality of any locally optimal

solution while global optimality has to be investigated for integer problems. One approach

to ease this complexity is relaxing the binary variables to continuous values in a convex

set. Thus, the BIP can be transformed into a linear program (LP) that is computationally

less complex to solve and in practice gives good approximations. Also, several efficient

methods in computational mathematics exist that solve the LP. One approach to have LP

numerically solve the BIP problems is through using the Branch and Bound technique. This

algorithm constructs a sequence of relaxed LP subproblems (binary variables are replaced

by 0 ≤ xi ≤ 1, i = 1, . . . , N) attempting to converge to a solution of the BIP [64]. The

following subsection describes the branch-and-bound method in greater detail.
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2.2.1 Branch and Bound

The branch-and-bound algorithm [64,65] builds a binary search tree in which every node is

a solution to a LP-relaxation and each edge represents branching due to a new constraint

creating a new sub-problem. The relaxed sub-problems are solved via the simplex method

[66].

The method starts from the root node that solves the relaxed original problem. After

solving the relaxed BIP at each node, the method chooses a non-integer variable xj (based

on a fixed criterion e.x. having the largest fractional part) and splits the problem in two

xj = 0 and xj = 1 cases.

The branching continues until reaching a binary solution, an infeasible problem, or a

solution with objective value less than the updated lower bound. The lower bound on

the objective value serves as a threshold to discard un-improving branches. It is updated

per achieving every new largest objective value produced by a binary solution. Then, the

algorithm chooses the node with the highest objective function value among all that are

available to explore. These stages iterate until reaching a binary solution with the greatest

optimal value among the available results.

2.3 Assignment Problems

The assignment problem requires the determination of an optimal mapping between ele-

ments of two disjoint sets S1 and S2 with cardinalities n1 and n2 via the solution of the

following optimization problem:

A = arg min
aij∈{0,1}

n1∑
i=1

n2∑
j=1

cijaij (2.18)

for non-negative cijs that determine the cost of assigning si ∈ S1 to sj ∈ S2 ∀i = 1, . . . , n1

and j = 1, . . . , n2. The aij = 1 indicates that si ∈ S1 is assigned to sj ∈ S2. Generally,

this problem is constrained with
n1∑
i=1

aij ≤ 1, j = 1, . . . , n2 and
n2∑
j=1

aij ≤ 1, i = 1, . . . , n1 to

guarantee an injective and not necessarily surjective correspondence. The inequality in the

above constraints allows for “outliers” which are the points that do not match meaningfully

to any point in the other set.

The assignment problem is commonly considered in the context of graph theory as a

bipartite graph matching problem. One example is shown in Figure 2.5 where the optimal

assignment is marked with bolder red links.

In the following subsections, the Hungarian and graduated assignment methods are
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Figure 2.5: The optimal assignment between two sets of four points and for the given cost
matrix is shown with the red bolded links.

described that tackle exact (between sets of same size) and inexact (between sets of differing

sizes) matching problems respectively.

2.3.0.1 Hungarian Algorithm

The Hungarian algorithm solves the problem of exact or bijective matching meaning that

all the elements in each set have to be matched one-to-one. Thus, the following restrictions

hold:

n1∑
i=1

xij = 1, j = 1, 2, . . . , n ,

n2∑
j=1

xij = 1, i = 1, 2, . . . , n (2.19)

The Hungarian method is founded on two theorems [67]:

Theorem 1: If a constant is added to (or subtracted from) every element of any row

(or column) of a matrix, the optimal assignment of the new matrix remains intact.

Theorem 2: If there exists a solution xij , i, j = 1, . . . , n that satisfies
n∑
i
cijxij = 0 for

non-negative costs, cij ≥ 0, it is optimal.

Exploiting the first theorem, the Hungarian algorithm starts with row and column sub-

traction. First, the minimum entry of every row is subtracted from all the entries of the

respective row in C. Then, the same operation repeats but for columns. The new C is

throughly searched for zero elements starting from the rows or columns that include ex-

actly one zero. The indices of such zero entries are assigned to each other. In the next

step, the rest of zeros located on the same row or column with the respective zero are

crossed out from further operations. These operations continue successively on rows and

columns until all zeros have either been assigned or crossed out. If there is a tie between

elements, as happens in the example of Figure 2.5 between the 3rd and 4th elements on the
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left side and the 1st and 3rd elements on the right side, it can be broken arbitrarily. If the

number of assignments equals n, the optimal assignment is achieved. Otherwise, the rows

and columns including zeros are ignored, and the minimum element will be deducted from

all the remained entries. The zeros produced at this stage determine the new assignments.

This operation continues until the number of assignments reaches n.

2.3.0.2 Graduated Assignment

The graduated assignment (GA) method was first proposed in the context of non-rigid

point correspondence problem [75]. This method modifies the A with addition of an extra

row and column as shown for example in Figure 2.6 for indexing outliers such that for
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Figure 2.6: The optimal assignment between two point sets of different sizes for the given
cost matrix is shown with the red bolded links. The node 4 in the left set is an outlier.

every si ∈ S1 that is an outlier, ai,n2 = 1. Also, if sj ∈ S2 is an outlier, an2,j = 1.

With the new definition of A, the assignment constraints are updated accordingly where
n1∑
i=1

aij = 1, j = 1, . . . , n2 + 1 and
n2∑
j=1

aij = 1, i = 1, . . . , n1 + 1. These constraints

imply a slightly relaxed form of doubly stochasticity for A. Therefore, the GA method

utilizes this fact to relax the binary constraint on the variables and allow them to take

continuous values in the [0, 1] interval to convexify the optimization domain and avoid the

computational burden of the combinatorial problems. It has been proved [110] that the

doubly stochastic matrices in general form a convex set with corners that are matrices with

binary entries as symbolically shown in Figure 2.7.

The property that differentiates the corners (Pi, i = 1 . . . , 6) from other points of the convex

set is their entropy that is shown by warmness of colors (red regions are associated with

matrices with higher entropy). Defining the entropy of a matrix as −
n1∑
i=1

n2∑
j=1

aij logaij , the

binary doubly stochastic matrices possess the lowest possible entropy level. Therefore, the

GA method adds an entropy term to the relaxed version of the problem in (2.18) to force
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Figure 2.7: Figurative description of annealing process: The assignment matrix starts from
regions of higher entropy (continuous valued doubly stochastic matrices that are convex
combination of six permutation matrices Pi, i = 1, . . . , 6) depicted by warmer colors and
moves toward one of the polytope conners (P6 here) with reduction of β.

the results to take binary values. The new problem is defined as

A = arg min
aij∈[0,1]

n1∑
i=1

n2∑
j=1

aijcij + β
n1∑
i=1

n2∑
j=1

aij logaij ,

n1∑
i=1

aij = 1, j = 1, . . . , n2 + 1,

n2∑
j=1

aij = 1, i = 1, . . . , n1 + 1. (2.20)

where β controls the entropy level of the solution or convexity degree of the optimization

problem. The solution moves toward taking binary values as the control parameter de-

creases. This technique of enforcing bipolarity via a monotonically decreasing regulating

parameter is called deterministic annealing and the β is referred to as annealing rate.

In the medical image processing field, anatomically-driven features are usually spatially

restricted. As a result, to control the biological meaningfulness of the correspondences,

there has to be a trade-off between the assignment rate (
n1∑
i=1

n2∑
j=1

aij) and the cost func-

tions. This means that even though the problem in (2.20) tends to maximize the number

of assignments, it is not desirable to correspond points that have assignment costs larger

than a threshold determined by the anatomical specifies and can be set manually by an

expert evaluation of data. For example, in the problem of corresponding the junctions of

cranial vasculature across different images, an average measure of the minimum distance
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between the junctions of individual samples would provide such a threshold. In other words,

the point displacements are limited. This threshold is set by a parameter named λ here.

Embedding this specificity in the assignment problem results in

A = arg min
aij∈[0,1]

n1∑
i=1

n2∑
j=1

aij(cij − λ) + β
n1∑
i=1

n2∑
j=1

aij logaij ,

n1∑
i=1

aij = 1, j = 1, . . . , n2 + 1,

n2∑
j=1

aij = 1, i = 1, . . . , n1 + 1. (2.21)

or equivalently

A = arg min
aij∈[0,1]

n1∑
i=1

n2∑
j=1

aijcij − λ‖A(1 : n1, 1 : n2)‖+ β
n1∑
i=1

n2∑
j=1

aij logaij ,

n1∑
i=1

aij = 1, j = 1, . . . , n2 + 1,

n2∑
j=1

aij = 1, i = 1, . . . , n1 + 1. (2.22)

where the A(1 : n1, 1 : n2) notation means a matrix that equals to A but without the extra

last row and column related to the outliers. The negativity of the second term yields the

trade-off such that the optimization favors the assignments with costs less than λ so that

produce negative values and lower the overall cost. On the other hand, the assignments

with cijs larger than λ that give rise to the cost have to be penalized by receiving null

matchings, aij = 0. When si ∈ S1 receives null matchings with all the nodes in S2, it will

be detected as an outlier and ai,n2+1 = 1. This problem’s cost is bounded from below by

the doubly stochasticity of the assignment matrix. The Frobenius norm matrices with this

condition does not exceed n1 × n2 that happens for perfect matchings where n1 = n2 and

there is no outliers. To sum up, the existence of outliers introduces the above-mentioned

trade-off and keeps the solution from having the maximal assignment rate (reaching the

lower bound).

The approach in [75] uses a combination of soft assign [87] and deterministic annealing

[88] techniques to find the optimal solution of this problem. The soft assign method enforces

positivity on the aijs using e.x. exponentiation. Then, the summation to one constraints are

guaranteed by performing iterative row and column normalization operations as suggested

in [89] under the name of Sinkhorn technique.

The GA algorithm takes the following steps to achieve the optimal results. First, given

the initial assignment matrix A0, the A is updated as

aij = 1
β exp

(
−a0

ij
(vi−wj)T (vi−wj)

2β

)
(2.23)
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for i = 1, . . . , nV and j = 1, . . . , nW ,

anV j = 1
β0

exp
(
−a0

nV j
(vi−wnW+1)T (vi−wnW+1)

2β0

)
(2.24)

for j = 1, . . . , nW , and

ainW = 1
β0

exp
(
−a0

inW

(vnV +1−wj)T (vnV +1−wj)
2β0

)
(2.25)

for i = 1, . . . , nV .

Using the Sinkhorn technique, the rows and columns are normalized consecutively with

the operations

aij =
aij∑nW+1

j=1 aij
, i = 1, ..., nV

aij =
aij∑nV +1

i=1 aij
, j = 1, ..., nW . (2.26)

until A converges to a specific form of doubly stochasticity. The result will replace the A0

and the operations in (2.23-2.26) repeat for a lower βrβ rate.

It is suggested to set the initial value of the β, β0, equal to the largest square distance

of all the points across V and W [86] and decrease it with the annealing rate βr. The βr

controls the convergence rate and robustness (the transition smoothness from continuous

to discrete A). It is of high importance to set βr with a value that balances between these

two operational factors. For the outliers, βr = 1. The annealing continues until reaching βf

which is set by the average of the squared distance between the nearest neighbors in data

sets.



Chapter 3

Voting-based Vessel Recovery and

Enhancement

Building GGMs requires rough binary representation of vascular images in which artifacts

such as noise, non-uniform illumination, and fluorescence backprojection are suppressed.

In this chapter, we explain the basics of a vessel extraction process from 3-D fluorescence

microscopy images that efficiently delivers such desired segmentation. There are two pri-

mary components to this process: initialization and vessel recovery. Basis of the extracted

structure is founded in the initialization stage, and the full vasculature is formed recursively

in the vessel recovery part. Details of each process are provided in the following sections.

The notations in Table 3.1 will be used for the rest of this chapter.

Table 3.1: Notations used for the vessel recovery process.

I Grayscale image

ρ1 Smallest radius of all the vessels

ρ2 Largest radius of all the vessels

ms Median filtered I by small scale kernels

ml Median filtered I by large scale kernels

∇ First order finite difference approximation to gradient operator

‖.‖ Euclidean distance

⊕ Morphological dilation

	 Morphological erosion

sph1 Spherical structural element of radius 1

28
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3.1 Initialization

We propose a two scale kernel-based method to determine a set of seed points for further

processing. This initialization approach is similar to the ideas in [90] where signals are

detected by thresholding mean-to-mean ratio of different kernels. However, the complex

nature of artifacts in the data of interest calls for a more effective measure. Rank-ordered

statistical filters are an efficient choice here for their robustness (effectiveness in suppress-

ing Poisson and shot noise [91]) and low computational cost. The most well-known of this

group is the median filter that balances noise reduction and over smoothing which is an

inevitable by-product of majority of the denoising methods that causes blurred edges and

lowered contrast [92]. We have observed that median values of concentric kernels (cubes)

of two different scales (side length) differ markedly if the center point is located on the mi-

crovasculatures. Microvasculature is of a spatially sparse structure, thus the median value

of the smaller kernel ms even if the vessels are faint in intensity will be significantly higher

than the median value of the larger kernel ml in which lower intensity background voxels

will dominate. Therefore, this feature is robust to non-uniform illumination where median

of kernels are analyzed locally.

Four cases of bright vessel (A), noisy background (B), faint vessel (C), and dark back-

ground (D) are specified on maximum intensity projection (MIP) of a 3-D image in Figure

3.1 to illustrate this intuition. Histograms for the intensity distribution of the points located

in the kernels of scales s (small) and l (large), s < l, are shown on the right side of the figure

where median values are marked by blue and red diamond topped bars for small and large

scale kernels. For background points, these values either do not differ considerably or the

median in the larger neighborhood exceeds the smaller neighborhood in the proximity of

other microvasculature. Therefore, the ratio obtained from the median filtered images using

kernels of s× s× s and l × l × l size, centered on voxels (x, y, z) ∈ I, where ml(x, y, z) 6= 0

delivers a well-separable set of feature points by clustering of which one can obtain robust

seed points Γ0 regardless of the mixed-noise, non-uniform illumination, and other imaging

artifacts. One example of this ratio that is calculated for 2-D slice of the image in Figure

3.1 is shown in Figure 3.2. According to this figure, dimmer vessels especially in the lower

and upper left corners have received larger ms
ml

levels (visualized by larger intensity values).

Non-uniformity of vessel sizes and noise variance over the data gives a range of values to

the ms(x,y,z)
ml(x,y,z)

ratio. However, a good selection of s and l ensures the least overlap between

the clusters. Here, s and l are selected based on the vessel radius measurements obtained
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Figure 3.1: Four different classes of voxels observed in the original data are indicated
here: Bright vessel (A), noisy background (B), faint vessel (C), and dark background (D).
Histograms for the intensity distribution and the median value of the points located in the
s and l-scale kernels are shown on the right side. Diamond topped bars mark median values
on the histograms. Distinguishable comparative situation of median values is used as the
basis for detecting relevant structures.
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Figure 3.2: The ms
ml

ratio obtained from the median filtered images using kernels of s×s×s
and l × l × l size for pixels with ml 6= 0.

from the image I. The s is set as the smallest vessel radius, ρ1, to ensure the preservation

of small structures. In order to balance locality and inclusiveness, l is chosen as twice the

largest vessel diameter, 4ρ2. This amount allows for the incorporation of enough background

and vasculature in the larger box. The radius at each foreground point in I is estimated by

means of the method used in [40]. We first compute the ratio for all points, run k-means
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(k = 2) clustering [57], then set the Γ0 as the voxels in of the larger centroid cluster. Finally,

to guarantee the structural enhancement besides recovery of faint vessels, Γ0 is augmented

by inclusion of the points that are located in the brightest regions as they may not pass the

2-means thresholding in the highly noisy regions (where ml is also large):

Γ0 = Γ0 ∪ {(x, y, z)|ms(x, y, z) = max(ms)}. (3.1)

3.2 CREVER: Constrained Region Evolutionary Vessel En-

hancement and Recovery

Given the detected seed points, Γ0, we recover the entire structure through a novel method

termed “CREVER”. The CREVER technique eliminates the need for first denoising and

then segmenting images in a recursive region-growing approach that rejects imaging im-

perfections simultaneously. This method is developed based on the observation that mi-

crovasculature’s local median intensity typically decreases as the central point moves away

from the centerlines. Figure 3.3 illustrates this claim on the mesh plot of a 2-D grayscale

slice of a median filtered microvasculature image. The structured ridges marked by the

brightest shades belong to the microvasculature. The brightness decreases smoothly as the

filter kernel is moving away from the vessels centerline. Then, it drops abruptly by reaching

the blood vessels boundaries. Isolated bright spots in the background are image artifacts.

The number of iterations, N , in the CREVER method is determined by the cardinality

of the monotonically decreasing sequence δ1 = max(ms), δ2, . . . , δi = δi−1 − 1, . . . , δN =

min(ms) (line 3 of the CREVER pseudocode). At the ith iteration, new voxels are voted

as part of the structure when they satisfy three constraints: adjacency to the retrieved re-

gions, having median intensity of equal or greater than the one determined by the iteration

number (ms ≥ δi), and having a low normalized absolute gradient value (Ig = |∇ms|
‖ms‖ < τ)

(line 10) where

∇ms = ∂ms
∂x î+ ∂ms

∂y ĵ + ∂ms
∂z k̂. (3.2)

The last criterion prevents leakage across vessel boundaries. Finally, to avoid missed

detections caused by imaging artifacts in the microvasculature, retrieved regions are mor-

phologically closed at each step using a spherical structuring element of radius one (line 11).

Selection of τ has an important role in the method’s overall performance. For a small τ ,

region growing will be halted prematurely, and some regions will be missed. On the other

hand, for a τ that is too large, many of the noisy background voxels will be included in the
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Algorithm 1 CREVER

Inputs: Grayscale image I, ρ1, and ρ2

Initialization:
1: ms ← Median of I in s× s× s kernels
2: ml ← Median of I in l × l × l kernels
3: Sequence: δ1 = max(ms), δ2, . . . , δi = δi−1 − 1, . . . , δN = min(ms)
4: Γ0 ← 2−means clustered(msml ), ml 6= 0
5: Γ0 ← Γ0 ∪ {(x, y, z)|ms(x, y, z) = δ1}
6: Γold ← Γ0

7: n← 1
8: Ig = ∇ms

‖∇ms‖
9: while n < N do

10: Γnew ← Γold ∪ {(x, y, z)|ms(x, y, z) ≥ δn+1, ‖Γold, (x, y, z)‖ ≤
√

3, |Ig(x, y, z)| < τ}
11: Γold ← (Γnew ⊕ sph1)	 sph1

12: n← n+ 1

13: end
14: IB ← Γold > 0

Output: IB

retrieved vasculature. This parameter is set as the mean of two clusters centroids found by

the 2-means clustering of Ig to avoid either of these deficiencies.

Figure 3.4 shows an example of the microvasculature segmentation via the CREVER

Figure 3.3: Mesh plot of a 2-D slice of a locally median filtered fluorescence microscopy
image. Structured ridges marked by the brightest shades belong to the microvasculature.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: (a) A slice of an original 3-D fluorescence microscopy image, (b) seed points,
recovered microvasculature at (c) 25, (d) 50, (e) 75, and (f) 100% of the CREVER method’s
development.

method for a 2-D slice of a three dimensional fluorescence microscopy image from iteration

0 (seed points) to the last iteration. The final image demonstrates the accurate recovery

of structures from noisy, artifacted, and low contrasted areas. To be specific, the results

obtained for the lower left part of the image supports this claim. Inhomogeneous illumina-

tion greatly lowers the visibility of the vasculature in this part that is the reason of being

missed by other denoising-segmenting methods as it will be shown in Section 3.2. Since the

computations are done in cubic kernels, some of the structural content from the above and

below slices of the current one are included in the enhancement process, which is the reason

for having a slightly more complete structure than the original image in the final result.

Processing in the cubic regions is the key feature of CREVER in reducing vessel breakages

and improving the accuracy.

3.3 Experiments

In this section, efficiency of the proposed method is assessed. First, the quantitative perfor-

mance measures are calculated using synthetic data and the ground truth. Next, the vessel

enhancement power is qualitatively shown and compared with other relevant methods using
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(a) (b)

Figure 3.5: (a) MIP of synthetic image with PSNR= 5 dB and (b) the segmentation obtained
by the CREVER method.

real data. Finally, we investigate the effect of parameters on the performance of the method.

3.3.1 Quantitative analysis

To conduct the quantitative evaluations, a set of synthetic images are generated from a sin-

gle structure corrupted by varying amounts of noise to simulate different SNRs. In detail, a

synthetic image is formed by developing an interconnected tubular network from a specific

ground truth graph similar to the approaches discussed in [93] using the same parameter

values. This structure is shown in Figure 3.5(a). The volume obtained from CREVER are

provided in Figure 3.5(b). All the images are shown in their MIPs. To achieve a target

PSNR (peak signal-to-noise ratio), a common approach in Poisson noise assessment litera-

ture [17,94] is used that is based on scaling the maximum intensity of image defined as

PSNR = 10 log10

(
I2
max

MSE

)
(db) (3.3)

with MSE being the mean square error between the noisy and noise-free versions. For

the following experiments, PSNR levels are changed from 2 to 15 dB in ten steps. For

each PSNR, experiments are repeated ten times and the average is reported as final result.

Then, performance of five segmentation and binarization methods are compared with the

CREVER: the level-set method [21] applied to locally normalized data (details are pro-

vided in [93]), Otsu [61] derived binarization of the denoised images obtained by the Candle

method [95], non-local mean filtering with combination of the variance stabilizing Anscombe
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transform [16], non-local median filtering [96], and finally Wiener filtering [97]. The true

positive rate (TPR) or sensitivity and false positive rate (FPR) or (1-specificity) calculated

as below

TPR = Number of correctly detected foreground voxels
Number of true foreground voxels ,

FPR = Number of falsely detected foreground voxels
Number of true background voxels (3.4)

are used to draw the receiver operating characteristic (ROC) curves of these methods, shown

in Figure 3.6, applied to the synthetic data. Results suggest that CREVER is superior in
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Figure 3.6: The ROC curves obtained using the proposed method (CREVER), level-set
method initialized on locally normalized images, Otsu segmentations of the denoised images
by Candle, non-local median filtering, stabilized non-local mean denoising by the Anscombe
transform, and Wiener filtering algorithms using synthetic images with PSNRs in the range
of 2 to 15 dBs.

performance having the largest area under curve (AUC). Besides a high level of TPR,

this method performs very well in rejecting background artifacts as measured by low false

positive rates. Level-set method provides the next best performance behind CREVER.

Binarization of the Wiener filter, Candle method, stabilized non-local means, and non-local

median denoising algorithms with th eOtsu’s method perform worse than CREVER.
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3.3.2 Comparative qualitative analysis

Qualitative validation of the proposed algorithm has been completed by applying it to three

sets of 3-D vascular images from murine nervous tissue. Testing datasets were selected

such that they show a range of structural and noise properties. To generate these data,

heterozygous Plexin-D1-fGFP transgenic mice were used to visualize GFP-expressing de-

veloping blood vessels in the embryonic thalamus. All animals were maintained and treated

with approved Institutional Review Board protocol according to the National Institutes of

Health guidelines and approved by the Institutional Animal Care and Use Committee at

Harvard Medical School. Three dimensional vascular images (z-stacks) were acquired using

a Leica LSM 510 META confocal microscope in embryonic thalamus. The SNR of images

ranges from 3 to 7 dB roughly.

The first image, of size 200 × 450 × 50 voxels, is shown in Figure 3.7(a) with MIP

where the MIP of its segmentation obtained by the CREVER method is also shown in

Figure 3.7(b). The next data is obtained from a more homogenous (in vessel shape and size

senses) microvascular network. However, the noise distribution differs markedly throughout

the image as apparent from Figure 3.7(c). This image is of size 500× 500× 45 voxels. The

segmented image is shown in Figure 3.7(d). This image has been collected from a thinly cut

layer of tissue, thus isolated points are formed from recovery of those partial structures. The

last dataset that is of size 400×400×50 voxels incorporates a spatially dense microvascular

network with high noise content apparent in the original image shown in Figure 3.7(e).

However, the segmentation presented in Figure 3.7(f) proves stability of the CREVER in

presence of strong noise and artifact elements. The CREVER method has recovered the

vasculature regardless of its local statistical variations, noise level, and structural properties

such as vessel radius measure. Considering all cases, it is obvious that the proposed method

produces an overall high quality segmentations of microvasculature from 3-D fluorescence

microscopy images. It well preserves the structural specifications such as continuity and

smoothness of the vessel boundaries while noticeably removing imaging artifacts and noise.

Carrying on to the qualitative evaluation of CREVER, it is compared with the five de-

noising/segmentation algorithms mentioned in Section 3.3.1 applied to the image in Figure

3.4(a). The segmentation obtained from CREVER is shown in Figure 3.8(a) where de-

noised images are shown in Figure 3.8(c,e,g,i) and segmented versions are shown in Figure

3.8 (d,f,h,j). These figures suggest that CREVER provides a superior result. The results

also show that the denoising methods tend to over-smooth the image especially in lower

SNR parts. As a result, small or low resolution structures will be missed and false negative
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: (a,c,e) The MIP of real data sets and (b,d,f) their segmentations obtained via
the CREVER method.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.8: (a) Segmentation of Figure 3.4(a) obtained via the CREVER, denoised images
(b,c,d,e) and their Otsu derived segmentations (g,h,i,j) acquired by Candle algorithm, non-
local median filtering, non-local mean filtering of the Anscombe transformed image, and
Wiener filtering respectively, and (f) level-set method initialized on the locally normalized
image.

rate increases as opposed to the CREVER method that recovers the vasculature in a more

non-selective manner regarding illumination uniformity, contrast level, and vascular size

being more robust to image artifacts. This effect is specifically more discernible in the left

and lower left parts of the images marked by a red dashed circle on Figure 3.8(a).

The computational complexity of the CREVER method is dominated by the median

filtering’s cost that is in turn dependent on the larger kernel size, O(l3). Since l is dependent

on the largest vessel radius in the given data, computational complexity is consequently rel-

ative to the imaged tissue’s vasculature measure. The iterations count in the CREVER part

however, is data independent and is bounded by the maximum voxel intensity of the data.

Finally, this method scales to data of arbitrary size as all the operations are parallelizable

for disjoint partitions from an image.

3.3.3 Parameter analysis

In section 3.1, it was shown that parameters s and l are set by approximations of the

smallest and largest vessel radii. Here, we show that these assignments are optimal and

show that deviation from these values deteriorates the performance. Figure 3.9 shows the

mesh plot of the segmentation accuracy (ACC) metric defined as

ACC =
TPR+ TNR

TPR+ TNR+ FPR+ FNR
(3.5)
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where TNR and FNR are true and false negative rates. The ACC is measured over the

segmentations obtained from the synthetic image in Figure 3.5(a) vs. varying s and l values

where vessel radius ranges from 1(= ρ1) to 4(= ρ2) in the synthetic image. This plot shows

that the best ACC is achieved when the parameters are around the same ratio of the vessel

radii as discussed in Section 3.1, s = 1(= ρ1) and l = 15(≈ 4× ρ2).
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Figure 3.9: Mesh plot of the ACC obtained from segmentations of the synthetic image in
Figure 3.5(a) vs. s and l.



Chapter 4

Geometrical Graph-based Model

Identification of Histological

Tubular Structures

A geometrical graph-based model is comprised of a collection of nodes representing critical

points along with the edges that stand for the piece-wise linear parts of vasculature. In this

chapter, it will be shown how these features are extracted from a rough segmentation of the

vasculature.

4.1 Critical Points Detection

Critical points (CPs) are intended to capture locations of significant structural change in

the microvasculature. These locations are where vessels either branch or significantly bend.

Here, we refer to branch points as junctions and points of significant bending as waypoints1.

The CP detection process is comprised of three stages: convexity filtering, CP clustering,

and branching node detection. Figure 4.1 illustrates the essence of each of these steps.

4.1.1 Convexity filtering

By relating the primary geometric structure of CPs to the non-convexity of the vasculature

in their vicinity, we obtain an easy and effective method for identifying groups of points

as potential CPs as shown in Figure 4.2. In this figure, we show three typical cases of

1In constructing our vascular graph, these waypoints basically allow for a piecewise linear approximation
of the vasculature.

40
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(a) Convexity filtered patches (b) CPs

: Waypoint 
: Junction 

(c) CP differentiation

Figure 4.1: Critical points detection process: (a) Detected critical point patches obtained
by convexity filtering, (b) Clustered patches and identified CPs as the clusters’ centroids,
(c) Junctions are identified through the spherical shell filtering and marked by crosses where
waypoints are shown by disks.

(a) (b) (c)

Figure 4.2: Three types of vessel deformation with their convex hulls: (a) Non-changing
(Straight): H ≈ 1, (b) Bending (Waypoint): H > 1, and (c) Branching (Junction): H � 1.

vasculature geometry model and their associated convex hulls. For the straight vessel in

Figure 4.2(a), there is negligible difference between the vessel and its convex hull. For the

bending vessel in Figure 4.2(b) as well as the junction in Figure 4.2(c), the convex hull

volume, vcx, differs markedly from that of the vascular structure, v.

The convex hull of a groups of non-zero voxels in a binary image is easily determined and

provides a reliable means for determination of structural deformation. Best tailored for low

quality images cases, this approach does not require an explicit segmentation and smooth

discretization of the vasculature surface. Thus, we define a convexity metric as H = vcx
v

that is computed in small neighborhoods of every foreground points in the binarized image,

IB, to find the CPs.
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For this purpose, we start by computing the H over cubes of width a. The quantity

vcx is then the number of voxels in the convex hull of the foreground points and v is the

volume of foreground points in the cube. We let a = 4ρ where ρ, the nominal vessel radius

measured in voxels, is estimated using the method proposed in [40]. This value of a allows

for inclusion of enough structure of interest in the cube and exclusion of the neighboring

vessels for more precise results. Critical points are then defined to be those points whose

convexity metric is above a threshold that is automatically determined using Otsu’s method

applied to the entire data set.

4.1.2 Critical point clustering

Convexity filtering results in a collection of voxels in the vicinity of each CP that may not

be necessarily connected due to the image imperfections or closeness of two CPs resulting

in merged patches. Thus, hierarchical agglomerative clustering [63] is employed to cluster

these voxel collections. The CPs are then defined as the center of these clusters. This

method is particularly useful for our application as it does not require prior knowledge

about the number of clusters and forms clusters based entirely on the distances between

voxels. As illustrated in Figure 4.1, without clustering, each patch of filtered voxels would

produce a CP resulting in multiple points associated with a single junction or waypoint

and missed CPs in the case of merged patches. Therefore, this step increases robustness

to image artifacts and makes the overall performance more accurate in finding the CPs

location. This process is illustrated in Figure 4.3 where the white pixels are convexity

filtered voxels, dashed circles indicate their formed clusters, and the set of CPs are marked

by crosses. In this example, agglomerative clustering successfully has distinguished CPs in

spite of the patches’ discontinuity.

In the experiments, Euclidean distance is chosen as the dissimilarity measure, and the

dissimilarity threshold is set equal to the diameter of the vessel to which the voxels belong.

This threshold value provides results within an acceptable structural resolution.

4.1.3 Branching node detection

Finally, in preparation for the graph construction described in Section 4.2, CPs are di-

vided into disjoint groups of junctions and waypoints. Junctions are distinguished by an

improved version of the spherical shell filtering method employed in [98]. This approach is

based on the geometrical fact that part of the vasculature masked with a 3-D spherical shell,

{x|r1 ≤ |x − x0| ≤ r2}, with inner radius r1 (greater than the vessel radius), center point
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Figure 4.3: Convexity filtered voxels are shown by white patches overlaid on MIP of a real
data. In three out of the four cases we see multiple, disconnected patches that are clearly
associated with the same CP. Agglomerative clustering provides a single representation of
these patches and associates a CP (cross mark) to each of the clusters.

x0, and the outer radius r2 is comprised of three or more connected components within the

shell volume where it is concentric with a junction. Indeed, in Figure 4.4 we see in cases

“a” and “b,” that the number of connected components is three for nominal junctions with

three branches while case “c,” a CP located at a waypoint, gives rise to two connected

components.

Parameters r1 and r2 are set as ρ and ρ+δρ, where ρ is the nominal vessel radius deter-

mined in the convexity filtering step, and δρ is the shell thickness. Due to the compactness

of the microvasculature, it is possible that parts of neighboring vessels will be included in

the spherical shell masked regions of a point. This proximity results in false junction detec-

tions caused by a rise in the number of connected components produced by the spherical

shell filtering. One instance for this problem is the case “d” in Figure 4.4, where the number

of masked connected components is three due to the presence of a structure from a neigh-

boring vessel in the spherical shell region. To avoid false junction detection, we only need

to ensure that the number of connected components in the larger sphere does not exceed

one. Finally, collections of junctions and waypoints are denoted with J = {jk, k = 1, ..., nJ}
and W = {wl, l = 1, ..., nW } where nJ and nW are the number of junctions and waypoints

respectively.
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4.1.4 Boundary points

It is necessary to supplement the junction and waypoint sets with an additional set of

boundary nodes defined as the center of vessel cross sections at the boundaries of the

image. As seen in Figure 4.5, such structures are typically circular except in cases where a

boundary divides a vessel along its length. To separate these two classes, Frangi’s vesselness

measure [99] is used to find the non-vessel shapes and the Eucleadian centers of the resulting

regions signified by R = {ri, i = 1, ..., nR} are taken as border points where nR is their

overall count. The final CP set is defined to be P = J ∪ W ∪ R and its cardinality is

nCP = nJ + nW + nR.

4.2 GGM Identification

Given CPs identified in Section 4.1, graph-based model identification is formulated as a BIP

problem. Designed for the graph extraction problem, binary variables represent the possible

edges in the geometrical graph. The set of edges is denoted as E = {el, l = 1, 2, ..., nE}
where nE =

(
nCP

2

)
= nCP (nCP−1)

2 is the number of possible edges of a complete graph built

Figure 4.4: Critical points are divided into junction (crosses) and waypoint (circles) groups
based on the number of connected components, darker red regions located on the spherical
shells, made by the spherical shell filtering. An example of a non-junction point with three
connected components in its masked spherical shell neighborhood is provided in the case
“d”. Presence of more than one connected component in the larger sphere causes dismissal
of the point from being declared as a junction.
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Figure 4.5: Front (on the left) and side (on the right) view of parallel (upper) and non-
parallel (lower) vessel cross sections at an image edge.

from the pair of points picked from CPs. The BIP problem finds a subset of edges that best

form the microvasculature network’s skeleton model via

arg maxel

nE∑
l=1

αlel

s.t. el ∈ {0, 1},∑
el∈EJi

el ≥ 3 ,
∑

el∈EWj
el = 2,

l = 1, 2, ..., nE i = 1, 2, ..., nJ j = 1, 2, ..., nW . (4.1)

The utility function αl associated with edge variable el is defined to quantitatively

capture structural information from the binarized image such as the degree to which an

edge is localized on and aligned with the vasculature. The constraint
∑

el∈EJi
el ≥ 3 ensures

that the degree of a junction is greater than or equal to three where EJi is the collection

of edges attached to node ji ∈ J . Similarly, the constraint
∑

el∈EWj
el = 2 ensures that the

degree of a waypoint is strictly equal to two where EWj is the collection of edges attached

to node wj ∈W . The utility function αl is defined as

αl = αL,l + αA,l + αS,l (4.2)

where three components of αL,l, αA,l, and αS,l stand for vessel Localization, vessel Align-

ment, and Shortcutting degree (to be defined below) of each edge.

The first element αL,l is intended to provide high utility for edges passing through the
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microvasculature itself as opposed to the background and is analytically modeled as

αL,l = Hζ

(
‖Il‖1
dl

)(
‖Il‖1
dl

)
(4.3)

where Il is a vector comprising the intensity profile along the lth edge in the binary image

IB, and dl is that edge’s Euclidean length. Equation (4.3) is motivated by the fact that

microvasculature network is a collection of tubular, or generally, elongated structures. In

such a setting, a possible edge passes through background, cuts through cross-section of

multiple vessels, or stands mostly on a vessel. Thus, averaged binary intensities along each

edge, ‖Il‖1dl
, is expected to be around zero for the first two cases or one for the latter cases.

The function Hζ(x) defined as 1 if x > ζ and zero else, is required to exclude highly unlikely

edges, i.e., those of the first two varieties from the computations. This function increases

the utility when an edge is located on vascular regions (‖Il‖1dl
increases). Otherwise, the first

term in (4.3) goes to zero. Taking this into consideration, we take the threshold ζ as the

mean of the two cluster centroids found by k-means (k = 2) clustering of the set {‖Il‖1dl
}.

The quantity αA,l is motivated by two factors. First, due to the imperfections of flu-

orescence microscopy data discussed in Chapter 1, many smaller vessels manifest as faint

and narrow structures in the image such that their accumulative intensity and consequently

αL,l are quite small. Also, while the enhancement improves dim vessels’ presentation, it still

fails to provide a detailed approximation of the vasculature. Most notably, many vessels

remain broken. These structures would be undervalued in terms of αL,l and ultimately

missed in the creation of the graph-based model. Second, for large vessels, two nodes that

do not belong to the same edge may be located close enough to one another resulting a

large αL,l. Such a situation is illustrated in Figure 4.6 by means of a dashed red line where

the true graph edges are shown by gray solid lines. Here, the directional filtering compo-

nent is designed specifically to overcome these issues by selecting edges in a manner that

reflects the underlying directionality of the structure in the vicinity of the potential edges.

This alignment of potential edge with the corresponding vessel ensures accuracy of the final

result as an estimation of the skeleton.

To obtain the local directionality information, direction filtering ideas are implemented

using 3-D steerable filters [100] and αA,l is defined as

αA,l =
Estr,l
dl

(4.4)

where Estr,l is the energy or Frobenius norm of the directional filter’s output calculated in

a tubular region around the lth edge from the binarized image defined as

Īl = {(x, y, z)|Euclidean distance((x, y, z), lth edge) <
(ρ1 + ρ2)

2
} (4.5)



47

with ρ1 and ρ2 being the local vessel radii at two ends of the lth edge computed from IB.

The energy measures the alignment of the structure in that region of interest (ROI), Īl,

with the edge and is calculated as Estr,l = ‖Rθ,φ2 ‖22 with

R2
θ,φ =

[
Hθ,φ

2 ∗G
(

x√
2σG

,
y√
2σG

,
z√
2σG

)]
∗ Īl (4.6)

According to (4.6), Rθ,φ2 is calculated by convolving Īl first with a Gaussian kernel with

standard deviation σG = 3 to smooth the structure. Then, the result is filtered by Hθ,φ
2 , the

Hilbert transform of Gθ,φ2 (defined below) [100], in order to map the alignment degree of the

vessel boundaries with the direction made by the spherical coordinate pair (θ, φ) for each

edge as shown in Figure 4.7(a). The term Gθ,φ2 = sin(θ)[Gx2 cos(φ) +Gy2 sin(φ) ] +Gz2 cos(θ)

refers to the second order directional derivative of a 3-D Gaussian kernel G(x, y, z) =

e−(x2+y2+z2) where

Gx2 = ∂2G
∂x2

= (−2 + 4x2)×G(x, y, z),

Gy2 = ∂2G
∂y2

= (−2 + 4y2)×G(x, y, z),

Gz2 = ∂2G
∂z2

= (−2 + 4z2)×G(x, y, z). (4.7)

Finally, αA,l is normalized by the edge length dl for coherency between different edges.

Figure 4.7(b) shows three edges with different orientations with respect to the vasculature

Figure 4.6: The motivation of alignment and skeletonness terms is shown as prevention of
red and blue dashed lines cases that do not best match the microvasculature centerline.
These edges are shown on a 2-D binarized frame with the intended graph overlaid by solid
gray lines. Although αL,l and αL,m are rather large (majority of edges being located on the
foreground), low skeletonness, small αS,l, of the blue line and low alignment with the local
structure, small αA,m, of the red line make them undesirable results.
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(a) (b)

(c)

Figure 4.7: (a) Spherical coordinates θ and φ of edge el along with other terms used for the
directional filtering concept are shown in a Cartesian system, (b) An example consisting
three different scenarios of the edge layouts on a vascular structure is provided. The utilities
of e1 (which clearly passes through a vessel) and e2 (which is well aligned with the local
direction of vasculature) are both higher than that of e3 (which is poorly aligned with the
vasculature and passes through a good deal of the background), (c) Three ROIs of the edges
(top) and the absolute value of the directionally filtered ROIs and their alignment term,
αA,l, with respect to each edge’s direction (bottom). The edge e3 that is not aligned with
the vasculature in its ROI has the smallest alignment value.

in a 2-D demonstration. The first edge e1 is located on a solid vascular branch. The second

edge e2 represents a broken vessel. The last edge, e3, is an incorrect edge unaligned with the

structure in its vicinity. Figure 4.7(c) provides visual understanding of how αA,l contributes
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to the graph model extraction by emphasizing the first two examples and penalizing the

last case. The ROIs for the three scenarios are shown in the top section of the Figure 4.7(c).

The absolute values of the directionally filtered ROIs with respect to each edge’s direction

are plotted and the computed αA,ls are shown in the bottom part of this figure. The αA,ls

are larger in area and brighter in intensity for e1 and e2 that are aligned with the vascular

structure. The result for the e3 is smaller with lower intensity in comparison to the other

edges.

The last component of the edge-based utility function is αS,l. The microvasculature

network has a rather high spatial density (compactness) so that it may happen that a

prospective edge “shortcuts” a path made by two or more other edges as shown by the blue

line in Figure 4.6. These types of edges have relatively large αL,l and αA,l that happens to

increase their utility and produce spurious and false edges in the resulted graph. The term

αS,l defined below penalizes such scenarios

αS,l = −
∑

k=1,...,nCP /∈Cl

〈Il ∗G
(

x√
2σS

,
y√
2σS

,
z√
2σS

)
, Pk ∗G(x, y, z)〉 (4.8)

where Cl is the set of two end nodes of the lth edge, ρ is the nominal vessel radius, σS = ρ
3 ,

Pk is the kth CP, and G is the Gaussian function defined in the αA,l formulation. By

convolving nodes with a Gaussian kernel, equation 4.8 effectively decreases the utility of

an edge when either (a) the number of nodes around that edge increases from zero or (b)

the distance of other nodes to the edge decreases to less than the vessel radius. In Figure

4.8(a), two correct edges with no node in their Gaussian neighborhood are shown. Effect of

close nodes to a shortcutting edge’s utility function is schematically shown in Figure 4.8(b).

The standard deviation of Gaussian kernel convolved with the edge is selected as one third

of the vessel radius so that farther nodes have negligible effect on the inner product.

4.3 Graph Interpolation: A split and merge technique

Binary integer programs, which are known to be NP-hard, are a type of linear programming

problems constrained to binary (0 or 1) unknown variables [101]. Most BIP problems have

a finite number of feasible solutions, however this number can grow exponentially with the

number of decision variables [45]. Here, the “branch and bound” approach described in

Chapter 2 is used to find a solution of the BIP. While in principle one could formulate and

solve the graph construction BIP for an entire data set, such an approach is challenging

for two reasons. First, a universal and non-adaptive selection of parameters for the entire



50

(a) Correct connections (b) Shortcutting connection

Figure 4.8: (a) A couple of correct edges with no node in their Gaussian induced neigh-
borhood. (b) The effect of close nodes to a shortcutting edge’s utility function as the inner
product of the node’s and edge’s Gaussian convolution. The standard deviation of Gaussian
kernel is selected such that the induced neighborhood is limited to the corresponding vessel
and farther nodes have negligible effect on the shortcutting degree.

data set results in reduction of precision in the final graph as the structure shows variety of

scales. Vessel radius for instance varies over the microvasculature by up to a factor of two as

it is apparent from Figure 4.10. Second, BIPs are of exponential computational complexity

thus run-time increases rapidly with growing CP collection. To compensate for these issues

we consider an alternate idea in which data is divided into non-overlapping yet exhaustive

partitions, then BIP is solved independently for each block. The resulting graphs are then

“stitched” together using the approach described in the Algorithm 2.

Formally, a bipartite matching method [52,67] is used to connect boundary points (de-

fined in Section 4.1.4) across neighboring block faces. We start by constructing a matrix of

costs associated with all possible node pairings between two faces and then use the Hun-

garian matching algorithm [67] to determine the matching with the lowest cost. Weights

of this problem are defined as Euclidean distances between nodes when two sub-images are

put side-by-side on the side of interest. Thus nodes with the smallest distance from each

other will be matched. This process is exemplified in Figure 4.9. In this figure, matched

points are connected with dashed lines where each set of the boundary nodes are indicated

by green dashed boxes. This approach allows for unmatched node cases as shown by the

middle node in the right hand side of Figure 4.9(a). After finding all the matching pairs,

we replace them with a single new node located at midway between the two points in the

interpolated graph as shown in Figure 4.9(b) and update the edge set of the interpolated

graph to reflect the new nodes’ connections.
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Algorithm 2 Graph Interpolation

Inputs: Binary image IB
Initialization:

1: {Bi}i=1,...,n ← Non-overlapping and homogenous divisions of IB
2: gi ← BIP obtained GGM of Bi, i = 1, . . . , n
3: {ri,j}j=1,...,nri

← Boundary points of Bi, i = 1, . . . , n
4: GT ← ∪ni=1gi
5: I ← 1
6: for i = 1 : n do
7: for j = i+ 1 : n do
8: If Bi and Bj are neighbor:
9: Ci,j(k, l)← ‖ri,k − rj,l‖, k = 1, . . . , nri and l = 1, . . . , nrj

10: New nodes ← Bipartite matching of boundary points given Ci,j .
11: If facing a longside-bisected vessel: Do the orientation selective matching.
12: Update: GT

13: end
14: end

Output: Total graph GT

For the situations in which a vessel is bisected along its length at a block boundary

(highlighted by a red shadowed region in Figure 4.9(a)), graph interpolation cannot be ac-

complished as there is no single boundary point associated with each sides’ structures. This

vessel layout related issue is overcome with an orientation selective matching approach.

The orientation selective matching method is comprised of a secondary matching in the

direction orthogonal to the current matching direction. For achieving this aim, we start with

processing the non-circular cross sectional areas identified with the approach mentioned in

Section 4.1.4 to find the midpoint heights. We first stitch and then divide the two blocks

of interest at the height level orthogonal to the vessel direction. At this point, updated

boundary and CPs are detected for both of the new blocks and their connectivity is found

via solving disjoint BIPs in new partitions. Finally, graph interpolation is used to match

the new blocks. Node and edge sets will also be updated accordingly in the final graph.

The overall graph interpolation process is demonstrated in Figures 4.9(c-d) where the final

solid graph is shown in Figure 4.9(e). This proposed graph interpolation approach refines

connections as well by introducing new waypoints and junctions at the secondary matching

stage.
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4.4 Experiments

The utility of the proposed graph-based network model identification algorithm is supported

by the experimental results provided in this section. The performance of this approach is

evaluated using synthetic and real data. Performance is quantified in terms of the network

model detection precision and in the case of the synthetic data, robustness to noise. The

(a) (b) (c)

(d)

Boundary Point 

Critical Point 

Matched Edge 

Non-circular Boundary Region 

Graph Edge 

Bipartite Graph Nodes 

Figure 4.9: Graph interpolation between two pre-found graphs via matching boundary
points of their shared side. (a) Dashed lines denote the matched points via bipartite match-
ing where two parts are encircled by green dashed boxes. Non-circular vessel cuts are
highlighted by a red box. (b) Secondary graph matching between the new boundary points
is performed first by splitting the reference image horizontally at the height level of the
non-circular region’s mid-point. Then, new connections (yellow lines) are derived by per-
forming BIP over the critical and boundary points of the new partitions. (c) New points
are labeled as the final graph’s nodes and newly found connections are included in its edge
set. (d) Final graph-based model.
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Figure 4.10: An example of false fractions in the structure caused by imaging imperfections
and an area of more artifacts in MIP of a 3-D fluorescent microscopy image of microvascu-
lature.

proposed method needs no manual interaction or parameter tuning except for the δρ and

σG parameters in the junction detection and directional filtering stages which are set as 2

and 3 respectively. The BIP has been solved by means of the built in MATLAB function

“bintprog” that uses the branch and bound method for which the branch variables with the

maximum integer infeasibility will be chosen for branching and the node variables with the

lowest bound on the objective function will be selected in the search tree.

4.4.1 Pre-processing

The graph-based model extraction process is designed to be performed on a rough binary

estimation of the vasculature. In Chapter 3, it was shown that the CREVER method

yields rough segmentations of 3-D fluorescence microscopy images with high accuracy. To

evaluate the geometrical graph-based modeling with the least dependency on segmentation

accuracy, we also consider the level set method to binarize the raw images. However, due

to the poor contrast and higher level of imaging artifacts of testing data i.e. fluorescence

microscopy images, obtaining a reasonably accurate binarization exclusively through the

level set algorithm is difficult. As illustrated in Figure 4.10, fluorescence microscopy images

are challenging to process due to noise, non-uniform illumination, fluorescent background

signal, and staining-related artifact contents [12, 16]. Larger vascular structures result in

higher average intensity and consequently larger noise variance while smaller structures



54

suffer from lower photon counts and less signal content. These issues, which are shown

in Figure 4.10, result in two challenges: (1) identifying the smaller structures along with

their connectivity and (2) the recovery of larger vasculatures that tend to be surrounded

by heavy noise.

To address the challenges discussed above, we make use of the local normalization

method [102] as a means of initializing the level-set binarization step. The local normaliza-

tion method transforms an input image, I, according to

ILN (x, y, z) = I(x,y,z)−mI(x,y,z)
σI(x,y,z) (4.9)

where I(x, y, z) is the original image intensity, mI(x, y, z) is the local average intensity,

σI(x, y, z) is the local standard deviation of intensity, and ILN (x, y, z) is the locally nor-

malized intensity at point (x, y, z). The quantities mI and σI are computed in Gaussian

windows with standard deviations w1 and w2 centered on (x, y, z). The quantities w1 and w2

are selected such that the locally normalized image will have a bimodal intensity distribu-

tion that is ideal for a clustering-based thresholding such as Otsu’s method [61]. Bimodality

is maximized when the inter-class variance [61] between two modes is maximized. Thus, the

optimal values of w1 and w2 are those that maximize the inter-class variance level. Through

brute-force searching over different amounts of w1 and w2, it has been found that w1 = 15

and w2 = 20 produce the best results for the datasets of interest in this work. Otsu’s

thresholding of the normalized images is then used for initializing the level set method.

Specifically, the level set function is initialized as the union of circles of radius one voxel

centered on each of the thresholded voxels.

4.4.2 Validation metrics

The method’s accuracy has been investigated by means of six metrics that quantitatively

measure similarity of the identified network and ground truth. Both of the geometrical and

topological specifications of a curvilinear structure are taken into account in definition of

these metrics. The first four metrics of CFPR, CFNR, GFPR, and GFNR come from the

NetMets software package [103] where CFPR is Topological False Positive Rate defined as

CFPR =
Total number of falsely detected edges

Total number of detected edges
. (4.10)

The Topological False Negative Rate, CFNR, is

CFNR =
Total number of missed edges

Total number of edges in the ground truth
. (4.11)



55

The GFPR and GFNR are geometrical peers of CFPR and CFNR where they capture

lengths rather than numbers such that

GFPR =
Total length of falsely detected edges

Total length of detected edges
(4.12)

GFNR =
Total length of missed edges

Total length of edges in the ground truth
. (4.13)

Finally, JFPR and JFNR determine the junction detection precision as:

JFPR =
Total number of falsely detected junctions

Total number of detected junctions
(4.14)

JFNR =
Total number of missed junctions

Total number of junctions in the ground truth
(4.15)

4.4.3 Results: Synthetic Data

Synthetic images are formed by developing tubular interconnected networks from ground

truth graphs inspired by the approaches discussed in [104, 105]. First, the ground truth

graph is transformed into a binary 3-D volume, S, by means of the Bresenhamn’s line al-

gorithm [106]. Next, each of the lines in this binary image is dilated with a spherical struc-

turing element with diameter of interest. The resulting image is then convolved with a 3-D

Gaussian function with standard deviation of two in order to smooth the boundaries. From

these “noise-free” images, simulated data are generated as Poisson(λ0+N̄q,q,q(x, y, z)). Here

N̄q,q,q(x, y, z) is the mean of Nq,q,q(x, y, z) that is a q−by−q−by−q neighborhood around

the point (x, y, z) in the noise-free image. Despite the lack of meaningful structures in dark

regions of fluorescence microscopy images, voxels of these areas are slightly noisy [16]. We

have modeled this background noise by adding an offset amount λ0 to the mean value.

Finally, the intensity range is scaled to span the range of seen in real data.

Figure 4.11(a) shows a synthetic image of size 400× 400× 200 generated with λ0 = 10

and q = 10. The same formula as (3.3) is used here to establish desired PSNR levels. This

data is designed such that every step of the GGM identification process (CP detection,

BIP, and graph interpolation) is challenged. For instance, vessel radius, branch density,

and spatial density vary over different regions. The synthetic network includes more than

one layer of structure to create higher 3-D depth and avoid a planar ground truth. The

ground truth and extracted graph model are shown in Figures 4.11(c,d) for PSNR=5 dB.

Performance metrics are presented in Table 4.1 for two pre-processing techniques. When

all the error rates are relatively low, the method’s performance with lower false negative
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(a) (b)

(c) (d)

Figure 4.11: (a) Synthetic noiseless image, (b) MIP of synthetic noisy image with PSNR= 5
dB, (c) Ground truth, and (d) Obtained graph-based model synthetic noisy data.

Table 4.1: Performance metrics computed for synthetic image

Data set JFPR JFNR CFPR CFNR GFPR GFNR

Complete (using CREVER method) 0.082 0.013 0.044 0.043 0.062 0.038

Complete (using level-set method) 0.082 0.013 0.042 0.047 0.059 0.043

1 0.091 0.062 0.027 0.077 0.041 0.058

2 0.076 0.000 0.054 0.000 0.069 0.000

3 0.0105 0.000 0.100 0.100 0.104 0.092

4 0.000 0.000 0.000 0.000 0.000 0.000

Complete (with graph interpolation) 0.082 0.013 0.048 0.042 0.061 0.041
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junction detections is seen to be outstanding. Higher false positive error rate in junction de-

tection has given rise to the edge related error rates though they are still small and show the

utility of the method. According to the results, the GGM identification algorithm performs

at similar precision level for the CREVER and level-set methods that shows its robustness

against reasonable structural deformations. The CREVER binarization leads to lower false

negative rates where level-set method produces slightly less false alarms.

To test the graph interpolation performance, the network is decomposed into four sub-

regions as shown in Figure 4.12(a) denoted by datasets 1-4. A common vessel has been

considered between data sets 1 and 2 to allow for the use of orientation selective graph

interpolation technique. Besides, radius and location of the vessels cross sections have been

chosen slightly different at the two sides of the boundaries to test the node matching per-

formance when there is an offset between the nodes to be matched. These differences are

larger between the upper and lower images. The ground truth and complete identified graph

model of the synthetic image binarized with the CREVER method are shown in Figures

4.12(b,c) in a 2-D view. Visual comparison of these two graphs proves an overall strong

performance in capturing the synthetic network’s model and interpolating the sub-graphs

through matching the boundary points in spite of the implemented perturbations (missed

branch in dataset 3 and slight differences in the CPs location). The performance metrics

for this case are also presented in Table 4.1. These metrics are provided both separately

for each of the datasets and for the complete simulated data. Comparison of these results

with the “no interpolation” case suggests that the interpolation process improves the per-

formance by reducing the false negative error rates.

For the purpose of noise analysis, noiseless synthetic image has been transformed into

100 volumes where every ten volumes are of the same PSNR level. The maximum intensity

has been scaled with ten discrete values to the range of (5, 255) such that PSNRs fall in the

range of 2 to 15 dBs. Quantitative measures of the performance are calculated from derived

graphs and are provided in Figures 4.13(a-f). For lower PSNR values, JFNR is increased

noticeably indicating that more junctions are missed by the CP detection method. In such

cases, small loops involving thick vessels may be closed as all the junctions around them

are transformed into a single junction. Also, thicker branches get closer to each other such

that junctions in their vicinity will be omitted during the spherical shell filtering. However,

it is obvious that JFPR is less impacted by the higher noise levels.

Concerning the CFPR and CFNR metrics shown in Figures 4.13(c,d), a noise level de-

pendency is more obvious. When an image is noisier, its enhanced binary version will be

more dilated. The inflation of structures comes with smoother and less concave boundaries
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(a)

(b) (c)

Figure 4.12: (a) Four sets of synthetic noisy images with PSNR= 5, (b) The ground truth,
and (c) Overall graph-based model after graph interpolationa.

resulting in lower convexity degrees. Thus, a higher number of voxels cannot pass the con-

vexity filtering step that leads to missing waypoints. An increase in missed waypoints yields

a less complete graph and missed connections as a consequence.

Finally, the results for GFPR and GFNR are presented in Figures 4.13(e,f). In com-

parison to the CFPR values, GFPR is slightly larger especially for the lower PSNR values

indicating a tendency for detection of longer edges by the method when there are missed

junctions. From the analytical perspective, utilities increase for longer edges since their

“skeletonness” increases as a result of missing more CPs. On the other hand, geometrical

false negative rates have not deviated from the CFNR rates noticeably, and for a number of
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Figure 4.13: Error rate bars of the (a) false positive junction detection, (b) false negative
junction detection, (c) false positive topological connections, (d) false negative topological
connections, (e) geometrical false positive , and (f) geometrical false negative error rates in
terms of their mean and standard deviation computed over ten data volumes generated for
each of the ten PSNR levels.
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PSNRs, they are higher than the CFNR. This observation complies with the above state-

ment that longer edges come with greater utilities causing shorter edges be missed with

higher rate.

4.4.4 Results: Real Data

Validation of the GGM identification algorithm has been completed by its application to

four sets of 3-D vascular images gathered from murine nervous tissue. Three of these

datasets are shown in Section 3.3.2. As mentioned earlier, these datasets are selected for

their wide variety of structural and noise properties. The real images are binarized using

two approaches of Section 4.4.1 and CREVER to assess the stability of the proposed method

against the binarization quality alteration. To avoid redundancy, only the segmentations

obtained from the method of Section 4.4.1 are shown in this section, as the binarizations

produced by the CREVER algorithm are presented in Section 3.3.2. The GGMs acquired

from the two types of binarized images are plotted for each data set and have been quan-

titatively evaluated using the six error metrics. Measured results are provided in Tables

4.2 and 4.3 for the level set segmentation and CREVER binarization respectively. In these

tables, NJ−GT , NJ−D, NE−GT , and NE−GT refer to the number of junctions and edges in

the ground truth and detected graph model.

The efficiency of the graph interpolation technique is tested first for all the data sets

(binarized with the CREVER method) and compared with the “no interpolation” results

in Table 4.3. Then, a more detailed evaluation of this technique is conducted for data set

4 that has the most complete and dense microvascular network. Final results are provided

in Table 4.4.

4.4.4.1 Dataset 1: Non-homogenous structure and illumination with homoge-

nous noise distribution

The first image which is a real 3-D fluorescence microscopy image of murine cortical mi-

crovasculature of size 200× 450× 50 voxels is shown in Figure 4.14(a) where the MIP of its

binary version with the extracted graph overlaid is shown in Figure 4.14(b). The graphs ob-

tained from three uniform divisions of data are shown in Figure 4.14(c). These sub-graphs

are interpolated into the black graph in Figure 4.14(d) where the ground truth is shown in

red. The GGMs obtained from the two level set and CREVER binarizations are presented

in 3-D view in Figures 4.14(e) and (f). According to these results, the proposed network
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: (a) Maximum intensity projection of dataset 1, a real 3-D fluorescence mi-
croscopy image of murine cortical microvasculature, (b) Enhanced binary image with il-
lustration of the situations where graph extraction method fails to capture the correct
structure. Purple ellipses identify vessels that are missed in the graph, and red edges are
topologically correct but their locations are offset on one end. (c) Graphs obtained from
three uniform divisions of data, (d) Interpolated graph in black vs. the ground truth in
red, Extracted 3-D graph-based model obtained from the (e) level-set and (f) CREVER
methods.

model identification algorithm has proved to be quite accurate in obtaining the microvascu-

lature’s skeletal model. While an overall satisfactory correspondence is observable between

the raw data and the identified graph in Figure 4.14(b), two types of errors are highlighted.
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Purple ellipses identify vessels that are missed in the graph because of being connected

to an end point rather than a CP. Edges shown in red are topologically correct but their

locations are offset on one end. These cases occur when one end node is missed in the CP

detection process, yet due to the existence of another CP close to the missing node and the

strength of the directional term in the BIP utility function, these edges are detected. Also,

there are a few parts of the less visible and dimmer vessels along with the cut branches that

have not been captured by the method.

4.4.4.2 Dataset 2: Structures with high curvature

The second real data set is from the murine hippocampus and shown in Figure 4.15(a). This

image is of size 600× 200× 24 voxels. In spite of its larger size, the microvasculature has a

simpler network layout with smaller vessel density relative to the other datasets considered

here. This image also manifests a different structural shape; specifically, the manner in

which it is “bent” along the left side of the image. In order to reproduce this curvature

in the vasculature model, there has to be a higher ratio of waypoints (some of them are

emphasized by squares in Figure 4.15(d)) to the total CPs testing the proposed technique

from another perspective. Qualitative results for this dataset are presented in Figures

4.15(b-f). The binarized image is shown in Figure 4.15(b). This data is also partitioned

into three regions and the extracted graphs are shown in Figure 4.15(c). The interpolated

graph (in black) and ground truth (in red) are presented in Figure 4.15(d). The 3-D derived

graphs are shown in Figures 4.15(e) and (f). Both types of results confirm that the method

satisfactorily performs on the structure type of this data. Successful detection of CPs and

waypoints in particular has resulted in a skeletal model quite close to the ground truth.

4.4.4.3 Dataset 3: Structurally homogenous structure and non-homogenous

noise distribution

The next data set relates to a more homogenous microvascular network in terms of vessel

shape and size. However, the noise distribution differs markedly throughout the image as

it is apparent from Figure 4.16(a). This image is of 500× 500× 45 voxels size. The binary

image is shown in Figure 4.16(b). The extracted sub-graphs from four uniform divisions of

the data are demonstrated in Figure 4.16(c) where the ground truth in red and interpolated

graph in black are presented in Figure 4.16(d). In spite of noisy voxels remained after

the binarization, the graph-based model identification approach performs quite well on this

challenging data set.
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(a) (b) (c) (d)

(e) (f)

Figure 4.15: (a) Maximum intensity projection of dataset 2, a real 3-D fluorescence mi-
croscopy image of murine hippocampal microvasculature, (b) Maximum intensity projec-
tion of the binary image, (c) Graphs obtained from three uniform divisions of data, (d)
Interpolated graph in black vs. the ground truth in red, Extracted 3-D graph-based model
obtained from the (e) level-set and (f) CREVER methods.

4.4.4.4 Dataset 4: Spatially dense structure and high variance noise

The last dataset, which is of 400× 400× 50 voxels size, incorporates a very dense microvas-

cular network with high level of noise content apparent in the original and binarized images

shown in Figures 4.17(a,b). Due to the topological complexity of the network in this data

set, we only focus on the quantitative analysis (Tables 4.2, 4.3, and 4.4) of the method

where the graphs extracted from the upper left quarter of the full data set are shown in 3-D

in Figures 4.17(c,d) for the level set and CREVER methods in this part of experiments.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: (a) Maximum intensity projection of dataset 3, a real 3-D fluorescence mi-
croscopy image of murine cortical microvasculature, (b) Maximum intensity projection of
the binary image, (c) Graphs obtained from four uniform divisions of data, (d) Interpolated
graph in black vs. the ground truth in red, Extracted 3-D graph-based model obtained
from the (e) level-set and (f) CREVER methods.
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(a) (b)

(c) (d)

Figure 4.17: (a) MIP display of dataset 4, (b) MIP of its binarization, Extracted 3-D graph-
based model of the upper left quarter of the image obtained from the (c) level-set and (d)
CREVER methods.

Figures 4.18, 4.19, and 4.20 display the error rates for level-set (dashed lines with

circular markers) and CREVER (solid lines with square markers) method vs. datasets. An

overall comparison confirms that the CREVER method is superior in performance especially

in the type II errors (FNR) for junction detection and type I error (FPR) in geometrical

edge detection. CREVER yields higher error rates in JFPR only for datasets 1 and 2. This

can be due to the higher ability of CREVER method in recovering the fainter or thiner

structures prevalent in these datasets that consequently leads to higher rate of detections

(true and false) in general.
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Table 4.2: Performance metrics for real datasets pre-processed with the level set method.

Dataset NJ−GT NJ−D JFPR JFNR NE−GT NE−D CFPR CFNR GFPR GFNR

1 63 51 0.022 0.186 164 153 0.022 0.087 0.107 0.079

2 42 36 0.016 0.163 106 89 0.092 0.195 0.121 0.172

3 176 167 0.016 0.167 431 429 0.058 0.091 0.084 0.061

4 987 874 0.009 0.132 2804 2567 0.053 0.126 0.146 0.094

Average 317 282 0.036 0.162 876 809 0.056 0.125 0.114 0.102

Table 4.3: Performance metrics for real datasets pre-processed with the CREVER method
with/without interpolation. The results for dataset 4 are obtained from the non-interpolated
sub-graph of the upper left quarter.

Dataset NJ−GT NJ−D JFPR JFNR NE−GT NE−D CFPR CFNR GFPR GFNR

1 63 53 0.038 0.190 164 146/144 0.021/0.025 0.128/0.128 0.089/0.094 0.107/0.107

2 42 36 0.027 0.119 106 95/88 0.074/0.078 0.169/0.175 0.044/ 0.059 0.134/ 0.152

3 176 155 0.015 0.131 431 398/367 0.013/0.010 0.065/0.072 0.025/0.023 0.041/0.049

4 987 905 0.013 0.094 2804 2591 0.028 0.126 0.069 0.118

Average 317 287 0.023 0.134 876 807/ 200 0.034/0.038 0.102/0.125 0.056/ 0.059 0.100/0.103
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Figure 4.18: The junction detection error rates for the level-set (dashed lines with circular
markers) and CREVER (solid lines with square markers) binarizations.
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Figure 4.19: The topological edge detection error rates for the level-set (dashed lines with
circular markers) and CREVER (solid lines with square markers) binarizations.
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Figure 4.20: The geometrical edge detection error rates for the level-set (dashed lines with
circular markers) and CREVER (solid lines with square markers) binarizations.

4.4.5 Divide and conquer procedure validation

The performance of the GGM identification method in conjunction with the graph inter-

polation improves in two main categories: speed and accuracy. The correlation of the

partitions size and performance is investigated by running the algorithm on dataset 4 as it

is divided into 2-by-2, 4-by-4, and 8-by-8 grids of non-overlapping and similar sized sections

in the x−y plane. Run time and performance metrics are measured for each case, averaged
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Table 4.4: Effect of “split and merge” technique on the speed and error rates (extra com-
puting times are referenced to the 8-by-8 layouts run time).

Average number

Grid size Run time of variables, nE , JFPR JFNR CFPR CFNR GFPR GFNR

(second) in each block

2× 2 22160 48828 0.013 0.094 0.088 0.095 0.154 0.069

4× 4 3008 3321 0.013 0.094 0.062 0.098 0.111 0.072

8× 8 704 300 0.013 0.094 0.028 0.102 0.069 0.118

over the same sized partitions, and presented in Table 4.4. These results demonstrate that

operation time decreases dramatically as a result of the divide and conquer approach. The

runtime from 8-by-8 to 4-by-4 grid patterns increases more than 4 times and from 4-by-4 to

2-by-2 grid the increase is about 7.4 times. One important factor that has to be taken into

account for the divide and conquer application is density of the structure to be analyzed.

If a sample image does not show a complicated and dense pattern such as is the case with

dataset 2, dividing it into greater number of partitions appears to result in identifying false

structures in each of the partitions which may actually decrease somewhat the overall accu-

racy (return to Table 4.3). Confirming this fact is the increase of false negative rate of the

edges by dividing the image into smaller blocks. Based on the results given in Tables 4.3

and 4.4, the divide and conquer process does not affect the junction detection performance.

On the other hand, the false positive rate of edge detection increases for the larger block

sizes.

4.4.6 Computational complexity

As noted in the previous subsection, large BIPs can be challenging to solve. Here we

explore the computational complexity and scalability of the proposed method empirically

via testing the run times as a function of problem size. We take the full dataset 4 and

consider “uniform”, “horizontal”, and “vertical” tessellations at three scales the coarsest

of which is illustrated in Figure 4.21 and is comprised of four blocks for each tessellation.

At the mid-scale, we have three sets of 16 blocks while the finest decomposition is into

three sets of 64 blocks. Note that no division is performed in the third dimension since the

dimensionality is quite low. All calculations were carried out on a PC platform with 2.53

GHz CPU, 6.00 GB RAM, and 64 bit OS running Matlab.

For the proposed algorithm, there are two components that drive the computational



69

complexity: calculation of the utility function terms and the solution of the BIP. In Figure

4.22(a), the logarithm of the run time is plotted against the logarithm of the problems size

for all 192+48+12=252 blocks considered. In Figure 4.22(b), the logarithm of the run times

versus the raw problem sizes are displayed. The linear nature of the relations in these plots

indicates that the complexity of the utility function terms is proportional to problem size

while, interestingly, the BIP solution processing time appears to rise exponentially with the

size of the problem, but in a manner that varies with the scale of decomposition. From

these plots, we also see that the processing time for this implementation of the approach

is dominated by the image processing operations required to compute the utility function

as opposed to the solver for the BIP. Finally, Figure 4.22 suggests that an approach based

on decomposing the full problem into smaller sub-problems and then combining the results

may offer a more efficient means of addressing large scale problems.

4.4.7 Parameter sensitivity

Finally, we turn our attention to exploring the sensitivity of the processing results to the

non-automatically determined parameters, δρ and σG (the spherical shell thickness and the

Gaussian kernel’s standard deviation used in directional filtering). The experiments are

completed on each of the sub-images produced by 8 × 8 × 1 partitioning of dataset 4, and

error rates are averaged over all the sets. First, performance measures are provided in Table

4.5 for δρ equal to 1, 2, and 3 given σG = 3. Based on these results, junction detection

precision shows a trade-off between false positive and negative rates when δρ deviates from

2. However, the topological error rates seem to be directly affected by junctions and conse-

quently the same trade-off as in junction detection performance exists for edge identification

process. The GFPR follows the same pattern as CFPR and is smallest at δρ = 2. Therefore,

(a) (b) (c)

Figure 4.21: Three tessellations into four blocks using (a) “uniform,” (b) “horizontal,” and
(c) “vertical” decompositions.
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(a) Utility functions calculation (b) BIP computation

Figure 4.22: Logarithm of the run time for all 252 blocks obtained from 4-block, 16-block,
and 64-block partitioning and three different tessellations for (a) utility functions calculation
and (b) BIP computation. A log-log plot is presented in (a) where the line indicates that
complexity rises linearly with problem size for this calculation. A log-linear plot is provided
in (b) where the linear structures indicate the exponential nature of the BIP complexity
that depends on the scale at which the problem is decomposed.

Table 4.5: Performance measures with respect to δρ.

δρ JFPR JFNR CFPR CFNR GFPR GFNR

1 0.123 0.060 0.271 0.069 0.198 0.115

2 0.019 0.088 0.033 0.094 0.079 0.111

3 0.014 0.105 0.039 0.156 0.075 0.254

to balance between the false positive and negative rates, δρ has been set with 2.

Results produced by tuning the σG with 2, 3, and 4 are provided in Table 4.6. Higher

σG leads to over-smoothing of the structure where smaller values of σG does not change the

image noticeably. Since, this parameter is used in forming the alignment term of the utility

function, it only affects the edge-related error rates. Based on the results, a trade-off also

exists for the topological and geometrical false positive and negative rates. In conclusion,

the best error rates are obtained with δρ = 2 and σG = 3.
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Table 4.6: Performance measures with respect to σG.

σG JFPR JFNR CFPR CFNR GFPR GFNR

2 0.019 0.088 0.039 0.112 0.061 0.130

3 0.019 0.088 0.033 0.094 0.079 0.111

4 0.019 0.088 0.090 0.075 0.123 0.095

4.5 Discussion

Quantitative results in Tables 4.2 and 4.3 confirm the precision and sensitivity of the pro-

posed algorithm challenged by different types of structures, noise levels, and pre-processing

approaches. The proposed method proves to perform strongly in correct detection of junc-

tions and edges given binarizations from the level-set and CREVER methods where the

false positive rates for these statistics are around 0.036 and 0.056 for the former and 0.023

and 0.034 for the latter pre-processings. Regardless of the binarization quality, the method

has performed the best in detecting the junctions for dataset 4. The highest false negative

rate in junction detection is seen for dataset 1 which emanates from the fact that this data

is characterized by many dim and broken vessels. Dataset 3 has the next highest rate of

missed junctions due to the lack of good vascular connectivities and larger number of noisy

voxels. These noisy voxels if located in the spherical shell will cause junctions to be missed

due to the constraint on having one connected component in the larger sphere. In terms of

edge detection, dataset 2 has the highest false positive error rate. This is caused first by the

fact that a higher number of falsely detected nodes results in higher number of false edges.

Second, an increase in the number of waypoints, seen in curvy structures, gives rise to the

falsely detected edges. Since GFPR is higher than CFPR for all of the datasets, we can con-

clude that falsely detected edges are mainly of longer length than the average edge lengths.

On the other hand, while the false negative rates do not change in correlation with the false

positive rates, on an absolute scale, they are still relatively low and show the efficiency of

the method in identification of the graph-based models. The GFPR is relatively lower for

the CREVER results suggesting that it has been more efficient in retrieving vessels without

causing spurious connections. All in all, the performance is slightly affected by the selected

binarization technique and demonstrates better behavior for the CREVER method. How-

ever, the differences are negligible to the point that provided with a reasonable binarized

version of any microvascular structure, the proposed method is able to yield an accurate

GGM approximation of its skeleton.
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Finally, sensitivity of the method is tested versus two non-automatically set parameters

δρ and σG. It has been shown that where δρ as the spherical shell thickness primarily affects

the junction detection process, σG only affects the edge-based performance measures.



Chapter 5

Geometrical Graph-based Model

Registration

The first step in analysis of GGMs is building a comparison means. For this purpose,

these structure have to be registered to a template model to seek for their correspondences.

We propose a novel and computationally efficient approach for GGM registration in this

Chapter using the following notations:

Table 5.1: Notations used for the GGM registration.

RN×M Space of real matrices of size N ×M

Π̂N×N Space of permutation matrices of size N ×N with unitary element at (1,1)

EN×M Space of non-negative matrices of size N ×M with rows that sum to one

AN×M Space of assignment matrices of size N ×M defined as binary matrices with rows that sum to one

‖.‖F Ferobenius norm defined as ‖A‖F =
√∑

i

∑
j A

2
ij =

√
tr(ATA)

5.1 Attributed graph generation

Given m geometrical graph-based models, their attributed forms Gi = (Vi, Ei, φi, ζi), i =

1, 2, . . . ,m are generated as follows. The Gi is characterized by a node set Vi representing

vascular junctions with cardinality ni = |Vi| and edge set Ei ⊂ Vi × Vi representing vessel

branches that connect the junctions. The φi and ζi are vectors of node and edge attributes

respectively.

To form Gi, waypoints and the chain of midway edges are first eliminated from the node

73
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Figure 5.1: Part of a vessel along with its geometrical graph-based model (collection of piece-
wise linear segments approximating skeleton) are presented. An abstract edge e = (v, v′)
is shown with dashed yellow line between junction v and terminal point v′. This edge
replaces the segments located between v and v′ during generation of attributed graph where
waypoints will be omitted. Smoothed local curvature of a vessel at point T can be estimated
from its geometrical graph model as a function of RC(T ) that is radius of the circumcircle
of the triangle defined by T and its neighboring waypoints PR and PL.

and edge sets. Then, between two immediate neighbor junctions or between a junction and

a terminal point (e.x. v and v′ in Figure 5.1), an abstract edge (e = (v, v′)) is placed that

represents the vessel branch connecting those points.

Node attributes are determined by φi : Vi → R3×1 that relates junctions location in 3-D

space to their counterpart nodes in Vi such that φi(v) = [x y z]T ,∀i. Subsequently, edge

attributes are embedded in ζi : Ei → R2×1 such that ζi(vj , vk) equals to the approximated

length and smoothed curvature of the vessel connecting nodes vj and vk respectively. The

first attribute of each abstract edge is an estimate of the vessel branch length. This value is

defined to be summation of the length of all edges of the geometrical graph associated with

the abstract edge; e.g., in Figure 5.1, the length of e = l1 + l2 + ... + l5. The second edge

attribute is associated with the curvature of vessels. Local curvatures can be estimated at

each waypoint from the change in the slope angle (angular difference between successive

segments) of the lines [107]. Given the notations in Figure 5.1, curvature at waypoint T is

C(T ) = S
RC(T ) where S = sign(determinant(

−−→
TPR,

−−→
TPL)). The RC(T ) is the radius of the

circumcircle of the triangle made by T and its neighboring waypoints PR and PL:

RC(T ) = s1 s2 s3√
(s1+s2+s3)(s1−s2+s3)(s1+s2−s3)(−s1+s2+s3)

(5.1)

where s1 = ‖
−−→
TPR‖, s2 = ‖

−−→
TPL‖, and s3 = ‖

−−−→
PRPL‖. We define the smoothed curvature

that is a measure of the vessels shape as the summation of the absolute value (‖.‖1) of the

Cs calculated for all the waypoint along each edge.
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The graphs of interest in this work are of the binary tree form. Therefore, non-leaf

nodes have exactly three connections (a parent and two child nodes). Utilizing this specifi-

cation, we convert graph matching from a quadratic assignment into a point correspondence

problem by developing node features called signatures that simultaneously incorporate the

geometrical and topological information of the graphs to be matched. A signature for the

ith node in graph k is defined as

σk(vi) =

[
φk(vi) φk(vi,1) φk(vi,2) φk(vi,3)

ζk(vi, vi) ζk(vi, vi,1) ζk(vi, vi,2) ζk(vi, vi,3)

]
∈ R5×4 (5.2)

where vi,1, vi,2, and vi,3 are the three connections of vi. Since there is no loop (buckle) in

these graphs, ζk(vi, vi) = 0,∀i. Then, correspondences are found based on node-to-node

signature affinity. Where two nodes have similar signatures, it indicates that those nodes

and their connections are located closely and the corresponding edges are also of alike shapes

so they are the best matches. The correspondence procedure will be described in detail in

Section 5.3.

5.2 Global alignment

Inspired by the Procrustes analysis [108], we establish a reference graph space in which the

graphs to be matched are are embedded in a manner that basically normalizes for translation

rotation and scaling. First, centers of gravity of graphs are placed on the origin so that∑ni
j=1(φ(vj)) = [0 0 0]T , ∀i. As we show in Section 5.5.5, nodes of higher levels (farther from

Circle of Willis (CoW)) show larger variance in location or face higher chance of removal due

to segmentation errors. Thus, we choose three junctions located on the CoW as anatomical

landmarks for the balance of the alignment processing. These anatomical points that are

marked by white circles in Figure 5.2 are the most homologous features among the cranial

artery network samples. To achieve the scale invariance, we scale graphs such that their

nodes that correspond to the crossed landmark in Figure 5.2 place at (1, 0, 0). Finally,

graphs are aligned by rotational transformations that project two other landmarks onto the

x− y plane.

5.3 Objective formulation

In this section, we formulate and solve the node correspondence problem based on the sig-

nature similarity maximization across any two graphs. Correspondences are modeled by
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Figure 5.2: Three anatomical landmarks on the CoW used for alignment procedure are
marked by white circles. The scale of graphs are normalized by mapping the node associated
with the crossed junction to (1, 0, 0) in the Cartesian system. Graph poses are harmonized
by rotations that map the other landmarks onto the x− y plane.

binary indices aij ∈ {0, 1}, i = 1, . . . , n1, j = 1, . . . , n2 where aij = 1 means that nodes

vi ∈ V1 and vj ∈ V2 have the most similar signatures and are the best matches. The aijs

form an assignment matrix A ∈ An1×n2 . By the sub-graph isomorphism problem definition,

an assignment matrix can only take at most one non-zero element in each row or column,
n1∑
i=1

aik ≤ 1, ∀k and
n2∑
j=1

alj ≤ 1, ∀l, to guarantee that every node of one graph is assigned to

at most one node in the other graph [86].

Generally, connections of a node are labeled arbitrarily in its signature. Therefore, an

optimal permutation of the three connections has to be estimated for achieving the most

accurate node assignment. As shown in Figure 5.3 for instance, σ1(vi) has to be multiplied

by the given Bij such that σ1(vi)Bij will be minimally distant from σ2(vj). Thus we need

4× 4 permutation (orthogonal and doubly stochastic) matrices Bij , i = 1..., n1, j = 1..., n2

for which always Bij(1, 1) = 1 (base nodes are compared with each other).

Given the above definitions and two globally aligned graphs G1 and G2, matching prob-

lem is defined as

A = arg min
A ∈ An1×n2 ,Bij ∈ Π̂4

n1∑
i=1

n2∑
j=1

aij‖σ2(vj)− σ1(vi)B
ij‖F − λ‖A‖F (5.3)
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Figure 5.3: The shown Bij permutes {vi,1, vi,2, vi,3} so ‖σ2(vj) − Bijσ1(vi)‖F is optimally
minimized.

where the regularization term penalizes correspondence of too distant nodes (distance tol-

erance) i.e. If the distance of two nodes surpasses λ, they will not be matched in spite of

having the closest signatures. The λ is manually set for this work considering the reasonable

anatomical deviations.

5.4 Combinatorial optimization relaxation

In this section, we describe the essence of the algorithm that solves the combinatorial prob-

lem of (5.3). This problem calls for two interconnected linear assignment optimizations.

The optimal assignment and permutation matrices are determined in an iterative manner

where one is held fixed after convergence and then the other is found. At each iteration

and through application of the graduated assignment technique [75] and [109], we relax

the combinatorial matrices to be continuous. As described in Chapter 2, the graduated

assignment algorithm is comprised of two fundamental elements: soft assign and determin-

istic annealing techniques [86]. Simply put, soft assign method relaxes binary matrices (A

and Bijs here) to take continuous values in the [0, 1] interval. This relaxation reduces the

chance of trapping in local minima (a common challenge of combinatorial optimizations) by

allowing partial/soft matches between points and smooth updates during the optimization

process rather than jittering between 0 and 1. Figure 5.4 provides a visual description of
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Figure 5.4: Soft assign method

the soft assign method. After enforcing positivity to the elements e.x. via exponentiation,

the process continues subject to keeping matrices doubly stochastic (summation of elements

in each row or column amounts to one). The “summation to one” constraint is guaranteed

by iterative normalization of rows and columns [89]. Our problem of cranial vascular GGM

registration allows for outliers (structural variety for inter-subject cases). Thus the assign-

ment matrix may include rows or columns of all zero elements by definition. To satisfy the

doubly stochasticity constraint for these scenarios, A is modified by addition of a row and

a column as explained in Chapter 2. A modified version of the two-way doubly stochastic

constraint holds as

n1+1∑
i=1

aik = 1, k = 1, . . . , n2 ,

n2+1∑
j=1

alj = 1, l = 1, . . . , n1 (5.4)

and is based on the Birkhoff theorem [110]: the set of doubly substochastic matrices is the

convex hull of the set of permutation matrices of same size. In Figure 2.7, the convex hull

of a sample of permutation matrices Pi, i = 1 . . . , 6 is shown with a colorful hexagon area.

Each point in this area is a convex combination of the Pis and is a doubly stochastic ma-

trix. Shades of colors correspond to different levels of matrix entropy, −
n1∑
i=1

n2∑
j=1

aij log(aij).

Warmer colors in the center represent matrices of higher entropy with more randomly dis-

tributed (continuous) elements where binary matrices at the corners demonstrate the lowest
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level of entropy. Therefore, enforcing a gradually reducing entropy level constraint, leads

matrices to converge to any of the polytope’s corners (P6 here) i.e. permutation or binary

doubly stochastic matrices in general. Combination of continuous relaxation and Birkhoff

theorem transforms the combinatorial correspondence problem (5.3) into the following op-

timization formulations.

A = arg min
A ∈ En1+1×n2+1

n1∑
i=1

n2∑
j=1

(aij‖σ2(vj)− σ1(vi)B
ij‖F − λa2

ij)

+β
n1∑
i=1

n2∑
j=1

aij log(aij) (5.5)

Since Bijs are permutation matrices of small size, they can be tractably found by running

bipartite matching (with computational complexity of e.x. O(N3) for Hungarian method)

among all the signatures across two graphs. However, we can manage to reduce the com-

putation time by use of the graduated assignment that is of O(N2) complexity. Via this

approach, the complexity can be even further reduced with selectively updating Bijs only

for the correspondences that are strengthening, aIij > aI−1
ij where I is the iteration count.

The respective optimization form for such cases in the graduated assignment framework

would be

B̂ij = arg min
{Bij∈ E4×4|Bij11=1}

4∑
k=2

4∑
l=2

Bij
kl‖φ(vj,k)− φ(vi,l)‖F

+β
4∑

k=2

4∑
l=2

Bij
kllog(Bij

kl). (5.6)

Parameter β that is the same for optimizations (5.5) and (5.6) controls the relaxation

degree via tuning the entropy term’s effect in optimizations (5.5) and (5.6). The smaller

the β, the more bipolar the results will be. Thus, binary matrices are achieved by regularly

reducing (annealing) β [75] with annealing rate βr. The optimal matrices obtained at each

β level, are used as initial values for the next stage that the β is lowered. When β reaches

zero, matrix entries converge to either 0 or 1.

5.4.1 Graph registration algorithm

The overall matching algorithm is described step by step in this section where its pseudocode

is provided in Algorithm 2. Based on the descriptions given in the previous part, this

algorithm is essentially a dual update process embedded within an annealing scheme. Prior
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to the start of process and at lines 1 and 2 of Algorithm 2, aij and Bijs are initialized as

Bij =


1 0 0 0

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

 i = 1, . . . , n1, j = 1, . . . , n2 and aij = 0. (5.7)

The main loop that is associated with annealing parameter adjustment incorporates the

following operations.

Weight coefficients for the correspondence matrix entries are first calculated as

QAij = ‖σ2(vj)− σ1(vi)B
ij‖F − λ. (5.8)

Then, positivity is enforced on aijs with exponentiation such that

aij = exp(βaI−1
ij QAij). (5.9)

By means of the Sinkhorn method, entries are normalized iteratively in every row and

column except for the slack variables (an1+1j and ain2+1, ∀i, j) until A converges or the

number of iterations, I, exceeds Imax:

aij =
aij∑n2+1

j=1 aij
, i = 1, ..., n1

aij =
aij∑n1+1

i=1 aij
, j = 1, ..., n2. (5.10)

where the convergence criterion is

1
n1×n2

n1∑
i=1

n2∑
j=1
|aIij − a

I−1
ij | < ε. (5.11)

For every increasing correspondence index, aIij > aI−1
ij , we update its Bij in the same

manner as explained above given weight coefficients of

QBkl = βBij,I−1
kl ‖φ(vj,k)− φ(vi,l)‖F . (5.12)

Since QBkls are positive by definition of the Frobenius norm, there is no need for positivity

enforcement here. We let Bij
kl = βQBkl. Rows and columns are normalized by recurse

implementation of

Bij
kl =

Bijkl∑4
l=2 B

ij
kl

, k = 2, ..., 4

Bij
kl =

Bijkl∑4
k=2 B

ij
kl

, l = 2, ..., 4 (5.13)
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Algorithm 4 Node matching algorithm

Inputs: G1, G2, β0, βr < 1, βf , Imax, λ, and ε
Initialization:

1: a0
ij ← 0 ∀ i, j

2: Bij,0 ← Bij ∀ i, j
3: Calculation: signatures σ1 and σ2.
4: while β ≥ βf do
5: I ← 1
6: QAij ← ‖σ2(vj)− σ1(vi)B

ij‖F − λ
7: Positivity enforcement: aij ← exp(βaI−1

ij QAij).
8: while A is not converged and I < Imax do
9: aij =

aij∑n2+1
j=1 aij

, i = 1, ..., n1

10: aij =
aij∑n1+1

i=1 aij
, j = 1, ..., n2

11: aIij ← aij
12: I ← I + 1

13: end
14: for {i = 1, . . . , n1, j = 1, . . . , n2|aIij > aI−1

ij } do
15: I ← 1
16: QBkl ← βBij,I−1

kl ‖φ(vj,k)− φ(vi,l)‖F .

17: Bij
kl ← βQBkl.

18: while 1
9

4∑
i=2

4∑
j=2
|Bij, I −Bij, I−1| < ε and I < Imax do

19: Bij
kl =

Bijkl∑4
l=2 B

ij
kl

, i = 2, ..., 4

20: Bij
kl =

Bijkl∑4
k=2 B

ij
kl

, l = 2, ..., 4

21: Bij,I ← Bij

22: I ← I + 1

23: end
24: end
25: a0

ij ← aij ∀ i, j
26: Bij,0 ← Bij ∀ i, j
27: Anneal: β ← βrβ

28: end
29: Binarization: A and Bij i = 1, . . . , n1, j = 1, . . . , n2.

Output: A and Bij i = 1, . . . , n1, j = 1, . . . , n2

only for the lower right 3 × 3 sized part of the permutation matrices keeping the first

element equal to one. Similar to A, iterations continue until reaching convergence or Imax.

The convergence criterion is that

1
9

4∑
k=2

4∑
l=2

|Bij, I
kl −B

ij, I−1
kl | < ε. (5.14)
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The annealing structure controls the updating processes. Starting from β0, β is grad-

ually reduced with annealing rate βr. The dual updates are repeated till convergence for

each β level. As β decreases, the ratios in (5.10) and (5.13) approach one for variables

with minimum weight (indicating the maximum correspondence) and zero for the rest. The

process is repeated until β reaches the final value βf .

Matrices are then binarized through maximum element filtering of the solutions. In each

row, the maximum valued element is turned into one and the rest of the elements are put

to zero, aij = 1 if aij ≥ aik, k = 1, . . . , n2 + 1.

Edges are matched subsequently using the following definition.

Definition 1: Suppose attributed graphs G1 = (V1, E1, φ1, ζ1) and G2 = (V2, E2, φ2, ζ2)

are corresponded with A. Let vi, vk ∈ V1 and vj , vl ∈ V2. Then, (vi, vk) ∈ E1 and (vj , vl) ∈
E2 are said to be matched if aij = akl = 1.

5.5 Experiments

In this section, we evaluate the proposed method’s performance using synthetic and clini-

cal data to demonstrate its full matching power when challenged by different perturbation

sources such as node displacement or outliers. Results are provided in terms of accuracy,

robustness, and computational complexity measures.

The clinical data being in two modalities are collected by magnetic resonance angiog-

raphy (MRA) and 3-dimensional rotational angiography (3DRA) of the cerebral vascular

networks. Two examples are shown in Figures 5.5(a) and 5.5(b) respectively. The MRA

images include vasculature across the entire brain whereas the 3DRA images show vascula-

ture of either right or left hemisphere in a more exhaustive manner. In section 5.5.4, it will

be shown that how the structural difference between vasculatures in these two modalities

is exploited to test the method’s performance more in depth. Synthetic graphs are derived

from clinical data through application of non-linear operations described in section 5.5.1.

5.5.1 Pre-processing

Given segmented images of the cerebral blood vessels, their graph-based models are gener-

ated by means of [93]. Attributed graph models are then formed by following the procedure

described in section 5.1.

Synthetic graphs are extracted from real network graphs that we call base graphs here,

by implementing two sorts of perturbations (structural distortions) through a non-linear



83

(a) (b)

Figure 5.5: (a) MRA and (b) 3DRA images of the cerebral vascular network.

transformation T of nodes defined as

wj = T (vi) =

{
vi + η with probability (1− α)

∅ otherwise
(5.15)

where parameter α determines the percentage of removed nodes in the synthetic data

(nmissed = α|Vi|). Edges are also removed when each of their end nodes is missed in

the synthetic graph. Displacements are produced by adding Gaussian noise η ∼ N (0, σ2
η)

to every Cartesian coordinate of nodes. For every removed node, its linked edges are also

removed from the synthetic graph. Throughout experiments, the base graph is considered

as the ground truth and its synthetic variations are utilized to test the method against the

problem size and location distortion factors controlled by α and ση.

5.5.2 Parameter tuning

Even though the overall performance of graduate assignment method is affected by the

choice of β, it has been proved to converge and provide satisfactory results given well-tuned

parameters [111]. In all the experiments, parameters related to this method, β0, βr, and

βf , are set as suggested by [86]. The β0 is set to the largest square distance of all signature

pairs. The annealing rate that balances between convergence rate and robustness has to be

a value between 0.9 and 0.99. Here, we let βr = 0.95. The βf is chosen to be equal to the

average of the distances between connected nodes in signatures of the two graphs.
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5.5.3 Validation metrics

Precision of the matching algorithm is measured in terms of sensitivity and specificity cal-

culated for nodes and edges. Sensitivity or true positive rate (TPR) equals to the ratio

of correctly detected matches to the total number of matched features (nodes or edges).

Accordingly, specificity or true negative rate (TNR) is defined by the ratio of correctly

detected outliers to the total number of unmatched features. Another precision measure is

vertex similarity rate (VSR) that regards geometrical accuracy and is defined as

V SR = 1
NCV

n1∑
i=1

n2∑
j=1

{
‖φ1(vi)− φ2(vj)‖2 if ai,j = 1

0 otherwise (5.16)

where NCV is the number of correctly matched vertices. This metric determines the extent

of spatial distortion tolerance by the matching method. Likewise, edge similarity rate (ESR)

provides a shape analogy measure for the correctly matched edges as

ESR = 1
NCE

n1∑
i,k=1

n2∑
j,l=1

{
‖ζ1(vi, vk)− ζ2(vj , vl)‖2 if ai,j = ak,l = 1

0 otherwise
.

(5.17)

5.5.4 Performance evaluation

The key component in developing a graph matching technique especially for medical applica-

tions is robustness; its performance has to be minimally impacted by reasonable geometrical

distortions and presence of outliers that prevalently occur in the data collected from dif-

ferent patients and even at different stages of a disease for an individual patient. Here, we

show that how inclusiveness of the proposed signature feature regarding topological (con-

nections) and geometrical information guarantees robustness of matchings in presence of

the above-mentioned issues. This has been proved by the assessments that are made versus

parameters causing structural variation via changing the problem size (α), spatial distortion

(ση), or optimization accuracy (λ). Figure 5.6 shows a base abstract graph and its three

synthetic modifications in each of which one of the parameters has affected the structure.

In the first synthetic graph shown in Figure 5.6(b), a fraction of the nodes are missed where

α = 0.17, ση = 0 and λ = 10. Figure 5.6(c) shows a graph with perturbations in the nodes

location produced by having α = 0, ση = 10, and λ = 10. The last synthetic graph is de-

signed to test the effect of regularization parameter λ. For this reason, parameters are set

as α = 0, ση = 5, and λ = 50. The nodes are numerically labeled and edges are color-coded

for visual appreciation of the matching results. In the synthetic graphs, nodes have double
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labels. The label on the right side is the label of the node of the base that it is matched

to where the left side label shows the ground truth. The right side label is replaced with a

cross sign for outliers (non-matched nodes). The same concept holds for the edges but with

colors. Every edge of the synthetic graphs are colored with the same hue as the edge they

are matched to in the base graph. Non-matched edges are shown in black.

In order to assess the effect of graph size variation that comes with change of outlier

numbers, a collection of synthetic data is produced from ten base graphs (5 from MRA and

5 from 3DRA data) by varying α from 0.1 to 0.5 with increments of 0.1 where ση = 5 and

λ = 100. Averaged performance metrics for ten graphs are presented in Table 5.2.

Table 5.2: Performance measures versus problem size (α).

α TPR (node/edge) TNR (node/edge) V SR ESR

0.1 0.93/0.84 0.83/0.88 5.92 13.98

0.2 0.89/0.87 0.87/0.86 7.47 12.24

0.3 0.92/0.88 0.90/0.91 7.88 10.93

0.4 0.94/0.90 0.91/0.95 8.39 5.87

0.5 0.95/0.92 0.92/0.97 9.01 2.75

The node related TPR shows an increase with rising of α except for a minimum at

α = 0.2. This behavior can be interpreted with the following argument. As the nmissed

increases (rising of α) slightly, it is probable that one neighbor of the removed node will be

matched to its corresponding node in the other graph resulting in falling of correct detec-

tions. However, with further node removal, the node density reduces and less meaningful

structure remains to be matched. Thus, nodes can be matched with higher sensitivity (TPR

increases). The edge related TPR also demonstrates an increasing pattern as more nodes

are missed.

The specificity (TNR) increases homogeneously for node detection reflecting the in-

creased power of method in correctly determining outliers as the problem size decreases.

The specificity of edge matching increases in general except for a drop at α = 0.2 that can

be due to the same cause as is true for the node-based TPR. Therefore, reduction of edges

as structural information results in performance improvement.

Evaluations regarding the node displacements level are carried out by tuning ση with

five levels uniformly spaced from 5 to 25 for the same base graphs as mentioned above.

The reason for selection of these variance levels stems from the fact that the minimum

distance between neighboring junctions in all data sets is greater than ten. For α = 0.1
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(a) (b)

(c) (d)

Figure 5.6: (a) A base MRA-driven abstract graph and its synthetic modification with (b)
α = 0.17, ση = 0, and λ = 10, (c) α = 0, ση = 10, and λ = 10, and (d) α = 0, ση = 5,
and λ = 50. The synthetic nodes labels reflect the ground truth (left) and the label of the
node that they are matched to (right) (this replaces with a cross sign for outliers). Matched
edges are safely colored where un-matched edges are presented in black.

and λ = 100, averaged performance measures are given in Table 5.3. According to these

results, the performance decreases with larger displacements in both of the sensitivity and

specificity senses.

Next, we present the experimental results that show the effect of regularization param-

eter on the precision of algorithm. Synthetic graphs are built similar to the other two cases
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Table 5.3: Performance measures versus nodes displacement level (ση).

ση TPR (node/edge) TNR (node/edge) V SR ESR

5 0.93/0.92 0.83/0.88 5.92 13.98

10 0.87/0.85 0.79/0.83 7.26 18.84

15 0.86/0.79 0.71/0.75 9.04 21.09

20 0.73/0.68 0.68/0.69 14.86 26.05

25 0.65/0.60 0.64/0.57 15.11 29.10

described above having α = 0.1 and ση = 5. Given the matched nodes and edges obtained

from solving the optimization of (5.3) for λ values ranging from 10 to 200, performance

metrics are calculated and results are provided in Table 5.4. Results show that setting the

λ for the distance tolerance term (‖A‖F ) can be difficult. Large values of λ greatly limit

the range of matching non-rigidity. On the other hand, the matching becomes too flexible

at small values of λ increasing false matchings.

Table 5.4: Performance measures versus the regularization parameter (λ).

λ TPR (node/edge) TNR (node/edge) V SR ESR

10 0.95/0.93 0.81/0.76 5.92 13.98

50 0.93/0.92 0.83/0.88 5.92 13.98

100 0.83/0.76 0.89/0.79 7.75 17.65

150 0.79/0.70 0.78/0.69 9.46 24.87

200 0.75/0.68 0.71/0.65 10.87 30.47

5.5.5 Inter-subject matching

Here, we deliver the results acquired from testing the algorithm handling inter-subject cases

to prove its power against real perturbations. As follows, we use the matching results and

the V SR metric to probe the anatomical variations of vasculature according to different

samples and the level of branches from the CoW. Since the MRA images only include less

and more discriminating levels of vessel branches by nature and as shown in Figure 5.5, we

have limited the investigations to this type of data.The results are provided for 36 pair-wise

matchings of nine given graphs. The ground truth is determined via the real angiography

images.

A sample of this type of matching is shown in Figure 5.7 for two GGMs extracted from
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MRA images. Double headed arrows show the derived junction correspondences.

The statistical measures of the TPR and TNR for matching 36 pairs of graphs derived

Figure 5.7: Junction correspondences (marked by double headed arrows) of graphs derived
from two different data.

from MRA data are provided in Figures 5.8(a) and (b) for nodes and edges respectively.

The sensitivity of node matching shows to be more affected by the structural variations

where its average is close to the mean of sensitivity that is around 80%. The edge matching

sensitivity is around 74% on average where the average of specificity falls around 71%.

The lower TNR is due to the relatively higher number of non-matched edges as they are

dependent on four nodes to be matched. Therefore, the number of matchings decreases

with a higher rate than nodes.

Figure 5.9 presents the V SR measure for correctly matched nodes of 36 pairs of

registered graphs versus their levels form the CoW. The MRA images consist only five levels

of nodes counting from the circle of Willis. In addition to the large structural variations

between samples, the quality of segmentations also affects the number of matched nodes.
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Figure 5.8: Statistical measures of TPR and TNR for matching (a) nodes and (b) edges of
36 pairs of graphs derived from nine MRA images.

Thus, the number of samples is not necessarily 36 for each level.

This plot proves the claim in Section 5.2 on the larger variations of node locations
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Figure 5.9: The anatomical change analysis as V SR measure vs. the level of nodes from
the CoW.

relative to their distance from CoW. However, they yet can be matched with high precision.

We observe that the larger V SR amounts emanates from the larger translational momenta

that comes with larger radial distances rather than changes in the anatomical shapes or
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topology of the networks.

5.5.6 Multi-modal matching

Due to invasiveness of imaging modalities such as 3DRA which calls for contrast injection,

it is of great importance to develop methods capable of multimodal matching. To prove our

algorithm’s capacity in this respect, we consider its application to MRA and 3DRA images.

Graphs obtained from MRA images that include vasculature across the entire brain are

matched with the graphs derived from 3DRA images that represent only vasculature from

either right or left hemispheres but with more structural details. Therefore, there is larger

number of outliers compared to mono-modal matchings. The node and edge related accuracy

measures (TPR and TNR) obtained from matching 25 graph pairs (5 from MRA and 5 from

3DRA data) are presented in the plots of Figure 5.10(a) and (b). The performance metrics

for this type of matching display more variance. The TPR of node matchings is around 85%

on average where this value is about 38% for TNR. The dramatic reduction of specificity

stems from the high number of non-matched nodes in the 3DRA data pulling down the

ratio. The edge matching performs with a slightly lower efficiency than the node matching.

The TNR shows a rather low mean (about 24%) and variance similar to the node matching

case.

30

40

50

60

70

80

90

100

TPR TNR

TPR TNR

(a)

20

40

60

80

100

TPR TNR

TPR TNR

(b)

Figure 5.10: Statistical measures of TPR and TNR for matching (a) nodes and (b) edges
of 25 graphs derived from five MRA and five 3DRA images.
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5.5.7 Computatinal complexity

Conducive to determining the computational complexity, a clinical driven graph is set as

reference and varying size test graphs are obtained by gradually removing the terminal

nodes. The reference graph is then reduced in size similarly and the final result includes

a range of problem sizes, n1 × n2, from 1 to 324. The run time of matching these graphs

is distributed from 0.29 to 21.72 seconds measured on a 1.7 GHz CPU and 4.00 GB RAM

platform. Results shown in Figure 5.11 that are linearly normalized to the unit interval

for visual clarity suggest that the execution time is linearly dependent on the problem size.

Being tree graphs, the number of edges equals to nV − 1, thus it does not rule the run time

independently. Therefore, we haven’t investigated its effect as a separate parameter.
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Figure 5.11: Run time of the registration algorithm versus problem size n1×n2. Values are
linearly normalized to unit interval for both axes.



Chapter 6

Conclusion and Future Work

The core of this work is about developing methods that identify and register the piece-

wise linear approximation (or GGM) of the vascular networks centerlines based on specific

geometrical features of these tubular structures. This goal has been achieved in three steps.

First, a pre-processing method is designed that retrieve vasculature from raw data. Next,

a GGM identification method is proposed that does not require a precise segmentation

and advantageously works on a rough binary representation of the vasculature of arbitrary

shape. Finally, the GGMs are efficiently registered through a novel method that factorizing

the topology into the local connections.

6.1 Volumetric extraction of microvasculature

The first part of dissertation addresses the segmentation problem of 3-D vascular networks.

A novel iterative algorithm is proposed that is based on a bi-scale filtering scheme. The

proposed method is tested on the fluorescence microscopy images of the murine cranial mi-

crovasculature. These images manifest miscellaneous types of noise, varying SNRs, uneven

contrast, and structural complexity that prove to be challenging for existing segmentation

methods even when they process denoised and pre-processed data. Our method iteratively

retrieves the vasculature and robustly builds the structural pattern of interest while reject-

ing the imaging artifacts. The search algorithm uses a greedy approach which selects the

locally optimal voxels that are in compliance with the structure at each iteration. These

voxels are the points for which the radial distance and standard intensity deviation are

in the acceptable range from the given retrieved region. Evaluations on real fluorescence

microscopy and synthetic data show that the presented method has high specificity and

sensitivity while it outperforms state-of-the-art methods. Without loss of generality, this

92
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method is applicable to images of two dimension and with less computational complexity.

The segmentation method can be generalized to images of other tubular shapes includ-

ing neurons and retina’s vasculature with some modifications such as scaling. Even though

the algorithm has proved to perform superior to state-of-the-art denoising and segmentation

methods, it will highly benefit from an analytical probabilistic justification. Also, it can be

adapted for different imaging modalities with different probabilistic models of noise.

6.2 Geometrical graph-based model identification

We have developed an accurate process for graph-based skeletal model identification of

3-D vascular networks and demonstrated its capabilities in the processing of fluorescence

microscopy data collected in a murine model. Novel algorithms for critical points (junc-

tions and waypoints) detection and graph extraction have been developed that enable the

semi-automatic delineation of 3-D interconnected tubular networks. Critical point detection

required no prior information about the degree of junctions, direction of branches, or curva-

ture of vessels. A binary integer programming approach was used to identify optimal edges

connecting the critical points where optimality was defined in terms of the degree to which

possible edges in the graph aligned with and overlapped vessel structure. Exploiting the

structural specifications of loopy networks in addition to the local intensity statistics in the

design of these algorithms has made them robust to the data imperfections like noise and

inhomogeneous illumination that are very common specifically in fluorescence microscopy

images. This claim has been empirically verified by the experimentation results presented

in Chapter 4.

Development of the divide-and-conquer approach has reduced the computational com-

plexity of the proposed algorithm. A large data set is decomposed into a collection of

non-overlapping blocks, networks are identified in each, and then stitched together using

a bipartite matching method to connect boundary points across neighboring block faces.

With such a decomposition of the problem, all of the blocks could, given sufficient comput-

ing resources, be processed in parallel. In this case, the latency of the processing is dictated

by the maximum time needed for a given block. For the data and multiple tessellations

into blocks considered here, the maximum time over all blocks generated by the 12 four-

block divisions of data discussed in Section 4.4.7 was 8542 s. For the forty-eight cases of

16-block partitioning case this number is 5696 s, while the maximum time to process any

block from 64-block division was 161 s. Based on these numbers a parallel implementation

of the method would likely be scalable. Even where we are limited to processing blocks
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sequentially, the results are still encouraging. The median time to processing all four blocks

one-after-the-other in the twelve cases was 15,149 s. These numbers drop to 1718 s in the

16-block case and 735 s for 64 decompositions. Again, the total run time has greatly been

affected by the partitioning as we see it has been reduced by factor of 20.6 from four to 64

partitions.

However, designing accurate and computationally feasible techniques that improve the

scalability without performing the divide-and-conquer approach is an open problem to in-

vestigate. Also, additional work on the divide and conquer approach can be conducted to

examine the effect of block shapes in the performance e.x. the necessity of having uniform

subdivisions. Giving spatial adaptivity to the divisions is specifically an important case to

study.

The network model detected by this method gives an efficient and accurate founda-

tion for future efforts in general vasculature segmentation. Another area of development

is related to automizing the selection of spherical shell thickness, δρ, and Gaussian kernel

standard deviation, σG, in accordance to the data specifications.

We have observed that performance of the CP detection process is sensitive to the

quality of segmentation and shape of the vasculature. For instance, the GGM identification

method faces challenges forming discriminating utility functions when processing structures

with either longer and less curved or highly tortuous branches as precise CPs have not been

found. Thus, it is crucial for having a broader application to modify the three steps of con-

vex hull filtering, spherical shell filtering, and agglomerative clustering to produce robuster

CPs to noise and structural variation factors.

Completing these studies and extending the method developed here to a broader range

of tubular identification problems constitutes our primary areas of continued investigation.

6.3 Geometrical graph-based model registration

The human cranial artery networks show specific geometric properties in structure that mo-

tivated us to investigate the application of graph matching to the GGMs. Due to imaging

and image processing artifacts and inter-subject variations, graphs manifest different node

counts and edge distortions. In the literature, graph matching of this type of data are con-

sidered inexact matching or sub-graph isomorphism and are usually approached by solving

an NP-hard quadratic assignment problem. In this work, we exploited the intuition that

two nodes are correspondent if their neighbors correspond maximally to build a novel fea-

ture that embodies geometrical attributes of nodes (location of junctions) and edges (length
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and curvature of vessels) in a topology encoded form. This feature termed signature, allows

formulating the matching problem in a linear assignment problem rather than a QAP form

through solving which nodes of the geometrically induced attributed graphs are matched

efficiently. Using signatures, we relaxed the topology locally and reduced the computational

complexity profoundly. Through relaxing the assignment matrix to be doubly stochastic

and having continuous elements, a combinatorial problem is turned into a convex optimiza-

tion. Nodes are first matched via Graduated Assignment (GA) technique, and then the

edge correspondences are determined using a heuristic approach. The performance of this

method is tested using clinical angiography images and synthetic data sets. Quantitative

results in the form of sensitivity and specificity of matched nodes and edges, suggest that

this method is highly reliable under the influence of different perturbing factors like node

displacement and problem size. Quality of inter-subject and multimodal matching of clini-

cal data have also been confirmed through provided results.

One area of future work for this part would be establishing methods that register

intensity-based images of tubular structures using their GGMs. This provides two-fold

advantages: A noticeably lower number of data points are needed for registration when

graphs are the subject of study rather than full images, and the topological information is

also considered in finding the correspondences (increasing the morphology change tolerance

where structures appear with large variations) that is lacking with intensity or geometry-

based techniques.

Another path to consider for further investigation is increasing the method’s capacity

by adding flexibility to the number of connections in the signature definition. If the pro-

posed registration method allows arbitrary number of connections rather than restricting it

to three, it will be more efficiently applicable to graphs obtained from vasculature of any

shape and in a more general sense, all attributed graphs.

Studying statistics on tree-structured objects has recently become subject of growing

number of studies [112, 113] as it would have a wide range of applications. However, the

existing works on finding tree distances are algorithmic rather than geometric. This indeed

yields difficulties in the problem of finding the mean of trees, and only a limited number of

methods are designed for analysis of tree shapes. Thus, this field is remained as an open

area of research. The GGMs and proposed registration technique could be used to build

a shape analysis framework. Resulting from such a framework would be discrete vascular

atlases that are quantitative gold standards for anatomical morphology in medical studies.

A multi-graph matching based on the pair-wise registration results can potentially result in

a mean graph, and e.x. PCA analysis of the matched attributes between healthy samples
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yields normal modes of structural and attributal variations.
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