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Domain Generalization via Representation Learning

Abstract

The success of traditional machine learning techniques is highly dependent on the

assumption that the training and test data are drawn from independent and identical

distributions. This assumption provides a theoretical guarantee and serves as a

foundation for the high performance of traditional methods. However, in real-world

applications, the performance of well-trained models often suffers from degradation

due to the violation of this fundamental assumption. Factors such as environment,

equipment, and human activity can easily lead to significant differences in data

distribution across training and test data, which poses challenges to the generalization

ability of models.

One direction of addressing the above problem is Domain Generalization, which

aims to enhance the generalization ability of trained models, allowing them to perform

well even on unseen test data with different distributions. In this thesis, we conduct

a comprehensive review of previous work, focusing on the theoretical foundations,

algorithms, and workflows associated with the representation learning-based domain

generalization algorithms. We identify the gap between previous theoretical work and

practical algorithms, and propose a novel theory to bridge this gap. We also explore

the weakness of some domain generalization principles and propose an algorithm

as a potential solution. In addition to focusing on algorithms, we recognize the

importance of model selection for methods designed for domain generalization. In

light of this, we propose a novel model selection method that takes into account the

unique characteristics and challenges associated with domain generalization. This

selection method considers the complexities of domain shifts and ensures the reliable

assessment of model generalization across different domains. By incorporating this
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validation method into the evaluation process, we can gain more insights into the

application of domain generalization algorithms to practical problems.

Through this thesis, we contribute to the field of domain generalization by bridging

the gap between previous theory and practice, offering potential solutions to address

the failure cases observed in certain domain generalization methods and emphasizing

the importance of considering the workflow of the domain generalization problem. The

proposed theoretical advancements, algorithms, and validation method collectively aim

to enable machine learning models to generalize effectively across diverse real-world

domains with varying data distributions.
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Chapter 1

Introduction

We have witnessed great success in machine learning models and their applications

in the real world. The natural language generation model can generate human-

like languages, serving as an editing assistant [3], the large AI vision model can

automatically detect and localize target objects [75], and the model trained by medical

images can aid in the early detection and diagnosis of diseases [142]. However,

performance degradation is often observed when the well-trained model is applied in

the real world.

For example, a language model trained using a specific corpus related to one partic-

ular linguistic register may struggle to perform well when faced with a different corpus

with a distinct linguistic register [137]. Similarly, a medical image processing model

trained exclusively on data from one hospital may not exhibit optimal performance

when applied to test data from another hospital [57]. Why do models perform worse

in these cases? To answer this question, let us delve into the algorithms employed for

training these models. Most models, including various types of deep neural networks,

are trained using Empirical Risk Minimization (ERM) [129]. Though ERM offers

theoretical guarantees on performance [129], there is a critical assumption underlying

the ERM framework, namely the training and test data should be independent and

1



identically distributed (i.i.d.). Given this fact, it becomes easier to understand the

reasons behind the performance deterioration: the primary cause lies in the disparity

between the data used during training and the data encountered during application.

In other words, the models struggle to adapt effectively to new data that deviates

from the distribution of the training data. As a consequence, they have difficulties

in generalizing their learned knowledge, resulting in sub-optimal performance when

confronted with novel, unseen data.

Methods that aim to mitigate this problem are broadly classified into two categories,

namely Domain Adaptation (DA) [22] and Domain Generalization (DG) [24]. Both

DA and DG aim to find a model that can generalize well in scenarios when the training

data from the seen domain does not share the same data distribution as the test

data from the unseen domain. Although sharing the similar objective, there is a

fundamental difference in the settings for DA and DG.

DA typically requires the presence of unlabeled test data at the training time for

the model to perform distribution matching between training and test data. However,

this dependence on test data can limit the power of DA methods. By primarily

focusing on matching the distributions of the training and test data, DA methods

may restrict the model’s generalization ability to the distributions encountered during

the training [8], and when confronting data exhibiting a different distribution shift,

re-training may be unavoidable. Additionally, accessing the test data at training time

is not always trivial. For instance, in medical image classification, distribution shifts

occur in data collected from different patients, but it is impossible to collect all data

from future, unseen patients for the model training [151].

As a step forward, Domain Generalization (DG) [24], a more general framework

has been proposed to address the challenges posed by the shift in distribution and the

absence of test data [151]. The basic assumption of DG is that the training data is

composed of data with multiple related but distinct distributions, or in other words,
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there are multiple distinct seen domains during the training time for the model to learn

from. Importantly, under the DG setting, the unseen test data is neither required nor

utilized during the training phase. In the end, DG aims to develop models that exhibit

strong performance on data with both seen and unseen distributions. Compared to

DA, DG is more challenging, but is also more practical and aligns more closely with

real-world applications. However, it is also worth noting that, regardless of the appeal

of the goal, the DG problem cannot be tackled without proper assumptions on the

unseen test data, as once the test cases are arbitrary, the model can perform arbitrarily

bad. As a result, the development trajectory of DG largely overlaps with the DA

problem, particularly in theoretical work.

In this thesis, we will first review the theoretical foundations of the DG problem,

which were initially developed for the DA problem. We will focus on the limitations of

these theoretical works, especially when used to guide practical algorithm development.

Subsequently, we will delve into methods specifically designed for the DG problem, pay

close attention to their weaknesses, and propose potential solution to address them.

Furthermore, we aim to broaden our perspective beyond the model and algorithms

themselves, shifting our attention to the whole workflow of DG. Specifically, we will

rethink the long-standing methods used for model selection and validation during

DG development, discuss potential issues associated with these methods, and propose

future directions for improvement.

1.1 Outline

The main body of thesis include 5 chapters:

• In Chapter 2, we revisit the theoretical works that form the basis of many DG

algorithms. This chapter introduces how the risk on the unseen domain (data) is

bounded. As most of these works are derived from Domain Adaptation (DA), we
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provide a review of DA, highlighting its significant impact on the development

of DG. Additionally, we present different branches specifically designed for DG

and their corresponding algorithms. This chapter serves as a comprehensive

literature review on the DG problem.

• Chapter 3 is divided into two parts. In Part I, we analyze the limitations of

previous theoretical bounds for the risk of the unseen domain. Identifying the

gaps between theory and practical algorithms, we propose a new bound that

overcomes these limitations, bridging the gap between previous theory and

practice. Additionally, we introduce a novel algorithm for domain generalization

based on our new upper bound and demonstrate the superior performance of

our algorithm on several benchmark datasets for DG. Part II complements the

theoretical insights of Part I. We provide an alternative lens through which to

understand the DG problem, underscoring the importance of imposing specific

constraints on the representation function. This chapter includes the joint works

with Thuan Nguyen, Prakash Ishwar, Matthias Scheutz, and Shuchin Aeron,

published as [89] and [103]. Specifically, the author of this thesis makes the

following contributions to Part I work: (1) identifying the limitation of the

previous theoretical work and the mismatch between previous theory and current

implementation; (2) proposing the initial version of the theoretical bound with the

invertibility constraint on the representation function. This stage of work can be

found on arXiv 1 2; (3) assisting co-authors in refining the initial theoretical work

by relaxing the invertibility constraint on representation function; (4) proposing

the practical algorithm and conducting related experiments. For Part II, the

author contributes on (1) proposing the reconstruction loss term for information

preservation; (2) proving the trade-off between minimizing the reconstruction
1https://arxiv.org/pdf/2109.01902v3.pdf
2https://arxiv.org/pdf/2109.01902v4.pdf
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loss and the domain discrepancy; (3) conducting related experiments.

• Chapter 4 delves deeper into the domain-invariant representation learning ap-

proach, concentrating specifically on scenarios that may lead to the breakdown of

DG algorithms. In this chapter, rather than highlighting the success of previous

DG work, we primarily focus on the limitations and weaknesses of existing

principles and approaches. Based on these reflections, we propose a potential

solution grounded in both theoretical insight and practical application. The

main content of this chapter is based on the joint work with Thuan Nguyen,

Prakash Ishwar, Matthias Scheutz, and Shuchin Aeron [101]. The author of

this thesis specifically contributes on the algorithm design and its practical

implementations for conducting corresponding experiments.

• In Chapter 5, we emphasize the importance of model validation and selection

methods instead of models and algorithms themselves. We show that despite

receiving limited attention so far, the validation and model selection methods for

DG are not trivial. We demonstrate that some long-standing methods adopted

by previous DG works may not be appropriate in the DG context. To support

our argument, we provide proof and introduce a novel model selection method

that has shown effectiveness compared to previous approaches. This chapter

is based on the joint work with Thuan Nguyen, Matthias Scheutz, Prakash

Ishwar, and Shuchin Aeron [90]. Specifically, contributions of the author of

this thesis can be summarized as: (1) identifying limitations of conventional

model validation/selection methods for the DG problem; (2) proposing the

new validation method specifically designed for DG; (3) jointly proposing the

theoretical foundations for the proposed validation method with co-authors.

Publications not included in this thesis

In order to align with the scope and focus of this thesis, the author has chosen to
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include only a portion of the research work in this thesis. Other research work that

falls outside the scope of this thesis includes:

• Boyang Lyu, Thao Pham, Giles Blaney, Zachary Haga, Angelo Sassaroli,

Sergio Fantini, and Shuchin Aeron. Domain adaptation for robust workload level

alignment between sessions and subjects using fNIRS. Journal of Biomedical

Optics, 26(2):1 – 21, 2021 [91]

• Thuan Nguyen, Boyang Lyu, Prakash Ishwar, Matthias Scheutz, and Shuchin

Aeron. Joint covariate-alignment and concept-alignment: a framework for

domain generalization. In 2022 IEEE 32nd International Workshop on Machine

Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2022 [102]

• Ayca Aygun, Boyang Lyu, Thuan Nguyen, Zachary Haga, Shuchin Aeron, and

Matthias Scheutz. Cognitive workload assessment via eye gaze and eeg in an

interactive multi-modal driving task. In Proceedings of the 2022 International

Conference on Multimodal Interaction, pages 337–348, 2022 [18]

• Matthias Scheutz, Shuchin Aeron, Ayca Aygun, JP de Ruiter, Sergio Fantini, Cris-

tianne Fernandez, Zachary Haga, Thuan Nguyen, and Boyang Lyu. Estimat-

ing systemic cognitive states from a mixture of physiological and brain signals.

Topics in Cognitive Science, 2023 [116]

1.2 Notations

In this section, we will introduce some general notations. These notations will be used

throughout this thesis unless otherwise stated.

• 𝒳 ⊆ R𝑑, 𝒴 ⊆ R denote the input space and the label space, respectively.

6



• 𝑋 is the input random variable, 𝑌 is the label random variable. The correspond-

ing input data and label are denoted as 𝑥 ∈ R𝑑 and 𝑦 ∈ R.

• We use superscript 𝑠 to denote the observed (seen) domain and superscript 𝑢 to

denote the unseen test domain.
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Chapter 2

From Domain Adaptation to Domain

Generalization

In this chapter, we will conduct a comprehensive and review of the key concepts used

in Domain Generalization (DG), highlighting the significant overlap between DG and

Domain Adaptation (DA). By thoroughly exploring these concepts, we aim to provide

a solid foundation for understanding the principles and methodologies employed in

DG.

2.1 Empirical Risk Minimization

2.1.1 Notation

Consider a domain 𝑣 as a triple (𝜇(𝑣), 𝑓 (𝑣), 𝑔(𝑣)) consisting of a distribution 𝜇(𝑣) on

the input 𝑥 ∈ R𝑑, a representation function 𝑓 (𝑣) : R𝑑 → R𝑑′ , from the input space

to the representation space, and a stochastic labeling function 𝑔(𝑣) : R𝑑′ → 𝒴 from

the representation space to the label space. Samples are independently drawn from

each domain. We denote the unseen domain by (𝜇(𝑢), 𝑓 (𝑢), 𝑔(𝑢)) and 𝑆 seen domains

by (𝜇(𝑠), 𝑓 (𝑠), 𝑔(𝑠)), with 𝑠 = 1, . . . , 𝑆. Let ℱ = {𝑓 |𝑓 : R𝑑 → R𝑑′} be the set of

8



representation functions, 𝒢 = {𝑔|𝑔 : R𝑑′ → 𝒴} the set of stochastic labeling functions,

ℋ := 𝒢 ∘ ℱ the set of hypotheses, with each hypothesis ℎ : R𝑑 → 𝒴 obtained by

composing a 𝑔 ∈ 𝒢 with an 𝑓 ∈ ℱ , i.e., ℎ = 𝑔 ∘ 𝑓 . 𝑓#𝜇(𝑣) denotes the pushforward

of distribution 𝜇(𝑣) under the representation function 𝑓 , i.e., the distribution of 𝑓(𝑥)

with 𝑥 ∼ 𝜇(𝑣). ℎ(𝑣) = 𝑔(𝑣) ∘ 𝑓 (𝑣) denotes the ground truth labeling rules.

The risk of using a hypothesis ℎ in domain 𝑣 is then defined by:

𝑅(𝑣)(ℎ) := E𝑥∼𝜇(𝑣)
[︀
ℓ(ℎ(𝑥), ℎ(𝑣)(𝑥))

]︀
, (2.1)

where E[·] denotes the expectation, ℎ(𝑣) = 𝑔(𝑣) ∘ 𝑓 (𝑣), and ℓ(·, ·) : 𝒴 × 𝒴 → R is a loss

function that measure the difference between the hypothesis ℎ and the true labeling

ℎ(𝑣). These notations will be used in the following part. To be consistent with theory,

when referring to algorithm design, we also denote 𝑓 as feature extractor and 𝑔 as

classifier.

2.1.2 Empirical Risk Minimization for Single Domain

Minimizing the risk to find the optimal hypothesis ℎ* over the hypotheses set ℋ is

the fundamental idea of supervised machine learning algorithms, as shown below:

ℎ* = argmin
ℎ∈ℋ

𝑅(𝑣)(ℎ) (2.2)

However, 𝑅(𝑣)(ℎ) is intractable due to the lack of knowledge on 𝜇(𝑣). Thus, in practice,

given a set of independent and identically distributed (i.i.d.) samples {(𝑥(𝑣)
𝑖 , 𝑦

(𝑣)
𝑖 )}𝑁𝑣

𝑖=1
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drawn from domain 𝑣, we compute an approximation of the risk as,

�̂�(𝑣)(ℎ) =
1

𝑁 (𝑣)

𝑁𝑣∑︁
𝑖=1

ℓ(ℎ(𝑥
(𝑣)
𝑖 ), ℎ(𝑣)(𝑥

(𝑣)
𝑖 )) (2.3)

=
1

𝑁 (𝑣)

𝑁𝑣∑︁
𝑖=1

ℓ(ℎ(𝑥
(𝑣)
𝑖 ), 𝑦

(𝑣)
𝑖 ) (2.4)

denoted as empirical risk. Most supervised machine learning algorithms optimize the

above objective to find the optimal ℎ* in the hypotheses set ℋ on domain 𝑣.

2.1.3 Empirical Risk Minimization for Multiple Domains

Now, considering the input is not only from one domain but from several different

domains (𝜇(𝑠), 𝑓 (𝑠), 𝑔(𝑠)), with 𝑠 = 1, . . . , 𝑆, it is natural to combine all data from 𝑆

domains to form a new dataset and apply the ERM, leading to the following objective:

argmin
ℎ∈ℋ

1

𝑆

𝑆∑︁
𝑠=1

𝑁𝑠∑︁
𝑖=1

1

𝑁 𝑠
ℓ(ℎ(𝑥

(𝑠)
𝑖 ), ℎ(𝑠)(𝑥

(𝑠)
𝑖 )) (2.5)

where ℎ(𝑠) = 𝑔(𝑠) ∘ 𝑓 (𝑠) and ℎ(𝑠)(𝑥(𝑠)
𝑖 ) = 𝑦

(𝑠)
𝑖

The combination of data from different domains can be broadly observed in

practical problems. For example, to train a model that can distinguish cell types in the

blood samples from patients, it is inevitable to gather samples from different patients,

i.e. different domains, to form the training dataset. Similarly, a face recognition model

needs the training data to contain faces from different races, gender, etc. to achieve

good accuracy.

2.2 Domain Adaptation

Although combining data from different domains (sources) is a natural extension of the

ERM method, allowing the model to be exposed to more diverse data and potentially
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improving its performance on unseen data, the model remains vulnerable to scenarios

where the test data distribution diverges from the training data. Specifically, issues

arise when the i.i.d. assumption is violated.

To address this issue, Domain Adaptation (DA) [22,77] emerge as a potential solu-

tion. Formally, the DA problem assumes a set of data and label pairs {(𝑥(𝑠)
𝑖 , 𝑦

(𝑠)
𝑖 )}𝑁𝑠

𝑖=1

from the seen domain (𝜇(𝑠), 𝑓 (𝑠), 𝑔(𝑠)) and the unlabeled data {𝑥(𝑢)
𝑖 }𝑁

𝑢

𝑖=1 from the unseen

test domain (𝜇(𝑢), 𝑓 (𝑢), 𝑔(𝑢)) are both accessible. Under such setting, a formal theory

on the risk in the unseen domain for binary classification problems is first proposed

in [22], as stated below:

Theorem 2.2.1. (Theorem 1 in [22]). Let 𝑓 be a fixed representation function from

the input space to representation space and 𝒢 be a hypothesis space of VC-dimension

𝑘. If random labeled samples of size 𝑚 are generated by applying 𝑓 to i.i.d. samples

from the seen domain, then with probability at least 1− 𝛿, for every 𝑔 ∈ 𝒢:

𝑅(𝑢)(𝑔) ≤ 𝑅(𝑠)(𝑔) + 𝑑𝒢(𝑓#𝜇
(𝑢), 𝑓#𝜇

(𝑠)) + 𝜆 (2.6)

≤ �̂�(𝑠)(𝑔) +

√︂
4

𝑚

(︀
𝑘 log

2𝑒𝑚

𝑘
+ log

4

𝛿

)︀
+ 𝑑𝒢(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠)) + 𝜆 (2.7)

where 𝑒 is the base of the natural logarithm, 𝑑𝒢 isℋ-divergence1, 𝑅(𝑢)(𝑔) = E𝑧∼𝑓#𝜇(𝑢)
[︀
|𝑔(𝑧)−

𝑔(𝑢)(𝑧)|
]︀

denotes the risk in the unseen domain, 𝑅(𝑠)(𝑔) = E𝑧∼𝑓#𝜇(𝑠)
[︀
|𝑔(𝑧)− 𝑔(𝑠)(𝑧)|

]︀
and �̂�(𝑠)(𝑔) denote the risk in the seen domain and its empirical estimation, respectively,

and:

𝜆 = inf
𝑔∈𝒢

(︀
𝑅(𝑠)(𝑔) +𝑅(𝑢)(𝑔)

)︀
(2.8)

is the combined risk.

ℋ-divergence [72] is a measure to quantify the distance between two distributions,
1Please note that in [22], the authors employed different notations compared to ours, where ℋ

represented the hypothesis space of the labeling function, whereas in our work, it is denoted as 𝒢.
Although we have adhered to the naming convention used in the original work, we wish to bring this
subtle difference to the readers’ attention.
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the ℋ-divergence between two distributions 𝜇(𝑢), 𝜇(𝑠) is written as:

𝑑ℋ(𝜇
(𝑢), 𝜇(𝑠)) = 2 sup

ℎ∈ℋ
| Pr
𝑥∼𝜇(𝑢)

(ℎ(𝑥) = 1)− Pr
𝑥∼𝜇(𝑠)

(ℎ(𝑥) = 1)| (2.9)

ℋ-divergence is firstly proposed in [72]. It is guaranteed to be equal or smaller

than the 𝐿1 distance, and when the hypothesis classes have finite VC-dimension,

ℋ-divergence is general smaller than the 𝐿1 distance and can be estimated from the

finite samples.

Though the above upper bound sheds some light to the DA problem, for example,

(2.8) indicates that we cannot expect a good generalization if no classifier can perform

well on both the seen and unseen domain, there exists a fundamental problem that the

whole bound depends on an unknown representation function 𝑓 . Simply minimizing

the above upper bound may not lead to a true DA due to this dependency.

Later, the authors extend their work for establishing a more general upper bound

for the risk of the unseen domain. They consider a binary classification problem with

hypothesis function ℎ : 𝒳 → 𝒴, thereby eliminating the constraint tied to the fixed

representation function 𝑓 . In this context, Ben-David et al. [21] propose the following

theorem to bound the risk on the unseen domain:

Theorem 2.2.2. (Theorem 2 in [21]). Let ℋ be a hypothesis space of VC-dimension

𝑘, 𝒰 (𝑠),𝒰 (𝑢) be two sets of unlabeled data with size of 𝑚′ drawn independently from

domain 𝜇(𝑠) and 𝜇(𝑢), respectively, then with probability at least 1− 𝛿, for every ℎ ∈ ℋ:

𝑅(𝑢)(ℎ) ≤ 𝑅(𝑠)(ℎ) +
1

2
𝑑ℋΔℋ(𝒰 (𝑠),𝒰 (𝑢)) + 𝜆+ 𝐶(𝑚, 𝑘, 𝛿) (2.10)

where 𝐶(𝑚, 𝑘, 𝛿) = 4

√︁
2𝑑 log(2𝑚′)+log( 2

𝛿
)

𝑚′ , 𝑑ℋΔℋ is empirical estimated ℋ∆ℋ-divergence,

𝑅(𝑢)(ℎ) = E𝑥∼𝜇(𝑢)
[︀
|ℎ(𝑥)− ℎ(𝑢)(𝑥)|

]︀
denotes the risk in the unseen domain, 𝑅(𝑠)(ℎ) =
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E𝑥∼𝜇(𝑠)
[︀
|ℎ(𝑥)− ℎ(𝑠)(𝑥)|

]︀
denote the risk in the seen domain, and:

𝜆 = inf
ℎ∈ℋ

(︀
𝑅(𝑠)(ℎ) +𝑅(𝑢)(ℎ)

)︀
(2.11)

is the combined risk.

A new measure ℋ∆ℋ-divergence [21] is introduced in the above theorem. Specif-

ically, ℋ∆ℋ is a symmetric difference hypothesis space of the hypothesis space ℋ,

denoted as ℋ∆ℋ = {ℎ(𝑥) ⊕ ℎ′(𝑥)|ℎ, ℎ′ ∈ ℋ}, where ⊕ is the XOR function. Thus,

𝑑ℋΔℋ(𝒰 (𝑠),𝒰 (𝑢)) can be written as

𝑑ℋΔℋ(𝒰 (𝑠),𝒰 (𝑢)) = 2 sup
ℎ,ℎ′∈ℋ

| Pr
𝑥∼𝜇(𝑢)

(ℎ(𝑥) ̸= ℎ′(𝑥))− Pr
𝑥∼𝜇(𝑠)

(ℎ(𝑥) ̸= ℎ′(𝑥))| (2.12)

Under such definition, every hypothesis in the ℋ∆ℋ space stands for the set of

difference between two hypotheses in the original ℋ space [21]. The introduce of

ℋ∆ℋ-divergence resolves the problem led by the 𝐿1 distance by explicitly taking

the hypothesis class into account [25]. Additionally, since ℋ∆ℋ-divergence is always

smaller than or equal to the 𝐿1 distance, it lead to a tighter upper bound compared

to using the 𝐿1 distance [21].

Given these advantages of the ℋ∆ℋ-divergence, Ben-David et al. subsequently

propose its empirical estimation using finite samples from both seen and unseen

domains:

Lemma 2 in [21]. For ℋ∆ℋ space and sample set 𝒰 and 𝒰 ′ of size 𝑚, the empirical

ℋ∆ℋ-divergence is

𝑑ℋΔℋ(𝒰 ,𝒰 ′) = 2

⎛⎝1−min
ℎ∈ℋ

⎡⎣ 1

𝑚

∑︁
ℎ(𝑥)=0

𝐼[𝑥 ∈ 𝒰 ] + 1

𝑚

∑︁
ℎ(𝑥)=1

𝐼[𝑥 ∈ 𝒰 ′]

⎤⎦⎞⎠ (2.13)

where 𝐼[𝑥 ∈ 𝒰 ] is 1 when 𝑥 ∈ 𝒰 holds and 0 otherwise.

As indicated in previous studies [21,51], the estimation mentioned above can be
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viewed as the error of a binary classification problem, in which samples from the

seen and unseen domains are hypothetically labeled as 0 and 1, respectively. The

value of the approximation can then be determined by calculating the error of the

optimal classifier. The aforementioned theoretical works have start a new era of

algorithm development for the Domain Adaptation (DA) problem. Building upon the

foundations laid by [21, 22], a considerable body of research works [51, 85, 146, 147]

have focused on minimizing the first and the second terms of the upper bounds

(2.6) and (2.10) to achieve effective DA. More specifically, these algorithms seek to

find representations that have unchanged distributions across domains and can also

achieve small risk on the seen domain. Among these algorithms, we select Domain

Adversarial Neural Network (DANN) [51] which serves as a pioneering approach in

utilizing the aforementioned theoretical works as an exemplar of algorithms based on

the domain-invariant representation learning.

2.2.1 Domain Adversarial Neural Network

Motivated by the theoretical works [21, 22], Domain Adversarial Neural Network

(DANN) is first proposed in [51], where the authors explicitly state their key idea for

DA as learning representations that informative of the task label but indiscriminate

with respect to the shift between domains. To achieve this goal, the authors proposed

an adversarial neural network-based algorithm, where the adversarial loss was used

for approximating the divergence between seen and unseen domains. The algorithm’s

structure consists of three components: a common feature extractor 𝑓𝜃𝑒 , followed

by two parallel classifiers 𝑔𝜃𝑐 , 𝑔𝜃𝑑 . With a little bit abuse of notation, we use 𝑓𝜃𝑒 to

represent the encoder parameterized by 𝜃𝑒, which is responsible for mapping the input

to the representation space. Similarly, 𝑔𝜃𝑐 , parameterized by 𝜃𝑐, represents the classifier

mapping from the representation to the label space. So far, it is the typical model

structure for the ERM, where both 𝑓𝜃𝑒 and 𝑔𝜃𝑐 are optimized together to minimize
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the cross-entropy (CE) loss by the following objective function:

L𝑐 = −
1

𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝑦
(𝑠)
𝑖 log 𝑝(𝑔𝜃𝑐(𝑓𝜃𝑒(𝑥

(𝑠)
𝑖 ))) (2.14)

The standout component of the DANN algorithm is the introduction of the classifier

𝑔𝜃𝑑 , which is designed to distinguish the representation of the seen domain from those

of the unseen domain. For clarity, we refer 𝑔𝜃𝑑 as domain discriminator, as widely used

in DA works [31,36,44].The authors pseudo-labele the data from the seen domain as

“0” (represented as 𝑑(𝑠)) and unseen domain as “1” (represented as 𝑑(𝑢)). Subsequently,

they train the domain discriminator 𝑔𝜃𝑑 to minimize the following objective function:

L𝑑 = −
1

𝑁 𝑠

𝑁𝑠∑︁
𝑖=1

𝑑
(𝑠)
𝑖 log 𝑝(𝑔𝜃𝑑(𝑓𝜃𝑒(𝑥

(𝑠)
𝑖 )))− 1

𝑁𝑢

𝑁𝑢∑︁
𝑗=1

𝑑
(𝑢)
𝑖 log 𝑝(𝑔𝜃𝑑(𝑓𝜃𝑒(𝑥

(𝑢)
𝑗 ))) (2.15)

Following the same logic as the Generative Adversarial Network (GAN) [54], the

above two objectives are optimized in an adversarial way by optimizing:

(𝜃*𝑓 , 𝜃
*
𝑐 ) = argmin

𝜃𝑓 ,𝜃𝑐

(L𝑑 + L𝑐) (2.16)

𝜃*𝑑 = argmax
𝜃𝑑

L𝑑 (2.17)

The feature extractor 𝑓𝜃𝑒 is trained to fool the domain discriminator by extracting

indistinguishable representations from both the seen and unseen domain, while the

domain discriminator aims to fight back to identify the source of the representation

accurately. At the same time, feature extractor 𝑓𝜃𝑒 aims to learn representations that

are useful for the target classification task.

The adversarial loss part is essential for DA both theoretically and practically.

On one hand, from the theoretical perspective, it approximates and minimizes the

ℋ-divergence in 2.13, thus approximately minimizing the second term in the upper
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bounds derived in 2.6 and 2.10. On the other hand, the intuition behind this two-player

game is interesting. It tries to eliminate the information about the domains from the

extracted representations, making them to be domain-invariant representations. This

concept is widely applied in the upcoming DA and DG works [120,147].

However, though directly motivated by 2.2.1 and 2.2.2, a gap between the theory

and practice exists. The second term that quantifies domain discrepancy lies in the

data space instead of the representation space, in contrast to the implementation of

the DANN algorithm. For now, let us keep it in mind and we will discuss this gap in

detail in the next chapter.

2.2.2 Domain Adaptation Theory Development

Though [21, 22] have built solid foundations for the DA problem, some problems

remain unsolved. As pointed out in [146], the combined risk term in 2.11 of Theorem

2.2.2 depends on the hypothesis class ℋ. As an extension of the previous theorems,

Zhao et al. [146] propose the following theorem:

Theorem 2.2.3. (Theorem 4.1 in [146]). Let ℋ be a hypothesis class such that

ℎ : 𝒳 → [0, 1], (𝜇(𝑠), ℎ(𝑠)) and (𝜇(𝑢), ℎ(𝑢)) be the seen and unseen domains, then the

following inequality holds:

𝑅(𝑢)(ℎ) ≤ 𝑅(𝑠)(ℎ)+𝑑ℋ̃(𝜇
(𝑢), 𝜇(𝑠))+min{E𝑥∼𝜇(𝑠) [|ℎ

(𝑠)(𝑥)−ℎ(𝑢)(𝑥)|],E𝑥∼𝜇(𝑢) [|ℎ
(𝑠)(𝑥)−ℎ(𝑢)(𝑥)|]}

(2.18)

where ℋ̃ := {𝑠𝑖𝑔𝑛(|ℎ(𝑥)− ℎ′(𝑥)| − 𝑡) | ℎ, ℎ′ ∈ ℋ, 0 ≤ 𝑡 ≤ 1}

The first two terms in the above bound have a similar interpretation as those in

(2.6) and (2.10), while the last term is distinguishable. We can observe that unlike

the combined risk term in (2.6) and (2.10), the last term in the above bound is free

of the hypothesis class, thus intrinsic to the domain itself. Furthermore, the last

term serves as another important part of the whole DA problem puzzle: it quantifies
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the class-conditional distribution shift of the data between seen and unseen domains,

which is not emphasized in previous theoretical works. Though taking both shift into

account, it should be noted that Zhao et al. directly adopt the labeling rule as ℎ(𝑠)

and ℎ(𝑢) for each domain, instead of considering the composition of 𝑔(𝑠) ∘ 𝑓 (𝑠) and

𝑔(𝑢) ∘ 𝑓 (𝑢), which leads to the same issue as we mentioned in Section 2.2.1. We will

discuss the potential issue related to it in the following chapter.

From the three theorems above, we observe that distribution discrepancies between

seen and unseen domains are quantified using the ℋ-divergence or its variation. This

theoretical foundation has gained wide acceptance and has consequently spurred the

development of adversarial algorithms [36,120,147]. However, as noted in [118], this

adversarial framework can encounter gradient vanishing problems, especially when

the domain discriminator can accurately discriminate between the representations of

the seen and unseen domains. To mitigate this practical issue, Shen et al. introduce

an upper bound for the risk in unseen domains, substituting the ℋ-divergence with

Wasserstein-1 distance [37,105].

Theorem 2.2.4. (Theorem 1 in [118]). Let ℋ be a hypothesis class such that ℎ ∈ ℋ

are all K-Lipschitz continuous for some K, then

𝑅(𝑢)(ℎ) ≤ 𝑅(𝑠)(ℎ) + 2𝐾W1(𝜇
(𝑢), 𝜇(𝑠)) + 𝜆 (2.19)

where 𝜆 = infℎ∈ℋ
(︀
𝑅(𝑠)(ℎ) +𝑅(𝑢)(ℎ)

)︀
Here, a new metric, Wasserstein-1 distance [37,105,115] first comes to the stage.

We provide a brief overview of the definition of the Wasserstein distance in Appendix

A. The authors then propose a theory-driven algorithm called Wasserstein Distance

Guided Representation Learning (WDGRL). This algorithm aims to minimize the

classification loss and maximize the dual form of the Wasserstein-1 distance between

the extracted representations of both seen and unseen domains, simultaneously. Al-
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though it also employs an adversarial training scheme in practice, the objective differs.

Specifically, the adversarial training part does not aim at fooling the domain discrimi-

nator, but rather at maximizing the dual form of the Wasserstein-1 distance, which

is equivalent to minimizing the Wasserstein-1 distance between the representation

distributions. This ensures that the representations from seen and unseen domains

are aligned, thereby achieving “domain-alignment”.

The theoretical work above do not pose explicit assumptions on the distribution

of seen and unseen domains. We then introduce some works that requires specific

relationships to hold on the distributions of the seen and unseen domains.

Johansson et al. [68] focus on a special scenario of the DA problem known as the

covariate shift. Under this setting, the conditional distribution of both seen and unseen

domains are assumed to be stable, i.e., 𝑝(𝑠)(𝑌 |𝑋) = 𝑝(𝑢)(𝑌 |𝑋), while the marginal

distribution of the data 𝑝(𝑠)(𝑋), differs from 𝑝(𝑢)(𝑋). Specifically, their bound includes

three terms: the first term is a weighted risk on the seen domain; the second term

is the support sufficiency divergence that measures the lack of overlapping support

between seen and unseen domains; and the third term quantified the loss caused by

the non-invertible representation function 𝑓 .

Approaching from a different perspective, Combes and Zhao et al. [126] introduce

a generalized label shift (GLS) assumption, where they assume 𝑝(𝑠)(𝑓(𝑋)|𝑌 ) =

𝑝(𝑢)(𝑓(𝑋)|𝑌 ) while 𝑝(𝑠)(𝑌 ) ̸= 𝑝(𝑢)(𝑌 ). With such an assumption for a 𝑘 class

classification problem, the joint risk of seen and unseen domains is bounded by

2×max𝑗∈[𝑘] 𝑝
(𝑠)(𝑔(𝑓(𝑋)) ̸= 𝑌 |𝑌 = 𝑗). They further extende their analysis to scenarios

without the GLS assumption, bounding the risk of the unseen domain based on the

risk in the seen domain, the weighted 𝐿1 distance of the marginal label distributions

between seen and unseen domains, and the maximum of |𝑝(𝑠)(𝑔(𝑓(𝑋)) = 𝑦′|𝑌 =

𝑦)− 𝑝(𝑢)(𝑔(𝑓(𝑋)) = 𝑦′|𝑌 = 𝑦)| for all 𝑦′ ̸= 𝑦.

The aforementioned theoretical studies have laid the foundation for DA algorithms
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and significantly influenced the development of DG. Numerous DG works [85,86,96,117]

derive insights from these theories, seeking a representation function 𝑓 that can extract

domain-invariant yet task-sensitive representations [42] from seen domains. With

such a function 𝑓 , models are better equipped to reliably handle unseen test domains.

These representation learning-based studies constitute a central vein of DG research.

In subsequent sections, while we delve into various DG solutions, our core focus will

remain on the domain-invariant representation learning method.

2.3 Domain Generalization

As the rapid development of the DG research, a plethora of algorithms have emerged.

Most of these algorithms aim to solve the DG problem from three different directions:

data manipulation, representation learning, and learning strategy [137,152]. In this

section, we will mainly review the DG work from these three perspectives.

2.3.1 Data Manipulation

The performance of a model often depends heavily on the quantity and diversity of

the training data. Given a limited set of data, data manipulation offers a cost-effective

way to generate more samples with controllable diversity [137]. Though commonly

incorporated in deep neural network training to mitigate overfitting [53], in the DG

context, data manipulation is developed as a distinct approach to address the DG

problem. Following [137], we abstract the objective of data manipulating methods as

follow:

argmin
ℎ∈ℋ

1

𝑆

𝑆∑︁
𝑠=1

𝑁𝑠∑︁
𝑖=1

ℓ(ℎ(𝑥
(𝑠)
𝑖 ), 𝑦

(𝑠)
𝑖 ) + ℓ(ℎ(�̂�

(𝑠)
𝑖 ), 𝑦

(𝑠)
𝑖 ) (2.20)

where �̂�
(𝑠)
𝑖 is the transformed data of original data 𝑥

(𝑠)
𝑖 and for simplicity, we replace

ℎ(𝑠)(𝑥
(𝑠)
𝑖 ) with 𝑦(𝑠)𝑖 . Transformations here are not limited to standard operations like

rotation, flipping, color jittering, resizing, etc., but are usually more task specific. Two
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main methods will be reviewed here, namely data augmentation and data generation

[137].

Data augmentation is widely adopted by machine learning researchers, especially

in the field of computer vision. Besides the commonly used augmentation techniques

mentioned above, domain randomization has recently been adopted to address the DG

problem. For example, in [128], the authors address the object localization problem

by generating more diverse data with randomized numbers, positions, textures of

objects and surrounding lights from a simulator. Similar techniques are further

explore by [71, 144], where the authors randomly map the labeled synthetic images to

multiple real-world domains with different style. Domain randomization is powerful

technique for increasing the diversity of the training dataset and reduce the gap

between the synthetic data and the real-world data. However, due to its randomness,

we may lose control of the quality of the augmented data, leading to some useless

or repeated augmentations [137]. Adversarial data augmentation is another widely

used method, where the input data from seen domains is modified to follows some

fictitious distributions guided by an adversarial loss. Following this idea, Volpi et

al. [134] propose to iteratively augment the training data such that its augmentation

is challenging for the current model to discern. Leveraging a domain transformation

network (DoTNet), Zhou et al. [153] augment the training data such that a domain

classifier is unable to tell which domain the augmented images are from. Motivated by

the Information Bottleneck (IB) [127] principle, Zhao et al. [148] propose to generate

“hard” adversarial perturbations by maximizing the IB function, which will ensure a

large distribution shift between augmentations and the original input.

The other branch taking advantage of the powerful Generative Adversarial Network

(GAN) [55]. Through GAN, diverse data can be easily generated, paving the road

for data generation techniques in DG. For example, [154] employs the Learning to

Augment by Optimal Transport strategy to generate pseudo-novel domain data based
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on the data from seen domain conditioned on the label. [122] uses AdaIN [61] to

generate images with varying texture. Other methods diverge from the conventional

deep neural network data generation approach. For instance, Mixup [145] proposes

to directly generate new samples by a linear interpolation between samples and their

corresponding labels from the seen domain. Sharing the same idea, [141,156] generate

new representations instead of data in the representation space, further reducing the

computational cost while maintaining good generalization performance.

2.3.2 Representation Learning

As the most popular category in DG, a great amount of work contributes the DG

development through the lens of representation learning. Most of the DG studies within

this category draw inspiration from the theoretical results from DA [21,22,118,146]. In

this part, we will focus on domain-invariant representation learning and representation

disentanglement approach.

2.3.2.1 Domain-invariant Representation Learning

As noted in Section 2.2, the concept of learning domain-invariant representation has

its origins in the DA problem. Motivated by the theoretical works in DA, which

indicating that domain-invariant representations are transferable across domains, DG

algorithms encourage the representation function 𝑓 to extract representations that

contain less domain-specific but more domain-invariant and task-related information.

This strategy ensures the model remains robust against distribution shifts in the

training data, such that it can also generalize to the unseen test data. Embracing a

framework analogous to DA, DG algorithms in this category typically decompose the

hypothesis into a representation function 𝑓 and a labeling function 𝑔. The abstracted

21



objective can be viewed as follows:

argmin
𝑓∈ℱ ,𝑔∈𝒢

1

𝑆

𝑆∑︁
𝑠=1

𝑁𝑠∑︁
𝑖=1

ℓ(𝑔(𝑓(𝑥
(𝑠)
𝑖 ), 𝑦

(𝑠)
𝑖 ))) + 𝛼L𝑟𝑒𝑔(𝑓) (2.21)

where L𝑟𝑒𝑔(𝑓) is the regularization loss designed for the representation function 𝑓 . Here

we mainly review three types algorithms: adversarial-based approaches, representation

alignment approaches, and invariant risk minimization-based approaches.

At the early phase of DG evolution, the idea of domain adversarial neural network

(DANN) [51] is widely adapted and extensively integrated into DG applications

[86, 92, 117]. To fit DG settings, the domain discriminator’s input transitions from

test data to data from multiple seen domains. Variations involved transforming the

domain discriminator into a binary classifier for each domain [117] and deploying a

single neural network for multi-domain classification [7, 16]. Subsequently, authors

of [126] introduce a conditional invariant adversarial network for extracting class-

wise domain-invariant representations. Building on this, [149] leverages an entropy

term to measure the dependency between the extracted representation and the label,

mitigating the demand for numerous domain discriminators as class numbers grow.

Contrary to the adversarial approach, which often requires one or multiple auxiliary

neural networks as domain discriminators, a more direct and simple method is to

align the representation distributions across different seen domains directly. The early

work like [95] does not work on the distribution level but on samples. It introduces

contrastive loss to minimize the distance between samples of the same class from

different domains while maximizing the distance between samples of different classes

from different domains. Subsequent studies introduce various metrics to measure the

discrepancy between representation distributions across domains. For example, [89]

and [150] use Wasserstein distance [133], [136] and [85] adopt the maximum mean

discrepancy (MMD), [125] and [124] match the second-order moment of representations.
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Besides distribution alignment, invariant risk minimization (IRM) [12] provides a

innovative angle to tackle the DG problem, taking spurious features into account. In

their work [12], Arjovsky et al. aim to find a representation function 𝑓 that elicits

an invariant predictor 𝑔 ∘ 𝑓 across all seen domains, meaning that the optimal linear

classifiers, once applied to representations, remain optimal for all domains [4], to get

rid of the spurious features. Variations based on the IRM framework are introduced

in [29], where information theory is integrated into the IRM framework. Subsequent

work, as seen in [6, 111], expands the analysis of IRM to classification problems

and non-linear scenarios, pointing out limitations of the original IRM method in

these contexts. Building on this, [4] incorporates information bottleneck principle to

overcome these constraints, further broadening the utility of IRM-based techniques.

2.3.2.2 Representation Disentanglement

Another prominent approach within DG’s representation learning landscape is the

representation disentanglement method.

Differing from domain-invariant representation learning, representation disentan-

glement imposes a more relaxed constraint on the extracted representations, allowing

the coexistence of domain-specific information. This approach aim to design a rep-

resentation function 𝑓 , in such a way that domain-specific and domain-invariant

information occupy different dimensions or segments within extracted features [137].

In the application phase, domain-invariant information is either combined with the

domain-specific features [30] or utilized independently [106]. Methods rooted in this

principle can be further categorized into two groups, based on the specific disentangling

techniques employed. One includes directly decomposing the models weight [106] or

adding a structured low-rank constraint [41]. The other adopts the generative models

like variational autoencoder to disentangle the extracted features into domain-specific

and domain-invariant features [33,65,99].
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2.3.3 Learning Strategy

In addition to theory-guided DG algorithms, there exists another branch of solutions

that employ diverse learning strategies, which are not originally designed for DG

but effectively adapted by researchers to address the DG problem. These strategies

include meta-learning, where models are trained to iteratively adapt to meta-test

domains that are created from the current seen domains [19, 83, 84, 87,108]; ensemble

learning, where either multiple models collaborate to enhance performance [45,155] or

weights of multiple models are averaged to reach the flat minima of the risk [15,28,66];

gradient-operation based strategies, where gradients are manipulated to the direction

for more robust features [62,109,119]; and the self-supervised learning strategy, where

models are trained using their own generated supervisory signals [27, 73]. Each of

these methodologies offers unique perspectives and solutions, thereby expanding the

horizons of DG research.
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Chapter 3

Domain Generalization Theory: A

Revisit and Refinement

Chapter 3 comprises two part. The first part presents our primary contributions

to Domain Generalization (DG) theory. In the second part, we offer a theoretical

justification for the use of the reconstruction loss employed in the first part, from an

alternative perspective of the DG problem.

3.1 Part I: Barycentric-Alignment and Reconstruc-

tion Loss Minimization for Domain Generaliza-

tion

In this section, we present our main theoretical result for Domain Generalization (DG).

Specifically, we consider the typical DG setting where the hypothesis is composed of a

representation mapping followed by a labeling function. Note that within this setting,

the majority of popular DG methods aim to jointly learn the representation and the

labeling functions by minimizing the well-known upper bounds [21,22,118] introduced

in Chapter 2. However, in practice, methods based on these theoretical upper bounds
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either ignore a term that cannot be directly optimized, or approximately apply the

bound to the feature space. To bridge this gap between theory and practice, we

introduce a new upper bound, resulting in a fully optimizable upper bound for the risk

of unseen domain. Our derivation leverages classical and recent transport inequalities

that link optimal transport metrics with information-theoretic measures. Compared

to previous bounds, our bound introduces two new terms: (i) the Wasserstein-2

barycenter term that aligns distributions between domains, and (ii) the reconstruction

loss term that assesses the quality of representation in reconstructing the original data.

Based on this new upper bound, we propose a novel DG algorithm named Wasserstein

Barycenter Auto-Encoder (WBAE) that simultaneously minimizes the classification

loss, the barycenter loss, and the reconstruction loss.

3.1.1 Introduction

As introduced in Chapter 2, many representation learning-based DG work decomposes

the hypothesis as a representation function followed by a labeling function [9,42,85,150],

and optimizes both jointly by minimizing an upper bound for the classification risk in

the unseen domain derived in [22] (shown as 2.2.1). The upper bound consists of three

terms: (1) the prediction risk on the mixture of seen domains, (2) the discrepancy or

divergence between the data distributions of different domains in the representation

space, and (3) a combined risk across all domains that implicitly depends on both the

representation mapping and the unknown optimal labeling function from the unseen

domain. However, most current approaches disregard this dual dependency and treat

the third term (combined risk) as a constant while developing their algorithms. In fact,

the majority of prominent works in DG and DA such as [51, 85, 146] are essentially

variations of the following strategy: ignore the combined risk term and learn a domain-

invariant representation mapping or align the domains in the representation space,

together with learning a common labeling function controlling the prediction loss
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across the seen domains. However, the combined risk term is, in fact, a function of the

representation mapping and should somehow be accounted for within the optimization

process, as we discussed in Chapter 2.

To address these limitations, we revisit the analysis in [21,22] and derive a new

upper bound that is free of terms with the dual dependence mentioned above. Our

new bound consists of four terms: (1) the prediction risk across seen domains in

the input space; (2) the discrepancy/divergence between the induced distributions

of seen and unseen domains in the representation space, which can be approximated

via the Wasserstein-2 barycenter [115] of seen domains; (3) the reconstruction loss

term that measures how well the input can be reconstructed from its representation;

and (4) a combined risk term that is independent of the representation mapping and

labeling function to be learned. Our new bound differs from previous ones in two

aspects. Firstly, it introduces two new terms: (a) the Wasserstein-2 barycenter term

for domain alignment and (b) the reconstruction loss term for assessing the quality of

representation in reconstructing the original data. We note that the Wasserstein-2

barycenter term for controlling the domain discrepancy in our bound is built in the

representation space, which is better aligned with the practical implementation than

previous Wasserstein-based bounds [118] (also shown as 2.2.4), which are built in

the data space. Secondly, the combined risk in our bound is independent of the

representation mapping and thus can be ignored during the optimization. Motivated

by these theoretical results, we propose an Auto-Encoder-based model that interacts

with the Wasserstein barycenter loss to achieve domain alignment.

3.1.2 Contributions

The contributions of this work can summarized as follows:

1. Contributions to Theory : We propose a new upper bound for the risk of the

unseen domain using classical and recent transport inequalities that link optimal
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transport metrics with information-theoretic measures. All terms in our new

upper bound are optimizable in practice which overcomes the limitations of

previous works and bridges the gap between previous theory and practice.

2. Contributions to Algorithm Development and Practice: We develop a novel

algorithm for domain generalization based on our new upper bound. Our

algorithm optimizes a new term that controls the domain discrepancy through

Wasserstein-2 barycenter. Unlike previous Wasserstein distance-based bounds

that form the domain discrepancy term in the data space but optimize it in the

representation space, our domain discrepancy term is constructed and optimized

in the representation space, making our practical implementation better aligned

with the theory.

3. Gains over state-of-the-art methods: Our algorithm consistently outperforms

other theory-guided methods on PACS, VLCS, Office-Home, and TerraIncognita

datasets, with a noticeable improvement of 1.7−2.8 percentage points on average

across all datasets.

3.1.3 Related Work

This work falls within the DG framework wherein domain-invariant features are learned

by decomposing the prediction function into a representation mapping followed by

a labeling function. A recent example of this framework is [9], where the authors

propose a three-part model consisting of a feature extractor, a classifier, and domain

discriminators. The feature extractor learns the task-sensitive, but domain-invariant

features via minimizing the cross-entropy loss with respect to the task label and

maximizing the sum of domain discriminator losses. The domain discriminator loss

is based on an estimate of the ℋ-divergence between all seen domains [21] and

has roots in the works [51, 86] on Domain Adaptation. Following a similar idea,
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the authors of [85] align the representation distributions from different domains by

minimizing their Maximum Mean Discrepancy. In [42], the authors adopt a gradient-

based episodic training scheme for DG in which the extracted features are driven to

simultaneously preserve global class information and local task-related clusters across

seen domains by minimizing an alignment loss comprising soft class confusion matrices

and a contrastive loss. In [99], DG is achieved by disentangling style variation across

domains from learned features. Among the large body of works on the DG problem,

we regard [12,23,51,86], and [78] as recent exemplars of principled algorithms that

are guided by theory and compare their performance with our algorithm’s.

Our proposed upper bound is based on the Wasserstein barycenters. Related to

this context are the works [110,118], and [150]. In [150], the pairwise Wasserstein-1

distance [105,115], is used as a measure of domain discrepancy. Using the dual form

of the Wasserstein-1 distance, the feature extractor in [150] minimizes a combination

of cross-entropy loss, Wasserstein distance loss, and a contrastive loss to achieve DG.

The works [110, 118] provide upper bounds for the risk of unseen domain based on

the Wasserstein-1 distance. While sharing some similarities with ours, their bounds

are constructed in the input space and therefore do not explicitly motivate the use

of representation functions. By contrast, our proposed upper bound measures the

discrepancy of domains in the representation space, which naturally justifies the

decomposition of the hypothesis in the practical implementation. A detailed analysis

and comparison of the bounds in [110,118] and our proposed bound can be found in

Section 3.1.4.2.

In addition to the domain-invariant feature learning approach, which is the main

focus of this paper, there are other noteworthy and emerging directions in the DG

research. For more details, we refer the reader to Chapter 2.
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3.1.4 Theoretical Analysis

Here we restate the notations employed throughout this study as a helpful reminder.

We consider a domain 𝑣 as a triple (𝜇(𝑣), 𝑓 (𝑣), 𝑔(𝑣)) consisting of a distribution 𝜇(𝑣)

on the input 𝑥 ∈ R𝑑, a representation function 𝑓 (𝑣) : R𝑑 → R𝑑′ , from the input

space to the representation space, and a stochastic labeling function 𝑔(𝑣) : R𝑑′ → 𝒴

from the representation space to the label space. We denote the unseen domain by

(𝜇(𝑢), 𝑓 (𝑢), 𝑔(𝑢)) and 𝑆 seen domains by (𝜇(𝑠), 𝑓 (𝑠), 𝑔(𝑠)), with 𝑠 = 1, . . . , 𝑆.

Let ℱ = {𝑓 |𝑓 : R𝑑 → R𝑑′} be the set of representation functions, 𝒢 = {𝑔|𝑔 : R𝑑′ →

𝒴} the set of stochastic labeling functions, ℋ := 𝒢 ∘ ℱ the set of hypotheses, with

each hypothesis ℎ : R𝑑 → 𝒴 obtained by composing a 𝑔 ∈ 𝒢 with an 𝑓 ∈ ℱ , i.e.,

ℎ = 𝑔 ∘ 𝑓 , and Ψ = {𝜓|𝜓 : R𝑑′ → R𝑑} the set of reconstruction functions that map

from the representation space back to the input space. Here, we limit our theoretical

study to binary classification problems, specifically hypothesis functions ℎ such that

ℎ : R𝑑 → 𝒴 = [0, 1]. Note that a similar set-up is also used in [22] where the hypothesis

ℎ occurs non-deterministically and maps a data point to a label between zero and one.

The risk of using a hypothesis ℎ in domain 𝑣 is then defined by:

𝑅(𝑣)(ℎ) := E𝑥∼𝜇(𝑣)
[︀
ℓ(ℎ(𝑥), ℎ(𝑣)(𝑥))

]︀
, (3.1)

where E[·] denotes the expectation, ℎ(𝑣) = 𝑔(𝑣) ∘ 𝑓 (𝑣), and ℓ(·, ·) is a loss function. We

make the following assumptions:

A1: The loss function ℓ(·, ·) is non-negative, symmetric, bounded by a finite positive

number 𝐿, satisfies the triangle inequality, and 𝑄-Lipschitz continuous, i.e., for

any three scalars 𝑎, 𝑏, 𝑐 and positive constant 𝑄,

|ℓ(𝑎, 𝑏)− ℓ(𝑎, 𝑐)| ≤ 𝑄 |𝑏− 𝑐|. (3.2)
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A2: The optimal hypothesis of the unseen domain ℎ(𝑢) = 𝑔(𝑢) ∘ 𝑓 (𝑢) is 𝐾-Lipschitz

continuous. Specifically, we assume that for any two vectors 𝑥,𝑥′ ∈ R𝑑, and

positive constant 𝐾,

|ℎ(𝑢)(𝑥)− ℎ(𝑢)(𝑥′)| ≤ 𝐾 ‖𝑥− 𝑥′‖2, (3.3)

where ‖𝑥− 𝑥′‖2 denotes the Euclidean distance between 𝑥 and 𝑥′.

The first four conditions in Assumption A1 can be easily satisfied by any metric or

norm truncated by a finite positive number. Concretely, if 𝑑(𝑎, 𝑏) is a metric, potentially

unbounded like Mean Squared Error (MSE), then 𝑙𝑜𝑠𝑠(𝑎, 𝑏) := min(𝐿, 𝑑(𝑎, 𝑏)), where 𝐿

is a positive constant, will satisfy the first four conditions in A1. The Lipschitz condition

in A1 and A2 are also widely used in the theory and practice of DG [23,118,139].

One may find our assumptions bear some similarities with the assumptions in [110]

and [118], but there are some fundamental differences. Specifically, we assume that the

loss function is non-negative, symmetric, bounded, Lipschitz, and satisfies the triangle

inequality, whereas the loss function in [110] is required to be convex, symmetric,

bounded, obey the triangle inequality, and satisfy a specific form. We only assume

that the optimal hypothesis function on the unseen domain is Lipschitz, whereas [118]

requires all hypotheses to be Lipschitz.

3.1.4.1 Bound for Unseen Domain Risk

Our analysis starts by considering a single seen domain. Lemma 3.1.1 below upper

bounds the risk 𝑅(𝑢)(ℎ) of a hypothesis ℎ = 𝑔 ∘ 𝑓 in the unseen domain 𝑢 by four

terms: (1) the risk of the seen domain 𝑠, (2) the 𝐿1 distance between the distributions

of the data representations from the seen and unseen domain, (3) the reconstruction

loss that quantifies how well the representation can reconstruct its original data input,

and (4) an intrinsic risk term that is free of ℎ and is intrinsic to the domains and the
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loss function. We use the notation 𝑓#𝜇(𝑣) to denote the pushforward of distribution

𝜇(𝑣) under the representation function 𝑓 , i.e., the distribution of 𝑓(𝑥) with 𝑥 ∼ 𝜇(𝑣).

Lemma 3.1.1. Under assumptions A1 and A2, for any hypothesis ℎ ∈ ℋ and any

reconstruction function 𝜓 ∈ Ψ, the following bound holds:

𝑅(𝑢)(ℎ) ≤ 𝑅(𝑠)(ℎ) + 𝐿 ‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1 +𝑄𝐾
(︁
E𝑥∼𝜇(𝑠)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
+ E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
+ 𝜎(𝑢,𝑠)

where ‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1 =
∫︀
𝑧
|𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)|𝑑𝑧 denotes the 𝐿1 distance between

(𝑓#𝜇
(𝑢), 𝑓#𝜇

(𝑠)) in the representation space and:

𝜎(𝑢,𝑠) := min { E𝑥∼𝜇(𝑢)
[︀
ℓ(ℎ(𝑢)(𝑥), ℎ(𝑠)(𝑥))

]︀
,E𝑥∼𝜇(𝑠)

[︀
ℓ(ℎ(𝑢)(𝑥), ℎ(𝑠)(𝑥))

]︀
} .

Proof. Note that in this work, we assume that any hypothesis function ℎ(·) outputs a

value in [0, 1], i.e., ℎ : R𝑑 → [0, 1], and ℓ(·, ·) is a bounded distance metric. In addition,

we assume that ℎ(𝑢)(·) is 𝐾-Lipschitz continuous and ℓ(·) is 𝑄-Lipschitz continuous.

Particularly, we assume that for any two vectors 𝑥,𝑥′ ∈ R𝑑 and any three scalars 𝑎, 𝑏,

and 𝑐, the following inequalities hold:

|ℎ(𝑢)(𝑥)− ℎ(𝑢)(𝑥′)| ≤ 𝐾‖𝑥− 𝑥′‖2, (3.4)

|ℓ(𝑎, 𝑏)− ℓ(𝑎, 𝑐)| ≤ 𝑄|𝑏− 𝑐|, (3.5)

where ‖𝑥− 𝑥′‖2 and |𝑏− 𝑐| denote the Euclidean distances between 𝑥 and 𝑥′, and 𝑏

and 𝑐, respectively.

We want to note that our approach is motivated by the proof of Theorem 1 in [21].

To better demonstrate the relationship between the hypothesis, input distribution,

true representation and labeling functions, we use inner product notation ⟨·, ·⟩ to
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denote expectations. Specifically,

𝑅(𝑣)(ℎ) := E𝑥∼𝜇(𝑣)
[︀
ℓ(ℎ(𝑥), ℎ(𝑣)(𝑥))

]︀
= ⟨ℓ(ℎ, ℎ(𝑣)), 𝜇(𝑣)⟩. (3.6)

From the definition of risk,

𝑅(𝑢)(ℎ) = ⟨ℓ(ℎ, ℎ(𝑢)), 𝜇(𝑢)⟩

= ⟨ℓ(ℎ, ℎ(𝑠)), 𝜇(𝑠)⟩ − ⟨ℓ(ℎ, ℎ(𝑠)), 𝜇(𝑠)⟩+ ⟨ℓ(ℎ, ℎ(𝑢)), 𝜇(𝑢)⟩

= 𝑅(𝑠)(ℎ) +
(︀
⟨ℓ(ℎ, ℎ(𝑢)), 𝜇(𝑢)⟩ − ⟨ℓ(ℎ, ℎ(𝑠)), 𝜇(𝑢)⟩

)︀
+
(︀
⟨ℓ(ℎ, ℎ(𝑠)), 𝜇(𝑢)⟩ − ⟨ℓ(ℎ, ℎ(𝑠)), 𝜇(𝑠)⟩

)︀
≤ 𝑅(𝑠)(ℎ) + ⟨ℓ(ℎ(𝑢), ℎ(𝑠)), 𝜇(𝑢)⟩+ ⟨ℓ(ℎ, ℎ(𝑠)), 𝜇(𝑢) − 𝜇(𝑠)⟩ (3.7)

where the inequality of (3.7) follows from the triangle inequality ℓ(ℎ, ℎ(𝑢)) ≤ ℓ(ℎ, ℎ(𝑠))+

ℓ(ℎ(𝑠), ℎ(𝑢)) and ℓ(ℎ(𝑠), ℎ(𝑢)) = ℓ(ℎ(𝑢), ℎ(𝑠)). In an analogous fashion, it is possible to

show that:

𝑅(𝑢)(ℎ) ≤ 𝑅(𝑠)(ℎ) + ⟨ℓ(ℎ(𝑢), ℎ(𝑠)), 𝜇(𝑠)⟩+ ⟨ℓ(ℎ, ℎ(𝑢)), 𝜇(𝑢) − 𝜇(𝑠)⟩. (3.8)
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Next, we will bound the third term in the right-hand-side of (3.8). Specifically,

⟨ℓ(ℎ, ℎ(𝑢)), 𝜇(𝑢) − 𝜇(𝑠)⟩

= E𝑥∼𝜇(𝑢)
[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝑥)

)︀]︁
− E𝑥∼𝜇(𝑠)

[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝑥)

)︀]︁
≤ max

{︁
E𝑥∼𝜇(𝑢)

[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥))) +𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︀]︁
,

E𝑥∼𝜇(𝑢)
[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))−𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︀]︁}︁
−min

{︁
E𝑥∼𝜇(𝑠)

[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥))) +𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︀]︁
,

E𝑥∼𝜇(𝑠)
[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))−𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︀]︁}︁
(3.9)

≤
(︁
E𝑥∼𝜇(𝑢)

[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))

)︀]︁
+ E𝑥∼𝜇(𝑢)

[︁
𝑄𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

]︁)︁
−
(︁
E𝑥∼𝜇(𝑠)

[︁
ℓ
(︀
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))

)︀]︁
− E𝑥∼𝜇(𝑠)

[︁
𝑄𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

]︁)︁
(3.10)

=
(︁
E𝑧∼𝑓#𝜇(𝑢)

[︁
ℓ
(︀
𝑔(𝑧), ℎ(𝑢)(𝜓(𝑧))

)︀]︁
− E𝑧∼𝑓#𝜇(𝑠)

[︁
ℓ
(︀
𝑔(𝑧), ℎ(𝑢)(𝜓(𝑧))

)︀]︁)︁
+
(︁
E𝑥∼𝜇(𝑢)

[︁
𝑄𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

]︁
+ E𝑥∼𝜇(𝑠)

[︁
𝑄𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

]︁)︁
(3.11)

= ⟨ℓ
(︀
𝑔(𝑧), ℎ(𝑢)(𝜓(𝑧))

)︀
, 𝑓#𝜇

(𝑢) − 𝑓#𝜇(𝑠)⟩

+𝑄𝐾
(︁
E𝑥∼𝜇(𝑠)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
+ E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
≤ 𝐿⟨1, |𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)|⟩+𝑄𝐾

(︁
E𝑥∼𝜇(𝑠)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
+ E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
.

(3.12)

(3.10) is due to the Lipschitzness of ℓ(·):

max
{︁
ℓ
(︁
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥))) +𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︁
, ℓ
(︁
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))−𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︁}︁
≤ ℓ

(︁
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))

)︁
+𝑄𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2, (3.13)

min
{︁
ℓ
(︁
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥))) +𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︁
, ℓ
(︁
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))−𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2

)︁}︁
≥ ℓ

(︁
ℎ(𝑥), ℎ(𝑢)(𝜓(𝑓(𝑥)))

)︁
−𝑄𝐾‖𝜓(𝑓(𝑥))− 𝑥‖2. (3.14)

Finally, we get (3.11) due to ℎ = 𝑔 ∘ 𝑓 , 𝑓(𝑥) = 𝑧, and (3.12) due to ℓ(·, ·) is
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bounded by 𝐿.

The proof of Lemma 3.1.1 follows by combining (3.7), (3.8), (3.12), and note that:

𝜎(𝑢,𝑠) = min
{︁
⟨ℓ(ℎ(𝑢), ℎ(𝑠)), 𝜇(𝑢)⟩, ⟨ℓ(ℎ(𝑢), ℎ(𝑠)), 𝜇(𝑠)⟩

}︁
,

and

⟨1, |𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)|⟩ = ‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1.

In typical DG applications, training data from multiple seen domains are available

and can be combined in various ways. Therefore, Lemma 3.1.2 below extends Lemma

3.1.1 to a convex combination of distributions of multiple seen domains.

Lemma 3.1.2. For any convex weights 𝜆(1), 𝜆(2), . . . , 𝜆(𝑆) (non-negative and summing

to one), any reconstruction function 𝜓 ∈ Ψ, and any hypothesis ℎ ∈ ℋ, the following

bound holds:

𝑅(𝑢)(ℎ) ≤
𝑆∑︁
𝑠=1

𝜆(𝑠)𝑅(𝑠)(ℎ)

+ 𝐿
𝑆∑︁
𝑠=1

𝜆(𝑠)‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1

+𝑄𝐾
(︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)E𝑥∼𝜇(𝑠)
[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
+ E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
+

𝑆∑︁
𝑠=1

𝜆(𝑠)𝜎(𝑢,𝑠).

Proof. Apply Lemma 3.1.1 𝑆 times for 𝑆 seen domains, then for any hypothesis ℎ ∈ ℋ
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and function (decoder) 𝜓 : R𝑑′ → R𝑑, the following bound holds:

𝑅(𝑢)(ℎ) ≤ 𝑅(𝑠)(ℎ) + 𝐿 ‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1

+𝑄𝐾
(︁
E𝑥∼𝜇(𝑠)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
+ E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
+ 𝜎(𝑢,𝑠),∀𝑠 = 1, . . . , 𝑆. (3.15)

Next, multiplying (3.15) with its corresponding convex weight 𝜆(𝑠), for 𝑠 = 1, 2, . . . , 𝑆,

and summing them up, we have:

𝑆∑︁
𝑠=1

𝜆(𝑠)𝑅(𝑢)(ℎ) ≤
𝑆∑︁
𝑠=1

𝜆(𝑠)

[︃
𝑅(𝑠)(ℎ) + 𝐿 ‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1 +𝑄𝐾

(︁
E𝑥∼𝜇(𝑠)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
+ E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
+ 𝜎(𝑢,𝑠)

]︃
. (3.16)

Note that
∑︀𝑆

𝑠=1 𝜆
(𝑖) = 1, thus, the left-hand side of (3.16) is 𝑅(𝑢)(ℎ), and by re-

arranging the terms on the right-hand side of (3.16), the proof follows.

The upper bound above relies on the 𝐿1 distances between the pushforwards of

seen and unseen distributions. However, accurately estimating 𝐿1 distances from

samples is hard [21,72]. To overcome this practical limitation, we upper bound the 𝐿1

distance by the Wasserstein-2 distance under additional regularity assumptions on the

pushforward distributions.

Definition 3.1.3. [107] A probability distribution on R𝑑 is called (𝑐1, 𝑐2)-regular,

with 𝑐1, 𝑐2 ≥ 0, if it is absolutely continuous with respect to the Lebesgue measure

with a differentiable density 𝑝(𝑥) such that

∀𝑥 ∈ R𝑑, ‖∇ log2 𝑝(𝑥)‖2 ≤ 𝑐1‖𝑥‖2 + 𝑐2,

where ∇ denotes the gradient and ‖ · ‖2 denotes the Euclidean norm.
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Lemma 3.1.4. If 𝜇 and 𝜈 are (𝑐1, 𝑐2)-regular, then:

‖𝜇− 𝜈‖1 ≤
√︂
𝑐1

(︁√︁
E𝑢∼𝜇

[︀
‖𝑢‖22

]︀
+
√︁

E𝑣∼𝜈
[︀
‖𝑣‖22

]︀)︁
+ 2𝑐2 ×

√︀
W2(𝜇, 𝜈)

where the Wasserstein-𝑝 metric [105,115] W𝑝(𝜇, 𝜈) is defined as,

W𝑝(𝜇, 𝜈) := ( inf
𝜋∈Π(𝜇,𝜈)

E(𝑢,𝑣)∼𝜋[‖𝑢− 𝑣‖𝑝2])1/𝑝

where Π(𝜇, 𝜈) is the set of joint distributions with marginals 𝜇 and 𝜈.

Proof. From Pinsker’s inequality [35], the 𝐿1 distance can be bounded by Kull-

back–Leibler (KL) divergence as follows:

‖𝜇− 𝜈‖21 ≤ 2𝑑𝐾𝐿(𝜇, 𝜈) (3.17)

where ‖𝜇 − 𝜈‖1 and 𝑑𝐾𝐿(𝜇, 𝜈) denote 𝐿1 distance and Kullback–Leibler divergence

between two distributions 𝜇 and 𝜈, respectively. Since ‖𝜇− 𝜈‖1 = ‖𝜈 − 𝜇‖1, applying

Pinsker’s inequality to (𝜇, 𝜈) and (𝜈, 𝜇),

2‖𝜇− 𝜈‖21 = ‖𝜇− 𝜈‖21 + ‖𝜈 − 𝜇‖21 ≤ 2𝑑𝐾𝐿(𝜇, 𝜈) + 2𝑑𝐾𝐿(𝜈, 𝜇) (3.18)

which is equivalent to,

‖𝜇− 𝜈‖1 ≤
√︀
𝑑𝐾𝐿(𝜇, 𝜈) + 𝑑𝐾𝐿(𝜈, 𝜇). (3.19)

Next, if 𝜇 and 𝜈 are (𝑐1, 𝑐2)-regular distributions, their KL divergences can be

bounded by their Wasserstein-2 distance as follows (please see equation (10), Proposi-
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tion 1 in [107]),

𝑑𝐾𝐿(𝜇, 𝜈) + 𝑑𝐾𝐿(𝜈, 𝜇) ≤ 2W2(𝜇, 𝜈)
(︁𝑐1
2

√︁
E𝑢∼𝜇

[︀
‖𝑢‖22

]︀
+
𝑐1
2

√︁
E𝑣∼𝜈

[︀
‖𝑣‖22

]︀
+ 𝑐2

)︁
.

(3.20)

Combining (3.19) and (3.20), we have:

‖𝜇− 𝜈‖1 ≤
[︀
W2(𝜇, 𝜈)

]︀1/2√︂
𝑐1

(︁√︁
E𝑢∼𝜇

[︀
‖𝑢‖22

]︀
+
√︁

E𝑣∼𝜈
[︀
‖𝑣‖22

]︀)︁
+2𝑐2. (3.21)

One may wonder what conditions would guarantee the regularity of the pushforward

distributions. Proposition 2 and Proposition 3 in [107] show that any distribution 𝜈 for

which E𝑣∼𝜈‖𝑣‖2 is finite becomes regular when convolved with any regular distribution,

including the Gaussian distribution. Since convolution of distributions corresponds to

the addition of independent random vectors having those distributions, it is always

possible to make the pushforwards regular by adding a small amount of independent

spherical Gaussian noise in the representation space.

Combining Lemma 3.1.2, Lemma 3.1.4, and applying Jensen’s inequality, we obtain

our main result:

Theorem 3.1.5. If 𝑓#𝜇(𝑠), 𝑠 = 1, 2, . . . , 𝑆, and 𝑓#𝜇
(𝑢) are all (𝑐1, 𝑐2)-regular, then

for any convex weights 𝜆(1), 𝜆(2), . . . , 𝜆(𝑆), any reconstruction function 𝜓 ∈ Ψ, and any

38



hypothesis ℎ ∈ ℋ, the following bound holds:

𝑅(𝑢)(ℎ) ≤
𝑆∑︁
𝑠=1

𝜆(𝑠)𝑅(𝑠)(ℎ)

+ 𝐿𝐶
[︀ 𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠))

]︀1/4
+𝑄𝐾

(︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)E𝑥∼𝜇(𝑠)
[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
+ E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
+

𝑆∑︁
𝑠=1

𝜆(𝑠)𝜎(𝑢,𝑠) (3.22)

where:

𝐶=max
𝑠

√︂
𝑐1

(︁√︁
E𝑥∼𝜇(𝑢)

[︀
‖𝑓(𝑥)‖2

]︀
+
√︁

E𝑥∼𝜇(𝑠)
[︀
‖𝑓(𝑥)‖2

]︀)︁
+2𝑐2.

Proof. Under the assumption that 𝑓#𝜇(𝑠) and 𝑓#𝜇(𝑢) are (𝑐1, 𝑐2)-regular, ∀𝑠 = 1, 2, . . . , 𝑆,

we can derive the following inequality from Lemma 3.1.4,

‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1 ≤
√︂
𝑐1

(︁√︁
E𝑥∼𝜇(𝑠)

[︀
‖𝑓(𝑥)‖22

]︀
+
√︁

E𝑥∼𝜇(𝑢)
[︀
‖𝑓(𝑥)‖22

]︀)︁
+ 2𝑐2 ×

[︀
W2(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠))

]︀1/2
.

(3.23)

Let:

𝐶 :=max
𝑠

√︂
𝑐1

(︁√︁
E𝑥∼𝜇(𝑠)

[︀
‖𝑓(𝑥)‖22

]︀
+
√︁
E𝑥∼𝜇(𝑢)

[︀
‖𝑓(𝑥)‖22

]︀)︁
+2𝑐2. (3.24)

Multiplying (3.23) by 𝜆(𝑠) and summing over all 𝑠, we get:

𝑆∑︁
𝑠=1

𝜆(𝑠)‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1 ≤ 𝐶
𝑆∑︁
𝑠=1

𝜆(𝑠)
[︀
W2(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠))

]︀1/2
. (3.25)

By Jensen’s inequality,

𝑆∑︁
𝑠=1

𝜆(𝑠)
[︀
W2(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠))

]︀1/2 ≤ [︀ 𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠))

]︀1/4
. (3.26)
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From (3.25) and (3.26),

𝑆∑︁
𝑠=1

𝜆(𝑠)‖𝑓#𝜇(𝑢) − 𝑓#𝜇(𝑠)‖1 ≤ 𝐶
[︀ 𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠))

]︀1/4
. (3.27)

Finally, combining the upper bound in Lemma 3.1.2 and (3.27), the proof follows.

The upper bound in Theorem 3.1.5 consists of four terms: the first term is the sum

of the risk on seen domains, the second term is the Wasserstein distance between the

pushforward of seen and unseen domains in the representation space, the third term

indicates how well the input can be reconstructed from its corresponding representation,

and the fourth term is a combined risk that is independent of both the representation

function and the labeling function and only intrinsic to the domain and loss function.

The form of the upper bound derived above shares some similarities with previous

bounds in [22, 110, 118]. However, it differs from previous bounds in the following

important aspects:

• Firstly, even though Lemma 1 in [110] and Theorem 1 in [118] employ Wasserstein

distance to capture domain divergence, the corresponding term is constructed in

the data space. By contrast, the corresponding term in our bound is constructed

in the representation space, which not only provides a theoretical justification

when decomposing the hypothesis into a representation mapping and a labeling

function, but is also consistent with the algorithm implementation in practice.

Moreover, the bounds in [110] and [118] are controlled by the Wasserstein-1

distance, while our upper bound is managed by the square root of the Wasserstein-

2 distance. There are regimes where one bound is tighter than the other as

discussed in Section 3.1.4.2.

• Secondly, our third term measures how well the input can be reconstructed from

its representation. This motivates the use of an encoder-decoder structure in the
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proposed algorithm in Section 3.1.7 to minimize the reconstruction loss. This is

a novel component absent from [22,110,118].

• Finally, the last term in our upper bound is independent of both the representa-

tion function 𝑓 and the labeling function 𝑔. This contrasts with the previous

results in [22], where the last term in their upper bound (see Theorem 1 in [22])

depends on the representation function 𝑓 . We make a detailed comparison in

Section 3.1.4.2.

The bound proposed in Theorem 3.1.5 can also be used for the DA problem

where one can access the unseen/target domain data and estimate its distribution.

However, under the DG setting, the second and third term in (3.22) are uncontrollable,

leading to an intractable upper bound due to the unavailability of the unseen data.

This intractability, which cannot be overcome without making additional specific

assumptions on the unseen domain, is widely accepted in the literature as a fundamental

limitation for all DG methods and analyses.

As a step toward developing a practical algorithm based on our new bound, we

decompose both the second term and the third term in (3.22) into two separate terms

where one term completely depends on the unseen distribution and the other fully

depends on the seen distributions.

Corollary 3.1.6. Under the setting and notation of Theorem 3.1.5, for an arbitrary
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pushforward distribution 𝑓#𝜇, we have:

𝑅(𝑢)(ℎ) ≤
𝑆∑︁
𝑠=1

𝜆(𝑠)𝑅(𝑠)(ℎ)

+ 𝐿𝐶
(︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇, 𝑓#𝜇

(𝑠))
)︁1/4

+ 𝐿𝐶
(︁
W2

2(𝑓#𝜇
(𝑢), 𝑓#𝜇)

)︁1/4

+𝑄𝐾
(︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)E𝑥∼𝜇(𝑠)
[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
+𝑄𝐾

(︁
E𝑥∼𝜇(𝑢)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀)︁
+

𝑆∑︁
𝑠=1

𝜆(𝑠)𝜎(𝑢,𝑠). (3.28)

Proof. We begin with the second term in the upper bound of Theorem 3.1.5. Indeed,

for any arbitrary pushforward distribution 𝑓#𝜇, we have:

[︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇

(𝑢), 𝑓#𝜇
(𝑠))

]︁1/4
(3.29)

≤
[︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)
(︁
W2

2(𝑓#𝜇
(𝑢), 𝑓#𝜇) +W2

2(𝑓#𝜇, 𝑓#𝜇
(𝑠))

)︁]︁1/4
(3.30)

=
[︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇

(𝑢), 𝑓#𝜇) +
𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇, 𝑓#𝜇

(𝑠))
]︁1/4

(3.31)

=
[︁
W2

2(𝑓#𝜇
(𝑢), 𝑓#𝜇) +

𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇, 𝑓#𝜇

(𝑠))
]︁1/4

(3.32)

≤
[︁ 𝑆∑︁
𝑠=1

𝜆(𝑠)W2
2(𝑓#𝜇, 𝑓#𝜇

(𝑠))
]︁1/4

+
[︁
W2

2(𝑓#𝜇
(𝑢), 𝑓#𝜇)

]︁1/4
(3.33)

with (3.30) due to the triangle inequality, (3.32) due to
∑︀𝑆

𝑠=1 𝜆
(𝑠) = 1, (3.33) due to

the fact that for any 𝑎, 𝑏 ≥ 0 and 0 < 𝑝 ≤ 1, (𝑎+ 𝑏)𝑝 ≤ 𝑎𝑝 + 𝑏𝑝.

Combining (3.22) in Theorem 3.1.5 and (3.33), the proof of Corollary 3.1.6 follows.
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3.1.4.2 Comparison between the Proposed Upper Bound and Previous

Work

Although the bound in Theorem 1 of [22] was originally constructed for the domain

adaptation problem, it has significantly influenced past and recent works in domain

generalization as discussed earlier in Chapter 2. To highlight the differences between

our work and the bound in Theorem 1 of [22] (Chapter 2, Theorem 2.2.1) and Theorem

4.1 of [146] (Chapter 2, Theorem 2.2.3), we provide a detailed comparison below:

• Firstly, [22] defines the risk induced by labeling function 𝑔 from the representation

space to the label space based on the disagreement between 𝑔 and the optimal

labeling function 𝑔(𝑢):

𝑅(𝑢)(𝑔) = E𝑧∼𝑓#𝜇(𝑢)
[︀
|𝑔(𝑧)− 𝑔(𝑢)(𝑧)|

]︀
. (3.34)

On the other hand, we define the risk induced by using a hypothesis ℎ from the

input space to the label space by the disagreement between ℎ and the optimal

hypothesis ℎ(𝑢) via a general loss function ℓ(·, ·):

𝑅(𝑢)(ℎ) = E𝑥∼𝜇(𝑢)
[︀
ℓ(ℎ(𝑥), ℎ(𝑢)(𝑥))

]︀
. (3.35)

Since the empirical risk measures the probability of misclassification of a hypoth-

esis that maps from the input space to the label space, minimizing 𝑅(𝑢)(𝑔) does

not guarantee to minimize the empirical risk. Though there are some cases for

the causality to hold, for example, if the representation function 𝑓 is invertible

i.e., there is a one-to-one mapping between 𝑥 and 𝑧, and the loss function has

the form of ℓ(𝑎, 𝑏) = |𝑎− 𝑏|, it is possible to verify that 𝑅(𝑢)(𝑔) = 𝑅(𝑢)(ℎ). In

general, the representation mapping might not be invertible. For example, let

us consider a representation function 𝑓 that maps 𝑓(𝑥1) = 𝑓(𝑥2) = 𝑧, 𝑥1 ̸= 𝑥2,
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with corresponding labels as 𝑦1 = 0 and 𝑦2 = 1. In this case, the risk defined in

(3.34) will introduce a larger error than the risk introduced in (3.35) since 𝑔(𝑧)

cannot be mapped to both “0” and “1”. That said, the risk defined in (3.35) is

more precise to describe the empirical risk. In addition, the risk defined in (3.34)

is only a special case of (3.35) when the representation mapping 𝑓 is invertible

and the loss function satisfies ℓ(𝑎, 𝑏) = |𝑎− 𝑏|.

• Secondly, using the setting in [22], for a given hypothesis space, the ideal joint

hypothesis 𝑔* is defined as the hypothesis which globally minimizes the combined

error from seen and unseen domains [21,22]:

𝑔* = argmin
𝑔∈𝒢

(︀
𝑅(𝑠)(𝑔) +𝑅(𝑢)(𝑔)

)︀
.

In other words, this hypothesis should work well in both domains. The error

induced by using this ideal joint hypothesis is called combined risk :

𝜆 = inf
𝑔∈𝒢

(︀
𝑅(𝑠)(𝑔) +𝑅(𝑢)(𝑔)

)︀
=

(︀
𝑅(𝑠)(𝑔*) +𝑅(𝑢)(𝑔*)

)︀
.

Note that the labeling function 𝑔 is a mapping from the representation space to

the label space, therefore, the ideal labeling function 𝑔* depends implicitly on

the representation function 𝑓 , hence, 𝜆 depends on 𝑓 . Simply ignoring this fact

and treating 𝜆 as a constant may loosen the upper bound. By contrast, our goal

is to construct an upper bound with the combined risk term 𝜎(𝑢,𝑠) independent

of both the representation function and the labeling function, which can be seen

from Lemma 3.1.1 and Theorem 3.1.5.

• Finally, it is worth comparing our upper bound with the bound in Theorem

4.1 of [146] which also has the combined risk term free of the choice of the

hypothesis class. However, note that the result in Theorem 4.1 of [146] does
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not consider any representation function 𝑓 , i.e., their labeling function directly

maps from the input space to the label space, while our hypothesis is composed

of a representation function from the input space to the representation space

followed by a labeling function from the representation space to the label space.

Since it is possible to pick a representation function 𝑓 that maps any input to

itself, i.e., 𝑓(𝑥) = 𝑥 which leads to ℎ = 𝑔 ∘ 𝑓 = 𝑔, the bound in [146] can be

viewed as a special case of our proposed upper bound in Lemma 3.1.1.

The form of the proposed upper bound derived in Theorem 3.1.5 shares some

similarities with Lemma 1 in [110] and Theorem 1 in [118] (Chapter 2, Theorem 2.2.4),

for example, all of them introduce Wasserstein distance between domain distributions.

However, they differ in the following key aspects.

1. The term containing Wasserstein distance in our upper bound is constructed

in the representation space, not in the data (ambient) space, which provides a

theoretical justification when decomposing the hypothesis into a representation

mapping and a labeling function. This is also consistent with the algorithmic

implementation in practice.

2. The bounds in Lemma 1 of [110] and Theorem 1 of [118] are controlled by the

Wasserstein-1 distance while our upper bound is managed by the square-root

of the Wasserstein-2 distance. There are regimes where one bound is tighter

than the other. It is well-known that W1(𝜇, 𝜈) ≤ W2(𝜇, 𝜈), if W2(𝜇, 𝜈) ≤ 1, then

W1(𝜇, 𝜈) ≤
√︀

W2(𝜇, 𝜈). However, based on Jensen’s inequality, it is possible

to show that
√︀

W2(𝜇, 𝜈) ≤ [𝐷𝑖𝑎𝑚(𝑓(𝑋))W1(𝜇, 𝜈)]
1/4 where 𝐷𝑖𝑎𝑚(𝑓(𝑋)) de-

notes the largest distance between two points in the representation space R𝑑′

generated by input 𝑋 via mapping 𝑓 . To guarantee
√︀
W2(𝜇, 𝜈) ≤W1(𝜇, 𝜈), a

sufficient condition is [𝐷𝑖𝑎𝑚(𝑓(𝑋))W1(𝜇, 𝜈)]
1/4 ≤ W1(𝜇, 𝜈) which is equivalent

to 𝐷𝑖𝑎𝑚(𝑓(𝑋)) ≤W1(𝜇, 𝜈)
3. In fact, for a given 𝐷𝑖𝑎𝑚(𝑓(𝑋)), the larger the

value of W1(𝜇, 𝜈), the higher the chance that this sufficient condition will hold.
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3.1.5 Proposed Method

Motivated by the bound in Corollary 3.1.6, we want to find a suitable represen-

tation function 𝑓 together with a reconstruction function 𝜓 to minimize the sec-

ond term
∑︀𝑆

𝑠=1 𝜆
(𝑠)W2

2(𝑓#𝜇, 𝑓#𝜇
(𝑠)) and the fourth term

∑︀𝑆
𝑠=1 𝜆

(𝑠)E𝑥∼𝜇(𝑠)
[︀
‖𝜓(𝑓(𝑥))−

𝑥‖2
]︀

in (3.28), while ignoring the third term W2
2(𝑓#𝜇

(𝑢), 𝑓#𝜇) and the fifth term

E𝑥∼𝜇(𝑢)
[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
, as both of them are intractable.

Minimizing the second term
∑︀𝑆

𝑠=1 𝜆
(𝑠)W2

2(𝑓#𝜇, 𝑓#𝜇
(𝑠)) in (3.28) leads to finding

the Wasserstein-2 barycenter of the distributions of seen domains in the representation

space. Here, we assume a uniform weight of 𝜆(𝑠) = 1
𝑆

for all 𝑠, since there is no

additional information for selecting these weights. For this choice, the Wasserstein-2

barycenter of the pushforward distributions of seen domains is defined by:

𝑓#𝜇𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟 := argmin
𝑓#𝜇

𝑆∑︁
𝑠=1

1

𝑆
W2

2(𝑓#𝜇
(𝑠), 𝑓#𝜇). (3.36)

We refer the reader to [2, 38] for the definition and properties (existence, uniqueness)

of the Wasserstein barycenter.

On the other hand, minimizing the fourth term
∑︀𝑆

𝑠=1 𝜆
(𝑠)E𝑥∼𝜇(𝑠)

[︀
‖𝜓(𝑓(𝑥))− 𝑥‖2

]︀
in (3.28) naturally leads to an auto-encoder mechanism. With a little abuse of

notation, we denote the encoder, namely the representation function as 𝑓 and the

decoder, namely the reconstruction function as 𝜓. The 𝐿2 reconstruction loss should

be optimized over all seen domains.

3.1.6 Objective Functions

As the last term in (3.28) of Corollary 3.1.6 is independent of both the representation

function 𝑓 and the labeling function 𝑔, and the third and fifth terms are intractable

due to their dependence on unseen domain, we focus on designing 𝑓 , 𝜓 and 𝑔 to

minimize the first, second, and fourth terms in (3.28) of Corollary 3.1.6.
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Following previous works [9,21,22], we optimize the first term by training 𝑓 together

with 𝑔 using a standard cross-entropy (CE) loss, such that the empirical classification

risk on seen domains is minimized. The classification loss function can be written as:

L𝑐(𝑓, 𝑔) =
1

𝑆

𝑆∑︁
𝑠=1

E𝑥∼𝜇(𝑠) [CE(ℎ
(𝑠)(𝑥), 𝑔(𝑓(𝑥)))] (3.37)

where CE(ℎ(𝑠)(𝑥), 𝑔(𝑓(𝑥))) denotes the cross-entropy (CE) loss between the output of

classifier and the ground-truth label of seen domain 𝑠.

As discussed in Corollary 3.1.6, we propose to use the Wasserstein-2 barycenter of

representation distributions of seen domains to optimize the second term in (3.28).

Specifically, the barycenter loss is defined by:

L𝑏𝑎𝑟𝑦(𝑓) :=
𝑆∑︁
𝑠=1

1

𝑆
W2

2(𝑓#𝜇
(𝑠), 𝑓#𝜇𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟) (3.38)

where 𝑓#𝜇𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟, as defined in (3.36), denotes the Wasserstein barycenter of push-

forward distributions of seen domains.

In contrast to the previous Wasserstein distance-based method [150] where pairwise

Wasserstein distance loss is employed, we motivate the use of Wasserstein barycenter

loss based on our Corollary 3.1.6 and demonstrate its ability in enforcing domain-

invariance in the ablation study of Section 3.1.8.4. Notably, the barycenter loss (3.38)

only requires computing 𝑆 Wasserstein distances, whereas using pairwise Wasserstein

distance would require 𝑆(𝑆 − 1)/2 computations.

Furthermore, to handle the fourth term in (3.28), we utilize the auto-encoder

structure. Specifically, a decoder 𝜓 : R𝑑′ → R𝑑 is adopted, leading to the following

reconstruction loss term:

L𝑟(𝑓, 𝜓) :=
1

𝑆

𝑆∑︁
𝑠=1

E𝑥∼𝜇(𝑠) [‖𝑥− 𝜓(𝑓(𝑥))‖2]. (3.39)
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From the analysis above, we aim to find a representation function 𝑓 , a classifier 𝑔, and

a decoder function 𝜓 to optimize the following objective function:

argmin
𝑓,𝑔,𝜓

L𝑐(𝑓, 𝑔) + 𝛼L𝑏𝑎𝑟𝑦(𝑓) + 𝛽L𝑟(𝑓, 𝜓) (3.40)

where weights 𝛼, 𝛽 > 0 are hyper-parameters. One can observe that the terms in

our proposed upper bound are incorporated into our objective function in (3.40).

Specifically, the first term in our objective function aims to determine a good classifier

𝑔 together with a representation mapping 𝑓 by minimizing the risk of seen domains,

which corresponds to the first term of the upper bound in (3.28). The second term

in (3.40) acts as a domain alignment tool to minimize the discrepancy between seen

domains, aligning with the second term in the proposed bound in (3.28). Note

that although L𝑏𝑎𝑟𝑦 itself requires solving an optimization problem, we leverage fast

computation methods, which are also discussed in Section 3.1.7, to directly estimate this

loss without invoking the Kantorovich-Rubenstein dual characterization of Wasserstein

distance [115]. This avoids solving a min-max type problem that is often plagued

by unstable numerical dynamics. Finally, the third term in the objective function

minimizes the mean squared error between the input and its reconstruction over all

seen domains, which directly minimizes the fourth term in (3.28).

3.1.7 Algorithm

Based on the loss function designed above, we propose an algorithm named Wasserstein

Barycenter Auto-Encoder (WBAE). The pseudo code of the WBAE algorithm can be

found in Algorithm 1 while its block diagram is shown in Fig. 3-1.

As shown in the pseudo code, we use an encoder 𝑓 and a decoder 𝜓, which are

parameterized by 𝜃𝑒 and 𝜃𝑑 for feature extraction and reconstruction, respectively.

Here we denote 𝒳 (𝑠) as a set of samples from domain 𝑠 with empirical distribution �̂�(𝑠)
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Figure 3-1: An overview of the proposed algorithm. The top, middle, and bottom
branches refer to the reconstruction loss term, the Wasserstein barycenter loss term,
and the classification risk (from seen domains), respectively.

and with 𝑥
(𝑠)
𝑖 as one of its element. The corresponding label set of 𝒳 (𝑠) is denoted as

𝑦(𝑠), where 𝑦(𝑠) := {𝑦(𝑠)𝑖 } with 𝑦(𝑠)𝑖 as the label for sample 𝑥
(𝑠)
𝑖 . The extracted feature

𝑧
(𝑠)
𝑖 = 𝑓𝜃𝑒(𝑥

(𝑠)
𝑖 ) in set 𝒵(𝑠) follows the empirical distribution of 𝑓#�̂�(𝑠). The decoder

takes the extracted features as input and outputs the reconstructions as 𝜓𝜃𝑑(𝑧
(𝑠)
𝑖 )

for domain 𝑠. The classifier 𝑔, parameterized by 𝜃𝑐 is then applied to the extracted

features for label prediction.

The proposed algorithm requires calculating Wasserstein-2 barycenter and its

supporting points. Here we use an off-the-shelf python package [50] that implements

a free-support Wasserstein barycenter algorithm described in [38]. This algorithm is

executed in the primal domain and avoids the use of the dual form of Wasserstein

distances, which otherwise would turn the problem into an adversarial (min-max)

type setting that we want to avoid due to its instability. The barycenter loss is

approximated via an average Sinkhorn divergence [49] between the seen domains and

the estimated barycenter. Sinkhorn divergence is an unbiased proxy for the Wasserstein
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Algorithm 1 Wasserstein Barycenter Auto-Encoder (WBAE)
Input: Data from 𝑆 seen domains, 𝑚 samples from each domain, learn-
ing rate 𝜂, parameters 𝛼, 𝛽, 𝜖. Output: Encoder 𝑓𝜃𝑒 , decoder 𝜓𝜃𝑑 , classifier
𝑔𝜃𝑐
1: while training is not end do
2: Randomly choose 𝑚 samples from each domain, denoted as 𝒳 (𝑠) := {𝑥(𝑠)

𝑖 }𝑚𝑖=1 ∼
�̂�(𝑠) and 𝑦(𝑠) := {𝑦(𝑠)𝑖 }𝑚𝑖=1

3: for 𝑠 = 1 : 𝑆 and 𝑖 = 1 : 𝑚 do
4: 𝑧

(𝑠)
𝑖 ← 𝑓𝜃𝑒(𝑥

(𝑠)
𝑖 ) with set 𝒵(𝑠) ∼ 𝑓#�̂�

(𝑠)

5: end for
6: Calculate the Wasserstein barycenter �̂�𝑏𝑎𝑟𝑦 of {𝑓#�̂�(𝑠)}𝑆𝑠=1 and its supporting

points with 𝑓𝜃𝑒 detached from automatic backpropagation
7: L𝑏𝑎𝑟𝑦 ← 1

𝑆

∑︀𝑆
𝑠=1 𝑆𝑖𝑛𝑘ℎ𝑜𝑟𝑛𝜖(�̂�𝑏𝑎𝑟𝑦, 𝑓#�̂�

(𝑠))

8: L𝑐 ← − 1
𝑚𝑆

∑︀𝑆
𝑠=1

∑︀𝑚
𝑖=1 𝑦

𝑠
𝑖 log 𝑝(𝑔𝜃𝑐(𝑓𝜃𝑒(𝑥

(𝑠)
𝑖 )))

9: L𝑟 ← 1
𝑚𝑆

∑︀𝑆
𝑠=1

∑︀𝑚
𝑖=1 ‖𝑥

(𝑠)
𝑖 − 𝜓𝜃𝑑(𝑧

(𝑠)
𝑖 )‖22

10: L← L𝑐 + 𝛼L𝑏𝑎𝑟𝑦 + 𝛽L𝑟
11: 𝜃𝑐 ← 𝜃𝑐 − 𝜂∇𝜃𝑐L𝑐
12: 𝜃𝑑 ← 𝜃𝑑 − 𝜂∇𝜃𝑑L𝑟
13: 𝜃𝑒 ← 𝜃𝑒 − 𝜂∇𝜃𝑒L
14: end while

distance, which leverages entropic regularization [37] for computational efficiency,

thereby allowing for integrating automatic differentiation with GPU computation.

We incorporate the implementation from [49] into our algorithm for a fast gradient

computation and denote it as 𝑆𝑖𝑛𝑘ℎ𝑜𝑟𝑛𝜖 in Algorithm 1, where 𝜖 is the entropic

regularization term.

3.1.8 Experiments and Results

The proposed method was evaluated on four benchmark datasets for DG: PACS [82],

VLCS [48], Office-Home [131], and TerraIncognita [20] under two different settings:

DomainBed setting [57] and Stochastic Weight Averaging Densely (SWAD) setting

[28]. In the DomainBed setting, we implemented our method with the widely used

DomainBed package and compared it with various theory-guided DG algorithms.

Additionally, incorporating the recent advancement in DG-specific optimization, we
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Table 3.1: Performance of tested methods on PACS dataset in the DomainBed setting,
measured by accuracy (%). A, C, P, S are left-out unseen domains.

Algorithm A C P S Avg

theory-guided algorithms

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
WBAE (Ours) 86.9 ± 0.3 81.3 ± 0.4 97.2 ± 0.2 80.5 ± 0.4 86.5

best-performing heuristic algorithm

SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3

conducted separate experiments using the SWAD [28] weight sampling strategy with the

same experimental setting described in [28]. Furthermore, to investigate the impact

of different components of the proposed loss function, we conducted an ablation

analysis on the PACS, VLCS, and Office-Home datasets and reported the results in

Section 3.1.8.4.

3.1.8.1 Datasets

The details for the four datasets are described below:

• PACS dataset [82]: PACS contains 9,991 images with 7 classes from 4

domains: Art (A), Cartoons (C), Photos (P) and Sketches (S), where each

domain represents one type of images.

• VLCS dataset [48]: VLCS consists of 10,729 images from 4 different domains:

VOC2007 (V), LabelMe (L), Caltech (C), PASCAL (S). A total of 5 classes are

shared by all domains.

• Office-Home dataset [131]: Office-Home contains 15,500 images from 4
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Table 3.2: Performance of tested methods on VLCS dataset in the DomainBed setting,
measured by accuracy (%). C, L, S, V are left-out unseen domains.

Algorithm C L S V Avg

theory-guided algorithms

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
WBAE (Ours) 98.3 ± 0.2 65.5 ± 1.0 72.8 ± 0.3 78.6 ± 0.4 78.8

best-performing heuristic algorithm

CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

different domains: Artistic (A), Clipart (C), Product (P), and Real-World (R).

Each domain has 65 object categories.

• TerraIncognita dataset [20]: TerraIncognita contains four domains {L100,

L38, L43, L46} with a total of 24,788 pictures of wild animals belonging to 10

classes.

Example images of the above datasets are shown in Fig. 3-2 and Fig. 3-3.

3.1.8.2 Methods for Comparison

In this work, we compare the empirical performance of our method against the state-

of-the-art DG methods reported in [57] under the DomainBed setting. Specifically,

the competing methods include:

• Empirical Risk Minimization (ERM) [130] which aims to minimize the cumula-

tive training error across all seen domains.

• Domain-Adversarial Neural Networks (DANN) [51] which is motivated by the

theoretical results from [22]. In particular, to minimize the upper bound of the
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Table 3.3: Performance of tested methods on Office-Home dataset in the DomainBed
setting, measured by accuracy (%). A, C, P, R are left-out unseen domains.

Algorithm A C P R Avg

theory-guided algorithms

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
WBAE (Ours) 63.7 ± 0.5 56.4 ± 0.8 76.1 ± 0.3 78.8 ± 0.4 68.8

best-performing heuristic algorithm

CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

risk in the unseen domain, DANN adopts an adversarial network to enforce

that features from different domains are indistinguishable.

• Class-conditional DANN (C-DANN) [86] is a variant of DANN that aims to

match the conditional distributions of feature given the label across domains.

• Invariant Risk Minimization (IRM) [12] aims to learn features such that the

optimal classifiers applied to these features are matched across domains.

• Risk Extrapolation (VREx) [78] is constructed on the assumption from [12]

which assumes the existence of an optimal linear classifier across all domains.

While IRM specifically seeks the invariant classifier, VREx aims to identify

the form of the distribution shift and propose a variance penalty, leading to the

robustness for a wider variety of distributional shifts.

• Marginal Transfer Learning (MTL) [23,24] is proposed based on an upper bound

for the generalization error under the setting of an Agnostic Generative Model.

Specifically, MTL estimates the mean embedding per domain and uses it as a

second argument for optimizing the classifier.
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Table 3.4: Performance of tested methods on TerraIncognita dataset in the DomainBed
setting, measured by accuracy (%). L100, L38, L43, L46 are left-out unseen domains.

Algorithm L100 L38 L43 L46 Avg

theory-guided algorithms

ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
WBAE (Ours) 55.3 ± 0.4 44.3 ± 0.7 56.4 ± 0.5 39.1 ± 0.6 48.8

best-performing heuristic algorithm

SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6

Table 3.5: Performance of theory-guided methods on four datasets in the DomainBed
setting, measured by accuracy (%). The average accuracy is reported over different
tasks per dataset.

Algorithm PACS VLCS Office-Home TerraIncognita Avg

ERM 85.5 77.5 66.5 46.1 68.9
IRM 83.5 78.5 64.3 47.6 68.5
DANN 83.6 78.6 65.9 46.7 68.7
CDANN 82.6 77.5 65.8 45.8 67.9
MTL 84.6 77.2 66.4 45.6 68.5
VREx 84.9 78.3 66.4 46.4 69.0
WBAE (Ours) 86.5 78.8 68.8 48.8 70.7

• CORrelation ALignment (CORAL) [125] is based on the idea of matching the

mean and covariance of feature distributions from different domains.

• Style-Agnostic Networks (SagNet) [99] minimizes the style induced domain

gap by randomizing the style feature for different domains and train the model

mainly on the disentangled content feature.

We can categorize the algorithms provided in [57] into two groups: (1) heuristic

algorithms, which lack theoretical analysis, and (2) theory-guided algorithms. As the
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Table 3.6: Performance of tested methods on four datasets in the SWAD setting,
measured by accuracy (%).

Algorithm PACS VLCS Office-Home TerraIncognita Avg

ERM + SWAD 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 72.0
CORAL + SWAD 88.3 ± 0.1 78.9 ± 0.1 71.3 ± 0.1 51.0 ± 0.1 72.4
WBAE + SWAD 88.4 ± 0.1 79.5 ± 0.1 71.4 ± 0.2 51.8 ± 0.3 72.8

(a) PACS (b) VLCS

Figure 3-2: Example images of PACS and VLCS.

proposed method in this work falls into the second category, we primarily compare

it with the theory-guided methods. Here, ERM acts as the baseline theory-guided

model and DANN, C-DANN, IRM, VREx, MTL are five state-of-the-art theory-

guided algorithms. Besides these six methods, for a complete comparison, we also

include three heuristic algorithms that achieve the best performances on four evaluated

datasets [57]. More specific, SagNet [99] is the best-performing algorithm for the PACS

and TerraIncognita datasets, and CORAL [125] is the best-performing algorithm for

both the VLCS and Office-Home datasets. In the SWAD setting, following [28] where
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(a) Office-Home (b) TerraIncognita

Figure 3-3: Example images of Office-Home and TerraIncognita.

CORAL was considered as the representative of the previous state-of-the-art methods,

we compare our method with both ERM and CORAL, all of which employed the

SWAD strategy. The results for the competing methods above are sourced from [57]

and [28].

3.1.8.3 Experiment Settings

Model Structure: We used the same feature extractor and classifier as used in [57]

for all four datasets. Specifically, an ImageNet pre-trained ResNet-50 model with the

final (softmax) layer removed is used as the feature extractor. The decoder is a stack

of 6 ConvTranspose2d layers for all datasets. The detailed structure of the decoder

is described in Table 3.7. The classifier is a one-linear-layer model with the output

dimension the same as the number of classes.

Hyper-parameters: In the DomainBed setting, we performed a random search of 20
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Table 3.7: Model structure of the decoder.

Layer

ConvTranspose2d (in=2048, out=512, kernel_size=4, stride= 1, padding=0)
BatchNorm2d + ReLU
ConvTranspose2d (in=512, out=256, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=256, out=128, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=128, out=64, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=64, out=32, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=32, out=3, kernel_size=4, stride=2, padding=1)
Tanh + Interpolate (size=(224, 224))

Table 3.8: Hyper-parameters of the proposed method.

Parameters DomainBed Setting SWAD Setting

Optimizer Adam [74] Adam [74]
Learning rate 5× 10−5 {10−5, 3× 10−5, 5× 10−5}
Batch size 32 32
ResNet dropout 0 {0.0, 0.1, 0.5}
Weight decay 0 {10−4, 10−6}
Training steps 2000 5000
𝜖 20 20
𝛼 10Uniform(−3.5,−2) {10−3.5, 10−3, 10−2.5, 10−2}
𝛽 10Uniform(−3.5,−1.5) {10−3.5, 10−3, 10−2, 10−1.5}

trials within the joint distribution of 10Uniform[−3.5,−2] for 𝛼 and 10Uniform[−3.5,−1.5] for

𝛽 (see (3.40)) with other hyper-parameters (e.g., learning rate, batch size, dropout

rate, etc.) set as the default values recommended in [57]. In the SWAD setting,

following [28], we performed a grid search for 𝛼 in {10−3.5, 10−3, 10−2.5, 10−2} and

𝛽 in {10−3.5, 10−3, 10−2, 10−1.5}. We chose the value of 𝜖 for the Sinkhorn loss (line

7, Algorithm 1) as 20, which is the smallest value that can produce stable training

processes.

In the SWAD setting, following [28], we first fixed all algorithm-agnostic hyper-
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parameters (HPs) and only tuned the algorithm-specific HPs. Specifically, we first

fixed the learning rate as 5 × 10−5, Resnet dropout rate and weight decay both as

0, and grid searched 𝛼, 𝛽 in {10−3.5, 10−3, 10−2.5, 10−2} and {10−3.5, 10−3, 10−2, 10−1.5}

with the batch size as 32. Then we searched learning rate, Resnet dropout rate, and

weight decay in {10−5, 3 × 10−5, 5 × 10−5}, {0.0, 0.1, 0.5} and {10−4, 10−6}, with

the selected 𝛼, 𝛽, as performed in [28]. We used the same values for SWAD-specific

hyper-parameters as those used in [28], without any further tuning. A full list of

hyper-parameters can be found in Table 3.8.

Model Selection: We adopted the commonly used training-domain validation

strategy in [57,78] for hyper-parameter tuning and model selection. Specifically, we

split the data from each domain into training and validation sets in the proportion 80%

and 20%, respectively. During training, we aggregated together the training/validation

samples from each seen domain to form the overall training/validation set and selected

the model with the highest validation accuracy for testing.

All models were trained on a single NVIDIA Tesla V100 16GB GPU. Experiments

on each dataset are repeated three times with different random seeds and the average

accuracy together with its standard error are reported.

3.1.8.4 Results and Ablation Study

As shown in Table 3.1, 3.2, 3.3, and 3.4, the proposed method (WBAE) performs

comparably or better than the state-of-the-art methods. In particular, WBAE achieves

the highest accuracy in three out of the four datasets compared to all methods,

with a moderate improvement over all theory-guided methods on all four datasets.

Additionally, the proposed method performs equally well as, or slightly better than,

the best-performing heuristic DG methods.

In Table 3.1, it is demonstrated that WBAE outperforms other theory-guided

methods by 0.5% and 1.2% points in both Cartoons (C) and Sketches (S) domains,
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respectively, and by at least 1% point on average on the PACS dataset. Similarly,

Table 3.2 shows that WBAE achieves a performance gain of at least 0.2% points over

all theory-guided comparison methods on the VLCS dataset. The effectiveness of the

proposed method is further highlighted in Tables 3.3 and 3.4, which present results on

the larger and more challenging Office-Home and TerraIncognita datasets. Specifically,

compared to all theory-guided methods on Office-Home, WBAE boosts the average

accuracy by at least 2.3% points on average and at least 2.2%, 3.4%, 0.3%, and 1.9%

points on each task. Regarding the TerraIncognita dataset, the proposed algorithm

still exhibits superiority by outperforming all theory-guided methods by at least 1.2%

points, as shown in Table 3.4. A summary of evaluation results in the DomainBed

setting is reported in Table 3.5. The proposed method outperforms all theory-guided

methods with a noticeable improvement of 1.7-2.8 percentage points on average across

all tested datasets.

Table 3.6 presents the results obtained by applying SWAD, a DG-specific optimizer

and weight-averaging technique, in combination with our proposed algorithm WBAE.

It can be observed that this combination outperforms all comparison methods on all

four evaluated datasets, with an average improvement of 0.4% point over the previous

best-performing method CORAL as reported in [28].

Based on the results above, it is evident that the proposed algorithm has a more

significant impact on the PACS, Office-Home, and TerraIncognita datasets compared

to the VLCS dataset. One possible explanation for this, as also suggested in [149], is

that three out of four domains in the VLCS dataset contain a greater proportion of

scenery contents rather than object information. Unlike the scenery background in

TerraIncognita dataset, the scenery contents in the VLCS dataset are usually more

intricate and sometimes include multiple objects, making it challenging for the feature

extractor to obtain useful object information for the downstream classification.

To study the impact of different components of the loss function in (3.40), we
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Table 3.9: Ablation study for the proposed algorithm (WBAE) on PACS, VLCS, and
Office-Home datasets.

Dataset no L𝑏𝑎𝑟𝑦 no L𝑟 WBAE

PACS 85.3 ± 0.3 86.0 ± 0.1 86.5 ± 0.2
VLCS 77.9 ± 0.1 78.4 ± 0.2 78.8 ± 0.2
Office-Home 65.7 ± 0.2 67.7 ± 0.1 68.8 ± 0.1

conducted an ablation study for WBAE on all datasets except TerraIncognita due

to our limited computational resources. In particular, we consider the following

variants of our method: (1) no L𝑏𝑎𝑟𝑦: using the WBAE loss function without the

Wasserstein barycenter term L𝑏𝑎𝑟𝑦; (2) no L𝑟: using the WBAE loss function without

the reconstruction term L𝑟. We re-ran all the experiments three times using the same

model architectures, hyper-parameter tuning, and validation method.

Table 3.9 demonstrates the performance of the model with different loss terms

removed from the original WBAE loss function. It can be observed that removing L𝑟

from the WBAE loss function leads to a decrease in the accuracy of 0.5%, 0.4%, and

1.1% points for PACS, VLCS, and Office-Home datasets, respectively. The performance

deterioration is more significant when removing L𝑏𝑎𝑟𝑦 from the WBAE loss function,

leading to a drop of 1.2%, 0.9%, and 3.1% points for PACS, VLCS, and Office-

Home datasets, respectively. Our ablation study demonstrates the importance of the

Wasserstein barycenter loss and also highlights the auxiliary role of the reconstruction

loss. Specifically, removing the Wasserstein barycenter loss (L𝑏𝑎𝑟𝑦) will result in

diminished performance, and a similar, though less significant, decrease will occur if

the reconstruction loss (L𝑟) is removed.

3.1.9 Limitations

In terms of algorithm and numerical implementation, it should be noted that while

our theory-guided method is effective in addressing the DG problem, it may become
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computationally expensive if one wants to use a larger batch size for a more accurate

estimation of the Wasserstein-2 barycenter. To alleviate this constraint, the future

work should focus on leveraging the recently proposed large-scale-barycenter and

mapping estimators [47, 76] to enable the calculation of barycenters with a larger

number of samples.

3.1.10 Conclusion

In this section, we revisited the theory and methods for DG and provided a new upper

bound for the risk in the unseen domain. The proposed upper bound contains four

terms: (1) the empirical risk of the seen domains in the input space; (2) the discrepancy

between the induced representation distribution of seen and unseen domains, which

can be further represented by the Wasserstein-2 barycenter of representation in the

seen domains; (3) the reconstruction loss term that measures how well the data can

be reconstructed from its representation; and (4) a combined risk term. Our upper

bound provides valuable insights in three aspects. Firstly, we observed that the

combined risk term in previous bounds relied on the representation function, which

made optimization challenging. By contrast, our combined risk term in the proposed

upper bound is a constant with respect to both the representation and the labeling

function, making optimization straightforward, thus bridging the previous gap between

theory and practice. Secondly, compared with other upper bounds using Wasserstein

distance to measure the domain discrepancy, the proposed bound constructs the

discrepancy term in the representation space rather than in the data space. This

approach offers a theoretical justification for the decomposition of the hypothesis when

bounding the risk and for practical implementation when designing the algorithm.

Lastly, motivated by the proposed upper bound, our practical algorithm WBAE

demonstrates competitive performance over state-of-the-art DG algorithms, validating

the usefulness of the proposed theoretical bound for addressing the DG problem.
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Notably, our bound encourages minimizing the reconstruction loss term, aligning with

the recent findings in [68] that encourage (nearly) invertible representation mappings.

A more comprehensive discussion on the utilization of the reconstruction loss will be

provided in the forthcoming section.

3.2 Part II: Complement for Current Domain Gener-

alization Theory

In the second part, we show that designing models based on domain-invariant feature

alone is necessary but insufficient for DG. We theoretically prove the necessity of

imposing an information preserving constraint on the representation function. In

particular, a reconstruction loss induced by the representation function is desired

for preserving most of the relevant information about the label in the representation

space. More importantly, we advances previous works [68, 89] by pointing out the

trade-off between minimizing the reconstruction loss and achieving domain alignment

in DG. Our theoretical results motivate a new DG framework that jointly optimizes

the reconstruction loss and the domain discrepancy.

3.2.1 Introduction

Domain-invariant or domain-alignment representation learning and is widely considered

as one of the most promising and efficient approaches in DG [137,151]. Without any

knowledge about the unseen domains, if one can learn the domain-invariant feature,

i.e., features are general and transferable between domains, the corresponding classifier

trained based on these features is likely to perform well on the unseen domains.

However, recent work [68] has shown that domain-invariant representation learning

may not fully address the information loss caused by non-invertible representation

maps. This finding has led to the motivation for exploring the use of (nearly) invertible

62



representation maps [68]. Similarly, in [89], the authors developed a novel upper bound

for the risk of the unseen domain by encouraging a small reconstruction loss induced

by the representation function.

In this section, we study domain-invariant representation learning from the

information-theoretic perspective. We point out the necessity of imposing a con-

straint on the representation function to retain the relevant information about the

label in extracted features, aligning with the results of previous works [68,89]. Further-

more, we demonstrate that there is a trade-off between minimizing the reconstruction

loss and minimizing the discrepancy between domains.

3.2.2 Contributions

In this work, our contributions include:

1. We derive a lower bound on mutual information between the latent representation

and their labels to demonstrate the necessity of imposing a information preserving

constraint on the representation function in DG [Proposition 3.2.5].

2. We characterize the trade-off between minimizing the reconstruction loss vs.

minimizing the discrepancy of joint distributions between domains. In other

words, we show that it is impossible to perfectly accomplish these two objectives

at the same time [Proposition 3.2.7].

3. We propose a new DG learning framework that directly accounts for both the

reconstruction loss and the discrepancy between domains and demonstrate the

efficiency of our proposed framework on several datasets.

3.2.3 Related work

As discussed in Chapter 2, domain-invariant representation learning is the most

common approach in DG. It aims to extract domain-invariant features and subsequently
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design a classifier based on these features [4, 5, 12, 43, 51, 80,88, 93, 150]. However, the

domain-invariant approach relies on two key assumptions: (a) the domain-invariant

features must exist and be shared between domains [12], and (b) the domain-invariant

features must be strongly correlated with labels [26, 97, 101]. Moreover, obtaining

precise domain-invariant features often requires a sufficiently large number of seen

domains during training [32,101].Therefore, if (a) the invariant features are neither

existent nor strongly correlated with the label, or (b) the number of observed (seen)

domains is not large enough, domain-invariant methods may fail [17, 57,69,111].

Domain-invariant representation learning can be categorized into two main branches:

(a) marginal distribution-invariant methods, i.e., learning the features such that their

distributions are unchanged according to domains, and (b) conditional distribution-

invariant methods, i.e., learning the features such that the conditional distributions

of labels given features are stable from domain to domain. The first branch includes

works such as [23, 46, 52, 60, 67, 85, 96, 112, 118]. For instance, in [96] and [46], deep

neural networks are employed to learn transformations that minimize the distribu-

tional variances of transformed features over the seen domains. Similarly, Li et al. [85]

propose a method that minimizes the Maximum Mean Discrepancy (MMD) between

marginal distributions in seen domains. Sun and Saenko [125] introduce a method that

not only matches the mean but also synchronizes the covariance of feature distributions

across different domains. Shen et al. [118] minimize the Wasserstein distance between

marginal distributions of representation variables from different seen domains in latent

space to extract invariant features. Bui et al. [26] aim to learn domain-invariant

features (with marginal distributions unchanged according to domains) along with

domain-specific features to enhance generalization performance. Works going to the

second branch includes [4, 5, 12, 80, 88, 114, 138, 149]. Particularly, linear/non-linear

Invariant Risk Minimization algorithms are proposed in [12, 88] with the goal to

find a common optimal linear/non-linear classifier over all observed domains. These
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methods are based on a key assumption that a common optimal classifier exists if the

conditional distributions of the label given the learned feature are stable from domain

to domain. Additionally, Li et al. [80] propose to extract domain-invariant features

via information bottleneck scheme together with minimizing the mutual information

between label and domain information given extracted feature. Wang et al. [138]

minimize the Kullback–Leibler (KL) divergence between conditional distributions in

each class to obtain domain-invariant features.

It is worth noting that domain-invariant methods may fail under some specific

settings, such as cases when the labels is more correlated with the spurious features

than with the true invariant features [4,101]. To address the potential failure of learning

models in these scenarios, Ahuja et al. propose to add a constraint on the entropy of

extracted features for capturing the true invariant features [4]. Similarly, Nguyen et

al. utilize the principle of conditional entropy minimization to eliminate the influence

of spurious-invariant features [101]. While the above works have achieved promising

results, we theoretically show that learning a domain-invariant representation function

itself is necessary but insufficient for DG in the following sections.

3.2.4 Problem Formulation

3.2.4.1 Notations

Following the notations we defined in Chapter 1 and 2, let 𝒳 , 𝒵, 𝒴 denote the

input space, the representation space, and the label space, respectively. For a

given family of domains 𝒟, suppose that the data from 𝑆 observed (seen) domains

𝒟(1),𝒟(2), . . . ,𝒟(𝑆) ∈ 𝒟 is accessible, DG tasks aim to learn a representation function

𝑓 : 𝒳 → 𝒵 followed by a classifier 𝑔 : 𝒵 → 𝒴 that generalizes well on an unseen

domain 𝒟(𝑢) ∈ 𝒟, 𝑢 ̸= 1, 2, . . . , 𝑆.

We denote the input random variable as 𝑋, the extracted feature random variable

as 𝑍 = 𝑓(𝑋), and the label random variable as 𝑌 , in the input space, representation
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space, and label space, respectively. Superscription 𝑖 is used to denote the variables and

functions specified on domain 𝒟(𝑖). Specifically, 𝑝(𝑖)(𝑥), 𝑝(𝑖)(𝑧), and 𝑝(𝑖)(𝑥, 𝑧) represent

the distribution of input sample 𝑥, the distribution of feature sample 𝑧 = 𝑓(𝑥), and

their joint distribution on 𝒟(𝑖), respectively. Moreover, we utilize 𝑝(𝑖)(𝑋,𝑍) and

𝑝(𝑖)(𝑌, 𝑍) to denote the joint distribution between the input random variable 𝑋 and its

representation random variable 𝑍, and the joint distribution between the label random

variable 𝑌 and the representation random variable 𝑍 within 𝒟(𝑖). Finally, we adopt

𝐻(𝐴|𝐵) and 𝐼(𝐴;𝐵) to represent the conditional entropy and mutual information

between two random variables 𝐴 and 𝐵, respectively.

3.2.4.2 Problem Formulation

For given 𝑆 seen domains, a DG task aims to find an optimal representation function

𝑓 * by solving the following optimization problem:

min
𝑓 :𝒳→𝒵

R(𝑢)(𝑔𝑓 ∘ 𝑓) (3.41)

Here, R(𝑢)(𝑔𝑓 ∘𝑓) denotes the risk (classification error) introduced by the representation

map 𝑓 followed by an optimal classifier 𝑔𝑓 on the unseen domain 𝐷(𝑢). It is important

to note that for a given 𝑓 : 𝒳 → 𝒵, the optimal classifier 𝑔𝑓 : 𝒵 → 𝒴 completely

depends on 𝑓 .

In this work, from the information-theoretic point of view, we aim to solve the

following optimization problem:

max
𝑓 :𝒳→𝒵

𝐼(𝑢)(𝑌 ;𝑍) (3.42)

where 𝐼(𝑢)(𝑌 ;𝑍) denotes mutual information between the labels and representation

features on unseen domain 𝐷(𝑢). It is worth noting that a higher mutual information

between features and corresponding labels is likely to result in a higher classification
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accuracy. Hence, solving (3.42) serves as a proxy for minimizing the classification risk

on unseen domains, which ultimately aligns with the primary objective of DG task as

defined in (3.41).

3.2.5 Preliminary

This section provides some definitions and preliminary results that support our main

results in Section 3.2.6.

3.2.5.1 Measure of Domain Discrepancy

As we discussed above, learning domain-invariant features is a widely adopted strategy

to tackle the DG problem. This prevalent approach typically involves two steps.

Firstly, one learns domain-invariant features using data and labels from the seen

domains, and subsequently, a classifier is designed based on these extracted features

[4, 5, 12, 43, 51, 80, 88, 93, 150]. For a given divergence measure 𝐷(·||·) and a seen

domain 𝒟(𝑠), previous studies on DG usually aim to (a) align marginal distributions

of the representation, i.e., minimize 𝐷(𝑝(𝑢)(𝑍)||𝑝(𝑠)(𝑍)), or (b) enforce the conditional

distribution to be the same , i.e., minimizing 𝐷(𝑝(𝑢)(𝑌 |𝑍)||𝑝(𝑠)(𝑌 |𝑍)). Under DG

settings, one cannot access the distribution of the unseen domain, thus, as a practical

workaround, aligning the distribution across all seen domains is commonly adopted as

a proxy to achieve this goal. In contrast to the aforementioned approaches, our focus is

on learning a mapping 𝑓 that minimizes the discrepancy between the joint distributions

of the seen and unseen domains. While this condition may seem restrictive, we provide

the following examples to demonstrate that aligning either the marginal distribution

or the conditional distribution alone is insufficient to guarantee a small classification

risk on the unseen domain.

Example 3.2.1 (Alignment of marginal distribution alone is not enough). Suppose

that there exits a mapping 𝑓 : 𝒳 → 𝒵 such that the marginal distributions of seen
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and unseen domains in the latent space are perfectly aligned. Particularly, we assume

that 𝒵 = {0, 1}, and 𝑝(𝑠)(𝑍 = 0) = 𝑝(𝑢)(𝑍 = 0) = 𝑝(𝑠)(𝑍 = 1) = 𝑝(𝑢)(𝑍 = 1) = 0.5.

Now, suppose that there is a mismatch between the conditional distribution between

two domains, for example,

𝑝(𝑠)(𝑌 = 0|𝑍 = 0) = 0.9,

𝑝(𝑠)(𝑌 = 1|𝑍 = 0) = 0.1,

𝑝(𝑠)(𝑌 = 0|𝑍 = 1) = 0.1,

𝑝(𝑠)(𝑌 = 1|𝑍 = 1) = 0.9,

and

𝑝(𝑢)(𝑌 = 0|𝑍 = 0) = 0.1,

𝑝(𝑢)(𝑌 = 1|𝑍 = 0) = 0.9,

𝑝(𝑢)(𝑌 = 0|𝑍 = 1) = 0.9,

𝑝(𝑢)(𝑌 = 1|𝑍 = 1) = 0.1.

If one trains a maximum likelihood classifier 𝑔 : 𝒵 → 𝒴 on seen domain, then the

obtained classifier will produce: 𝑔(𝑍 = 0) = 0 and 𝑔(𝑍 = 1) = 1. The classification

error on the seen domain induced by 𝑓 and 𝑔 is thus:

R(𝑠)(𝑔 ∘ 𝑓) = 𝑝(𝑠)(𝑍 = 0)
[︀
1− 𝑝(𝑠)(𝑌 = 0|𝑍 = 0)

]︀
+ 𝑝(𝑠)(𝑍 = 1)

[︀
1− 𝑝(𝑠)(𝑌 = 1|𝑍 = 1)

]︀
= 0.1.
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If one applies this classifier to the unseen domain, the classification error is:

R(𝑢)(𝑔 ∘ 𝑓) = 𝑝(𝑢)(𝑍 = 0)
[︀
1− 𝑝(𝑢)(𝑌 = 0|𝑍 = 0)

]︀
+ 𝑝(𝑢)(𝑍 = 1)

[︀
1− 𝑝(𝑢)(𝑌 = 1|𝑍 = 1)

]︀
= 0.9.

Therefore, only aligning the marginal distribution of the representations alone is

not sufficient to guarantee a low classification error on unseen domain.

Example 3.2.2 (Conditional distribution alignment alone is not enough). Suppose

that there exits a mapping 𝑓 : 𝒳 → 𝒵 such that the conditional distributions of seen

and unseen domains in the latent space are perfectly aligned. Particularly, we assume

that 𝒵 = {0, 1}, and

𝑝(𝑠)(𝑌 = 0|𝑍 = 0) = 𝑝(𝑢)(𝑌 = 0|𝑍 = 0) = 0.9,

𝑝(𝑠)(𝑌 = 1|𝑍 = 0) = 𝑝(𝑢)(𝑌 = 1|𝑍 = 0) = 0.1,

𝑝(𝑠)(𝑌 = 0|𝑍 = 1) = 𝑝(𝑢)(𝑌 = 0|𝑍 = 1) = 0.49,

𝑝(𝑠)(𝑌 = 1|𝑍 = 1) = 𝑝(𝑢)(𝑌 = 1|𝑍 = 1) = 0.51.

Now, suppose that there is a mismatch between the marginal distribution of two domains.

Specifically, we have 𝑝(𝑠)(𝑍 = 0) = 0.9, 𝑝(𝑠)(𝑍 = 1) = 0.1 while 𝑝(𝑢)(𝑍 = 0) = 0.1,

𝑝(𝑢)(𝑍 = 1) = 0.9.

If one trains a maximum likelihood classifier 𝑔 : 𝒵 → 𝒴 on seen domain, then we

will have a classifier 𝑔 such that 𝑔(𝑍 = 0) = 0 and 𝑔(𝑍 = 1) = 1. The classification
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error on seen domain induced by 𝑓 and 𝑔 is:

R(𝑠)(𝑔 ∘ 𝑓) = 𝑝(𝑠)(𝑍 = 0)
[︀
1− 𝑝(𝑠)(𝑌 = 0|𝑍 = 0)

]︀
+ 𝑝(𝑠)(𝑍 = 1)

[︀
1− 𝑝(𝑠)(𝑌 = 1|𝑍 = 1)

]︀
= 0.139.

If one applies this classifier to the unseen domain, the classification error is:

R(𝑢)(𝑔 ∘ 𝑓) = 𝑝(𝑢)(𝑍 = 0)
[︀
1− 𝑝(𝑢)(𝑌 = 0|𝑍 = 0)

]︀
+ 𝑝(𝑢)(𝑍 = 1)

[︀
1− 𝑝(𝑢)(𝑌 = 1|𝑍 = 1)

]︀
= 0.451.

Therefore, solely targeting the conditional distribution alignment will not ensure a low

classification error on unseen domain.

As shown from examples above, we demonstrate that either aligning the marginal

distribution or the conditional distribution alone is not enough. Therefore, we propose

to align the joint distribution of representation and label. To quantify the discrepancy

between the distributions, we introduce the following measure:

Definition 3.2.1 (Domain discrepancy induced by a representation function). For a

representation function 𝑓 : 𝒳 → 𝒵, unseen domain 𝒟(𝑢), and seen domain 𝒟(𝑠), the

domain-discrepancy between 𝒟(𝑢) and 𝒟(𝑠) induced by 𝑓 is:

𝐾(𝑓) = 𝐷(𝑝(𝑢)(𝑌, 𝑍)||𝑝(𝑠)(𝑌, 𝑍)) (3.43)

where 𝐷(·||·) is a divergence measure that quantifies the mismatch between two

distributions.

If the representation function 𝑓 induces 𝐾(𝑓) = 0, the distributions between seen
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and unseen domains are perfectly aligned. In practice, enforcing 𝐾(𝑓) = 0 is usually

too strict, one may want to release such constraint to 𝐾(𝑓) ≤ 𝜖 where 𝜖 is a positive

number.

Definition 3.2.2. Define 𝑊 (𝜖) as the maximum discrepancy between mutual infor-

mation of unseen domain 𝒟(𝑢) and seen domain 𝒟(𝑠) while the domain discrepancy

𝐾(𝑓) does not exceed a positive number 𝜖. Formally,

𝑊 (𝜖) = max
𝑓 :𝒳→𝒵,
𝐾(𝑓)≤𝜖

⃒⃒
𝐼(𝑢)(𝑌 ;𝑍)− 𝐼(𝑠)(𝑌 ;𝑍)

⃒⃒
(3.44)

where 𝐼(𝑢)(𝑌 ;𝑍) and 𝐼(𝑠)(𝑌 ;𝑍) are mutual information between label 𝑌 and repre-

sentation feature 𝑍 in unseen domain and seen domain, respectively.

If 𝜖 = 0, we will have 𝐾(𝑓) = 0 and 𝐼(𝑢)(𝑌 ;𝑍) = 𝐼(𝑠)(𝑌 ;𝑍), thus 𝑊 (0) = 0. In

addition, it is possible to verify that 𝑊 (𝜖) is a monotonically increasing function of 𝜖.

3.2.5.2 Measure of the Reconstruction Loss

Note that by Data Processing Inequality [34] and the fact that 𝑌 → 𝑋 → 𝑍 forms a

Markov chain, for any representation function 𝑓 :

𝐼(𝑢)(𝑌 ;𝑋) ≥ 𝐼(𝑢)(𝑌 ;𝑍) (3.45)

where 𝐼(𝑢)(𝑌 ;𝑋) denotes mutual information between label and input and 𝐼(𝑢)(𝑌 ;𝑍)

stands for mutual information between label and feature on unseen domain, respectively.

The equality holds in (3.45) if 𝑓 is invertible. It is worth noting that there may exist

non-invertible representation functions that make the equality happens. Indeed, if

the label information can be precisely preserved under mapping 𝑓 , i.e., using 𝑍 to

predict 𝑌 is as good as using 𝑋 to predict 𝑌 , for example, if 𝐻(𝑢)(𝑌 |𝑋) = 𝐻(𝑢)(𝑌 |𝑍),

then 𝐼(𝑢)(𝑌 ;𝑋) = 𝐼(𝑢)(𝑌 ;𝑍). However, under DG settings, there is no information
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about the data, nor the label from unseen domains. Thus, it is impossible to design

such non-invertible mappings that perfectly preserve the label information on unseen

domain. On the other hand, (nearly) invertible mappings can be constructed without

any knowledge of the domains. This can be achieved by minimizing the reconstruction

loss between the input data and its representation, providing a feasible way to retain

the useful information of the data. In other words, this approach allows us to make

𝐼(𝑢)(𝑌 ;𝑍) close to 𝐼(𝑢)(𝑌 ;𝑋).

Definition 3.2.3 (Reconstruction loss). For a representation function 𝑓 : 𝒳 → 𝒵,

and a function 𝜓 : 𝒵 → 𝒳 , the reconstruction loss (on unseen domain) induced by 𝑓

and 𝜓 is defined by:

𝑅(𝑓, 𝜓) =

∫︁
𝑥∈𝒳

𝑝(𝑢)(𝑥) ℓ(𝑥, 𝜓(𝑓(𝑥))) 𝑑𝑥

=

∫︁
𝑥∈𝒳

∫︁
𝑧∈𝒵

𝑝(𝑢)(𝑥, 𝑧) ℓ(𝑥, 𝜓(𝑧)) 𝑑𝑥 𝑑𝑧 (3.46)

where ℓ(·, ·) is a distortion function.

Definition 3.2.4. Let 𝑄(𝛾) denote the maximum mutual information loss (on unseen

domain) when the reconstruction loss induced by the representation function 𝑓 and

the reconstruction function 𝜓 does not exceed a positive number 𝛾. Formally,

𝑄(𝛾) = max
𝑓 :𝒳→𝒵,
𝜓:𝒵→𝒳 ,
𝑅(𝑓,𝜓)≤𝛾

𝐼(𝑢)(𝑌 ;𝑋)− 𝐼(𝑢)(𝑌 ;𝑍). (3.47)

Note that 𝛾 = 0 implies 𝑓 is invertible, leading to 𝐼(𝑢)(𝑌 ;𝑋) = 𝐼(𝑢)(𝑌 ;𝑍) and

therefore, 𝑄(0) = 0. In addition, it is possible to show that 𝑄(𝛾) is a monotonic

increasing function of 𝛾.
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3.2.6 Main Results

In this section, we present our main results, showing the necessity of employing the

representation functions such that a small reconstruction loss is induced in order to

solve the optimization problem in (3.42). More interestingly, we show that there is a

trade-off between minimizing the reconstruction loss and aligning the joint distributions

between domains.

Proposition 3.2.5 (Main result). For unseen domain 𝒟(𝑢), seen domain 𝒟(𝑠), and

any representation function 𝑓 and reconstruction function 𝜓:

𝐼(𝑢)(𝑌 ;𝑍) ≥ max
[︁
𝐼(𝑠)(𝑌 ;𝑍)−𝑊

(︀
𝐾(𝑓)

)︀
; 𝐼(𝑢)(𝑌 ;𝑋)−𝑄

(︀
𝑅(𝑓, 𝜓)

)︀]︁
. (3.48)

Proof. First, from Definition 3.2.2, for a given 𝑓 :

𝑊 (𝐾(𝑓)) ≥ 𝐼(𝑠)(𝑌 ;𝑍)− 𝐼(𝑢)(𝑌 ;𝑍), (3.49)

which is equivalent to:

𝐼(𝑢)(𝑌 ;𝑍) ≥ 𝐼(𝑠)(𝑌 ;𝑍)−𝑊 (𝐾(𝑓)). (3.50)

Next, from Definition 3.2.4, for given 𝑓 and 𝜓:

𝑄(𝑅(𝑓, 𝜓)) ≥ 𝐼(𝑢)(𝑌 ;𝑋)− 𝐼(𝑢)(𝑌 ;𝑍) (3.51)

which is equivalent to:

𝐼(𝑢)(𝑌 ;𝑍) ≥ 𝐼(𝑢)(𝑌 ;𝑋)−𝑄(𝑅(𝑓, 𝜓)). (3.52)

Combine (3.50) and (3.52), the proof follows.
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Proposition 3.2.5 points out a possible way to solve the optimization problem

proposed in (3.42). Particularly, to maximize 𝐼(𝑢)(𝑌 ;𝑍), one needs to (a) maximize

𝐼(𝑠)(𝑌 ;𝑍) −𝑊 (𝐾(𝑓)), and (b) maximize 𝐼(𝑢)(𝑌 ;𝑋) − 𝑄(𝑅(𝑓, 𝜓)), simultaneously.

Since 𝐼(𝑢)(𝑌 ;𝑋) is a constant and𝑊 (·) and𝑄(·) are monotonically increasing functions,

to maximize 𝐼(𝑢)(𝑌 ;𝑍), we need to find a representation function 𝑓 and a reconstruction

function 𝜓 to (i) maximize the mutual information on seen domain 𝐼(𝑠)(𝑌 ;𝑍), (ii)

minimize the domain discrepancy 𝐾(𝑓), and (iii) minimize the reconstruction loss

𝑅(𝑓, 𝜓), at the same time.

In practice, if the invariant features exist, strongly correlate with the label, and

can be precisely learned, there may exist a mapping 𝑓 such that 𝐼(𝑠)(𝑌 ;𝑍) is large

and 𝐾(𝑓) is small which make the first lower bound 𝐼(𝑠)(𝑌 ;𝑍)−𝑊 (𝐾(𝑓)) is tighter

than the second lower bound 𝐼(𝑢)(𝑌 ;𝑋)−𝑄(𝑅(𝑓, 𝜓)). However, certain failure cases

reported in the literature [17,57,69,111] reveal scenarios where the invariant feature is

not strongly correlated with the label due to the interference of some spurious features,

leading to a large 𝐾(𝑓) and a small 𝐼(𝑠)(𝑌 ;𝑍), thus making the second lower bound

𝐼(𝑢)(𝑌 ;𝑋)−𝑄(𝑅(𝑓, 𝜓)) the tighter one. Traditional approaches that aim to learn the

invariant features (minimizing 𝐾(𝑓)) and minimize the empirical risk (a proxy for

maximizing the mutual information on the seen domain 𝐼(𝑠)(𝑌 ;𝑍)) for optimizing the

first lower bound can fail in such cases.

Motivated by Proposition 3.2.5, it is natural to pursue a representation function

𝑓 and a reconstruction function 𝜓 that can simultaneously minimize both 𝐾(𝑓) and

𝑅(𝑓, 𝜓). However, we demonstrate below that it is impossible to optimize 𝐾(𝑓) and

𝑅(𝑓, 𝜓) at the same time.

Definition 3.2.6 (Reconstruction-alignment function). For unseen domain 𝒟(𝑢), seen

domain 𝒟(𝑠), and a given reconstruction function 𝜓, the reconstruction-alignment
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function 𝑇 (𝛾) is defined by:

𝑇 (𝛾) = min
𝑓 :𝒳→𝒵

𝐾(𝑓) = min
𝑓 :𝒳→𝒵

𝐷(𝑝(𝑢)(𝑌,𝑍)||𝑝(𝑠)(𝑌,𝑍))

s.t. 𝑅(𝑓, 𝜓) =

∫︁
𝑥∈𝒳

∫︁
𝑧∈𝒵

𝑝(𝑢)(𝑥, 𝑧)ℓ(𝑥, 𝜓(𝑧)) 𝑑𝑥 𝑑𝑧 ≤ 𝛾
(3.53)

where 𝛾 is a positive number, ℓ(·, ·) is a distortion measure, and 𝐷(·||·) is a divergence

measure.

The reconstruction-alignment function 𝑇 (𝛾) is the minimal discrepancy between

the joint distributions of the unseen domain 𝒟(𝑢) and seen domain 𝒟(𝑠) that can be

obtained if the reconstruction loss (on unseen domain) does not exceed a positive

number 𝛾. We formally characterize the trade-off between minimizing reconstruction

loss and achieving domain alignment as below.

Proposition 3.2.7 (Main result). If the divergence measure 𝐷(𝑎||𝑏) is convex (in both

variables 𝑎 and 𝑏), then 𝑇 (𝛾) defined in (3.53) is (a) monotonically non-increasing,

and (b) convex.

Proof. Our proof closely follows to the proof of rate-distortion theory in [34]. Specifi-

cally, consider two positive numbers 𝛾1 and 𝛾2, and assume that 𝛾1 ≤ 𝛾2. For a given

reconstruction function 𝜓, let ℱ𝛾1 and ℱ𝛾2 denote the sets of representation functions

𝑓 such that 𝑅(𝑓, 𝜃) ≤ 𝛾1 and 𝑅(𝑓, 𝜃) ≤ 𝛾2, respectively. Since 𝛾1 ≤ 𝛾2, ℱ𝛾1 ⊂ ℱ𝛾2 , we

have:

𝑇 (𝛾1) = min
𝑓∈ℱ𝛾1

𝐾(𝑓) ≥ min
𝑓∈ℱ𝛾2

𝐾(𝑓) = 𝑇 (𝛾2). (3.54)

Thus, 𝑇 (𝛾) is a monotonically non-increasing function of 𝛾. Next, let:

𝑓1 = argmin
𝑓 :𝒳→𝒵

𝐾(𝑓) s.t. 𝑅(𝑓, 𝜃) ≤ 𝛾1, (3.55)

𝑓2 = argmin
𝑓 :𝒳→𝒵

𝐾(𝑓) s.t. 𝑅(𝑓, 𝜃) ≤ 𝛾2. (3.56)
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𝑝
(𝑢)
1 (𝑌, 𝑍), 𝑝(𝑠)1 (𝑌, 𝑍) be the corresponding joint distributions of 𝑌 and 𝑍 on unseen

and seen domain introduced by 𝑓1, and 𝑝(𝑢)2 (𝑌, 𝑍), 𝑝(𝑠)2 (𝑌, 𝑍) be the corresponding joint

distributions of 𝑌 and 𝑍 on unseen and seen domain introduced by 𝑓2, respectively.

Similarly, let 𝑝(𝑢)1 (𝑋,𝑍), 𝑝(𝑠)1 (𝑋,𝑍) be the corresponding joint distributions of 𝑋 and

𝑍 on unseen and seen domain introduced by 𝑓1, and 𝑝
(𝑢)
2 (𝑋,𝑍), 𝑝(𝑠)2 (𝑋,𝑍) be the

corresponding joint distributions of 𝑋 and 𝑍 on unseen and seen domain introduced

by 𝑓2, respectively.

Note that for any representation function 𝑓 , we have 𝑝(𝑢)(𝑌, 𝑍) = 𝑝(𝑢)(𝑌 |𝑋) 𝑝(𝑢)(𝑋,𝑍)

and 𝑝(𝑠)(𝑌, 𝑍) = 𝑝(𝑠)(𝑌 |𝑋) 𝑝(𝑠)(𝑋,𝑍) where 𝑝(𝑢)(𝑌 |𝑋) and 𝑝(𝑠)(𝑌 |𝑋) denote the con-

ditional distribution between label and input data of unseen and seen domain, respec-

tively. Since 𝑝(𝑢)(𝑌 |𝑋) and 𝑝(𝑠)(𝑌 |𝑋) do not depend on the representation function

𝑓 . Thus,

𝑝
(𝑢)
1 (𝑌, 𝑍) = 𝑝(𝑢)(𝑌 |𝑋) 𝑝

(𝑢)
1 (𝑋,𝑍), (3.57)

𝑝
(𝑢)
2 (𝑌, 𝑍) = 𝑝(𝑢)(𝑌 |𝑋) 𝑝

(𝑢)
2 (𝑋,𝑍), (3.58)

and,

𝑝
(𝑠)
1 (𝑌, 𝑍) = 𝑝(𝑠)(𝑌 |𝑋) 𝑝

(𝑠)
1 (𝑋,𝑍), (3.59)

𝑝
(𝑠)
2 (𝑌, 𝑍) = 𝑝(𝑠)(𝑌 |𝑋) 𝑝

(𝑠)
2 (𝑋,𝑍). (3.60)

Next, to prove the convexity of 𝑇 (𝛾), we will show that:

𝜆𝑇 (𝛾1) + (1− 𝜆)𝑇 (𝛾2) ≥ 𝑇 (𝜆𝛾1 + (1− 𝜆)𝛾2), (3.61)

for any 𝜆 ∈ [0, 1]. Let:

𝑝
(𝑢)
𝜆 (𝑋,𝑍) = 𝜆𝑝

(𝑢)
1 (𝑋,𝑍) + (1− 𝜆)𝑝(𝑢)2 (𝑋,𝑍), (3.62)

𝑝
(𝑠)
𝜆 (𝑋,𝑍) = 𝜆𝑝

(𝑠)
1 (𝑋,𝑍) + (1− 𝜆)𝑝(𝑠)2 (𝑋,𝑍). (3.63)
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By definition, the left hand side of (3.61) can be rewritten by:

𝜆𝑇 (𝛾1) + (1− 𝜆)𝑇 (𝛾2)

= 𝜆𝐷(𝑝
(𝑢)
1 (𝑌, 𝑍) || 𝑝(𝑠)1 (𝑌, 𝑍)) + (1− 𝜆)𝐷(𝑝

(𝑢)
2 (𝑌, 𝑍) || 𝑝(𝑠)2 (𝑌, 𝑍))

= 𝜆𝐷(𝑝(𝑢)(𝑌 |𝑋)𝑝
(𝑢)
1 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋)𝑝

(𝑠)
1 (𝑋,𝑍)) (3.64)

+ (1− 𝜆)𝐷(𝑝(𝑢)(𝑌 |𝑋)𝑝
(𝑢)
2 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋)𝑝

(𝑠)
2 (𝑋,𝑍)) (3.65)

≥ 𝐷(𝑝(𝑢)(𝑌 |𝑋)𝑝
(𝑢)
𝜆 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋)𝑝

(𝑠)
𝜆 (𝑋,𝑍)) (3.66)

where (3.64) and (3.65) are due to (3.57), (3.58), (3.59), and (3.60); (3.66) is due to

(3.62), (3.63), and the convexity of 𝐷(·||·).

Let 𝑓𝜆 is the corresponding function that induces the joint distribution 𝑝(𝑢)𝜆 (𝑋,𝑍)

and 𝑝(𝑠)𝜆 (𝑋,𝑍)1, the reconstruction loss corresponding to 𝑓𝜆 is:

𝛾𝜆 =

∫︁
𝑥∈𝒳

∫︁
𝑧∈𝒵

𝑝
(𝑢)
𝜆 (𝑥, 𝑧)ℓ(𝑥, 𝜓(𝑧)) 𝑑𝑥𝑑𝑧. (3.67)

By Definition 3.2.6,

𝐷(𝑝(𝑢)(𝑌 |𝑋) 𝑝
(𝑢)
𝜆 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋) 𝑝

(𝑠)
𝜆 (𝑋,𝑍)) ≥ 𝑇 (𝛾𝜆). (3.68)

Combine (3.66) and (3.68):

𝜆𝑇 (𝛾1) + (1− 𝜆)𝑇 (𝛾2) ≥ 𝑇 (𝛾𝜆), (3.69)

or the left hand side of (3.61) is larger or at least equal to 𝑇 (𝛾𝜆). Next, we show that

𝑇 (𝛾𝜆) is at least as large as the right hand side of (3.61). Particularly, we want to

show:

𝑇 (𝛾𝜆) ≥ 𝑇 (𝜆𝛾1 + (1− 𝜆)𝛾2). (3.70)

1Indeed, we always can construct 𝑓𝜆 that induces 𝑝(𝑢)𝜆 (𝑋,𝑍) and 𝑝(𝑠)𝜆 (𝑋,𝑍) by linear interpolating
between 𝑓1 and 𝑓2.
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Since 𝑇 (𝛾) is a monotonically non-increasing function, we want to show that:

𝛾𝜆 ≤ 𝜆𝛾1 + (1− 𝜆)𝛾2. (3.71)

Since,

𝛾𝜆 =

∫︁
𝑥

∫︁
𝑧

𝑝
(𝑢)
𝜆 (𝑥, 𝑧)ℓ(𝑥, 𝜓(𝑧))𝑑𝑥𝑑𝑧 (3.72)

=

∫︁
𝑥

∫︁
𝑧

(︁
𝜆𝑝

(𝑢)
1 (𝑥, 𝑧) + (1− 𝜆)𝑝(𝑢)2 (𝑥, 𝑧)

)︁
ℓ(𝑥, 𝜓(𝑧))𝑑𝑥𝑑𝑧 (3.73)

= 𝜆

∫︁
𝑥

∫︁
𝑧

𝑝
(𝑢)
1 (𝑥, 𝑧)ℓ(𝑥, 𝜓(𝑧))𝑑𝑥𝑑𝑧 (3.74)

+ (1− 𝜆)
∫︁
𝑥

∫︁
𝑧

𝑝
(𝑢)
2 (𝑥, 𝑧)ℓ(𝑥, 𝜓(𝑧))𝑑𝑥𝑑𝑧 (3.75)

≤ 𝜆𝛾1 + (1− 𝜆)𝛾2 (3.76)

with (3.72) due to (3.67); (3.73) due to (3.62); (3.74) and (3.75) due to a bit of algebra;

(3.76) due to (3.55) and (3.56), respectively.

From (3.71) and (3.76), (3.70) follows. Finally, from (3.69) and (3.70), (3.61)

follows. The proof is complete.

Sharing some similarities with rate-distortion theory [34], Proposition 3.2.7 charac-

terizes the trade-off between minimizing the domain discrepancy 𝐾(𝑓) and minimizing

the reconstruction loss 𝑅(𝑓, 𝜓). Since Proposition 3.2.7 holds for any reconstruction

function 𝜓, there are no representation function 𝑓 and reconstruction function 𝜓 that

can minimize the domain discrepancy and the reconstruction loss together.

Though the proof of Proposition 3.2.7 is constructed by considering the reconstruc-

tion loss on unseen domain, a similar proof applies to seen domains, i.e., there exists

a universal trade-off between minimizing the domain discrepancy and minimizing the

reconstruction loss, regardless of domains. Lastly, it is important to note that the

assumption regarding the convexity of the divergence 𝐷(·||·) is not overly restrictive
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in practice. Indeed, most of the divergence measures, such as the Kullback-Leibler

divergence, are convex [34].

3.2.7 Practical Approach

Motivated by Proposition 3.2.5, our objective is to simultaneously maximize the

mutual information 𝐼(𝑠)(𝑌 ;𝑍), minimize the reconstruction loss 𝑅(𝑓, 𝜓) induced by

the representation function, and reduce the domain discrepancy 𝐾(𝑓) between the

seen and unseen domains. Since the unseen domain is inaccessible during training in

the DG setting, we approximate the minimization of the domain discrepancy term by

minimizing the discrepancy between all seen domains. Similarly, we approximate the

maximization of the mutual information between label and representation features by

minimizing the empirical risk on seen domains, leaving the direct maximization of the

mutual information term for future work. Specifically, we objective function is written

as:

min
𝑓,𝑔𝑓 ,𝜓

𝑆∑︁
𝑖=1

R(𝑖)(𝑔𝑓 ∘ 𝑓) + 𝛼𝐿discrepancy(𝑓) + 𝛽𝐿reconstruction(𝑓, 𝜓), (3.77)

where the first term is the empirical classification risk over 𝑆 seen domains, the second

term denotes the domain discrepancy, and the third term represents the reconstruction

loss. 𝛼, and 𝛽 are two positive hyper-parameters that control the trade-off between

minimizing these three loss terms.

Compared to most existing DG works, the main difference of our objective function

in (3.77) lies in the inclusion of the reconstruction loss term, which is motivated by

Proposition 3.2.5 to retain the information between the latent representation and its

labels on the unseen domain. As a result, (3.77) can be practically optimized by incor-

porating a decoder (to optimize the reconstruction loss) into well-established existing

DG models that already handle the empirical risk and domain discrepancy terms.

Practically, we employ the following DG methods: Invariant Risk Minimization (IRM)
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algorithm [12], Maximum Mean Discrepancy (MMD) algorithm [85], CORrelation

ALignment (CORAL) algorithm [125], Invariant Risk Minimization-Maximum Mean

Discrepancy (IRM-MMD) algorithm [58], Information Bottleneck-Invariant Risk Mini-

mization (IB-IRM) algorithm [4], Empirical Risk Minimization (ERM) algorithm [130],

and Conditional Entropy Minimization (CEM) algorithm [101] to minimize the first

two terms in (3.77). To minimize the reconstruction loss term in (3.77), we train a

representation function 𝑓 : 𝒳 → 𝒵 together with a reconstruction function 𝜓 : 𝒵 → 𝒳

to minimize:

𝐿reconstruction(𝑓, 𝜓)=
𝑆∑︁
𝑖=1

∫︁
𝑥∈𝒳

𝑝(𝑖)(𝑥)ℓ(𝑥, 𝜓(𝑓(𝑥))) 𝑑𝑥, (3.78)

where the squared-Euclidean distance is selected as the distortion measure, i.e.,

ℓ(𝑎, 𝑏) = (𝑎 − 𝑏)2, and 𝑝(𝑖)(𝑥) denotes the input distribution on domain 𝒟(𝑖), 𝑖 =

1, 2, . . . , 𝑆.

By integrating the reconstruction loss term into IRM, MMD, CORAL, IRM-MMD,

IB-IRM, ERM, and CEM algorithms, we propose the following variations: IRM-Rec,

MMD-Rec, CORAL-Rec, IRM-MMD-Rec, IB-IRM-Rec, ERM-Rec, and CEM-Rec,

respectively. Employing multiple algorithms to handle the first two terms in (3.77)

offers the advantage of evaluating the effectiveness of combining the reconstruction-

loss term with a variety of DG methods. Our numerical results in the next section

demonstrate that incorporating the reconstruction loss term leads to improvements in

the accuracy of existing DG methods.

3.2.8 Experiments

3.2.8.1 Datasets

Colored-MNIST (CMNIST) [12]. The CMNIST dataset is a common DG dataset

which was first proposed in [12]. The learning task is to classify a colored digit into
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two classes: the digit is less than or equal to four or the digit is strictly greater than

four. There are three domains in CMNIST, two domains contain 25,000 images each

and one domain contains 20,000 images. Here, the color is considered as a spurious

feature which is added in a way such that the label is more correlated with the color

than with the digit. Due to a strong spurious correlation between colors and labels,

any algorithm simply aims to minimize the training error will tend to discover the

color rather than the shape of the digit (on seen domains) and therefore fail in the test

on unseen domains. More details about the CMNIST dataset can be found in [12].

Covariate-Shift-CMNIST (CS-CMNIST) [6]. The CS-CMNIST dataset is a

dataset derived from CMNIST dataset which was first introduced in [6]. There are

10 classes in CS-CMNIST dataset where each class corresponds to a digit from zero

to nine and each digit is associated with a single color. There are three domains

in CS-CMNIST: two training domains and one test domain, each containing 20,000

images. The color is considered the spurious feature and is added in a way such that

the color is more correlated to digits on seen domains than on unseen domains. More

detail about CS-CMNIST can be found in [4], [6].

3.2.8.2 Implementation Details

For the CMNIST dataset, we utilize the well-established implementation in Do-

mainbed [57] that employs the MNIST-ConvNet with four convolutional layers as the

learning model. 20 trials corresponding to 20 pairs of hyper-parameters 𝛼 and 𝛽 are

randomly selected in [10−1, 104]. For each trial, the learning rate is randomly picked

in [10−4.5, 10−3.5] while the batch size is randomly selected in [23, 29].

Since the CS-CMNIST dataset is not available in Domainbed [57], we follow

the implementation proposed in [4] where the learning model is composed of three

convolutional layers with feature map dimensions of 256, 128, and 64, respectively.

The last layer (linear layer) is used to classify the colored digit back to 10 classes
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corresponding to 10 digits from zero to nine. We use an SGD optimizer for training

with a batch size fixed to 128, the learning rate fixed to 10−1 and decay every 600

steps with the total number of steps set to 2,000. In contrast to CMNIST, a grid

search is performed in CS-CMNIST with 𝛼, 𝛽 ∈ {0.1, 1, 10, 102, 103, 104}.

The training-domain validation set procedure is used for model selection, i.e.,

selecting the hyper-parameters (the models) that induce the highest validation accuracy

on the validation set sampled from seen domains [4, 57].

We repeat the whole experiment three times for CMNIST and five times for CS-

CMNIST via selecting different random seeds2. For each selected random seed, the

whole process of hyper-parameters tuning and model selection is repeated. After the

whole process is completed, only the average accuracy and its corresponding standard

deviation are reported. Our code can be found at this link3.

3.2.9 Results and Discussion

Table 3.10: Average accuracy (%) of compared methods on CS-CMNIST dataset.

Algorithm IRM [12] IB-IRM [4] MMD-IRM [58] CEM [101]
Accuracy 61.5 ± 1.5 71.8 ± 0.7 77.2 ± 0.9 85.7 ± 0.9

Algorithm IRM-Rec IB-IRM-Rec MMD-IRM-Rec CEM-Rec
Accuracy 71.0 ± 0.8 75.6 ± 1.1 79.7 ± 0.6 87.1 ± 1.3

Table 3.11: Average accuracy (%) of compared methods on CMNIST dataset.

Algorithm IRM [12] MMD [85] ERM [130] CORAL [125]
Accuracy 52.0 ± 0.1 51.5 ± 0.2 51.5 ± 0.1 51.5 ± 0.1

Algorithm IRM-Rec MMD-Rec ERM-Rec CORAL-Rec
Accuracy 51.7 ± 0.2 51.7 ± 0.1 51.8 ± 0.1 52.0 ± 0.1

2We follow the settings in [4, 57]. In particular, in [57], the experiment is repeated three times
while in [4], the experiment is repeated five times.

3https://github.com/thuan2412/tradeoff_between_domain_alignment_and_reconstruct
ion_loss

82

https://github.com/thuan2412/tradeoff_between_domain_alignment_and_reconstruction_loss
https://github.com/thuan2412/tradeoff_between_domain_alignment_and_reconstruction_loss
https://github.com/thuan2412/tradeoff_between_domain_alignment_and_reconstruction_loss


Tables 3.10 and 3.11 present the accuracy of the original DG methods and their

variations on the CS-CMNIST dataset and CMNIST dataset, respectively. The

numerical results for IRM, MMD, CORAL, and ERM on the CMNIST dataset are

gathered from [57] while the numerical results for IRM, IB-IRM, and CEM on the CS-

CMNIST dataset are gathered from [101]. Since the source code of MMD-IRM [58] was

not released, we implemented this algorithm ourselves to construct the MMD-IRM-Rec

algorithm.

For the CS-CMNIST dataset, the accuracy of all four tested algorithms has

improved when the reconstruction loss term is added. In particular, the lowest

improvement of 1.4% is observed from the CEM algorithm [101], while the largest

improvement of 9.5% appears in the IRM algorithm [12]. We believe this variation

in improvement can be attributed to Proposition 3.2.5. It seems that the original

CEM algorithm [101] already performs well on CS-CMNIST, and hence, the first

lower bound in Proposition 3.2.5 induced by CEM is relatively tight, resulting in a

small accuracy improvement when the reconstruction loss term is added. In contrast,

since the IRM algorithm [12] exhibits poorer performance on CS-CMNIST, we suspect

that the first lower bound in Proposition 3.2.5 induced by IRM is the looser one,

leading to a significant improvement when optimizing the second bound by adding

the reconstruction loss term.

In comparison, CMNIST is a more challenging dataset, where all algorithms tested

perform poorly due to the strong spurious correlation between colors and the labels of

digits [57]. However, as observed in Table 3.11, three out of four tested algorithms show

improvement when the reconstruction loss term is added. Although the improvement

is not substantial, with the largest margin being only 0.5% observed in the CORAL

algorithm, this still demonstrates the usefulness of optimizing the reconstruction loss

term in DG.

Finally, our future work will focus on integrating the reconstruction loss into other
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state-of-the-art DG algorithms, and using mutual information as a direct objective

function instead of empirical risk.

3.2.10 Conclusions

In this part of work, we have demonstrated that while learning domain-invariant

representation features is necessary in DG, it is not sufficient to preserve the mutual

information between labels and representation features on unseen domains. To address

this limitation, we introduce a constraint on the representation function by adding a

reconstruction loss between the input and its reconstruction from the extracted feature,

which helps retain essential information about the labels. Additionally, we highlight

the inherent trade-off between minimizing the reconstruction loss and achieving domain

alignment in DG. This observation implies that simultaneously minimizing both the

reconstruction loss and the domain discrepancy is not feasible. Building on these

theoretical insights, we present a new practical framework that jointly considers both

the reconstruction loss and the domain discrepancy to learn representation features.

Importantly, our proposed framework can be easily adapted to different DG algorithms.

Moreover, it demonstrates improved performance compared to state-of-the-art DG

methods in practice. These findings provide valuable guidance for the development of

more effective DG approaches with enhanced generalization performance.
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Chapter 4

Spurious Domain-invariant Features

and Domain Generalization

Building upon the insights presented in Chapter 2, it is clear that invariant features

play a pivotal role in tackling the DG problem. However, as highlighted in various

domain generalization studies [5,6,12], algorithms seeking to learning domain-invariant

features may still fail in real-world scenario, despite the promising guidance offered

by theoretical works [21, 146]. In this chapter, we take a closer look at the failure

cases of the DG algorithms and analyze their underlying causes. In particular, we

identify that the algorithms’ downfall lies in their inability to discriminate the true

invariant feature from the spurious invariant features. To address this problem, we

introduce a novel framework grounded in conditional entropy minimization (CEM).

This framework serves to effectively filter out spurious invariant features, ultimately

enhancing the robustness of model.

4.1 Introduction

In previous chapters, we can see that learning domain-invariant features is generally

used as a primary solution to the DG problem. Following this idea, various DG
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algorithms have been proposed for domain-invariant feature learning [137,151] over

the past decade. Among these algorithms, Invariant Risk Minimization (IRM) [12, 88]

provides an innovative perspective for formulating and solving the domain generaliza-

tion problem. Under the widely used assumptions that representations are general and

transferable if the feature representations remain invariant from domain to domain,

IRM casts fresh light on the interplay between classifier performance on each domain

and feature transferability. However, despite its effectiveness, IRM has been found

to fail in some simple settings where spurious invariant features exist [17,57,69,111].

A widely known example is the cow and camel classification problem [26,97], where

the label is a deterministic function of the invariant features like the shape of the

animals, and independent of spurious attributes, such as background. Although cows

commonly appear in grassy settings and camels mostly in desert landscapes with yellow

backgrounds, no matter which domain they come from, the background color could

inadvertently be treated as an invariant feature and captured by the model. This may

not pose an issue when test data aligns with these conditions, but it can significantly

increase the classification error when cows appear in a yellow background or camels are

placed on a green field. Therefore, even though an invariance principle-based approach

can effectively learn invariant features, its success in DG classification tasks can be

compromised if the extracted features contain not only the true invariant features but

also spurious invariant features. Although these spurious features could be removed

if one can observe a sufficiently large number of domains [32, 111], for example, if

the seen domain contains a picture of a cow walking in a desert, it is impossible to

exhaust all possible domains.

In response to this challenge of spurious features, Ahuja et al. propose an approach

that leverages feature entropy minimization to effectively eliminate these spurious

features [5]. This technique draws inspiration from the Information Bottleneck (IB)

framework [127]. Nonetheless, it is important to note that their method is constrained
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to linear classifiers, thereby limiting its applicability. Additionally, while the approach

is inspired by the IB framework, it doesn’t directly integrate the IB principles into the

algorithm. Subsequently, two alternative approaches [43, 81] embrace IB objectives

directly to combat the presence of spurious invariant features. However, it is worth

noting that their methods are largely heuristically motivated and lack theoretical

justification.

In this chapter, we introduce an innovative framework grounded on conditional

entropy minimization to effectively filter out spurious domain-invariant features.

Moreover, we establish a direct correlation between our objective function and the

Deterministic Information Bottleneck (DIB) principle [123].

4.1.1 Main Contributions

The key contributions of this chapter can be outlined as follows:

• We propose a new objective function motivated by the conditional entropy

minimization (CEM) principle. Moreover, we establish a direct link between

the proposed objective and the Deterministic Information Bottleneck (DIB)

principle [123].

• We theoretically show that under some assumptions, minimizing the proposed

objective function can effectively filter out spurious features.

• Our proposed framework exhibits a broad scope of applicability. It can accom-

modate non-linear classifiers, extending its usability beyond linear scenarios.

Additionally, though we choose IRM as an example to demonstrate the proposed

framework, it can be seamlessly integrated into other domain generalization

algorithms based on the learning domain-invariant feature principle.
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4.2 Related Work

4.2.1 Domain Generalization

Detailed review for DG has been introduced in chapter 2, here we only provide

the background information on the information bottleneck [127] and invariant risk

minimization [12].

4.2.2 Information Bottleneck and Invariant Risk Minimization

4.2.2.1 Information Bottleneck

Information Bottleneck (IB) framework [127] is a generalization of the rate distortion

theory initially introduced by Tishby et al.. This framework aims to identify the

representation variable 𝑍 that retain the information about the label variable 𝑌 as

much as possible, while simultaneously achieving maximum compression of 𝑋. Before

diving into the details, we introduce some notations, in line with the conventions set

by previous chapters. Consider 𝑓 : 𝒳 → 𝒵 as a (potentially stochastic) representation

mapping from the input data space 𝒳 to the representation space 𝒵, and let 𝑔 : 𝒵 → 𝒴

denote a labeling function from the representation space 𝒵 to the label space 𝒴 . The

IB framework aims to find a good representation function 𝑓 * by solving the following

problem:

𝑓 * = argmin
𝑓

𝐼(𝑋;𝑍)− 𝜃𝐼(𝑌 ;𝑍), (4.1)

where 𝐼(𝑋;𝑍) denotes the mutual information between the random variable 𝑋,

corresponding to the input data, and its representation 𝑍 = 𝑓(𝑋). 𝐼(𝑌 ;𝑍) denotes

the mutual information between the random variable 𝑌 and 𝑍, corresponding to the

label and representation, respectively. 𝜃 is a positive hyper-parameter that controls

the trade-off between maximizing 𝐼(𝑌 ;𝑍) and minimizing 𝐼(𝑋;𝑍).

Mutual information is a non-negative statistical measure of the dependence between
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random variables, where a larger value corresponds to stronger dependence and

zero means two random variables are independent. By controlling the two mutual

information terms, the IB framework aims to find a representation 𝑍 that is weakly

dependent on input 𝑋, but strongly dependent on the prediction label 𝑌 . From the

information theory point of view, the IB objective can be likened to the concept of

indirect rate-distortion source coding. Here 𝑍 can be viewed as a “compressed” code

of 𝑋, where 𝐼(𝑋;𝑍) quantifies the number of “bits” required for compressing 𝑋 to

𝑍. On the other hand, 𝐼(𝑌 ;𝑍) serves as a measure of how well the label 𝑌 can be

decoded from 𝑍, reflecting the prediction accuracy or “inverse-distortion”. Effectively,

the IB problem can be reformulated as a Lagrangian optimization, with the aim of

minimizing the number of bits needed to compress 𝑋, while ensuring accurate recovery

of 𝑌 from 𝑍 to the desired precision. Following a similar idea, Strouse et. al propose

Deterministic Information Bottleneck (DIB) [123] as an alternative formulation of the

IB framework, where a direct restriction of the resources need to represent 𝑍 is posed

by replacing the mutual information between 𝑋 and 𝑍 with the entropy of 𝑍. The

objective of DIB is shown below.

𝑓 * = argmin
𝑓

𝐻(𝑍)− 𝜃𝐼(𝑌 ;𝑍) (4.2)

A special case for the DIB is when 𝜃 = 1, the objective function becomes 𝐻(𝑍) −

𝜃𝐼(𝑌 ;𝑍) = 𝐻(𝑍|𝑌 ), implying the minimization of the conditional entropy 𝐻(𝑍|𝑌 ).

4.2.2.2 Invariant Risk Minimization Algorithm

In this chapter, we choose Invariant Risk Minimization (IRM) [12] algorithm for initial

invariant feature extraction due to its promising performance on learning domain-

invariant features. The IRM algorithm aims to find the representations that lead to

the optimal classifiers applied to these features are also optimal for all domains, as
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stated below:

min
𝑓∈ℱ
𝑔∈𝒢

𝑆∑︁
𝑠=1

𝑅(𝑠)(𝑔 ∘ 𝑓)

𝑠.𝑡. 𝑔 ∈ argmin
𝑔

𝑅(𝑠)(𝑔 ∘ 𝑓), for all 𝑠 ∈ 𝑆 (4.3)

where ℱ is a family of representation functions (typically parameterized by weights of

a neural network with a given architecture), 𝒢 a family of linear classifiers (typically

the last fully connected classification layer of a neural network), 𝑅(𝑠)(𝑔 ∘ 𝑓) :=

E(𝑋,𝑌 )∼𝒟(𝑠) [ℓ(𝑔(𝑓(𝑋)), 𝑌 )] denotes a classification risk of using a representation function

𝑓 followed by a classifier 𝑔 in domain 𝑠 under the loss function ℓ. Note that the

implicit assumption of the IRM algorithm is that such representations and optimum

domain-invariant classifiers exist. In practice, this challenging bi-level optimization

problem is approximately realized by solving the following optimization problem [12]:

min
ℎ∈𝒢∘ℱ

L𝐼𝑅𝑀(ℎ, 𝛼) :=
𝑆∑︁
𝑖=1

[︂
𝑅(𝑠)(ℎ) + 𝛼 ‖∇𝑡|𝑡=1.0𝑅

(𝑠)(𝑡 · ℎ)‖2
]︂
, (4.4)

where 𝛼 is a hyper-parameter associated with the squared Euclidean norm of the

gradients (denoted by ∇) of the risks in different domains, 𝑡 = 1 is a scalar and fixed

“dummy” classifier. When restricted to the family of linear classifiers and convex

differentiable risk functions, Theorem 4 of [12] shows (under certain technical assump-

tions) that minimizing L𝐼𝑅𝑀 will produce a predictor that not only (approximately)

minimizes cumulative risk across all domains (the first term in L𝐼𝑅𝑀), but is also

approximately optimum across all domains, that is, approximately invariant, with the

help of the sum of squared gradients of risk across all domains.

Though in this chapter, we ground our framework on the IRM algorithm [12]

due to its promising performance on domain-invariant feature extraction and the

shared focus on removing spurious features. We note, however, that our approach is
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applicable to any method that can learn invariant features.

4.3 Problem Formulation

In this section, we formulate the minimum conditional entropy principle, a special case

of the DIB principle, for spurious feature filtration. This formulation is underpinned

by three foundational modeling assumptions, which encapsulate two essential ideas:

(i) that the learned features are a linear mixture (superposition) of “true” domain-

invariant and “spurious” domain-invariant attributes (domain-specific feature), and (ii)

that, given the label, the invariant features are conditionally independent of spurious

features.

4.3.1 Notation

Consider a classification task where the learning algorithm has access to i.i.d. data

from the set of 𝑆 seen domains D = {𝐷1, 𝐷2, . . . , 𝐷𝑆}. The DG task is to learn a

representation function 𝑓 : 𝒳 → 𝒵 from the input data space 𝒳 to the representation

space 𝒵, and a classifier 𝑔 : 𝒵 → 𝒴 from the representation space 𝒵 to the label space

𝒴 that generalizes well to an unseen domain 𝐷𝑢 /∈ D.

We use 𝑋 for the data random variable in input space, 𝑌 for the label random

variable in label space, and 𝑍 for the extracted feature random variable in representa-

tion space. The invariant and spurious features are denoted as 𝑍inv and 𝑍sp. We use

E[·], Var(·), 𝐻(·), and 𝐼(·) for expectation, variance, discrete/differential entropy, and

mutual information, respectively.

4.3.2 Assumptions

Ideally, we want the representation function 𝑓 , such that 𝑓(𝑋) = 𝑍inv. However, with

a finite number of observed domains, even with well-designed DG algorithms, learned
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features may still contain spurious invariant features that remain invariant across

observed domains but vary in unseen domains [32,111]. We model this scenario by

assuming that the representation function extracts features that are a combination of

the (true) invariant features and the spurious invariant features.

𝑓(𝑋) = 𝑍 = Θ(𝑍inv, 𝑍sp).

Next, we state three assumptions on 𝑍inv, 𝑍sp and Θ that we will use in Section

4.4 to derive our theoretical results.

Assumption 1. The (true) invariant features 𝑍inv are independent of the spurious

invariant features 𝑍sp for a given label 𝑌 . Formally, 𝑍inv ⊥⊥ 𝑍sp|𝑌 .

Assumption 1 is widely accepted in the DG literature [4,97,100,111]. For example,

in the construction of the binary-MNIST dataset [97], the label (class) is first chosen,

and then color (a spurious feature) is independently added to the hand-written digit

(invariant feature) picked from the selected class, ensuring 𝑍inv ⊥⊥ 𝑍sp|𝑌 . For more

details, we refer the reader to the third constraint in Section 3 of [97]. In [111], [4]

and [100], this assumption is used but not explicitly stated. It is, however, implicit in

Figure 2 in [4], Figure 3.1 in [111], and the discussion below Figure 2 in [100].

Assumption 2. The uncertainty of the invariant features is lower than the uncertainty

of the spurious features when the label is known. Formally, we assume 𝐻(𝑍inv|𝑌 ) <

𝐻(𝑍sp|𝑌 ).

Assumption 2 has the following interesting clustering interpretation: invariant

features are better clustered together in each class (have smaller variability) than

spurious features. If additionally, 𝐻(𝑍inv) = 𝐻(𝑍sp), then 𝐼(𝑍inv;𝑌 ) = 𝐻(𝑍inv) −

𝐻(𝑍inv|𝑌 ) > 𝐻(𝑍sp) − 𝐻(𝑍sp|𝑌 ) = 𝐼(𝑍sp;𝑌 ), implying that the invariant features

𝑍inv have a stronger connection to the label 𝑌 than the spurious features 𝑍sp.
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Assumption 3. 𝑓(𝑋) = 𝑍 = Θ(𝑍inv, 𝑍sp) = 𝑎𝑍inv + 𝑏𝑍sp and Var(𝑍|𝑌 ) = Var(𝑍inv|𝑌 ) =

Var(𝑍sp|𝑌 ) = 1.

Assumption 3 posits that the derived features are a linear combination of invariant

and spurious features, i.e., 𝑍 = Θ(𝑍inv, 𝑍sp) = 𝑎𝑍inv + 𝑏𝑍sp. This concept aligns

with the frameworks in [4, 12], which are grounded in Blind Source Separation (BSS)

techniques such as Independent Component Analysis (ICA) [63,98,104]. Specifically,

the objective resembles that of ICA, which seeks to disentangle statistically independent

latent components, denoted 𝑆1 and 𝑆2 with 𝑆1 ⊥⊥ 𝑆2, from observations of their linear

combination 𝑀 = 𝑎1𝑆1 + 𝑎2𝑆2.

Our emphasis on the simple linear combination model allows us to derive some

insightful theoretical results in the next section. These insights are then translated

into an effective algorithm for filtering out spurious features in domain generalization.

Note that the more general non-linear dependence relationship between 𝑍 and 𝑍inv, 𝑍sp

could be potentially handled using techniques such as non-linear ICA [64] or non-linear

IRM [88]. But we leave this to future work.

The assumption Var(𝑍|𝑌 ) = Var(𝑍inv|𝑌 ) = Var(𝑍sp|𝑌 ) = 1 is also motivated by

the constraint in ICA, which is essential for overcoming the so-called scaling ambiguity:

if 𝑆1 ⊥⊥ 𝑆2 and 𝑀 = 𝑎1𝑆1 + 𝑎2𝑆2, then both (𝑆1, 𝑆2) and (𝑎1𝑆1, 𝑎2𝑆2) are pairs of

independent component sources whose linear combination is 𝑀 . Finally, it is worth

noting that Assumption 1 and Assumption 3 together imply that 𝑎2 + 𝑏2 = 1 (see

proof of Lemma 4.4.1).

The assumption Var(𝑍|𝑌 ) = Var(𝑍inv|𝑌 ) = Var(𝑍sp|𝑌 ) = 1 also draws inspiration

from constraints in ICA. Such constraint address the scaling ambiguity. Specifically,

given 𝑆1 ⊥⊥ 𝑆2 and 𝑀 = 𝑎1𝑆1 + 𝑎2𝑆2, both pairs (𝑆1, 𝑆2) and (𝑎1𝑆1, 𝑎2𝑆2) represent

independent component sources that yield the linear combination 𝑀 . Without

the assumption on the variance, the ICA algorithm will not be able to identify the

amplitude of the components. Importantly, combining Assumption 1 and Assumption 3
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imply that 𝑎2 + 𝑏2 = 1, as demonstrated in the proof of Lemma 4.4.1.

4.4 Main Results

Our method consists of two core steps. Firstly, we extract invariant features 𝑍 from

the source domains, which may encompass both true domain-invariant features 𝑍inv

and spurious ones 𝑍sp. Then, we filter out these spurious features in order to construct

a classifier that purely relies on the true invariant features 𝑍inv. For example, in the

“cow-camel setting”, the first step identifies all invariant features, potentially including

the background color, a spurious feature that will be eliminated in the subsequent

step. We now demonstrate that the CEM principle, i.e., minimizing 𝐻(𝑍|𝑌 ), supports

filtering out the spurious invariant features.

Assumption 4. Let

𝑓 * = argmin
𝑓

Linvariant(𝑓)

𝑠.𝑡. 𝐻(𝑓(𝑋)|𝑌 ) ≤ 𝛾.

where Linvariant is the loss function of an invariant representation learning algorithm.

We assume that Linvariant is such that for all 𝛾, 𝑍 = 𝑓 *(𝑋) is a linear superposition of

both the invariant feature 𝑍inv and the spurious feature 𝑍sp.

Given Assumption 4, our primary strategy is to “eliminate” 𝑍sp from 𝑍. This

is achieved by minimizing Linvariant, while imposing a suitable constraint on the

uncertainty of 𝑍 conditional on 𝑌 , i.e., determining an appropriate value for 𝛾. As we

will demonstrate in the following lemma, there exists an optimal choice of 𝛾 that allows

𝑓 * to exclusively extract the true invariant feature 𝑍inv, while effectively filtering out

𝑍sp.
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Lemma 4.4.1. If Assumptions 1, 2, 3 hold, then

𝐻(𝑍|𝑌 ) = 𝐻(𝑎𝑍inv + 𝑏𝑍sp|𝑌 ) ≥ 𝐻(𝑍inv|𝑌 ) (4.5)

and the equality holds in (4.5) if and only if 𝑎 = 1 and 𝑏 = 0.

Proof. Our proof of Lemma 4.4.1 is for differential entropy, but it can be easily

extended to discrete entropy (recall that we use 𝐻(·) to denote discrete or differential

entropy). Under Assumptions 1 and 3, we first show that 𝑎2 + 𝑏2 = 1.

1 = Var(𝑍|𝑌 ) = Var(𝑎𝑍inv + 𝑏𝑍sp|𝑌 )

= 𝑎2 Var(𝑍inv|𝑌 ) + 𝑏2 Var(𝑍sp|𝑌 ) (4.6)

= 𝑎2 + 𝑏2, (4.7)

where (4.6) is due to 𝑍inv ⊥⊥ 𝑍sp|𝑌 and (4.7) is due to the assumption that Var(𝑍inv|𝑌 ) =

Var(𝑍sp|𝑌 ) = 1.

Next, we utilize the result in Lemma 1 of [132], which states that for any two

random variables 𝑅1, 𝑅2, and any two scalars 𝑎, 𝑏, if 𝑅1 ⊥⊥ 𝑅2 and 𝑎2 + 𝑏2 = 1, then:

𝐻(𝑎𝑅1 + 𝑏𝑅2) ≥ 𝑎2𝐻(𝑅1) + 𝑏2𝐻(𝑅2). (4.8)

Now, for a given 𝑌 = 𝑦 ∈ 𝒴 , we have:

𝐻(𝑎𝑍inv + 𝑏𝑍sp|𝑌 = 𝑦)

≥ 𝑎2𝐻(𝑍inv|𝑌 = 𝑦) + 𝑏2𝐻(𝑍sp|𝑌 = 𝑦) (4.9)

= 𝑎2𝐻(𝑍inv|𝑌 = 𝑦) + 𝑏2𝐻(𝑍inv|𝑌 = 𝑦) + 𝑏2𝐻(𝑍sp|𝑌 = 𝑦)− 𝑏2𝐻(𝑍inv|𝑌 = 𝑦)

= 𝐻(𝑍inv|𝑌 =𝑦) + 𝑏2
(︀
𝐻(𝑍sp|𝑌 =𝑦)−𝐻(𝑍inv|𝑌 =𝑦)

)︀
, (4.10)

where (4.9) arises from (4.8) and 𝑎2 + 𝑏2 = 1. Meanwhile, (4.10) is directly attributed
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to 𝑎2 + 𝑏2 = 1. Next,

𝐻(𝑍|𝑌 ) = 𝐻(𝑎𝑍inv + 𝑏𝑍sp|𝑌 )

=

∫︁
𝑦∈𝒴

𝑝(𝑦)𝐻(𝑎𝑍inv + 𝑏𝑍sp|𝑌 = 𝑦) 𝑑𝑦

≥
∫︁
𝑦∈𝒴

𝑝(𝑦)𝐻(𝑍inv|𝑌 = 𝑦) 𝑑𝑦 +

∫︁
𝑦∈𝒴

𝑝(𝑦)𝑏2
(︀
𝐻(𝑍sp|𝑌 =𝑦)−𝐻(𝑍inv|𝑌 =𝑦)

)︀
𝑑𝑦

(4.11)

= 𝐻(𝑍inv|𝑌 ) + 𝑏2
(︀
𝐻(𝑍sp|𝑌 )−𝐻(𝑍inv|𝑌 )

)︀
(4.12)

≥ 𝐻(𝑍inv|𝑌 ) (4.13)

where (4.11) follows from (4.10). (4.13) is derived from 𝐻(𝑍sp|𝑌 ) > 𝐻(𝑍inv|𝑌 )

(Assumption 2). If 𝑎 = 1 and 𝑏 = 0, then 𝑍 = 𝑍inv and the equality holds. On the

contrary, if equality holds, then 𝑎 = 1 and 𝑏 = 0 must hold, because otherwise we would

have 𝑏2 > 0 which together with 𝐻(𝑍sp|𝑌 ) > 𝐻(𝑍inv|𝑌 ) and (4.12) would imply that

𝐻(𝑍|𝑌 ) is strictly larger than 𝐻(𝑍inv|𝑌 ). Thus, the equality 𝐻(𝑍|𝑌 ) = 𝐻(𝑍inv|𝑌 )

occurs if and only if 𝑎 = 1 and 𝑏 = 0, or equivalently, if and only if 𝑍 = 𝑍inv.

Lemma 4.4.1 shows that 𝐻(𝑍|𝑌 ) is always lower bounded by 𝐻(𝑍inv|𝑌 ) and

equality occurs if and only if 𝑍 = 𝑍inv. We use Lemma 4.4.1 to prove Theorem 4.4.2

which states that the CEM principle can be used to extract the (true) invariant

features 𝑍inv.

Theorem 4.4.2. If Assumptions 1, 2, 3, and 4 hold, then there exits a 𝛾* such that

𝑓 *(𝑋) = 𝑍inv.

Proof. Given Assumption 4, minimizing Linvariant for any value of 𝛾 results in the

relation 𝑍 = 𝑎𝑍inv + 𝑏𝑍sp, where both 𝑎 and 𝑏 are functions of 𝛾. Additionally,

the inequalities 𝛾 ≥ 𝐻(𝑍|𝑌 ) ≥ 𝐻(𝑍inv|𝑌 ) hold. The first inequality arises from

Assumption 4, while the second is derived from Lemma 4.4.1. Setting 𝛾 = 𝛾* :=

𝐻(𝑍inv|𝑌 ) ensures 𝐻(𝑍|𝑌 ) = 𝐻(𝑍inv|𝑌 ). As indicated by Lemma 4.4.1, this equality
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holds true if and only if 𝑏 = 0. Therefore, choosing 𝛾* = 𝐻(𝑍inv|𝑌 ) gives us a

representation function 𝑓 * such that 𝑓 *(𝑋) = 𝑍 = 𝑍inv.

4.5 Practical Approach

Given the analysis above, we propose our CEM objective function for extracting the

true invariant features as shown below.

min
ℎ∈𝒢∘ℱ

L𝐶𝐸−𝐼𝑅𝑀(ℎ, 𝛼, 𝛽) = L𝐼𝑅𝑀(ℎ, 𝛼) + 𝛽𝐻(𝑓(𝑋)|𝑌 ). (4.14)

Here, 𝑌 denotes the label, ℎ = 𝑔 ∘ 𝑓 acts as an invariant predictor with 𝑓 ∈ ℱ ,

𝑔 ∈ 𝒢, and 𝑍 = 𝑓(𝑋) is the output of the penultimate layer of the end-to-end neural

network. We note that 𝑍 and 𝑌 represent the latent representations and the labels

corresponding to the input data 𝑋 from all seen domains combined. Indeed, this

expression can be seen as the Lagrangian form of the optimization problem described

in Assumption 4, where Linvariant is substituted by the IRM loss function L𝐼𝑅𝑀 from

(4.4). Moreover, the conditional entropy constraint from Assumption 4 is integrated

as the second term, scaled by the Lagrange multiplier 𝛽.

To solve the optimization problem in (4.14), we leverage the implementations in [4]

and [10]. Since

𝐻(𝑍|𝑌 ) = 𝐻(𝑍) +𝐻(𝑌 |𝑍)−𝐻(𝑌 ) (4.15)

and 𝐻(𝑌 ) is a data-dependent constant that is independent of ℎ = 𝑔 ∘ 𝑓 , the CEM

optimization problem in (4.14) is equivalent to

min
ℎ∈𝒢∘ℱ

L𝐼𝑅𝑀(ℎ, 𝛼) + 𝛽𝐻(𝑓(𝑋)) + 𝛽𝐻(𝑌 |𝑓(𝑋)). (4.16)

The first two terms of the objective function in (4.16) are identical to the objective
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function proposed in [4]. We therefore adapt the implementation1 in [4] to minimize

the first two terms. To optimize the third conditional entropy term 𝐻(𝑌 |𝑍), we

adopt the variational characterization of conditional entropy described in [10] and the

corresponding implementation2 of the variational method for the minimization of the

conditional entropy term.

4.6 Experiments

In this section, we evaluate the efficacy of the proposed method on DG datasets that

contain spurious features.

4.6.1 Datasets

CMNIST [12]. The Colored-MNIST or in some literature, referred as Anti-causal-

CMNIST dataset, is a synthetic binary classification dataset derived from the MNIST

[79] dataset. Initially introduced in [12], it comprises three domains: two seen domains

with 25,000 digit images each and one unseen domain with 20,000 test images. The

goal is to identify whether the digit is < 5 or ≥ 5 (binary label). Unlike the original

MNIST, CMNIST images are colored either red or green, introducing a spurious

correlation with the digit labels. This color-label relationship varies across domains:

two seen domains have high correlations (0.9 and 0.8), while the unseen test domain

has a low correlation (0.1), making color a deliberately spurious invariant feature.

For consistency in comparisons, our CMNIST dataset construction aligns with those

in [4, 12].

CS-CMNIST [6]. Derived from the CMNIST dataset, the Covariate-Shift-

CMNIST is a synthetic classification dataset with three domains: two for training and

one unseen for testing, each containing 20,000 images. Following the methodology
1https://github.com/ahujak/IB-IRM
2https://github.com/1Konny/VIB-pytorch
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from [4], we define a ten-class classification task. These classes represent digits 0

through 9. In the two training domains, each digit class is associated with a color that

exhibits a strong correlation with the label. By contrast, in the unseen test domain,

the color remains independent of the label.

Linear unit dataset (LNU-3/3S) [17]. The Linear Unit (LNU) dataset, a

synthetic dataset, was crafted based on a linear low-dimensional model. This dataset

is designed to test the DG algorithms, especially when influenced by spurious invariant

features [17]. Comprising six sub-datasets, each one encompasses either three or six

domains, with each domain contains 10,000 samples. For our evaluation, we choose

LNU-3 and LNU-3S sub-datasets, as indicated in the numerical results from [4], these

are the most challenging two sub-datasets.

4.6.2 Methods for Comparison

We assess the performance of our proposed Conditional Entropy and Invariant Risk

Minimization (CE-IRM) method against several benchmark algorithms, including:

(i) Empirical Risk Minimization (ERM) [130], serving as a baseline, (ii) the original

Invariant Risk Minimization (IRM) algorithm [12], (iii) Information Bottleneck Em-

pirical Risk Minimization (IB-ERM) algorithm [4], and (iv) Information Bottleneck

Invariant Risk Minimization (IB-IRM) algorithm [4]. A comparison with the algorithm

from [81] was not conducted as its implementation was inaccessible during our study.

Moreover, except for the CS-CMNIST dataset, where our method outperforms theirs

by roughly 10% points, they do not report results for the other datasets that we used.

In addition to the aforementioned algorithms used for comparison, we also integrate

the CEM framework with the WBAE [89] method, as detailed in Chapter 3. Note

WBAE method achieves DG via distribution alignment. Here we add this method

for assessing the framework’s adaptability and flexibility for different kinds of DG

algorithms. We refer this new combination as Wasserstein Barycenter Auto-encoder
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with Conditional Entropy Minimization (WBAE-CE).

4.6.3 Implementation Details

We use the training-domain validation set tuning procedure in [4] for tuning all hyper-

parameters. To construct the validation set, we split the seen data into a training set

and a validation set in the ratio of 95% to 5% and select the model that maximizes

classification accuracy on the validation set.

For CMNIST, we utilize the learning model in [4] which is based on a simple

Multi-Layer Perceptron (MLP) with two fully connected layers each having an output

size 256 followed by an output layer of size two which aims to identify whether the

digit is less than 5 or more than 5. The Adam optimizer is used for training with a

learning rate of 10−4, batch size of 64, and the number of epochs set to 500. To find

the best representation, we search for the best values of weights of the Invariant Risk

term and the Conditional Entropy term, i.e., 𝛼, 𝛽, respectively, among the following

choices: 0.1, 1, 10, 102, 103, 104.

For CS-CMNIST, we follow the learning model in [4] which is composed of three

convolutional layers with feature map dimensions of 256, 128, and 64. Each convolu-

tional layer is followed by a ReLU activation and batch normalization layer. The last

layer is a linear layer that aims to classify the digit to 10 classes. We use the SGD

optimizer for training with a batch size of 128, learning rate of 10−1 with decay over

every 600 steps, and the total number of steps set to 2,000. Similarly to CMNIST,

we perform a search for the weights of Invariant Risk and Conditional Entropy terms

with 𝛼, 𝛽 ∈ {0.1, 1, 10, 102, 103, 104}.

For the LNU dataset, we follow the procedure described in [4]. Particularly, 20

pairs of 𝛼 in the range [1 − 10−0.3, 1 − 10−3], 𝛽 in the range [1 − 100, 1 − 10−2],

learning rate in the range [10−4, 10−2], and weight of decay in the range [10−6, 10−2]

are randomly sampled and trained. The best model is selected based on the training-
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domain validation set tuning procedure. All experimental settings described above

are also applied to the WBAE-CE algorithm.

We repeat the whole experiment five times by selecting five random seeds, where

for each random seed, the whole process including hyper-parameters tuning and model

selection is repeated. The average accuracy and standard deviation values are reported.

The source code of our proposed algorithm is available at here3.

Table 4.1: Average accuracy in percentage (%) of compared methods. The LNU-3/3S
and CMNIST datasets have 2 classes, while the CS-CMNIST dataset has 10 classes.
“#Doms” represents the number of domains in the dataset. The highest test accuracy
is highlighted in bold, and the second highest accuracy is indicated with an underline.

Datasets #Doms ERM [130] IRM [12] IB-ERM [4] IB-IRM [4] WBAE-CE (ours) CE-IRM (ours)

CS-CMNIST 3 60.3 ± 1.2 61.5 ± 1.5 71.8 ± 0.7 71.8 ± 0.7 78.4 ± 0.3 85.7 ± 0.9
LNU-3 6 67.0 ± 18.0 86.0 ± 18.0 74.0 ± 20.0 81.0 ± 19.0 73.0 ± 12.0 84.0 ± 19.0
LNU-3S 6 64.0 ± 19.0 86.0 ± 18.0 73.0 ± 20.0 81.0 ± 19.0 70.0 ± 14.0 90.0 ± 17.0
LNU-3 3 52.0 ± 7.0 52.0 ± 7.0 51.0 ± 6.0 52.0 ± 7.0 60.0 ± 12.0 52.0 ± 7.0
LNU-3S 3 51.0 ± 6.0 51.0 ± 7.0 51.0 ± 6.0 51.0 ± 7.0 60.0 ± 13.0 52.0 ± 7.0
CMNIST 3 17.2 ± 0.6 16.5 ± 2.5 17.7 ± 0.5 18.4 ± 1.4 17.5 ± 0.6 17.5 ± 1.3

4.6.4 Results and Discussion

The experimental outcomes are summarized in Table 4.1. Numerical results for ERM,

IRM, IB-ERM, and IB-IRM are sourced from [4].

For the CS-CMNIST dataset, the classification accuracy of the four benchmark

algorithms ranges between 60% and 72%. Remarkably, our CE-IRM algorithm

significantly outperforms the best alternative, enhancing performance by nearly 14%

points. This performance gap stems from the construction routine of CS-CMNIST

dataset where colors (spurious features) are integrated independently of the digits

(invariant features) for specific labels. Therefore, our assumption 𝑍sp ⊥⊥ 𝑍inv|𝑌 holds

for this dataset.

Regarding the LNU dataset, we follow the methodologies detailed in [4] to calculate

the classification errors (or equivalently, accuracy) of the evaluated algorithms. The
3https://github.com/thuan2412/Conditional_entropy_minimization_for_Domain_gener

alization
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mean accuracy and its standard deviation are reported in Table 3.10. Following [4],

comparisons are made on both LNU-3 and LNU-3S datasets, considering either 6 or 3

domains (aligning with the same 3 domains mentioned in [4]).

With six domains in consideration, our CE-IRM method surpassed the other four

algorithms by over 4% points on the LNU-3S dataset. However, it fells behind the

IRM method by approximately 2% points on the LNU-3 dataset. In scenarios with

three domains, the performance of all the algorithms is similar to each other for both

LNU-3 and LNU-3S datasets. The analysis drawn from the LNU-3 and LNU-3S

results underscores that increasing the number of training domains can boost the test

accuracy across all methods.

Compared with the CS-CMNIST and LNU-3/3S datasets, the CMNIST stands out

as the most challenging dataset, with no algorithm works well. This can be attributed

to the inherent design of CMNIST which exhibits pronounced spurious correlations

between the data and label, leading to the failure of all evaluated methods. These

findings are consistent with the observations reported in [4], and [81].

Additionally, the combination of CEM principle and WBAE algorithm achieves

the best or the second best performance on 3 out of 6 datasets, demonstrating the

adaptability of our framework on different kinds of DG algorithms.

4.7 Conclusions

In this chapter, we have introduced a novel DG strategy grounded on the CEM

principle, targeting the elimination of spurious features. By combining the well-known

IRM algorithm with the CEM principle, the proposed algorithm achieve competitive

or better performance compared to the state-of-the-art DG algorithms. Theoretically,

we have demonstrated the intrinsic relationship of our objective function and the DIB

method, and proved that under particular conditions, our method can extract the
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true domain-invariant features. We focused on the simple model where the features

learned by an IRM algorithm are considered as a linear combination of true and

spurious invariant features. Our future work will focus on combining the non-linear

IRM algorithm [88] with a nonlinear Blind Source Separation method, e.g., non-linear

ICA [64], to accommodate non-linear mixture models.
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Chapter 5

Model Selection for Domain

Generalization

In the previous chapters, we have discussed both theoretical work and algorithms

aimed at addressing the DG problem. In this chapter, our focus shifts from specific

algorithms to the entire workflow for DG. As we introduced earlier, state-of-the-art

domain generalization methods commonly train a representation function followed by

a classifier jointly to minimize both the classification risk and the domain discrepancy.

However, when it comes to model selection, most of these methods rely on traditional

validation routines that select models based solely on the lowest classification risk

on the validation set [26,67,119]. In this chapter, we theoretically demonstrate that

there exists a trade-off between minimizing classification risk and mitigating domain

discrepancy, i.e., it is impossible to achieve the minimum of these two objectives

simultaneously. Motivated by this theoretical result, we propose a novel model selection

method suggesting that the validation process should consider both the classification

risk and the domain discrepancy.
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5.1 Introduction

Seeking domain-invariant features is a popular method to address the DG problem. A

large number of methods aim to learn the domain-invariant features by minimizing the

domain discrepancy in the representation space [12,81,85,89,101,125]. Though the

domain discrepancy has been accounted for at the training step, few works considered

it for model selection at the validation step [152]. Indeed, following traditional machine

learning settings, most of the state-of-the-art DG methods form a validation set using

a small portion of data from all seen domains and select the model that achieves

the lowest classification risk or highest classification accuracy on it. However, unlike

traditional machine learning settings where a model with lower classification risk on

the validation set is likely to perform better on the test set, we theoretically show that

for the DG problem, where the i.i.d. assumption does not hold, selecting the model

with minimum classification risk may enlarge the domain discrepancy, subsequently

leading to a non-optimal model on the unseen domain. Therefore, we argue that

model selection in DG requires considering both the classification risk and the domain

discrepancy to identify models that perform well on unseen domains.

5.1.1 Contributions

We summarize our contributions as follows:

1. We theoretically show that there is a trade-off between minimizing classification

risk and domain discrepancy. This trade-off leads to the conclusion that targeting

only a model with the lowest classification risk on the validation set can encourage

a distribution mismatch between domains (enlarging domain discrepancy) and

reduce the generalizability of the model.

2. Based on our theoretical result and considering the limited attention given to DG-

specific validation processes, we propose a simple yet effective validation/model
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selection method that integrates both the classification risk and the domain

discrepancy as the validation criterion. We further demonstrate the effectiveness

of this approach on various DG benchmark datasets.

5.2 Related Work

The trade-off between minimizing the classification risk and domain discrepancy has

been mentioned in the literature [22,146]. As introduced in Chapter 2, Shai-Ben David

et al. [22] construct an upper bound on the risk of the target domain, composed of

the risk from the source domain and the discrepancy between the target and source

domains. The authors suggest that there must be a trade-off between minimizing

the domain discrepancy and minimizing the risk of the seen domain, but do not

propose any further details on how this trade-off is determined and characterized.

Zhao et al. [146] show that the sum of risks from the source and target domains is

lower bounded by the distribution discrepancy between domains. If the discrepancy

between domains is large, one can not simultaneously achieve small risks on both

domains. Although sharing some similarities, our theoretical result differs from [146]

since Zhao et al. consider the trade-off between minimizing the risks of different

domains rather than the trade-off between optimizing the classification risk and the

domain discrepancy. On the other hand, most DG works adopt the model selection

methods following traditional machine learning settings, i.e., a validation set is first

formed by combining small portions of data from all seen domains and the model

that produces the lowest classification risk or highest classification accuracy on the

validation set is then selected.

Only a limited number of studies have explored novel model selection methods

in the context of DG [9, 14, 57, 113, 135, 143]. Among them, authors of [57] provide

a benchmark DG package, DomainBed, with three model selection methods. These
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three selection methods, namely Training-domain validation, Leave-one-domain-out

validation, and Test-domain validation, have been widely adopted by previous studies

and also subsequent DG work built on the DomainBed package [80, 89, 93]. Below,

we provide a brief summary of these three model selection methods along with their

drawbacks.

The Training-domain validation, which serves as a traditional machine learning

validation method, involves splitting the training data into a training set and a

validation set. Hyper-parameters and models are subsequently selected based on the

validation accuracy. Training-domain validation method essentially assumes that the

test data shares a similar distribution with the training data, which does not generally

hold for the DG problem. As pointed out in [135], such validation may also undermine

the advantages of DG algorithms.

Leave-one-domain-out validation, as indicated by its name, leaves one domain

out of the training data to mimic the real DG scenario. Models with candidate

hyper-parameters will be repeatedly validated on the remaining training domains,

with one domain left out each time. An averaged validation accuracy is then used for

the hyper-parameter selection. However, this method is unsuitable for datasets with

multiple domains, such as Colored MNIST [12], and it can become computationally

expensive.

Test-domain validation uses the data from the unseen test domain for model

selection, thus is typically used to assess the potential of DG algorithms [57] rather

than being employed as a model selection method, and thus is outside the scope of

this chapter.

Recognizing the limitations of these traditional methods for DG, several works

have proposed novel validation algorithms to overcome this DG-specific framework

issue. For example, [135] considers model stability by measuring the average Expected

Calibration Error (ECE) [40] on the training domains as a supplement to the training
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domain validation accuracy. Among a set of candidate models that achieve a validation

accuracy above a certain threshold, the one with the lowest average ECE is selected

as the optimal model.

In a similar vein, [143] designs a validation algorithm that simultaneously achieves

high validation accuracy and low feature variation. Viewing DG from the worst-case

generalization perspective, [113] balance the validation set and use the worst-group

validation accuracy as the selection criterion. Additionally, [14] shows that a model

may produce an unstable test domain accuracy during the training process, even with

a stable training domain validation performance. To address this issue, they propose a

model averaging protocol to stabilize the test performance with respect to the model’s

validation accuracy.

The most related work of this study is [9], where the authors mentioned that

they use the training loss (including both classification risk and adversarial domain

discrepancy loss) on the validation set for model selection. However, it is not clear

from their paper and their released code how the classification risk and the adversarial

domain discrepancy loss are used to validate the model and how these two terms

are balanced. On the contrary, we propose an alternative approach for combining

classification risk and domain discrepancy loss in a meaningful way in light of our

theoretical results.

5.3 Problem Formulation

5.3.1 Notations

Let 𝒳 , 𝒵, 𝒴 denote the input space, the representation space, and the label space,

𝒟(𝑠) and 𝒟(𝑢) represent the seen and unseen domain, respectively. 𝑓 : 𝒳 → 𝒵 and

𝑔 : 𝒵 → 𝒴 are the representation function and the classifier. We use capital letters for

the random variables in different spaces and lowercase letters for samples. Specifically,
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we denote 𝑋 as the input random variable, 𝑍 as the extracted feature random variable,

and 𝑌 as the label random variable. The input samples, the feature samples and the

labels of the input samples are denoted as 𝑥, 𝑧, and 𝑦(𝑥), respectively. Finally, we

use 𝑝(𝑠)(·) and 𝑝(𝑢)(·) to denote the distributions or joint distributions corresponding

to the variables inside the bracket on seen domain and unseen domain, respectively.

5.3.2 Problem Formulation

For a representation function 𝑓 and a classifier 𝑔, the classification risk induced by 𝑓

and 𝑔 on seen domain is:

𝐶(𝑠)(𝑓, 𝑔) =

∫︁
𝑥∈𝒳

𝑝(𝑠)(𝑥)ℓ(𝑔(𝑓(𝑥)), 𝑦(𝑠)(𝑥))𝑑𝑥

=

∫︁
𝑥∈𝒳

∫︁
𝑧∈𝒵

𝑝(𝑠)(𝑥, 𝑧)ℓ(𝑔(𝑧), 𝑦(𝑠)(𝑥))𝑑𝑥𝑑𝑧 (5.1)

where ℓ(·, ·) is a distance measure that quantifies the mismatch between the label

outputted by classifier 𝑔 and the true label.

For a representation function 𝑓 , the distribution discrepancy between seen and

unseen domains induced by 𝑓 is:

𝐷(𝑓) = 𝑑(𝑝(𝑢)(𝑌, 𝑍)||𝑝(𝑠)(𝑌, 𝑍)) (5.2)

where 𝑑(·||·) is a divergence measure between two distributions. Indeed, to deal with

the “distribution-shift", one usually looks for a mapping 𝑓 such that the discrepancy

between distributions of seen and unseen domains 𝐷(𝑓) is small [39,102].

A large number of DG works focus on training a model that minimizes both

the classification risk 𝐶(𝑠)(𝑓, 𝑔) and the discrepancy 𝐷(𝑓) using data from seen

domains [12, 81, 85,89,101,125]. Note that while 𝐶(𝑠)(𝑓, 𝑔) can be directly minimized,

one usually need to approximately/heuristically optimize 𝐷(𝑓) by optimizing the
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distribution discrepancy between several seen domains. Since there are already well-

established theoretical and empirical works on minimizing the classification risk and

domain discrepancy, our work aims to highlight the trade-off between these two

objectives (Sec 5.4) and argues that taking both objectives into account during model

selection can improve model’s performance on unseen domains (Sec. 5.5).

5.4 Trade-off between Classification Risk and Domain

Discrepancy

We first begin with a definition.

Definition 5.4.1 (Classification risk-domain discrepancy function). For any represen-

tation function 𝑓 and classifier 𝑔, define:

𝑇 (∆) = min
𝑓 :𝒳→𝒵

𝐷(𝑓) = min
𝑓 :𝒳→𝒵

𝑑(𝑝(𝑢)(𝑌, 𝑍)||𝑝(𝑠)(𝑌, 𝑍))

s.t. 𝐶(𝑠)(𝑓, 𝑔) =

∫︁
𝑥∈𝒳

𝑝(𝑠)(𝑥)ℓ(𝑔(𝑓(𝑥)), 𝑦(𝑠)(𝑥))𝑑𝑥 ≤ ∆

(5.3)

where ∆ is a positive number, ℓ(·, ·) is a distance measure, and 𝑑(·||·) is a divergence

measure.

𝑇 (∆) is the minimal discrepancy between the joint distribution of the unseen

domain and seen domain if the classification risk on seen domain 𝐶(𝑠)(𝑓, 𝑔) does not

exceed a positive threshold ∆. Next, we formally show that there is a trade-off between

minimizing the distribution discrepancy 𝐷(𝑓) and minimizing the classification risk

𝐶(𝑠)(𝑓, 𝑔).

Theorem 5.4.2 (Main result). If the divergence measure 𝑑(𝑎||𝑏) is convex (in both 𝑎

and 𝑏), for a fixed classifier 𝑔, 𝑇 (∆) defined in (5.3) is monotonically non-increasing,

and convex.
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Proof. The proof of this theorem is mainly based on the proposed approach in Rate-

Distortion theory [34]. In particular, consider two positive numbers ∆1 and ∆2, and

assume ∆1 ≤ ∆2. For a given classifier 𝑔, we use ℱΔ1 and ℱΔ2 to denote the sets of

mappings 𝑓 such that 𝐶(𝑠)(𝑓, 𝑔) ≤ ∆1 and 𝐶(𝑠)(𝑓, 𝑔) ≤ ∆2, respectively. First, we

show that 𝑇 (∆) is non-increasing. Indeed, since ∆1 ≤ ∆2, ℱΔ1 ⊂ ℱΔ2 , we have:

𝑇 (∆1) = min
𝑓∈ℱΔ1

𝑑(𝑝(𝑢)(𝑌, 𝑍)||𝑝(𝑠)(𝑌, 𝑍))

≥ min
𝑓∈ℱΔ2

𝑑(𝑝(𝑢)(𝑌, 𝑍)||𝑝(𝑠)(𝑌, 𝑍)) = 𝑇 (∆2).

Next, to prove the convexity of 𝑇 (∆), we need to show that:

𝜆𝑇 (∆1) + (1− 𝜆)𝑇 (∆2) ≥ 𝑇 (𝜆∆1 + (1− 𝜆)∆2),∀𝜆 ∈ [0, 1]. (5.4)

To prove (5.4), we need some additional notations. Here we define:

𝑓1 = argmin
𝑓 :𝒳→𝒵

𝐷(𝑓) s.t. 𝐶(𝑠)(𝑓, 𝑔) ≤ ∆1, (5.5)

𝑓2 = argmin
𝑓 :𝒳→𝒵

𝐷(𝑓) s.t. 𝐶(𝑠)(𝑓, 𝑔) ≤ ∆2. (5.6)

Note that for any 𝑓 , 𝑌 → 𝑋 → 𝑍 forms a Markov chain, thus:

𝑝(𝑢)(𝑌, 𝑍) = 𝑝(𝑢)(𝑌 |𝑋) 𝑝(𝑢)(𝑋,𝑍), (5.7)

𝑝(𝑠)(𝑌, 𝑍) = 𝑝(𝑠)(𝑌 |𝑋) 𝑝(𝑠)(𝑋,𝑍), (5.8)

where 𝑝(𝑢)(𝑌 |𝑋) and 𝑝(𝑠)(𝑌 |𝑋) are independent of 𝑓 and only depend on the condi-

tional distributions of label and data on seen and unseen domains.

Let 𝑝(𝑢)1 (𝑌, 𝑍), 𝑝(𝑠)1 (𝑌, 𝑍) be the joint distributions of 𝑌 and 𝑍 on unseen and seen

domain produced by 𝑓1, and similarly 𝑝(𝑢)2 (𝑋,𝑍), 𝑝(𝑠)2 (𝑋,𝑍) be the joint distributions
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produced by 𝑓2. Let

𝑝
(𝑢)
𝜆 (𝑋,𝑍) = 𝜆𝑝

(𝑢)
1 (𝑋,𝑍) + (1− 𝜆)𝑝(𝑢)2 (𝑋,𝑍), (5.9)

𝑝
(𝑠)
𝜆 (𝑋,𝑍) = 𝜆𝑝

(𝑠)
1 (𝑋,𝑍) + (1− 𝜆)𝑝(𝑠)2 (𝑋,𝑍). (5.10)

By definition, the left hand side of (5.4) can be rewritten by:

𝜆𝑇 (∆1) + (1− 𝜆)𝑇 (∆2)

=𝜆𝑑
(︀
𝑝
(𝑢)
1 (𝑌, 𝑍) || 𝑝(𝑠)1 (𝑌, 𝑍)

)︀
+ (1− 𝜆)𝑑

(︀
𝑝
(𝑢)
2 (𝑌, 𝑍) || 𝑝(𝑠)2 (𝑌, 𝑍)

)︀
=𝜆𝑑

(︀
𝑝(𝑢)(𝑌 |𝑋)𝑝

(𝑢)
1 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋)𝑝

(𝑠)
1 (𝑋,𝑍)

)︀
(5.11)

+ (1− 𝜆)𝑑
(︀
𝑝(𝑢)(𝑌 |𝑋)𝑝

(𝑢)
2 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋)𝑝

(𝑠)
2 (𝑋,𝑍)

)︀
(5.12)

≥𝑑
(︀
𝑝(𝑢)(𝑌 |𝑋)𝑝

(𝑢)
𝜆 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋)𝑝

(𝑠)
𝜆 (𝑋,𝑍)

)︀
(5.13)

where (5.11) and (5.12) are due to (5.7) and (5.8); (5.13) is due to (5.9), (5.10), and

the convexity of 𝑑(·||·).

Let 𝑓𝜆 be the corresponding function that induces the joint distribution 𝑝(𝑢)𝜆 (𝑋,𝑍)

and 𝑝(𝑠)𝜆 (𝑋,𝑍). Define:

∆𝜆 =

∫︁
𝑥∈𝒳

∫︁
𝑧∈𝒵

𝑝
(𝑠)
𝜆 (𝑥, 𝑧)ℓ(𝑔(𝑧), 𝑦(𝑠)(𝑥)) 𝑑𝑥𝑑𝑧. (5.14)

By definition of 𝑇 (∆) in Definition 5.4.1, we have:

𝑑
(︀
𝑝(𝑢)(𝑌 |𝑋) 𝑝

(𝑢)
𝜆 (𝑋,𝑍) || 𝑝(𝑠)(𝑌 |𝑋) 𝑝

(𝑠)
𝜆 (𝑋,𝑍)

)︀
≥ 𝑇 (∆𝜆). (5.15)

Combine (5.13) and (5.15):

𝜆𝑇 (∆1) + (1− 𝜆)𝑇 (∆2) ≥ 𝑇 (∆𝜆). (5.16)
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Thus, the left-hand side of (5.4) is greater or equal to 𝑇 (∆𝜆). Next, we show that:

𝑇 (∆𝜆) ≥ 𝑇
(︀
𝜆∆1 + (1− 𝜆)∆2

)︀
. (5.17)

Since 𝑇 (∆) is non-increasing, proving (5.17) is equivalent to prove:

∆𝜆 ≤ 𝜆∆1 + (1− 𝜆)∆2. (5.18)

Indeed, we have:

∆𝜆 =

∫︁
𝑥

∫︁
𝑧

𝑝
(𝑠)
𝜆 (𝑥, 𝑧)ℓ(𝑔(𝑧), 𝑦(𝑠)(𝑥))𝑑𝑥𝑑𝑧 (5.19)

= 𝜆

∫︁
𝑥

∫︁
𝑧

𝑝
(𝑢)
1 (𝑥, 𝑧)ℓ(𝑔(𝑧), 𝑦(𝑠)(𝑥))𝑑𝑥𝑑𝑧 (5.20)

+ (1− 𝜆)
∫︁
𝑥

∫︁
𝑧

𝑝
(𝑢)
2 (𝑥, 𝑧)ℓ(𝑔(𝑧), 𝑦(𝑠)(𝑥))𝑑𝑥𝑑𝑧 (5.21)

≤ 𝜆∆1 + (1− 𝜆)∆2 (5.22)

where (5.19) follows from (5.14), (5.20) and (5.21) follow from (5.9), and (5.22) follows

from (5.5) and (5.6), respectively. From (5.18) and (5.22), (5.17) follows. Finally, by

combining (5.16) with (5.17), (5.4) is obtained. This completes the proof.

Theorem 5.4.2 shows that only enforcing a small distribution discrepancy between

domains will increase the classification risk and vice-versa.

5.5 A New Validation Method

Based on Theorem 5.4.2, we argue that to select a good model for unseen domains,

one should account for both the classification risk and the domain discrepancy not

only in the training process but also in the validation phase. It’s worth noting that

prevailing methods for model evaluation and selection in the domain generalization
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context are largely centered on the classification risk or equivalently, the classification

accuracy [57,152]. Given this fact, we propose to select a model that minimizes the

following objective function on the validation set:

𝐿Validation loss = 𝛽(1− 𝛼)𝐿Classification risk + 𝛼𝐿Domain-discrepancy loss (5.23)

where 𝛼 is the convex combination hyper-parameter and 𝛽 is the scale hyper-parameter

that supports the combination of objectives with different scales.

The utility of the cross-entropy loss as a good approximation of classification risk

is quite evident. Yet, the challenge lies in selecting an appropriate metric to quantify

the domain-discrepancy loss, which stems from the diversity of definitions associated

with domain discrepancy. Several studies define domain discrepancy through the

difference in marginal distributions [85, 125], while others measure it by the mismatch

in conditional distributions [12]. We believe that finding a good measure for domain

discrepancy is still an open problem. Therefore, within the scope of this chapter, we

opt to employ the widely accepted Maximum Mean Discrepancy (MMD) loss in the

feature space [85] as our choice for quantifying domain discrepancy. Nonetheless, we

acknowledge that although the MMD measure is extensively employed, it may not

necessarily be the optimal choice.

In practice, we observed that the MMD loss generally aligns with the cross-entropy

loss in terms of scale when the training process is stable. As a result, we set 𝛽 to 1. For

the hyper-parameter 𝛼, we prioritize classification performance and thus, heuristically

choose 𝛼 as 0.2. From our experiments, we found that the performance of our validation

method is robust to small values of 𝛼 within the range of [0.1, 0.3]. Theorem 5.4.2 also

provides another insight for model selection that one should avoid extreme points in ∆

(classification error) for a balance between the model’s generalization and prediction

capabilities. In fact, this suggests that the classification error should neither be
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excessively small nor overly large. Thus, for each hyper-parameter configuration, we

sort the validation cross-entropy loss in ascending order and only pick the models

that generate 5% to 50% percentile of the validation cross-entropy loss as a subset of

candidates for model selection. Our implementation is released at this link1.

5.6 Numerical Results

We compare the proposed model selection method with the Training-domain validation

method described in [57] on three datasets: PACS [82], VLCS [48], and Colored-MNIST

(C-MNIST) [12] using DomainBed package and 12 different DG algorithms provided

there [57]. Recall that the Training-domain validation method chooses the model that

produces the highest validation accuracy, while our method selects the model that

minimizes the objective function in (5.23). For PACS and VLCS datasets, we report

the average test accuracy over 4 different tasks with each time leaving one domain out

as the unseen domain. For the C-MNIST dataset, we only focus on the most difficult

domain, where the correlation between the label and the color of the unseen domain is

completely different from the seen domains and no algorithm can achieve more than

10.5% points accuracy [57].

The validation set is formed using 20% data from each seen domain, denoted as

the training-domain validation set in [57]. We follow exactly the same settings and

training routine used in DomainBed and conduct 20 trials of random search over a

joint distribution of hyper-parameters for each task per algorithm. For the MMD

loss implementation, we directly use the code provided in DomainBed package. We

train each model for 5000 steps. The validation cross-entropy loss, MMD loss, and

validation accuracy are recorded every 100 steps for VLCS dataset and every 300 steps

for PACS and C-MNIST datasets.
1https://github.com/thuan2412/A-principled-approach-for-model-validation-for-domain-

generalization
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Table 5.1: Classification accuracy of 12 tested algorithms on PACS, VLCS, and C-
MNIST datasets using the Training-domain validation method (Traditional) proposed
in [57] vs. using our new validation method.

Algorithm Fish [119] IRM [12] GDRO [113] Mixup [140] CORAL [125] MMD [85] DANN [51] CDANN [86] MTL [23] VREx [78] RSC [62] SagNet [99] Wins

PACS
(Traditional) 84.6 84.9 84.2 83.3 85.1 83.6 84.6 86.4 83.0 84.5 85.2 83.7

PACS
(Ours) 82.0 85.3 84.3 85.3 84.9 85.0 84.9 82.0 84.2 84.2 81.3 85.1 7/12

VLCS
(Traditional) 79.4 76.0 78.1 77.4 76.8 78.5 77.8 79.2 77.3 76.4 78.6 80.5

VLCS
(Ours) 77.5 79.2 79.6 77.6 78.8 78.0 78.5 80.3 78.2 78.6 76.1 79.3 8/12

CMNIST
(Traditional) 10.0 10.0 10.2 10.4 9.7 10.4 10.0 9.9 10.5 10.2 10.2 10.4

CMNIST
(Ours) 9.7 10.9 12.6 10.3 11.2 9.9 11.1 10.2 11.5 15.6 13.8 10.5 9/12

With 𝛼 = 0.2, 𝛽 = 1, the performance of each algorithm under different validation

methods on PACS, VLCS and Colored-MNIST datasets is shown in Table 5.1. We

refer to the Training-domain validation method as “Traditional” and the proposed

method as “Ours”. For the PACS dataset, the proposed validation method can select

slightly better models for seven out of twelve DG algorithms. For the remaining five

DG algorithms, our method achieves comparable performance with the "Traditional”

method on CORAL [125] and VREx [78]. However, for Fish [119], CDANN [86] and

RSC [62], we observe a performance deterioration. The effectiveness of the proposed

method can be more easily observed on VLCS dataset, where eight out of twelve

DG algorithms get an improved model selected, with the improvement varying from

0.2% to 3.2%. For the C-MNIST dataset, the proposed validation method consistently

selects models with better performance compared with the “Traditional” validation

method. Accuracy improves for nine out of twelve tested algorithms with the most

significant improvement for VREx [78] method by 5.4%.

5.7 Conclusion

By showing the trade-off between minimizing the classification risk and domain

discrepancy, we highlight that the traditional model selection methods may not be

suitable for DG problem. We then propose an alternative model selection approach
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that considers both objectives. While our approach outperforms traditional methods

on several DG algorithms and datasets, it lacks an automatic hyper-parameter tuning

strategy. Given that domain discrepancies can differ across datasets, expecting the

same optimal values of 𝛼 and 𝛽 for all datasets might not be realistic. Determining

the “optimal” values could be challenging both practically and theoretically. Therefore,

we leave this as an open problem for future investigation. Despite this limitation, we

believe our approach offers valuable insights and initial outcomes for developing novel

model selection methods tailored to the DG problem.
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Chapter 6

Conclusions

In this thesis, we reviewed different paths paved by the researchers for addressing

the DG problem. Specifically, we revisited the common path that is shared with the

domain adaptation problem, especially in the theory part, and the new avenues built

specifically for the DG problem. Our contributions to DG research, covering theory,

algorithm and workflow design, are shown in Chapters 3, 4, and 5.

In Chapter 3.1, we studied the DG problem through a theoretical lens, presenting a

novel upper bound for the risk of unseen domains. This proposed bound encompasses

four components: empirical risk in the input space, the discrepancy between seen

and unseen domain representation distributions, a reconstruction loss quantifying

the quality of data recovery from its representation; and a combined risk term that

is intrinsic to the domain itself. We demonstrated that our bound bridges the gap

between the previous bounds and the existing practical algorithms, addressing the

limitations of previous theoretical work in three aspects. Firstly, our bound addresses

the optimization challenges stemming from the dependency of combined risk on the

representation function. Our upper bound achieves this by making the combined risk

constant relative to both representation and labeling function. Secondly, unlike bounds

using the Wasserstein distance for measuring domain discrepancy, our proposed upper
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bound constructs the discrepancy term in the representation space rather than the

data space. This approach supports the decomposition of hypothesis when bounding

the risk and designing practical algorithms. Lastly, drawing inspiration from the

proposed upper bound, our WBAE algorithm shows competitive performance against

other theory-guided state-of-the-art DG algorithms, underscoring the effectiveness

of the proposed bound. Importantly, our bound encourages the minimization of the

reconstruction loss arising from the representation function, which was proved to be

important in Chapter 3.2. Serving as a complementary extension to Chapter 3.1,

Chapter 3.2 demonstrates that although domain-invariant representation is crucial

for DG, it does not guarantee the preservation of high mutual information between

the label and the representation in unseen domains. To overcome this, we imposed a

constraint on the representation function by adding a reconstruction loss to guarantee

that the extracted feature preserves essential label information. We further showed the

trade-off between this reconstruction loss and domain alignment in DG. Specifically,

minimizing both simultaneously may not be possible. Grounded on these theoretical

insights, we chose not to design a new algorithm but a versatile framework that

can be seamlessly integrated to various DG algorithms. We assessed this framework

using various DG algorithms and datasets, demonstrating its efficacy in boosting the

robustness of DG models.

In Chapter 4, we offered an in-depth exploration of domain-invariant features, with

a method to mitigate the detrimental effects of spurious features on model performance.

Utilizing the Conditional Entropy Minimization (CEM) principle, we demonstrated

that spurious domain-invariant feature can be filtered out if the data satisfies some

assumptions. Our analysis uncovers the link between our objective function and

the deterministic information bottleneck (DIB) method. Additionally, we provided

a theoretical result confirming our method’s capability to remove spurious features

under certain conditions.
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In Chapter 5, we shifted our attention from algorithm design to the whole work

flow of the DG problem. In particular, by demonstrating the inherent trade-off be-

tween minimizing the classification risk and domain discrepancy, we suggested that

conventional model selection methods may not be suitable for the DG problem. As

an alternative, we proposed a model selection/validation method that accounts for

both objectives. An extensive evaluation, spanning twelve DG algorithms on three

benchmark DG datasets, attests to the ability of the proposed method to consistently

select models that outperform conventional methods.

Limitations and Future Work

The DG problem is a realistic yet challenging problem, with no single algorithm

capable of resolving it perfectly. In this section, we reflect on the shortcomings of our

methods discussed in this thesis and suggest potential avenues for future exploration.

In Chapter 3.1, while our WBAE algorithm demonstrates efficacy in tackling

the DG problem, its computational demands grow with the increase in batch size,

especially when aiming for a more accurate estimation of the Wasserstein-2 barycenter.

To mitigate this, future research could integrate recent innovations in large-scale

barycenter and mapping estimators [47,76]. Such integration could speed up barycenter

computations over larger sample sizes.

In Chapter 4, our CEM-based algorithm operates under a simplified condition,

treating the learned domain-invariant feature as a linear mixture of the true and

spurious invariant features. This linear assumption might not be universally applicable.

Consequently, future research should focus on addressing the challenges posed by

non-linear mixture cases.

In Chapter 5, though showing enhanced results, our DG-focused validation method

does not provide an automated mechanism for hyper-parameter tuning. As domain

discrepancies vary by dataset, assuming uniform optimal values for the trade-off terms
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between empirical risk and domain discrepancy term is impractical. Determining

the “optimal” values could be challenging both practically and theoretically. Looking

ahead, research could focus on investigating alternative discrepancy metrics and setting

thresholds based on classification accuracy rather than directly referencing empirical

risk values.
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Appendix A

Appendix

Wasserstein Distance: Before introducing the general version of the Wasserstein

distance with respect to continuous probability distribution, let us first consider its

discrete case, which usually comes together with Optimal Transport (OT) problem.

To facilitate this brief introduction, we introduce some temporary notations: Consider

two discrete sets of points {𝑥𝑖}𝑛𝑖=1,𝑥𝑖 ∈ R𝑑, and {𝑦𝑗}𝑛𝑗=1,𝑦𝑗 ∈ R𝑑, both 𝑥,𝑦 are under

the same metric space and we treat them as two empirical distributions,

𝑎 =
𝑛∑︁
𝑖=1

𝑎𝑖𝛿𝑥𝑖
, 𝑏 =

𝑚∑︁
𝑗=1

𝑏𝑗𝛿𝑦𝑗
(A.1)

where 𝛿𝑥𝑖
and 𝛿𝑦𝑗

are Dirac functions at the position of 𝑥𝑖 and 𝑦𝑗, 𝑎𝑖 and 𝑏𝑗 are

the corresponding probabilities. Without further information, 𝑎𝑖 and 𝑏𝑗 will be set

as 1
𝑛

and 1
𝑚

respectively. 𝐶 ∈ R𝑛×𝑚 with the 𝑖, 𝑗-th element 𝐶𝑖,𝑗 being the cost of

associating the point 𝑥𝑖 to the point 𝑦𝑗.

Here, we borrow the “mine and factory” metaphor from [59,105]. Imagine a scenario

where we own 𝑛 warehouses and 𝑚 factories situated at different locations. Each

warehouse contains valuable mines required by the respective factories. In this setup,

assume that warehouse 𝑖 holds 𝑎𝑖 units of mines, while factory 𝑗 requires 𝑏𝑗 units of

mines to operate effectively, and all mines must be moved from the warehouse to the
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factories. A transportation company is available to provide this service, charging a

fee denoted by 𝐶𝑖,𝑗 for moving one unit of mine from warehouse 𝑖 to factory 𝑗. If

we need to transport 𝑎𝑖 units of mines, the cost will be calculated as 𝑎𝑖 * 𝐶𝑖,𝑗. As

the owner, we of course want the task done with the lowest cost. Thus, we decide to

ask our friend, a mathematician, to design the transport plan for us. The problem

is formulated as finding the optimal transportation plan such that we can spend the

least money to move all mines to our factories with the demanded amount. Formally:

find a plan 𝑇 ∈ R𝑛×𝑚 that is the solution to

arg min
𝑇∈𝑈(𝑎,𝑏)

⟨𝐶,𝑇 ⟩ (A.2)

where ⟨𝐶,𝑇 ⟩ =
∑︀

𝑖,𝑗 𝐶𝑖,𝑗𝑇𝑖,𝑗, 𝑈(𝑎, 𝑏) = {𝑇 ∈ R𝑛×𝑚
+ :

∑︀𝑚
𝑗=1 𝑇𝑖,𝑗 = 𝑎,

∑︀𝑛
𝑖=1 𝑇𝑖,𝑗 = 𝑏},

This is also known as the Kantorovich’s relaxation [70] for the original Monge problem

[94]. To reduce the computational cost of solving the linear program (A.2), an entropic

regularization term is usually added to (A.2), leading to:

min
𝑇∈𝑈(𝑎,𝑏)

⟨𝐶,𝑇 ⟩ − 𝜆𝐻(𝑇 ) (A.3)

where 𝐻(𝑇 ) = −
∑︀

𝑖,𝑗 𝑇𝑖,𝑗(log𝑇𝑖,𝑗 − 1). This entropic OT problem [37] can be solved

efficiently using the Sinkhorn Algorithm [121] or its variations such as the Greenkhorn

algorithm [1], both of which can achieve a near-linear time complexity [11].

Closely related to the OT problem, when we quantify 𝐶 by the 𝑝𝑡ℎ-power of a

distance metric, where 𝑝 ≥ 1, then the Wasserstein distance between the above two

discrete probability distributions is written as:

W𝑝(𝑎, 𝑏) =
(︀

min
𝑇∈𝑈(𝑎,𝑏)

⟨𝐶,𝑇 ⟩
)︀1/𝑝 (A.4)

For a more general case, we define the Wasserstein-𝑝 [105,115] metric between two
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Borel probability measures 𝜇, 𝜈 as:

W𝑝(𝜇, 𝜈) = ( inf
𝜋∈Π(𝜇,𝜈)

E(𝑢,𝑣)∼𝜋[‖𝑢− 𝑣‖𝑝2])1/𝑝

where Π(𝜇, 𝜈) is the set of joint distributions with marginals 𝜇 and 𝜈.

Wasserstein distance quantifies the distance between two probability distribution

under a given metric space. It is favored in modern machine learning works [13,56] since

it can provide meaningful gradient even if support of two distributions do not overlap.

When 𝑝 = 1, Wasserstein-1 distance has another name called “Earth Mover Distance”.

By Kantorovich-Rubinstein theorem [133], the dual form of the Wasserstein-1 distance

can be written as:

W𝑝(𝜇, 𝜈) = sup
‖ℎ(𝑥)‖𝐿≤1

E𝑥∼𝜇[ℎ(𝑥)]− E𝑥∼𝜈 [ℎ(𝑥)] (A.5)

where the ℎ is required to be 1-Lipschitz function and ‖ℎ‖𝐿 = sup |𝑓(𝑥)−𝑓(𝑦)|
|𝑥−𝑦| . If we

change the upper bound of ‖ℎ(𝑥)‖𝐿 from 1 to 𝐾, we will then obtain 𝐾W𝑝(𝜇, 𝜈).

The content above serves as a brief overview of the Wasserstein distance. For a

comprehensive review of Optimal Transport and Wasserstein distance, we refer readers

to the work by Peyré [105].
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